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Highlights:7

1. Bistability and random excitation amplitude reduction are minimum requirements for neuronal polarization.8

2. There exists an optimal neurite count, excitation amplitude, and excitation rate that best maintain polarization.9

3. Our findings are consistent with previously published, more detailed models which are catered to specific exper-10

imental observations.11
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Abstract12

Neuronal polarization, a process wherein nascent neurons develop a single long axon and multiple short dendrites,13

can occur within in vitro cell cultures without environmental cues. This is an apparently random process in which14

one of several short processes, called neurites, grows to become long, while the others remain short. In this study,15

we propose a minimum model for neurite growth, which involves bistability and random excitations reflecting actin16

waves. Positive feedback is needed to produce the bistability, while negative feedback is required to ensure that no17

more than one neurite wins the winner-takes-all contest. By applying the negative feedback to different aspects of the18

neurite growth process, we demonstrate that targeting the negative feedback to the excitation amplitude results in19

the most persistent polarization. Also, we demonstrate that there are optimal ranges of values for the neurite count,20

and for the excitation rate and amplitude that best maintain the polarization. Finally, we show that a previously21

published model for neuronal polarization based on competition for limited resources shares key features with our22

best-performing minimal model: bistability and negative feedback targeted to the size of random excitations.23

Keywords: Neuronal polarization, bistability, negative feedback, stochastic dynamical system.24

Introduction25

A nervous system is composed of interconnected neurons, each of which has multiple short dendrites that receive26

signals from upstream neurons and a single long axon that transmits signals to downstream neurons. Early in27

development, however, a neuron has multiple short neurites of similar lengths that extend and retract repeatedly28

and apparently randomly (coined by [1] as Stage 2). These neurites later differentiate into dendrites and a single29

axon (Fig. 1). The symmetry-breaking process by which a single axon emerges from the neurites (Stage 3) is referred30

to as neuronal polarization. Surprisingly, this process does not require release of growth factors from target cells, as31

neuronal polarization has been shown to occur within in vitro hippocampal neuron cell cultures in which there are32

no growth factor gradients guiding the selection process [1, 2]. The symmetry breaking appears to be random, and in33

experiments where the initial axon was cleaved off, a new one emerged from one of the other neurites [3]. Subsequent34

experimental manipulations demonstrated that it was possible for any neurite to become the winning neurite in the35

winner-takes-all contest [4, 5]. It has been shown that even in the in vivo setting where growth factor gradients are36

present, the developing neurons go through these stages, lasting about a day, characterized by growth and retraction37

of neurites with a subsequent symmetry breaking event [6, 7]. In this case, growth factor gradients influence the38

selection process, and indeed the random growth and retraction of neurites is thought to be a way for the neurites to39

explore the environment to seek out the growth factors (called neurotrophins). Nonetheless, even in vivo there is a40

winner-takes-all process that takes place, with bias provided by neurotrophin gradients.41

There have been many studies aimed at understanding the biophysical mechanism of the neuronal polarization42

process [4, 8–13]. Several potential mechanisms have been identified, and it is clear that the process involves positive43

feedback signals to promote the growth of the axon as well as negative feedback signals to prevent the emergence of44

a second axon [10, 13–16]. In this article, we focus on the polarization process that occurs in vitro, without external45

neurotrophin gradients, using a minimal model for the winner-take-all selection process that incorporates positive46

feedback and explore the efficacy of several different negative feedback mechanism in generating persistent neuronal47

polarization.48

The model is constructed based on the hypothesis that the dynamics underlying neurite growth and retraction are49

such that the system is bistable. That is, each neurite has two stable equilibria, short and long. The bistability is a50

3



Figure 1: Neuronal polarization. A nascent neuron (stage 2) has several short neurites that extend and retract
repeatedly and randomly (left). Later, during stage 3, one of the neurites develops into an axon while others become
dendrites (right).

product of the positive feedback. A second hypothesis is that the selection process is truly random, so no neurite is51

biased towards winning the competition to become an axon. We then explore three mechanisms of negative feedback.52

One of these involves the retraction rate that is common to all neurites. The others involve a stochastic term that53

reflects randomly-timed and uniformly distributed actin waves which are known to be key to neurite elongation; each54

actin wave provides growth spurts by locally increasing the neurite volume to allow for microtubule polymerization55

[12, 17, 18]. We consider the effects of making neurite retraction, actin wave magnitude, and actin wave frequency56

dependent on the combined length of the neurites such that increased length increases the retraction rate, or decreases57

the actin wave magnitude or frequency. In all cases, the negative feedback is unbiased.58

The results demonstrate that targeting the negative feedback to the stochastic growth magnitude (i.e., the actin59

wave term) results in the most persistent polarized system. They also demonstrate that having more than 2 neurites,60

but less than some upper bound, is optimal for achieving and maintaining neuronal polarization. This is consistent with61

the finding that most nascent neurons have between 2 and 10 neurites [2]. One model for neuronal polarization is based62

on competition for limited resources, including growth factor [16]. In the last section of Results, we demonstrate that63

a simplified model based on this limited-resource model contains the two elements that we find to be most successful64

at achieving persistent polarization: bistability and length-dependent reduction in the amplitude of actin-wave-driven65

stochastic excitation .66

The Minimal Model67

We consider a small population of R neurites, each with length Li, i = 1, 2, . . . , R. The basic model contains a term68

for positive feedback, a retraction term, and a stochastic term reflecting randomly-timed actin waves. The negative69

feedback is included later. The basic model is:70

dLi

dt
= g

L2
i

L2
i +K2

− rLi +
∑
n

Aδ(t− t(i)n (λ)), i = 1, 2, . . . , R. (1)

The first term reflects positive feedback through intracellular signaling [8, 10, 11, 13, 15, 19], length-dependent diffusion71

of polarity effectors [16, 20, 21], and stablization of microtubules [22, 23]. Positive feedback is an essential ingredient72

of bistability [24]. The second term provides a constant rate of neurite retraction, reflecting the retraction that occurs73

in all neurites between the arrival of actin waves [25]. The last term includes a sum of delta functions that describes74

sudden neurite elongation due to actin waves [25–27]. Each wave induces a jump in length of size A. The term t
(i)
n (λ)75

is the time when the tip of the ith neurite receives the nth wave, which follows a Poisson process of rate λ (this is also76

the average number of waves generated per unit time).77

With our minimal model, a neurite can be thought of as a particle in a double-well potential, as shown in Fig. 2A.78

The left potential well corresponds to the state of being a short neurite, and the right well corresponds to the state of79
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Figure 2: The bistability in the neurite growth model interpreted as a double well potential and the effects of negative
feedback. (A) The double well potential shows the bistability in neuronal polarization. Due to random excitations, a
particle representing a neurite may cross the potential barrier, located at position Lb. (B) The increased retraction
rate due to the formation of an axon (grey dot) destroys the double well potential for a short neurite (black dot).
(C) Under the excitation rate reduction, the particle falls back significantly between two excitations. (D) Under the
excitation amplitude reduction, each pulse only helps the particle climb a short distance.

being a long neurite that will become an axon. The actin waves then provide random excitations that can drive the80

particle across the potential barrier at location Lb, marking the establishment of an axon. All nascent neurons have81

short neurites, so they begin in the left potential well.82

Since only one neurite develops into the axon of a typical neuron, the growth of other neurites should be suppressed83

to avoid having multiple axons. One way to incorporate this negative feedback into the model is to have the retraction84

rate r increase as the neurites get longer. For simplicity, we use the following length-dependent retraction rate:85

r = r0

(
1 + α

R∑
i=1

Li

)
, (2)

where r0 is a basal retraction rate and α is a parameter that controls the degree of suppression. The retraction rate86

is the same for every neurite, so the suppression is unbiased. Reducing the growth rate g in an unbiased way will give87

qualitatively similar results. Targeting the negative feedback to the retraction rate has the effect of eliminating the88

upper equilibrium state for each of the short neurites (Fig. 2B). Biologically, the increased retraction rate reflects the89

collection of inhibitory signals in the cell body sent from the neurite tips.90

Since actin waves drive neurite growth, negative feedback can also be implemented by suppressing the generation91

of the waves. In our model, this is done by reducing the excitation rate λ according to the following equation:92

λ =
λ0

1 + µ
∑R

i=1 Li

, (3)

where λ0 is a basal excitation rate and µ controls the degree of reduction. Again, the inhibition is unbiased because93

the actin waves are shared equally among neurites. Under the rate reduction, a neurite retracts significantly between94

two waves, so its net growth is small (Fig. 2C). A length-dependent decrease in actin wave frequency is consistent with95

the observation that actin waves are less frequent once an axon is formed [18]. This inhibitory mechanism was also96

implemented in a previous mathematical model [21, 28].97
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Notation Definition Value
g Maximum growth rate 10

K Half activation level
√
21

r0 Basal retraction rate 1
α Feedback coefficient of increased retraction 0.026
λ0 Basal excitation rate 1
µ Feedback coefficient of reduced excitation rate 0.4
A0 Basal excitation amplitude 1
ϕ Feedback coefficient of reduced excitation amplitude 0.4
Lb Location of the potential barrier 3

Table 1: List of parameters and their values used in the study of different negative feedback mechanisms.

Finally, we implement negative feedback by reducing the amplitude A as follows:98

A =
A0

1 + ϕ
∑R

i=1 Li

, (4)

where A0 is a basal excitation amplitude and ϕ controls the degree of reduction. In terms of the particle in a double well99

potential, a reduced amplitude means that more excitations will be required to cross the potential barrier (Fig. 2D).100

Biologically, actin waves carry growth factors produced at the cell body, so amplitude reduction could reflect depletion101

of the growth factors. A similar amplitude reduction mechanism was adopted in a previous modeling study [16].102

Persistence of Polarization with Different Forms of Negative Feedback103

For mathematical simplicity, we consider a nascent neuron with two neurites (R = 2) in this section. In fact, neurons104

with two neurites were also observed in experiments [2]. For such a neuron, we study the effect of each of the105

three negative feedback mechanisms from three perspectives: (1) the joint probability density of the lengths, denoted106

by p(L1, L2), (2) the underlying deterministic phase portraits, and (3) the stochastic dynamics. To analyze the107

probability density and stochastic dynamics, we employ two complementary methods: the generalized cell-mapping108

method (GCM) and Monte Carlo (MC) simulations, which are explained in detail in the Appendix. The GCM allows109

us to efficiently determine the probability density of the lengths and its long-term limit. However, when dealing with110

neurons possessing more than two neurites, the GCM becomes computationally expensive. In such cases, the MC111

method proves to be more efficient, particularly when the timescale is short. Additionally, the MC method unveils112

neurite dynamics that are not captured by the probability density obtained through the GCM. Nevertheless, the MC113

method is less effective than the GCM in analyzing the long-term behavior of the probability density.114

We begin by considering negative feedback through a length-dependent increase in the neurite retraction rate115

(Eq. (2)). The long-term joint probability distribution of the lengths exhibits two peaks, which indicates that the116

system spends most of the time near these peaks (Fig. 3A). Each peak represents a state with a long neurite and a117

short neurite, which we refer to as a polarized state. The formation of the peaks can be inferred from the following118

deterministic system:119

dLi

dt
= g

L2
i

L2
i +K2

− rLi +
1

2
Aλ, i = 1, 2, (5)

where the term 1
2Aλ is the time average of the Poissonian term in Eq. (1). The factor 1/2 accounts for the fact that the120

total number of actin waves is divided between the two neurites. We continue to use Li for the neurite lengths in this121

system, though they are no longer random variables. Figure 3B shows nullclines and the vector field for Eq. (5). There122

are seven equilibria, three of which are stable. Two correspond to the polarized state and are near the peaks of the123

probability distribution, while one near the origin corresponds to a state in which both neurites are short. The basin124
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of attraction of the latter is small, so in the stochastic system described next trajectories leave this region quickly.125

Figure 3: The dynamics of the two-neurite system when negative feedback targets the retraction rate. (A) The long-
term probability density of the neurite lengths exhibits two peaks. The mean transition time between the peaks is of
O(102), which is estimated by the mean time to enter [4, 8]× [0, 2] from (0, 6). (B) The phase portrait of Eq. (5) shows
two stable equilibria close to the peaks of the stationary probability density, corresponding to two polarized states.
The L1-nullclines (black) and L2-nullclines (grey) intersect at 5 additional locations, one of which (grey point) is a
stable equilibrium. (C) Monte Carlo simulation shows frequent alternations in the lengths of neurite 1 (black) and
neurite 2 (grey). To study the effect of the increased retraction alone, we set λ = λ0 and A = A0. Other parameter
values are given in Table 1.

The bimodal probability density does not necessarily imply a firmly established axon. Monte Carlo simulations126

show that both neurite lengths alternate between two levels. That is, the system makes frequent transitions between127

the two polarized states (Fig. 3C). This is further indicated by the short mean transition time from one peak to the128

other (O(102) time units; see Fig. 3A). Thus, a single polarized state is not maintained when the negative feedback is129

implemented upon the retraction rate.130

We next explore the dynamics in which negative feedback is implemented through length-dependent reduction in131

the excitation rate as prescribed by Eq. (3). The joint probability density initially has two peaks at the two polarized132

states. As time progresses, however, the polarized peaks fade and a third peak corresponding to two long neurites133

gains prominence (the top right peak in Fig. 4A). The mean transition time from a polarized state to the nonpolarized134

state is O(103) time units (Fig. 4A). All three states appear as stable equilibria in the deterministic system, in addition135

to the stable equilibrium with a small basin of attraction corresponding to two short neurites (Fig. 4B). A Monte Carlo136

simulation shows the early development of a polarized state, followed by a transition to a state with two long neurites137

at t ≈ 1000 (Fig. 4C). These results indicate that this form of negative feedback is not effective at maintaining a138

persistent polarized state. Incorporating both length-dependent increased retraction rate and reduced excitation rate139

eliminates the two long-neurite state (Fig. 5A and B), but does not prevent flipping between polarized states (Fig. 5C).140

Finally, we consider negative feedback implemented through a length-dependent reduction in the excitation am-141

plitude as prescribed by Eq. (4). Unlike the excitation rate reduction, the amplitude reduction yields a bimodal142

probability density that develops almost immediately (at t = O(10), see Fig. 6A) and persists even at t = 106 (to143

be explained in the next section). A peak in which both neurites are long does not appear until much later, and144

the mean transition time from a polarized state to this nonpolarized state is O(109) (Fig. 6B), which is much larger145

than the mean transition time when negative feedback is through rate reduction. Biologically, this means that the146

polarized state persists long enough that later stages of neuron development, including targeting of the nascent axon147

to appropirate targets via neurotrophins, can occur. Also, the system does not flip between the two polarized states, as148

shown with a Monte Carlo simulation (Fig. 6C). These results indicate that implementing negative feedback through149

a length-dependent reduction in the excitation amplitude results in persistent neuronal polarization.150
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Figure 4: The dynamics of the two-neurite system with negative feedback implemented through a length-dependent
reduction in the excitation rate. (A) The probability density at t = 400 shows peaks at the two polarized states as well
as a peak in which both neurites are long. The mean transition time from a polarized state to a nonpolarized state
is O(103) time units, estimated by the mean time to reach [6, 10] × [6, 10] from (0, 8). (B) The phase portrait shows
two stable equilibria at polarized states (black circles), another in which both neurites are short (grey), and another
in which both are long (black). (C) A Monte Carlo simulation shows that both neurites become long at t ≈ 1000. To
study the effect of the excitation rate reduction alone, we set r = r0 and A = A0. Other parameter values are given
in Table 1.

Figure 5: The dynamics of the two-neurite system with negative feedback implemented through both a length-
dependent increase in the retraction rate and a decrease in the excitation rate. (A) The long-term probability density
is bimodal with two polarized states. The mean transition time between these states is O(103). (B) The phase portrait
shows two stable polarized equilibria and a stable equilibrium with small basin of attraction in which both neurites
are short. (C) A Monte Carlo simulation shows the system flipping between the two polarized states. We set α = 0.02
and A = A0 here. Other parameter values are given in Table 1.

Metastability Resulting from Different Forms of Negative Feedback151

We demonstrated above that regardless of the target of the negative feedback, the system enters a polarized state for152

some time before exiting to either (1) a different polarized state (i.e., flipping) or (2) a nonpolarized state (i.e., a state153

in which both neurites are long). However, the time that the system is in the polarized state varies greatly with the154

different forms of negative feedback. In this section, we examine why the persistence of the metastable polarized state155

is so different with the different negative feedback mechanisms. For this, we employ a tool called the ϵ-committor,156

developed by Lindner et al. [29]. It provides an estimate of the probability that a stochastic trajectory remains in a157

region of phase space for a duration of 1/ϵ, where ϵ is the rate at which the trajectory is moved into an absorbing state158

connected to the region. A definition and description of the calculation of the ϵ-committor is given in the Appendix.159

We focus on a region that encloses the upper left peak in any of the bimodal probability densities in the previous160

section: RS = [0, Lb] × [Lb, Lmax] in the phase space (see Appendix for the definition of Lmax). By definition, the161

ϵ-committor corresponding to RS characterizes the persistence of the polarized state in which L2 ≫ L1, for any of162

the three negative feedback mechanisms. Denote this ϵ-committor by Cϵ. For each form of negative feedback, we163

calculate Cϵ at different values of ϵ. Figure 7A shows that when the negative feedback is on the excitation amplitude,164
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Figure 6: The dynamics of the two-neurite system with negative feedback implemented through a length-dependent
decrease in the excitation amplitude. (A) The probability density at t = 106 is bimodal. (B) The addition of another
peak in the probability distribution occurs much later, after O(109) time units. (C) A Monte-Carlo simulation shows
a persistent polarized state. To study the effect of the excitation amplitude reduction alone, we set r = r0 and λ = λ0.
Other parameter values are given in Table 1.

Cϵ ≈ 1 over a timescale of 108, meaning that with high probability a trajectory starting in RS remains in RS during165

this period of time. In contrast, Cϵ falls to zero much earlier when the negative feedback is on the excitation rate.166

This indicates that the system leaves RS quickly and explains the rapid transition from a bimodal probability density167

to a unimodal probability density corresponding to two long neurites (Fig. 4). Cϵ starts to drop even earlier when168

the negative feedback is on the retraction rate, and it reaches ≈ 0.4. This means that the system spends about 40%169

of time in RS in the long run, consistent with its flipping behavior. These ϵ-committor results demonstrate again170

that applying the length-dependent negative feedback to the excitation amplitude works best in maintaining a unique171

polarized state.172

Figure 7: Metastability resulting from different forms of negative feedback. (A) Strength of attraction of the polarized
state S is measured by the ϵ-committor Cϵ. Within the time window marked by the vertical dashed lines, Cϵ is
almost 1 when negative feedback is applied to the excitation amplitude, whereas it drops significantly when applied
to the excitation rate or retraction rate. (B) The mean escape time Tc for a single neurite to surpass the threshold Lb

increases faster when the excitation amplitude A is reduced (black) than when the excitation rate λ is reduced (grey).

The difference in the variations of Cϵ when negative feedback is on excitation amplitude versus rate can also be173

quantified via the mean escape time. That is, the time at which a trajectory in a polarized state escapes to the other174

polarized state or to the nonpolarized state. Consider a single neurite of length L that follows Eq. (1). We use the175

general cell-mapping method (see Appendix) to calculate the mean time that L, starting at L = 0, exceeds Lb for176

different values of A and λ (mimicking the effects of negative feedback on either of these two targets).177

We find that the mean escape time (denoted by Tc) increases faster as the excitation amplitude is reduced than178

when rate is reduced (Fig. 7B). Therefore, reducing the excitation amplitude is more effective than reducing excitation179
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rate on keeping a trajectory within an attracting basin. This explains the long persistence of the polarized state with180

negative feedback upon excitation amplitude.181

Finally, we estimate the probability of crossing the threshold Lb starting from L = 0 for a single neurite. To182

overcome retraction, the neurite must receive at least Lb/A excitations during a short period (for simplicity, we183

assume that Lb/A is an integer here, which is true for the parameter values listed in Table 1. If Lb/A is not an integer,184

we need to round it up to the nearest integer. But this won’t affect our result qualitatively). Consider τ = 1/r,185

the timescale of retraction. Let Pc be the probability of having Lb/A excitations during τ , which follows a Poisson186

distribution:187

Pc =
(λτ)

Lb
A e−λτ(
Lb

A

)
!

. (6)

With the Stirling’s Approximation for factorial188

n! =
√
2πn

(n
e

)n
, (7)

we get189

ln(Pc) =
Lb

A

[
ln(λτ)− ln

Lb

A
+ 1

]
− 1

2
ln

Lb

A
− λτ − 1

2
ln(2π). (8)

If the amplitude A is reduced to A/m (m > 1) and λ remains unchanged, then190

ln(Pc) = m
Lb

A

[
ln(λτ) + 1− ln

Lb

A
− ln(m)

]
− 1

2
ln

Lb

A
− 1

2
ln(m)− λτ

1

2
ln(2π). (9)

Thus, ln(Pc) decreases faster than linear reduction. To see this more clearly, we plug in the parameter values in Table

1, namely Lb = 3, A = 1, λ = 1, τ = 1/r = 1, and get

ln(Pc) = 3m[1− ln(3)− ln(m)]− 1

2
ln(m)− 1

2
ln(3)− 1

2
ln(2π)− 1

∼ −3m ln(m), for large m. (10)

On the other hand, if A is unchanged and λ is reduced to λ/m (m > 1), then191

ln(Pc) = −Lb

A
ln(m) +

Lb

A
ln(λτ)− λτ

m
− Lb

A
(ln

Lb

A
− 1)− Lb

A
− 1

2
ln(2π). (11)

With the parameter values mentioned above, we get

ln(Pc) = −3 ln(m)− 1

m
− 3(ln(3)− 1)− 1

2
ln(3)− 1

2
ln(2π)

∼ −3 ln(m), for large m, (12)

where we can see that ln(Pc) decreases with m logarithmically. Thus, the probability of crossing the threshold is192

much larger at small excitation rate compared with the probability at a small excitation amplitude. One can conclude193

from this that the persistence in a single polarized state is greater when negative feedback is applied to excitation194

amplitude.195
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Figure 8: Probabilities of having 0, 1 and ≥ 2 long neurites when the negative feedback is targeted to the excitation
amplitude. (A) Varying neurite number R, with A0 = λ = 1. (B) Varying base amplitude A0, with R = 4 and λ = 1.
(C) Varying excitation rate λ, with R = 4 and A0 = 1. Each probability is obtained by running 2000 Monte Carlo
simulation trials up to time 10000. For all simulations, ϕ = 0.1 and other parameter values are as in Table 1.

Polarization With More Than Two Neurites196

Most developing neurons have between 2 and 10 neurites [2]. We next focus on the most effective form of negative197

feedback, targeted to the excitation amplitude, in model systems with more than 2 neurites. Results are obtained198

through Monte Carlo simulations, since the GCM approach to obtaining probability distributions is computationally199

expensive at higher dimensions. We seek to determine how the number of neurites R, as well as excitation amplitude200

and frequency, impact the probability of obtaining a single persistent polarized state.201

The first set of results shows that the probability of obtaining a persistent polarized state first rises and then falls202

with the number of neurites, and the probability is almost 1 when R is from 3 to 6 (Fig. 8A). Within this range, the203

probabilities of having a state with 0 or ≥ 2 long neurites is almost zero. At smaller values of R, the probability of204

having ≥ 2 long neurites increases. In this case the actin waves are distributed among a smaller number of neurites,205

so that each receives more excitation that can push it across the threshold from short to long. At larger R values206

the probability of having no long neurites increases, since each neurite receives fewer actin waves and thus it becomes207

more likely that none will go past the threshold.208

When the number of neurites is held constant at R = 4, an optimal range of parameter values exists for either the209

basal excitation amplitude or the excitation rate (Fig. 8B and C). If either parameter is too small, then the size or210

frequency of actin waves are too small for any of the neurites to cross over from small to long. If either parameter is211

too large, then more than one neurite will cross over despite of the negative feedback. The optimum range for all three212

parameters, R, A0, and λ depend on the values of other parameter, as they are determined by the balance among213

excitatory pulses, retraction, and negative feedback. A change in the value of any one parameter changes the balance.214

Bistability and Excitation Amplitude Reduction in a Limited-Resource215

Model216

There have been several modeling studies in which the biophysical mechanism underlying neuronal polarization was217

competition for a limited supply of some growth factor or structural protein; the neurite acquiring the most becomes218

an axon [14, 16, 21, 30]. In this section, we show how bistability and excitation amplitude reduction are involved in219

this mechanism.220

To illustrate, we build a simple model based on [16]. Consider a neuron with two neurites whose growth is supported

by some growth factor F produced at the cell body. F is transported by actin waves to the neurite tips and diffuses

back to the cell body. As in [16], we assume that F slows down the retraction of the neurites. Let C0, C1 and C2

11



Figure 9: Neuronal polarization with a limited-resource model. (A) A Monte Carlo simulation reproduces the emer-
gence of a single axon. The inset shows the time evolution of the concentrations of the growth factor at two neurite
tips. (B) The reduced two-dimensional system shows two stable equilibria (black filled circles). (C) For the neurite
that develops into the axon (neurite 1), the fluctuation in its retraction rate, represented by K5

c /(K
5
c +C5

1 ), becomes
smaller as the neurite grows over time. Parameter values for these results are given in Table 2.

be the concentrations of F at the cell body and the neurite tips. These quantities, and neurite lengths Li, evolve

according to:

dCi

dt
= −Ci − C0

aLi
+B

∑
j

δ(t− t
(i)
j (λ)), (13)

dLi

dt
= b− ra(L1 + L2)− rb

K5
c

K5
c + C5

i

Li

Li +G
. (14)

The first term on the right-hand side of Eq. (13) describes the Fickian flux of F which is proportional to the con-221

centration gradient (Ci − C0)/Li. Unlike [16], we assume that C0 is constant, so that the total amount of F is not222

conserved. (The results below are similar whether the growth factor is conserved or not.) The second term represents223

actin waves carrying the growth factor F . The term approximates the narrow Guassian spikes used in the original224

model [16]. Each wave causes a jump of size B in concentration. The first two terms of Eq. (14) describe the growth of225

a neurite that is limited by a common resource that is used up as the neurites become longer (e.g., the protein tubulin,226

which is a key constituent of microtubules). The third term is the retraction rate that is reduced when growth factor227

is present. It retains the key properties of the original retraction term in the model in [16]: (1) the sharp reduction in228

the retraction rate as Ci gets closer to Kc; (2) the sigmoidal increase of the retraction rate with Li.229

Notation Definition Value
a Diffusion parameter 0.121
B Excitation amplitude 1∗

λ Excitation rate 0.059
b Maximum growth rate 0.25
ra Fixed retraction rate 0.0002
rb Maximum fluctuating retraction rate 0.5
Kc Half activation level 2
C0 Concentration at the cell body 2

Table 2: List of parameters in the limited-resource model. We choose a constant excitation amplitude (B = 1),
reflecting a constant level of growth factor at the cell body (C0 = 2). Other parameter values are as in [16].

Using parameter values based on experimental measurements in [16] (see Table 2), Monte Carlo simulations repro-

duce the emergence of a single axon (Fig. 9A). Although fluctuating, the factor mostly accumulates in the long neurite

that ultimately becomes the axon. To see bistability in the model, we replace the pulse term in Eq. (13) by its average
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Bλ/2 to obtain an auxiliary deterministic system:

dCi

dt
= −Ci − C0

aLi
+

Bλ

2
, (15)

dLi

dt
= b− ra(L1 + L2)− rb

K5
c

K5
c + C5

i

Li

Li +G
. (16)

This system evolves on two disparate time scales, with the growth factor concentrations changing much more rapidly230

than the neurite lengths. In the quasi-steady state, in which dCi/dt = 0, Ci is given by231

Ci = C0 +
BλaLi

2
. (17)

Substituting this expression for Ci into Eq. (16), we get a two-dimensional system for L1 and L2, whose phase portrait232

is shown in Fig. 9B. The two stable equilibria in the phase plane demonstrate the bistability in the model at the two233

polarized states.234

To see that the model employs length-dependent excitation amplitude reduction, we plot K5
c /(K

5
c + C5

i ) for the235

neurite that developed into the axon (i = 1 for the case shown in Fig. 9A), which provides for random fluctuation in its236

retraction rate. As Fig. 9C shows, the fluctuation becomes progressively smaller as the neurite grows. As a result, the237

“stochastic noise” in the neurite length is damped as the neurite grows, reflecting an excitation amplitude reduction.238

Physically, the decay of the fluctuation results from the decreasing Fickian flux as the neurite grows, which facilitates239

growth factor accumulation. Length-dependent Fickian flux was also involved in other limited-resource models [21, 30].240

In the original model [16], the total amount of the growth factor was assumed to be conserved. Therefore, the241

neurites competed for both the growth factor and structural proteins. Also, the excitation amplitude B was assumed242

to be proportional to C0, which decreased as the neurites grew. This was a second means of reduction in the size of243

the stochastic noise. Although unnecessary for successful neuronal polarization, as we showed here, these additional244

mechanisms may help the establishment of a single-axon in a noisy biological environment. Redundancy in biological245

processes is common in biological systems [24].246

Discussion247

In this article, we developed and analyzed a minimal model for achieving neuronal polarization that is based on248

what we believe to be the two key ingredients of the polarization process: bistability and length-dependent negative249

feedback. The bistability is necessary for the formation of two distinct classes of neurites (short and long), while the250

length-dependent negative feedback assures that once a neurite becomes long the others are prohibited from doing so.251

While there are several plausible targets of the negative feedback in the minimal model, we demonstrated that one252

stands out as the most effective in achieving persistent polarization. The success of this mechanism, targeted to the253

amplitude of stochastic actin waves, was demonstrated in several ways, including the joint probability distribution,254

Monte Carlo simulations, a large ϵ-committor, a long escape time from a polarized state, and a low escape probability.255

Additionally, we found that with this negative feedback mechanism, polarization is more successful if there are more256

than two neurites competing in the winner-takes-all contest. Finally, we demonstrated that a neuronal polarization257

model based on competition for a limited growth factor has the same underlying key ingredients as our most successful258

minimal model: bistability and length-dependent reduction in the excitation magnitude.259

The clear distinctions between the axon and other short neurites of a neuron during its polarization indicate an260

inherent bistability [1, 31]. Typically, bistability arises from positive feedback [24], and various sources of positive261
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feedback have been identified. One example involves length-dependent retrograde diffusion flux of polarity effectors [4,262

16, 21]. Another results from the anterograde transportation of polarity effectors that is enhanced by their accumulation263

at neurite tips [14], possibly due to stabilization of microtubules [22]. Microtubule stabilization was also shown to help264

the localization of endoplasmic reticulum tubules, which in turn enhanced the stabilization [23]. Some of the signaling265

pathways involved in polarization are discussed in [10, 13, 15, 20].266

Another major element of positive feedback in neurite growth is the autocrine effects of neurotrophic factors such267

as Brain-Derived Neurotrophic Factor (BDNF) and neurotrophin-3 (NT-3). These factors are released by individual268

neurites and bind to receptors on the neurites, stimulating their growth. It has been shown that BDNF activation269

of its receptor TrkB not only promotes neurite growth, but provides positive feedback by promoting BDNF secretion270

[19]. The impact of the local neurotrophin secretion depends on the receptor density at the neurite tip, and it has271

been shown that neurotrophin binding to receptors recruits more receptors to the membrane, thus providing positive272

feedback in the response to the neurotrophin [19, 32].273

Once an axon has formed, negative feedback mechanisms are necessary to prevent the formation of a second274

axon. In this study, we examined three different unbiased negative feedback mechanisms. Length-dependent increased275

retraction prevents the growth of a short neurite by destroying its bistability. This negative feedback may result from276

long-range signals emitted from neurite tips [33], or from a competition for material proteins [16]. We showed that277

this mechanism is successful in creating polarized states, but does not prevent flipping between the polarized states,278

which does not appear to occur in actual neurons. This demonstrates that maintenance of a unique polarized state279

depends on length-dependent suppression of random actin waves, at least in the case of unbiased negative feedback.280

It is certainly possible that some form of biased negative feedback occurs, in which only a long neurite can initiate the281

negative feedback. One example of this is with the neurotrophin NT-3. This growth factor can accumulate at a long282

neurite and initiate Ca2+ waves that travel from the neurite tip back to the cell body, activating the small GTPase283

RhoA that inhibits growth of all neurites [34]. Thus, a growth factor can contribute to neuronal polarization by both284

facilitating growth of a neurite exposed to it and by inhibiting the growth of competing neurites.285

In addition to increased retraction, we also studied the effects of reducing excitation rate and magnitude. We found286

that reducing excitation rate was insufficient for preventing the formation of a second axon, while reducing excitation287

magnitude effectively maintained the polarization of our model neuron. It was observed in previous experiments that288

the frequency of actin waves (i.e., the average number of actin waves per unit time) and the net growth driven by a289

single actin wave both decreased after an axon had formed [18]. Our study suggests that the decrease in net growth290

is a more crucial factor in preventing the formation of a second axon.291

Previous studies have proposed a mechanism in which all neurites compete for a limited amount of growth proteins,292

and the neurite that acquired the most becomes an axon [16, 20]. It was assumed that the axon’s acquisition of these293

proteins was facilitated by active anterograde transportation and retrograde diffusion. Using a simplification of one such294

model [16], we demonstrated that this mechanism exhibits bistability and a length-dependent reduction in excitation295

magnitude. The excitation magnitude reduction results from the axon’s decreased diffusion flux as it grows. Length-296

dependent diffusion flux is not the only means of preventing the redistribution of growth proteins. It is also possible297

that blockage occurs in the long neurites. This was demonstrated in a study showing a novel cytoskeletal mechanism298

in which a dampened retrograde microtubule network assists in the accumulation of Kinesin-1 in the neurite that299

becomes the axon [35]. Similar to the effect of slow diffusion, the retrograde transportation of Kinesin-1 is reduced,300

which prevents its redistribution among all neurites.301

Our model’s bistability and reduction in excitation magnitude may not completely prevent the emergence of302

multiple axons, which could be considered a flaw. However, a previous experimental study found that a short neurite303
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was able to develop into an axon when it was mechanically stretched, even after another axon had already formed [31].304

Our model easily explains this result, as mechanical stretching can cause a neurite to surpass the threshold length,305

putting it into the basin of attraction of the higher stable equilibrium, regardless of whether another axon already306

exists. In contrast, a limited resource model that does not allow for more than one axon could not account for this307

experimental finding.308

In a prior experimental study by Wissner-Gross et al., it was observed that neurons with varying numbers of309

neurites polarized synchronously [2]. The authors found that prior models based on competition for a limited resource310

[16, 36] failed to replicate this, but instead the polarization time increased with the number of neurites. However, if the311

amount of the limited resource was increased with the number of neurites, the polarization time was similar for model312

cells with different numbers of neurites. Indeed, they found that the levels of two polarity factors, Shootin1 and HRas,313

were both higher in neurons with more neurites. We find similar behavior with our models. In the minimal model314

(Eq. (1)), if the basal excitation amplitude A0 is properly up-regulated according to the neurite number, the time to315

polarize will be similar regardless of the number of neurites. Similarly, for our limited-resource model (Eqs. (13) and316

(14)), if the concentration of the growth factor at the cell body, C0, is adjusted based on the neurite number, the317

time to polarize will remain unchanged. The Wissner-Gross study also found that the majority of rat hippocampal318

neurons grown in cell culture had between 5 and 7 neurites [2], suggesting the existence of an optimal range for the319

number of neurites, as in our Fig. 8, and raising the possibility of a regulatory mechanisms for achieving polarization320

by modulating both the number of neurites and the levels of effectors.321
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Appendix334

The generalized cell-mapping method335

The generalized cell-mapping method (GCM) is a numerical implementation of the transfer operator (also called the336

Perron–Frobenius operator), often used to find the probability distributions of the quantities in a random dynamical337

system [37–42]. The GCM is also called Ulam’s method (see [29, 43, 44] and the references therein). The idea of338

the GCM is to discretize the system into a discrete-time Markov chain, and to calculate the distribution using the339

transition matrix. We use this method to compute probability distributions of neurite length.340

Figure 10: Illustration of the generalized cell mapping method. The phase space of size Lmax × Lmax is divided into
small square cells of size ∆L × ∆L. Starting from a sample point, the two-neurite system may follow a continuous
trajectory to reach another cell, or a discontinuous trajectory with a jump of size A in L1 or L2. The black and the
grey dots mark the starting and ending positions, respectively. For purposes of illustration, the region is split into
4× 4 cells. In actual simulations, we choose ∆L = 0.2 and Lmax = 10, so that there are 50 cells in each direction. The
time increment ∆t to generate the trajectories is 0.1.

To illustrate the method, consider a system of two neurites. We aim at finding the joint probability distribution341

p(L1, L2, t) of neurite lengths, L1 and L2, at time t. We consider a region [0, Lmax]× [0, Lmax], where the upper bound342

Lmax is large enough so that p(L1, L2, t) is negligible outside the region. Then we divide the region into N ×N square343

cells of width ∆L (∆L = Lmax/N), as shown in Fig. 10, and denote the cell in the ith row and jth column as Ci,j344

(i, j = 1, 2, . . . , N). To discretize time, we choose a small time increment ∆t and only consider the distribution at345

t = n∆t (n = 0, 1, . . .). Then the probability that (L1, L2) falls within Ci,j at t = n∆t, denoted by pi,j(n), is given by346

pi,j(n) = Pr{(L1, L2) ∈ Ci,j at t = n∆t} =

∫
(l1,l2)∈Ci,j

p(l1, l2, t) dl1dl2, (18)

where the notation (l1, l2) ∈ Ci,j means that l1 ∈ [(i− 1)∆L, i∆L] and l2 ∈ [(j − 1)∆L, j∆L].347

Let348

p(n) = (p1,1(n), p1,2(n), . . . , pN,N (n)) (19)

be an 1-by-N2 probability vector at time step n. Define the transition probability matrix Q as349

Q =


Q(1,1)→(1,1) Q(1,1)→(1,2) . . . Q(1,1)→(N,N)

Q(1,2)→(1,1) Q(1,2)→(1,2) . . . Q(1,2)→(N,N)

...
...

. . .
...

Q(N,N)→(1,1) Q(N,N)→(1,2) . . . Q(N,N)→(N,N)

 (20)

where Q(i′,j′)→(i,j) is the transition probability from C(i′,j′) to C(i,j) during ∆t. (For our model, the Markov chain is350

time-independent, so Q(i′,j′)→(i,j) does not depend on n). The probability vector at time step n is related to that at351
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the previous time step by:352

p(n) = p(n− 1)Q, (21)

or353

pi,j(n) =
∑

i′,j′=1,2,...,N

Q(i′,j′)→(i,j)pi,j(n− 1), i, j = 1, 2, . . . , N, n = 1, 2, . . . (22)

To estimate Q(i′,j′)→(i,j), we sample M points uniformly in C(i′,j′). Starting from each point, we could find a354

trajectory by solving Eq. (1) with a Monte Carlo method. Let Mi,j be the number of trajectories that end in Ci,j ,355

then Mi,j/M approximates Q(i′,j′)→(i,j). This should be repeated many times and the average taken. This is a time-356

consuming procedure, so we employ the more efficient procedure developed in [45]. Starting from each sample point357

(i′, j′) we solve Eq. (1) without the stochastic term over time ∆t:358

dLi

dt
= g

L2
i

L2
i +K2

− rLi, i = 1, 2. (23)

Let M
(d)
i,j be the number of trajectories that end in Ci,j , then M

(d)
i,j /M approximates the probability of transition359

from C(i′,j′) to Ci,j , provided no pulse occurs during ∆t. (The superscript “(d)” represents “deterministic”.) Then we360

consider the case where a single pulse occurs during ∆t. Since we describe actin waves as a Poisson process, the time361

of the occurrence is uniformly distributed within ∆t [46]. Thus, we solve Eq. (23) over ∆t/2, then randomly choose a362

length from L1 and L2 and add A to it, and finally solving Eq. (23) over the rest of the time interval ∆t/2 (Fig. 10).363

The result is a trajectory with a single discontinuity. We repeat the same calculation for all sample points. Let M
(s)
i,j364

be the number of trajectories that end in Ci,j , then M
(s)
i,j /M approximates the probability of transition from C(i′,j′)365

to Ci,j , provided a single pulse occurs during this short period. (The superscript “(s)” represents “stochastic”.) Since366

the probability of having two or more pulses during ∆t is of O(∆t2), we neglect this probability and approximate367

Q(i′,j′)→(i,j) as368

Q(i′,j′)→(i,j) = (1− λ∆t)
M

(d)
i,j

M
+ λ∆t

M
(s)
i,j

M
, (24)

where λ∆t is the first order approximation of the probability of having a single pulse during ∆t. In principle, one369

could refine the approximation by dividing ∆t into more subintervals.370

Given an initial distribution p(0), we can calculate p(n) iteratively with Eq. (21). To obtain p(0), suppose that371

the system starts from (L1(0), L2(0)). We find the cell Ci,j containing this point and set the corresponding pi,j(0) to372

be 1 and all other probabilities to be 0. To estimate the limiting distribution p(∞), we iterate according to Eq. (21),373

until the change in p(n) becomes negligible. To speed up the iteration, we utilize Q2k = (Q2(k−1)

)2, such that p(2k)374

can be obtained with k iterations.375

In addition to solving the distribution, we will also use the GCM to calculate various first passage probabilities376

and mean first passage times. This requires modification of the transition matrix Q. Suppose we are interested in377

finding the probability that the two-neurite system enters a specific region D and the mean entering time. For a cell378

centered within D, the transition probability Q(i′,j′)→(i,j) is modified as Q̃(i′,j′)→(i,j):379

Q̃(i′,j′)→(i,j) =

1, (i, j) = (i′, j′)

0, otherwise

(25)

This makes D an absorbing region, which means that once the system enters D, it is frozen and cannot make further380

transitions. Let the modified transition matrix be Q̃ and the resulting distribution be p̃(n). The probability of entering381
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D at t ≤ n∆t is given by382

PD(n) =
∑

Ci,j∈D
p̃i,j(n), (26)

where Ci,j ∈ D means that the center of Ci,j is in D. The probability of entering D is given by383

Pr{Entering D} = PD(∞) =
∑

Ci,j∈D
p̃i,j(∞), (27)

which can be obtained by iterating enough number of times according to p̃(n) = p̃(n− 1)Q̃. Finally, let ⟨TD⟩ be the384

mean entering time, then385

⟨TD⟩ =
∞∑

n=1

n∆t(PD(n)− PD(n− 1)). (28)

Numerically, the series is truncated to drop the terms that make little contribution.386

The GCM can be implemented regardless of the dimension of a system of interest. The mean escape time shown387

in Fig. 7B is calculated by applying the GCM to a single neurite. By setting D = [Lb, Lmax], the mean Tc that the388

neurite length surpasses the threshold Lb is given by Eq. (28).389

Monte Carlo simulations390

In addition to the GCM, we also simulate the time evolution of the neurite lengths using a Monte Carlo method. The391

algorithm that we use is the following:392

(1) Set the initial lengths Li(0) = 0, (i = 1, 2, . . . , R).393

(2) At each time step t = n∆t, add to each Li(t) the deterministic increment ∆t[gL2
i /(L

2
i +K2)− rLi].394

(3) Generate a random number u within [0, 1]. If u > λ∆t, go back to Step (2). Note that λ may be variable if395

there is length-dependent rate reduction (Eq. (3)).396

(4) If u ≤ λ∆t, randomly choose an Li(t) from the N lengths, and add A to it. Note that A may be variable if there397

is length-dependent amplitude reduction (Eq. (4)). Then go back to Step (2).398

(5) Repeat Steps (2) to (4) until iterations are completed.399

We choose ∆t = 0.1 for all simulations. The duration of a simulation depends on the type of negative feedback. Monte400

Carlo simulation is also applied to the winner-takes-all model (Eqs. (13) and (14)), and the implementation is similar.401

Implementation of the ϵ-committor method402

The ϵ-committor was introduced by Lindner et al. [29] as a means of estimating the probability that a stochastic403

trajectory remains in a region of phase space for a duration of 1/ϵ. Here, we describe its implementation within the404

framework of the GCM.405

Consider the polarized state where L1 ≪ L2, referred to as S in the following. To study its persistence, we choose a406

rectangular region RS = [0, Lb]× [Lb, Lmax], where Lb is the aforementioned location of the potential barrier and Lmax407

is the user-defined boundary of the phase space in both directions. With the parameter values in Table 1, we have408

Lb = 3. The top-left peak of the bimodal probability density resulting from any of the negative feedback mechanisms409

described above (see Fig. 3, Fig. 4 and Fig. 6) falls into RS . Now we introduce two auxiliary absorbing states Z1 and410

Z2. When the system is in RS , it has a probability ϵ of being absorbed into Z1 at each time step. When the system411

is in the rest of the region, it is absorbed into Z2 at each time step with the same probability (Fig. 11). Let qi,j be412

the probability of being absorbed into Z1 when the system starts from (the center of) Ci,j . The probability vector q413
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Figure 11: Illustration of the ϵ-committor. Two absorbing states, Z1 and Z2 are introduced. When the system wanders
within RS (grey rectangle covering [0, Lb] × [Lb, Lmax]), it has a probability of being absorbed into Z1 at each time
step. If the system is outside RS , it has the same probability of being absorbed into Z2.

formed by all qi,j ’s is called the ϵ-committor, namely414

q = (q1,1, q1,2, . . . , qN,N )T . (29)

Since the probability of being absorbed at each time step by either Z1 or Z2 is ϵ, the mean time till absorption is ∆t/ϵ,415

where ∆t is the step size used in the GCM. Over such a timescale, if the system starts from Ci,j and spends most of416

the time within RS , it will have a high probability of being absorbed into Z1, i.e., qi,j will be close to 1. Conversely,417

if the system never enters RS or quickly leaves it without coming back, qi,j will be close to 0 [29]. Therefore, qi,j418

characterizes the attracting strength of the region RS over a timescale of ∆t/ϵ, when the system starts from Ci,j . By419

choosing a starting cell close to the top left peak of a bimodal distribution and changing the value of ϵ, the resulting qi,j420

quantifies the persistence of the polarized state S over different timescales under the corresponding negative feedback421

mechanism. Specifically, we choose the cell at [0, 6] when the increased retraction is implemented, and the cell at [0, 7]422

when the excitation rate or amplitude reduction is implemented. The corresponding probability qi,j(RS , ϵ) is denoted423

by Cϵ for notational simplicity.424

To calculate q use the formula in [29], given as425

[I− (1− ϵ)Q]q = ϵIRS
, (30)

where I is an N2-by-N2 identity matrix and Q the transition matrix given by Eq. (20). IRS
is an N2-by-1 indicator426

vector defined as427

IRS
= (δ(1,1),RS

, δ(1,2),RS
, . . . , δ(N,N),RS

)T , (31)

where428

δ(i,j),RS
=

1, (i, j) ∈ RS ,

0, (i, j) /∈ RS

. (32)
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