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Abstract

We present a probabilistic analysis of two Krylov subspace methods for solving
linear systems. We prove a central limit theorem for norms of the residual vec-
tors that are produced by the conjugate gradient and MINRES algorithms when
applied to a wide class of sample covariance matrices satisfying some standard
moment conditions. The proof involves establishing a four-moment theorem
for the so-called spectral measure, implying, in particular, universality for the
matrix produced by the Lanczos iteration. The central limit theorem then im-
plies an almost-deterministic iteration count for the iterative methods in question.
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1 Introduction

Sample covariance matrices constitutes one of the oldest classes of random ma-
trices. One can trace their theory at least back to the seminal work of Wishart [44].
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1086 E. PAQUETTE AND T. TROGDON
Specifically, Wishart considered matrices of the form
1 T
(1.1) W=—XX
M

where X is an N x M matrix whose entries are independent and identically dis-
tributed (iid) standard normal random variables. Such matrices provide an estima-
tor for the covariance matrix of the columns of X, and the Wishart distribution can
play the role of the null distribution in covariance estimation. Wishart matrices
arise in other settings too, and particularly relevant to this paper, they appear in the
seminal work of Goldstine and von Neumman [23] on the numerical inversion of
matrices.

Recently, there has been increasing interest in understanding how algorithms
from numerical linear algebra and beyond act on random matrices. Specifically,
this allows one to give a precise average-case analysis of the algorithms, replacing
the standard worst-case estimates/bounds. For noniterative methods such as Gauss-
ian elimination, one looks for average-case bounds on rounding errors (see [36],
for example). For iterative methods, more questions can be asked, the most basic
of which is the question, “In exact arithmetic, how many iterations are required, on
average, to solve a problem?” The simplex method from linear programming was
addressed in this context by many authors [5,39,40]. In these works, the notion
of average case is typically restricted to one ensemble, or distribution. Indeed, the
natural criticism of a simple average-case analysis is that the outcome could be
ensemble-dependent, and thus it only has predictive power for a small subset of
real-world phenomena.

So, in the context of average-case analysis, it becomes important to show that
any arbitrary modeling choices made in defining the ensemble have a limited effect.
In the probability literature, this concept is called universality, and it has been
studied extensively for many years. The most famous example of universality is
the central limit theorem which states that for sufficiently large M, the sums

| M
J:

foriid (X;);>1 concentrate on the mean of X (and hence X; for every j) and have
small fluctuations of size M ~1/2 about this mean that are asymptotically normally
distributed. This is true, as soon as the random variables have a finite second mo-
ment, and more to the point, it does not depend on any further information about
the distribution beyond its first two moments. It can be argued that this particular
universality explains the peculiar prevalence and usefulness of the normal distribu-
tion in statistics and nature.

Universality has been featured as a particularly important central feature of ran-
dom matrix theory, especially in the last 20 years. Many quantities, such as the
largest eigenvalue of W, are universal—they have fluctuations that are indepen-
dent of the distribution on entries of W, with some mild moment conditions. The
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specific statement for the largest eigenvalue Ay (W) of W is

L]

| =

(1.2) Mli_r)nOOIP’(chzﬁ(kl(W) —(1+ V) <1)=Fi(0). d=

where Fi(¢) is the cumulative distribution function for the Tracy—Widom (8 = 1)
distribution (see [1], for example). Here we suppose that

M—oco
0——d
where 0 < d < oo. If we choose X to have complex entries (W = ﬁX X*) then
we would arrive at the Tracy—Widom (8 = 2) distribution. Specifying real versus
complex through 8 = 1 versus B = 2 is common practice in the random matrix
literature and we continue this practice in the current work.

Universality was first combined with the average-case analysis of algorithms
in [35], then expanded in [8], with rigorous results presented in [10, 11]. See [12]
for a review. Here we summarize a result found in [10] concerning the power
method. The power method itself is the simple iteration

yk = ka—l’
vkzy,{xk_l, k=12,...,
Xk = Yi/llykll2,

where x ¢ is a starting unit vector that is often, in practice, chosen randomly. If, for
example, W is positive definite, then vy — A1 (W) ask — oo. A relevant question
is to understand how many iterations are required to properly approximate A1 (W).
Given the halting time

T(W,xg,€) = min{k : [vp — vi_q| < €2},
a result from [10] gives the distributional limit
T(W,xg,¢€)
CyN?/3(loge — 2 log N

N—oo

(1.3)  lim IP’( ) §z) = Fﬁgap(t), e < N33
fort > 0,0 > 0 and a constant ¢;. Here F ﬂgap (t) can be expressed in terms of the
limiting distribution of
1
N2BQL (W) =22 (W))

But, more importantly, F gap (t) only depends on 8 and not on the precise distribu-
tion on the entries of X. One may also consider the distribution of vy — v _; as
M — oo and ask whether it is universal.

The purpose of this article is threefold.

e We present a full derivation of distributional formulae for the conjugate
gradient algorithm (CGA) and the MINRES algorithm applied to linear
systems Wx = b where W is distributed as in (1.1), addressing both the
real and complex cases. A formula for the CGA applied to the normal
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1088 E. PAQUETTE AND T. TROGDON

equations Wx = Jiﬁb is also given. This elementary derivation pulls

on many well-known results at the intersection of numerical linear algebra
and random matrix theory. In particular, the derivation involves many al-
gorithms that are well-known to the applied mathematics community: the
QR factorization, Golub—Kahan bidiagonalization, singular value decom-
position, Lanczos iteration, and Cholesky factorization.

e We then show how universality theorems for the so-called anisotropic lo-
cal law [26] can be upgraded to give universality theorems for the moments
of discrete measures that arise in the Lanczos and conjugate gradient algo-
rithms. This is the key component in showing that the behavior determined
in the asymptotic analysis of the formulae in the case of Gaussian matrices
indeed persists for a wide class of non-Gaussian matrices giving universal-
ity for the norms of residual and error vectors for the CGA and MINRES
algorithms. In the well-conditioned case

M
2 2% g e (0, 1),

the number of iterations of the algorithm to achieve a tolerance ¢ (i.e., the
halting time) is almost deterministic.

e Because the calculations are so explicit and the estimates are so exact, this
work can be viewed as a benchmark for the average-case analysis of an
algorithm. This shows that it is indeed possible to completely analyze an
algorithm, in a specific regime, applied to wide class of random matrix
distributions.

Currently,  ~ 1 behavior of the CGA and MINRES algorithms on Wishart ma-
trices is open. By this, we are referring to determining the (asymptotic) distribution
on the number of iterations required to achieve a tolerance of €. Numerical exper-
iments indicate that a universality statement analogous to (1.3) holds for the CGA
provided M and N are scaled appropriately [8], the limiting distribution is conjec-
tured to be Gaussian [9], and the leading-order behavior is conjectured in [28].

So, in this paper we focus on fixed € while running the algorithms O(1) steps.
The leading-order analysis along these lines was completed for Gaussian entries
in [13]. This confirmed that the deterministic analysis of Beckermann and Kui-
jlaars [4] (see also [27]) holds in the random setting with overwhelming proba-
bility. In this paper we improve upon and simplify the results in [13] in many
respects. In particular, our exact distributional formulae (see Theorem 1.2) can be
used to establish many, but not all, of the results in [13]. We then prove that the
leading-order results in [13] are universal and provide the universal distributional
limit (after rescaling) for the fluctuations. This also provides a universal, almost-
deterministic halting time (see Remarks 1.6 and 1.7). Such almost-deterministic
halting times for the CGA were first observed in [9] and proved in [13] in the
Gaussian case. See [34] for similar results in the case of gradient descent.
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While our analysis for the CGA and MINRES algorithms is focused on sample
covariance matrices of the form (1.1), many other distributions should be analyz-

able. One example would be I + yG, G = X+T/£NT where X isan N x N iid

Gaussian matrix. This is the shifted Gaussian orthogonal ensemble. For a definite
and well-conditioned problem, one should choose y < 1/2. Another interesting
case is for sample covariance matrices TY2xXxT T2, for deterministic positive
definite matrix 7', which correspond to sample covariance matrices with noniden-
tity covariance. But in either of these cases, one can run the Lanczos iteration on
it and ask about the distribution on the tridiagonalization that results. The leading-
order behavior is implied by [42]. And indeed, as we discuss, this fact is qualita-
tively implied by the fact that the entries in the Lanczos matrix are differentiable
functions of the moments of an associated spectral measure.

The paper is laid out as follows. In this section we fix notation, introduce the
Gaussian distributions from which we perturb and discuss the algorithms that we
will analyze. We present our main results in Theorems 1.1, 1.2, 1.4 and 1.5. The
section closes with a numerical demonstration of the theorems. In Section 2 we
introduce the notion of sample covariance matrices and the moment matching con-
dition and discuss properties of basic algorithms applied to Gaussian matrices.
Section 3 gives some properties of orthogonal polynomials that are critical in our
calculations. Section 4 gives a deterministic description of the CGA and MINRES
algorithm along with the derivation of formulae for the errors that result from the
algorithms. The main probabilistic contribution of the paper is in Section 5. It
comes in the form of a “four moment theorem” for the spectral measure. Lastly,
Section 6 completes the proofs of our main theorems.

We also point out that subsequent to the current work, the papers [14, 15] have
extended our results in various ways. In [15] the current results were largely ex-
tended to the case of spiked sample covariance matrices with nontrivial covariance.
Fluctuations in this paper were shown to be universal but not specifically identified
as Gaussian. This gap was filled in [14] and this work allows k, the number of steps
in the CGA to depend on N in a nontrivial way and allowed for multiple intervals
of support for the limiting eigenvalue distribution.

1.1 Notation

Throughout this article we use boldface, e.g., y, to denote vectors. The norm
ly ||% = y™y gives the usual 2-norm. The expression W > 0 indicates that W
is a real-symmetric or complex-Hermitian positive definite matrix. And W then
induces an important norm ||y||%V = y*Wy. We then use A1 (W) > A, (W) >
-+« An (W) to denote the eigenvalues of W,

The notation Ng (i, 02) refers to a real (8 = 1) or complex (8 = 2) normal

. . . & .
random variable with mean y and variance o2 and the symbol = refers to equality
in law. The notation
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1090 E. PAQUETTE AND T. TROGDON

denotes convergence in distribution, or weak convergence. Additionally, since we
will be using e; to denote error vectors arising in the approximate solution of
linear systems, we use f{,..., f, to denote the standard basis of R” where n is
inferred from context. The notation y g is used to denote the chi distribution with

Bk degrees of freedom parameterized' by
. . 1/2
xpe = D 1X;1P :
Jj=1
where (X j)}czl are iid Vg (0, 1) random variables.

We also encounter settings where the size of a random matrix or vector is in-
creasing as a parameter M — oo. We say that, for example,

M
Xj)ie, =Xy ——> Y,
( ])] =1 M M—o0 Y
y = ()72, in the sense of convergence of finite-dimensional marginals if for

any finite set S of integers

@)
(xj)jes — (Vj)jes.
M —o0

This notion is very convenient as it allows one to bypass dimension mismatches
between processes. Lastly, we will use subblock notation Xj.i ;.¢ to denote the
subblock of the matrix X that contains rows i through k and columns j through £.

1.2 The Wishart distributions

Suppose X is an N x M matrix of iid Ng (0, 1) normal random variables. Then
we say that X £ Gg(N, M), and we say W = XX™*/M has the f-Wishart dis-
tribution and write W % Wg(N, M). The B-Wishart distributions in the cases’
B = 1,2 has many important properties that we will use extensively. In addition,
classical algorithms from numerical linear algebra act on these matrices in a way

that allows for explicit (distributional) calculations.

1.3 The conjugate gradient and MINRES algorithms

The CGA [24] is an iterative method to solve a linear system Wx = b where
W > 0. Supposing exact arithmetic, the algorithm is simplest to characterize in its
varational form. Define the Krylov subspace

(1.4) Ki = span{b, Wb, ..., W<~1p}.

11"‘arame:terizing a distribution is expressing it as a transformation of well-understood random
variables.

2 The case B = 4 can be introduced using quarternions.
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Then the k™ iterate, X, of the CGA satisfies®

Xp = argming i, [|[x — ylw.

In Section 4 the algorithm that is often used to compute x, effectively is presented
but since our analysis assumes exact arithmetic, this algorithm is not needed to
perform the analysis.

The MINRES algorithm (see Algorithm 3 below) is another iterative method
that works with Ky by again producing a sequence sequence of vectors

X1 —> Xg,
but for the MINRES algorithm each vector xj solves
X = argming ey, b —Wyll2.

For both the CGA and the MINRES algorithm we use the notation ri (W, b) :=
b—Wx and e (W,b) := x — x to denote the residual and error vectors, respec-
tively.

1.4 Main results

We first establish some deterministic formulae. The result for ||r; |2 in the CG
algorithm is entirely classical as it encapsulates a well-known relation between
bj_1 in Algorithm 2 below and the entries in the matrix generated by the Lanczos
procedure (see [29], for example). The proof is found in Sections 6.1, 6.2, and 6.3.
See Algorithm 1 and the surrounding text for a discussion of the Lanczos iteration.

THEOREM 1.1 (Deterministic formulae). Consider the Lanczos iteration applied
to the pair (W,b) with W > 0 and ||b||2 = 1. Suppose the iteration terminates at
step n < N producing a matrix T = T(W,b). Let T = HHT be the Cholesky
factorization (see Algorithm 4 below) of T where

o
Bo o1
H = B1

Bn—2 On—1 |

(a) Forthe CGAon Wx =bwithxg =0, fork <n,

k=1 g
Irew.b)l2 = [T 5L,

j=0"/

lex W.0)lw = Ik (Wb)ll2/ £ TLALD T f 1 Lk = Hisrmker i

3 Here we are characterizing the CGA with xo = 0.
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1092 E. PAQUETTE AND T. TROGDON

(b) For the MINRES algorithm on Wx = b, fork <n,

k j— 1 —1/2

I (Wbl = | Y H L

Jj=0{= 0
Ai’ld Iy, = O.
THEOREM 1.2 (CG and MINRES on Wg(N, M)). Suppose W Z Wg (N, M) with
N <MandbeRN (B =1 orbeCV (B =2) nonzero. Let o £ XB(M—)»

Bj Z XB(N—j—1) J = 0.1,..., be independent and k < N.
(a) For the CGA appliedto Wx = b withxg = 0,

Ire (W, 1) 2 Z bl 1‘[ 3

10]

JBM

XB(M—N+1)

1EN

2 e _
lex(W.b)lw = =t Irkell2, =3

where 2;1 is independent of o, B, j = 0,1,...,k — 1, but dependent on
oj, Bj, j = k.
(b) For the MINRES algorithm applied to* Wx = b,
—1/2

Ik (W. )2 £ Z]‘[— Ibl2.

IOKO

(c) Now supposeb € RM (8 = 1) orb € CM (B = 2) is nonzero, and X
Gg(N, M), N < M. For the CGA applied to Wx = —=-b, W = XX~

v M
ko j—1 2 —-1/2
(W )|, Eovan (XTT5E] i
J=0{= 0
Z Xin . . : .
where Ay p = 2 - may have nontrivial correlations with a;, B;, ] =
BM

0,1,2,..., but does not depend on k.

Remark 1.3. From Theorem 1.2(c) we obtain a complete parametrization of the

relative errors
—1/2

o (0 ), < (54
i (B

To state the next couple results, we define the parameter 0 = N/M.

4We use the convention that ]_[Z=10 =1
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THEOREM 1.4 (Universality to leading order). Let W = XX* where X is an
N x M random matrix N < M,

0 2% g c01],

with independent real (f = 1) or complex (B = 2) entries. Suppose, in addition,
that there exists constants {Cp}{° so that all entries of X satisfy, for nonnegative
integers £, p,

ERX; )5 (3X;)? = ERY) (3Y)P,
(1.5) Y £ N30 1/M), £+ p<2,
E|VMX;;|? <Cp forall p e N.

For any sequence b = by of unit vectors, in the sense of convergence of finite-
dimensional marginals:

(a) For the CGA®

M—o00

) dk
(llex (W, b)“%[/)kz() — (m) . d# 1,
k>0

(@) &
(”rk(W, b)”%)kzl m (d k1

(b) For the MINRES algorithm

) 1-d
(e (W, D)3, Moo (dk1—dk+1)k 1'
>

(c) Forthe CGA applied to the normal equations

2
d —
ex (W, ib) L) (dkﬂl—kdl) ]
v M w k>0 M—o0 1 —dk+ k>0

The case d = 1 in Theorem 1.4 is treated by continuity, d 1 1. To state our
last limit theorem, we must define the limit processes. Let G = (Zx)72, be a
process of independent N7 (0, 1) random variables. Define three new processes,

e _ €\00 r,CG _ r,CGyoo r,MINRES __ r ,MINRES\ co :
G =(Z)2y 9 = (ZJ. o1 and G = (Zj )j=1 via

1—-d =

d* | & i,
Zp = —— Zd"_ (Zaj/Nd — Zaj41)

k—1
+ Y (Z2j/Nd = Zaj 1) - sz—1},

Jj=1

3 We do not discuss |Iro|l2 here because rg = b.
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k—1
Z;’CG = dk Z (sz_,_z/«/g— sz_g_l) s k > 0, Z(l;!CG — 0»
Jj=0
r.MINRES l-d ¢ 2(k—j) 5T,CG
Zy T\ _gkH Zd / Zi
_ =

THEOREM 1.5 (Universality of the fluctuations). Let W = XX* where X is an
N x M random matrix, N < M,
M
0 272 e (0, 1]

with independent real (f = 1) or complex (B = 2) entries. Suppose, in addition,
that there exists constants {Cp}$° so that all entries of X satisfy, for nonnegative
integers £, p,

ERX;) (3X;;)P = EMRY)E(Y)?,
(1.6) Y £N30.1/M), €+ p <4,
E|vVMX;;|? <Cp forall peN.

For any sequence b = by of unit vectors, in the sense of convergence of finite-
dimensional marginals:

(a) Forthe CGA
[ BM ok )
— lex (W.b)[13, — T3 SV G¢, d#1,
k>0

BM )
(e =), = gme.

2 >1 M—o0

(b) For the MINRES algorithm (the case 0 = 1 obtained using continuity)

pM 2 gk 10 (d) MINRES
— W.b -0 r .
V3 e (W, b) 13 [0k ), Mmoo g

(c) For the CGA applied to the normal equations (the case 0 — 1 obtained
using continuity)

2
o ( e (7 )]
BM Hek ( vM ) llw _ ok 1-2 ) GF-MINRES
2 He (W Lb) H2 1 — ok+1 M—00 '
o™ UM w k>1

The proofs of the previous theorems can be roughly summarized as follows.
Modulo some technical issues in dealing with correlations, Theorem 1.2 can be
directly used, with the asymptotics of independent chi random variables, to prove
Theorem 1.4 and 1.5 in the case

VMX £ Gy(N. M).
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Asymptotic correlations are addressed in Proposition 5.11. Associated to (W, b),
W > 0,]|b|l2 = 1is a weighted empirical spectral measure (see (2.3) below). The
orthogonal polynomials with respect to this measure satisfy a three-term recurrence
which when assembled into a Jacobi matrix coincides with the output 75 (W, b) of
the Lanczos iteration (see Proposition 3.1 below). Then the well-known fact that
the entries in the three-term recurrence Jacobi matrix can be recovered as algebraic
functions of the moments of the measure is used (see (3.2)). This means that the
entries in the Cholesky factorization of 7, (W ,b) are (generically) differentiable
functions of the moments of the weighted empirical spectral measure. Then Theo-
rem 5.15 establishes universality for the moments and hence for the entries in the
Cholesky factorization. More specifically, this implies that Proposition 5.11 holds
in the non-Gaussian case, implying our theorems.
Some important remarks are in order.

Remark 1.6. Let W, d < 1, and b be as in Theorem 1.4. Define two CGA halting
times

t$(W,b,€) = min{k : |lex (W.b)|lw < €},
t"(W,b,€) = min{k : |[rg(W,b)||2 < €}.
Ife2 # d¥ /(1 — d) for all k
loge?(1—d
lim P (te(W,b,e) — {MD —1,
N—o00 logd
and if €2 = d* /(1 — d) for some k, then

. loge?(1 —d)
1 P (€ ="
Nl_r)noo (l (W.,b,¢€) ’7 logd —D

. loge?(1 —d)
lim P {:¢(W,b,e) =1 R B m—
N o ( (W.b. €) + ’7 logd —D

= N =

Similarly, if €2 # d* for all k
21
lim P (tr(W,b,e) - { OgE)D ~ 1.
N—o0 logd
and if € = d* for some k, then
21
lim P (t"(W,b,e) ={ OgGD
N—o0 logd

1 2loge
=== lim P[("(W,b,e) =1 .
27 V2% ( ( €) * ’7 logd —D
Remark 1.7. Let W, d < 1, and b be as in Theorem 1.4. Define the MINRES
halting time

MNRES (Wb, €) = min{k @ [|lrg (W, b)]2 < €.
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1096 E. PAQUETTE AND T. TROGDON

Then if €2 # dkl_ld_—,fﬂrl for all k

2
lim P | MNRES(py b ) = | —1odterd | ]
N—00 logd

and if €2 = d¥ =9 __ for some k then

1—dk+1
_logi_ 1
lim P | MNRES(y o) = | —1=dded |
N—o0 log d 2
_1()ng_ 1
lim P [ MNRES(J b, e) =1 + | —1=dded |} —
N—o00 logd 2

And so, the MINRES algorithm, using the halting criterion |7 |2 < € will run for

log—d+e%d) g oor steps than the CGA.

approximately Toad

Remark 1.8. Let W,d < 1, and b be as in Theorem 1.5. For fixed k

[BM d* )
N ||ek(W’b)||%V—m le(0,0f,e), d #1,

0F .= at [ ! +(k—1)(1+l)+1]
1.7 € (1-d)?|d(1—-4d) d ’
PE (imew mi - %)~ xi 0.2,
of = kd* (1 + é) :
Remark 1.9. The expression for Z ;;’MINRES can be written as

r,MINRES 2k 1—d \2&dk—at
Zk’ =d (l—dk+1) Z 1—d (22[4_2/\/2—22@_{_1). k > 0.
=0

Let W, d < 1, and b be as in Theorem 1.5. For fixed & it then follows that

M @ -
V5 (Irew.b) 3 =)~ M0.62,),

(1—d)dk—1 (2d’<+1 4 2dk+2 _ g2k+2 _ g2 1 1) — 24 + k)

Tkr = (1—dk+1)*

(1.8)
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UNIVERSALITY FOR THE CONJUGATE GRADIENT AND MINRES ALGORITHMS 1097

Remark 1.10. Additionally, one obtains the formulae for the CGA applied to Wx =
b, b2 =1, W £ Wg(N. M), N < M:

N BM—j)—1
]Ellrk(W,b)”z:Ii—[lr( 5 )F( i )

i T (ﬂ(N—zj—l)) r (B(M2—j)) ’
7R (ﬁ(MfN+1)fl) k1T (ﬂ(ij—1)+1) r (ﬁ(ij)fl)
Ellec(W.b)lw = /- — (ﬁ(MzNH)) ,-11 . (B(szl)) . (“”Z”) ,

(1.9

where I'(z) is the Gamma function [31]. For even moderately large M, one needs
to use the Beta function to compute these ratios and avoid underflow/overflow.
Remark 1.11. For ? — 1, the CGA applied to Wx = b gives

e (W.b)[l2 (@

Iro(W.b)[2 M—oc0

Thus the number of iterations required to hit a tolerance € increases without bound
as M — oco. On the other hand, for the MINRES algorithm,

[re(W.b)[2 (@ 1
[ro(W.b)|2 M—co kK +1

And so, one expects k &~ €2 — | iterations to achieve ||[rz (W, b)|2 < €. The same
statement holds for the CGA applied to the normal equations when 9 — 1, when
one considers the ratio

s (v 5],
o (0,

Remark 1.12. If b = ¢/||c||2 where ¢ has iid, mean-zero entries with a finite
(nonzero) variance then one expects (1.5) to be sufficient for Theorem 1.5 to hold—

the moment matching to order 2 is sufficient if the right-hand side vector is “suffi-
ciently” random.

We demonstrate the essential aspects of Theorem 1.5(a) for ||#||» in Figures 1.1

and 1.2. In these figures we compare the CGA applied to Wx = f{ with W £
Wg(N, M) and W = XX*/M where X has iid entries with

(1.10) P(X;; =0)=2/3, P(X;; = =+3) = 1/6.

This discrete distribution, which we refer to as the moment matching distribution,
is chosen so that the first four moments of X;; coincide with that of N1 (0, 1). The
figures demonstrate that || |2 concentrates heavily as M increases.

The essential aspects of Theorem 1.5(b) are shown in Figures 1.3 and 1.4. These
figures again give the behavior of the MINRES algorithm and CGA applied to the
B = 1 Wishart distribution and the moment matching distribution.
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N =25,M =50,d = 0.50

M 403
10°
102 F
402
)
= .l
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Ho.1
108 ¢
8 L
10 -10 0 10 20 D
n n 1 n 7 00
5 10 15 20
k
(@

N = 1000, M = 2000,d = 0.50

Il

FIGURE 1.1. The CGA applied to Wx = f, were W Z Wg (N, M),

N/M Moo d. The dashed black curve indicates the large M limit for
the error || r ||, at step k and the dashed red curve gives E||rg |2 at step
k. The shaded gray area is an ensemble of 10000 runs of the method,
displaying the norms that resulted. The overlaid histogram shows the
rescaled fluctuations in the error at k = 10. As M — oo this ap-
proaches a Gaussian density. Lastly, the histogram in the main frame
gives the halting distribution for € = 0.001 (green line). It is highly
concentrated when N = 1000, M = 2000. With these parameters,
Remark 1.6 implies that for M large, the algorithm will run for approxi-

mately [2 llgggﬂ = 20 iterations.
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N =25,M =50,d = 0.50

Il
3
=
T

10'6 E

10~B b

(@)

N = 1000, M = 2000,d = 0.50

Il

(b)

FIGURE 1.2. The CGA applied to Wx = M~'XX*x = f; where
X has iid entries with P(X;; = 0) = 2/3,P(X;; = ++/3) = 1/6.
The black dashed curve indicates the large M limit for the error ||rg|2
at step k the dashed red curve gives E|rg|» at step k in the case of

wZ Wg (N, M), for comparison. The shaded gray area is an ensemble
of 10000 runs of the method, displaying the errors that resulted. The
overlaid histogram shows the rescaled fluctuations in the error at k = 10.
As M — oo this approaches a Gaussian density. Lastly, the histogram
in the main frame gives the halting distribution for ¢ = 0.001 (green
line). With these parameters, Remark 1.6 implies that for M large, the

algorithm will run for approximately |_2 11352 -| = 20 iterations.
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N =25,M =50,d = 0.50
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FIGURE 1.3. The MINRES algorithm applied to Wx = f; where

w £ Wg(N, M). The dashed curve indicates the large M limit for
the error ||r| 2 at step k. The shaded gray area is an ensemble of 10000
runs of the method, displaying the errors that resulted. The overlaid
histogram shows the rescaled fluctuations in the error at k = 10. As
M — oo this approaches a Gaussian density. Lastly, the histogram in
the main frame gives the halting distribution for € = 0.001 (green line).
With these parameters, Remark 1.7 implies that for M large, the algo-

. . . log ﬁ . .
rithm will run for approximately (Tj{e-‘ = 19 iterations.

Lastly, in Figure 1.5, for the CGA, we compare the statistics of

(1.11)

W, £ )l )
m((ﬂrk(w,fl)nz) A
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N =25,M =50,d = 0.50

o Hos
10—2 ke
Ho2
o
= L
=0
o b Ho1
10~B ks
Ho0
(@
N = 1000, M = 2000,d = 0.50
10°
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10—2 ke
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= 1otk 1%
i=
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. = Ho0
5 10 15 20
k
(b)

FIGURE 1.4. The MINRES algorithm appliedto Wx = M~ 'XX*x =
f1 were X has iid entries with P(X;; = 0) = 2/3,P(X;; = £+/3) =
1/6. The shaded gray area is an ensemble of 10000 runs of the method,
displaying the errors that resulted. The overlaid histogram shows the
rescaled fluctuations in the error at k = 10. As M — oo this ap-
proaches a Gaussian density. Lastly, the histogram in the main frame
gives the halting distribution for € = 0.001 (green line). With these pa-
rameters, Remark 1.7 implies that for M large, the algorithm will run for

2
. log T —F—— . .
approximately [%}“2"—‘ = 19 iterations.

where (Z) represents the sample average of Z over 50,000 samples. Note that if
(1.6) holds then

[reW. fDll2 )N
m((llrk(W,fl)”z) 1] ~ Ni(0.0x,a/2),
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and we therefore compare the density for N1 (0, oy 4/2) with (1.11) in Figure 1.5.
In this figure we also include computations with the Bernoulli ensemble: W =

E. PAQUETTE AND T. TROGDON

0.20

0.15¢

0.10

0.05}

0.00 ¢

:I Bernoulli
== (v )
|-| Moment matching

o

leels
Urela) 1)

FIGURE 1.5. A comparison of the rescaled statistics (1.11) across three
distributions. Since the Bernoulli ensemble fails to match the moments
in (1.6), we see that it does not match the variance (1.7),

XX*/M, X;j iid, P(X;; = £1) = 1/2 which fails to satisfy (1.6).

In Table 1.1 we display sample variance of (1.11) for the three different dis-
tributions: Wishart, moment matching and Bernoulli. In the case of the Wishart
and moment matching distributions, the variance is close to the large M limit. In
the case of Bernoulli, the variance is quite different. This indicates that the mo-
ment matching condition is a necessary condition for the limiting the variance to

be given by (1.7).
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k| k/2(1 +1/d) | Wishart | Moment matching (see (1.10)) | Bernoulli
1 1.5 1.493 1.48 1.003
2 3.0 3.002 2.997 2.511
3 4.5 4.532 4.519 4.036
4 6.0 6.040 6.039 5.527
5 7.5 7.576 7.54 7.004
6 9.0 9.135 9.054 8.547

TABLE 1.1. A numerical demonstration of the necessity of the moment
matching condition (1.6). This table gives the sample variance of (1.11)
across three different distributions for N = 500,d = 1/2 and 50,000
samples. Presumably, the values in the last column differ from the values
in the other columns for a reason other than a lack of samples.

2 Sample Covariance Matrices
and Classical Numerical Linear Algebra

A fundamental property of a matrix X £ Gg(N, M) is its orthogonal (8 = 1)
or unitary (8 = 2) invariance. That is, let Q be an N x N fixed orthogonal matrix
then

OWO*2 W, W =XxX*
If B = 2, then Q can be a complex unitary matrix. Furthermore, this is true even

if Q is random, provided it is independent of X.

Let W Z Wg (N, M) and perform an eigenvalue decomposition W = UAU*,
U*U = I. It follows directly from the invariance of the Wishart distribution that
the vector

U112
w = : where [Uyj ], i, =U
|U1n|2
can be parameterized by
2.1) wiZ X
Ivlly

where v is a vector of iid )(‘23 random variables. This fact is discussed in detail
in [13, app. A].

The eigenvalues of the Wishart distributions
The global asymptotic eigenvalue distribution of the Wishart distributions is the
same, regardless of the choice of § = 1,2. The classical setup is the following.
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1104 E. PAQUETTE AND T. TROGDON

For W Z Wg (N, M), define the (random) empirical spectral measure

N
1
pem(@L W) = = 3 82,1 (dA).
j=1

The eigenvalues {4; (W) : 1 < j < N} are well-known to have the distribution of
the Laguerre orthogonal ensemble or the Laguerre unitary ensemble, respectively,
according to whether 8 = 1, 2. Recall the parameter d = N/ M.

DEFINITION 2.1. Define the Marchenko—Pastur law for all d > 0 by

cat = 1 O =T dx+|:1—$]+50(dx),

where yL = (1 £ «/3)2

2.2)

are the spectral edges. The notation [-]+ refers to the positive part of (-).

The following gives the global eigenvalue distribution (see [1], for example):

M
THEOREM 2.2. Suppose that 0 TR de (0, 1]. Then

(@)
Hem(dA; Wg (N, M)) Voo 9d (dA),

almost surely.

Historically, the behavior of individual eigenvalues, and gaps between eigenval-
ues, have been studied extensively. In the analysis we present it is not necessary to
use such detailed microscopic results. Instead, we need finer results about global
properties of the matrix. One such example is the so-called central limit theorem
for linear statistics.

The Bai-Silverstein [3] central limit theorem for linear statistics of sample co-
variance matrices shows that for sufficiently smooth functions f,

N
> f0p - [ fwean)
j=1

= N [ £ aen(@) — 00 2 Ni (17, 2).

The standard deviation o can be understood as a weighted Sobolev-1/2 norm of
f, restricted to the support of the Marchenko-Pastur law. Other related central
limit theorems for linear spectral statistics of sample covariance matrices include
[17,25,37].

But the classical central limit theorem for linear statistics involves the empirical
spectral measure pem(dA; W) which rarely arises in a numerical or computational
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context. What is much more likely to arise is the weighted empirical spectral mea-
sure: forb € CN, ||, = 1and W = W* € CNXN the weighted empirical
spectral measure is given by

N
pw=pp =Y wid,, ()i, =|U"BP W =UAU*
Jj=1
U*U =1, A =diag(A1,...,An).

We refer to this as the spectral measure associated to the pair (W, b).
We show in Section 4 that for polynomials p and a sample covariance matrix W
with identity covariance and for which 9 — d,

VI [ F0028(00) — ga(d) — s N1 (0577,

Note that the rate of the central limit theorem changes dramatically from the case
of the central limit theorem for linear statistics. Although we will not need it, the
variance 6}2 can be expressed as cg g [ f 2(x)o4(dx). Similar theorems have
been proven before, most notably by [33] who prove a more general statement in
the case that b is a coordinate vector. There is also [32] in which the analogous
statement is made for Wigner matrices. We also mention [18] and [19] which prove
related theorems for Gaussian cases.

While it is natural to assume these statements extend to other classes of test
functions beyond polynomials, we will not need them (except for the specific case
of f(x) = 1/x, which we handle by other means — note that the extension to
analytic functions in a neighborhood of the Marchenko-Pastur law does not need
new ideas beyond what is necessary for the polynomial case)

2.1 Sample covariance matrices with independence

In the current work, we use a restricted definition of a sample covariance matrix.

DEFINITION 2.3. A real (8 = 1) or complex (8 = 2) sample covariance matrix

is given by W Z XX* where X is an N x M random matrix with independent
entries satisfying

1

EX;; =0, E(RX;;))(3X;j) =0, E(RX;;)* = e

1
E|X;;|* = i and E|vVMX;;|? <Cp, forallpeN.

In some cases, we will need restrictions on the first four generalized moments.

DEFINITION 2.4. A sample covariance matrix satisfies the § = 1,2 moment
matching condition if

ERX;) (3X:)? = ERY)S(3Y)P
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1106 E. PAQUETTE AND T. TROGDON

where ¥ Z A, 3(0,1/M), for all choices of non-negative integers £, p such that
{4+ p <4

Remark 2.5. To see the necessity of the moment matching condition consider a
sample covariance matrix W' = XX /M where X' is N x M, with X/ = £1 with

equal probability and W £ Wi (N, M). Then consider the first moments of the
spectral measures p and p associated to (W, f{) and (W', f ), respectively:

1 7 X3
/Au(cm = TxxTy L4
1
@y = Tty =1

2.2 The Golub-—Kahan bidiagonalization algorithm
DEFINITION 2.6. A Jacobi matrix is given by

ao b()
b() al bl
r= bl an

It may be finite or semi-infinite. The entries are real and b; > 0 for j > 0. If
b; = 0 for some j, the matrix 7 is called a degenerate Jacobi matrix.

A reduction of W = XX* to a (possibly degenerate) Jacobi matrix can be ob-
tained via the Golub—Kahan bidiagonalization procedure. The distributional action
of this algorithm on the Wishart ensembles Wg (N, M) is given in [16]. Specifi-
cally, if W = M1 XX* Z Wg(N, M), X £ Gg(N, M) then there exists unitary
matrices Uy, U such that

Ui XUz £ \/BXox,

XBM
2.3) P XB(N=1) XB(M-1)
VBXok = XB(N—2) XB(M—2) 0 ,

XB XB(M—N+1)
where all entries are independent. Therefore the law of the entries of the tridi-
agonal matrix UyWU" = M_lUlXUzUz*X*Ul* = ,BXGKXgK is completely
parameterized.
2.3 The Lanczos iteration

The Lanczos iteration is another algorithm for obtaining a tridiagonal reduction
of a matrix.
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’Algorithm 1: Lanczos Iteration

(1) g is the initial vector. Suppose ||g,]15 = ¢Fq; =1, W* = W.
(2) Setb_1 =1,q5 =0.
(3) Fork =1,2,...,n
(a) Compute ax—1 = (Wqy —br_2qr_1)"q-
(b) Setvy = Wqy —ar—19x — bk—24k—1-
(c) Compute bg_y; = |lvgl2 and if by # 0, set g =
vy /br_1, otherwise terminate.

The Lanczos algorithm at step & < N produces a matrix T and orthogonal
vectors ¢, ....q

ap b()
bo a
Ov=[g91 92 - ], Te=TeW.yp={" "1 ,
.. . br—s
br—o ap—y
such that
(2.4) WO = OxTi +br—14j11 [

We use the notation T = T(W, q,) = T,(W, q,) for the matrix produced when
the Lanczos iteration is run for its maximum of n steps.
The following is entirely classical [41].

LEMMA 2.7. Suppose W is a symmetric matrix. And suppose that the Lanczos

iteration does not terminate before stepn < N. Fork =1,2,...,n,
q1:---- 4k
is an orthonormal basis for the Krylov subspace Ky = span{q,, Wq.,..., Wk_lq 13

The following result gives us the distribution of 7T} throughout the Lanczos iter-
ation applied to a Wishart matrix and it is a direct consequence of the invariance of
the Wishart distributions.

THEOREM 2.8. Suppose W £ Wg (N, M). For any given q, € R" with ||q||> =
1(or C" for B = 2) with probability one, the Lanczos iteration does not terminate
ifk < n = min{N, M}. And the distribution on ay,by, k = 0,2,...,n — 1
does not depend on q . In a distributional sense it suffices to take q; = f; and
therefore the distribution is determined by the Householder tridiagonalization of
W, i.e., the Golub—Kahan bidiagonalization of X .

Every N x N Jacobi matrix 7" produces a probability measure

N
HT = Z ;83
J=1
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1108 E. PAQUETTE AND T. TROGDON

where A;’s are the eigenvalues of 7" and w; is the squared modulus of the first com-
ponent of the normalized eigenvector associated to A;. The spectral measure jir,
T = T(W,b) coincides with the spectral measure associated to the pair (W, b)
whenever b is a unit vector. This mapping is a bijection between probability mea-
sures supported on n points and Jacobi matrices of dimension 7 [7].

3 Theory of Orthogonal Polynomials

Let i« be a Borel probability measure on R with finite moments. The orthonor-
mal polynomials (pn)n>0, pn(A) = pn(A; ) are constructed by applying the
Gram-Schmidt process to the sequence of functions

{A|—>1,A+—>A,A+—>/\2,...}.

If the support of p contains at least N points, then one is guaranteed to be able to
construct (po, p1..... PN—1)-

3.1 Hankel determinants, moments, and the three-term recurrence

We now recall the classical fact that the coefficients in a three-term recurrence
relation can be recovered as an algebraic function of the moments of the associated
spectral measure. For a given sequence of orthonormal polynomials, (p;(A));>0 =
(pj(x:p))j=o0 with respect to a measure® 1, we have the associated three-term re-
currence

3.1 Apn(A) = bupn+1(A) + anpn(A) + by—1pn—1(A), n>0, by >0,

with the convention p_1(A) = 0 and b_; = 0. Here b, = b (), an = axn(i)
are called the recurrence coefficients. We will use the following proposition in a
critical way to translate any discussion of the output of the Lanczos iteration to a
discussion of orthogonal polynomials.

PROPOSITION 3.1. The three-term recurrence coefficients generated by the spec-
tral measure associated to the pair (W,b), W > 0, |b|l2 = 1 coincide with the
entries of the Lanczos matrix T (W, b).

We write p, (L) = £,A" + spA/ 71 + .- and find by equating coefficients that

€n = bplnya,

anln = buSp+1.
Define D, and D, (A) by the determinants
D, =detM,, (Mn)ij =mjyj—2, I <i,j <n+1,

mi) =m; = [ 3p@h. Do) = det b, ),

% For our purposes it suffices to assume that ;& has compact support.
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UNIVERSALITY FOR THE CONJUGATE GRADIENT AND MINRES ALGORITHMS 1109

and My, (1) is formed by replacing the last row of M,, with the row vector [L A AZ---A"].

Then, it is well-known that [7]

D, (A
pn(A) = #7
DnDn—l
and therefore
D, _ —_
(3.2) Uy = 1; L s = det My,
n

where M,, is the matrix formed by removing the last row and second-to-last column
of M. This shows that a,,/ /D, —1 and b,% are rational functions of determinants
of matrices involving only the moments of & up to order 2.

Associated to the three-term recurrence (3.1) is the Jacobi matrix

agp b()
b() ai b1
T= bl an

Let 7,, denote the upper-left n x n subblock of 7'. It follows immediately that 7}, is
a differentiable function of (mg, my, ..., m2y,) on the open subset of R?"*+! where
all Dy > 0 for 1 < k < n. We also note that

(3.3) fiT8fy = f AR ).

This can be seen by a direct calculation if 7" is a finite-dimensional matrix. If T is
semi-infinite, then this fact follows from [7, (2.25)].

3.2 Monic polynomials and Stieltjes transforms

The monic orthogonal polynomials associated to a measure p are given by
(34 Tn(As 1) = Tn(A) = pu(A)/ln = A" + -+
We will also need the Stieltjes transform of the monic polynomials

7n(A)
R A—2z

(3.5) cn(zip) = cn(z) = p(dA).

With the convention that by = 1, 7_; = 0, and c_; = —1, it is elementary that
the following recurrences are satisfied forn = 0,1,2,...,

Tns1(A) = A —an)mn(A) — by _yma—1(X),  mo(A) = 1,

p(dA)
R A —Z.

en+1(2) = (2 —an)en(z) — bp_icn-1(2).  co(z) =
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1110 E. PAQUETTE AND T. TROGDON

4 The Conjugate Gradient Algorithm and the MINRES Algorithm
In this section we discuss three algorithms: the CGA, the CGA applied to the
normal equations, and the MINRES algorithm.

4.1 The CGA
The actual CGA is given by the following.

Algorithm 2: Conjugate Gradient Algorithm

(1) xg is the initial guess.
(2) Setrg =b —Wxyg, py =ro.
(3) Fork =1,2,...,n

1 k-1
r]t_lwpk—l .
(b) Setxp = xXp—1 + Ak—1Pk—1-
(¢) Setry =rg—1 —ax—1Wpi_y.
T

(a) Compute aj_1 =

(d) Compute by_; = —

F—1Tk—1

(e) Set py =rg —br_1pg_1-

As noted previously, a remarkable fact is that the iterates x; of the CGA applied
to the linear system Wx = b are given by the solution of the minimization problem
(1.4) [24]. From this, we see that y € K can be written as

k—1 k—1
y=ZcJ-ij = x—y=w"! b—ZcJ-Wij =W_1qy(W)b,
j=0 j=0

for a polynomial gy of degree at most k and it satisfies g (0) = 1. Then, comput-
ing further,

Ix = y I = b gy (W)*W™lg, (W)b.
And setting W = UAU*, we find

N
gy (A))? gy M)
Il =yl = Y L) P = [ oS ur@h). T = T(W.b).
j=t

Now, all directional derivatives of this, when y = x, with respect to coefficients
of the polynomial must vanish identically. This gives a characterization of gy, :
Let g be a polynomial of degree at most k that satisfies 6qz(0) = 0, and we
must have

Sqr(A
0= [ ax, "% 7).
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This implies that g, (1) is orthogonal to all lower-degree polynomials, with re-
spect to pr: Itis given by

(A pur)

4xi (1) = 75 (0; )’

PROPOSITION 4.1. Let xj, be the computed solution at step k of the CGA applied
to Wx =b. Foranyk € N, with T = T(W,b),

k—
> _ ck(O;pr) o _ Mizobi(ur)?
lexlly = —~—— and |lrel; = ———5—
7k (O: pr) 7 (05 1)
PROOF. By orthogonality
) mr(As pur)?
lexllwy = | ————zur(dl)

R A7 (0; ur)?
/ k(A ur) (ﬂk(O;/LT)?L_1 + Z?:l Cj/\k_l)
R

di

O i HT(d)
(A pr) ek (0; wr)
= | ZEERT L any = KEERT)
R )Wfk(O;MT)MT 7 (0; )

For the rj equation, by definition of the polynomials { p,}, we have that

1
[ s P @r) = g5 [ peir Pur @)
R & Jr

4.1 |k
= & = [T oitun”

4.2 MINRES
The MINRES algorithm, at iteration k, gives the solution of

xi = argminy ey, b — Wy |l2.
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1112 E. PAQUETTE AND T. TROGDON

More explicitly, the algorithm is given by
| Algorithm 3: MINRES Algorithm for Wx = b
(1) Suppose W = W* e CV*N ¢ > 0.
(2) Setqy =b/|bl2.
@B)Fork=1,2,....n,n <N
(a) Compute a1 = Wqp —br2q5—1)"qk-
(b) Setvy = Wqy —ar—19x —br—2qr—1-

(c) Compute bx_; = |lvgll2 and if by # 0, set gz =
Vi /br—1.
(d) Form
a0 by -
_ b() a1
T, =
k b—2
bi—a2 agx—1
i by—1

() Compute zj = argming ek | Tez — [bll2 f 1 ]12-
() If [ Trzk — Ibll2f1ll2 < €, return x = [qy -+ qx]zx

Following the same prescription as in the previous section we are led to the
problem of finding the polynomial rx, of degree less than or equal to k satisfying
¥x, (0) = 1 that minimizes

N

b= Wyl2 =3 Iry G PIU*b) 2 = / ryOPur(@d). T = T(W.b),
j=1

among all such polynomials. We then must have

0= f e 81k (W (d2)

for all polynomials 57 of degree less than or equal to k with 87, (0) = 0. So, write

re (M) = YF_o¢jpi (i jur). And choosing 8¢ (A) = py(A:pir) — pe(0: pr)
we find

k
0= / (Z cipjAipur) | (pe(As ) — pe(0; pur)) ur(dA) & g = pg(0: pr)co.
=0

From this, we obtain
k
> =0 Pi O pur)pi(As ur)

“2) e (ks i) =
' Yk_o p2(0: 1)
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UNIVERSALITY FOR THE CONJUGATE GRADIENT AND MINRES ALGORITHMS 1113

PROPOSITION 4.2. Let xj, be the computed solution at step k of the MINRES
algorithm appliedto Wx = b. Forany k € N, with T = T(W,b)

1
Il = —
Yo P70 pr)

1
 be(Wr)2[Pyp 1 0: 1) i (0: o) — P (0: i7) P10 ) |
[0 bj(ur)?
7 11 0 (05 o) — 713 (05 pur) g 41 (05 )

PROOF. Integrating (4.2)
1

- .
> izo P70 pr)

Employing the Christoffel-Darboux formula,

Ib—Wxi|3 =

k
Uk
> P 0pr) = Tt [P}y 1(0: 1) pre0: o) = P (0: o) i (0: o) ]
j=0

= br(T)* [Pt 1 (0 ) Pic(0: 1) — Pi(0; ) Pie1 (05 o) ] -

Then using (4.1)

k—1
peipr) = | []6i(wr)™ | me i per)
j=0

we find the alternate expression

k k—1
S piO:ur) = | []biwr)™?
J=0 Jj=0

(g1 O )7k (0; ) — 705 (0s ) 7p 1 (0 )] . O

4.3 The CGA on the normal equations

Next, for X € CN*M N < M, consider solving the normal equations X X *x =
X b with the CGA. The appearance of X on the right-hand side changes the mini-
mization problem one has to consider. With W = X X*, the CGA will solve

xj = argming i, |x — yllw, Kip ={Xb,WXb,....W*1Xb}.
As before, we express

x—y=Wlg,(W)Xb.
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1114 E. PAQUETTE AND T. TROGDON

Using the singular value decomposition X = UXV™* where U, V are square ma-
trices, we write

Ix = yll5y =b*VE U gy (W)* W gy (W)USV ™D,
=b*VZ*q, (A)*A 7 g, (A)ZV*Db

where A = X X*. Since X has its last M — N columns being identically zero, we
use the notation & = [Zo 0] and find A = £32. Thus

Ix = yl3 = ¢*Zogy (M*A7 gy (M) See, ¢ =[1 0]V*D.
The techniques used in the case of MINRES directly apply.

PROPOSITION 4.3. Let x . be the computed solution at step k of applying the CGA
to the normal equations XX*x = Xb, X € CN*M N < M. For anyk € N,

1520 ;)2 1

lex I3 = = ;
W T O (0:0) = (O 0) 1 (0:0) Yk p2(0;)
where
N
(4.3) V=D @i, = (VD)
Jj=1
X = UXV™* is the singular value decomposition of X and A1,..., AN are the
eigenvalues of XX *.

5 Universality
5.1 Bidiagonal central limit theorem, Gaussian case
Throughout the asymptotic analysis that follows d will be a fixed positive real

M
number and 0 = N/M 774, Taking the entrywise limit in (2.3), using that
the final M — N columns of Xgk are zero and the notation
1

N

Xek =[H 0],
e _
XB(N-1) XB(M—-1)

6. H=_— AB(N=2) XB(M-2)

A8 XBM—-N+1) |
it follows that

1
) NI
B BECE
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This limit is in the sense of weak convergence of the finite-dimensional marginals
of a random infinite bidiagonal matrix.
Furthermore, for a y; random variable

d
2k — Vi =2 N0, 1)2),
k—o0

and so by independence, for iid standard normals {Z;}{°,

Z
(d) Zy Zj
(52) vV 2,BM(H — Ha) m G = Z4 ZS

From here, it follows immediately that the Jacobi matrix produced by the Lanczos
algorithm applied to Wg (N, M) has a limit, in the same sense of finite-dimensional
marginal convergence, to an infinite tridiagonal matrix.

DEFINITION 5.1. Given a positive-definite Jacobi matrix 7" we define ¢ to be the
function that gives the Cholesky factorization of T'. Thatis, ¢(T') = H where H is
a lower-triangular bidiagonal matrix with all nonnegative entries and HH* = T.

The Cholesky factorization ¢(7') is unique for 7 > 0 and ¢ is differentiable
(see [20]). The actual algorithm to compute it is given as follows:

’ Algorithm 4: Jacobi matrix Cholesky factorization

(1) Suppose T"isan N x N positive-definite Jacobi matrix, set H = 7.
) Fork=1,2,...,N —1
2
Hk—i—l,k
Hik
(b) Set Hg:x1,6 = Hickr1,k/ v/ Hi k-

3) Set HN,N = w/HN,N-

(4) Return o(T) = H.

(@) Set Hgy1k+1 = He41,6+1 —

The following is immediate.

PROPOSITION 5.2. Let W 2 Wg(N, M), N < M. For any sequence of unit
vectors b = by of length N,

VIBM (p(T(W.by) ~ Fly) — - G.
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1116 E. PAQUETTE AND T. TROGDON

Now, define
1 Jd
Vd 1+d d
]HIdHZ, =Ty =

Jd 1+d

M
PROPOSITION 5.3. Let W Z Wy (N, M) for N < M where d ———> d < (0. 1],
Then for any sequence of unit vectors b = by of length N, with T = T (W, b), the
vector

(VA rias=thry), = (VAW [ s ran - a@)

kZl R kZl
converges in the sense of finite-dimensional marginals to a centered Gaussian ran-
dom vector G = (G1)g>1-

PROOF. The equality follows using (3.3). The proposition then follows using
(5.2) because, for each k, v M f T(Tk — Tak ) f 1 depends only on a finite number
of elements of 7. U

5.2 Contour integral reformulation of the moments
Let I be a simple curve that encloses the nonzero spectrum of a symmetric

tridiagonal matrix 7". Then
1
mi(ur) = Egézkco(Z:MT)dZ-

Now, let I' = I'; be a smooth simple contour that properly encloses the support of
the Marchenko—Pastur law (2.2).
We denote the Stieltjes transform s, (z) of (2.2) by

da
(5.3) 54(z) = %.
R —Z

There are many classical references for the following two results.

THEOREM 5.4 (Global eigenvalue bounds; see, e.g., [6,22,38,43]). For the eigen-
values Ay < -~ < Ay of W £ Wg(N. M), N < M, andt > 0

N 1/2 1/2 N M —o0
P(l—,/ﬁ—tka e M—}—t — 1.

THEOREM 5.5 (Global eigenvalue bounds; see, e.g., [2,45]). For the eigenvalues
M

AN < -+ < Ay of a sample covariance matrix W and t > 0. Then if 0 o

d €(0,1),

P(l—vd—t <AV <2 <14 va+0) 220
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M
Hence with probability tending to 1 as M — o0, 0 ) , the support of pr,
T = T(W,b) is contained within I'y. As a corollary, we have:

M
COROLLARY 5.6. Let W Z Wg(N, M) for N < M where d ———> d € (0, 1].
Then for any sequence of unit vectors b = by of dimension N, with T = T(W,b),
the vector

M )
o 2K (co(z: pr) — 50(2))dz — G,
Tl oJry k1 N—o0

in the sense of finite-dimensional marginals, where G is the same process as in
Proposition 5.3.

We also need to treat the case of k = —1. Suppose T = HHT where H is real,
square, and lower-triangular and given by

o

Bo «
(5.4) =" /31 -

Then 711 = o and 7j; = on?_l + ,8]2_2 for j > 1. Let H be the matrix formed

by removing the first row and column of H and let T = HHAT. Then it follows
by Cramer’s rule that

det(B3f1f1+T) _ (det YA+ BTV f1)
detT - detT

1 ~
=1+ BofIT™ f 1)
%

)

PROPOSITION 5.7. Let y be random vector in C¥N that does not vanish a.s. Let X
be an N x M matrix with independent Ng (0, 1) entries independent of y. Then

fTT_lfl =
(5.5

From this expression, one obtains

*T—l — 1 1 - j ﬁl%—l
fl fl - F + Z 1_[ 2
0 j=1k=1 k

(04

Following [30, theorem 3.2.12]:

y*y Z a1 2
— 2L Zpy
y(XX*)_ly B(M—N+1)

and therefore

FiT7 Z Z'B—M

XBM—N+1)
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PROOF. The first claim can be established using the QR factorization of X. The
second claim for f'} T~ £, follows from the first once we realize

T=T(M'XX*b),
then f377!1 f, = Mb*(XX*)"'b. O

We can also apply the same proposition to an (N — 1) x (M — 1) matrix of
normals, and conclude
~ R% BM
T 1f 1= .
XBM—N+1)
Using (5.5) this provides a remarkable identity in law involving chi-square distri-
butions:

PROPOSITION 5.8. For any integers £ > Qand M > N > 1

,BM Z 1 ) ,BM
2 =2 L+ Xpw—t-173

AM-N+1)  XBM—t) XB(M—-N+1)
where the chi-squared variables on the right-hand side are mutually independent.

But more importantly, iterating (5.5) £ times and applying and using Proposition
5.7 to describe the remainder, we have:

PROPOSITION 5.9. Suppose H is distributed as in (5.1). Then for0 < £ < N

_ 1 Bi pM Bi
rirt= (e 1 (e ) 1
%o j=1lk=1 BmM-N+1 ) o %

where ) gp—nN+1) depends only on Hy 1.y ¢4 1:N-

The following notation is convenient.
DEFINITION 5.10. We write Xpr = car + Yar + o(M ~1/2) if
VMXy —cy) and VM (Yy).
converge, in distribution, to the same distribution as M — o0.

Let £ be fixed. We use the approximation in distribution (5.2),

@ =1+ Zaji1/v2BM + o(M™1/?),

Bi = Vo + Zajia/V2BM + o(M™'/?)
to find
ﬁ 1/2
56 =1+ —=Zajp1 +o(M 2,
,/ M
2
57 Br=o+ g221+2 +o(M~1?),
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- 1+ Zo ) +oM™Y?),  zo £ N0, 1),
KB =N +1) ( V1-2ypM ’ ’ 1

and compute as N — o0

I
—_

£ ﬁ
+ O 1+ ——==(Z/~Vd — Zag11)
> kl:[1 1+ i - 2|

£ _
1_0£+1 ﬁ kl_oﬁ k+1
= + e~ (Zy/VoO—Z + oM™V,
— Bt & — (Zak/ 2k+1) + o )

Thus
_ 1 (d)
VBM I FXT7 ' — — ) ——
p (fl /1 1—a) M—o00
Z1 s
2
_1+«/_k§_11

We arrive at the following proposition.

)-

PROPOSITION 5.11. Suppose H is distributed as in (5.1) where the entries are
labeled according to (5.4) and T = HH*. Let Z = [Z1, Z»... )T be a vector of

M
iid standard normal random variables. Then if N < M,0 27 d €(,1),

VB (17771 - l%) D

0 M—o0

Z_1:=—V2 ——(Zo/Vd — Zog41).
= —~1-d
Additionally,

T ] [

o 4)) 1
JEI Bo B Vo @ [z

o1 1 M—>oo Z/\/_
B1 Vo

in the sense of convergence of finite-dimensional marginals.
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1120 E. PAQUETTE AND T. TROGDON

5.3 Universality for the moment fluctuations of the spectral measure

We now generalize Corollary 5.6 to general distributions. Let R(z) = R(z; X) =
(XX* — zI)~! denote the resolvent of XX * and define

—I X*]_l

G(2) = Gz X) = [X S

The following is a direct consequence of [26, theorems 3.6 and 3.7].

PROPOSITION 5.12. Suppose X is a sample covariance matrix with

M
d=N/M =22 d € (0,1) U (1, 00).
Foranyé,e¢ > 0andforany R, D > 0 there is a constant C so that forall M € N,

sip  sup P[0 G@w — v Ta(@w| = lolllwl M| < cM~P,

z€l y,weCN+M

[+ sy 0
Ha(Z)—[ el I SD(Z)IN],

and therefore

sup sup P [\v*R(z)w —sa(2)v*w| > |v|| ||w||M€_1/2] <CcM~P,
z€l y,weCN

where T is any bounded simple closed curve that does not intersect the support of
Qd-

Remark 5.13. For our results, we will need an analogous result to Proposition 5.12
for d = 1. One such result of this type is found in [15, lemma 6.1].

DEFINITION 5.14. Let @ : C” — R be bounded. Suppose, in addition, that for
any multi-index @ = (ay,...,0), | < |a| < 5,and for any €’ > 0 sufficiently
small, we have

max{|0¥®(xy,...,x,)| : max |x;| < M€Y < pCo¢
J

for Cy > 0. Then @ is called an admissible test function.

THEOREM 5.15 (Comparison). Let W = XX* and W = YY* be two sample
covariance matrices such that

EMX:) (3X;)? = EMY;) QYij)P, L+p<4, 1<i<N, 1<j<M.

For each j, let T; = 3Q;, Q;j = Qj be a simple, smooth, positively oriented
curve that is uniformly bounded away from support of the Marchenko—Pastur law
04- Suppose that f1, fa, ..., fa is a finite collection of functions that are analytic
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in a neighborhood of Q2. Then for any admissible test function ® : C" — R we
have for T = T(W,b), T = T(W,b),

E® (;/Mf]g J1(@)(co(z: ur) — s0(2))dz, ..., @95 fn(z)(Co(z:uT)—Sa(z))dz>
wi Jr, 2ni Jr,

<CM~°

for some C,0 > 0. Here C will depend on n, the constants Cp in Definition 2.3,
®, I'1,...,Iy, and f1,..., fn, and o will depend on the constant Cy in Defini-
tion 5.14.

Remark 5.16. Note that in Theorem 5.15, if 9 is bounded uniformly away from 1,
a contour I'j could just encircle z = 0. And if 0 — d € (0, 1], the only nontrivial
case is where the contour I'; encircles the entire support of o.

This gives immediate corollaries.

COROLLARY 5.17. Suppose W is a sample covariance matrix satisfying the mo-
ment matching condition (Definition 2.4) with

o= N/M X% 4 e (0,00).

Then for any sequence of unit vectors b = by of length N, with T = T (W, b), the
vector

M
(j__ Feolz; pr) — 5 (Z))dz) @, g,
7t Jr k=1 N—o0

in the sense of finite-dimensional marginals, where G is the same process as in
Proposition 5.3.

COROLLARY 5.18. Suppose W is a sample covariance matrix satisfying the mo-
ment matching condition (Definition 2.4) with

o= N/M Y22 4 e (0,00).

Then for any sequence of unit vectors b = by of length N, with T = T(W,b), let
H be given by the Cholesky factorization of T, H = (T, and label the entries
of H as in (5.4). Then Proposition 5.11 holds for H.

PROOF. Fix k. For all N > k, the Hankel matrix of moments

(mj+r—2(UT))] p=y
is positive definite almost surely. On this set, the mapping to (m;(ur) : 0 <
j < 2k) — T (W,b) is differentiable. It follows that Hy, the upper-left k x k
subblock of H, is also a differentiable function m;(ur), j = 0,1,...,2k. Then
the corollary follows directly from Theorem 5.15. U
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1122 E. PAQUETTE AND T. TROGDON

Before we prove Theorem 5.15, we establish some intermediate results.

LEMMA 5.19. Foran N x M matrix X and 3z # 0

. —7 x*7' [E'xx*—D7! (X*X —zI)7lx*
(5-8) X —zI| Tlxx*x-—znp' (xx* -zl
7 x*71!
X —-zI

Recall that f{, f,, ... denotes the standard basis and we use the notation

5= [0} c CN+M
u

(5.9) < (2l + DISz[7 + 2132171 + Jzl]3z2

foru € CN,

LEMMA 5.20 (Resolvent expansion with leading-order correction). Let X be an
iid matrix satisfying the assumptions of Definition 2.3. Let Q be the matrix that
is equal to X with the exception of one entry that is set to 0 so that X = Q +
X,'jfif;-‘forsome 1<i<N,1<j <M. Fortwo unit vectors u,v € cN

3
0FS(z X0 =a*S@: Q0+ Y MHF2p + M2y,
k=1
Sz X) = VM[G(z; X) = Ma(2)],
and for every € > 0 and D > 0 there exists C > 0 such that J4 satisfies
P(|Jal > M) < CM™P.
In addition, Jy for k < 4 is a finite sum of the form

Te =" feu8ki-
¢

where g ¢ is a monomial in Xjj~/M and X_ij\/ M with degree at most k + 1 and
Jk¢ is independent of X;; satisfying that for every € > 0 and D > 0 there exists
C > 0 such that

P(| fiel > M) < CM~P.
PROOF. Write V := X;; f,-+Mf;< + X_ijfjf;k+M. Consider for a diagonal
matrix D
u*DVD?v
= Xij @ D fi1a)(f7DV) + Xij@* D f ))(f 713 DD)
= Xij(@* Divpmi+m fi1m)(f} D))
+ Xij (@ Djj f ) Fyp Divmi+m®) =0.

This is because 1 < j < M and @, v must have zeros in their first M entries.

(5.10)
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We then consider the expansion of
S(z:X) =S(z:0) = VMG(z; Q)VG(z: Q) + -
+VM[G(z: Q)V]*G(z: Q) — VM[G(z: Q)VIG(z; X).
We write
#*VMG(z; 0)VG(z;: Q)8 = VMu* T4 (z) VIl (2)d + Ejj.
From (5.10) the first term vanishes. Explicitly,
Eij =[S 0VG(: 0) + Gz QVS(: 0) + MTV2S(z: 0)VS(z: 0) .
= Xij @ S(z; O) f j4m)(f7G(z, 0)D)
+Xij @ Gz O f ) F1m Sz Q)0)
+ Xij @ GOV f jem)(f 7Sz, QD) + Xij @*S(z: O) f ) 71 Gz, Q)D)
+ MTV2Xy @ Sz Q) f ja)(f Sz 0)D)
+ M7VPXG @S (2 O f D e SE. 0)0).

Observe that this is a linear function of Xj;, X_U with coefficients that are indepen-
dent of X;; and controlled by Proposition 5.12.
Then consider

1*(G(z; Q)V) G(z: Q)3.

With the notation a1 = Xjj, ax = X;j, v1 = fj+M, vo) = fi;,and wy = f,
wy = fj+M,onehasf0r€ =2,3,4

VM (G(z: Q)V)*G(z: 0)p
4
=vM > [(]_[apk>(ﬁ*G(z;Q)vpl)(w;[G(z;Q)ﬁ)

pef1,23t L \k=1
-1 ©
' H(w;kG(Z; Q)”pk+1)i| = Py
k=1

and set

5
PP =vM Y |:<1_[apk)(ﬁ*G(Z;Q)vpl)(w;gG(z,;X)i})

pe{1,2}5L \k=1

4
: l_[ (w;k G(z; Q)vpk+1):|~

k=1

Whenever two vectors are orthogonal because they have disjoint support, we can
replace G(z) with S(z)/+/M. When £ is odd, suppose that for a choice of p €
{1, 2}Z no two vectors are orthogonal in such a way. Then p; = 1 so that # is
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1124 E. PAQUETTE AND T. TROGDON

not orthogonal to v,,. And then w; and v; are not orthogonal if i # j, so then
p2 = 2, p3 = 1, and so on. This implies that py = 1 because £ is odd. But then
v is orthogonal to v,,. This implies that the order of the odd terms is actually one
less than is immediately apparent. Write

3
AFS(z; X))o = a*S(: QW + Y M *Ph + M7, =0 S(z; Q)b + £,

k=1
Jl = Ml/z(Eij + Pigz)), J2 = MPZS'?,)’
_ ag3/2p@® _ ag5/2p®5)
Js=M32PLY, Jo=M32P2,

g

PROPOSITION 5.21 (Green’s function replacement). Suppose ® is an admissible
test function. Suppose further that X and Y are two matrices satisfying assump-
tions in Definition 2.3 and that

Ex)X;" =EYY;”,
for all choices of £, p e N, £+ p <4,and1 <i <N, 1< j < M. Then for any
€ > 0, any families of unit vectors {q ; };?:1, ip; };?:1, and any collection of points
{z; };-’:1 bounded uniformly away from the support of the Marchenko—Pastur law
04 and bounded away from the real axis by M =5 1> 68 >0, we have

[EQ(§1S(z1, X)P1.- - G, S(zn, X) D)
—E®(§7S@1 Y)P1s . 4nS(@n. Y) Pyl
< CnSMY2+Ce

where C' > 0 depends only on Cy in Definition 5.14.

PROOF. The following proof is adapted from [21, theorem 16.1] and [26]. Let
¢ :[1,MN] — [1,N] x [1, M] be a bijection.” For y € [, M N] define X, by

Yoy €=,

Xy =

Note that Xo = X and Xpyny = Y and also that X, and X, 1 differ only in

the ¢(y + 1) entry. Define Q) by (Qy)gw) = (Xy+1)pq) if € # y + 1 and
(Oy)p+1) = 0, so that O, has a zero in the exact entry where X, and X, 11
differ. We then compare X, to Q, using Lemma 5.20 and a fifth-order Taylor
expansion of ®:

Q(/q\TS(Zl,Xy)ﬁl,,’q\ZS(Zn,Xy)i)n)
= ®(’q\TS(Zl’ Q)/)ﬁl + glv-'-v’q\:S(Zns Qj/)ﬁn + gﬂ)
= CD(ZI\TS(ZI»Qy)i’l’---’a:S(Zn,Qy)i’n)+

THere [1.N] = {1,2..... N}.
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4
R PO N
+ 2 2 F@IS@1 Q)P 7S En Q)P
k=1 |a|=k
&Ol
+ ) PGS Qy)Py + ki G5 S@n Q)P + cE)Pa)
la|=5 ’

for some 0 < ¢ < 1. Here § = (§1,....&,) and § = Zile—kﬂJk,j,
Js,j = 0 represents the £-term in Lemma 5.20 applied to §;, p;, z;, and X,. We

rewrite this expansion by collecting powers of M 1/2

OG1S(z1, X)) P1s- G0 S@n, Xy)Py)

4
= OGSzt 0y)P1.- - G SEn. 0By + Y MTF2T .
k=1
By independence E[7}] for £ < 4 decomposes into a sum of terms that are a prod-
uct of a quantity depending only on moments X, 41), IEM(Z"'I’)/zXq‘;(yH)Yg(yH),
p—+{ < 4, and a quantity depending on other variables. Then, an estimate is needed

for ET.
Fore > 0and D > 0, let ng be the event where

max[[v{Gze. Oy)wy| + [ S (e 0y)wy[] > M,

and the families of vectors {vj} and {w;} are given by the union of the families
{q} and {p;} with the standard basis vectors, respectively. Then there exists a
constant C > 0, independent of y, such that the probability of this event is bounded
above by CM ~P . Also, let &), be the event where

VM|X¢(y)| > ME.
We use the a priori bound |G (z¢, Xy)|| < cm?’ (see (5.9)) and that
VG (g Xy)w;
= v;G(zg: Qy)w;
- UZG(Z€§ Qy)(Xy - QJ/)G(ZZ Qy)wj
+ U;:G(ZE; Qy)(Xy - QV)G(ZZ§ Qy)(Xy - QV)G(ZZQ Xy)wj-
C C
On the event EQV N Xy
v} G(ze: Xy)w;| < M€+ 2M3€7V2 L 4c 310,
Using an expansion to the next order, one obtains
v;S (ze: Xy)wy| < 2M3€ + 4M></2 4 gCM T
Provided that 4¢ — 1 + § < 0, we have that
max[[v7G(ze, Xy)w; | + v S(ze, Xy)w; [] = €M<,
b 9.]
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1126 E. PAQUETTE AND T. TROGDON
for a new constant C’.
Now, consider
E® =E®(ly, + ly)(leg, +legg ),

where |®| < 1, without loss of generality. Then for every D > 0 there exists
C > 0 such that

-D
|Eq>ﬂ/yy]lgc’Qy —i—IE(DﬂX)gﬂng +ECD]1X]§]156V| <CM™".
‘We need to consider
ETk,yLxg ]lgéy .
First,

¢ c 50 13(Co+8)e—5/2 k
[ETsyleg, leg | < 1024n°M é}caésm«/Mx,ﬁ(y)\

where M 3C0¢ is the upper bound on all derivatives of ®, and 10247 is a bound on
the number of terms in the Taylor expansion. For T} ,, we note that for any D > 0
there exists a constant C > 0 such that

BTk leg, Leg ,, —ETkyley | < cm=P,
So, we can write
4
EQGTSE1. Xy) P GSGn Xp)Pa) — 3 M7F2L,

k=1
< Cn3 M3 Co+8)e—5/2

where Ly depends only on (), and the moments of Xy(,) up to order 4. The
proposition follows using

E®@TS(z1. X)Py1. - 4pnS(Zn. X)Py)

—E®@G1S@1. Y)P1. - 4, S@n. Y)Pp)
NM
=Y E®@TS(z1. X)P1.---. 35 S@n. Xy)Py)
y=1

NM
- Z IE(D(’q\TS(Zlv X)/+1)ﬁl’ e ,/q\:S(Zn, XJ/+1)ﬁn)
y=1

0

We recall well-known important facts about the trapezoidal rule applied to ap-
proximate contour integrals on smooth closed curves. Suppose " is such a curve
of length 1 with arc length parametrization £ : [0, 1] — I'. We choose ¢ so that

QSUADIT suowwo)) aanear) a[qeoridde ayy Aq pauIA0S a1e sa[oNIR Y 2SN JO SN J0f KIRIQIT QUI[UQ AJ[IAN UO (SUONIPUOD-PUB-SULIS)/ W0 KA[IM KIeIqI[our[uo//:sdny) suonipuo) pue swid ], Ay 998 ‘[€202/S0/¢7] uo Areiquy aurjuQ £d[ip ‘uoigurysepy JO ANs1oatun £q 1807z edd/z001°01/10p/wod’ Kafim* Areiqrouruoy/:sdny woiy papeoumod ‘S ‘70T ‘TIE0L60T



UNIVERSALITY FOR THE CONJUGATE GRADIENT AND MINRES ALGORITHMS 1127

£(0),£(1/2) € R and £(0) < £(1/2). With m points, the trapezoidal rule can be

used at the nodes ¢; = j/m for j = 0,1,...,m. In our case, however, we wish
to avoid evaluating on the real axis and we choose sJ(m) =5 =t +tj+1)/2 =
2j +1)/(2m), j =0,1,...,m, with the convention that s,, = s¢. Consider

t(sj)

m

1 m—1 m—1
$ 1@z = [ e ~ Y feen =L = 3 fepu.
r 0 j=0 j=0

;= T

(m)
Z; -

£ (s;
=z =Us). wi” =w; (57)
Using the Euler—Maclaurin formula, for every D > 0 there exists Cp > 0 such
that

m—1
gg f@dz =" fpwi| < Cpf P oom™P.
j=0

PROOF OF THEOREM 5.15. We prove the proposition for I'; = I" forall ;. The
arguments easily extend to the general case. Let ® : C” — R be an admissible
test function. We approximate

g 9§ £ oz ur) — so(2)dz

using the trapezoidal rule and consider

Apm = ¢(;/—M.§I§ S1(@)(co(z; ur) — 59(2))dz, . . .,
Tt Jr

j—ﬁ. 95 (@) (co(z: pr) — Sa(Z))dZ)
Tt Jr

The choice of m is critical. Examining how the conclusion of Proposition 5.21
depends on 1, we need m> < M2 So, we choose m = M /20,

Because @ is bounded, for § > 0 we can restrict to the event L5 = {Ay >
y— —8,A1 < y4 + 8}, and there exists Cp such that P(Lg) > 1 — Cp M P for
all D > 0. Furthermore, we choose § so that [y_ — §, y+ + §] C Q. By fixing §,
on this event the integrands and all their derivatives up to order £ are bounded by
VMc g for some cg > 0. Then, for example, on the event Lg,

g ﬁ S1(2)(co(z; ur) — $0(2))dz — g; S1(zj)(co(zj; 1) = $2(2))wj

- CE()cgvM
S E
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Since E can be chosen arbitrarily large, we then find
[EAMmlcs| < CM~P

for any D > 0. Therefore, it suffices to consider

Artm = ®<m2fl(zj)(co(1j;MT) —so(z)wj, ...,

j=1

VMY fulzj)colzjimr) — sa(zj))wj>

J=1

- q><m2 filzp)eolzjs pg) = soz))wy, -,

j=1
VMY fulzp)(eo(z) ug) — Sa(Zj))wj>~
j=1

And, we are led to consider the function ¥ : C" — R
Gl Wi xz... . Xm) =@ D AGHZZ X0 Y fal3) 55,
— 2mi i 2mi

Define W € C"*™ by Wy; = fg(zj)zw—nji. It follows that

Oy xjpwxjg P(X10 ooy Xm)
n q
= Z Iyi, yiy iy PV Ym) l_[ Wep.in | -
kika,...kg=1 p=l1

m
Wi
J
= Zi)——Xxi.
e =D fe@) 5
=1
From this, we are able to estimate

a (X1, .., Xm)

Xj1 %2 %iq

n q
Sk max 10ys, iy =iy PV1 - Vi) Z 1_[ Wep.ip|
15K25..0,K 1 k],kg,...,qulp:l

Cc\?
< max |8y, y, ey @OV1,..., max || 1L 1 — ) .
< [ g, 01l max 1 ()

where C' > 0 is such that ) j |lwj| < C. Note that C can be chosen independent
of m. Now let € > 0 be sufficiently small so that

|0, x5 POXT oy Xn) | < MCo¢  for max |xj| < M€.
j
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All arguments for @ in (5.11) are uniformly bounded by M € for
e, [ C
max |x;j| < M/ | = max | filleo ) -
J 2 J
Thus

c\?
|9y, yipvip YT X)) < M ¢ mjax 115 1% (E)

By setting . = % max; || f; oo we find that

m m
7 -1 wij -1 wij
U(x1, %2, ...xm) =D [ L Z NG xg L Z Fa(2) 5 2%

Jj=1 j=1
is admissible with the same constant Cy. Applying Proposition 5.21 to U estab-
lishes the proposition. O

We also remark that these arguments, without the use of Proposition 5.21, can
be used to show the following:

M —o0
PROPOSITION 5.22. Suppose W is a sample covariance matrix, N/M ——

d € (0,1) and T = T(W,b) for a sequence b = by € CN of nontrivial vectors.

Then
k (d) k
( [ uT<dx>)k 9, ( [ Qam))k,

in the sense of convergence of finite-dimensional marginals where k > 0ifd = 1
andk € Z ifd < 1.

6 Analysis of the Algorithms

The important fact that we use to prove Theorems 1.4 and 1.5 is that the entries
in the Cholesky factorization of the three-term recurrence matrix associated to a
measure p are (generically) differentiable functions of the moments of the mea-
sure. This implies that the leading-order behavior (Theorem 1.4) is the same as in
the Gaussian case and that, with the moment matching condition (Definition 2.4),
the fluctuations must be the same as in the Gaussian case (Theorem 1.5). So, it
suffices to prove Theorem 1.5 in the case of X having Ng(0,1/M) entries. The
following three sections do just this.

6.1 Proofs for the conjugate gradient algorithm

The basis for our analysis is Proposition 4.1 and Theorem 2.8. In this section we
suppose W Z Wg(N,M), N < M,andb = by € C¥ (or RV if B = 1). And
we recall the notation that x; = x4 (W, b) is the k" iterate of the CGA applied to
Wx =bandry =b—Wxp, e =x — xi.
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Nonasymptotic calculations
Using the notation (5.4), with 7" = T(W b) = HHT, it follows that

k(0 pr) = (—1)F ! 1_[0‘ o Tjj+1=ajpj.

j=0
and therefore
k—1 ,32
(6.1) Il =T =5
ot
j=0"J

where the chi squared random variables are all mutually independent. This formula
lends itself easily to asymptotic analysis.

Deriving a distributional expression for | ey ”%V is more involved. With the con-
vention that b_; = 1

1) _ [x—ax —bi_|[x—ar-1 —bi_,] [x—ao —bZ[1
mOpr) | T 1 0 1 0 1 o |[lo]
Then define the complementary polynomials
Jrk+1(x UT) X —ag —bii1 X —ag—1 _bl%fz |x—ao b2, 1[0
T (x; ) 1 0 1 0 1 0 1|
Decompose

ck(0; ur) = co(0: ) (0; 1) — 7k (05 ).

Then
k—1 { k—1
FeO:pr) = DFTSUTT 820 | TT 7 |-
£=0 \j=1 j=t+1
giving

~(0;) 1klZZ
o = a1

7k (0; ) o (=0j=1

where the empty product returns 1. From Proposulon 5.9

k—1 p2

Bi_
Mmm=;1+zrlﬂfﬂ“a)ﬂg;,

0 {=1j=1 j=1 "J

where X = % is independent of («j, B J)k 1 'We find
k—1 ,32
6.2) leelly == [ ] 3
j=0
where the chi squared random variables are all mutually independent. This estab-
lishes Theorem 1.2(a), and Theorem 1.1 follows as well.
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Asymptotic calculations

PROOF OF THEOREMS 1.4(A) AND 1.5(A) WHEN v M X £ Gg(N, M). Decompose

coO:pr) = ——+ ——==R(ur), T =TW.b),

d
using Proposition 5.11. In the notation of this proposition R(u1) (—)> Z /2.

M—o0
Then using the complementary polynomials

ceO:pr) _ (1—0)"'me(0: pr) — Fac(0: 1) N V2 R(ur)
7 (0; ) 7 (0; ur) VBM '

We write T = HHT, again using the notation (5.4). Using the distributional
limit described in Proposition 5.11 one can compute the large N behavior. Specif-
ically, we use (5.6) and (5.7) extensively. Using the same process (Z;);>1 write

e bR g [ 2 g ~1/2
Ak'_[1 G| = g Bt o7,
. [-1-2 —d
E=[0 )

B = [—sz+1 —VZoy —0Zppy - ﬁzzk} .

0 1

We compute the asymptotics of the quantity

—a? 1717
[1 O]Ak_lAk_z---Al[ “ OH_—;]

using that
. . -1 - L -1 -0
E=VAVT!, V_[l e Rk
A = diag(—1, —0).
We find that
1
pk—j—1p pi—1 |~ —1 5
T R =
k19—
R P |
Similarly,

ny =z 1771 1—ok
[1 0] E¥ 1[ 11 0][1—10}=(—1)k(1_0)221.
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Therefore it remains to analyze

k—1 5 k=1
1_[04 1+—222]+1 +o(M™1/?),
Jj=0 V'B j=0

k—1

Zbk 1/222 +2+0(M 1/2)

B =+ ==
jl:[() ’ 'BMJO

The distributional limit of R(ur) is provided by Proposition 5.11. So, our final
expressions become

lex (W.b) (12,

k 00
0 (1 " \/ﬁu[zw—ﬂm/ﬁ—@m
j=k

1.9

k—1
+ Y (Z2j /N0 = Zaj 1) — Zak— ) +o(M~1?),
j=1

\/E k—1 ~
Iee (W, b3 = o e ;)(Zzﬂrz/«/ﬁ—zzjﬂ)_ +o(MY?),

The theorem follows. O

6.2 Proofs for the MINRES algorithm

Nonasymptotic calculations
The proof of Theorem 1.1(b) is immediate from the simple formula

pO.pr) = S = H

using (5.4). Then using (5.1), Theorem 1.2(b) follows.

Asymptotic calculations

PROOFS OF THEOREMS 1.4(B) AND 1.5(B) WHEN ~+ M X £ Gg(N, M). Itsuf-
fices to prove Theorem 1.5(b) in this case. From Theorem 1.5(b) we have that

j—1
. 2 ~ ~ .
(= oaé VM
This implies

k j—1 k x/— k
> TT 5=~ Lo 7 o

j=04¢= 0 =0

~
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And this gives
-1
SIIS) = S
_ k-1 —k—1
=00 P I=o - pM =
+o(M~1?).
In writing,
-t 10
1 _a—k—l 1 _ok-l-l’
we establish the theorem. O

6.3 Proofs for the conjugate gradient algorithm
applied to the normal equations

First, observe that for o > 0

(A;
63) pj (s ap) = Lﬁ“)

Consider the distribution of the measure v as defined in (4.3), and in particular,
the distribution on the absolute value of the vector V*b where X = UXV™ is
the singular value decomposition of X. We know that V' can be taken to be Haar
distributed on either the orthogonal (8 = 1) or unitary (8 = 2) group [20]. By
invariance, if ||b||2 = 1 then b can be replaced with f ;. From this it follows that
for T =T(W,a)

,z’N &z st'
MT:ijS)Lj’ a)ij—’j, j=12,...,N,

Zlé,e
=1

and (41, ..., An) are the eigenvalues of W which are independent of (w1, ..., wn).

So, we find that, in the notation of Theorem 1.2(c)

N
ZX%M N

Z | £=1
V= Za)j(&j.
2 j=1
ZXﬂ,e
=1
———
AN.m

Combined with (6.3), this gives the proof of Theorem 1.2(c). And then Theo-
rem 1.5(c) and Theorem 1.4(c), in the Gaussian case, follow.
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