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Highlights:
1. Bistability and random excitation amplitude reduction are minimum requirements for neuronal polarization.
2. There exists an optimal neurite count, excitation amplitude, and excitation rate that best maintain polarization.

3. Our findings are consistent with previously published, more detailed models which are catered to specific exper-

imental observations.
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Abstract

Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites,
can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which
one of several short processes, called neurites, grows to become long, while the others remain short. In this study,
we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin
waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no
more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the
neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in
the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count,
and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously
published model for neuronal polarization based on competition for limited resources shares key features with our

best-performing minimal model: bistability and negative feedback targeted to the size of random excitations.

Keywords: Neuronal polarization, bistability, negative feedback, stochastic dynamical system.

Introduction

A nervous system is composed of interconnected neurons, each of which has multiple short dendrites that receive
signals from upstream neurons and a single long axon that transmits signals to downstream neurons. Early in
development, however, a neuron has multiple short neurites of similar lengths that extend and retract repeatedly
and apparently randomly (coined by [1] as Stage 2). These neurites later differentiate into dendrites and a single
axon (Fig.1). The symmetry-breaking process by which a single axon emerges from the neurites (Stage 3) is referred
to as neuronal polarization. Surprisingly, this process does not require release of growth factors from target cells, as
neuronal polarization has been shown to occur within in wvitro hippocampal neuron cell cultures in which there are
no growth factor gradients guiding the selection process [1, 2]. The symmetry breaking appears to be random, and in
experiments where the initial axon was cleaved off, a new one emerged from one of the other neurites [3]. Subsequent
experimental manipulations demonstrated that it was possible for any neurite to become the winning neurite in the
winner-takes-all contest [4, 5]. It has been shown that even in the in vivo setting where growth factor gradients are
present, the developing neurons go through these stages, lasting about a day, characterized by growth and retraction
of neurites with a subsequent symmetry breaking event [6, 7]. In this case, growth factor gradients influence the
selection process, and indeed the random growth and retraction of neurites is thought to be a way for the neurites to
explore the environment to seek out the growth factors (called neurotrophins). Nonetheless, even in vivo there is a
winner-takes-all process that takes place, with bias provided by neurotrophin gradients.

There have been many studies aimed at understanding the biophysical mechanism of the neuronal polarization
process [4, 8-13]. Several potential mechanisms have been identified, and it is clear that the process involves positive
feedback signals to promote the growth of the axon as well as negative feedback signals to prevent the emergence of
a second axon [10, 13-16]. In this article, we focus on the polarization process that occurs in vitro, without external
neurotrophin gradients, using a minimal model for the winner-take-all selection process that incorporates positive
feedback and explore the efficacy of several different negative feedback mechanism in generating persistent neuronal
polarization.

The model is constructed based on the hypothesis that the dynamics underlying neurite growth and retraction are

such that the system is bistable. That is, each neurite has two stable equilibria, short and long. The bistability is a
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Figure 1: Neuronal polarization. A nascent neuron (stage 2) has several short neurites that extend and retract
repeatedly and randomly (left). Later, during stage 3, one of the neurites develops into an axon while others become
dendrites (right).

product of the positive feedback. A second hypothesis is that the selection process is truly random, so no neurite is
biased towards winning the competition to become an axon. We then explore three mechanisms of negative feedback.
One of these involves the retraction rate that is common to all neurites. The others involve a stochastic term that
reflects randomly-timed and uniformly distributed actin waves which are known to be key to neurite elongation; each
actin wave provides growth spurts by locally increasing the neurite volume to allow for microtubule polymerization
[12, 17, 18]. We consider the effects of making neurite retraction, actin wave magnitude, and actin wave frequency
dependent on the combined length of the neurites such that increased length increases the retraction rate, or decreases
the actin wave magnitude or frequency. In all cases, the negative feedback is unbiased.

The results demonstrate that targeting the negative feedback to the stochastic growth magnitude (i.e., the actin
wave term) results in the most persistent polarized system. They also demonstrate that having more than 2 neurites,
but less than some upper bound, is optimal for achieving and maintaining neuronal polarization. This is consistent with
the finding that most nascent neurons have between 2 and 10 neurites [2]. One model for neuronal polarization is based
on competition for limited resources, including growth factor [16]. In the last section of Results, we demonstrate that
a simplified model based on this limited-resource model contains the two elements that we find to be most successful
at achieving persistent polarization: bistability and length-dependent reduction in the amplitude of actin-wave-driven

stochastic excitation .

The Minimal Model

We consider a small population of R neurites, each with length L;, i = 1,2,..., R. The basic model contains a term
for positive feedback, a retraction term, and a stochastic term reflecting randomly-timed actin waves. The negative

feedback is included later. The basic model is:

dsti LQiKQ rL; +ZA6 (\), i=12,...,R. (1)
The first term reflects positive feedback through intracellular signaling [8, 10, 11, 13, 15, 19], length-dependent diffusion
of polarity effectors [16, 20, 21], and stablization of microtubules [22, 23]. Positive feedback is an essential ingredient
of bistability [24]. The second term provides a constant rate of neurite retraction, reflecting the retraction that occurs
in all neurites between the arrival of actin waves [25]. The last term includes a sum of delta functions that describes
sudden neurite elongation due to actin waves [25-27]. Each wave induces a jump in length of size A. The term ) (A)
is the time when the tip of the ith neurite receives the nth wave, which follows a Poisson process of rate A (this is also
the average number of waves generated per unit time).

With our minimal model, a neurite can be thought of as a particle in a double-well potential, as shown in Fig. 2A.

The left potential well corresponds to the state of being a short neurite, and the right well corresponds to the state of
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Figure 2: The bistability in the neurite growth model interpreted as a double well potential and the effects of negative
feedback. (A) The double well potential shows the bistability in neuronal polarization. Due to random excitations, a
particle representing a neurite may cross the potential barrier, located at position L. (B) The increased retraction
rate due to the formation of an axon (grey dot) destroys the double well potential for a short neurite (black dot).
(C) Under the excitation rate reduction, the particle falls back significantly between two excitations. (D) Under the
excitation amplitude reduction, each pulse only helps the particle climb a short distance.

being a long neurite that will become an axon. The actin waves then provide random excitations that can drive the
particle across the potential barrier at location L, marking the establishment of an axon. All nascent neurons have
short neurites, so they begin in the left potential well.

Since only one neurite develops into the axon of a typical neuron, the growth of other neurites should be suppressed
to avoid having multiple axons. One way to incorporate this negative feedback into the model is to have the retraction

rate r increase as the neurites get longer. For simplicity, we use the following length-dependent retraction rate:

R
r=ro <1+OZZL1'>7 (2)

where 7 is a basal retraction rate and « is a parameter that controls the degree of suppression. The retraction rate
is the same for every neurite, so the suppression is unbiased. Reducing the growth rate g in an unbiased way will give
qualitatively similar results. Targeting the negative feedback to the retraction rate has the effect of eliminating the
upper equilibrium state for each of the short neurites (Fig. 2B). Biologically, the increased retraction rate reflects the
collection of inhibitory signals in the cell body sent from the neurite tips.

Since actin waves drive neurite growth, negative feedback can also be implemented by suppressing the generation

of the waves. In our model, this is done by reducing the excitation rate \ according to the following equation:

Ao

A= ——f 3)
L+ p> ) L

where )¢ is a basal excitation rate and p controls the degree of reduction. Again, the inhibition is unbiased because
the actin waves are shared equally among neurites. Under the rate reduction, a neurite retracts significantly between
two waves, so its net growth is small (Fig. 2C). A length-dependent decrease in actin wave frequency is consistent with
the observation that actin waves are less frequent once an axon is formed [18]. This inhibitory mechanism was also

implemented in a previous mathematical model [21, 28].
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Notation Definition Value

g Maximum growth rate 10
K Half activation level V21
70 Basal retraction rate 1
« Feedback coeflicient of increased retraction 0.026
Ao Basal excitation rate 1
I Feedback coefficient of reduced excitation rate 0.4
Ay Basal excitation amplitude 1
10} Feedback coefficient of reduced excitation amplitude 0.4
Ly Location of the potential barrier 3

Table 1: List of parameters and their values used in the study of different negative feedback mechanisms.

Finally, we implement negative feedback by reducing the amplitude A as follows:

Ao

A= ———M 4
1+¢221Li W

where Aj is a basal excitation amplitude and ¢ controls the degree of reduction. In terms of the particle in a double well
potential, a reduced amplitude means that more excitations will be required to cross the potential barrier (Fig. 2D).
Biologically, actin waves carry growth factors produced at the cell body, so amplitude reduction could reflect depletion

of the growth factors. A similar amplitude reduction mechanism was adopted in a previous modeling study [16].

Persistence of Polarization with Different Forms of Negative Feedback

For mathematical simplicity, we consider a nascent neuron with two neurites (R = 2) in this section. In fact, neurons
with two neurites were also observed in experiments [2]. For such a neuron, we study the effect of each of the
three negative feedback mechanisms from three perspectives: (1) the joint probability density of the lengths, denoted
by p(Li,Ls), (2) the underlying deterministic phase portraits, and (3) the stochastic dynamics. To analyze the
probability density and stochastic dynamics, we employ two complementary methods: the generalized cell-mapping
method (GCM) and Monte Carlo (MC) simulations, which are explained in detail in the Appendix. The GCM allows
us to efficiently determine the probability density of the lengths and its long-term limit. However, when dealing with
neurons possessing more than two neurites, the GCM becomes computationally expensive. In such cases, the MC
method proves to be more efficient, particularly when the timescale is short. Additionally, the MC method unveils
neurite dynamics that are not captured by the probability density obtained through the GCM. Nevertheless, the MC
method is less effective than the GCM in analyzing the long-term behavior of the probability density.

We begin by considering negative feedback through a length-dependent increase in the neurite retraction rate
(Eq. (2)). The long-term joint probability distribution of the lengths exhibits two peaks, which indicates that the
system spends most of the time near these peaks (Fig.3A). Each peak represents a state with a long neurite and a
short neurite, which we refer to as a polarized state. The formation of the peaks can be inferred from the following

deterministic system:
dL; L?
a IR

1
—rLit AN, i=12, (5)

where the term %A)\ is the time average of the Poissonian term in Eq. (1). The factor 1/2 accounts for the fact that the
total number of actin waves is divided between the two neurites. We continue to use L; for the neurite lengths in this
system, though they are no longer random variables. Figure 3B shows nullclines and the vector field for Eq. (5). There
are seven equilibria, three of which are stable. Two correspond to the polarized state and are near the peaks of the

probability distribution, while one near the origin corresponds to a state in which both neurites are short. The basin



125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

of attraction of the latter is small, so in the stochastic system described next trajectories leave this region quickly.
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Figure 3: The dynamics of the two-neurite system when negative feedback targets the retraction rate. (A) The long-
term probability density of the neurite lengths exhibits two peaks. The mean transition time between the peaks is of
0O(10?), which is estimated by the mean time to enter [4,8] x [0, 2] from (0,6). (B) The phase portrait of Eq. (5) shows
two stable equilibria close to the peaks of the stationary probability density, corresponding to two polarized states.
The L;-nullclines (black) and Lo-nullclines (grey) intersect at 5 additional locations, one of which (grey point) is a
stable equilibrium. (C) Monte Carlo simulation shows frequent alternations in the lengths of neurite 1 (black) and
neurite 2 (grey). To study the effect of the increased retraction alone, we set A = Ag and A = Ay. Other parameter
values are given in Table 1.

The bimodal probability density does not necessarily imply a firmly established axon. Monte Carlo simulations
show that both neurite lengths alternate between two levels. That is, the system makes frequent transitions between
the two polarized states (Fig.3C). This is further indicated by the short mean transition time from one peak to the
other (O(10?) time units; see Fig. 3A). Thus, a single polarized state is not maintained when the negative feedback is
implemented upon the retraction rate.

We next explore the dynamics in which negative feedback is implemented through length-dependent reduction in
the excitation rate as prescribed by Eq. (3). The joint probability density initially has two peaks at the two polarized
states. As time progresses, however, the polarized peaks fade and a third peak corresponding to two long neurites
gains prominence (the top right peak in Fig.4A). The mean transition time from a polarized state to the nonpolarized
state is O(10%) time units (Fig. 4A). All three states appear as stable equilibria in the deterministic system, in addition
to the stable equilibrium with a small basin of attraction corresponding to two short neurites (Fig. 4B). A Monte Carlo
simulation shows the early development of a polarized state, followed by a transition to a state with two long neurites
at t = 1000 (Fig.4C). These results indicate that this form of negative feedback is not effective at maintaining a
persistent polarized state. Incorporating both length-dependent increased retraction rate and reduced excitation rate
eliminates the two long-neurite state (Fig. 5A and B), but does not prevent flipping between polarized states (Fig. 5C).

Finally, we consider negative feedback implemented through a length-dependent reduction in the excitation am-
plitude as prescribed by Eq.(4). Unlike the excitation rate reduction, the amplitude reduction yields a bimodal
probability density that develops almost immediately (at ¢ = O(10), see Fig.6A) and persists even at t = 10° (to
be explained in the next section). A peak in which both neurites are long does not appear until much later, and
the mean transition time from a polarized state to this nonpolarized state is O(10%) (Fig. 6B), which is much larger
than the mean transition time when negative feedback is through rate reduction. Biologically, this means that the
polarized state persists long enough that later stages of neuron development, including targeting of the nascent axon
to appropirate targets via neurotrophins, can occur. Also, the system does not flip between the two polarized states, as
shown with a Monte Carlo simulation (Fig.6C). These results indicate that implementing negative feedback through

a length-dependent reduction in the excitation amplitude results in persistent neuronal polarization.
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Figure 4: The dynamics of the two-neurite system with negative feedback implemented through a length-dependent
reduction in the excitation rate. (A) The probability density at ¢ = 400 shows peaks at the two polarized states as well
as a peak in which both neurites are long. The mean transition time from a polarized state to a nonpolarized state
is O(10%) time units, estimated by the mean time to reach [6,10] x [6,10] from (0,8). (B) The phase portrait shows
two stable equilibria at polarized states (black circles), another in which both neurites are short (grey), and another
in which both are long (black). (C) A Monte Carlo simulation shows that both neurites become long at ¢ ~ 1000. To
study the effect of the excitation rate reduction alone, we set r = ry and A = Ay. Other parameter values are given
in Table 1.
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Figure 5: The dynamics of the two-neurite system with negative feedback implemented through both a length-
dependent increase in the retraction rate and a decrease in the excitation rate. (A) The long-term probability density
is bimodal with two polarized states. The mean transition time between these states is O(10%). (B) The phase portrait
shows two stable polarized equilibria and a stable equilibrium with small basin of attraction in which both neurites
are short. (C) A Monte Carlo simulation shows the system flipping between the two polarized states. We set o = 0.02
and A = Ag here. Other parameter values are given in Table 1.

Metastability Resulting from Different Forms of Negative Feedback

We demonstrated above that regardless of the target of the negative feedback, the system enters a polarized state for
some time before exiting to either (1) a different polarized state (i.e., flipping) or (2) a nonpolarized state (i.e., a state
in which both neurites are long). However, the time that the system is in the polarized state varies greatly with the
different forms of negative feedback. In this section, we examine why the persistence of the metastable polarized state
is so different with the different negative feedback mechanisms. For this, we employ a tool called the e-committor,
developed by Lindner et al. [29]. It provides an estimate of the probability that a stochastic trajectory remains in a
region of phase space for a duration of 1/e, where € is the rate at which the trajectory is moved into an absorbing state
connected to the region. A definition and description of the calculation of the e-committor is given in the Appendix.

We focus on a region that encloses the upper left peak in any of the bimodal probability densities in the previous
section: Rg = [0, Lp] X [Lp, Limax) in the phase space (see Appendix for the definition of Lyax). By definition, the
e-committor corresponding to Rg characterizes the persistence of the polarized state in which Ly > L;, for any of
the three negative feedback mechanisms. Denote this e-committor by C.. For each form of negative feedback, we

calculate C. at different values of €. Figure 7A shows that when the negative feedback is on the excitation amplitude,
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Figure 6: The dynamics of the two-neurite system with negative feedback implemented through a length-dependent
decrease in the excitation amplitude. (A) The probability density at ¢ = 10¢ is bimodal. (B) The addition of another
peak in the probability distribution occurs much later, after O(10%) time units. (C) A Monte-Carlo simulation shows
a persistent polarized state. To study the effect of the excitation amplitude reduction alone, we set r = rg and A = Ag.
Other parameter values are given in Table 1.

C. ~ 1 over a timescale of 10%, meaning that with high probability a trajectory starting in Rg remains in Rg during
this period of time. In contrast, C. falls to zero much earlier when the negative feedback is on the excitation rate.
This indicates that the system leaves Rg quickly and explains the rapid transition from a bimodal probability density
to a unimodal probability density corresponding to two long neurites (Fig.4). C. starts to drop even earlier when
the negative feedback is on the retraction rate, and it reaches =~ 0.4. This means that the system spends about 40%
of time in Rg in the long run, consistent with its flipping behavior. These e-committor results demonstrate again
that applying the length-dependent negative feedback to the excitation amplitude works best in maintaining a unique

polarized state.

A B

. _ i Amplitude redu(*tiion 10
\
. i =)
O i é; 54
i ~L_Increased r ~
0 i Rate 1‘eidu(:tion 0
0 2 4 6 8 10 0.1 0.5 1
logio(1/e) Aor A

Figure 7: Metastability resulting from different forms of negative feedback. (A) Strength of attraction of the polarized
state S is measured by the e-committor C.. Within the time window marked by the vertical dashed lines, C¢ is
almost 1 when negative feedback is applied to the excitation amplitude, whereas it drops significantly when applied
to the excitation rate or retraction rate. (B) The mean escape time T, for a single neurite to surpass the threshold L,
increases faster when the excitation amplitude A is reduced (black) than when the excitation rate X is reduced (grey).

The difference in the variations of C. when negative feedback is on excitation amplitude versus rate can also be
quantified via the mean escape time. That is, the time at which a trajectory in a polarized state escapes to the other
polarized state or to the nonpolarized state. Consider a single neurite of length L that follows Eq. (1). We use the
general cell-mapping method (see Appendix) to calculate the mean time that L, starting at L = 0, exceeds L; for
different values of A and A (mimicking the effects of negative feedback on either of these two targets).

We find that the mean escape time (denoted by T.) increases faster as the excitation amplitude is reduced than

when rate is reduced (Fig. 7B). Therefore, reducing the excitation amplitude is more effective than reducing excitation
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rate on keeping a trajectory within an attracting basin. This explains the long persistence of the polarized state with
negative feedback upon excitation amplitude.

Finally, we estimate the probability of crossing the threshold L, starting from L = 0 for a single neurite. To
overcome retraction, the neurite must receive at least L;/A excitations during a short period (for simplicity, we
assume that L;/A is an integer here, which is true for the parameter values listed in Table 1. If L;/A is not an integer,
we need to round it up to the nearest integer. But this won’t affect our result qualitatively). Consider 7 = 1/r,
the timescale of retraction. Let P. be the probability of having L;/A excitations during 7, which follows a Poisson
distribution:

Ly
e
I o
+)!
With the Stirling’s Approximation for factorial

n! =v2mn (ﬁ)n, (7)

€

we get

1
In(P,) = % [ln()w—) —1In % + 1} ~3 In % — AT — %1n(27r). (8)

If the amplitude A is reduced to A/m (m > 1) and A remains unchanged, then
L L 1
In(P,) = mzb [m(m +1-1In j” - ln(m)} — 5= — S In(m) = Aro In(2m). (9)

Thus, In(P.) decreases faster than linear reduction. To see this more clearly, we plug in the parameter values in Table
I,namely L, =3, A=1, A=1,7=1/r =1, and get
1 1 1
In(P.) = 3m[l —In(3) — In(m)] — 3 In(m) — 3 In(3) — 3 In(27) — 1

~ —3mIn(m), for large m. (10)

On the other hand, if A is unchanged and A is reduced to A\/m (m > 1), then

In(P,.) = —% In(m) + Lo In(A7) = — — —(In— —1) — % - %111(2%). (11)

With the parameter values mentioned above, we get

In(P.) = —31In(m) — % —3(In(3) —1) — %111(3) . %1n(27r)

~ =31n(m), for large m, (12)

where we can see that In(P.) decreases with m logarithmically. Thus, the probability of crossing the threshold is
much larger at small excitation rate compared with the probability at a small excitation amplitude. One can conclude
from this that the persistence in a single polarized state is greater when negative feedback is applied to excitation

amplitude.

10
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Figure 8: Probabilities of having 0, 1 and > 2 long neurites when the negative feedback is targeted to the excitation
amplitude. (A) Varying neurite number R, with Ay = A = 1. (B) Varying base amplitude Ay, with R =4 and A = 1.
(C) Varying excitation rate A, with R = 4 and Ay = 1. Each probability is obtained by running 2000 Monte Carlo
simulation trials up to time 10000. For all simulations, ¢ = 0.1 and other parameter values are as in Table 1.

Polarization With More Than Two Neurites

Most developing neurons have between 2 and 10 neurites [2]. We next focus on the most effective form of negative
feedback, targeted to the excitation amplitude, in model systems with more than 2 neurites. Results are obtained
through Monte Carlo simulations, since the GCM approach to obtaining probability distributions is computationally
expensive at higher dimensions. We seek to determine how the number of neurites R, as well as excitation amplitude
and frequency, impact the probability of obtaining a single persistent polarized state.

The first set of results shows that the probability of obtaining a persistent polarized state first rises and then falls
with the number of neurites, and the probability is almost 1 when R is from 3 to 6 (Fig.8A). Within this range, the
probabilities of having a state with 0 or > 2 long neurites is almost zero. At smaller values of R, the probability of
having > 2 long neurites increases. In this case the actin waves are distributed among a smaller number of neurites,
so that each receives more excitation that can push it across the threshold from short to long. At larger R values
the probability of having no long neurites increases, since each neurite receives fewer actin waves and thus it becomes
more likely that none will go past the threshold.

When the number of neurites is held constant at R = 4, an optimal range of parameter values exists for either the
basal excitation amplitude or the excitation rate (Fig.8B and C). If either parameter is too small, then the size or
frequency of actin waves are too small for any of the neurites to cross over from small to long. If either parameter is
too large, then more than one neurite will cross over despite of the negative feedback. The optimum range for all three
parameters, R, Ay, and A depend on the values of other parameter, as they are determined by the balance among

excitatory pulses, retraction, and negative feedback. A change in the value of any one parameter changes the balance.

Bistability and Excitation Amplitude Reduction in a Limited-Resource

Model

There have been several modeling studies in which the biophysical mechanism underlying neuronal polarization was
competition for a limited supply of some growth factor or structural protein; the neurite acquiring the most becomes
an axon [14, 16, 21, 30]. In this section, we show how bistability and excitation amplitude reduction are involved in
this mechanism.

To illustrate, we build a simple model based on [16]. Consider a neuron with two neurites whose growth is supported
by some growth factor F' produced at the cell body. F' is transported by actin waves to the neurite tips and diffuses

back to the cell body. As in [16], we assume that F slows down the retraction of the neurites. Let Cp, C; and Cy

11
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Figure 9: Neuronal polarization with a limited-resource model. (A) A Monte Carlo simulation reproduces the emer-
gence of a single axon. The inset shows the time evolution of the concentrations of the growth factor at two neurite
tips. (B) The reduced two-dimensional system shows two stable equilibria (black filled circles). (C) For the neurite
that develops into the axon (neurite 1), the fluctuation in its retraction rate, represented by K2 /(K2 + C7), becomes
smaller as the neurite grows over time. Parameter values for these results are given in Table 2

be the concentrations of F' at the cell body and the neurite tips. These quantities, and neurite lengths L;, evolve

according to:

dCi C (1
m =2 BZ& — (13)

dL; K? L;
—p— L Lo) —pp—0u©c 7
1 Ta(L1 + L2) rbK;?—i—Cf’Li—kG

(14)

The first term on the right-hand side of Eq. (13) describes the Fickian flux of F' which is proportional to the con-
centration gradient (C; — Cp)/L;. Unlike [16], we assume that Cj is constant, so that the total amount of F' is not
conserved. (The results below are similar whether the growth factor is conserved or not.) The second term represents
actin waves carrying the growth factor F. The term approximates the narrow Guassian spikes used in the original
model [16]. Each wave causes a jump of size B in concentration. The first two terms of Eq. (14) describe the growth of
a neurite that is limited by a common resource that is used up as the neurites become longer (e.g., the protein tubulin,
which is a key constituent of microtubules). The third term is the retraction rate that is reduced when growth factor
is present. It retains the key properties of the original retraction term in the model in [16]: (1) the sharp reduction in

the retraction rate as C; gets closer to K.; (2) the sigmoidal increase of the retraction rate with L;.

Notation Definition Value
a Diffusion parameter 0.121
B Excitation amplitude 1*
A Excitation rate 0.059
b Maximum growth rate 0.25
Tq Fixed retraction rate 0.0002
Tp Maximum fluctuating retraction rate 0.5
K. Half activation level 2
Cy Concentration at the cell body 2

Table 2: List of parameters in the limited-resource model. We choose a constant excitation amplitude (B = 1),
reflecting a constant level of growth factor at the cell body (Cy = 2). Other parameter values are as in [16].

Using parameter values based on experimental measurements in [16] (see Table 2), Monte Carlo simulations repro-
duce the emergence of a single axon (Fig. 9A). Although fluctuating, the factor mostly accumulates in the long neurite

that ultimately becomes the axon. To see bistability in the model, we replace the pulse term in Eq. (13) by its average
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B)/2 to obtain an auxiliary deterministic system:

dC;  Ci—Cy | BA

_ 1
dL; K3 L;

(L4 Ly) —rp—— 1
i ra(L1+ Lo) Ki 1P L+ G (16)

This system evolves on two disparate time scales, with the growth factor concentrations changing much more rapidly

than the neurite lengths. In the quasi-steady state, in which dC;/dt = 0, C; is given by

Substituting this expression for C; into Eq. (16), we get a two-dimensional system for L; and Lo, whose phase portrait
is shown in Fig. 9B. The two stable equilibria in the phase plane demonstrate the bistability in the model at the two
polarized states.

To see that the model employs length-dependent excitation amplitude reduction, we plot K2 /(K2 + C?) for the
neurite that developed into the axon (i = 1 for the case shown in Fig. 9A), which provides for random fluctuation in its
retraction rate. As Fig.9C shows, the fluctuation becomes progressively smaller as the neurite grows. As a result, the
“stochastic noise” in the neurite length is damped as the neurite grows, reflecting an excitation amplitude reduction.
Physically, the decay of the fluctuation results from the decreasing Fickian flux as the neurite grows, which facilitates
growth factor accumulation. Length-dependent Fickian flux was also involved in other limited-resource models [21, 30].

In the original model [16], the total amount of the growth factor was assumed to be conserved. Therefore, the
neurites competed for both the growth factor and structural proteins. Also, the excitation amplitude B was assumed
to be proportional to Cy, which decreased as the neurites grew. This was a second means of reduction in the size of
the stochastic noise. Although unnecessary for successful neuronal polarization, as we showed here, these additional
mechanisms may help the establishment of a single-axon in a noisy biological environment. Redundancy in biological

processes is common in biological systems [24].

Discussion

In this article, we developed and analyzed a minimal model for achieving neuronal polarization that is based on
what we believe to be the two key ingredients of the polarization process: bistability and length-dependent negative
feedback. The bistability is necessary for the formation of two distinct classes of neurites (short and long), while the
length-dependent negative feedback assures that once a neurite becomes long the others are prohibited from doing so.
While there are several plausible targets of the negative feedback in the minimal model, we demonstrated that one
stands out as the most effective in achieving persistent polarization. The success of this mechanism, targeted to the
amplitude of stochastic actin waves, was demonstrated in several ways, including the joint probability distribution,
Monte Carlo simulations, a large e-committor, a long escape time from a polarized state, and a low escape probability.
Additionally, we found that with this negative feedback mechanism, polarization is more successful if there are more
than two neurites competing in the winner-takes-all contest. Finally, we demonstrated that a neuronal polarization
model based on competition for a limited growth factor has the same underlying key ingredients as our most successful
minimal model: bistability and length-dependent reduction in the excitation magnitude.

The clear distinctions between the axon and other short neurites of a neuron during its polarization indicate an

inherent bistability [1, 31]. Typically, bistability arises from positive feedback [24], and various sources of positive
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feedback have been identified. One example involves length-dependent retrograde diffusion flux of polarity effectors [4,
16, 21]. Another results from the anterograde transportation of polarity effectors that is enhanced by their accumulation
at neurite tips [14], possibly due to stabilization of microtubules [22]. Microtubule stabilization was also shown to help
the localization of endoplasmic reticulum tubules, which in turn enhanced the stabilization [23]. Some of the signaling
pathways involved in polarization are discussed in [10, 13, 15, 20].

Another major element of positive feedback in neurite growth is the autocrine effects of neurotrophic factors such
as Brain-Derived Neurotrophic Factor (BDNF) and neurotrophin-3 (NT-3). These factors are released by individual
neurites and bind to receptors on the neurites, stimulating their growth. It has been shown that BDNF activation
of its receptor TrkB not only promotes neurite growth, but provides positive feedback by promoting BDNF' secretion
[19]. The impact of the local neurotrophin secretion depends on the receptor density at the neurite tip, and it has
been shown that neurotrophin binding to receptors recruits more receptors to the membrane, thus providing positive
feedback in the response to the neurotrophin [19, 32].

Once an axon has formed, negative feedback mechanisms are necessary to prevent the formation of a second
axon. In this study, we examined three different unbiased negative feedback mechanisms. Length-dependent increased
retraction prevents the growth of a short neurite by destroying its bistability. This negative feedback may result from
long-range signals emitted from neurite tips [33], or from a competition for material proteins [16]. We showed that
this mechanism is successful in creating polarized states, but does not prevent flipping between the polarized states,
which does not appear to occur in actual neurons. This demonstrates that maintenance of a unique polarized state
depends on length-dependent suppression of random actin waves, at least in the case of unbiased negative feedback.
It is certainly possible that some form of biased negative feedback occurs, in which only a long neurite can initiate the
negative feedback. One example of this is with the neurotrophin NT-3. This growth factor can accumulate at a long
neurite and initiate Ca?* waves that travel from the neurite tip back to the cell body, activating the small GTPase
RhoA that inhibits growth of all neurites [34]. Thus, a growth factor can contribute to neuronal polarization by both
facilitating growth of a neurite exposed to it and by inhibiting the growth of competing neurites.

In addition to increased retraction, we also studied the effects of reducing excitation rate and magnitude. We found
that reducing excitation rate was insufficient for preventing the formation of a second axon, while reducing excitation
magnitude effectively maintained the polarization of our model neuron. It was observed in previous experiments that
the frequency of actin waves (i.e., the average number of actin waves per unit time) and the net growth driven by a
single actin wave both decreased after an axon had formed [18]. Our study suggests that the decrease in net growth
is a more crucial factor in preventing the formation of a second axon.

Previous studies have proposed a mechanism in which all neurites compete for a limited amount of growth proteins,
and the neurite that acquired the most becomes an axon [16, 20]. It was assumed that the axon’s acquisition of these
proteins was facilitated by active anterograde transportation and retrograde diffusion. Using a simplification of one such
model [16], we demonstrated that this mechanism exhibits bistability and a length-dependent reduction in excitation
magnitude. The excitation magnitude reduction results from the axon’s decreased diffusion flux as it grows. Length-
dependent diffusion flux is not the only means of preventing the redistribution of growth proteins. It is also possible
that blockage occurs in the long neurites. This was demonstrated in a study showing a novel cytoskeletal mechanism
in which a dampened retrograde microtubule network assists in the accumulation of Kinesin-1 in the neurite that
becomes the axon [35]. Similar to the effect of slow diffusion, the retrograde transportation of Kinesin-1 is reduced,
which prevents its redistribution among all neurites.

Our model’s bistability and reduction in excitation magnitude may not completely prevent the emergence of

multiple axons, which could be considered a flaw. However, a previous experimental study found that a short neurite
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was able to develop into an axon when it was mechanically stretched, even after another axon had already formed [31].
Our model easily explains this result, as mechanical stretching can cause a neurite to surpass the threshold length,
putting it into the basin of attraction of the higher stable equilibrium, regardless of whether another axon already
exists. In contrast, a limited resource model that does not allow for more than one axon could not account for this
experimental finding.

In a prior experimental study by Wissner-Gross et al., it was observed that neurons with varying numbers of
neurites polarized synchronously [2]. The authors found that prior models based on competition for a limited resource
[16, 36] failed to replicate this, but instead the polarization time increased with the number of neurites. However, if the
amount of the limited resource was increased with the number of neurites, the polarization time was similar for model
cells with different numbers of neurites. Indeed, they found that the levels of two polarity factors, Shootinl and HRas,
were both higher in neurons with more neurites. We find similar behavior with our models. In the minimal model
(Eq. (1)), if the basal excitation amplitude Ay is properly up-regulated according to the neurite number, the time to
polarize will be similar regardless of the number of neurites. Similarly, for our limited-resource model (Egs. (13) and
(14)), if the concentration of the growth factor at the cell body, Cp, is adjusted based on the neurite number, the
time to polarize will remain unchanged. The Wissner-Gross study also found that the majority of rat hippocampal
neurons grown in cell culture had between 5 and 7 neurites [2], suggesting the existence of an optimal range for the
number of neurites, as in our Fig. 8, and raising the possibility of a regulatory mechanisms for achieving polarization

by modulating both the number of neurites and the levels of effectors.
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Appendix

The generalized cell-mapping method

The generalized cell-mapping method (GCM) is a numerical implementation of the transfer operator (also called the
Perron-Frobenius operator), often used to find the probability distributions of the quantities in a random dynamical
system [37-42]. The GCM is also called Ulam’s method (see [29, 43, 44] and the references therein). The idea of
the GCM is to discretize the system into a discrete-time Markov chain, and to calculate the distribution using the

transition matrix. We use this method to compute probability distributions of neurite length.

L2 'A; "'i""' [ Sk A B Lmax

o ® ®
AL A
o T -~

AL L

Figure 10: Illustration of the generalized cell mapping method. The phase space of size Lyax X Lmax is divided into
small square cells of size AL x AL. Starting from a sample point, the two-neurite system may follow a continuous
trajectory to reach another cell, or a discontinuous trajectory with a jump of size A in Ly or Ls. The black and the
grey dots mark the starting and ending positions, respectively. For purposes of illustration, the region is split into
4 x 4 cells. In actual simulations, we choose AL = 0.2 and Ly,.x = 10, so that there are 50 cells in each direction. The
time increment At to generate the trajectories is 0.1.

To illustrate the method, consider a system of two neurites. We aim at finding the joint probability distribution
p(L1, Lo, t) of neurite lengths, Ly and Lo, at time ¢. We consider a region [0, Liax) X [0, Limax], where the upper bound
Lpyax is large enough so that p(L1, Lo, t) is negligible outside the region. Then we divide the region into N x N square
cells of width AL (AL = Lyax/N), as shown in Fig. 10, and denote the cell in the ith row and jth column as C; ;
(i,j = 1,2,...,N). To discretize time, we choose a small time increment At and only consider the distribution at

t =nAt (n=0,1,...). Then the probability that (L, Ls) falls within C; ; at ¢ = nAt, denoted by p; ;(n), is given by

Dij (n) = PI'{(Ll, Lg) S Ci,j at t = ’I’LAt} = p(ll, ls, t) didlis, (18)
(l1,l2)€Cy ;

where the notation (I1,ls) € C; ; means that iy € [(¢ — 1)AL,¢{AL] and Iy € [(j — 1)AL, jAL].
Let
p(n) = (pr1(n), p12(n), ..., pn.n(n)) (19)

be an 1-by-N? probability vector at time step n. Define the transition probability matrix Q as

Qun-11) Qui-oa2 - Qui—w.N)
Qu2—11) Qu2-a2 - Qu2—w.N)

Q= . ) , : (20)
Qv Ny, Qvn—1,2) - QN N)—=(N,N)

where Qs j/)—(i,;) is the transition probability from C(y jy to C(; ;) during At. (For our model, the Markov chain is

time-independent, so Qs j/)—(;,j) does not depend on n). The probability vector at time step n is related to that at
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the previous time step by:

p(n) =p(n—1)Q, (21)

or

piin)= Y Qugysuppiin—1), i,j=1,2,...,N, n=12... (22)

To estimate Qi jr)— (i), we sample M points uniformly in Cy Starting from each point, we could find a

3’
trajectory by solving Eq. (1) with a Monte Carlo method. Let M; ; be the number of trajectories that end in C; ;,
then M; ;/M approximates Qi j")—(i,5)- This should be repeated many times and the average taken. This is a time-
consuming procedure, so we employ the more efficient procedure developed in [45]. Starting from each sample point
(7', 7") we solve Eq. (1) without the stochastic term over time At:

dL; L?

Let Mi(;) be the number of trajectories that end in Cjj, then Mi(? /M approximates the probability of transition
from C(ys ;) to C; j, provided no pulse occurs during At. (The superscript “(d)” represents “deterministic”.) Then we
consider the case where a single pulse occurs during At. Since we describe actin waves as a Poisson process, the time
of the occurrence is uniformly distributed within At [46]. Thus, we solve Eq. (23) over At/2, then randomly choose a
length from L; and Ly and add A to it, and finally solving Eq. (23) over the rest of the time interval At/2 (Fig. 10).
The result is a trajectory with a single discontinuity. We repeat the same calculation for all sample points. Let MZ-(’ j)

be the number of trajectories that end in C} ;, then Mi(s)

¥ /M approximates the probability of transition from Ci; ;)

to C; 5, provided a single pulse occurs during this short period. (The superscript “(s)” represents “stochastic”.) Since

the probability of having two or more pulses during At is of O(At?), we neglect this probability and approximate

Qv (ij) 38

@D M
Q)= (i.g) = (1= A —= + AAE—2, (24)

where AAt is the first order approximation of the probability of having a single pulse during At¢. In principle, one
could refine the approximation by dividing At into more subintervals.

Given an initial distribution p(0), we can calculate p(n) iteratively with Eq.(21). To obtain p(0), suppose that
the system starts from (L1(0), L2(0)). We find the cell C; ; containing this point and set the corresponding p; ;(0) to
be 1 and all other probabilities to be 0. To estimate the limiting distribution p(co), we iterate according to Eq. (21),
until the change in p(n) becomes negligible. To speed up the iteration, we utilize QQk = (Qg(kfl))Q, such that p(2F)
can be obtained with k iterations.

In addition to solving the distribution, we will also use the GCM to calculate various first passage probabilities
and mean first passage times. This requires modification of the transition matrix Q. Suppose we are interested in
finding the probability that the two-neurite system enters a specific region D and the mean entering time. For a cell

centered within D, the transition probability Qs j)_ ;) is modified as Q(i/,j/)ﬁ(i,j):

- 1, (4,5) = (7', 5")
Qir j)—(ig) = (25)
0, otherwise

This makes D an absorbing region, which means that once the system enters D, it is frozen and cannot make further

transitions. Let the modified transition matrix be Q and the resulting distribution be p(n). The probability of entering
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D at t < nAt is given by

Pp(n)= > pij(n), (26)

C; ;€D

where C; ; € D means that the center of C; ; is in D. The probability of entering D is given by

Pr{Entering D} = Pp(o0) = Z Di,j(00), (27)
C; ;€D

which can be obtained by iterating enough number of times according to p(n) = p(n — 1)Q. Finally, let (Tp) be the

mean entering time, then
oo

(Tp) = > nAt(Pp(n) — Pp(n — 1)). (28)

n=1
Numerically, the series is truncated to drop the terms that make little contribution.
The GCM can be implemented regardless of the dimension of a system of interest. The mean escape time shown
in Fig. 7B is calculated by applying the GCM to a single neurite. By setting D = [Lp, Linax), the mean T, that the
neurite length surpasses the threshold L; is given by Eq. (28).

Monte Carlo simulations

In addition to the GCM, we also simulate the time evolution of the neurite lengths using a Monte Carlo method. The

algorithm that we use is the following:

(1) Set the initial lengths L;(0) =0, (¢ =1,2,..., R).

(2) At each time step t = nAt, add to each L;(t) the deterministic increment At[gL?/(L? + K?) — rL;].

(3) Generate a random number u within [0,1]. If u > AA¢, go back to Step (2). Note that A may be variable if
there is length-dependent rate reduction (Eq. (3)).

(4) If u < AAt, randomly choose an L;(t) from the N lengths, and add A to it. Note that A may be variable if there
is length-dependent amplitude reduction (Eq. (4)). Then go back to Step (2).

(5) Repeat Steps (2) to (4) until iterations are completed.

We choose At = 0.1 for all simulations. The duration of a simulation depends on the type of negative feedback. Monte

Carlo simulation is also applied to the winner-takes-all model (Egs. (13) and (14)), and the implementation is similar.

Implementation of the e-committor method

The e-committor was introduced by Lindner et al. [29] as a means of estimating the probability that a stochastic
trajectory remains in a region of phase space for a duration of 1/e. Here, we describe its implementation within the
framework of the GCM.

Consider the polarized state where Ly < Lo, referred to as S in the following. To study its persistence, we choose a
rectangular region Rg = [0, L] X [Ly, Limax], where L; is the aforementioned location of the potential barrier and Lyax
is the user-defined boundary of the phase space in both directions. With the parameter values in Table 1, we have
Ly, = 3. The top-left peak of the bimodal probability density resulting from any of the negative feedback mechanisms
described above (see Fig. 3, Fig.4 and Fig. 6) falls into Rg. Now we introduce two auxiliary absorbing states Z; and
Z5. When the system is in Rg, it has a probability € of being absorbed into Z; at each time step. When the system
is in the rest of the region, it is absorbed into Z, at each time step with the same probability (Fig.11). Let ¢, ; be
the probability of being absorbed into Z; when the system starts from (the center of) C; ;. The probability vector q
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Figure 11: Illustration of the e-committor. Two absorbing states, Z; and Z5 are introduced. When the system wanders
within Rg (grey rectangle covering [0, L] X [Lp, Lmax]), it has a probability of being absorbed into Z; at each time
step. If the system is outside Rg, it has the same probability of being absorbed into Zs.

formed by all g; ;’s is called the e-committor, namely

q= (Q1,17(J1,27 e 7QN,N)T- (29)

Since the probability of being absorbed at each time step by either Z; or Zs is €, the mean time till absorption is At/e,
where At is the step size used in the GCM. Over such a timescale, if the system starts from C; ; and spends most of
the time within Rg, it will have a high probability of being absorbed into Z, i.e., g; ; will be close to 1. Conversely,
if the system never enters Rg or quickly leaves it without coming back, ¢; ; will be close to 0 [29]. Therefore, g; ;
characterizes the attracting strength of the region Rg over a timescale of At/e, when the system starts from C; ;. By
choosing a starting cell close to the top left peak of a bimodal distribution and changing the value of ¢, the resulting g; ;
quantifies the persistence of the polarized state .S over different timescales under the corresponding negative feedback
mechanism. Specifically, we choose the cell at [0, 6] when the increased retraction is implemented, and the cell at [0, 7]
when the excitation rate or amplitude reduction is implemented. The corresponding probability ¢; ;(Rs, €) is denoted
by C. for notational simplicity.

To calculate q use the formula in [29], given as
[I—(1-¢)Qla=elry, (30)

where I is an N2-by-N? identity matrix and Q the transition matrix given by Eq. (20). I, is an N2-by-1 indicator

vector defined as

Irs = (0(1,1).Rs+0(1,2) Ras - -+ (NN Rs) s (31)
where
17 (27‘7) S RS7
6(i;j),RS = . (32)
07 (27.7) ¢ RS
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