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The symmetric two-point function for a massless, minimally coupled scalar field in the
Unruh state is examined for Schwarzschild-de Sitter spacetime in two dimensions. This
function grows linearly in terms of a time coordinate that is well-defined on the future
black hole and cosmological horizons, when the points are split in the space direction.
This type of behavior also occurs in two dimensions for other static black hole spacetimes
when the field is in the Unruh state, and at late times it occurs in spacetimes where
a black hole forms from the collapse of a null shell. The generalization to the case
of the symmetric two-point function in two dimensions for a massive scalar field in
Schwarzschild-de Sitter spacetime is discussed.
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1. Introduction

Hawking' predicted that black holes that form from collapse evaporate and at late
times the particles are in a thermal distribution with a temperature that is propor-
tional to the surface gravity of the black hole. In four dimensions (4D) it is very
difficult to compute quantities such as the two-point function and the stress-energy
tensor for a quantum field in the spacetime of a black hole that forms from col-
lapse. Instead, it is significantly easier, although not easy, to do such computations
in eternal black hole spacetimes which are either static or stationary. It is easier
yet to work with a massless minimally coupled scalar field in spacetimes with two
dimensions (2D) that have similar structures to the 4D black hole spacetimes.

Unruh? showed that, for an isolated eternal black hole in an asymptotically
flat spacetime, there is a particular state for a quantum field that has the same
properties as the in state for that field has at late times in a spacetime where the
black hole forms from collapse. In particular, this state, called the Unruh state, has
the same flux of particles at infinity for an eternal black hole as occurs at late times
for a black hole that forms from collapse. Thus computations of various quantities
for a quantum field in the Unruh state can give insight into the late time behaviors
of these quantities in spacetimes where a black hole forms from collapse.
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The simplest 4D black hole spacetimes to compute quantum effects in are those
which are static and spherically symmetric outside of the event horizon where the
metric has the general form

ds? = —f(r)dt + f 1 (r)dr? + 1202 | W)

These are easily changed to 2D spacetimes by dropping the last term on the right.
All 2D spacetimes are conformally flat and the massless, minimally coupled scalar
field is conformally invariant in such spacetimes making it possible to analytically
solve the mode equation in coordinates for which the metric is conformally flat.

In Ref. 3, the Hadamard Green’s function, which is the symmetric two-point
function, was computed and studied for a massless, minimally coupled scalar field
in the Unruh state in 2D for Schwarzschild-de Sitter(SdS) spacetime, Schwarzschild
spacetime, de Sitter space, a class of Bose-Einstein condensate analog black hole
spacetimes, and a spacetime in which a null shell collapses to form a black hole.
It was shown that in all of these cases there is linear growth in terms of a time
coordinate T that is regular on the future horizon(s) when the points are split in
the spatial direction.

In this proceeding we summarize some of the results of Ref. 3 for black holes.
We also discuss the computation of the symmetric two-point function for a massive,
minimally coupled scalar field in SdS. In this case, the mode functions and the
two-point function must be computed numerically.

In Sec. 2, some properties of 2D SdS are reviewed along with the Unruh state
for a massless, minimally coupled scalar field. The Hadamard Green’s function for
this field is displayed in Sec. 3 and its linear growth in time is discussed. Ongoing
work related to the massive scalar field in 2D SdS is discussed in Sec. 4. In Sec. 5
the computation of the symmetric two-point function for a massless, minimally
coupled scalar field in a 2D collapsing null shell spacetime is reviewed. Our results
are summarized in Sec. 6. Throughout, our units are h =c =G = 1.

2. Massless, minimally coupled scalar field in SdS

A Penrose diagram for SdS is given in Fig. 1. The 2D SdS metric is given by

dr?

2 = — f(r)dt? a

d f(r)dt* + ok (2a)
2

f(r)zlfg—H%Q: 7HT(T’7TC)(T7T},)(T+TC+T},). (2b)

Here r. > r, are the locations of the cosmological and black hole horizons respec-
tively, and %A = H?. The two parameterizations are related by

YRR SO R . - Q

2(7’% +r2+rpre)’ 7’% + 7124 ryre

It is useful to define the tortoise coordinate

74 (7)
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Fig. 1. Penrose diagram for SdS. Region I is the static patch between the black hole horizons and
cosmological horizons, Region II is the interior of the black hole, and Region III is the cosmological
region.
The ingoing and outgoing radial null coordinates are

u=t—r., v=t+T7,. (5)

One can define two sets of Kruskal coordinates, one for each horizon. The ones we
are concerned with are

1 _ 1 _
szﬁ—be Bl e <y, Ub:_l?be N (6)
1 _ 1 _
VC:—K—e B D or <re chﬁ—e B >,
C (&

The surface gravities for the two horizons are

H2
Kp = 2—%(7"c —1p)(re + 213)
H2
Ke = 2—(7‘0 —rp)(2rc + 1) (7)
Tc
where for a horizon at r = r, we set 2k, = |f'(rp)| so that each of the surface

gravities is a positive quantity.
A set of coordinates that are good across "HZ’ and HI was found in Refs. 4,5.

Let
T=t+h(r), where %z%, j(r)z—ﬂyr—&-g, (8)
and
e e
B B A B ©
Then the 2D SdS metric becomes
1—j42

ds?® = —f(r)dT? + 2j(r)drdT + TW : (10)
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Note that for these choices of the constants v and 3, one finds that j(r,) = 1 and
j(r.) = —1, which ensures that T interpolates between the ingoing null coordinate
v at the future black hole horizon and the outgoing null coordinate u at the future
cosmological horizon. These are ingoing and outgoing Eddington-Finklestein coor-
dinates respectively. The metric (10) is well behaved in the static and cosmological
regions and has the Eddington-Finklestein form on both the future black hole and
future cosmological horizons. The coordinate T stays timelike and r stays spacelike
beyond the cosmological horizon.

The definitions of r, and T each contain an arbitrary constant which can be
chosen such that

T=wuonH, and T =wvonH; . (11)
The result is?
T=t+ h(r) (12)
1 | — 1| 1 lr—re 1 [ re 1 r+re+ 1Y
=t+ —log——-+—log———+-| — — — | log—————
+ 2Kp 8 Te — T + 2K, o8 Te —Tp + 2 \TpKp KN © re + 21
TTe r? Te re + 21

2(re — 1) & Tl + 4Arp Ky 8 2re + 1y

and
1 |r — rp) 1 |r — 7 1 |r 4 7 + 13
«(r)= —log — — —1 1 13
() 2Ky © Te — Ty  2Ke 08 Te —Tp + 2KN & re + 21 (13)
Te 2r. + 713 TpTe 1 T
_ o _ og =2
ArpKp & re+2r,  2(re — 1) & Te
where
H2
KN = ———(2re + 1) (re + 213) - 14
NSt Tb)( b)( b) (14)

To relate the Kruskal coordinates to T and 7, note that w = T — (h(r) + ) and
v =T — h(r) + r.. Substitution gives
1 —keTY) 1 —kp T 77
Vo=—e"'V,, and U,=—e ™', (15)
Ke Rp

where V, and U, only depend on r and are given by

Vo ghelhr) _ T T Te (THTet T ro/2re (rb>H2rb(2rc+rb)/2 16)
c =€ Y= - P
Te —Tp Te + 21 T
i K (htra) (r—r) (T4 +r) " (TC)HQTC(TCHM)/Z
= —¢ ) = — — .
b Te — T 2r. +1p T

Note that these expressions work both inside and outside the black hole and cos-
mological horizons.
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The complete set of modes that comprise the Unruh state consist of modes that

are positive frequency with respect to Uy on the past black hole horizon and modes

that are positive frequency with respect to V. on the past cosmological horizon 8.

e—ing,(u) e_iWVc(U)

b c
= ———— and = — 17
P 7 2 7=y (17)

Expanding the massless minimally coupled scalar field in terms of these gives
o0
= / dw [ag,pf, + agpf, + allply +alfpg] (18)
0

where a(®©) are the annihilation operators.

3. Symmetric Two-Point Function in SdS

For a massless, minimally coupled scalar field in 2D SdS in the Unruh state, the
symmetric two-point function for an arbitrary splitting of the points is?

GW(z,2') = (U ($(2)$(") + ¢(2')d(x)) |U)

- / " dolp, (2)phe (@) + P (@) (@) + c.c

= % - djw {cos[w(Ub — U;;)] + cosfw(V, — ‘/c/)]}
:—% {ci[u}o‘Ub—U;H“!‘Ci[WOch_Vc/H} : (19)

Here ci is the cosine integral function which has the expansion ci(z) = yg +logz +
O(z?), and wy is a small infrared cutoff.
Let = be on H_b~_ and 2’ on H{ and take 7" = T. Note that on HP, U, =0,
v=Tand on H}, V. =0, u=T. Then
Uy — U,; = —ry el Ve — Vc, = g temreT

2w G (T, T.r") = (my + e T~ log [(mprie) ™) — 275 (20)

Thus one sees an unexpected linear growth in the time coordinate T for this sepa-
ration of the points. For a more general separation

W

2 - .
27TG(1>(T,7";T, ') =T (kb + ke) — log ( 0 |AUbAVc> —27E (21)

RpR,
where AU, and AV, are functions of r and r’, but not 7.

In Ref. 3 a similar linear growth in a time coordinate for G (z,2") in 2D for
a massless minimally coupled scalar field was found in Schwarzschild spacetime for
the Unruh state, de Sitter spacetime for the Bunch-Davies state, and a class of Bose-
Einstein condensate analog black hole spacetimes for the Unruh state. A general
argument was also given that linear growth should occur whenever there is a past
horizon and no scattering for the Unruh state.
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One may ask what these situations have in common. In each case the symmetric
two-point function is computed for a massless minimally coupled scalar field in 2D
in the Unruh state or its analog, the two-point function has an infrared divergence
which requires an infrared cutoff, and each spacetime has a static patch and at least
one past horizon. In the next two sections, two cases are discussed in which one or
more of these conditions does not occur.

4. Massive Scalar Field in 2D SdS

One way to investigate the generality of the linear growth in time is to work with
a massive scalar field. Work is in progress to compute the symmetric two-point
function for this field. It is significantly more difficult than for the massless scalar
field because the mode equation contains an effective potential term and does not
have simple closed form solutions. Instead, when separation of variables is used,
the radial part of the mode equation can be solved numerically.

The mode equation cannot be separated in Kruskal coordinates but it can be
separated in terms of the coordinates ¢ and r in (2b). The mode equation in this

case is
_gZu‘;i;_mzf:o. (22)
The relevant solutions are of the form
Btr) = ) (23)
with
(j;%(+(w2—m2f)h:0. (24)

A complete set of modes that specify the Boulware state can be obtained by com-
bining modes which on the past black hole horizon have the form

e*iwu
nb = , 25
N (25)

and those which on the past cosmological horizon have the form

e—iwv
he, = .
W ®
The modes that specify the Unruh state can be expanded in terms of these modes
with the result

(26)

o9 = [ alnG + BInG ). (27)
0

Since the mode equation reduces to its massless form on the past horizons, the initial
conditions for the Unruh state are exactly the same as in the massless case (17).
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7
Using the usual scalar product?, one finds!®
!’ —. w,
(bye) _ i ("l *1*%(: o I Z“(b,c>)
aww’ - 2 w (H(bac)) ’ i w! ’
(—iw) "o
o T
b, 1 w! —14i K(b,e
8 = L (g )T e 29
(—iw) "o

Note that these are divergent in the limit w’ — 0 due to the poles in the Gamma
functions. However, we have shown that because of scattering effects, these diver-
gences are canceled in the integrand of Eq. (27). Also, it is important to note that
the limit w’ — 0 needs to be taken before the limits r — 7, and r — r.. They
cannot be interchanged.

At present, work is in progress to compute p? and p¢ numerically. It is not
yet known whether the divergence that exists for the massless case for these mode
functions continues to be present in the massive case.

5. Collapsing null shell spacetime

Fig. 2. Penrose diagram for a 2D spacetime in which a null shell collapses to form a black hole
and there is a perfectly reflecting mirror at the origin. The trajectory of the shell is given by the
dashed blue line and the event horizon is given by the dotted red line.

Another calculation that was done in Ref. 3 was to compute the two-point
function for a massless scalar field in a 2D spacetime in which a null shell collapses
to form a Schwarzschild black hole. Inside the shell the metric is the flat space
metric

ds* = —dt* +dr* | (29)

and outside it is Eq. (2b) with H = 0, which is the Schwarzschild metric. If one
puts in a perfectly reflecting mirror and requires that the field vanish at the surface
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of the mirror then one obtains the same conditions on the mode functions at » =0
as in the 4D case. The Penrose diagram for this spacetime is shown in Fig. 2.
Inside the shell, the usual null coordinates are

u=t—r, v=t+r, (30)
and outside the shell they are
Ug =g — Ty , v=1ts+ts. (31)

The coordinates r and v are continuous across the trajectory of the shell which is
v = vy, for some vg. At the null shell surface one finds!!1?

VH — Us
u(us) = vg —4AMW [exp (4]\/[)] ) (32)
where vy = vy —4M and W is the Lambert W function. On past null infinity both
us and u are equal to —oo. On the future horizon of the black hole us; = oo and
U =vy.
Because of the mirror, the mode functions must vanish at » = 0. For the in
state, at past null infinity they have the form

—iwv

= . (33)
4w
The solution that satisfies these two conditions is
in 1 — 1wV —twu
[ = =" —e7""). (34)

Varw

Since there is no scattering in 2D for the massless, minimally coupled scalar field,
outside the shell the solution is

fi)n _ (efiwv _ efiwu(us)) ) (35)
Note that fI* = 0 at w = 0. Thus there is no infrared divergence in the two-point
function for this state and no infrared cutoff is necessary. One finds that 3

v — w(ug)[v" — u(us)|
v = v'[|u(us) — ulug)|

27G Y (2, 2') = log (36)

Using v = T — h(r) + 7« and u = T — h(r) — 7., one finds for T = T" and fixed
values of 7 and r’, that at late times

2rG(T,r;,T,7") — &T + log(x*T?) + (r,r'dependent terms) . (37)

Thus, there is not only a linear growth in 7' as there is for the Unruh state, but
there is also a secondary logarithmic growth.
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6. Conclusions

In Ref. 3, the behavior of the two point function was investigated for a massless,
minimally coupled scalar field in the Unruh state in certain 2D spacetimes. It was
found that linear growth in time of the form

2rGI(T, T, ") = TZ kg + (r,r'dependent terms) (38)
J
occurs, where the sum is over the surface gravities of the past horizons and T is
a time coordinate that is regular on the future horizons. Along with the existence
of one or two past horizons, the Green’s function for each spacetime is infrared
divergent and thus requires an infrared cutoff to regularize this divergence.

The two-point function for this field in a 2D spacetime in which a null shell
collapses to form a black hole was also computed. In this case there is no past
horizon and thus no Unruh state. Instead, since the spacetime is asymptotically
flat, the state for the massless, minimally coupled scalar field was chosen to be
the initial vacuum state. By putting a perfectly reflecting mirror at the origin and
requiring that the mode functions vanish there, the same type of condition that one
finds in the 4D collapsing null shell spacetime if the shell is spherically symmetric
was imposed. As a result of this condition, the two-point function has no infrared
divergences.

It was found that at early times there is no linear growth in time of the form (38),
however at late times there is growth of this form. There is also a subleading term
that diverges logarithmically in time at late times. Thus, the linear growth in time
found in the eternal black hole calculations also occurs, at least in 2D, for a black
hole that forms from the collapse of a null shell. Perhaps this is not surprising
since the Unruh state is supposed to give the leading order, late time behavior of
quantities such as the two-point function and stress-energy tensor for the quantum
field in the case of a black hole that forms from collapse. However, it does show
that the linear growth in time does not depend on the existence of either a past
horizon or an infrared divergence in the two-point function.

To see whether the linear growth in time only occurs for the massless scalar field,
the case of a massive scalar field in the Unruh state in 2D SdS is being investigated.
It has been shown that, when the mode functions for the Unruh state are expanded
in terms of those for the Boulware state, an infrared diverge that occurs in the
massless case is not present in the massive one. Work is in progress to determine
whether the linear growth in time of the two-point function also occurs for a massive
scalar field.
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