
Growth factors of random butterfly matrices and the stability of avoiding pivoting∗
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Abstract. Random butterfly matrices were introduced by Parker in 1995 to remove the need for pivoting when
using Gaussian elimination. The growing applications of butterfly matrices have often eclipsed the
mathematical understanding of how or why butterfly matrices are able to accomplish these given
tasks. To help begin to close this gap using theoretical and numerical approaches, we explore the
impact on the growth factor of preconditioning a linear system by butterfly matrices. These results
are compared to other common methods found in randomized numerical linear algebra. In these
experiments, we show preconditioning using butterfly matrices has a more significant dampening
impact on large growth factors than other common preconditioners and a smaller increase to minimal
growth factor systems. Moreover, we are able to determine the full distribution of the growth factors
for a subclass of random butterfly matrices. Previous results by Trefethen and Schreiber relating to
the distribution of random growth factors were limited to empirical estimates of the first moment
for Ginibre matrices.
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1. Introduction and background. Butterfly matrices are a recursively defined subclass of
orthogonal matrices that were introduced by D. Stott Parker as a tool to accelerate common
methods in computational linear algebra [16]. This recursive structure enables quick matrix-
vector multiplication (see Subsection 1.4 for the full definition of butterfly matrices). In
particular, for a dimension N = 2n butterfly matrix Ω and a vector x ∈ R

N , Ωx can be
computed in 3Nn floating-point operations (FLOPs) rather than the standard 2N2(1 + o(1))
FLOPs needed to compute Ax for general A ∈ R

N×N . Parker exploited this property to
introduce a method to efficiently remove the need for pivoting when using Gaussian elimination
(GE) (see Appendix A.1). In particular, Parker showed butterfly matrices can be used to
transform any nonsingular matrix to a block nondegenerate matrix1:

Theorem 1.1 ([16]). If A is a nonsingular matrix and U, V are independent random but-
terfly matrices, then UAV ∗ is block nondegenerate with probability 1−O(ǫmachine).

2

Hence, when solving the linear system

(1.1) Ax = b,

using random butterfly matrices U, V one can instead, with very high probability, solve the

∗Submitted to the editors January 31, 2023.
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†Department of Mathematics, University of Arizona, Tucson, AZ (johnpeca@math.arizona.edu).
‡Department of Applied Mathematics, University of Washington, Seattle, WA (trogdon@uw.edu).
1We say a square matrix is block degenerate if a principal minor vanishes, in which case GE without pivoting

would be forced to stop at an attempt to divide by 0; otherwise, a matrix is called block nondegenerate.
2If using exact arithmetic, then ǫmachine = 0, in which case Theorem 1.1 yields an almost sure (a.s.) result.
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equivalent linear system

(1.2) UAV ∗y = Ub with x = V ∗y

using GE without pivoting. This requires only O(N2n) FLOPs to transform (1.1) into (1.2),
not impacting the leading-order complexity of GE (i.e., 2

3N
3 +O(N2) FLOPs). The costs of

moving large amounts of data using pivoting can be substantial on many high performance
machines. In [2], numerical experiments running GE with partial pivoting on an dimension
10,000 random matrix using a hybrid CPU/GPU setup resulted in pivoting accounting for
20 percent of the total computation time. Pivoting and the communication overhead to
coordinate data movements is also a hindrance to parallel architectures and block algorithms
[16]. Removing the need for pivoting would clear this potential bottleneck to enable faster
computations.

The use of butterfly transformations in the machine learning and image processing com-
munities has recently grown in popularity, with a lot of use in Convolutional Neural Network
(CNN) architectures [1, 5, 12]. Applications remain ahead of the theoretical understanding of
the properties of random butterfly matrices. Building off of previous results in [16, 21], this
paper aims to fill in some of these missing pieces by outlining new theoretical and experimental
results relating to the stability of GE using random butterfly transformations. In particular,
we want to further explore the question as to whether removing pivoting is a good idea in
practice in spite of the saved computational time. Additionally, in line with [13], we will ex-
plore combining butterfly transformations with iterative refinement. Our main contribution
is to measure success of this combination against other random transformations taken from
randomized numerical linear algebra, as well as comparing performance metrics against other
pivoting schemes used with GE.

1.1. Overview of results. The paper is structured to explore the impact of precondition-
ing linear systems with random butterfly matrices on the growth factors when using GE with
different pivoting strategies. After giving an overview and background of growth factors and
butterfly matrices in the remainder of this section, we focus on two main linear system models
Ax = b of dimension N = 2n. These models are extreme with respect to the growth factor
ρ(A) (see Subsection 1.3), which satisfies 1 ≤ ρ(A) ≤ 2N−1. Main results will be given in
Section 2, which includes both theoretical and numerical results comparing butterfly matrices
to common preconditioners used in randomized numerical linear algebra.

We first consider the näıve model in Subsection 2.1, where A = I, for which ρ(A) = 1 is
minimized to get a cursory idea of how much the growth factor can be inflated. In this model,
we show using numerical experiments that butterfly matrices lead to more modest overall
growth and relative errors in minimal growth factor models using GENP, GEPP or GECP.
Moreover, comparisons between different pivoting strategies show using GENP with butterfly
preconditioners and one step of iterative refinement leads to similar accuracy as using GECP
and butterfly preconditioners.

Of note, in Theorem 2.3 we give the full distribution of the growth factor for a subclass
of random butterfly matrices. This presents, to our knowledge, the first full description of
the growth factor for a non-trivial dense linear system. Prior results focus on first-moment
empirical estimates or asymptotic bounds (cf. [20, 10]). The proof of Theorem 2.3 will be
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delayed until Appendix B.
We then consider a worst-case model in Subsection 2.2, where ρ(A) = 2N−1 is maximized,

as first introduced by Wilkinson. This model is used to test the dampening impact of pre-
conditioning linear systems with large growth factors. Using numerical experiments, we show
butterfly matrices as well as other common preconditioners except the Walsh transform have
a strong dampening impact on the growth factor when using GENP. Using GEPP, the but-
terfly matrices lead to Gaussian logarithmic growth factors, which differs significantly from
the dampening behavior of Haar orthogonal matrices. Additionally, we show using GENP
with one step of iterative refinement leads to similar accuracy as using GECP with butterfly
preconditioners.

1.2. Notation and preliminaries. For convenience, we will use N = 2n throughout. For
A ∈ R

n×m, Aij denotes the entry in the ith row and jth column of A. Let ei denote the
standard basis elements of Rn and Eij = eie

T
j , the standard basis elements of Rn×m. I denotes

the identity matrix and 0 the zero matrix or vector (with the dimensions implicit from context
if not stated explicitly).For σ ∈ Sn, the symmetric group on n elements, let Pσ denote the
orthogonal permutation matrix such that Pσei = eσ(i). Let ‖ · ‖max denote the elementwise
max norm of a matrix defined by ‖A‖max = maxi,j |Aij | and ‖ · ‖∞ denote the induced ℓ∞
matrix norm. Note ‖ · ‖max and ‖ · ‖∞ are invariant under row or column permutations or
multiples of ±1 but are not invariant under general orthogonal transformations.

O(n),U(n) denote the orthogonal and unitary groups of n×n matrices and SO(n), SU(n)
denote the respective special orthogonal and special unitary subgroups; note O(n) will be
used for the orthogonal matrices while O(n) is the classical “big-oh” notation. Using Gaus-
sian Elimination (GE), we will further emphasize particular pivoting strategies, including GE
without pivoting (GENP), GE with partial pivoting (GEPP), GE with rook pivoting (GERP)
and GE with complete pivoting (GECP). See Appendix A for additional background and
Appendix A.1 for further discussions and results using GE.

We write X ∼ Y if X and Y are equal in distribution. Let X ∼ Uniform([0, 2π)) denote X
is a uniform random variable with probability density 1

2π1[0,2π) and Y ∼ Cauchy(1) denote Y

is a Cauchy random variable with probability density 2
π

1
1+x2

. Let Gin(n,m) denote the n×m
Ginibre ensemble, consisting of random matrices with independent and identically distributed
(iid) standard Gaussian entries. Let Sn−1 = {x ∈ R

n : ‖x‖2 = 1}. Recall that if x ∼ Gin(n, 1),
then x/‖x‖2 ∼ Uniform(Sn−1). Let ǫmachine denote the machine-epsilon, which is the minimal
positive number such that fl(1 + ǫmachine) 6= 1 using floating-point arithmetic.3 If using t-bit
mantissa precision, then ǫmachine = 2−t. Our later experiments in Subsections 2.1.2 and 2.2.1
will use double precision in MATLAB, which uses a 52-bit mantissa.

Standard models from randomized numerical linear algebra will be used for comparison in
Subsections 2.1.2 and 2.2.1. These will include the Walsh transformation and Discrete Cosine
Transformations (DCT). Sampling for the following experiments will use native (deterministic)
MATLAB functions (viz., the Fast Walsh-Hadamard transform fwht and the default Type II
Discrete cosine transform dct) applied after an independent row sign transformation chosen
uniformly from {±1}N . See [19, 22] for an overview of numerical properties of the Walsh and

3We will use the IEEE standard model for floating-point arithmetic.
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DCT transforms, and [14] for a thorough survey that provides proper context for use of these
transforms and other tools from randomized numerical linear algebra.

Additionally, we will utilize left and right invariance properties of the Haar measure on
locally compact Hausdorff topological groups, first established by Weil [23]. For a compact
group G, this measure can be normalized to yield a probability measure Haar(G), which
inherits the invariance and regularity properties of the original measure. This then provides
a uniform means to sample from the compact group, such as O(n). Stewart provided an
outline to sample from Haar(O(n)) by using Gin(n, n): if A ∼ Gin(n, n) and A = QR is the
QR decomposition of A where R has positive diagonal entries, then Q ∼ Haar(O(n)) [18].
Our experiments will employ efficient sampling methods for Haar(O(n)) that use Gaussian
Householder reflectors, in line with the QR factorization of Gin(n, n) (see [15] for an outline
of this method).

1.3. Growth factors. The growth factor of a matrix A is a quantity determined by the
LU factorization using a fixed pivoting scheme. We will focus on three particular growth
factor definitions in this article. See [3] for an overview on other common definitions found
in the literature, along with some explicit properties and relationships comparing different
definitions.

The first growth factor we will consider is related to the max-norm of the associated factors
encountered during GE, given by

(1.3) ρ(A) :=
‖L‖max ·max

k
‖A(k)‖max

‖A‖max
,

where A(k) denotes the matrix before the kth step in GENP with zeros below the first k − 1
diagonal entries. This is the classical definition first used by Wilkinson in the 1960s in his
error analysis on the backward stability of GEPP4 [24, 25]. This growth factor accounts for
the maximal growth that can be encountered throughout the entire GE process. Another
growth factor is derived from the ℓ∞-induced matrix norm:

(1.4) ρo(A) :=
‖|L||U |‖∞
‖A‖∞

.

This growth factor only accounts for the final LU factorization of A. Our experiments in
Subsection 2.2 will focus on the following growth factor:

(1.5) ρ∞(A) :=
‖L‖∞‖U‖∞

‖A‖∞
.

Note the trivial bound ρo ≤ ρ∞, which follows from the submultiplicativity of ‖ · ‖∞. We
will use ρ∞ for numerical experiments in Subsections 2.1.2 and 2.2.1 since it is computation-
ally simpler to use than ρ and has a more convenient form when applied to our model in
Subsection 2.2.1.

4Wilkinson’s original definition did not include the ‖L‖max factor above, so his results and subsequent studies
apply to ρ(A)/‖L‖max; these definitions are consistent when using any pivoting strategy where ‖L‖max = 1
always holds, which includes GEPP, GERP, and GECP but not GENP.
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The growth factor is an important component in controlling the relative error in a com-
puted solution to a linear system using floating-point arithmetic. If PAQ = LU is the com-
puted LU factorization used to compute the approximate solution x̂ to the linear system
Ax = b for nonsingular A ∈ R

n×n, then (cf. [24])

(1.6)
‖x− x̂‖∞
‖x‖∞

≤ 4n2ǫκ∞(A)ρ(A)

where ǫ = ǫmachine and κ∞(A) = ‖A‖∞‖A−1‖∞ is the ℓ∞-condition number and (cf. [8,
Section 9.7])

(1.7)
‖x− x̂‖∞
‖x‖∞

≤ γ3nκ∞(A)ρo(A)

where γm =
mǫ

1−mǫ
. (Additionally, (1.7) holds when using ρ∞ instead of ρo.) As such, error

analysis of GE using different pivoting schemes often focuses on the study of the growth factors
themselves. Note Wilkinson proved a weak form of backward stability of GEPP by establishing
the bound 1 ≤ ρ ≤ 2n−1 along with (1.6) [24]. Despite this exponential growth factor, GEPP
typically has much better performance than this worst-case behavior. Understanding why
GEPP still behaves so well remains an outstanding problem in numerical analysis.

Remark 1.2. This paper will focus on the impact of orthogonal transformations on the the
growth factor. (1.6) and (1.7) yield the corresponding growth factors along with κ∞ control
the relative error. Even through κ∞ is not invariant under orthogonal transformations, the
impact is relatively moderate. For example, we will see Eκ∞(B) ≈ N0.710719 for a particular
subclass of N ×N butterfly matrices (cf. Corollary 2.12).

1.3.1. Previous results on growth factors of random matrices. Surprisingly, the litera-
ture on random growth factors for dense matrices remains sparse. Interest in growth factors
of non-random matrices dates back to Wilkinson’s original work establishing the backward
stability of GEPP, which established maximal exponential growth factors of dimension 2n−1

that could lead to a loss of n − 1 bits of precision [24]. Early focus was on the worst-case
behavior of growth factors, which led to very pessimistic views of precision using LU factor-
izations. In [20], Trefethen and Schreiber shifted the view away from the worst-case model to
introduce average-case analysis of the stability of GE. They were interested in why GEPP was
successful in practice, with much higher precision than would be expected from the worst-case
scenario. To accomplish this, they carried out experiments to compute the growth factors of
a variety of random matrices.

Through statistical arguments and numerical experiments, they showed that the average
growth factor ρ using GEPP was no larger than O(n) for various random matrices with iid
entries. Limiting their experiments to matrices of dimension at most 210, they showed ρ using
GEPP is approximately n2/3 while ρ using GECP was approximately n1/2 for ensembles with
iid entries. They conjecture further the growth factor should be asymptotically O(n1/2) for
both GEPP and GECP. Additionally, they observe in the iid case that only a few intermediate
steps of GE were needed until the remaining entries exhibited approximately normal behavior.
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Hence, the Ginibre ensemble was a good stand-in for an approximately universal growth factor
model for iid matrices.

In the same paper, Trefethen and Schreiber also experimented with Haar orthogonal ma-
trices and observed the average growth factors were significantly larger than the iid models.
This was not too surprising since orthogonal scaled Hadamard matrices have growth factors
that are near the largest recorded using GECP [4, 7]. In [10], Higham, Higham and Pranesh
establish

(1.8) ρ(A) &
n

4 lnn

for A ∼ Haar(O(n)) using any pivoting strategy; i.e., they show asymptotically a lower bound
growing faster than the iid ensemble growth factors.

One common theme among these preceding works on random growth factors is that the
analysis is limited to computing specific parameters (e.g., the first moment) or bounds relating
to the growth factors. These only give a small glimpse at the distribution of these random
growth factors. The recursive structure of butterfly matrices, as described in the next section,
enables us to go beyond these prior limitations. We will provide the full distribution of the
growth factors of Haar-butterfly matrices in Theorem 2.3.

1.4. Random butterfly matrices. Butterfly matrices are a family of recursive orthogonal
transformations that were introduced by Parker in 1995 as a means of accelerating common
computations in linear algebra [16]. This section will build on top of [21] in further analyzing
additional numerical properties of random butterfly matrices.

A dimension N = 2n butterfly matrix B is formed using dimension N/2 = 2n−1 symmetric
matrices C, S such that [C, S] = 0 and C2 + S2 = IN/2 and dimension N/2 = 2n−1 butterfly
matrices A1, A2 by forming the product

(1.9) B =

[
C S
−S C

] [
A1

A2

]
=

[
CA1 SA2

−SA1 CA2

]

for n ≥ 1 and starting with {1} for n = 0.
1. If A1 = A2 at each recursive step, then the resulting butterfly matrices are called

simple butterfly matrices.
2. Let B(N) and Bs(N) denote the N × N scalar butterfly matrices and simple scalar

butterfly matrices, respectively, formed using scalar matrices

(1.10) (Ck, Sk) = (cos θkI2k−1 , sin θkI2k−1)

at each recursive step for θk ∈ [0, 2π).
For example, the 2 × 2 butterfly matrices are comprised precisely of SO(2), the standard
clockwise rotation matrices of the form

(1.11) B(θ) :=

[
cos θ sin θ
− sin θ cos θ

]
.

Moreover, we write B(θ) ∈ Bs(N) where θ ∈ [0, 2π)n with θi being the angle introduced in
the ith recursive step in constructing B(θ). Of particular note, using Kronecker products we
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can rewrite (1.9) in the case of the scalar butterfly matrices as

(1.12) B =
(
B(θ)⊗ IN/2

)
(A1 ⊕A2)

for B ∈ B(N) with A1, A2 ∈ B(N/2), and

(1.13) B(θ) =

n⊗

j=1

B(θn−j+1)

for B(θ) ∈ Bs(N) and θ ∈ [0, 2π)n, where θj ∈ [0, 2π) is the angle introduced in the ith

recursive step to form B.
Note (C, S) satisfying the above criteria necessarily satisfy (C, S) = Q(Λ1,Λ2)Q

∗ for
Q ∈ U(N) and diagonal Λ1,Λ2 such that ((Λ1)ii, (Λ2)ii) = (cos θ, sin θ) ∈ S1 for some θ
for each i. By construction, it follows Bs(N) ⊂ B(N) ⊂ SO(N), with equality only for
N = 2. While B(N) is not closed under multiplication, Bs(N) comprises an abelian subgroup
of SO(N) where

(1.14) B(θ)B(ψ) = B(θ +ψ) and B(θ)−1 = B(−θ).

This last result is an immediate consequence of (1.13) and the the mixed-product property of
the Kronecker product. See Appendix A for additional information and discussion relating to
properties of Kronecker products.

Let Σ be a collection of dimension 2k pairs (Ck, Sk) of random symmetric matrices with
[Ck, Sk] = 0 and C2

k +S2
k = I2k . We will write B(N,Σ) and Bs(N,Σ) to denote the ensembles

of random butterfly matrices and random simple butterfly matrices formed by independently
sampling (C, S) from Σ at each recursive step. Let

ΣS = {(cos θ(k)I2k−1 , sin θ(k)I2k−1) : θ(k) iid Uniform([0, 2π), k ≥ 1} and(1.15)

ΣD = {
2k−1⊕

j=1

(cos θ
(k)
j , sin θ

(k)
j ) : θ

(k)
j iid Uniform([0, 2π), k ≥ 1}.(1.16)

A large focus for the remainder of this paper is on the Haar-butterfly matrices, Bs(N,ΣS),
while numerical experiments in Subsections 2.1 and 2.2 will also use the other random scalar
butterfly ensemble, B(N,ΣS) along with the random diagonal butterfly ensembles, B(N,ΣD)
and Bs(N,ΣD).

The name of Bs(N,ΣS) is purposefully suggestive due to the result:

Proposition 1.3 ([21]). Bs(N,ΣS) ∼ Haar(Bs(N)).

Since Bs(N) is a closed subgroup of SO(N), then it has a Haar measure that can be used
to uniformly sample a matrix from this ensemble; so this explicit construction of random
butterfly matrices provides a method to directly sample from this distribution.

A particularly useful result that follows from (1.13) and the mixed-product property is that
matrix factorizations of B(θ) ∈ SO(2) translate directly to matrix factorizations of B(θ) ∈
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Bs(N). For example, expanding a result in [21] (see Lemma 2.4), one can easily compute the
eigenvalue decomposition of B(θ) as B(θ) = UΛθU

∗ for

(1.17) U =
1√
2

[
1 1
i −i

]
and Λθ =

[
eiθ

e−iθ

]
.

It follows then an eigenvalue decomposition of B(θ) is given by B(θ) = UnΛθU
∗
n for

(1.18) Un =

n⊗
U and Λθ =

n⊗

j=1

Λθn−j+1
.

Note in particular Un is independent of θ. This is natural since Bs(N) is an abelian group
of orthogonal matrices and hence can be simultaneously diagonalized, so all such matrices
must share the same eigenvectors. This holds also for B(θ) ∼ Bs(N,ΣS). In this case, the
stochasticity in the model is confined to the eigenvalues, which are necessarily of the form
eiv

T θ for each v ∈ {±1}n by (1.18). Moreover, each eigenvalue is uniformly distributed on
the unit circle (i.e., the one-point correlation of B(θ)), see Lemma B.8. See [21] for other
discussions and results relating to the spectral properties of butterfly matrices.

2. The impact of random butterfly matrices on growth factors. This section will focus
on the impact on ρ and ρ∞ by preconditioning linear systems using random transformations,
as outlined in (1.2). We will consider both 1-sided (i.e., V = I) and 2-sided preconditioning.
The 1-sided model has been studied in [2, 21], while the 2-sided model is consistent with the
block nondegenerate transformation as originally outlined by Parker [16]. We will use two
models, which are both extreme cases with respect to 1 ≤ ρ ≤ 2N−1.

1. Näıve model : using A = I, with ρ(A) = 1, and
2. Worst-case model : using A such that ρ(A) = 2N−1.
The näıve model is so named since it would be unnecessary to use any method to solve the

trivial linear system Ix = b. The main motivation to include this is as a test model to look
at how much one can mess up a linear system by using preconditioning. For this model, we
will only consider the 1-sided preconditioning case so that this provides a scenario to directly
study the growth factors of these random transformations. Random growth factors for fixed
matrix ensembles have been studied previously (e.g., [10, 20]). We are interested in continuing
that line of study so that we can compare the results for our particular random ensembles to
these previous studies.

The worst-case model goes to the other extreme, using a construction first due to Wilkinson
[24]. Wilkinson provided an explicit matrix A such that ρ(A) = 2N−1 satisfies the upper bound
ρ ≤ 2N−1. This model will then provide a sufficient scenario to study the dampening capacity
of randomized preconditioning on the growth factors. For this, we will only consider the
2-sided random transformations through numerical experiments.

Remark 2.1. We also ran experiments for 2-sided preconditioning using the identity ma-
trix, UIV ∗ = UV ∗, (in line with Parker’s motivation), as well as 1-sided preconditioning using
the Wilkinson matrix, ΩA. The results mostly mirrored those for the 1-sided näıve and 2-sided
worst case scenarios and would not add significantly to the discussion; so we will refrain from
including these additional trials. Of note for the two Haar distributions (i.e., Haar-butterfly
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and Haar orthogonal) that will be used in the experiments, the invariance properties of the
Haar measure then yield UV ∗ ∼ U for U, V both iid Haar matrices, so that the 1-sided and
2-sided näıve experiments are equivalent for these specific ensembles. In particular, all of
the results in Subsection 2.1.1 equally apply to the 1-sided and 2-sided näıve models using
Haar-butterfly matrices.

Remark 2.2. While both models represent extreme cases, most practical applications
would be far from either model. Additionally, some applications will not be impacted by
orthogonal transformations. For example, if G ∼ Gin(N,N) and U ∈ O(N) then UG ∼
Gin(N,N). Hence, BG ∼ G for any random butterfly matrix B. Similarly, AG ∼ G for
A ∼ Haar(O(N)). Other iid models have empirically been shown to behave similarly to the
Ginibre case (cf. [20]). Hence, this suggests using random butterfly matrices as precondition-
ers in such a setting would have marginal benefits.

2.1. Näıve model. For this model, we study the growth factors of the random precon-
ditioners directly. The Haar-butterfly models have the rare benefit that the distribution of
the associated growth factors for these matrices can be computed explicitly. This will be
established in Subsection 2.1.1. Subsection 2.1.2 uses numerical experiments to determine
approximate distributions of growth factors for other random matrix models.

2.1.1. Growth factors of Haar-butterfly matrices. Computations using simple scalar
butterfly or Haar-butterfly matrices are made significantly more tractable by combining (1.13)
along with Lemmas A.1 and A.2. Appendix B will contain the proofs of the outstanding
technical details.

Theorem 2.3. Let B ∼ Bs(N,ΣS) and Xj ∼ Cauchy(1) be iid for j ≥ 1. Let Yj = |Xj |
if using GENP and Yj = |Xj | | |Xj | ≤ 1 if using GEPP or GERP. Then B has an LU
factorization using GENP a.s., B has unique factors using GEPP that also determine the
GERP factorization, and

ρ(B) ∼
n∏

j=1

(1 + Y 2
j )(2.1)

ρo(B) ∼
n∏

j=1

(
1 +

2Y 2
j

1 + Yj

)
(2.2)

ρ∞(B) ∼
n∏

j=1

(1 + max(Yj , Y
2
j )),(2.3)

where 1 ≤ ρ(B) ≤ ρ∞(B) and 1 ≤ ρo(B) ≤ ρ∞(B) when using GENP and 1 ≤ ρ(B) ≤
ρo(B) ≤ ρ∞(B) ≤ N when using GEPP or GERP.

Moreover, the GEPP max-norm growth factor of B ∼ Bs(N,ΣS) is minimal among all
GE pivoting strategies, i.e., if P,Q are permutation matrices such that PBQ has a GENP
factorization a.s., then ρGENP(PBQ) ≥ ρGEPP(B).

Remark 2.4. When using pivoting, then max(Yj , Y
2
j ) = Yj since 0 ≤ Yj ≤ 1 so that

ρ∞(B) ∼
∏n
j=1(1 + Yj).
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Proof sketch of Theorem 2.3. The main technical steps needed to prove Theorem 2.3 in-
volve determining the explicit GENP and GEPP factorizations of a Haar-butterfly matrix
along with the intermediate GE factors (see Proposition B.1 and Lemma B.2). This is ac-
complished making heavy use of the Kronecker product structure of simple scalar butterfly
matrices along with the mixed-product property. This structure is further exploited to show
GEPP and GERP lead to the same LU factorization (see Corollary B.3). (This argument
does not extend to the later Worst Case model (see Subsection 2.2), which loses the Kronecker
product structure.) Most of the technical expense is spent on establishing the maximal growth
encountered during GENP, GEPP or GERP occurs in the final GE step, i.e.,

(2.4) max
k

‖B(k)‖max = ‖U‖max

(see Proposition B.4). The remainder follows directly from the mixed-product property and
the multiplicative property for Kronecker products with respect to ‖ · ‖max and ‖ · ‖∞ (by
Lemmas A.1 and A.2). The final statement that the GEPP growth factor minimizes the
Haar-butterfly growth factor using any pivoting strategy follows from Theorem B.14 (first
found in [9]) along with the fact ‖B‖max = ‖B−1‖max = ‖U‖−1

max for PB = LU the GEPP
factorization of B. These details are filled out in Appendix B.

Remark 2.5. Explicit distributions can similarly be determined as in Theorem 2.3 for
other growth factors depending only on the final LU factorization and using a norm that
is multiplicative with respect to Kronecker products (e.g., max-norm, induced norms, or p-
Schatten norms). Additionally, other simple random scalar butterfly models using different
distributions on the input angles would similarly result in a multiplicative distribution, but
with the Cauchy terms changed to reflect the different angle distributions.

Using GENP, ρ(B), ρo(B) and ρ∞(B) have no finite moments of any order since the
absolute Cauchy has no finite moments. However, since ρ(B), ρo(B) and ρ∞(B) are bounded
when using pivoting, we can calculate the average growth factors exactly rather than being
restricted to empirical estimates (as in [20]):

Corollary 2.6. Let B ∼ Bs(N,ΣS). Using GEPP or GERP, then Eρ(B) = Nα, Eρo(B) =
Nβ and Eρ∞(B) = Nγ for α = log2(

4
π ) ≈ 0.34850387, β = log2(

6 log 2
π ) ≈ 0.404699998 and

γ = log2(1 +
log 4
π ) ≈ 0.52734183. Moreover, Eρ(B)k = Nαk for αk = log2(

2
π | ImB2(k,

1
2)|).5

We can now relate the growth factors of Haar-butterfly matrices directly to the growth
factors of other random ensembles of matrices studied in [10, 20]. Using only GEPP, The-
orem 2.3 and Corollary 2.6 show ρ(B) is sublinear and Eρ(B) ≈ N0.34850387. Of note, this
is smaller than the average-case growth factors of iid ensembles using both GEPP and even
GECP, where Trefethen and Schreiber indicated these were, respectively, about N2/3 using
GEPP and N1/2 using GECP (and asymptotically O(N1/2)).

Another application using Corollary 2.6 and Markov’s inequality is if B ∼ Bs(N,ΣS) then

5Here Bx(a, b) =
∫ x

0
ta−1(1 − t)b−1 d t denotes the incomplete beta function. This arises via Ik =

π
4
Eρ(B(θ))k =

∫ π/4

0
sec2k x dx = 1

2

∫ 2

1
uk−1

√
u−1

du = − 1
2
ImB2(k,

1
2
) using a u = sec2 x substitution. Alter-

natively, the recurrence Ik = 2k−1

2k−1
+ 2k−2

2k−1
Ik−1 with I1 = 1 enables easy integer moment computations.
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using GEPP we have

(2.5) P

(
ρ(B) ≥ N

4 lnN

)
≤ 4n ln 2Nα−1 = Nα−1+o(1) = o(1),

since α < 1.6 This compares to ρ(A) & N
4n for A ∼ Haar(O(N)) using GEPP [10]. So for

sufficiently large n, Haar-butterfly matrices have GEPP growth factors that are strictly less
than the growth factors of Haar orthogonal matrices with high probability.

Although |X| has no finite moments of any order for X ∼ Cauchy(1), ln(1+X2) has finite

moments of any order: for example, E ln(1 +X2) = ln 4 and E ln(1 +X2)2 = π2

3 + (ln 4)2 (so

that Var ln(1 + X2) = π2

3 ). Since ln ρ(B) (and ln ρo(B) and ln ρ∞(B)) are then sums of iid
terms, each of which is dominated by 1 + ln(1 +X2), the Central Limit Theorem provides a
method to analyze the growth factors for sufficiently large Haar-butterfly matrices.

Corollary 2.7 (Haar-butterfly CLT). Let B ∼ Bs(N,ΣS) and Z ∼ N(0, 1). Using GENP,
GEPP or GERP, then for any t ∈ R

(2.6) lim
n→∞

P

(
ln ρ(B)− nµ√

nσ
≤ t

)
= P(Z ≤ t)

where µ = ln 4, σ2 = π2

3 when using GENP and µ = ln 4 − 4G
π , σ2 = 7

12π
2 + (ln 2)2 + 4Gµ

π −
16
π Im(Li3(1 + i)) when using GEPP or GERP.7

Remark 2.8. Corollary 2.7 shows that (ρ(B)e−nµ)1/(
√
nσ) converges in distribution to a

standard lognormal random variable, eZ where Z ∼ N(0, 1). Analogous results hold when
using ρ∞ or ρo.

GENP growth factors often are not studied extensively, which is not too surprising given
their instability. Corollary 2.7 can be used to better understand typical behavior of GENP for
Haar-butterfly matrices. Since ρ(B) does not have a finite mean, the median, Mn, would then
be a more desirable statistic to gauge behavior of ρ(B). For n sufficiently large, Corollary 2.7
guarantees

(2.9) P(Z ≤ 0) =
1

2
= P(ρ(B) ≤Mn) ≈ P

(
Z ≤ lnMn − nµ√

nσ

)
.

Since the convergence of the distribution functions in Corollary 2.7 is uniform, then lnMn −
nµ = o(n1/2). Using GENP we have µ = ln 4, so that enµ = Nµ/ ln 2 = N2. This can be used
as an estimator for the median of ρ(B):

6Note (2.5) holds if we replace N
4n

with Nc+o(1) for any c > α.
7We are using Catalan’s constant

(2.7) G :=
∑

n≥0

(−1)n

(2n+ 1)2
≈ 0.91596559,

along with the trilogarithmic function Li3, where

(2.8) Lis(z) :=
∑

k≥1

zn

ks
.
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Corollary 2.9. Let B ∼ Bs(N,ΣS), ρ(B) be the GENP growth factor, and Mn the median

of ρ(B). Then Mn = N2+o(n−1/2).

Hence, for n sufficiently large, then ρ(B) using GENP is approximately centered around N2

even through Eρ(B) = ∞ for any n.

Remark 2.10. Note p(n)N2 matches the form ofMn from Corollary 2.9 for any polynomial
p. Experiments suggest lnMn − nµ = O(1) (if not o(1)). For instance, since Theorem 2.3
enables us to sample growth factors for arbitrarily large Haar-butterfly matrices, we ran
106 experiments for n = 218 (corresponding to Haar-butterfly matrices of dimension N ≈
1.611 · 1078913). The sample median M̂n satisfied ln M̂n − nµ = −2.084063666115981 while

ln M̂n and nµ are each approximately 3.63 · 105. This suggests Corollary 2.9 could potentially
be improved to Mn = N2+O(n−1) or N2+o(n−1).

Using pivoting, we have E ln ρ(B) = µ = ln 4 − 4G
π , so ρ(B) is approximately centered

around N2− 4G
π ln 2 ≈ N0.31746612. This is not too far off from Eρ(B) ≈ N0.34850387.8 Similarly,

Corollary 2.7 can be used to estimate quantiles for ρ(B) (as well as for ρo(B) and ρ∞(B)).
Additionally, explicit results relating to κ∞(B) can be computed for B ∼ Bs(N,ΣS):

Theorem 2.11. Let B ∼ Bs(N,ΣS) and Yj be iid Arcsine(0, 1) for j ≥ 1. Then

(2.10) κ∞(B) ∼
n∏

j=1

(1 +
√
Yj)

with 1 ≤ κ∞(B) ≤ N .

In the context of Theorem 2.3, then
√
Yj =

2|Xj |
1+X2

j
for Xj ∼ Cauchy(1) iid (see Lemmas B.6

and B.7).9 Similarly, explicit average condition numbers as well as the average product of the
condition number and growth factor when using GEPP or GERP (since κ∞ ≥ 1 this product
is still not integrable in the GENP case), as found in (1.6) and (1.7), can be computed:

Corollary 2.12. Let B ∼ Bs(N,ΣS). Then Eκ∞(B) = N ξ for ξ = log2(1+
2
π ) ≈ 0.71071919.

Using GEPP or GERP, then Eκ∞(B)ρ(B) = N1+ζ , Eκ∞(B)ρo(B) = N1+ψ and Eκ∞(B)ρ∞(B) =
N1+φ for ζ = log2(

2
π (1 + log 2)) ≈ 0.10821126, ψ = log2(1 + log 4−1

π ) ≈ 0.16730823, and

φ = log2(1 +
log 2
π ) ≈ 0.28763257.

One consequence of Corollary 2.12 is that using GEPP (or GERP) to solve the näıve model
preconditioned by a Haar-butterfly matrix B ∼ Bs(N,ΣS) using double precision (i.e., ǫ =
2−52) generates a relative error that has an average upper bound from (1.6) of

(2.11) 4N2
Eκ∞(B)ρ(B)ǫ = 4N3+ζǫ = 2(3+ζ)n−50.

Suppose one wanted to guarantee precision up to about 10−6. Since (3 + ζ)n− 50 < −20 for
n < 30

3+ζ ≈ 9.65185359, the average ℓ∞-relative error preconditioning the trivial linear system

8Jensen’s inequality guarantees the median estimate 2E log
2
ρ(B) is smaller than Eρ(B); however, since ln ρ(B)

will have heavier right tails, then this median estimate should be an overestimate of the actual median of ρ(B).
9Note if using GENP then κ∞(B)ρ(B) ∼

∏n
j=1(1 + |Xj |)

2 for Xj ∼ Cauchy(1).
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by a Haar-butterfly matrix using double precision can do no worse than 2−20 < 10−6 for N
up to 29 = 512. Quad precision (i.e., 112−bit precision) would maintain this bound for N up
228 = 2.68435456 · 108. So computed solutions using butterfly preconditioners remain stable
even for relatively large butterfly matrices.10

Figures 1a, 1c, and 1e show maps of ρ(B), ρo(B), and ρ∞(B) using GENP for B =
B(θ1, θ2) ∈ Bs(4), mapped against the input angles used to generate B. Note the singularity
lines in Figures 1a, 1c, and 1e account for when θi = π ± π

2 for some i. These coincide
with when B11 = cos θ1 cos θ2 = 0 and GENP factorization fails on the first step (and in
fact this shows this is the only step on which GENP can fail). Figures 1b, 1d, and 1f show
maps of ρ(B), ρo(B), and ρ∞(B) using GEPP (or GERP) for B = B(θ1, θ2) ∈ Bs(4). Note
each of the peaks in Figures 1b, 1d, and 1f occur precisely at the scaled Hadamard matrices,
B(θ) ∈ Bs(N) for θ ∈ (π4 + π

2Z)
n so that

√
NB(θ) ∈ {±1}N×N with orthogonal rows and

columns. As such, butterfly models can be used as a continuous approximation of Hadamard
matrices to derive other desirable properties. Hadamard matrices then are extreme points for
these butterfly models with respect to growth factors. Walsh(-Hadamard) transformations
are a popular choice to efficiently randomize the elements of a matrix [19]. With respect to
the growth factor, then Walsh transforms appear to be the least desirable preconditioners in
the butterfly ensembles. This will be explored further in future work.

The relationship 1 ≤ ρ(B) ≤ ρ∞(B) can easily be viewed for this case, as Figure 1a fits
inside Figure 1e and Figure 1b fits inside Figure 1f. Similarly, the relationships to ρo(B) using
GEPP can be viewed by iteratively stacking Figures 1b, 1d, and 1f

2.1.2. Numerical experiments. In this section, we will run numerical experiments to
compare the impact on the growth factor and relative errors in the näıve model when using
a variety of random preconditioners Ω with GENP, GEPP, GERP, and GECP. These will
only include the 1-sided transformations, so that the growth factors of the preconditioning
matrices can be explored directly. Experiments are run using MATLAB in double precision,
where ǫ = 2−52 (ǫ ≈ 2.220446 · 10−16). We will run 10, 000 trials for each preconditioner for
the näıve model Ix = b, where x ∼ Uniform(SN−1) and N = 2n for n = 2 to n = 8. To ease
the following discussion, we choose N = 28 as we feel it is representative of the performance
we observed for other choices of N . For computational simplicity, we will only consider ρ∞.
Additionally, one step of iterative refinement will be run.11 Tables 1 to 4 will show the sample
medians, means (x̄) and standard deviations (s) for the trials for n = 8. Moreover, Figures 2

to 5 will summarize the growth factors and relative errors, resp. ρ∞(Ω) and ‖x−x̂‖∞
‖x‖∞ .

The particular random preconditioners we will use in these experiments are
• Bs(N,ΣS)
• B(N,ΣS)
• Bs(N,ΣD)
• B(N,ΣD)

10Repeating the argument for κ∞(B)ρ(B) using GENP as used in Corollaries 2.7 and 2.9 to find the approx-
imate median yields about half the time GENP maintains ℓ∞-relative error precision up to 1 for N at most
210 = 1028.

11Note we actually ran two steps of iterative refinement in all of our experiments, but only marginal benefits
were gained.
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(a) ρGENP(B) (b) ρGEPP(B)

(c) ρGENP
o (B) (d) ρGEPP

o (B)

(e) ρGENP
∞ (B) (f) ρGEPP

∞ (B)

Figure 1: ρ, ρo, and ρ∞ using B = B(θ1, θ2) ∈ Bs(4)
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• Walsh transform
• Haar(O(N))
• Discrete Cosine Transform (DCT II).

See Subsection 1.2 for more information on the Walsh, Haar orthogonal and DCT transfor-
mations.12

Remark 2.13. The parameters needed to generate each butterfly matrix (i.e., the number
of uniform angles) increases from n for Bs(N,ΣS), N − 1 for both B(N,ΣS) and Bs(N,ΣD),
to 1

2Nn for Bs(N,ΣD). The ordering of the butterfly models included in the summary tables

and figures reflects this increasing of number of these parameters. These compare to
(
N
2

)
=

1
2N(N − 1) uniform angles that could be used to sample Haar(O(N)), which can be realized
by using Givens rotations to find the QR factorization of Gin(N,N).

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 5.18e+04 5.09e+14 5.08e+16 1.00e-13 6.78e-10 6.43e-08 4.07e-16 4.15e-16 8.86e-17
B(N,ΣS) 1.95e+08 1.16e+13 5.95e+14 1.51e-11 6.48e-09 3.85e-07 4.08e-16 4.18e-16 1.48e-16

Bs(N,ΣD) 1.03e+10 1.17e+19 1.13e+21 2.39e-11 1.38e-01 1.38e+01 4.10e-16 2.40e-03 2.37e-01
B(N,ΣD) 3.00e+11 1.43e+16 5.32e+17 3.16e-10 1.65e-01 7.58e+00 4.06e-16 5.29e-10 4.17e-08

Walsh NaN NaN NaN NaN NaN NaN NaN NaN NaN
Haar(O(N)) 3.27e+06 2.68e+09 1.05e+11 2.61e-12 1.12e-11 8.54e-11 1.04e-15 1.07e-15 2.12e-16

DCT II 1.33e+28 1.33e+28 0.00e+00 4.33e+12 5.48e+12 4.61e+12 3.89e+14 4.94e+14 4.16e+14

Table 1: Näıve model numerical experiments for GENP with 10,000 trials for N = 28

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 1.60e+01 1.87e+01 1.11e+01 1.00e-15 1.15e-15 5.72e-16 4.07e-16 4.16e-16 9.11e-17
B(N,ΣS) 1.93e+01 2.02e+01 6.19e+00 1.94e-15 2.07e-15 6.91e-16 4.07e-16 4.16e-16 8.82e-17

Bs(N,ΣD) 2.42e+01 2.58e+01 8.64e+00 1.91e-15 2.04e-15 6.85e-16 4.09e-16 4.18e-16 8.73e-17
B(N,ΣD) 2.54e+01 2.59e+01 3.87e+00 1.96e-15 2.08e-15 6.58e-16 4.07e-16 4.15e-16 8.94e-17

Walsh 2.56e+02 2.56e+02 0.00e+00 3.66e-15 4.09e-15 1.86e-15 3.28e-16 3.35e-16 6.02e-17
Haar(O(N)) 5.20e+02 5.32e+02 7.52e+01 9.27e-15 9.59e-15 2.42e-15 1.04e-15 1.07e-15 2.10e-16

DCT II 2.14e+02 2.14e+02 1.85e-12 6.56e-15 6.86e-15 1.92e-15 3.48e-16 3.54e-16 6.02e-17

Table 2: Näıve model numerical experiments for GEPP with 10,000 trials for N = 28

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 1.60e+01 1.87e+01 1.11e+01 1.02e-15 1.17e-15 5.69e-16 4.06e-16 4.17e-16 9.28e-17
B(N,ΣS) 2.59e+01 3.12e+01 1.79e+01 1.95e-15 2.08e-15 6.78e-16 4.06e-16 4.16e-16 8.96e-17

Bs(N,ΣD) 2.45e+01 2.59e+01 8.36e+00 1.87e-15 1.99e-15 6.31e-16 4.08e-16 4.18e-16 9.08e-17
B(N,ΣD) 2.81e+01 2.95e+01 6.78e+00 1.90e-15 2.00e-15 5.94e-16 4.07e-16 4.17e-16 8.99e-17

Walsh 2.56e+02 2.56e+02 0.00e+00 3.64e-15 4.11e-15 1.89e-15 3.28e-16 3.34e-16 6.00e-17
Haar(O(N)) 2.96e+02 3.00e+02 2.77e+01 6.80e-15 7.01e-15 1.68e-15 1.04e-15 1.07e-15 2.11e-16

DCT II 2.79e+02 2.79e+02 5.63e-12 7.32e-15 7.65e-15 2.04e-15 3.48e-16 3.54e-16 6.13e-17

Table 3: Näıve model numerical experiments for GERP with 10,000 trials for N = 28

12For the näıve model case, the random signs used for the Walsh and DCT experiments have no impact
since the LU factorization differs from the deterministic Walsh and DCT matrix factorizations by having the
U factor (and each intermediate A(k) factor) multiplied on the right by a diagonal random sign matrix, while
‖ · ‖max and ‖ · ‖∞ are invariant under sign permutations; moreover, Gin(N,M) is invariant under orthogonal
transformations. These do come into play for the worst-case model (see Subsection 2.2.1).
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5
4 ln 2 so that µ∞

ln 2 ≈ 2.0912669407 provides an approximate median, Mn,∞, for the ℓ∞-growth

factor, ρ∞(B), where Mn,∞ = Nµ∞/ ln 2+o(n−1/2). Figure 2 shows the marker representing
E log10(ρ∞(B)) = nµ∞

ln 10 ≈ 5.036 (so about halfway between 100 and 1010 in Figure 2) is not
yet a good approximation for the GENP median Mn,∞ when n = 8 since the plot of ρ∞(B)
is not sufficiently lognormal: the estimate Nµ∞/ ln 2 ≈ 108, 710 is about twice as large as the
sample median M̂n = 51, 776 from Table 1. However, the GEPP and GERP plots for ρ∞ in
Figures 3 and 4 appears much closer to lognormal than the GENP case, so µ∞ = ln 2

2 yields

the marker at E log10(ρ∞(B)) = nµ∞
ln 10 = 4 ln 2

ln 10 ≈ 1.20411998 (between 101 and 102 in Figures 3
and 4) where n = 8 provides a much better estimator for the median of Figures 3 and 4 using

GEPP or GERP: here 10
4 ln 2
ln 10 = 24 = 16 provides a very good approximation for the computed

sample medians 16.0059 from Table 2 and 15.987 from Table 3.

2.2. Worst-case model. Wilkinson established a weak form of backward stability of
GEPP by showing ρ(A) ≤ 2m−1 for any nonsingular A ∈ R

m×m [24, 25]. In [24, pg. 202],
Wilkinson further shows this bound on worst-case growth factor is sharp, using the following
construction:

(2.13) Am = Im −
∑

i>j

Eij +
m−1∑

i=1

Eim.

By design, GEPP would carry out without using any pivoting on Am at any intermediate
GE steps, so that the Am = LU factorizations coincide for GENP and GEPP, where L =
Im −

∑
i>j Eij and U = Im − Emm +

∑m
i=1 2

i−1Eim. It follows ρ(Am) = |Umm| = 2m−1. For
example,

(2.14) A4 =




1 1
−1 1 1
−1 −1 1 1
−1 −1 −1 1


 =




1
−1 1
−1 −1 1
−1 −1 −1 1







1 1
1 2

1 4
8




has ρ(A4) = 8 = 23.
It happens that also ρ∞(Am) = 2m−1 (while ρo(Am) = 1+ 2

m(2m−1 − 1)), although this is
not the upper bound of ρ∞.13 See [3] for additional discussions relating to explicit relationships
and bounds between different growth factors.

Remark 2.15. Note GECP, GERP, or any column pivoting scheme would result in PAQ =
LU for P = I and Q = P(2 m)(3 m)···(m−1 m) = P(2 m m−1 ··· 3) for L = I +

∑
i>j≥2Eij −∑m

i=2Eij and U = E11 + 2E22 − 2
∑m

i=3Eii +
∑m−1

i=1 Ei,i+1, where ρ(A) = 2 (while ρo(Am) =
3− 2

m and ρ∞(Am) = 3− δm2). For example,

(2.15) A4P(2 4 3) =




1 1
−1 1 1
−1 1 −1 1
−1 1 −1 −1


 =




1
−1 1
−1 1 1
−1 1 1 1







1 1
2 1

−2 1
−2


 .

13For example, multiplying the last column of Am by a constant c ≥ 1 does not change ρ but ρ∞ would
become mc

m+c−1
2m−1; letting c → ∞ has ρ∞ monotonically increase to m2m−1.
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Theorem 2.3 (which through the invariance properties of the Haar measure equivalently uses
UAV ∗ for A = IN , which can be realized as the n-fold Kronecker product of I2).

2.2.1. Numerical experiments. For the worst-case model, our goal is to better understand
how much of a dampening effect preconditioning by butterfly matrices can have. We will study
the two-sided preconditioning by looking at models as outlined in (1.2) when studying the
linear system ANx = b for x ∼ Uniform(SN−1) for N = 2n and n = 2 to 8. We are
again running 10, 000 trials computing ρ∞, relative errors and relative errors after one step of
iterative refinement for GENP, GEPP, GERP, and GECP. Hence, we are starting with a linear
system with a maximal growth factor ρ, and we will study how the growth factor and the
corresponding relative error of computed solutions are impacted through using GE to solve
the equivalent linear systems

(2.17) UANV
∗y = Ub and x = V ∗y

for independent random transformations U, V . For computational simplicity, we will compare
ρ∞, for which we note ρ∞(AN ) = ρ(AN ) = 2N−1, using the same random transformations
used in Subsection 2.1.2: Bs(N,Σ) and B(N,Σ) for Σ = ΣS and ΣD, along with the Walsh
transform, Haar orthogonal transform and Discrete Cosine Transform. (See Subsections 1.2
and 2.1.2 for more explicit descriptions of the transformations used in these experiments.)
Tables 5 to 8 will summarize the sample medians, means and standard deviations for the
n = 8 trials.

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 3.30e+05 1.93e+13 1.93e+15 2.20e-12 9.10e-10 5.72e-08 2.60e-15 2.87e-15 1.24e-15
B(N,ΣS) 3.16e+05 9.33e+08 5.51e+10 2.87e-12 3.71e-11 1.78e-09 2.74e-15 2.92e-15 9.17e-16

Bs(N,ΣD) 4.04e+05 3.45e+09 1.94e+11 3.32e-12 3.16e-11 9.37e-10 2.64e-15 2.86e-15 1.11e-15
B(N,ΣD) 2.27e+05 2.10e+10 1.93e+12 2.33e-12 6.63e-06 6.56e-04 2.78e-15 7.69e-14 7.39e-12

Walsh 1.86e+28 7.38e+42 7.19e+44 8.63e+00 1.60e+12 4.37e+13 8.16e-01 6.33e+16 6.15e+18
Haar(O(N)) 2.17e+05 2.30e+08 1.10e+10 1.99e-12 8.88e-12 6.98e-11 7.73e-15 8.05e-15 1.89e-15

DCT II 3.91e+05 7.16e+08 3.34e+10 6.38e-12 2.06e-09 1.90e-07 2.57e-15 5.40e-15 2.74e-13

Table 5: Worst-case model numerical experiments for GENP with 10,000 trials for N = 28

(excluding 505 Walsh trials where GENP failed)

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 2.67e+01 2.97e+01 1.51e+01 6.85e-15 8.94e-15 8.81e-15 2.59e-15 2.89e-15 1.27e-15
B(N,ΣS) 5.66e+01 5.79e+01 1.53e+01 8.75e-15 9.38e-15 3.45e-15 2.75e-15 2.92e-15 9.17e-16

Bs(N,ΣD) 5.20e+01 5.17e+01 1.07e+01 7.11e-15 7.93e-15 3.90e-15 2.64e-15 2.87e-15 1.10e-15
B(N,ΣD) 7.09e+01 6.90e+01 1.23e+01 8.16e-15 8.47e-15 2.09e-15 2.77e-15 2.93e-15 8.87e-16

Walsh 7.46e+01 7.17e+01 1.16e+01 8.36e-15 8.60e-15 1.97e-15 1.99e-15 2.11e-15 6.83e-16
Haar(O(N)) 7.47e+01 7.19e+01 1.13e+01 1.09e-14 1.11e-14 2.29e-15 7.73e-15 8.05e-15 1.91e-15

DCT II 7.65e+01 7.31e+01 1.09e+01 8.45e-15 8.68e-15 1.90e-15 2.57e-15 2.67e-15 6.82e-16

Table 6: Worst-case model numerical experiments for GEPP with 10,000 trials for N = 28

2.2.2. Discussion. Recall using GEPP (or GENP), we have ρ∞(AN ) = 2N−1. In particu-
lar, for n = 8 then ρ∞(AN ) = 2255 ≈ 5.7896 · 1076. Table 6 shows each random preconditioner
has beneficial dampening impacts in terms of reducing the growth factors and the associated
relative errors. Figure 8 further illustrates this dampening impact with respect to the growth
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Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 2.59e+01 2.66e+01 6.96e+00 3.05e-15 3.22e-15 9.63e-16 2.59e-15 2.88e-15 1.26e-15
B(N,ΣS) 5.33e+01 5.27e+01 1.14e+01 4.72e-15 4.88e-15 1.31e-15 2.75e-15 2.92e-15 9.09e-16

Bs(N,ΣD) 3.85e+01 3.85e+01 6.42e+00 3.16e-15 3.29e-15 8.73e-16 2.63e-15 2.84e-15 1.09e-15
B(N,ΣD) 6.12e+01 5.99e+01 6.67e+00 5.13e-15 5.27e-15 1.16e-15 2.76e-15 2.93e-15 8.90e-16

Walsh 7.34e+01 7.32e+01 4.19e+00 5.52e-15 5.64e-15 1.16e-15 1.98e-15 2.10e-15 6.78e-16
Haar(O(N)) 7.32e+01 7.29e+01 4.36e+00 9.28e-15 9.55e-15 2.02e-15 7.73e-15 8.05e-15 1.93e-15

DCT II 7.33e+01 7.30e+01 4.26e+00 5.75e-15 5.86e-15 1.16e-15 2.56e-15 2.67e-15 6.81e-16

Table 7: Worst-case model numerical experiments for GERP with 10,000 trials for N = 28

Growth factor: ρ∞ Relative error Relative error + Iterative refinement
Median x̄ s Median x̄ s Median x̄ s

Bs(N,ΣS) 1.36e+01 1.44e+01 4.69e+00 2.71e-15 2.87e-15 8.61e-16 2.52e-15 2.81e-15 1.31e-15
B(N,ΣS) 4.17e+01 4.18e+01 9.74e+00 3.80e-15 3.94e-15 1.05e-15 2.62e-15 2.86e-15 1.18e-15

Bs(N,ΣD) 1.88e+01 1.92e+01 4.10e+00 2.68e-15 2.84e-15 8.14e-16 2.45e-15 2.70e-15 1.23e-15
B(N,ΣD) 4.66e+01 4.58e+01 4.92e+00 3.93e-15 4.06e-15 9.14e-16 2.63e-15 2.87e-15 1.20e-15

Walsh 6.46e+01 6.46e+01 2.99e+00 4.57e-15 4.66e-15 9.37e-16 2.10e-15 2.23e-15 8.00e-16
Haar(O(N)) 6.43e+01 6.43e+01 3.10e+00 8.76e-15 9.03e-15 1.93e-15 5.87e-15 6.30e-15 1.92e-15

DCT II 6.44e+01 6.44e+01 3.03e+00 4.85e-15 4.95e-15 9.77e-16 2.33e-15 2.48e-15 8.11e-16

Table 8: Worst-case model numerical experiments for GECP with 10,000 trials for N = 28

factors. Each preconditioner has growth factor approximately less than 102, far away from
the worst-case scenario.

Using GENP, all except the Walsh transform have strong dampening impacts on the
growth factor, as illustrated in Table 5 and Figure 7. Of interest for the Walsh transform is
that the resulting matrix UANV

∗ can now be block degenerate. For our 10,000 trials, 505
using the Walsh transform resulted in block degenerate matrices. (Table 5 shows the summary
of the results for the block nondegenerate trials.) Overall, even when the transformed matrix
was block nondegenerate, the results were nowhere near the performance seen in the other
random preconditioners considered and led to highly unstable computed solutions. Using
GENP, the Haar orthogonal transformations had the best performance on average, while the
butterfly models still outperformed the DCT. Among the butterfly models, B(N,ΣS) and
Bs(N,ΣD) had the smallest growth factors and best precision results. Adding one step of
iterative refinement then led to also Bs(N,ΣS) matching precision of the GEPP, GERP, and
GECP experiments. Note also that although Bs(N,ΣS) had a larger average relative error
than most of the other models, its median was smaller than all but the Haar orthogonal
case. Moreover, comparing the histograms in Figure 7 indicates about a fifth of the time the
relative error for GENP is smaller than the left edge of the bulk for each of the remaining
models. So even though the Haar-butterfly models led to some samples with the largest
relative errors (excluding the Walsh model), they also produced a portion of samples that had
higher accuracy than any other model.

For the GERP and GECP experiments, the worst-case model actual is closer in spirit to
the näıve model since ρ∞(AN ) = 3 is almost optimal. So these experiments measure how much
this preconditioning can mess things up. In this light, all of the butterfly models outperformed
the remaining random transformations.

Also of note with respect to the Bs(N,ΣS) trials is that the logarithmic growth factors in
Figure 7 both look approximately lognormal, while the Haar(O(N)) logarithmic growth factor
generates a non-lognormal histogram, especially in the GEPP case. The remaining butterfly
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Lemma A.1. If ‖ · ‖ is an induced ℓp-matrix norm or ‖ · ‖max, then ‖A⊗B‖ = ‖A‖‖B‖ for
A ∈ R

n1×m1 and B ∈ R
n2×m2.

Proof. This is a trivial calculation for ‖ · ‖ = ‖ · ‖max. If ‖ · ‖ is an induced matrix norm,
then the multiplicative property is established in [11, Theorem 8].

These are not the only norms on which Kronecker products satisfy this multiplicative property.
Other straightforward computations show p-Schatten norms |Tr(Ap)|1/p work (since Tr(A ⊗
B) = Tr(A) Tr(B) for square A,B), including the Frobenius norm, as well as any standard
p-norm applied to the vectorization of the matrix A ∈ R

n×m as an element of R
nm (e.g.,

‖A‖max = ‖ vec(A)‖∞). We will restrict our attention in this paper specifically to ‖ · ‖max and
(the induced) ‖ · ‖∞.

Additionally, the Kronecker product allows for straightforward matrix factorizations de-
termined directly from the corresponding factorizations of each factor. For example:

Lemma A.2. If PjAjQj = LjUj for permutation matrices Pj , Qj and unit lower triangular

Lj and upper triangular Uj and A =

n⊗

j=1

Aj, then PAQ = LU for permutation matrices P =

n⊗

j=1

Pj, Q =

n⊗

j=1

Qj and unit lower triangular L =

n⊗

j=1

Lj and upper triangular U =

n⊗

j=1

Uj.

Proof. This follows directly from the mixed-product property (A.3).

A.1. Gaussian elimination. Gaussian elimination (GE) remains the most prominent ap-
proach to solving linear systems Ax = b for A ∈ R

n×n. GE without pivoting (GENP), when
it succeeds, results in the triangular factorization A = LU for unit lower triangular L with

(A.4) Lij =
A

(j)
ij

A
(j)
jj

for i > j, where A(k) denotes the matrix before the kth step in GENP with zeros below the

first k − 1 diagonal entries, and U = A(n) is upper triangular with Ujj = A
(j)
jj . GENP can be

carried out in 2
3n

3 +O(n2) FLOPs.
If A is block nondegenerate, then A has an LU factorization using GENP. If A is block

degenerate, then pivoting is necessary. Even when not essential, different pivoting schemes
are often employed to control errors from using floating-point arithmetic. The most popular
modified version of GE is GE with partial pivoting (GEPP). This involves an additional scan
at GE step k to find the entry of max norm below the diagonal of A(k) within the column and
then a possible row swap to ensure the magnitude of the entry on the kth diagonal is at least
as large as those below it. This results in a PA = LU factorization where P is a permutation
matrix. By construction, the L factor from GEPP satisfies

(A.5) |Lij | ≤ 1 for any i > j.

GE with complete pivoting (GECP) involves a scan through the entire lower untriangularized
remaining block of A(k) followed by possible row and column swaps to ensure the magnitude



30 J. PECA-MEDLIN AND T. TROGDON

of the entry on the kth diagonal is at least as large as that of all the entries in the lower-left
(n − k + 1) × (n − k + 1) subblock of A(k). This results in a PAQ = LU factorization for
permutation matrices P,Q. For this paper, we will assume a pivot search chooses the pivot
with minimal taxi cab distance with respect to the row and column indices to the pivot position
(i.e., the main leading diagonal entry in the remaining untriangularized subblock), prioritizing
minimal row index distance over column index in the case of a tie between candidates.

GE with rook pivoting (GERP) involves iteratively scanning first through the column
below the diagonal to find a max norm entry, and then within that specific row to find the
max norm entry, and repeating between column and row scans, until this process completes
with the candidate pivot that maximizes both its row and column. This is followed then by
the associated row and column swaps to move the resulting candidate to the pivot position.
The name of the pivoting scheme is derived from the limitation on the pivot scans to paths a
rook piece could make in a game of chess. See [17] for further discussion regarding GERP. We
will not explore additional numerical experiments for GERP beyond highlighting connections
to our chosen models. Note for this paper we will assume GERP always sequences column
scans before row scans at each intermediate step.

The total operational costs of these pivoting schemes differs only in the added scans to
find each pivot and associated row and column swaps. O(n2) and O(n3) additional scans
are needed, respectively, for GEPP and GECP, while GERP ranges from twice the GEPP
complexity (with respect to added scans) to the full GECP complexity. In [17], computations
with iid models show that on average the number of scans needed for GERP is O(n2) as well,
typically accounting for only a factor of 3 more scans than for GEPP.

Using GENP, a standard result establishes the existence and uniqueness of an GENP LU
factorization. The particular form presented in [8, Theorem 9.1] is given below:

Theorem A.3. There exists a unique LU factorization of A ∈ R
n×n using GENP if and

only if A:k,:k is nonsingular for k = 1, . . . , n− 1. If A:k,:k is singular for some k < n, an LU
factorization may exist but it is not unique.

With pivoting, the LU factorization is sensitive to row and column permutations: If PA = LU
is the LU factorization for A using GEPP, then for B = QA for another permutation matrix
Q, then we do not necessarily have (PQT )B = LU using GEPP. This non-uniqueness of LU
factors follows in the event there are any “ties” at an intermediate GE pivot search step;

in such a case, we have |A(j)
ij | = |A(j)

jj | so that |Lij | = 1 for some i > j. For example, if

A =

[
1 x
1 y

]
and B = P(1 2)A =

[
1 y
1 x

]
, then using GEPP, we have

(A.6) A =

[
1 0
1 1

] [
1 x
0 y − x

]
and B =

[
1 0
1 1

] [
1 y
0 x− y

]
.

When ties are avoided, GEPP results in unique L and U factors.

Theorem A.4. Let A be a nonsingular square matrix. Then the L and U factors in the
GEPP factorization PA = LU are invariant under row permutations on A iff |Lij | < 1 for
all i > j.
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Proof. By considering B = PA, we can assume P = I. Suppose first |Lij | = 1 for some

i > j. Let j and then i be minimal such that this occurs. Since |B(j)
jj | = |B(j)

ij |, then using
the row transposition permutation (i j) would yield a different Pσ factor with σ(j) 6= j, so
that Pσ 6= I. The L and U factors must differ for PσB 6= B by Theorem A.3. Now assume
|Lij | < 1 for all i > j. Let PσB = L′U ′ be another GEPP factorization of B for some σ ∈ Sn.
Suppose σ is a nontrivial permutation. Let i be the first non-fixed point of σ, and note then
i < min(σ(i), σ−1(i)). Then

(A.7) |(L′)σ(i),i| =

∣∣∣∣∣∣
(PσB)

(i)
σ(i),i

(PσB)
(i)
ii

∣∣∣∣∣∣
=

∣∣∣∣∣∣
B

(i)
ii

B
(i)
σ−1(i),i

∣∣∣∣∣∣
=

1

|Lσ−1(i),i|
> 1.

This contradicts (A.5). It follows necessarily σ must be the trivial permutation so that Pσ = I.
The uniqueness of the L and U factors follows from Theorem A.3.

Theorem A.4 can be generalized to other pivoting strategies (e.g., GECP), such that the
specific L and U factors are unique whenever no ties are encountered in each intermediate
pivot search step.

Appendix B. Proofs for Subsection 2.1.1.

Note first using (1.13) then we can find the GENP and GEPP factorizations of simple
butterfly matrices directly:

Proposition B.1. Let B = B(θ) ∈ Bs(N). If cos θi 6= 0 for all i, then B has GENP
factorization B = LθUθ where Lθ =

⊗n
j=1 Lθn−j+1

, Uθ =
⊗n

j=1 Uθn−j+1
, and

(B.1) Lθ =

[
1 0

− tan θ 1

]
and Uθ =

[
cos θ sin θ
0 sec θ

]

Let θ′ ∈ [0, 2π)n be such that

(B.2) θ′i =

{
θi if | tan θi| ≤ 1,

π
2 − θi if | tan θi| > 1.

If | tan θi| 6= 1 for any i, then the GEPP factorization of B is PB = LU where P = Pθ =⊗n
j=1 Pθn−j+1

for

(B.3) Pθ =

{
I2 if | tan θi| ≤ 1,

P(1 2) if | tan θi| > 1,

L = Lθ
′, U = Uθ

′Dθ, Dθ =
⊗n

j=1Dθn−j+1
, and

(B.4) Dθ =

{
I2 if | tan θi| ≤ 1,

(−1)⊕ 1 if | tan θi| > 1.

Moreover, for all k we have (PB)(k) = B(θ′)(k)Dθ where B(θ′) ∈ Bs(N).
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Proof. First consider the GENP case. Note if cos θ 6= 0, then B(θ) ∈ SO(2) has an LU
factorization with B(θ) = LθUθ. The conclusion then follows by Lemma A.2 and (1.13).

For the GEPP case: Let PB = LU be the GEPP factorization of B. Note first using
GEPP for B(θ) ∈ SO(2), then a row pivot is needed only if | tan θ| > 1. Using Theorem A.4,
if we can establish |Lij | < 1 for all i > j, then the format for P follows immediately from
Lemma A.2. Note

(B.5) P(1 2) =

[
0 1
1 0

]
=

[
0 1
−1 0

] [
−1 0
0 1

]
= B

(π
2

)
(−1⊕ 1).

For

(B.6) ej =

{
1 if | tan θj | ≤ 1,
0 if | tan θj | > 1,

we have

(B.7) P
ej
(1 2) = B

(π
2
ej

)
((−1)ej ⊕ 1), while also (−1⊕ 1)B(θ)(−1⊕ 1) = B(−θ).

Additionally using the mixed-product property and (1.13), we have PB = B′D for D = Dθ

and B′ = B(θ′) ∈ Bs(N), with θ′ such that

(B.8) θ′j =
π

2
ej + (−1)ejθj =

{
θj if | tan θj | ≤ 1

π
2 − θj if | tan θj | > 1.

If B′ = L′U ′ is the GENP factorization of B′ then B′D = L′(U ′D) is the GENP factorization
of B′D. It follows that

(B.9) (PB)(k) = (B′D)(k) = (L′)(k)B′D = B′(k)D.

The final factorization follows from the GENP case applied to B′. The unique form of the
factors in PB = LU with L = L′ and U = U ′D follows from Theorem A.4 since | tan θ′k| < 1
for all k so that |Lij | < 1 for all i > j by Lemma A.2.

Having this explicit LU factorization of B ∈ Bs(N) allows us to also construct each of the
intermediate matrices B(k).

Lemma B.2. Suppose A ∈ R
N/2×N/2 has an LU factorization using GENP. Let

(B.10) B =

[
cos θA sin θA
− sin θA cos θA

]
= B(θ)⊗A

for cos θ 6= 0. Then B has an LU factorization using GENP. Moreover, if k ≤ N/2, then

(B.11) B(k) =




cos θA(k) sin θA(k)

− sin θ

[
0 0

0 IN/2−k+1

]
A(k) sec θ

(
A− sin2 θ

[
0 0

0 IN/2−k+1

]
A(k)

)

 .

If k = N/2 + j for j ≥ 1, then

(B.12) B(k) =

[
cos θA(N/2) sin θA(N/2)

0 sec θA(j)

]
.
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Proof. Let A = L′U ′ be the GENP factorization of A. Then B has an LU factorization
using GENP, B = LU , where B(θ) = LθUθ, and

(B.13) L = Lθ ⊗ L′ =

[
L′ 0

− tan θL′ L′

]
and U = Uθ ⊗ U ′ =

[
cos θU ′ sin θU ′

0 sec θU ′

]

by Lemma A.2. Recall

(B.14) B(k) = LkB
(k−1) = LkLk−1 · · ·L1B =: L(k)B,

where L(1) := I, L(N) = L−1, and for 1 ≤ k < N

(B.15) Lk = I−
∑

i≥k
Li,k−1Ei,k−1.

It follows

L(k)−1
= L−1

1 · · ·L−1
k = (I+

∑

i>1

Li1Ei1) · · · (I+
∑

i>k−1

Li,k−1Ei,k−1) = I+
∑

i>j,k>j

LijEij

=

[
L:,:k−1

0

IN−k+1

]
.(B.16)

If k ≤ N/2, then by (B.13) we have

L(k)−1
=

[
L′(k)−1

0

0 L′(k)−1

]


IN/2 0

− tan θ

[
Ik−1 0

0 0

]
IN/2



[
IN/2 0

0 L′(k)

]
,

and so

L(k) =

[
IN/2 0

0 L′(k)−1

]


IN/2 0

tan θ

[
Ik−1 0

0 0

]
IN/2



[
L′(k) 0

0 L′(k)

]
.

It follows

B(k) = L(k)B =

[
I 0

0 L′(k)−1

]


I 0

tan θ

[
Ik−1 0

0 0

]
I



[
L′(k) 0

0 L′(k)

]
B

=




cos θA(k) sin θA(k)

− sin θL′(k)−1
[
0 0

0 IN/2−k+1

]
A(k) sec θL′(k)−1

[
Ik−1 0

0 cos2 θIN/2−k+1

]
A(k)


 .(B.17)

We can write

L′(k) =

[
L1 0

L2 IN/2−k+1

]
=

[
L1 0

0 IN/2−k+1

] [
Ik−1 0

L2 IN/2−k+1

]
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and so

L′(k)−1
=

[
L−1
1 0

−L2L
−1
1 IN/2−k+1

]
=

[
Ik−1 0

−L2 IN/2−k+1

] [
L−1
1 0

0 IN/2−k+1

]
.

First, we see

L′(k)−1
[
0 0

0 IN/2−k+1

]
=

[
0 0

0 IN/2−k+1

]
.(B.18)

Next, note

A(k) = L′(k)A =

[
L1 0

L2 I

] [
A:k−1,:k−1 A:k−1,k:

Ak:,:k−1 Ak:,k:

]
=

[
L1A:k−1,:k−1 L2A:k−1,k:

0 L2A:k−1,k: +Ak:,k:

]
,

where we further note

A
(k)
k:,:k−1 = L2A:k−1,:k−1 +Ak:,:k−1 = 0

since A(k) has zeros below the first k − 1 diagonals. It follows

L′(k)−1
[
I 0

0 cos2 θIN/2−k+1

]
A(k) =

[
I 0

−L2 I

] [
L−1
1 0

0 I

] [
L1A:k−1,:k−1 L2A:k−1,k:

0 cos2 θA
(k)
k:,k:

]

= A− sin2 θ

[
0 0

0 IN/2−k+1

]
A(k),(B.19)

using also −L2A:k−1,k: = Ak:,k: − A
(k)
k:,k:. Combining (B.17), (B.18) and (B.19) then yields

(B.11).
If k = N/2 + j for j ≥ 1, then again using (B.13) we have

L(k)−1
=




L′ 0

− tan θL′ L′
:,1:j−1

0

IN/2−j+1


 =

[
I 0

− tan θI I

] [
L′ 0

0 L′(j)−1

]

so that

L(k) =

[
L′−1

0

0 L′(j)

] [
I 0

tan θI I

]
=

[
L′−1

0

tan θL′(j) L′(j)

]

and hence

B(k) = L(k)B =

[
L′−1

0

0 L′(j)

] [
cos θA sin θA

0 sec θA

]
=

[
cos θU ′ sin θU ′

0 sec θA(j)

]
.(B.20)

(B.12) follows then by noting U ′ = A(N/2).
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For B ∈ Bs(N), one direct consequence of Lemma B.2 and induction is

(B.21)
[
0 IN−k+1

]
|B(k)|

[
0

IN−k+1

]
e1 =

[
0 IN−k+1

]
|B(k)|T

[
0

IN−k+1

]
e1

for all k. In particular, there is symmetry in the leading column and row of the remaining
untriangularized block of |B(k)|. (A more involved argument can establish the entire untrian-
gularized block of |B(k)| is symmetric.) This results in:

Corollary B.3. Let B ∈ Bs(N) with PB = LU the GEPP factorization of B. Then this is
also the GERP factorization of B.

The remaining technical piece involves establishing the maximal growth encountered using
GENP, GEPP and GERP is found in the final GE step.

Proposition B.4. Let B ∈ Bs(N) for n ≥ 1 and η, ε ∈ R satisfying |η|, |ε|, |η − ε| ≤ 1. Let
PBQ = LU be the LU factorization of B using GENP (with P = Q = I), GEPP (with Q = I)
or GERP. Then for all k = 1, 2, . . . , N ,

(B.22)

∥∥∥∥
[
0 IN−k+1

]
(ηPBQ− ε(PBQ)(k))

[
0

IN−k+1

]∥∥∥∥
max

≤ ‖U‖max.

In particular,

(B.23) max
k

‖(PBQ)(k)‖max = ‖U‖max.

Proof. First, note it suffices to establish the GENP case since we can reduce to the case
when P = Q = I: We have PBQ = B′D for diagonal D with diagonal entries in {±1}
and B′ ∈ Bs(N) with (PBQ)(k) = B′(k)D using Proposition B.1 if using GEPP along with
Corollary B.3 if using GERP. It follows then

∥∥∥∥
[
0 IN−k+1

]
(ηPBQ− ε(PBQ)(k))

[
0

IN−k+1

]∥∥∥∥
max

=

∥∥∥∥
[
0 IN−k+1

]
(ηB′ − εB′(k))D

[
0

IN−k+1

]∥∥∥∥
max

=

∥∥∥∥
[
0 IN−k+1

]
(ηB′ − εB′(k))

[
0

IN−k+1

]∥∥∥∥
max

using the fact ‖ · ‖max is invariant under row or column ±1 multiplications. This establishes
the GENP case subsumes the GEPP and GERP cases. We will now assume P = Q = I.

Next, note how (B.23) follows: since

B(k) =



U:k−1,:k−1 U:k−1,k:

0
[
0 IN−k+1

]
B(k)

[
0

IN−k+1

]



then ‖B(k)‖max ≤ ‖U‖max using (B.22) with η = 0 and ε = −1.
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To prove (B.22), we will once again use induction on n. Note first the result always holds
for k = 1: Since

(B.24) ‖B‖max =

n∏

j=1

max(| cos θj |, | sin θj |) ≤ 1 ≤
n∏

j=1

| sec θj | = |UNN | ≤ ‖U‖max

using Proposition B.1 and |η − ε| ≤ 1, then

(B.25) ‖IN (ηB − εB(1))IN‖max = |η − ε|‖B‖max ≤ ‖U‖max.

So we can consider only k ≥ 2. For n = 1 and k = 2,
∥∥∥∥
[
0 1

]
(ηB − εB(2))

[
0
1

]∥∥∥∥
max

= |η cos2 θ − ε|| sec θ| ≤ | sec θ| = ‖U‖max,

where we note

(B.26) |η cos2 θ − ε| ≤ max(|ε|, |η − ε|) ≤ 1.

(This can be established by considering the cases for η ≥ 0 and η < 0 separately.) This
completes the base case.

Now assume the result holds for Bs(N/2) for n ≥ 2. Let B = B(θ,A) ∈ Bs(N) with
A = L′U ′ ∈ Bs(N/2). Note

(B.27) ‖A‖max ≤ ‖U ′‖max ≤ | sec θ|‖U ′‖max = ‖U‖max,

using (B.24) for the first inequality and Proposition B.1 for the last equality.
For k ≤ N/2, then for I = IN/2−k+1 when not indicated otherwise, we have

[
0 IN−k+1

]
(ηB − εB(k))

[
0

IN−k+1

]

=




cos θ
[
0 I

]
(ηA− εA(k))

[
0

I

]
sin θ

[
0 I

]
(ηA− εA(k))

− sin θ

(
ηA− ε

[
0 0

0 I

]
A(k)

)[
0

I

]
− sec θ

(
(ε− η cos2 θ)A− ε sin2 θ

[
0 0

0 I

]
A(k)

)




using Lemma B.2. Let η′ = ε− η cos2 θ and ε′ = ε sin2 θ. First, note |η′| ≤ 1 by (B.26) while
also |ε′| = sin2 θ|ε| ≤ 1 and |η′ − ε′| = cos2 θ|η − ε| ≤ 1. By the inductive hypothesis, we have

∥∥∥∥
[
0 I

]
(ηA− εA(k))

[
0

I

]∥∥∥∥
max

≤ ‖U ′‖max ≤ ‖U‖max and

| sec θ|
∥∥∥∥
[
0 I

] (
η′A− ε′A(k)

)[
0

I

]∥∥∥∥
max

≤ | sec θ|‖U ′‖max = ‖U‖max.

Moreover, |η sin θ|‖A‖max ≤ ‖U ′‖max ≤ ‖U‖max and

(B.28) | sec θ||ε− η cos2 θ|‖A‖max ≤ | sec θ|‖U ′‖max = ‖U‖max
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by (B.27). It follows

∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

[
0

IN−k+1

]∥∥∥∥
max

(B.29)

= max




|η sin θ|‖AN/2−k+1:,:k−1‖max,

|η sin θ|‖A:k−1,N/2−k+1:‖max,

max(| cos θ|, | sin θ|)
∥∥∥∥
[
0 I

]
(ηA− εA(k))

[
0

I

]∥∥∥∥
max

,

| sec θ||ε− η cos2 θ|‖A‖max,

| sec θ|
∥∥∥∥
[
0 I

] (
(ε− cos2 θη)A− ε sin2 θA(k)

) [0
I

]∥∥∥∥
max




(B.30)

≤ ‖U‖max.(B.31)

For k = N/2 + j and j ≥ 1 so that N − k + 1 = N/2− j + 1, let η′ = η cos2 θ and ε′ = ε
so then |η′|, |ε′|, |η′ − ε′| ≤ 1. Hence,

∥∥∥∥
[
0 IN−k+1

]
(ηB − εB(k))

[
0

IN−k+1

]∥∥∥∥
max

(B.32)

= | sec θ|
∥∥∥∥
[
0 IN/2−j+1

]
(η cos2 θA− εA(j))

[
0

IN/2−j+1

]∥∥∥∥
max

(B.33)

≤ | sec θ|‖U ′‖max = ‖U‖max(B.34)

follows by the inductive hypothesis.

We can now establish the multiplicativity of each of the Haar-butterfly matrices growth
factors with respect to the Kronecker factors.

Proposition B.5. If B = B(θ) ∈ Bs(N), then

(B.35) κ∞(B) =
n∏

j=1

κ∞(B(θj)).

Using GENP, GEPP, or GERP, then

ρ(B) =
n∏

j=1

ρ(B(θj))(B.36)

ρo(B) =

n∏

j=1

ρo(B(θj))(B.37)

ρ∞(B) =
n∏

j=1

ρ∞(B(θj)).(B.38)

Proof. Let PBQ = LU be the LU factorization of B using GENP, GEPP, or GERP.
Corollary B.3 yields the GEPP and GERP factorizations align for B. By Proposition B.4,
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then

(B.39) ρ(B) =
‖L‖max ·max

k
‖B(k)‖max

‖B‖max
=

‖L‖max‖U‖max

‖B‖max
.

Since B−1 =
⊗n

j=1B(θn−j+1)
−1 and |

⊗n
j=1Aj | =

⊗n
j=1 |Aj |, then the result follows from the

mixed-product property and Lemmas A.1 and A.2.

It thus remains only to establish the case for n = 1. Note for B = B(θ) ∈ Bs(2) = B(2) =
SO(2) where cos θ 6= 0 and sin θ 6= 0, we have

B = LθUθ and PB = B
(π
2
− θ
)
(−1⊕ 1)(B.40)

for P = P(1 2) so that |PB| = |Lπ
2
−θUπ

2
−θ|, while also

(B.41) |Lθ||Uθ| =
[
| cos θ| | sin θ|
| sin θ| | cos θ|(1 + 2 tan2 θ)

]

It follows directly

Lemma B.6. Let B = B(θ) ∈ Bs(2). Let f(θ) = | tan θ| if using GENP when cos θ 6= 0 and
f(θ) = min(| tan θ|, | cot θ|) if using GEPP. Then

ρ(B) = 1 + f(θ)2(B.42)

ρo(B) = 1 +
2f(θ)2

1 + f(θ)
(B.43)

ρ∞(B) = 1 +max(f(θ), f(θ)2)(B.44)

for all θ. Moreover, using GENP then 1 ≤ ρ(B) ≤ ρ∞(B) for all θ, with 1 = ρ(B) = ρo(B) =
ρ∞(B) for cos θ = 0, ρ(B) = ρ∞(B) if | tan θ| ≥ 1, and 1 < ρ(B) < ρ∞(B) otherwise, while
also ρ(B) < ρo(B) for | tan θ| ∈ (0, 1). Using GEPP, then 1 ≤ ρ(B) ≤ ρo(B) ≤ ρ∞(B) ≤ 2,
with 1 = ρ(B) = ρo(B) = ρ∞(B) for cos θ = 0 or sin θ = 0, ρ(B) = ρo(B) = ρ∞(B) = 2 for
| tan θ| = 1, and strict inequalities otherwise.

Proof. The GENP case is straightforward using the Pythagorean identity sec2 θ = 1 +
tan2 θ, where we note ‖B‖max ≤ ‖Uθ‖max while also ‖B‖max = | cos θ|‖Lθ‖max and ‖B‖∞ =
| cos θ|‖Lθ‖∞. For GEPP, note a pivot occurs only if | tan θ| > 1, in which case | tan θ| would
be replaced with | tan(π2 − θ)| = | cot θ|, and hence in general by min(| tan θ|, | cot θ|), for the
computations of the growth factors from the GENP case. The remaining inequalities follow
from 2x2

1+x ≤ xmax(1, x) for x ≥ 0, where equality only holds for x = 0 or x = 1 (note this is
equivalent to the trivial bound ρo ≤ ρ∞ in the GENP case).

The structure of simple scalar butterfly matrices enables us to explicitly derive more
properties of these matrices other than the growth factor. For instance, the following lemma
shows a straightforward computation of the ∞-condition number:

Lemma B.7. Let B = B(θ) ∈ Bs(2). Then

(B.45) κ∞(B) = 1 + | sin(2θ)|.
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Proof. Since ‖B(θ)−1‖∞ = ‖B(−θ)‖∞ = ‖B(θ)‖∞, we can compute directly

κ∞(B) = ‖B‖∞‖B−1‖∞ = ‖B‖2∞ = (| cos θ|+ | sin θ|)2 = 1 + | sin(2θ)|.

The remaining pieces relate to straightforward properties of θ ∼ Uniform([0, 2π)). First,
note the following simple lemma, which is used sporadically throughout the following argu-
ments:

Lemma B.8. If X ∼ Uniform(0, 1) and Y is independent of X, then (X+Y ) (mod 1) ∼ X.

Proof. Since X + Y | Y ∼ Uniform(Y, Y + 1) | Y and so (X + Y ) (mod 1) | Y ∼
Uniform(0, 1), then for t ∈ (0, 1),

P((X + Y ) (mod 1) ≤ t) = EP((X + Y ) (mod 1) ≤ t | Y ) = EP(X ≤ t) = P(X ≤ t).

Next, recall for X ∼ Cauchy(1), then

(B.46) P(X ≤ t) =
1

π
arctan t+

1

2
.

Note X ∼ −X (say, since arctanx is an odd function), and so

(B.47) P(|X| ≤ t) = 2P(X ≤ t)− 1 =
2

π
arctan t.

In particular, P(|X| ≤ 1) = 1
2 . We see:

Lemma B.9. If θ ∼ Uniform([0, 2π)), then tan θ, cot θ ∼ Cauchy(1).

Proof. Recall if Y ∼ Uniform(0, 1), then tan(π(Y − 1
2)) ∼ Cauchy(1). Note π(Y − 1

2)
(mod π) ∼ πY ∼ Uniform(0, π) by Lemma B.8. Since θ (mod π) ∼ πY and by the periodicity
of tanx also tanx = tan(x (mod π)), then

(B.48) tan θ ∼ tan(πY ) ∼ tan

(
π

(
Y − 1

2

))
∼ Cauchy(1).

Hence, we have also cot θ ∼ cot(θ − π
2 ) = − tan θ ∼ Cauchy(1) by Lemma B.8.

Lemma B.10. If θ ∼ Uniform([0, 2π)) and X ∼ Cauchy(1), then

(B.49) min(| tan θ|, | cot θ|) ∼ |X| | |X| ≤ 1.

Proof. Using Lemma B.9, then for t ∈ (0, 1], we have

P(min(| tan θ|, | cot θ|) ≤ t) = 1− P

(
min

(
|X|, 1

|X|

)
≥ t

)
= 1− P

(
|X| ≥ t,

1

|X| ≥ t

)

= 1 + P(|X| ≤ t)− P

(
|X| ≤ 1

t

)
= 1 +

2

π

(
arctan t− arctan

1

t

)
= 1 +

2

π

(
2 arctan t− π

2

)

=
4

π
arctan t =

P(|X| ≤ t)

P(|X| ≤ 1)
= P(|X| ≤ t | |X| ≤ 1)

using also the fact arctan t and arctan 1
t comprise complementary angles when t > 0.
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The n = 1 growth factor case now follows:

Lemma B.11. Let B ∼ Bs(2,ΣS) and X ∼ Cauchy(1). If using GENP, let Y = |X| and if
using GEPP, let Y = |X| | |X| ≤ 1. Then

ρ(B) ∼ 1 + Y 2(B.50)

ρo(B) ∼ 1 +
2Y 2

1 + Y
(B.51)

ρ∞(B) ∼ 1 + max(Y, Y 2).(B.52)

Proof. This follows directly from Lemmas B.6, B.9, and B.10

Additionally, we can explicitly derive the distribution of the ∞-condition numbers of
random butterfly matrices. First recall if Y ∼ Arcsine(0, 1) then for t ∈ [0, 1] we have

(B.53) P(Y ≤ t) =
2

π
arcsin

√
t.

Lemma B.12. If θ ∼ Uniform([0, 2π)) then sin2(2θ) ∼ Arcsine(0, 1).

Proof. Let ϕ ∼ Uniform([0, π)). Note first 2θ (mod π) ∼ θ (mod π) ∼ ϕ, so since | sin(x)|
has period π then | sin(2θ)| ∼ sinϕ. Now note for t ∈ [0, 1]

P(| sin 2θ| ≤ t) = P(sinϕ ≤ t) = P(ϕ ∈ [0, arcsin t] ∪ [π − arcsin t, π]) =
2

π
arcsin t.

Hence, P(sin2(2θ) ≤ t) = P(| sin(2θ)| ≤
√
t) =

2

π
arcsin

√
t.

We have then

Lemma B.13. If B ∼ Bs(2,ΣS) and Y ∼ Arcsine(0, 1), then

κ∞(B) ∼ 1 +
√
Y .

Proof. Use Lemmas B.7 and B.12.

Lastly, we will state a theorem needed to establish the minimality of the GEPP max-norm
growth factor as given at the end of Theorem 2.3:

Theorem B.14 ([9]). If A ∈ R
n×n is nonsingular, then ‖A‖max‖A−1‖max ≥ 1

n and for any
permutation matrices P,Q such that PAQ has a GENP factorization of the form PAQ = LU ,
then ρ(PAQ) ≥ ‖L‖max

‖A‖max‖A−1‖max
for the GENP growth factor.

Note this theorem was also used to establish (1.8).
Now we can sum up these results to establish the main statements from Subsection 2.1.1.

Proof of Theorem 2.3. Use Proposition B.5 and Lemmas B.6 and B.11 with the uniqueness
results in the random models following from Theorems A.3 and A.4. The last statement that
the GEPP growth factor minimizes the growth factor among all pivoting strategies follows by
using Lemma B.6 to see

(B.54) ‖Uθ‖2max = ρ(B(θ)) =
‖Lθ‖max‖Uθ‖max

‖B(θ)‖max
=

‖Uθ‖max

‖B(θ)‖max
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so that ‖B(θ)‖max = ‖B(θ)−1‖max = ‖Uθ‖−1
max; Lemma A.2 and Proposition B.4 yield then

‖B‖max = ‖B−1‖max = ‖U‖−1
max = ρGEPP(B)−1/2 for PB = LU the GEPP factorization.

Hence, if PBQ = LoUo is a GENP factorization, then

(B.55) ρGENP(PBQ) ≥ ‖Lo‖max

‖B‖max‖B−1‖max
= ‖Lo‖max · ρGEPP(B) ≥ ρGEPP(B)

by Theorem B.14.

Proof of Theorem 2.11. Use Proposition B.5 and Lemma B.13
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