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A central problem of materials science is to determine whether a hypothetical material is stable without being

synthesized, which is mathematically equivalent to a global optimization problem on a highly non-linear

and multi-modal potential energy surface (PES). This optimization problem poses multiple outstanding

challenges, including the exceedingly high dimensionality of the PES and that PES must be constructed

from a reliable, sophisticated, parameters-free, and thus, very expensive computational method, for which

density functional theory (DFT) is an example. DFT is a quantum mechanics based method that can predict,

among other things, the total potential energy of a given configuration of atoms. DFT, while accurate, is

computationally expensive. In this work, we propose a novel expansion-exploration-exploitation framework

to find the global minimum of the PES. Starting from a few atomic configurations, this “known” space is

expanded to construct a big candidate set. The expansion begins in a non-adaptive manner, where new

configurations are added without considering their potential energy. A novel feature of this step is that it

tends to generate a space-filling design without the knowledge of the boundaries of the domain space. If

needed, the non-adaptive expansion of the space of configurations is followed by adaptive expansion, where

“promising regions” of the domain space (those with low energy configurations) are further expanded. Once

a candidate set of configurations is obtained, it is simultaneously explored and exploited using Bayesian

optimization to find the global minimum. The methodology is demonstrated using a problem of finding the

most stable crystal structure of Aluminum.

Key words : Active learning, Adaptive design, Bayesian optimization, Computer experiments, Crystal

structure prediction, Gaussian process model, Space-filling design.
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1. Introduction

One of the most ambitious goals of material scientists is to discover and design new materials

with desirable properties and applications (Franceschetti & Zunger 1999, Weymuth & Reiher 2014,

d’Avezac et al. 2012, Xiang et al. 2013, Huan et al. 2015, Mannodi-Kanakkithodi et al. 2016).

Until the present time, material discoveries are largely driven by expensive and time-consuming

trial-and-error approaches, i.e., they must be physically synthesized and tested in a laboratory

with limited guidance beyond empirical rules and experience. However, under some scenarios, some

properties of a material can be computed without synthesizing it, if its atomic structure is known.

Predicting the stable atomic configurations of a given set of atoms can be mathematically for-

mulated as an optimization problem. The most stable configuration is the global minimum of

the potential energy surface corresponding to all possible atomic configurations. This is a very

active research area in the emerging era of materials discovery and design, when a large number

of hypothetical materials should be examined by computational methods before some of them can

be advanced to the synthesizing and testing steps. The main objective of materials structure pre-

diction (Oganov et al. 2019) is searching for low-energy atomic configurations of a given set of

atoms.

Although we are primarily interested in the global minimum of the PES, certain local minima may

also be useful (Vu et al. 2021, Therrien et al. 2021). External perturbations such as temperature,

pressure, and other kinetic-related factors may bring a local minimum down to be the global

minimum at a specific condition (Huan 2018, Kobayashi et al. 2019, Gaida et al. 2021), or drive the

atomic configuration to land at some nearby (accessible) local minima. Therefore, configurations

that are very far from (and/or very well-separated by a high potential energy barrier with) the

global minimum may also be reliable.

The specific class of materials addressed in this work is crystal. A crystal can be imagined as

an infinitely repeated array of a unit cell along three Cartesian dimensions. Crystal materials

are dominant in material science because of two main reasons. First, a majority of materials are

crystals and/or can be modeled very well by crystal models. Second, because of its periodicity,

crystal models are small enough so that physics-based computational methods such as the Density

Functional Theory (DFT) (Hohenberg & Kohn 1964, Kohn & Sham 1965), the most reliable (but

expensive) parameter-free computational method, may be used at an acceptable cost.

The least biased and non-empirical approaches to crystal structure prediction involve computa-

tional optimization (Oganov 2011). These approaches involve explicit computation of the potential

energy of the crystal structure, followed by solving an optimization problem to find the crystal

structure corresponding to the least energy, or the thermodynamically most stable configuration.

Pickard & Needs (2006, 2011) developed a random-search based method to find the stable crystal
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structure configuration. The underlying idea in this method is to use the DFT to optimize a ran-

domly generated set of crystal structures, driving each of them to the nearest local minimum. With

a large number of randomly generated samples, these approaches can successfully identify the most

stable crystal structure configuration in many cases. Some other recently developed methods are

simulated annealing (Pannetier et al. 1990, Schön & Jansen 1996, Tekin et al. 2010), basin hopping

(Wales & Doye 1997), minima hopping (Goedecker 2004), metadynamics (Martoňák et al. 2006),

evolutionary algorithms (Trimarchi et al. 2009), and USPEX (Universal Structure Predictor: Evo-

lutionary Xtallography) approach (Oganov & Glass 2006, Glass et al. 2006, Oganov et al. 2011),

which is based on evolutionary algorithms.

While these methods are different in many aspects, most notably the employed (global) opti-

mization algorithms, they do share two common fundamental problems. First, given a set of atoms,

how to thoroughly explore the configurational space, and second, within this accessible domain,

how to efficiently identify the global minimum? Since the number of local minima of the potential

energy scales up exponentially with the number of atoms in the system (Berry 1993, Stillinger

1999), both problems are enormously challenging. In most of the practical cases, there is essentially

no way to guarantee that the entire configurational space can be explored, and for this reason, new

developments in this active research area are still in progress.

We have developed an expansion-exploration-exploitation framework to address these problems,

i.e., (i) enlarging the accessible domain of the search space, and (ii) finding the global minimum of

the PES within this domain. For the first problem, we expand the space spanned by a few possible

configurations by perturbing them and generating more configurations in their neighborhood. The

configurations are generated such that they continuously expand the spanned domain space of

configurations, especially towards the low-energy regions of the domain space. Once a representative

candidate set of configurations is obtained, a Bayesian optimization procedure (Jones et al. 1998) is

used for exploring the domain space regions with high uncertainty in the potential energy estimate

while simultaneously exploiting the low-energy regions to find the global minimum and reliable

local minima among the candidate set of configurations.

This article is organized as follows. In Section 2, we discuss the characteristics of the crys-

tal structure prediction problem, and the associated constraints and challenges. In Section 3, we

describe the developed methodology that addresses these constraints and challenges. In Section 4,

we illustrate the effectiveness of our methodology on the problem of finding the crystal structure

of Al8 (Aluminum), where the true structure is already known (see Figure 1). We conclude the

article with some remarks in Section 5.
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Figure 1 A supercell of the body-centered cubic (ground state) crystal structure of Aluminium. The ideal

crystal is obtained by infinitely repeating this cell in three dimensions.

2. Problem characteristics, constraints and challenges

This section describes the characteristics of the crystal structure prediction problem, and the

associated constraints and challenges, as summarised in Figure 2.

Figure 2 Problem characteristics and the associated constraints and challenges.

2.1. Expensive energy computation: Density functional theory (DFT)

We use single-point DFT computations to determine the potential energy of the atomic config-

uration under consideration. Such calculations are performed using the abinit package (Gonze

et al. 2016), employing the Perdew-Burke-Ernzerhof functional (Perdew et al. 1996) for the quan-

tum mechanical exchange-correlation energies. The electron-nuclear interactions are computed with

help from the norm-conserving Hartwigsen-Goedecker-Hutter pseudopotentials (Hartwigsen et al.

1998). For our calculations, the Brilouin zone is sampled by a dense Monkhorst-Pack k-point mesh

(Monkhorst & Pack 1976), and a basis set of plane waves with kinetic energy up to 550 eV.

To find the most stable crystal structure configuration, we need to find the one with the least

potential energy. Any reliable predictions of materials structure must be done with accurate-enough

methods to compute the potential energy, and DFT is possibly the least expensive method of this
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kind. However, the time needed for a DFT computation scales as N 3
A where NA is the number of

atoms. It also becomes quickly expensive if numerous other parameters are adjusted to reach higher

levels of accuracy. Each evaluation of the potential energy on supercomputers requires hours or

even days, depending on the size of the atomic system under investigations. This is why predicting

a simple crystal structure by computations was regarded as “one of the continuing scandals in

the physical sciences” in 1988 by a Nature’s editor, Sir John Maddox (Maddox 1988). Although

structure prediction methods have evolved dramatically since then and have led to numerous new

materials predicted computationally and realized experimentally (Oganov et al. 2019), this remains

a major bottleneck of contemporary materials discoveries. The expensive DFT computations con-

strain us to evaluate the energy for only a few configurations, which gives rise to the challenge of

optimizing a huge potential energy surface, while observing it at only a few points.

2.2. Crystal structure representation: One-sided mapping

A crystal model of a material includes a parallelepiped unit cell defined by three basis vectors

a⃗, b⃗, and c⃗, a given set of NA atoms arranged in the unit cell, and an assumption that the unit

cell is infinitely repeated along a⃗, b⃗, and c⃗. Figure 1 shows an example of a unit cell. Because

a material does not change under rigid translations and rotations, three vectors a⃗, b⃗, and c⃗ can

be uniquely determined by six independent numbers. Therefore, the crystal structure prediction

is mathematically equivalent to a global optimization problem on the PES defined in a 3NA + 6

dimensional space (NA has no upper limit, and its typical values can be as high as 100).

As mentioned earlier, we use the DFT to compute the potential energy of a crystal structure.

Potential energy of a crystal structure depends only on the relative distance between its atoms, and

not on the absolute positions of atoms. This implies that the energy is invariant to translational,

rotational and permutational operations of alike atoms, in the crystal structure configuration. Such

transformations change the Cartesian coordinates of the atom, but do not change the material

in any physical and chemical way. For this reason, we used the Cartesian coordinate system for

energy computations with DFT, while using the AGNI (Adaptive, Generalizable and Neighborhood

Informed) fingerprint (Batra et al. 2019) to map the atomic configurations onto their energy. All

the redundant Cartesian coordinate system atomic configurations correspond to a unique AGNI

fingerprint. An AGNI fingerprint captures the atomic-level information of the structure pretty well

while preserving the material presentation under such “identity” transformations in the materials

space.

The AGNI fingerprint used in this work is defined as f := {Sk;Vk}nk=1, where the scalar compo-

nents Sk and the vectorial components Vk are given by

Sk =
∑
i̸=j

G(rij, σk)fc(rij), (1)
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and

Vk =

√√√√ ∑
α=x,y,z

[∑
i̸=j

rαij
rij
G(rij, σk)fc(rij)

]2

, (2)

respectively. Here, rij is the distance between atoms i and j, rαij is the projection of rij onto the

Cartesian axis α, G(r,σk) is the Gaussian function centered at 0 with varying width σk:

G(r,σk) =
1√
2πσk

exp

(
−r2

2σ2
k

)
, (3)

and fc(.) is a cutoff function that is used for disregarding interaction among atoms that are further

than a distance Rc from each other:

fc(r)≡
1

2
[cos(πr/Rc)+ 1] . (4)

While summarizing over the atoms i and j, the periodicity of the unit cell is considered, i.e., for

an atom, its neighbors in all the repeated images of the unit cell are also taken into account.

The cutoff function, fc(r), defined in (4) is used for restricting the neighborhood to a radius of

Rc. We used Rc = 8 Å in this work, because the interaction between two atoms at this distance

is negligible. From the mathematical point of view, AGNI fingerprint is a way of projecting the

atomic positions onto a set of predefined basis functions. Here, we used n= 16 functions G(r,σk),

thus our fingerprint f has 2n= 32 components or dimensions. Note that the accuracy of the model

using a fingerprint increases as the dimension increases and then saturates. Our tests indicate that

after 32 dimensions, the increase in model accuracy with increasing dimensions is negligible. The

AGNI fingerprint is one of the numerous material fingerprints (Behler & Parrinello 2007, Bartók

et al. 2010) developed during the last decade.

Although the AGNI fingerprint eliminates redundancy in the Cartesian coordinate representa-

tion of the crystal structure configuration, and reduces the PES dimensionality from 3NA +6 (as

described in Section 2) to 32, it introduces a constraint. The constraint is that the AGNI finger-

print function, as defined in (1) and (2), is non-invertible, i.e., we can only map a configuration in

the Cartesian coordinate system to the AGNI system, but not vice-versa.

In the absence of the above constraint, we could have used a continuous optimization procedure

in the AGNI fingerprint space to find a solution and transform it to the physically interpretable

Cartesian coordinate system. However, in the presence of this constraint, we will need to use

a discrete optimization approach of considering a candidate set of configurations, finding their

corresponding fingerprints, and then finding the one with the least energy. This gives rise to the

challenge that the candidate set of fingerprints must contain the solution(s) or fingerprints “close

enough” to the solution(s).
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Tripathy et al. (2016), Siivola et al. (2021), Wang et al. (2022) develop the Gaussian process

model and optimize it in the latent space. However, we cannot use these methods as there is no

reverse mapping from the AGNI fingerprint space (latent space) back to the original input space

(Cartesian coordinate system). Chen et al. (2020) proposed formulating a least square problem to

map the solution back to the input space. However, this becomes a discrete optimization problem

in our case, which is computationally very expensive to solve.

2.3. Crystal structure representation: Unknown domain space

The domain space of the crystal structure configuration is more intuitive than that of the AGNI

fingerprint. This gives rise to the challenge of obtaining a candidate set of fingerprints that are

representative of all fingerprints, or a candidate set of crystal structure configurations that are

representative of all possible configurations. If we knew the domain space, we could have used a

space-filling design (Joseph 2016) to obtain a representative candidate set of fingerprints. However,

the challenge is to find a representative set of fingerprints without the knowledge of their domain

space.

There has been some work done for performing Bayesian optimization in an unknown input

space (Shahriari et al. 2016, Nguyen et al. 2017, Ha et al. 2019). However, these methods are not

applicable to our problem due to several reasons. First, these methods systematically expand the

input space to search for the optimum. But, in our problem, we do not expand the input space (i.e.,

the Cartesian coordinate system space) directly. We map the input space to a feature space (the

AGNI fingerprint space), which is expanded systematically to search for the optimum. Second, we

cannot avoid the input space, and apply these methods directly on the feature space because a

solution in the feature space cannot be mapped back to the input space, and the solution is to be

found in the input space. Third, we cannot avoid the feature space and apply these methods on

the input space. With the large amount of redundancy in the input space, the number of minima

will be too large making the problem unnecessarily complex. There has been some work done to

identify the feasible domain space when the search space is unknown. Basudhar & Missoum (2008)

used Support Vector Machines, while Chen & Fuge (2017) used active learning to identify the

feasible domain in an unbounded space. However, in our problem, it is not useful to identify the

feasible feature space because the points in this space cannot be mapped back to the input space.

Even though we expand the feature space, the expansion must be driven from the input space so

that we can trace the solution in the feature space back to the input space.

2.4. Multi-modal potential energy surface (PES)

The potential energy surface is highly nonlinear and multi-modal. Given that we can observe it at

only a few points, due to the expensive DFT computations, it becomes challenging to accurately
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model all the modalities. As the number of local minima scale up exponentially with the number of

atoms in a unit cell, NA, the challenge is even bigger for crystal structures with large NA. However,

modeling the multi-modalities is necessary to find the global minimum as well as other reliable

local minima.

3. Methodology

We have developed an expansion-exploration-exploitation framework for crystal structure predic-

tion that addresses all the challenges presented in Section 3. This framework is implemented in

two steps. The first step is domain space expansion, where we expand the space spanned by a few

possible configurations by iteratively adding more configurations. This leads to a candidate set of

configurations that will ideally either span the entire domain space of possible configurations or at

least span the space of stable configurations. The expansion step consists of a sequence of two sub-

steps: non-adaptive expansion and adaptive expansion. Non-adaptive expansion refers to adding

configurations without considering their potential energy. This tends to include unexpected config-

urations in our candidate set. If needed, this step is followed by adaptive expansion, which tends to

add configurations that further expand the low-energy regions of the domain space. The expansion

step is followed by simultaneous exploration and exploitation of the domain space spanned by the

candidate set to find the configuration that corresponds to the minimum potential energy. We will

explain these steps in the three sub-sections below.

In the sub-sections below, the number of initial configurations are denoted as n0, the number

of configurations added in the non-adaptive and adaptive expansion steps are denoted as n1 and

n2 respectively. The cumulative number of configurations in the candidate set at the end of the

non-adaptive and adaptive expansion steps are denoted as N1 and N2 respectively. The number

of iterations in the Bayesian optimization procedure is denoted as n3. As no new configurations

are added in the Bayesian optimization procedure, the number of configurations at the end of our

methodology remain N2.

3.1. Non-adaptive domain space expansion

The purpose of this step is to obtain a candidate set of configurations that span as much domain

space as possible. We start from a set of few possible configurations, and iteratively add those

configurations to the set that expand their spanned domain space. The potential energy of the

configurations is ignored, while developing the candidate set, to serve two purposes. First, it may

lead us to regions of the domain space where a low-energy configuration is unexpected. Second, it

saves the computational resources for calculating the energy and helps us obtain a larger candidate

set within a given time period.
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We will explain the algorithm with a toy example. Let the fingerprint domain space, be [−3,3]×
[−3,3]. However, in practice, we are not aware of the fingerprint domain space. So, we will not feed

this domain space to our algorithm. Nevertheless, the objective of our algorithm will be to find a

candidate set of fingerprints that fill this space.

The algorithm begins by considering the initial candidate set of few possible atomic configura-

tions, say C = {c1, · · · ,cn0
}, where c1, · · · ,cn0

are the n0 initial atomic configurations. Let their

corresponding fingerprints be X = {x1, · · · ,xn0}. Let us assume that there are a set of n0 = 5 possi-

ble fingerprints for our toy example, as shown in Figure 3 (left), and we have a budget of expanding

it to N1 fingerprints.

To expand the domain space spanned by the fingerprints, we will identify the most sparsely

populated region of the domain space, and generate fingerprints around it. We define the most

sparsely located fingerprint as the one that has the farthest nearest neighbor in any of its neigh-

borhoods. A fingerprint-neighborhood is defined as the space on either side of the fingerprint along

each dimension. Thus, for a p-dimensional fingerprint, there are 2p neighborhoods - two on either

side of it along each dimension. We intend to identify the fingerprint that has the farthest nearest

neighbor in any of its 2p neighborhoods.

Figure 3 (left): Initial n0 = 5 fingerprints; (right): Distances to the closest neighbors of fingerprint x3 in all of

its 2p= 4 neighborhoods.

Consider the two-dimensional fingerprints in Figure 3. Let us find the distance to the farthest

nearest neighbor of fingerprint x3 in Figure 3 (right). For that we will find the distance to the

nearest neighbor in 2p= 2×2 = 4 neighborhoods - above and below x3, and right and left of x3. The

nearest neighbors above and below are x3 are at a distance of d35 = 0.96 and d34 = 0.75 respectively,

while those on the left and right are at distance of d34 = 0.75 and d32 = 1.22 respectively. Thus, the

farthest nearest neighbor of x3 is at a distance of max(d32, d34, d35) = 1.22.
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Figure 4 (left) visualizes the distance to the farthest nearest neighbor with a circle having radius

half of that distance, around each fingerprint. Clearly, the fingerprint x1 is the most sparsely located

fingerprint. Let us label the fingerprint x1 as xsparse. So, we will find a fingerprint in the space

around xsparse, and add it to the candidate set to expand the spanned domain space.

Figure 4 (left): Space spanned by the initial n0 = 5 fingerprints; (right): Dotted circle around each fingerprint

with radius t, showing the minimum distance necessary between them and an acceptable newly generated

fingerprint; Two examples of acceptable new fingerprints for inclusion in the candidate set - xa,xb.

To generate a fingerprint around xsparse, we randomly perturb the atomic configuration corre-

sponding to xsparse to generate another configuration, and fingerprint it. This new fingerprint is

added to the candidate set if it is “far enough” from its nearest neighboring fingerprint. We use a

threshold distance ti (for the ith iteration), which will be defined later, to check if the randomly

generated fingerprint is “far enough”. If it is not “far enough”, then we discard it, and again perturb

the same atomic configuration.

The purpose of the threshold distance ti is twofold. First, it is used for avoiding redundancy of

fingerprints in the candidate set. Second, it ensures that the fingerprints are evenly spaced-out in

their domain space. If ti is the threshold distance in the ith iteration, and dmin,i is the distance

of the new fingerprint to its nearest neighbor in this iteration, then the threshold distance for the

next iteration is given by:

ti+1 =
ti + dmin,i

2
, ∀i > 1. (5)

The term dmin,i ensures that the threshold distance is large when large parts of the domain space

are unexplored, and small if the domain space is already well-explored. This makes the fingerprints

spread farther apart until the entire domain space has been explored. Once the domain space

has been explored, the threshold distance decreases so that new fingerprints may be added to
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the candidate set, until the budget of N1 fingerprints is exhausted. The term ti ensures that the

threshold distance does not change abruptly for an abrupt change in dmin,i. For the first iteration,

i = 1, t1 is taken as the mean of the distances to the nearest neighboring fingerprint for each

fingerprint.

In our toy example, x1 is the fingerprint identified with the farthest nearest neighbor. So, we

perturb the atomic configuration corresponding to it to generate another one, and fingerprint it.

In all the examples of this Section, we perturb a fingerprint using a multivariate normal distribu-

tion. The mean of the distribution is the coordinates of the fingerprint being perturbed, and the

covariance is a diagonal matrix, where the diagonal elements are the mean distance of a fingerprint

to its nearest neighbor in the initial candidate set. Figure 4 (right) shows the five fingerprints in

the candidate set with a dotted circle around them whose radius is equal to the threshold distance

t1 = 0.75. If the new fingerprint falls inside any of the dotted circles, then it will be rejected on

account of being redundant with the fingerprints in the candidate set. Figure 4 (right) shows two

examples of an acceptable new fingerprint - xa and xb. Both of them expand the space spanned

by the candidate set of fingerprints.

We repeat the exercise of identifying and adding a fingerprint around the most sparsely located

one, until we have added the desired number of fingerprints in the candidate set. Figure 5 shows the

results obtained when we have a candidate set of N1 = 200 fingerprints, and N2 = 400 fingerprints.

Our algorithm performs well in (a) providing a candidate set of fingerprints that spans the entire

domain space, (b) spacing-out fingerprints such that they evenly span the domain space within a

given budget of N1 fingerprints. The non-adaptive domain space expansion algorithm is included

as Algorithm 1.

Figure 5 Candidate set of N1 = 200 fingerprints (left) and N1 = 400 fingerprints (right) in the toy example.

Regarding the choice of N1, ideally, it should be the number of fingerprints that are sufficient to

capture the global minimum. However, since it is impossible to know this beforehand, we suggest
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Algorithm 1 : Non-adaptive domain space expansion

1: Input N1,C,X

2: i← n0

3: Compute R= {r1, · · · , rn0
{Distance to farthest nearest neighbor among 2p neighborhoods, for

each fingerprint }

4: Compute D= {d1, · · · , dn0
{Distance to the nearest neighbor of each fingerprint}

5: t← mean(D)

6: while i≤N1 do

7: per ← argmaxi ri

8: Randomly perturb cper to generate cnew

9: xnew← fingerprint(cnew)

10: Compute dmin {Distance to the nearest neighbor of xnew}

11: if dmin > t then

12: C ← append(C,cnew)

13: X ← append(X ,xnew)

14: i← i+1

15: Update R,D

16: end if

17: t← 0.5(t+ dmin)

18: end while

19: Output C,X ,R,D, t

a candidate set of size N1 = 100p, as a thumb-rule, for a p-dimensional fingerprint. A larger N1

could be used, but it will increase the computational and storage costs as discussed at the end of

Section 4.3.

3.2. Adaptive domain space expansion

Adaptive domain space expansion is an optional step. It is not needed if the candidate set, obtained

with the non-adaptive expansion algorithm, captures the global minimum. Although it is impossible

to determine if the global minimum has been captured, it is possible to make an educated guess

if further expansion of a particular region of the explored domain space may help capture more

minima, one of which may potentially be the global minimum.

To illustrate the need for adaptive expansion, we will consider an example, where it is assumed

that the fingerprints are two-dimensional and their potential energy is given by the Branin function

(Surjanovic & Bingham 2013). Assume that there are n0 = 10p= 20 initial fingerprints as shown

in Figure 6 (left). We use the non-adaptive expansion algorithm to expand them to a set of N1 =



Krishna et al.: Crystal structures
Article submitted to INFORMS Journal on Data Science; manuscript no. 13

100p= 200 fingerprints as shown in Figure 6 (right). As the budget uptil the non-adaptive expansion

(N1 = 200) step is exhausted, we will shift the focus to only the “promising regions” or the low-

energy regions of the domain space, instead of the sparsely populated regions. We use DFT to

compute the energy of the initial 10p= 20 fingerprints. Then, a model-based approach will be used

for identifying the low-energy “promising regions”.

Figure 6 Candidate set of n0 = 20 initial fingerprints (left) and N1 = 200 fingerprints obtained from the

non-adaptive expansion algorithm (right), shown over the contour plot of the Branin function.

As the n0 fingerprints corresponding to the initially known configurations are likely to be stable,

we compute their potential energy. If n0 < 10p, we suggest to choose the remaining fingerprints

from the set of N1 fingerprints, by augmenting the initial set with a space-filling design such as

the maximum projection (MaxPro) design (Joseph et al. 2015). The augmented design can be

obtained sequentially by adding one fingerprint at a time using the MaxProAugment function in the

R package MaxPro (Ba & Joseph 2018).

We use Gaussian Process (GP) for modeling the energy data. Assume that e(·) is a realization

of a GP:

e(x)∼GP (µ,C(x; ·)), (6)

where µ is the mean and C(xu;xv) = Cov{f(xu), f(xv)} is the covariance function. See Santner

et al. (2018) for details on GP modeling. Given the energy-data, the posterior distribution of e(x)

is given by

e(x)|e∼N (ê(x), s2(x)), (7)

where

ê(x) = µ+C(x;S)C−1(S;S)(e−µ1) (8)
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is the surrogate model,

s2(x) =C(x; ·)−C(x;S)C−1(S;S)C(S; ·) (9)

is the variance, S = [xT
1 , · · · ,xT

n ]
T , C(x;S) is the covariance vector with ith element C(x;Si),

C(S;S) is the covariance matrix, and 1 is a vector of 1’s. We use the R package DiceKriging

(Roustant et al. 2012) to fit the GP model using a Gaussian covariance function. Figure 6 (right)

shows the potential energy predictions (shown in color) based on the fitted GP model. We see that

the estimated global minimum seems to lie in the “interior” of the candidate set of configurations.

In this case, there is no need to further expand the “low-energy” region, as it is already surrounded

by the candidate set of configurations.

Now, let us consider another scenario, where the the initial set of 10p fingerprints are as shown

over the contour plot of the Branin function in Figure 7 (left). Figure 7 (center) shows the non-

adaptive expansion along with the potential energy (shown in color) based on the fitted GP model.

The estimated global minimum seems to lie at the “boundary” of the candidate set of configura-

tions. In this case the “low-energy” region is not well explored on all sides. Thus, in this case, we

need to further expand the “low-energy” region to ensure that the minimum of the “low-energy”

region, which may potentially be the global minimum or a reliable local minimum, is included in

the candidate set of configurations.

Figure 7 Candidate set of n0 = 20 initial fingerprints (left); N1 = 200 fingerprints obtained from the

non-adaptive expansion algorithm (center); and N2 = 341 fingerprints obtained after the adaptive expansion

algorithm (right), shown over the contour plot of the Branin function.

The definition of the “boundary” and the “interior” of the candidate set of configurations is

based on the dimension p of the fingerprint. A two-dimensional fingerprint, assumed to be at the

origin, lies in the interior of the domain space if it has neighboring fingerprints in each of the four

quadrants, within a distance r around it. Otherwise, it lies on the boundary of the domain space

spanned by the candidate set of fingerprints. Here r is taken to be the maximum distance to the
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nearest neighbor for the candidate set of N1 fingerprints obtained at the end of the non-adaptive

expansion algorithm. Figure S1 in the Supplementary material shows examples of two-dimensional

fingerprints that lie on the boundary or in the interior of the domain space spanned by the candidate

set.

For the case shown in Figure 7 (center), we push the boundary of the low-energy region by

perturbing the lowest energy fingerprint that lies on the boundary of the spanned domain space.

With the addition of every 10 fingerprints (thumb-rule) to the candidate set, DFT is used for

computing the potential energy of the fingerprint with the least energy estimate. The GP model is

then updated to better estimate the energy in the newly explored lower-energy domain space. A

periodic model-update helps navigate the expansion of the lower-energy region. If the fingerprint

having the minimum estimated potential energy does not change within 10 successive DFT com-

putations (thumb-rule), we stop the algorithm. The adaptive domain space exploration algorithm

is included as Algorithm 2.

Figure 7 (right) shows the result of applying the adaptive expansion algorithm to the scenario

presented in Figure 7 (center). The algorithm adaptively expands the set of N1 = 200 fingerprints

obtained at the end of non-adaptive expansion to N2 = 341 fingerprints. Note that the algorithm

continues to expand until the low-energy region is fully explored, and the minimum is well sur-

rounded by the candidate set of fingerprints.

We tested our algorithms (non-adaptive + adaptive expansion) to find the minimum of two

different kinds of functions - sphere function and Schwefel function (Surjanovic & Bingham 2013).

The sphere function in p dimensions is given by:

f(x) =

p∑
i=1

x2
i ;xi ∈ [−5.12,5.12], (10)

while the Schewefel function in p dimensions is given by:

f(x) = 418.9829p−
p∑

i=1

xi sin(
√
|xi|);xi ∈ [−500,500] (11)

The sphere function is simple and smooth with only one minimum, while the Schewefel function

is complex with several local minima. These functions are generalizable to any dimension p. We

consider two distinct values of dimension: p= 2 and p= 10 for both the functions. We also consider

two distinct values of budget (until the non-adaptive expansion step): N1 = 50p and N1 = 100p.

The feasible domain space of the sphere function is taken as [−5.12,5.12]p and that of the

Schwefel function to be [−500,500]p. However, as the feasible domain space is assumed to be

unknown, we generate the initial set of 10p fingerprints as a maximin Latin hypercube design

(Morris & Mitchell 1995) in a smaller sub-space: [1.5,4]p for the sphere function and [250,400]p
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Algorithm 2 : Adaptive domain space expansion

1: Import C,X ,R,D, t {Obtained at the end of the non-adaptive expansion procedure}

2: X←{x1, · · · ,xn0
}

3: Augment Xn0
by 10p−n0 space-filling fingerprints to obtain XDFT {R package:MaxPro }

4: e←DFT (XDFT ); model ←GP (XDFT ,e)

5: ê←GP.predict(X )

6: flag ← 1; DFT period ← 0; iter ← 0;

7: while flag = 1 do

8: Find cper, the configuration with minimum estimated energy lying on the boundary

9: Lines 8− 10 from the non-adaptive domain space expansion algorithm

10: if dmin > t then

11: Lines 12− 15 from the non-adaptive domain space expansion algorithm

12: DFT period ← DFT period+1

13: enew←GP.predict(Xnew)

14: ê← append(ê, enew)

15: if DFT period = 10 then

16: iter ← iter+1

17: Find cmin, the configuration with the minimum estimated potential energy

18: emin←DFT (cmin); e← append(e, emin)

19: XDFT ← append(XDFT ,cmin)

20: model ←GP (XDFT ,e)

21: ê←GP.predict(X )

22: if iter = 10 then

23: iter = 0

24: if cmin has not changed since the last 10 DFT computations then

25: flag = 0

26: end if

27: end if

28: end if

29: end if

30: t← 0.5(t+ dmin)

31: end while

32: Output C,X ,XDFT ,e
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for the Schwefel function. Note that the global minimum of the sphere function, (0, ...,0), and that

of the Schewefel function, (420.9687, ...,420.9687), are outside these sub-spaces. We compare our

results to a baseline maximin Latin hypercube sample of size N2 generated using the R package

lhs (Carnell 2016) in the sub-space of the initial set of fingerprints. We perform 30 simulations

for each unique combination of function, dimension (p), and budget until non-adaptive expansion

(N1).

Figure 8 shows the distribution the minimum energy in the candidate set of fingerprints obtained

at each step of our method, and in the baseline sample. There are several important points to

note. First, the candidate set generated by our method (at the end of the adaptive expansion step)

has a fingerprint with a lower energy, on average, as compared to the maximin Latin hypercube

design (baseline sample) of the same size. Second, the adaptive expansion step of our algorithm

helps navigate the search towards lower energy regions of the feasible space. Third, a larger budget

in the non-adaptive expansion step leads to more exploration of the feasible domain space, which

results in lower energy fingerprints in the candidate set, as expected. Fourth, our method scales

up well, performing better than the state-of-the-art method even for higher dimensions. Fifth, our

method works well even for very complex and highly multimodal functions.

Figure 8 Distribution of the minimum energy in the candidate set of fingerprints obtained at each step of our

method (initial sample, non-adaptive expansion, and adaptive expansion) and in the baseline sample.

3.3. Exploration and exploitation of the domain space: Bayesian optimization

The purpose of this step is to identify the crystal structure configuration with the least potential

energy in this candidate set of size N2 obtained from the expansion steps. As mentioned in Section
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2.1, energy computation using the DFT is too expensive, which makes it impractical to compute the

energy for all the N2 configurations. So, we will use the GP model developed during the adaptive

expansion procedure to estimate the energy of all the N2 fingerprints. Bayesian optimization (Jones

et al. 1998, Frazier 2018) will then be used for iteratively optimizing and updating the model. The

method will let us identify the global minimum with DFT computations over only a small fraction

of the N2 fingerprints in the candidate set.

Let e be the vector of potential energy, computed using DFT, and s(·) be the standard error of

their energy estimate. Then, the expected improvement criterion can be expressed as the following

closed form (Jones et al. 1998):

EI(x) = [min(e)− ê(x)]Φ

(
min(e)− ê(x)

s(x)

)
+ s(x)ϕ

(
min(e)− ê(x)

s(x)

)
, (12)

where Φ and ϕ are respectively the cumulative distribution function and the probability density

function of the standard normal distribution, ê(.) is the estimated energy as defined in (8), and

s(x) is as defined in (9). As the surrogate model is cheap, we evaluate (12) on all the N2 fingerprints

in the candidate set X , and find the one that maximizes it:

xnew = argmax
x∈X

EI(x). (13)

DFT is used for computing the potential energy at xnew, and the energy-data set is updated

to include [xnew, e(xnew)]. Note that we are able to compute the energy because xnew ∈ X and

therefore, we know the corresponding Cartesian coordinate configuration. Now we use (7) to update

our surrogate model based on the updated energy-data. The expected improvement (EI) criterion

balances exploration of the PES with exploitation, thereby simultaneously addressing both the

objectives of crystal structure prediction - exploiting low-energy regions to search for the minimum

and exploring new and unusual domains of the PES. We stop the Bayesian optimization algorithm,

when the expected improvement becomes negligible as compared to the current estimate of the

minimum potential energy. The Bayesian optimization algorithm is included as Algorithm 3.

The computational complexities of the three Algorithms 1, 2, and 3 are O((n0+n1)
2p2), O(n0+

n2/10)
3n2), and O((n0+n2/10+n3)

3n3), respectively. See Section B of the Appendix for details. In

addition to computational costs, there are storage costs as it is required to store N2 = n0+n1+n2,

p-dimensional fingerprints, their corresponding Cartesian coordinate configurations, and the vectors

consisting of the estimated energy and distance to the nearest neighbor of each fingerprint. However,

the main cost of the methodology is the cost of running (n0 +n2/10+n3) DFT computations.
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Algorithm 3 : Bayesian optimization

1: Import C,X {Obtained from the expansion algorithms}

2: Input tEI

3: if Algorithm 2 : Adaptive domain space expansion is used then

4: Import XDFT ,e

5: else

6: Lines 2− 5 from the adaptive domain space expansion algorithm

7: end if

8: emin←min(e)

9: EIi←EI(xi); i∈ {1, · · · ,N2} {Use (12)}

10: percent improve ←max(EI)/emin

11: while percent improve ≤ tEI do

12: i maxEI← argmaxi(EI); i∈ {1, · · · ,N2}

13: enew←DFT (xi maxEI)

14: XDFT ← append(XDFT ,xi maxEI)

15: e← append(e, enew)

16: model←GP (XDFT ,e)

17: EIi←EI(xi); i∈ {1, · · · ,N2} {Use (12)}

18: percent improve ←max(EI)/emin

19: end while

20: i stable← argmini e; i∈ {1, · · · , nrows(XDFT )}

21: Output xi stable,ci stable

4. Example: Crystal structure of Al8

The objective is to find the most stable crystal structure configuration of Al8, or the configuration

of eight Aluminum (Al) atoms arranged in a parallelepiped unit cell. Note that the most stable

configuration of Al8 is the face-centered cubic (fcc), which is already known and is shown in Figure

1. Because the primitive cell of fcc Al has one atom, it must be included in the configuration space

of Al8. For our candidate set, eight-atoms structures were created by (1) randomly choosing a

specific value of volume v falling within ±5% of the known specific volume of the Al fcc structure,

(2) randomly selecting three vectors a⃗, b⃗, and c⃗ of the unit cell so that its volume, given by

V ≡ a⃗ · (⃗b× c⃗) = 8v, and (3) randomly arranging the eight Al atoms in the cell so that the distance

between any pairs is larger than 2.0 Å. Two constraints (1) and (3) of this procedure, which were

formulated from the known facts of the fcc Al structure, clearly limit the examined configuration

space but the search domain remains staggering and certainly contains the global minimum.
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Within our expansion-exploration-exploitation framework, we start from a set of 270 initial

configurations for which the energy is computed at the DFT level. Note that the DFT calculations

performed herein involve only single-point energy calculations but not any local optimizations,

which may be 103−104 times more expensive. Therefore, in general, none of the examined structures

is a local minimum of the PES. However, the main objectives of this work, i.e., (diversely) filling

the configuration space and searching for the global minimum of a big and diverse structure dataset,

can be demonstrated and is very useful for material structure prediction.

We used the ABINIT package for DFT computations, and selected the parameters that ensure

a typical level of accuracy needed in Materials Science. During the process of exploring the config-

uration space using our active learning algorithm, a DFT computation took about 122 seconds on

average. Clearly, this is a major bottleneck compared to ML predictions, which need a fraction of

a second.

To obtain a candidate set of fingerprints, we start with the non-adaptive domain space expansion

algorithm (Algorithm 1). We have a set of n0 = 270 initially known atomic configurations of Al8.

These configurations become the input C, and their corresponding fingerprints become the input

X . The fingerprints have a dimension of p= 32. As per the thumb-rule mentioned earlier, we take

N1 = 100p= 3,200. For perturbing the most sparsely located atomic configuration, we randomly

change the position of each atom by a maximum of 0.1 Angstrom.

As the AGNI fingerprint is 32-dimensional, the candidate set of fingerprints cannot be visualized

directly. We use Principal Component Analysis (Jackson 2005), or PCA to visualize the first three

PCs, which capture 97% of their variance. Figure 9 (left) shows the PCs of the initial set of

fingerprint (grey circles) that are input to the non-adaptive space expansion algorithm (Algorithm

1). The solid black circle (in this and all the subsequent figures) corresponds to the most stable

fingerprint, or the fingerprint that has the minimum potential energy. This is not a part of the

initial candidate set. However, this is the solution that we hope to achieve. Note the relatively large

gap between it and the initial set of fingerprints. Ideally, our expansion algorithms will expand the

initial candidate set to include the most stable fingerprint, and then the Bayesian optimization

algorithm should identify this fingerprint as the global minimum.

Figure 9 (center) shows the PCs for the candidate set of N1 = 3,200 fingerprints obtained using

our non-adaptive space expansion algorithm. Note that the algorithm expands the volume of the

domain space spanned by the initial candidate set of fingerprints, which reduces the gap between

different clusters of fingerprints in the initial candidate set.

Figure 9 (right) shows the PCs for the candidate set of N1 = 3,200 fingerprints obtained using the

Ab initio random structure searching approach (AIRSS) (Pickard & Needs 2011). Figure 10 shows

the median distance to the nearest neighbor of a fingerprint as the candidate set size increases. As



Krishna et al.: Crystal structures
Article submitted to INFORMS Journal on Data Science; manuscript no. 21

Figure 9 Initial set of fingerprints (left), and candidate set of N1 = 3,200 fingerprints obtained using

non-adaptive space expansion algorithm (center) and the Ab initio random structure searching approach (right).

The solid black circle is the true global optimum, which is not included in the candidate set.

expected, our proposed candidate set keeps expanding the spanned domain space leading to more

spaced-out fingerprints. On the other hand, the Ab initio random structure searching approach

results in a set of closely packed fingerprints leading to wastage of resources, and failure to consider

more distinct configurations.

Figure 10 Distance to the nearest neighbor vs candidate set size for fingerprints.

Figure 11 (top) shows examples of a couple of configurations corresponding to the fingerprints

obtained from the non-adaptive domain space expansion algorithm. Figure 11 (bottom) shows the

X-ray diffraction patterns corresponding to these configurations. The stark differences in these con-

figurations, as evident by their X-ray diffraction pattern, shows that the algorithm spans through

quite distinct regions of the domain space.

After obtaining a candidate set of 3,200 fingerprints from the non-adaptive expansion algorithm,

we compute the energy for 10p= 320 fingerprints, using DFT, to develop a GP model. These 320
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Figure 11 Configuration (top) and X-ray diffraction pattern (bottom) of a couple of example structures.

fingerprints include the initial candidate set of 270 fingerprints corresponding to known configu-

rations, which are augmented by another 50 fingerprints from the candidate with the space-filling

MaxPro design. Figure S2 in the Supplementary material shows the initial fingerprints and the

ones augmented using the MaxPro design.

Figure 12 (left) shows the predicted potential energy of the candidate set using the GP model.

The low-energy regions seem to be around the boundary of the spanned domain space. Using the

boundary definition mentioned earlier and illustrated in Figure S1 (of the Supplementary material),

we find that the estimated minimum of the candidate set is actually at the boundary of the spanned

domain space. So, it is necessary to further expand this low energy region as it may lead to further

minimization of the current estimate of the energy-minimum. Note that we work in the space of

the first three principal components for determining the boundary because it is very expensive to

work in the 32-dimensional fingerprint space.

The adaptive expansion algorithm (Algorithm 2) is used for further expanding the identified

low-energy region of the spanned domain space. Figure 12 (right) shows the updated candidate

set of fingerprints and the predicted potential energy after the adaptive expansion procedure. The

algorithm adds 530 fingerprints to the candidate set, and DFT computations are done for every

10th fingerprint added to the set, i.e., for a total of 53 fingerprints. The algorithm stops when the

estimated minimum does not change with 10 successive DFT computations. We observe that the

algorithm succeeds in expanding the candidate set towards the unknown true global minimum!
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Figure 12 Potential energy of the candidate set of fingerprints obtained after non-adaptive expansion (left)

and adaptive expansion (right).

Once a candidate set of fingerprints is obtained by the expansion algorithms, we explore and

exploit it for the global minimum of potential energy, using the Bayesian optimization algorithm

(Algorithm 3). The input X in this example is the candidate set of 3,200+530= 3,730 fingerprints

that we obtained using the expansion algorithms.

The circles in Figure 13 are the candidate set of N1 = 3,200 fingerprints. The potential energy

was computed for a set of 320 + 53 = 373 fingerprints (in the adaptive domain space expansion

algorithm), shown as squares in Figure 13 (left). A GP model was fitted using the potential energy

data of the 373 fingerprints. Then, iterative Bayesian optimization procedure of updating the GP

model, and adding a point in the known-data based on the EI criterion is continued until the

expected improvement becomes lesser than a threshold value tEI . We chose tEI to be 0.001% of

the current minimum value of potential energy in the energy-data. Thus, for the ith iteration, the

threshold value is:

tEI = 10−5×min(e1, · · · , en+i). (14)

This is a reasonably low value as the potential energy in the known-data varies by 5% around its

mean. Jones et al. (1998) stop the Bayesian optimization algorithm when the expected improvement

is 1% of the current best function value. We have used a much more conservative stopping criterion.

For a different structure, a reasonably low cutoff must be chosen depending on the variance in the

potential energy of the candidate set of configurations. With the above threshold, the algorithm

stopped after the 95th iteration.

The fingerprints iteratively added in the known-data are shown as blue triangles in Figure 13

(right). There are three points to note about the iteratively added fingerprints. First, 93 of the 95

fingerprints are selected in the region around the global minimum, which shows that the algorithm

does well in exploiting the “promising” region of the domain space. Second, two fingerprints are

selected in regions far away from the global minimum. These are regions at the boundary of the

domain space, where probably there is high uncertainty in the potential energy estimate of the GP
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surrogate model. This shows the exploratory nature of the algorithm, where it tries to find the global

minimum in regions other than the “promising region”. This exploratory feature of the algorithm

makes it better than the state-of-the-art approaches such as basin hopping (Wales & Doye 1997)

and minima hopping (Goedecker 2004), which focus only on exploiting the “promising region” of

the domain space for the global minimum. Third, though the true global minimum was not a part

of the candidate set, we identified the fingerprint closest to it as the global minimum! Thus, the

algorithm provided a solution that is potentially very similar to the true global minimum. The

expected improvement criterion, and the energy of configurations selected for DFT computations

are visualized in Figure S3 in the Supplementary material.

Figure 13 (left): initial set of 373 fingerprints for which the potential energy is computed using DFT (red

squares) and (right): 95 fingerprints selected during the Bayesian optimization (blue triangles), which are shown

over the candidate set of 3,200 fingerprints (circles).

The algorithm’s output and our solution is the configuration corresponding to the fingerprint

selected in the 368th DFT computation, as it has the minimum potential energy in the energy-data.

Figure 14 (top) shows that the estimated structure looks quite similar to the true structure. The

similarity in the estimated and true structures is more evident in the X-ray diffraction pattern of

the structures as shown in Figure 14 (bottom).

5. Conclusion

We have developed an active learning method to (1) obtain a candidate set of crystal structure

configurations that expands the space of a few initially known configurations, and (2) find the con-

figuration with the lowest potential energy in the set. The novelty of our approach is the expansion-

exploration-exploitation framework that extends the traditionally used exploration-exploitation

Bayesian optimization framework to better achieve the objectives of crystal structure prediction.

The expansion algorithms ensure that the candidate set continues to expand with the addition of

each fingerprint - first in arbitrary directions (with respect to potential energy) to explore new and

possible unusual domains of the PES, and then towards lower-energy atomic configurations. Our
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Figure 14 Configuration (top) and X-ray diffraction pattern (bottom) of the estimated and true structures.

algorithm provides a space-filling design without the knowledge of the boundaries of the design

space. This is a novel contribution to the field of experimental design, where most of the work on

space-filling design is focused on cases of known design space.

Although we demonstrated our approach on a simple problem of finding the stable configuration

of Al8, the new concepts are powerful and can easily be generalized to more realistic problems.

A recent and interesting application of the proposed method in inverse designs can be found in

Krishna et al. (2022).
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