Taylor & Francis
Taylor & Francis Group

Journal of the
American
Statistical

Association

=

Journal of the American Statistical Association

ISSN: (Print) (Online) Journal homepage: https://www.tandfonline.com/loi/uasa20

Independence Weights for Causal Inference with
Continuous Treatments

Jared D. Huling, Noah Greifer & Guanhua Chen

To cite this article: Jared D. Huling, Noah Greifer & Guanhua Chen (2023): Independence
Weights for Causal Inference with Continuous Treatments, Journal of the American Statistical
Association, DOI: 10.1080/01621459.2023.2213485

To link to this article: https://doi.org/10.1080/01621459.2023.2213485

A
h View supplementary material &

ﬁ Published online: 10 Jul 2023.

N\
[:J/ Submit your article to this journal &

||I| Article views: 484

A
& View related articles &'

Py

() View Crossmark data &

CrossMark

Full Terms & Conditions of access and use can be found at
https://www.tandfonline.com/action/journalinformation?journalCode=uasa20


https://www.tandfonline.com/action/journalInformation?journalCode=uasa20
https://www.tandfonline.com/loi/uasa20
https://www.tandfonline.com/action/showCitFormats?doi=10.1080/01621459.2023.2213485
https://doi.org/10.1080/01621459.2023.2213485
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2023.2213485
https://www.tandfonline.com/doi/suppl/10.1080/01621459.2023.2213485
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/action/authorSubmission?journalCode=uasa20&show=instructions
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2023.2213485
https://www.tandfonline.com/doi/mlt/10.1080/01621459.2023.2213485
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2213485&domain=pdf&date_stamp=2023-07-10
http://crossmark.crossref.org/dialog/?doi=10.1080/01621459.2023.2213485&domain=pdf&date_stamp=2023-07-10

JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION Tavior & F .
2023, VOL. 00, NO. 0, 1-14: Theory and Methods Taly &er o rancis
https://doi.org/10.1080/01621459.2023.2213485 aylor&Francis Lroup

| Gheck forupsites |
Independence Weights for Causal Inference with Continuous Treatments

Jared D. Huling 2, Noah Greifer®, and Guanhua Chen ®¢

3Division of Biostatistics, University of Minnesota, Minneapolis, MN; ®Institute for Quantitative Social Science, Harvard University, Cambridge, MA;
‘Department of Biostatistics and Medical Informatics, University of Wisconsin-Madison, Madison, WI

ABSTRACT ARTICLE HISTORY
Studying causal effects of continuous treatments is important for gaining a deeper understanding of Received March 2022
many interventions, policies, or medications, yet researchers are often left with observational studies Accepted April 2023
for doing so. In the observational setting, confounding is a barrier to the estimation of causal effects.

Weighting approaches seek to control for confounding by reweighting samples so that confounders are ~ KEYWORDS
comparable across different treatment values. Yet, for continuous treatments, weighting methods are ~ Balancing weights;

X . R X . N . . X Confounding; Distance

highly sensitive to model misspecification. In this article we elucidate the key property that makes weights covariance; Electronic health
effective in estimating causal quantities involving continuous treatments. We show that to eliminate records; Observational data
confounding, weights should make treatment and confounders independent on the weighted scale. We
develop a measure that characterizes the degree to which a set of weights induces such independence.
Further, we propose a new model-free method for weight estimation by optimizing our measure. We
study the theoretical properties of our measure and our weights, and prove that our weights can explic-
itly mitigate treatment-confounder dependence. The empirical effectiveness of our approach is demon-
strated in a suite of challenging numerical experiments, where we find that our weights are quite robust
and work well under a broad range of settings. Supplementary materials for this article are available
online.

1. Introduction proportional to the inverse of the conditional density of the
treatment given the covariates, the generalized propensity score
Confounding is a major barrier to studying causal effects of (GPS) & & propenstty

treatments or exposures from observational data. Considerable
work has focused on the development of approaches for study-
ing causal effects of binary or otherwise discrete-valued treat-
ments from observational data. With continuous treatments,
however, the choices of methods for confounding control are
far more limited, and clear guidance that can help practitioners
choose among the available methods is lacking. A common
approach to reduce confounding by observed variables is using
the propensity score, which was initially proposed for binary
treatments Rosenbaum and Rubin (1983) and has been gen-
eralized to the setting of continuous treatments (Hirano and
Imbens 2004; Imai and Van Dyk 2004; Galvao and Wang 2015;
Zhu, Coffman, and Ghosh 2015; Kennedy et al. 2017). With
binary treatments, the causal effect of interest is often the aver-
age treatment effect, which can be estimated as a difference in
the weighted averages of the treatment group outcomes, where
the weights are proportional to the inverse of the propensity
score (Robins, Rotnitzky, and Zhao 1994; Robins, Hernan, and
Brumback 2000); this method is known as inverse probabil-
ity weighting (IPW). With continuous treatments, the interest
is often in estimation of the causal dose-response function-
als (Robins, Hernan, and Brumback 2000; van der Laan and
Robins 2003) such as the causal average dose-response func-
tion (ADRF), which can be estimated using a weighted regres-
sion of the outcome on the treatment, where the weights are

In the binary treatment setting, IPW estimators can be unsta-
ble due to extreme weights and susceptible to model misspeci-
fication (Kang and Schafer 2007; Fan et al. 2021). These issues
carry over to IPW estimators for continuous treatments and are
substantially more challenging to address. A key reason is that
IPW estimation via the GPS requires inverse weighting by a
conditional density estimate, not just a conditional probability.
Even if the conditional mean of the treatment given covariates
is correctly specified, GPS weights can fail to perform well if
the distribution of the conditional density is misspecified (Naimi
et al. 2014). The difficulty of correctly specifying a conditional
distribution is exacerbated with increased dimension of the
pretreatment covariates to be controlled for, that is, the con-
founders. The tailored use of flexible machine learning estima-
tion approaches such as that proposed in Zhu, Coffman, and
Ghosh (2015) can in many cases yield substantial improvements,
however, as shown in our simulations and data analysis, they
are still susceptible to the issues of GPS weighting and can per-
form poorly and/or yield large weights in practice. The ReGPS
approach of Colangelo and Lee (2020) directly estimates the
inverse GPS without the need for correct specification of a model
for the GPS.

As misspecification of a conditional density model can be
difficult to diagnose and assess, several works have focused on
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Figure 1. Shown are plots of the relationship between the minimum PaO; on day 1in the ICU (on a log base 10 scale) and the treatment, including an unadjusted plot (left)
and plots adjusted by DCOWs and entropy balancing weights (right two plots). In the adjusted plots, the transparency of each point is proportional to its assigned weight,
with lighter points indicating less weight. The blue line is a weighted nonparametric regression of the treatment on PaO; (on the log base 10 scale) and the red line is a

weighted linear regression.

directly estimating weights to reduce the correlation magnitude
between marginal moments of (pretreatment) covariates and the
treatment. Approaches along this line of work include the gener-
alized covariate balancing propensity score (CBPS) approach of
Fong, Hazlett, and Imai (2018) which is an extension of the CBPS
approach for discrete treatments (Imai and Ratkovic 2014),
covariate association eliminating weights (Yiu and Su 2018),
and entropy balancing weights (Vegetabile et al. 2021; Tiibbicke
2022). Because these approaches focus on estimation of weights
directly as opposed to estimating a conditional density explicitly
and inverting it, they tend to be more effective empirically than
direct modeling of the GPS. While intuitively appealing, these
approaches require careful choices of which moments of both
the covariates and the treatment to “decorrelate” Yet, there is no
guidance on specifying the right moments necessary to mitigate
bias in estimation of the ADRF due to confounding. Missing
important moments can leave substantial residual dependence
between the covariates and treatment, see for example, Figure 1
from our analysis of electronic health record data. Our simula-
tions show that the choice of moments is indeed critically impor-
tant in practice and that numerical instability can arise when too
many moments are used. The tension between including enough
moments to reduce bias and the instability of weights as more
moments are included can make these methods challenging to
use in practice. The general setup of Ai et al. (2021) relies on
sieve/series estimators; little finite-sample guidance is provided.
Kernel Optimal Orthogonality Weighting (KOW) (Kallus and
Santacatterina 2019) and a generalization of KOW proposed
in Martinet (2020) are kernel-based nonparametric extensions
of direct weights estimation ideas. They focus on estimating
weights to decorrelate over function spaces of treatment and
covariates such that there is no need to choose models or which
moments to decorrelate. Yet, careful tuning is still required when
flexible kernels are used, and, on the other hand, when inflexible
kernels are used, there is no guarantee that the resulting weights
fully mitigate confounding. Thus, the user is often left with a dif-
ficult choice of which kernel to use and unclear guidance on how
to choose the kernel’s tuning parameters. Further, no theoretical
justification of the approach of Kallus and Santacatterina (2019)
is provided. The theoretical results of Martinet (2020) are limited

to the convergence of the weighted distribution functions and do
not explore properties involving estimation of the ADRFE. More
extensive discussion of the existing literature can be found in the
Section E of the supplementary material.

Our work aims to achieve several goals. First, we provide clar-
ity on the role of weights in estimation of the ADRF. To do so, we
provide a general decomposition of the error of a weighted non-
parametric estimator of the ADRF and demonstrate that, under
broad conditions, the ideal weights should induce complete
independence between the treatment variable and pretreatment
covariates to guarantee mitigation of confounding bias when
estimating the ADRE. While already intuitively understood in
the literature, our decomposition precisely quantifies the impact
of this dependence on the estimation error in finite samples. We
also show that dependence plays a key role in other estimands,
such as the causal quantile dose-response function. Second, we
develop a measure based on energy statistics (Székely, Rizzo, and
Bakirov 2007; Székely and Rizzo 2013) that allows one to assess
how well a set of weights is able to induce independence, where
smaller values of our measure indicate the weights yield less
treatment-covariates dependence and a value of zero indicates
complete independence between the treatment and covariates
in the weighted data. Huling and Mak (2020) developed a
weighted energy distance to mitigate distributional imbalance
of covariates in a discrete-treatment setting. In their setting,
the energy distance is used to measure distributional imbalance
of covariates between different treatment groups, whereas in
the setting of this work, a modified distance covariance is used
to measure statistical dependence between treatment and con-
founders. Distributional imbalance plays an important role in
confounding control with discrete treatments, but this concept
does not naturally generalize to continuous treatments. How-
ever, removing statistical dependence between discrete treat-
ments and confounders implies distributional balance has been
achieved. As such, our work involves a more general notion of
confounding control that can in principle be applied to discrete
treatments.

Finally, we propose a new approach for estimating weights,
which we call the distance covariance optimal weights
(DCOWs), by optimizing our measure. The proposed weights



directly aim to mitigate dependence between the treatment
and confounders; our error decomposition illustrates that the
DCOWs reduce finite sample dependence and thus source
of error due to confounding in a weighted nonparametric
estimate of the ADRE In other words, the DCOWs aim to
create a pseudo population where treatment and confounders
are statistically independent. Our weight construction approach
does not require modeling a conditional density, careful tuning
of hyperparameters, or choosing which moments of covariates
and treatment to decorrelate, making it readily accessible and
easy to use for practitioners with varying degrees of statistical
sophistication.

We provide some theoretical results for our proposal, show-
ing that our weights indeed reduce dependence between treat-
ment and covariates and fully induce independence asymptoti-
cally. Further, we show that with a small penalty on the variabil-
ity of the weights, our proposal results in the same convergence
rate as a nonparametric regression estimate of the ADRF in
a scenario with no confounding. Although adding a penalty
to reduce weight variability involves the inclusion of a tuning
parameter, our proposed approach rarely results in weights with
large variability even without penalization. Careful tuning of the
parameter that controls weight variability is rarely necessary, as
evidenced by our simulation studies, which investigate a wide
variety of scenarios with strong and complex confounding and
scenarios with moderately high-dimensional confounding, in all
of which we fix the tuning parameter to its default value.

Our proposed weights can be used beyond simple weighted
nonparametric estimators of the ADRFE. Kennedy et al. (2017)
and Diaz and van der Laan (2013) extended the idea of doubly
robust estimation to continuous treatments, allowing for esti-
mates that combine outcome regression models (Imbens 2004;
Hill 2011) and the conditional density models. This allows for
relaxed dependence on the correctness of the regression and
conditional density models. However, doubly robust estimators
are not immune to highly variable weights and their finite sample
performance can suffer if the conditional density model is mis-
specified. We show that our weights can enhance doubly robust
estimators. Pairing a reasonable outcome regression model with
our weights in a doubly robust fashion can be effective in esti-
mating the ADRE.

The remainder of this article is organized as follows. We
investigate the role of dependence between the treatment and
covariates in the estimation of the ADRF in Section 2 and
we develop a criterion that assesses how much dependence is
mitigated by a set of weights, propose a new weight estimation
strategy, and provide some corresponding theory in Section 3.
We demonstrate the effectiveness of our approach in finite sam-
ples with a suite of challenging simulation studies in Section 4
and illustrate the use of our approach in a real-world study
of electronic health record data in Section 5. We conclude the
article with some discussion.

2. Confounding, Weighting, and Dependence
2.1. Setup, Notation, and Assumptions

The observable quantities we consider consist of the random
triplet (X, A, Y), where X € X C R? is a vector of pretreatment
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covariates, A € A C R is a continuous-valued treatment vari-
able indicating the assigned dose fora unit,and Y € Y € Risan
outcome of interest. The variate (X, A, Y) has a joint distribution
Fx 4,y with respect to a dominating measure. We denote the
marginal density of the treatment and covariates as f4(a) and
fx(x), respectively, the conditional density of the treatment given
X as f4)x (a]x), and their joint density as fx 4 (4, ). Similarly, cor-
responding distribution functions are denoted F4(a) = P(A <
a), Fx(x) = P(X < x), Faix(alx) = P(A < a|X = x), and
Fxa(x,a) = P(X < x,A < a). Our observed data consists
of n iid. samples (X;, A;, Y))? ; from (X, A,Y). Note that we
drop the subscripts on the density and cumulative distribution
functions when there is no ambiguity.

We work under the potential outcomes framework, wherein
the potential outcome function Y(a) for a € A is the outcome
that would be observed if A were set to the value a. The causal
quantity of interest in this article is the mean potential outcome
function, also called the causal average dose-response function
(ADRF), which is u(a) = E[Y(a)], fora € A.

The causal ADRF p(a) can be identified, or expressed in
terms of observational data, under standard causal assumptions.
These assumptions, which we employ throughout this article, are
(a) consistency, which posits that A = a implies Y = Y(a),
(b) positivity, which states that all values of the treatment are
possible across the covariate space in the sense that f(a|X =
X) > v > O0forall x € X for some constant v, and (c)
ignorability of the assignment mechanism: Y(a)1LA | X for all
a € A, where Il denotes (conditional) independence. Under
assumptions (a)-(c), the dose-response function is identified as
u(@ = Ex (E[Y|X,A =a]) = Ex [u(X,a)]. Estimation of
the dose-response function via regression-based estimation of
the mean function u(X,a) = E[Y | X, A = a], however, can
be highly challenging. Misspecification of the regression func-
tion can result in poor estimation of i (a), and nonparametric
estimation of the regression function is also difficult, especially
when X is not low dimensional. Instead, this article focuses
on weighting-based estimators of ((a). A benefit of weighting
estimators is that the dose-response function can be flexibly
estimated by univariate (weighted) nonparametric regression,
whereas with regression-based estimation, the need to incorpo-
rate covariates in a regression may make flexible estimation of
the ADRF more difficult due to the additional dimensions. A
conceptual benefit of weighting methods over regression-based
methods is that they provide a clear separation between design
and analysis phases of a study. This separation is critical when
substantial or iterative model-building is required to control for
confounding.

2.2. Ignorability, Independence, and the GPS

To reliably estimate the causal dose response function using
observational data, sources of structural bias should be miti-
gated, among which the bias due to confounding is the most
common. Consider the setting where the covariate vector X
contains all confounders in studying the causal relationship
between A and Y. Blocking the backdoor path A «— X —
Y mitigates confounding. One way of blocking the backdoor
path is by removing the arrow between A and X (i.e., making
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A independent of X). In a randomized trial, the independence
between A and X holds due to randomization. This motivates
us to create a pseudo-population mimicking the one we would
observe under such a trial by reweighting the subjects in an
observational study such that A is independent of X in the
pseudo-population. Weighting by the generalized propensity
score fox(A | X) (GPS) (Hirano and Imbens 2004) achieves
such and extends the pioneering work of Rosenbaum and Rubin
(1983) for binary treatments to continuous treatments.

For continuous treatments, stabilized GPS weights are com-
puted as fa(A)/fax(A | X) (Robins, Hernan, and Brumback
2000), which naturally arise in estimating equations for the
dose-response function via semiparametric theory (Kennedy
et al. 2017). Estimating the weights requires correct specifi-
cation not only of the mean of the conditional density of
the treatment, but also of its higher order properties such as
shape. When any of these is misspecified, bias can result in
estimates of the ADRF (Naimi et al. 2014; Zhu, Coffman, and
Ghosh 2015), indicating a particularly sensitive reliance on cor-
rect modeling of the conditional distribution of the treatment
given the covariates. Furthermore, similar to standard propen-
sity score weights, GPS modeling can yield extreme weights,
leading to unstable estimation. Weight trimming/capping may
alleviate the problem of large weights but can be seen as ad
hoc and may change the estimand (Crump et al. 2009): the
estimated ADRF will correspond to the population represented
by the newly weighted sample rather than to the original target
population.

The stabilized GPS weights f4(A)/fax(A | X) have several
key properties that have motivated work to improve upon the
GPS weights. Namely, when weighting by the GPS weights in
the population sense, they (a) result in independence of X and A4,
(b) preserve the marginal distributions of X and A, and (c) have
mean 1. These properties are listed more explicitly in Section A
of the supplementary material. Instead of indirectly estimating
the weights by estimating the GPS, a nascent line of work has
involved methods which directly estimate weights designed to
satisfy the above three properties via balancing criteria. For
example, work has focused on estimation of weights that induce
zero marginal correlation between treatment and covariates
(Fong, Hazlett, and Imai 2018; Yiu and Su 2018; Vegetabile et al.
2021). Although they are more robust than GPS weights, these
approaches rely on both the correct choice of moments of the
covariates and the choice of moments of the treatment variable
to decorrelate. Yet, there is little guidance in deciding which set
of moments in both covariates and treatment to focus on, as
these choices depend on the form of the true potential outcome-
generating model.

The aforementioned three properties of GPS weights are
intuitively appealing, but it is not immediately clear which of
or in what manner these properties are important in mitigating
bias in a weighted nonparametric estimator of the ADRE. To
justify which properties are crucial in weights estimation, we
derive the relationship between the properties of weighted dose-
response function estimators using generic weights and the sys-
tematic source of error of the weighted estimator for the ADRE.
We demonstrate that the ability of a set of weights to induce
independence between X and A is critical for reducing the bias
of a weighted estimator.

2.3. A General Error Decomposition for Weighted
Nonparametric Estimators of the ADRF

In this section we aim to provide an explicit mechanistic con-
nection between dependence and bias in weighted estimates
of the ADRE Although it is understood that using weights
constructed from a well-estimated conditional density is consis-
tent (Kennedy et al. 2017), it is unclear what role weights play
more generally. It is not immediately clear what the connec-
tion is between the balancing criteria that aim to “decorrelate”
moments of covariates and moments of the treatment variable
and the systematic bias in estimating the ADRE. In the following,
we investigate the precise source of the systematic bias of an
estimator and illuminate the role of the weights in influencing
the bias. We focus on weighted Nadaraya-Watson estimators
of the ADREF for clarity of presentation, though the key mes-
sage applies to weighted local polynomial regression and other
weighted nonparametric regression.

The response can be expressed as Y; = u(Xj,A;) + &,
where &; = Y;(4;) — n(X;, A;). By construction, &; have mean
zero but are not necessarily identically distributed. Given any
set of weights w = (wy,...,w,) and a kernel K,(A; — ag9) =
K (%) /h centered at A = ay with bandwidth 1 > 0, the
weighted Nadaraya-Watson (NW) estimator of the ADRF at
A=aqpis
>y YiwiKy(Ai — ao)

Yois1 Kn(Ai = ao)
This class of estimators of the causal ADRF is motivated
by the identification results of Colangelo and Lee
(2020), who showed wunder certain causal conditions
and assumptions regarding the kernel Kj that p(ap) =
limp_ o IE[YK;,(A — ao)/fax(ao | X)], which implies
the use of the inverse of fax(A|X) as weights, since
p(ag) = limjo E [YK(A — ag)w* (X, A)] /E [Kn(A — ag)] =
limy,.o E [YK,(A — ao)w* (X, a0)] /fa(ao), where w*(x,a) =
fa(@/fax(a| X = x).

(1)

ﬁﬁw (ap) =

Given any weights w, the error of (1) at A = g can be
decomposed as

Wy (@0) — 11 (ao)
= f / w(x,a0)d [Fx 4 — FxF1] (x,a) 2)

X JA
a
+ [ o [#g = e 0+ (L2 -
X fA’h(aO)

X f (X, ag)dFy (x)
X

fA(dO) / / " n on
(f:,h(ao) ) xJA KX, ao [ X,A, X A] X, d

+?”Z,lh(ao)/ f [ (x, a)Kp(a — ap)
xJA

— (%, a0)fa(a0) | AFR 4 (%, @)

1 " ~ 1
+ - Zl ewif" 4 (a0)Kn(A; — ap), (3)
1=

where }},h(“O) = [ 4 Kn(a — ag)dF)(a) is a kernel density
estimate of f5 (ag), Fx (x) =



n 13" I(X; < x) is the empirical cumulative distribu-
tion function (CDF) of {X;}/,, Fi(a) = n 'Y 1L I(A; <
a) is the empirical CDF of {A;}lL}, and Fy, (x,a) =
n Y wil(X; < x,A; < a) is the weighted empirical CDF
of {X;, A;}L_ | using weights w. We provide a derivation of this
decomposition in Section B of the supplementary material. The
second term on the right is due to sampling variability only
and has mean zero and converges at rate n~'/2 if the sample is
representative of the super-population. The expectations of the
third, fourth, and fifth terms on the right above go to 0 when
h — 0 regardless of the weights w. The last term has mean zero
regardless of both the weights and the bandwidth, though its
variability is impacted by the weights. We note, however, that the
third through fifth terms are not guaranteed to converge to zero
without additional conditions on the variability of the weights.
On the other hand, the first term (2) on the right above is
the source of systematic bias of the weighted estimator unre-
lated to kernel smoothing. In other words, taking limits of the
bandwidth of the kernel to 0 and sample size to infinity does
not make (2) vanish. This term also provides insight into why
using the weights we propose later performs well in finite sample
settings when used in treatment effect estimators, as targeting
this term can help decrease the magnitude of the systematic
component of the bias of an estimator. If a given set of weights
induces finite-sample independence of X and A in the sense that
Fx aw(xa) = Fx(x)Fj(a) forallx € X, a € A, then the source
of bias (2) of 1% (ag) will be zero. The mean-squared error of the
estimator will, however, depend primarily on both the bias term
(2) and the variance of (3). Mitigating the variance of (3) merely
amounts to controlling the squares of the weights; however,
providing a measure that can characterize (2) is nontrivial and
none exists in the literature. The term (2) is bounded by the
distance between Fy Aw(Xa) and Fy(x)F){(a) provided that
[ (x, ap) is bounded. Without modeling the response function,
constructing a measure that bounds (2) is critical for assessing a
set of weights.

Remark 1. The role of weights in their ability to induce inde-
pendence between treatment and covariates is not unique to
estimation of the ADRF and applies to a wide variety of esti-
mands. Consider estimation of the causal dose-response quan-
tile function gy (@) = infly : Fyu,)(y) =< «}, where
Fyay(y) = P(Y(ap) < y) = Ex{P(Y <yX,A=ap)} =
Ex {Fy|x,A(y|X,A = ao)}. By replacing Y; with I(Y; < y) in (1),
we can show that the estimation error of Fy4,)(y) also depends
on how well weights mitigate dependence between A and X.
More details are included in Section B of the supplementary
material.

In practice, the estimator iz, (ao) in (1) may be unstable,
as the weights only appear in the numerator, so the estimated
ADRF may lie outside the range of the observed values of
the response. Instead, a more stable estimator is the following
weighted average of the responses

Yo YiwiKin(Ai — ag)
Y wiKu(Ai — ag)

which can be viewed as the minimizer of a weighted least squares
problem where the ith weight is w;Kj,(A; — ag). The estimator

(4)

ﬁ%ws (ap) =
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(4) is also a valid estimator of the ADRF as long as the denom-
inator divided by Y ", w; is a consistent estimator of f4 (ao); in
this case the key source of systematic bias still depends on the
term (2).

3. Measuring and Controlling Weighted Dependence
with Energy Statistics

3.1. ACriterion to Evaluate the Quality of a Set of Weights

Having established the relationship between the dependence of
A and X and the error in a weighted nonparametric estimate
of the ADRF, we now construct a criterion that can assess
how well a given set of weights induces independence on the
weighted scale, that is, we aim to characterize and bound the
distance between Fy , and FxF);. We do so by building on the
ideas of distance covariance (Székely, Rizzo, and Bakirov 2007),

which is a measure of dependence between two random vectors
of arbitrary dimensions. The population distance covariance
is zero if and only if the vectors are independent. Hence, a
weighted distance covariance will be a useful component for our
measure. Letw = (w1, ..., wy) and define the weighted distance
covariance to be

n
V23X, A) = = Y wiwyCre Die, (5)
k=1
where L L
o =Xk = Xellas G =— 3 e Eo=—D s
k=1
B} 1 S
¢.=—= Z cke» Cke = Che — k- — Ce +C.y
k=1
fork L =1,. ..,n Similarly define dyy = |Ax — Agl, dy. =
IS dkende = 130 die,and Dy = dig — d. —dg +d...

The quantity (5) 51mp11ﬁes to the original distance covariance
when weights are all 1. Since the original distance covariance
is always nonzero, (5) is also always nonzero if the weights are
positive. We now provide further insight and motivation of the
form of V; (X, A) and its interpretation in terms of weighted
distributions.

Letting i = V=1, we define the (weighted)
empirical ~characteristic functions as @y, . (t5) =
%Z;’Zl wjexp{it’X; + isAj}, px () = % ;l=1 wj exp{it'X;},
(pz)w(s) = %2;21 wj exp{isA;}, and empirical characteristic
functions gy 4 (t,5), @x (t) and ¢ (s) are defined accordingly.

Theorem 3.1. Letw = (wy,...
that >, w; = nandw; > Oforalli = 1,...
V2 (X, A) > 0and

, W) be a vector of weights such
,n. Then

Viw(XA) = / " 19X A (69) — 0% 1 (D) (5)
R

+ (PR w® — PX0) (P4 () — A ()P (t,s)dtds  (6)

1+ 1. (+d)/2
where w(t,s) = (cpe1litll, P1s12)~1 with ¢y = 1‘7(T(Td)/2)’ and

I"(+) is the complete gamma function.
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Based on (6), it is clear that if Fy , = FxFj, then
V2 (X,A) = 0. However, the converse is not necessarily true.
Yet, if the weights preserve the marginal distribution of treat-
ment and covariates, that is, F)"(’w = Fg and Fg,w = F}, then
V2 (X,A) = 0 implies that Fx aw = FxF}. In other words,
if one can add additional terms to (5) that also measure the
distance between Fy  and Fx along with that between F};  and
F7}, then (5) can be used to construct a measure that determines
the distance between F§ Aw and FyFY}, that is, a measure for
the weighted dependence between X and A. We leverage the
weighted energy distance proposed in Huling and Mak (2020)
to help construct such a measure.

Applied to our setting, the weighted energy distance between
Fy ,, and Fy is

2 n n
EF o B = 5 3 ) willXi =Xl

i=1 j=1

1 n n
- — 2. 2wl Xi = Xjlla
i=1 j=1

1 n n
=22 X=X,

i=1 j=1

Due to Proposition 1 of Huling and Mak (2020), it can be shown
that £(Fy . Fx) = pr lox (©) — % (D) [2w (t)dt, where w (t) =
1/(CplItl2)'), Cp = 1F)/2 /T ((1 + p) /2) is a constant. The
weighted energy distance £(F} |, F};) between Fj | and F; can
be similarly defined.

Our proposed measure of the level of independence induced
by a set of weights is defined as

W

D(w) = Vi (X, A) + EF W FR) + EFL W FL. (7)

The following result demonstrates that D(w) indeed achieves its
stated goal.

Theorem 3.2. Let w = (wi,...,wy,) be such that w; > 0
and )" | w; = n. Then D(w) > 0 with equality to zero if
and only if gy , ((t,5) = ex(OPL(S), px () = @x(t), and
Paw(s) = @, (s) forall (t,s) € RP+L Further, f lox Aw(t:s) —
PrOPL(5) 2w (t, s)dtds < 3D(w).

Thus, smaller values of D(w) indicate smaller potential for
dependence between X and A after weighting and better preser-
vation of the marginal distributions, and larger values indicate
the opposite. D(w) = 0 implies the weights induce complete
independence between X and A and that the marginal distribu-
tions of X and A are exactly preserved.

We also have the following result, which shows how the
proposed distance acts as a bound on integration errors over a
class of functions.

Lemma 3.3. Let H be the native space induced by the radial
kernel ®(-,-) = —| - |l X —| - | on X x A equipped with inner
product (-,-)% and norm ||glly = /(g ) for any g(-,) €
H = Hx ® Ha, where Hy,H 4 are defined in Theorem 4
of Mak and Joseph (2018). Then, for any weights w satisfying

Z?:l w; = n,w; > 0, we have

2
[ /X /A g(x, a)d [Fy 4, — FxFi] (%, a)] < C,D(w), (8)
where C; = 3| g||%_t > 0 is a constant depending on only g.

Foranya € Aif u(-,a) € Hx,wecan see that D(w), modulo
a constant, acts as a bound on the systematic bias term (2) as
long as 1(+, a) is sufficiently smooth. Thus, if ;1 (x, a) is contained
in ‘H, then we can expect weights with smaller D(w) to lead to
smaller systematic bias. The space 7 is a reasonably broad class
of functions as it contains the Sobolev space of functions with
square-integrable functions with r < [(p+ 1)/2]th differentials
(Mak and Joseph 2018; Huling and Mak 2020). Our goal for
the next section is to define weights that are optimal in terms
of our criterion. The weights that minimize D(w) will result in
mitigation of the dependence of X and A induced by nonrandom
selection into treatment.

In contrast to the measure (7) comprised of the distance
covariance term (6), it is natural to wonder whether it would
instead be more appropriate to simply define a distance as
[ ok Aw(®3) — ox (D) (s)|*w(t, s)dtds and construct a rela-
tionship between this distance and Euclidean norms computable
from data. However, we have found that the resulting quantity
can be empirically problematic and unreliable. Further, we have
found that optimization of such a quantity cannot be achieved
reliably by existing algorithms and is thus not suitable for
the proactive construction of weights. Our proposed quantity,
while more complicated, does not exhibit any of these issues
in the sense that it reliably measures dependence, and, as we
will demonstrate, it is straightforward to optimize with existing
quadratic programming software.

3.2. ANew Proposal: Distance Covariance Optimal
Independence Weights

We define the distance covariance optimal weights (DCOWs)
to be

n
wﬁ € argmin D(w) such that Z w; =n, and
W=(W1,....,Wp) i=1

w;>0fori=1,...,n. 9

The name reflects that the weights are constructed as the
optimizers of our distance-covariance-based criterion. Due to
Theorem 3.2, the DCOWSs w¥ are designed to minimize depen-
dence between X and A on the weighted scale while keeping
the weighted marginal distributions of X and A close to those
of the unweighted data. The constraint ) ;' ; w; = n ensures
that F)H(,A,wﬁ is a valid distribution function. Since D(w) tracks

with the dependence induced by a set of weights, the DCOWs
can be thought of as optimal independence weights (i.e., optimal
with respect to achieving independence between the treatment
and covariates).

Although, as we will show later, the DCOWs result in con-
sistent weighted dose-response estimators, they may not guar-
antee optimal convergence rates without additional constraints.
Instead, a small change to our criterion to include penalization



of the squares of the weights provides control of the variability
of the weights without sacrificing their bias-reduction property.
This additional penalty is akin to focusing more directly on
mean squared error instead of bias and can be interpreted as
discouraging the effective sample size (ESS) after weighting from
being too small. In particular, the ESS is typically approximated
as (3 wi)?/ Y wi2 (Kish 1965), which, due to our constraints,
isn®/ Y_; w? and is precisely the inverse of our proposed penalty.
Further, combining a “balance” criterion with a means of weight
variability mitigation is in line with the recommendations of
Chattopadhyay, Hase, and Zubizarreta (2020).

We now define the penalized distance covariance optimal
weights (PDCOWS ) to be

1 n
wﬁd € argmin D(w) + )LF Z wiz such that

wW=(W1,...,Wp) i=1

n

Zwi =nw; >0for0 <A <oo,i=1,...,n (10)

i=1
Here, the tuning parameter X is any positive constant and can be
chosen by the user to achieve a desired ESS. A lemma provided
in Section F of the supplementary material similar to Lemma 3.3
shows that the penalized version of our criterion acts as a bound
on the term in the left-hand side of (8) plus the squares of
the weights, which is more akin to a bound on the root mean
squared error than bias as in Lemma 3.3. Although having a
nonzero, positive value of A is necessary for the convergence
rate guarantee of Theorem 3.5, in practice we have found that
minimal or even no penalization at all works well because the
unpenalized weights, the DCOWs, tend to be quite stable. In all
analyses described later, we use only the DCOW s with no weight
penalization.

Both the DCOWs and PDCOWSs can be used in a wide variety
of estimators for various causal estimands involving continuous
treatments, not just Nadaraya-Watson-based estimators and not
just estimators of the ADRE The weights can be used either in a
simple weighted nonparametric estimator of the dose-response
function or to supplement any doubly robust estimator of such.
For the former, our weights provide a fully nonparametric and
empirically robust estimation approach that requires only mild
moment conditions on the covariates and treatment for esti-
mation consistency. For the latter, such an estimator using our
weights is guaranteed to be consistent regardless of the correct-
ness of the outcome model, while it still enjoys efficiency gains
if the outcome model is well-specified.

Remark 2. The optimization problems (9) and (10) can be
formulated as quadratic programming problems with linear
constraints, making them straightforward to implement with
commercial and open-source solvers such as OSQP (Stellato
et al. 2020). If in practice additional emphasis on correlations
of particular moments of covariates and the treatment is of
importance, our framework can accommodate that by adding
additional linear constraints. The details are deferred to Sec-
tions C and D of the supplementary material.

In a later section, we provide more formal statements on the
consistency of dose-response function estimators that use our
proposed distance covariance optimal weights.
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3.3. Asymptotic Properties

We first show that the distance covariance optimal weights do
induce complete independence asymptotically. Throughout this
section we define w*(x,a) = fa(a)/fax(alX = x) to be the
“true” normalized density weights.

Theorem 3.4. Let w be the distance covariance optimal weights
defined in (9). Then if E||X]||, < oo and E|A| < 0o we have

(11)

nll)rrgo F; Awd (6@ = Fx(X)Fa(a)

almost surely for every continuity point (x,a) € RP*! and
further that lim,_, F;’( wd (x) = Fx(x) for every continuity

point x € R and lim,— F:’Lwd(x, a) = Fa(a) for every

continuity point a € R. If, additionally Ew**(X, A) < oo holds,
then the same result holds for w??.

Theorem 3.4 is in some sense the most important property
of the DCOWs, as it demonstrates the feasibility of using these
weights not just in estimation of the ADRE, but also in the
estimation of many causal estimands that require independence.
In particular, if the source of confounding bias has the form
S [a8xa)d [FQ,A)W — F}F%] (x, a) for some function g € H,
then the use of our weights can be justified due to Lemma 3.3 and
Theorem 3.4.

We now show that for the particular task of estimating the
ADRE, using the DCOWs in a weighted Nadaraya-Watson esti-
mator results in consistent estimation of the ADRE.

Theorem 3.5. Assume that the kernel K(-) is symmetric, sec-
ond order, that is, it meets the conditions that f uK(u)du =
0, [Kwdu = 1,and 0 < [u?K(uwdu < o0, and is
bounded differentiable. Further, assume that the moment con-
ditions required in Theorem 3.4 hold and that w(x,a0) and
is bounded and continuous on X x A and has second order
derivatives, fa (a9) is bounded and has second order derivatives,
1/fa(ap) is uniformly bounded. When h — 0, nh — o0, then
forw = w? and w = w??

Cw o w _
nlggo Hnw (a0) = nll?éo Hnws(ao0) = u(ao) (12)

in probability for all continuity points ag € A.

Thus, both the DCOWs and PDCOWs result in consistent
estimation of the causal ADRF using either the stabilized or
unstabilized estimator. It can also be shown (supplementary
material Section E3) that ﬁ‘lfj",?,R (ap) is still consistent even if
1L(x, ag) is inconsistent for p(x, ap) as long as f(x, ag) converges
to any finite function uniformly almost surely.

Remark 3. Our distance metric has some relationship with
maximum mean discrepancy based distances and the kernel-
based independence test via the results in Sejdinovic et al.
(2013), where our distance induces a particular kernel ®(-,-),
defined in our Lemma 3.3. However, despite this connection,
our Theorem 3.5 does not require the response function w(x, ao)
to be in the native space induced by ®(:,-). Thus, while our
method has some connection with kernel-based distances, our
weights result in consistent estimation of the ADRF without
correct specification of the kernel ®(:, -).
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The following shows the convergence rate of the penal-
ized distance covariance optimal weights under additional mild
moment conditions on the covariates, treatment, and w* (X, A).
This theorem builds on a key lemma on the squares of the
weights presented in Section F of the supplementary material.

Theorem 3.6. Assume the conditions required in Theorem 3.5
hold, that the moment conditions (A1) and (A2) listed in the
Appendix hold, and that Ew*?(X, A) < oco. Additionally assume
E[e?2 | X = x,A = ag] < c for some ¢ uniformly over x € X.
Then
A (@) — p(ag) = Op(1/N/nh + ). (13)
This convergence rate is the standard rate for unweighted
Nadaraya-Watson estimators of a univariate regression function;
thus, the convergence rate of the weighted estimator based on
our weights is unaffected by the nonparametric nature of the
estimation of w/?,

3.4. Augmented Estimation with Independence Weights

Another class of estimators for causal ADRFs are doubly
robust/augmented estimators such as in Kennedy et al. (2017)
and Colangelo and Lee (2020), which combine sample weights
and an outcome model [i(x, ap), ideally a consistent estimator
of 1 (x, ag). Though the term “doubly robust” is reflective of the
property that if either the weights or outcome model is correctly
specified, the estimator will be consistent, a more consequential
property of doubly robust estimators is that the error rates of
each model are multiplied.

Although in the previous section we showed that the use
of the DCOWSs alone results in the ideal convergence rate
for the ADRE, DCOWs can be enhanced by using doubly
robust/augmented estimators, or conversely, that the use of
DCOWs can significantly enhance doubly robust estimators.
The DCOWs assure the analyst that the estimator will converge
at the right rate regardless of whether the outcome model is cor-
rectly specified, but allow for using an outcome model to provide
an opportunity to fine-tune performance by reducing residual
variance, resulting in an estimator that works well empirically.

Here, for simplicity of presentation, we focus on the follow-
ing Nadaraya-Watson-based augmented estimator based on any
estimator [i(X, ag) of w(x,ag) as

1 n
—~w,DR N
iy (a0) = - 21 n(Xi, ao)
=

Y (Y — (X, a0))wiKp(A; — ag)

21 Kn(Ai — ao)
In Section B of the supplementary material, we derive a decom-
position of the error /’Z}:’,’V?,R (ag) — m(ap) and show that the
systematic bias term not related to smoothing is

+

/ (115 a0) — 7105 0)) f ARy — FaFL] e, (14)
X A

Lemma 3.3 implies that (14) is less than or equal to 3| i (x, ag) —
(X, a9) ||l D(w) provided that (-, ap) — (-, ap) € H. With

the DCOWs, we provide a set of weights w? that makes D(w) as
small as possible, though it may not be exactly zero for a finite
sample.

We now formalize the above claims and provide asymptotic
results for the augmented estimator ﬁ;\"]’v[\),R(ao) using a slightly
modified version of our PDCOWs; this modification is moti-
vated by a technical condition and in practice has little or no
impact on the weights. The modified penalized distance covari-
ance optimal weights are defined as

n

%ﬁd € argmin D(w) + kiz Z wiz such that

W=(W1,...,Wy) n i—1

n

Zwi = n,Bn'/? >w; >0 for 0 < A,B < 00,

i=1

i=1,...,n (15)
Here, B is a pre-specified positive constant. We have found that
in practice the maximum weight rarely, if ever, comes near Bn!/3
with B = 1 even without the constraint on the max weight. Thus,
this additional constraint does little to change the empirical
behavior of the PDCOWs. Further, we show in Section Section F
of the supplementary material and in the following that the key
asymptotic results of the PDCOWs (e.g., Theorem 3.4) also hold
for W‘Zd.

We next show that the modified weights paired with an aug-

mented estimator based on a correctly-specified outcome model
result in asymptotic normality of the resulting causal ADRE

Theorem 3.7. Let vN\rﬁd be the distance covariance optimal
weights defined in (15). Let K(-) be a kernel with conditions
listed in the statement of Theorem 3.5. Assume the moment con-
ditions (A1) and (A2) listed in the Appendix hold, that E|| X||, <
oo and E|A| < oo, that Ew*3(X,A) < oo, that 1/fa(ap) is
uniformly bounded, f4(ap) is bounded and has second order
derivatives, and that u(x,ag) is bounded and continuous on
X x A and has second order derivatives. Further, assume that
Elei]? < oo and E[siz] = 02 < oo for all i. Assume that
the outcome regression model satisfies (-, a9) — (-, a0) €
Hax for each n, [l — flly = Op(1), and [, (u(x,a9) —
(X, a9))?dFx(x) = 0p(1). Then

Vnhfa(ao)
oL, WK (A — a0)

(ﬁ‘ﬁ’v’iR(ao) — u(ap) — hzsz(aO))

L N, 1) (16)
ash — 0,nh — oo, and nk® = Op(1) for w = VNV‘Zd, where
iy = [u*K(w)du, B(ag) = [ B(x,a9)dFx(x), and B(x,a9) =

2 1%, 00) /2 + s 1% 0) 7 i (a0) [f ().

The conditions required regarding /i(-, ag) and ¢; are analo-
gous to those required in Theorem 3 of Wong and Chan (2017).
We note that normalization by the squares of the weights in

(16) is necessary as our results do not rely on a proof of Wﬁd
or their squares to converge to anything in particular. We note,



however, that the expression in (16) can be simplified if it is
2

possible to show that %Z?:l (Wfd — W*(Xi,A,-)> converges

to 0 in probability. In particular, it would simplify to a form

similar to the asymptotic distribution of the augmented ADRF

estimator in Colangelo and Lee (2020). We provide an informal

investigation into the convergence of the PDCOWs to the true
GPS weights in Section ] of the supplementary material.

4. Numerical Experiments

We evaluate our proposed methodology using two tracks of
simulation experiments. The first track uses existing data to
conduct simulation studies. In this approach, we fix the con-
founding structure of a complex dataset and simulate outcomes
under a wide range of outcome models. In the second track of
simulation experiments, we generate synthetic data under the
data-generating setup of Vegetabile et al. (2021), which amounts
to a markedly different data-generating process from the first set
of simulation experiments.

4.1. Comparator Methods

We use the following methods to estimate weights. We
use a naive method which uses weights equal to identity
(unweighted). We use stabilized GPS weights computed four
ways: a linear regression model for estimating E(A|X) (i.e.,
the conditional mean of dose given covariates) and a nor-
mal conditional density (“GPS normal”); a gamma regression
model for estimating E(A|X) and a gamma conditional density
(“GPS gamma”); a generalized boosted model for estimating
E(A|X), where the number of trees was chosen to minimize
the weighted average absolute correlation between the treat-
ment and covariates as in Zhu, Coffman, and Ghosh (2015),
and a normal conditional density (“GBM”); and a Bayesian
Additive Regression Trees model for estimating E(A|X) and a
normal conditional density (“BART”). For methods that esti-
mate weights by directly inducing a lack of correlation between
moments of the treatment and covariates, we use the covariate
balancing generalized propensity score of Fong, Hazlett, and
Imai (2018) and the entropy balancing approach of Tiibbicke
(2022) and Vegetabile et al. (2021). Among this class of methods,
we only consider these two as other approaches to estimating
weights that decorrelate pre-specified moments behave largely
similarly to each other (Vegetabile et al. 2021; Tiibbicke 2022).
We use the exactly identified version of the covariate balanc-
ing generalized propensity score (“CBPS”). We use versions
of the entropy balancing approach that decorrelate either all
first order moments (“Entropy (1)), all first order moments
and squared terms in continuous covariates (“Entropy (2)”),
or all first order moments, pairwise interactions, and squared
terms in continuous covariates (“Entropy (int)”). Any resulting
weights greater than 500 when standardized to sum to » are
truncated at 500. We use our proposed DCOWs (“DCOW”) and
the proposed DCOWS where we further induce exact decor-
relation of first order moments (“DCOW (dm)”) as discussed
in Section D of the supplementary material, both using the
dimension adjustment described also in that section. For each
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method, the weights are used in a weighted local linear regres-
sion used to estimate the ADRF. For the GPS (normal), GPS
(gamma), DCOW, and DCOW (dm) methods, we also use the
doubly robust estimator of Kennedy et al. (2017) with a an
outcome model that is linear in the covariates with additive first
order terms; the methods are labeled as “GPS (normal,DR),
“GPS (gamma,DR),” “DCOW (DR);” and “DCOW (dm,DR);
respectively.

4.2. Simulation using National Medical Expenditure
Survey Data

The National Medical Expenditure Survey (NMES) relates med-
ical expenditures with degree of smoking among U.S. citizens
(Johnson et al. 2003). The NMES dataset contains information
on 9708 individuals. The outcome variable is the total medical
expenditures in dollars and the treatment A € [0.05,216] is
the amount of smoking in pack years. We limit the data to
those with A < 80 (i.e., A = [0.05,80]), leaving 9368 units.
We limit to those with such values, as the number of patients
who smoke more than 80 pack years is exceptionally rare. Two
of the covariates are continuous and the remaining are cate-
gorical, with an overall dimension equal to 18 after converting
categorical variables to dummy variables. In our simulation,
we leave the treatment level (pack years) and covariates intact
and simulate outcomes for each unit from the following model:
Y = m(X;01) + f(A)(1 + 3(X;02))) + ¢, where m(X;01)
are main effects with parameters 6, generated as described in
Section H of the supplementary material, §(X;6,) are mean 0
interaction effects, & are iid N(0,4) random variables, and the

treatment effect curve f(A) = A/4 + m — (A —

40)2/100. The main effect function involves interactions and up
to squared terms in the continuous covariates. For the constant
treatment effect setting, §(X; 0,) = 0, and for the heterogeneous
treatment effect setting it is a nonzero but mean 0 function
involving linear and interaction effects in covariates. Notably,
the parameters in #; and 6, also make some covariates have no
contribution to the main effects and interactions, respectively.
We generate 100 different draws of the coeflicients (6, and 65)
in the outcome model above, allowing for the simulation study to
explore a wide variety of outcome models. For each of these 100
outcome model draws, we replicate the simulation experiment
1000 times. For each replication, a random subsample of size
n < 9368 is drawn without replacement from the 9368 units,
and outcomes for these units are generated from the outcome
model. The simulation process is repeated for each of the sample
sizes n = 100, 200, 400, 800, 1600, 3200.

We also consider a simulation setting with the heterogeneous
treatment effect where 50 additional variables are added to the
covariate vector so that the overall dimension is 68. The 50 addi-
tional variables are generated so that they are correlated with
both the response and treatment while preserving the original
values of the response and treatment; details are provided in
Section H of the supplementary material.

All methods are evaluated with a measure of the mean
absolute bias (MAB) and integrated root mean squared error
(IRMSE), both of which are used for evaluation of estimates
of the ADRF in Kennedy et al. (2017). MAB and IRMSE are
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Table 1. Mean absolute bias (MAB) and integrated root mean squared error (IRMSE) for the constant treatment effect setting.

n =100 n =200 n =400 n = 800 n = 1600 n = 3200
Method MAB IRMSE MAB IRMSE MAB IRMSE MAB IRMSE MAB IRMSE MAB IRMSE
Unweighted 11461 17488 11283 14753 11252 13182 11246 12297 11254 11799 11237 11491
GPS (normal) 10.145 27.180 15.033 29.187 18.197 28.056 20.786 27.650 21.832 25.703 22.611 24.432
GPS (gamma) 9.340 23.994 9.892 19.269 9.993 15.831 10.112 13.978 10.084 12.693 10.006 11.162
GPS (normal,DR) 8.315 30.551 11.081 33.342 13.216 30.293 15320 27.636 15324 21.199 15.769 18.312
GPS (gamma,DR) 7.045 26.437 6.866 16.463 6.905 12.044 6.920 10.168 6.768 8.985 6.745 7612
CBPS 9.871 25398 12.463 23375 14.055 22.016 14.064 18.802 14.970 17.546 15.712 16.847
GBM 8.190 23.428 7.551 17.298 7.105 12.498 7.379 10.432 7.524 9.225 7.746 8.589
BART 6.550 17.206 7.275 14.423 8.023 12.326 8.638 11.292 9.033 10.659 9.446 10.366
Entropy (1) — — 9.409 17.880 9.166 12.946 9.161 11.321 9.023 10.258 8.952 9.537
Entropy (2) — — 8.909 25.080 9.343 15.520 8.927 12.360 8.503 10.456 8.231 9.245
Entropy (2,int) — — — — — — — — 8.998 253.786 10.974 16.780
DCOW 4.684 12.204 3.866 8.383 3.495 6.245 3.252 4.947 2.992 4.075 2.750 3416
DCOW (dm) 4.522 16.465 3.907 8.988 3.544 6.364 3.276 5.018 3.001 4.147 2.775 3.497
DCOW (DR) 3.904 9.284 3.335 6.455 2663 4586 2.196 3.388 1.919 2661 1.753 2189
DCOW (dm,DR) 3.905 11.567 3.459 6.919 2.828 4.806 2.356 3.568 2.057 2.817 1.873 2.320
defined as sample size settings, except for the doubly robust gamma GPS

fa(a)da,

MAB:/
A

: S ~ 1/2A
IRMSE = fA [EZ{M@—M@}Z fa(@)da,
s=1

S

1

3 E s(a) — pu(a)
s=1

whereﬂ(a) is a kernel density estimate of the marginal density
of the treatment variable, s indexes the simulation replications,
and A is a trimmed version of the support of the treatment
variable that excludes pack years greater than 80. We calculate
the MAB and IRMSE statistics for each of the 100 different
outcome model settings and then average them over the 100
settings.

The MAB and IRMSE results for the constant treatment effect
setting are displayed in Table 1 and the results for the het-
erogeneous treatment effect setting are displayed in Section H
of the supplementary material as they track closely with the
former setting. Results for any method are not shown if no
numerical solution is found in more than 75% of the repli-
cations. The standard DCOWSs performed the best in terms
of both MAB and IRMSE across all sample sizes among all
non-doubly robust estimators, only being outperformed by the
doubly robust estimator that uses DCOWs as weights. DCOW's
with exact first order moment decorrelation performed simi-
larly to, but slightly worse than standard DCOWs, for both the
non-doubly robust estimator and the doubly robust estimator,
though the performance was much worse for n = 100, as the
exact constraints may have been too stringent for the sample
size. The estimators using standard GPS weights, both doubly
robust and non-doubly robust, performed poorly in terms of
both MAB and IRMSE for small to moderate sample sizes,
though the doubly robust estimator with gamma regression-
based weights performed well in terms of MAB and IRMSE
for larger sample sizes. The machine learning approaches to
GPS estimation (GBM and BART) performed relatively poorly
in terms of MAB and IRMSE for small sample sizes, with
BART performing better than GBM for small sample sizes,
but with similar but slightly better performance for GBM for
large sample sizes. Among the GPS-based methods, GBM and
BART generally yielded the lowest MAB and IRMSE across the

estimator. Among the moment balancing approaches, entropy
balancing with decorrelation induced only for first and second
order moments and not interactions performed the best in terms
of MAB and IRMSE, though for small sample sizes, entropy
balancing frequently failed to arrive at a solution. For the hetero-
geneous setting, entropy balancing with decorrelation induced
only for first order moments performed the best, likely due to
numerical instability of adding more moment constraints. The
CBPS estimator yielded worse performance than did entropy
balancing overall, though it did not face the convergence prob-
lems of entropy balancing for small sample sizes. Entropy bal-
ancing with higher order moment constraints failed to arrive at
a solution more frequently and performed poorly even for large
sample sizes, likely due to the strictness of the exact moment
constraints.

The results for the heterogeneous effect setting with 50 addi-
tional noise variables are displayed in Section H of the supple-
mentary material. Again, DCOWSs performed the best among all
methods in terms of both MAB and IRMSE for all sample sizes
except n = 100, where the doubly robust gamma GPS estimate
was slightly better in terms of IRMSE.

Additional simulation results under the same setting of Veg-
etabile et al. (2021) can be found in Section I of the supple-
mentary material, wherein our weights also yielded the best
performance across all sample size settings.

5. Analysis of Mechanical Power Data

We use the Medical Information Mart for Intensive Care III
(MIMIC-IIT) database (Johnson et al. 2016) to study the impact
of alarge degree of mechanical power of ventilation on mortality
among critically ill patients in an ICU using electronic health
record (EHR) data. Our study and the construction of the cohort
from the MIMIC-III database are based on the original study of
Neto et al. (2018) and the code provided by the authors located
at https://github.com/alistairewj/mechanical-power. Since there
are widely-used formal guidelines that influence ventilation
management among patients with respiratory distress (Papazian
et al. 2019), many observable factors in the EHR data are
highly related to the mechanical power of ventilation. Many of
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Table 2. Summary statistics (mean, standard deviation, median, 95th percentile, and maximum) of the absolute weighted correlations of the first five powers of mechanical
power of ventilation and all marginal moments of covariates, pairwise interactions of covariates, and up to 5th order polynomials of covariates.

Unweighted GPS GPS CBPS GBM BART Entropy Entropy Dcow DCoOwW
(normal) (gamma) m (2) (dm)

(7) 21.041 2.574 4.269 4713 12.992 6.166 1.093 4.262 0.220 0.237
D(w) 21.041 2.349 4.014 4.328 12.960 5.710 1.005 4.083 0.144 0.151
S(FZVW, FZ) 0.000 0.027 0.003 0.010 0.003 0.043 0.030 0.001 0.051 0.059
E(F)’glw, F)'(’) 0.000 0.198 0.251 0.374 0.029 0.414 0.058 0.178 0.026 0.027
ESS 4933 2048 1832 1017 3892 782 2185 478 2232 2057
mean(|corr|) 0.070 0.014 0.037 0.025 0.058 0.045 0.007 0.021 0.007 0.003
sd(|corr|) 0.082 0.015 0.036 0.025 0.061 0.043 0.008 0.022 0.006 0.003
median(|corr|) 0.041 0.010 0.026 0.018 0.036 0.035 0.005 0.016 0.005 0.002
95-pctl(|corr|) 0.248 0.044 0.105 0.063 0.200 0.118 0.020 0.055 0.018 0.009
max(|corr|) 0.788 0.200 0.854 0.470 0.568 0.939 0.123 0.507 0.084 0.045

NOTE: Summaries are over 8284 x 5 weighted correlations of covariate moments and mechanical power moments.

these factors are also closely related to patient mortality. The
guidelines involve consideration of both factors individually
and many interactions among these factors. In addition, as the
exposure, the mechanical power of ventilation, is itself a complex
summary of multiple manipulable elements of a ventilator, the
guidelines are not directly related to the exposure, but have
a strong indirect effect on the power of ventilation. Thus, the
dependence between observable factors and the exposure level
is highly complex.

Patients included in the study were at least 16 years of age
and received invasive mechanical ventilation for at least 48 hr.
This restriction was used in the original analysis of Neto et al.
(2018) and focused on the population that requires extended
use of ventilation. Patients who die within this 48-hour period
are substantially sicker, and it is unclear whether manipulation
of ventilation settings for such a population may induce mean-
ingful changes to outcomes. The study contains 5014 patients,
and the treatment variable of interest is the amount of energy
generated by the mechanical ventilator measured by the mean
of the largest and smallest mechanical power of ventilation in
Joules per minute in the second 24-hour period in the ICU, as
in Neto et al. (2018). The outcome is an indicator of in-hospital
mortality. As in the original analysis of Neto et al. (2018), we
limit our analysis to patients receiving less than or equal to
50 Joules per minute, resulting in a sample size of 4933. We
include 73 pretreatment covariates (some of which are discrete),
resulting in a total dimension of 97 of the vector X of potential
confounders. All methods considered in the simulation section
were then applied to construct weights aiming to control for
dependence between the 97 covariates and mechanical power.
Both GPS approaches, GBM, and BART resulted in several
extraordinarily large weights; these weights were truncated to
mitigate extreme variation. We attempted to construct entropy
balancing weights that either exactly or approximately (within
a correlation tolerance of 0.1) balance pairwise interactions, but
no numerical solution was found.

For all methods, balance statistics, including our devel-
oped criterion (7) and weighted correlations between first-
order moments and pairwise interactions of covariates and
mechanical power, are summarized in Table 2. In terms of
weighted marginal correlations, the version of our DCOWs
that induces first-order marginal correlations between covari-
ates and mechanical power to be zero performs the best, with
the standard DCOWSs and entropy balancing weights a close

second. In terms of our proposed criterion (7), by definition, the
DCOWSs yield the smallest value. However, it is notable that only
a small price is paid in terms of both (7) and effective sample
size (ESS) in order to exactly decorrelate marginal covariate
moments and treatment. Among methods that do not target
independence, entropy balancing has the smallest value of (7),
indicating that decorrelating first-order moments in this partic-
ular dataset mitigates a vast majority of the dependence between
covariates and mechanical power of ventilation. We also note
that exactly decorrelating second-order moments using entropy
balancing results in further instability, and thus worse mitiga-
tion of dependence. However, exact decorrelation of marginal
covariate moments via entropy balancing results in much larger
standard errors of the resulting ADRE, as evidenced in Figure 2.
Interestingly, in terms of both marginal weighted correlations
and our proposed independence metric, the flexible machine
learning approaches (GBM and BART) perform significantly
worse than a normal model for the conditional density.

For a concrete example of how DCOWSs mitigate depen-
dence, we illustrate the unadjusted marginal dependence of the
Pa0,/FiO; ratio and the mechanical power of ventilation, where
PaO, is the partial pressure of oxygen in the arterial blood
and FiO; is the fraction of inspired oxygen. PaO,/FiO; ratio
is a pretreatment covariate that characterizes acute hypoxemia,
defines the presence and severity of acute respiratory distress
syndrome (ADRS), and plays a critical role in ventilation guide-
lines (Papazian et al. 2019). Both PaO; and PaO,/FiO; ratio
are also strongly associated with mortality and are thus critical
confounders in this study. We display weighted marginal depen-
dence of PaO; and the mechanical power of ventilation with
our proposed weights and with the entropy-balancing weights in
Figure 1; we also show this relationship for the PaO,/FiO; ratio
in Section K of the supplementary material. Compared with
methods that aim to exactly decorrelate specified moments, our
proposed weights can handle nonlinear dependence between
covariates and treatment even in datasets with moderately high
dimensions. While entropy balancing accounts for a significant
proportion of dependence, there remains residual nonlinear
dependence.

For each method, we construct pointwise confidence bands
of the ADRF using a nonparametric bootstrap similar to Wang
and Wahba (1995). Weighted local linear regression estimates
of the ADRF of mechanical power of ventilation on in-hospital
mortality and 95% confidence bands are displayed in Figure 2.
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Figure 2. Shown are weighted local linear regression estimates of the ADRF of mechanical power on the probability of in-hospital mortality and pointwise 95% confidence
bands estimated via a nonparametric bootstrap. 38 replications of the bootstrap resulted in no numerical solution for entropy balancing weights and are left out of the

confidence interval calculation.

Alternatively, it is possible to conduct inference using the results
of Theorem 3.7; however, doing so requires careful selection of
the bandwidth parameter h, such as by using undersmoothing,
which involves choosing a smaller bandwidth than the optimal
one. Rigorous assessment of the use of Theorem 3.7 for inference
is left as future work. The entropy balancing approach with
higher order moments was not included due to the small effec-
tive sample size and a large number of bootstrap replications
for which no solution was found. Both the entropy balancing
weights and the GPS estimated with a normal model exhibit
reasonable control over the dependence between covariates and
treatment but result in unacceptably high variances in the esti-
mate of the ADRE.

6. Discussion

In this article, we provide a detailed inspection of the role of
weights in weighted nonparametric estimates of causal quanti-
ties involving continuous-valued treatments from observational
data. This inspection shows clearly that the key source of bias
depends on the degree to which the weights induce indepen-
dence between the treatment and confounders. We then provide
a measure that characterizes how well a set of weights mitigates
the dependence between the treatment and confounders. This

measure does not require any tuning parameters, making it
straightforward to deploy in practice. Given some light smooth-
ness conditions on the outcome data-generating model, this
measure acts as an upper bound on the key source of systematic
bias in a weighted nonparametric estimate of the ADRE Our
proposed weights, the DCOWS, which minimize our measure
of dependence, provide an empirically robust means for estimat-
ing weights, as they directly target independence between the
treatment and confounders. These weights are a natural com-
plement to doubly robust estimators, as they provide an anchor
for the doubly robust estimator: since they are guaranteed to be
consistent on their own, the consistency of the doubly robust
estimator does not critically depend on the correctness of the
outcome model. Thus, the outcome model can be safely used as
a tool to reduce variability in the estimate of the ADRE

In contrast to other weighting approaches aimed at remov-
ing bias due to confounding with continuous treatments, the
DCOWs enjoy a number of benefits that make them particularly
attractive for applied use: they do not require any modeling
of the relationship between the treatment or outcome and the
covariates, they do not require the choice of specific features
of the covariate distribution to balance, they do not require
parameter tuning or cross-fitting, they perform well empiri-
cally (in addition to their strong asymptotic properties), and
they can be readily implemented without specialized software



using existing quadratic programming solvers. We have released
an open-source implementation of our method in the R sta-
tistical computing language that can be used off-the-shelf to
estimate the weights, available at https://github.com/jaredhuling/
independence Weights. Although our method, like all methods
that adjust for confounding by measured confounders, requires
that a sufficient set of confounding variables has been collected
by the researcher, its ease of use helps alleviate the analytical
burden of estimating the causal effects of continuous treatments
in the presence of confounding by measured variables.

Appendix: Regularity Conditions

id

For (X1,A1),...,(Xe, Ag) ~ Fx 4, define the 6th order kernel

k((X1,A1),...,(Xe,Ap)) = w" (X1, ADgx (X1, X2, X3, X4)
X ga(A1, A2, As, Ag)w* (X2, A2)

with w(xa) = -0 o ox (X1, Xo Xa Xa) = X1 = Xall2 =

X1 — X302 — X2 — Xall2 + [ X3 — X4ll2, and g4 (A1, A2, A3, Ag) =
|[A1 — Ap| — |A1 — A3| — |A2 — A4| + |A3 — A4]. Further define the
4th order kernels

kx((X1,A1),...,(X4,A4))
= w" (X1, ADIIX1 — X3l2 + w* (X2, A2)1X2 — X4ll2
— W X, ADW*(X2,A2) X1 — X2l2 — X3 — X4l2 and
ka((X1, A1), ..., (X4, A4))
= w"(X1,A1)|A1 — A3 + w* (X2, A2)|A2 — A4l
— w" (X1, ADW* (X2, A2) A1 — Az| — |A3 — A4l

The following assumptions are required for several Lemmas and
Theorems presented that rely on V-statistics. These conditions amount
to finite moment conditions on squares of the Euclidean norms of X, A
and their products with the weights w* (X, A).

(A1) E[K*((X1,A1), ..., (Xe Ag))] < 00
(A2) E[k%i((xl,Al),...,(X4,A4))] < o0 and
B[k (X1, A1), . ., (X4,A4))] < 00

Supplementary Materials

Supplementary Material: The supplementary material contains details for
error decompositions of weighted nonparametric estimators, computa-
tional details of the proposed method, extended discussion of the exist-
ing literature, proofs of the theoretical results, and additional simulation
studies. (pdf)
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