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Abstract We present an alternative formalism for mod-

eling spin. The ontological elements of this formalism are

base-2 sequences of length n. The machinery necessary to

model physics is then developed by considering correlations

between base-2 sequences. Upon choosing a reference base-

2 sequence, a relational system of numbers can be defined,

which we interpret as quantum numbers. Based on the prop-

erties of these relational quantum numbers, the selection rules

governing interacting spin systems are derived from first prin-

ciples. A tool for calculating the associated probabilities,

which are the squared Clebsch–Gordan coefficients in quan-

tum mechanics, is also presented. The resulting model offers

a vivid information theoretic picture of spin and interact-

ing spin systems. Importantly, this model is developed with-

out making any assumptions about the nature of space-time,

which presents an interesting opportunity to study emergent

space-time models.

1 Introduction

Historically, discovering new ways of obtaining established

results has been an effective means of making progress in

physics. The epitome of this is Hamilton’s reformulation

of Newtonian mechanics. Superficially, a reproduction of a

known result, especially one obtained nearly a century ago,

seems inconsequential. Though occasionally, as was the case

for Hamilton’s insight, the manner in which the old result is

reproduced can open new avenues of thought and exploration.

It is in this vein that we present here an alternative formalism

for modeling spin, which emerges upon the consideration of

two point correlations between base-2 sequences. The infor-

mation theoretic roots of this alternative formalism paint a

completely new picture of the conceptually elusive, but phys-

ically ubiquitous quantity known as spin.
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The information we obtain about physical systems requires

measurement, which inevitably involves one or more quan-

tum mechanical interactions [1–3]. While one cannot say

with certainty if interactions in nature are discrete or con-

tinuous at the fundamental level, the observable outcome of

any interaction is always discrete. For this reason, the results

of any conceivable physical experiment can be reduced to

counting. This fact stands in stark contrast with the uncount-

able sets universally employed by modern theories, which are

based on continuous functions satisfying differential equa-

tions. This tension between the countable nature of empirical

data and the uncountable sets that form the foundations of

modern theories is not simply a matter of improving preci-

sion or collecting more data [4]. Rather, it exists because of a

fundamental difference between our experience of the physi-

cal world and the theories we use to model those experiences.

This simple observation leads us to the following quote from

Niels Bohr:

“It is wrong to think that the task of physics is to find

out how nature is. Physics concerns what we can say

about nature.” [5]

If we cannot prove that nature is continuous, then perhaps

we should explore theories which do not require it be so.

The quantum revolution of the twentieth century was a direct

consequence of the observed discreteness of interactions [6].

However, quantum mechanics (QM) was built with the clas-

sical Hamiltonian in mind [7]. This approach resulted in a

strong dependence of the theory on uncountable sets. While

quantum gravity is generally considered to be the final piece

of the quantum revolution [8–12], there remain significant

questions regarding the nature of the quantum state in QM

[13–17]. This less appreciated use of uncountable sets in

physics was a primary motivation for the development of

the alternative formalism presented here, which has the abil-

ity to reproduce predictions from QM under a continuum

limit, while also revealing important geometric properties

and selection rules in the finite regime.

123

http://crossmark.crossref.org/dialog/?doi=10.1140/epjc/s10052-022-10652-y&domain=pdf
http://orcid.org/0000-0001-9742-0279
http://orcid.org/0000-0002-6894-0539
mailto:sampower@buffalo.edu
mailto:ds77@buffalo.edu


690 Page 2 of 12 Eur. Phys. J. C (2022) 82 :690

For nearly a century, there has been a perpetual debate

regarding the reality of the quantum state in QM [18–20].

That is, does the quantum state represent something truly

physical, or is it epistemic? Much of this debate occurs within

the context of the standard Dirac formalism for QM, which

involves Hilbert spaces, the Schrodinger equation, the Born

rule, etc. [21,22]. Applying the various no-go theorems that

have resulted from this debate to an alternative formalism

is not generally useful, especially when that alternative for-

malism does not assume a preexisting space-time, as will

be the case here. However, even within epistemic interpre-

tations of the quantum state, there is still some notion of an

ontic state, where the quantum state is simply an ensemble

of these ontic states. This conceptual picture of the quantum

state is precisely the one that develops within the formal-

ism to be introduced here, where ontic states are modeled

by sequences of finite group elements, beginning with the

group Z2. The information stored in the ordering of these

finite group elements is then hidden, or coarse-grained away,

leading to non-determinism in the resulting model.

While non-determinism is certainly a central feature of

QM, one should not lose sight of the profound role deter-

minism plays in nature. As one might imagine, incorporat-

ing the correct non-deterministic and deterministic features

into a single cohesive model for spin is no small task. Yet, the

formalism to be introduced here manages this feat quite natu-

rally. For example, quantities like total spin, which is an emer-

gent and relational property of two point correlations between

base-2 sequences, can be conserved by considering permuta-

tions of the underlying sequences. The selection rules obeyed

by interacting spin systems can be recovered by consider-

ing three point correlations between base-2 sequences, along

with simple arithmetic arguments. Of course, these selections

rules include deterministic equations associated with the con-

servation of angular momentum within interacting spin sys-

tems. Thus, important laws of nature arise naturally within

this formalism, rather than being asserted through axioms or

principles.

The probability coefficients obeyed by interacting spin

systems, which are the squared Clebsch–Gordan coefficients

in QM, represent an important test case for the development

of this formalism and the subsequent model. As previously

mentioned, we make no assumptions about the nature of

space-time. Rather, our intention is to use calculations, such

as the probability coefficients for interacting spin systems, to

guide our development of space-time. The result of this cal-

culation is a simple closed form expression, coupled with a

vivid conceptual picture which involves two observers, one

associated with each of the constituents involved in a spin

interaction experiment. These observers, which we call Alice

and Bob, each construct their own epistemic ensemble, which

encodes the knowledge each has about the physical systems

involved in the experiment. The probability coefficients are

then found by counting paths between their ensembles, such

that certain quantum numbers are conserved.

In recent decades, several serious research efforts have

been made towards producing an alternative to QM [23–30].

Through unique combinations of motivations, development

strategies, and results, each of these efforts have contributed

significantly to a shifting paradigm, at least within the small

community of active researchers in this field. For those famil-

iar with these efforts, the existence of a theory beyond QM

is not some faint notion, but a plausible and attainable real-

ity. Given the foundational role that QM plays in science

and technology, as well as the considerable challenges facing

these fields today, the pace of scientific discourse regarding

this matter must increase. What differentiates the formal-

ism presented here from these previous efforts is its unique

combination of simplicity and modeling power. With a small

number of mathematical tools, it has the ability to produce the

selection rules and probability coefficients associated with a

real experiment, while refraining from making any assump-

tions about the nature of space-time. In other words, the for-

malism and subsequent model introduced here not only offers

an interesting information theoretic picture of the quantum

state as well as interactions, but it also has clear predictive

power and the potential to inform important next steps in the

development of an emergent space-time.

This paper is broken into six sections, including the intro-

duction. In Sect. 2, the foundations of the alternative for-

malism will be introduced, which involves base-2 sequences

and correlations between them. In Sect. 3, our definition of

quantum numbers will be introduced, along with the notation

necessary to label sequences, or sets of sequences, using these

quantum numbers. The properties of these quantum numbers

are then explored in Sect. 4, which leads to the derivation of

the selection rules for interacting spin systems. The probabil-

ities associated with interacting spin systems are then calcu-

lated in Sect. 5. Finally, the implications of this work, as well

as some ideas regarding future work, are discussed in Sect. 6.

2 Sequences

The building block of this formalism is the base-2 sequence.

A base-2 sequence is a list comprised of two distinct symbols,

where the symbols may be repeated and order matters. The

symbols used here are 0 and 1, which are the members of the

finite group Z2 [31]:

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (1)
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A base-2 sequence can be of any length, which is denoted

as n. For a given length n, there will be 2n unique sequences.

The set of all such sequences is denoted as S1(n). In physics,

it is well known that most of the information contained in a

composite system does not lie in its subsystems, but actually

in the correlations between its subsystems [32]. For this rea-

son, we are motivated to introduce the set S2(n), which is the

set of all two point correlations between base-2 sequences.

An element of the set S2(4) is given here:

⎛
⎜⎜⎝

1 0

0 1

1 1

1 0

⎞
⎟⎟⎠ ∈ S2(n = 4). (2)

Individual elements of these sets are denoted as s2 ∈
S2(n), where n has been suppressed. Using this notation,

an element of S2(n) can be constructed using two elements

of S1(n) like so, where the ⊗ symbol is used to denote the

correlation operator:

s1 ⊗ s′1 = s2. (3)

A more explicit representation of the operation shown in

Eq. (3) is given here, where a particular example of s1 and

s′1 has been chosen:
⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

1

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0

0 0

0 1

1 1

0 0

1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (4)

Simply put, base-2 sequences are the bricks of this for-

malism, while the correlation operator is the mortar. This

correlation operation can also be thought of as an increase

in basis. While an element of S1(n) is a sequence written

in base-2, elements of S2(n) can be thought of as sequences

written in base-4, where the new basis elements, or symbols,

are the members of the group Z2 ⊗ Z2. While one can always

use the base-2 representation, it will be conceptually benefi-

cial to introduce alternative symbols for the basis elements

of S2(n); 00 = A, 11 = B, 10 = C , and 01 = D. With this

notation in hand, Eq. (4) can be rewritten as follows:

⎛
⎜⎜⎜⎜⎜⎜⎝

1

0

0

1

0

1

⎞
⎟⎟⎟⎟⎟⎟⎠

⊗

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0

1

1

0

0

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

C

A

D

B

A

C

⎞
⎟⎟⎟⎟⎟⎟⎠

. (5)

More generally, the approach taken in this formalism is to

construct random base-2 n × d matrices by gluing together

d base-2 sequences of length n using the ⊗ operator. It may

be useful to imagine each base-2 sequence as a point in some

Fig. 1 A random selection of base-2 sequences are visualized as points

in some abstract space, where the position of each point has no physical

significance

abstract space. Though the details of that space, as well as

the distribution of the points within it, have no physical sig-

nificance just yet (Fig. 1). The distribution of points within

this abstract space is related to the issue of ordering sets.

Given a set of base-2 sequences, which one should come first?

Binary languages in computer science offer perfectly reason-

able answers to this question. However, those approaches to

ordering base-2 sequences rely on the information stored in

the ordering of the base-2 basis elements, which we plan

to hide, or coarse-grain away. In the following section, an

ordering scheme will be introduced that can survive such a

step.

3 Quantum numbers

Within this model, the information stored in the configuration

of the basis elements comprising a sequence is hidden, or

coarse-grained away. This means that the successful ordering

scheme will only be a partial ordering of base-2 sequences,

rather than a total ordering. This is an essential feature of

this formalism, which leads directly to non-determinism in

the subsequent model.

The ordering scheme employed here requires the introduc-

tion of a relational system of numbers. This number system

is a function of the reference sequence, which is a particular

base-2 sequence chosen from the set S1(n), and is denoted as

s1
0 . Using the correlation operation, this reference sequence

is then used to construct elements of the set S2(n), which

are base-4 sequences. The number of times a particular basis

element appears in a sequence is called a count. For each rela-

tionship between the reference sequence and another element

of S1(n), there are four associated counts. These four counts

are denoted as Ã, B̃, C̃ , and D̃, where the tilde notation has

been introduced to distinguish each count from its associated

base-4 basis element.
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From these four counts, a relational set of measures can

be defined for each base-4 sequence, which we interpret as

quantum numbers. It will be shown that the quantum numbers

j = C̃+D̃
2

and m = C̃−D̃
2

share important properties with

total spin and the z-component of spin, respectively [21].

Moreover, the quantum number j , which is closely related to

the Hamming distance in computer science, is a metric. This

means that for any choice of three base-2 sequences, one can

be placed at each of the vertices of a triangle, where j is

the length of the edge connecting two vertices. This feature

endows this formalism with important geometric properties.

A complete set of quantum numbers allows one to deter-

mine the number of times each basis element appears within

a particular sequence. To make j and m complete, the quan-

tum numbers g = Ã+B̃
2

and l = Ã−B̃
2

, which do not yet

have established physical analogues, must be included. Thus,

the complete set of quantum numbers for a particular base-4

sequence is as follows:

j =
C̃ + D̃

2
(6)

m =
C̃ − D̃

2
(7)

g =
Ã + B̃

2
(8)

l =
Ã − B̃

2
(9)

− j ≤ m ≤ j (10)

−g ≤ l ≤ g. (11)

The quantum numbers defined in Eqs. (6)–(9) will serve

as ordering parameters. Notationally, these ordering param-

eters can be used to distinguish one set of sequences from

another. In the case of base-2 sequences, the subset of S1(n)

containing all base-2 sequences with the quantum numbers j ,

m, g, and l, as determined by the chosen reference sequence

s1
0 , is denoted as follows: S1( j, m, g, l) ⊂ S1(n). Note that

n = 2 j + 2g = Ã + B̃ + C̃ + D̃, making explicit mention of

n unnecessary if both j and g are given. An element of the

subset S1( j, m, g, l) can then be denoted by including sub-

scripts like so: s1
j,m,g,l ∈ S1( j, m, g, l). With this notation in

hand, the correlation operation can be defined as follows:

s1
0 ⊗ s1

j,m,g,l = s2
j,m,g,l . (12)

Equation (12) raises an important issue, which is that the

quantum numbers j , m, g, and l can be used to label base-

2 sequences like s1
j,m,g,l , as well as base-4 sequences like

s2
j,m,g,l . When used to label base-2 sequences, these quan-

tum numbers are functions of the chosen reference sequence

s1
0 , resulting in a relational ordering scheme. This just means

that the quantum numbers j , m, g, and l associated with a par-

ticular base-2 sequence may vary depending on the reference

Fig. 2 A correlation of two base-2 sequences, which is a base-4

sequence and an element of S2(n), can be visualized as a directed edge

connecting two vertices. By choosing a reference sequence, we can

assign quantum numbers to the remaining base-2 sequences and order

the points introduced in Fig. 1 accordingly. For the case shown here,

the quantum numbers are j01 = 3
2

, m01 = + 1
2

, g01 = 3
2

, and l01 = + 1
2

sequence. On the other hand, the subset of base-4 sequences

associated with j , m, g, and l will include all possible two

point correlations between base-2 sequences that result in

those quantum numbers.

On a more technical note, the position of the reference

sequence within the correlation shown in Eq. (12) is impor-

tant due to the asymmetry of the C = 10 and D = 01

basis elements under the commutation operation. Under this

operation, the counts C̃ and D̃ are exchanged, implying the

quantum number m must change sign according to Eq. (7).

Notationally, subscripts can be added to each quantum num-

ber to convey the orientation of the correlation like so:

s1
0 ⊗ s1

j1,m1,g1,l1
= s2

j01,m01,g01,l01
. Again, the only quantum

number that changes sign under the exchange of these indices

is m: m01 = −m10. The picture associated with the opera-

tion in Eq. (12), which can be visualized as a directed edge

connecting two vertices, is given in Fig. 2.

The physical interpretation of the operation shown in

Eq. (12) is a single measurement. We read the expression

s1
0 ⊗ s1

j1,m1,g1,l1
= s2

j01,m01,g01,l01
as follows: the sequence

to the left of the ⊗ symbol “looks” at the sequence to the

right and “sees” the quantum numbers j , m, g, and l. Impor-

tantly, what the reference sequence “sees” is not actually the

other base-2 sequence, but rather the coarse-grained rela-

tionship between the sequences. From this picture, an inter-

esting question arises. Given two base-2 sequences with the

quantum numbers j , m, g, l and j ′, m′, g′, l ′, as determined

by a common reference sequence, which quantum numbers

describe their relationship? As will be shown in the follow-

ing section, the answer to this question contains the selection

rules for interacting spin systems.
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4 Selection rules

In this section, a single reference sequence is used to deter-

mine the quantum numbers j , m, g, and l for two different

base-2 sequences. Independently, these operations take the

following form, where the choice of indices will be discussed

shortly:

s1
j1,m1,g1,l1

⊗ s1
0 = s2

j10,m10,g10,l10
(13)

s1
0 ⊗ s1

j2,m2,g2,l2
= s2

j02,m02,g02,l02
. (14)

Using the quantum numbers j10, m10, g10, l10, j02, m02,

g02, and l02, we can infer some properties of the following

relationship:

s1
j1,m1,g1,l1

⊗ s1
j2,m2,g2,l2

= s2
j12,m12,g12,l12

. (15)

Recall that the ordering of the indices on each quantum

number only impacts the sign of m. The choice of index order-

ings in Eqs. (13)–(15) has been made for pedagogical rea-

sons, but any other ordering is equally valid (there are eight

unique choices). By simple arguments (see Appendix A), we

can prove the following relationships between the quantum

numbers j10, m10, g10, l10, j02, m02, g02, and l02 and j12,

m12, g12, and l12, where it is assumed that n ≥ 2 j10 + 2 j02:

n = 2( j10 + g10) = 2( j02 + g02) (16)

m12 = m10 + m02 = l02 − l10 (17)

l12 = l10 + m02 = l02 − m10 (18)

| j10 − j02| ≤ j12 ≤ j10 + j02 (19)
n

2
− j10 − j02 ≤ g12 ≤

n

2
− | j10 − j02|. (20)

Equations (10), (17), and (19) contain the selection rules

governing interacting spin systems in QM [33]. Because there

are three base-2 sequences involved, the true object of interest

in this section is a three point correlation between base-2

sequences, where the set of all such correlations is denoted

as S3(n). As with S2(n), which can be interpreted as the set

of all base-4 sequences, S3(n) can be interpreted as the set of

all base-8 sequences, where the basis elements are members

of the group Z2 ⊗ Z2 ⊗ Z2. Rather than introducing new

symbols for each of these eight basis elements, as done for

base-4 sequences, the base-2 representation will be used: 000,

111, 101, 010, 100, 011, 001, and 110. A visualization of a

three point correlation among base-2 sequences is offered in

Fig. 3, which takes the form of a directed graph. Based on

the choice of index orderings made in Eqs. (13)–(15), the

base-4 basis element associated with each of the two point

correlations of interest can be identified as follows, where

X ∈ {0, 1}:

s2
j10,m10,g10,l10

→ X X X

s2
j02,m02,g02,l02

→ X X X

s2
j12,m12,g12,l12

→ X X X .

Fig. 3 A correlation of three base-two sequences, which is a base-8

sequence and an element of S3(n), can be visualized as a directed graph

with three vertices and three directed edges. Among the rules governing

the quantum numbers associated with this graph are those for interacting

spin systems in QM. For the case shown here, the quantum numbers are

j10 = 3
2

, m10 = − 1
2

, g10 = 3
2

, l10 = + 1
2

, j02 = 1, m02 = 0, g02 = 2,

l02 = 0, and j12 = 3
2

, m12 = − 1
2

, g12 = 3
2

, l12 = + 1
2

Table 1 Base-8 quantum numbers

k = 0̃10 l12 = 0̃00+0̃10−1̃11−1̃01
2

j10 = 1̃00+1̃01+0̃11+0̃10
2

j02 = 1̃10+1̃01+0̃01+0̃10
2

m10 = 1̃00+1̃01−0̃11−0̃10
2

m02 = 1̃10+0̃10−0̃01−1̃01
2

j12 = 1̃00+1̃10+0̃11+0̃01
2

m12 = 1̃00+1̃10−0̃11−0̃01
2

n = 1̃00 + 0̃11 + 1̃10 + 0̃01 + 1̃01 + 0̃10 + 0̃00 + 1̃11

Table 2 Base-8 counts

0̃10 = k 1̃01 = j10 + j02 − j12 − k

1̃00 = m10 − j02 + j12 + k 0̃11 = j10 − m10 − k

1̃10 = j02 + m02 − k 0̃01 = j12 + k − m02 − j10

1̃11 = n
2

− l12 − j10 − j02 + k 0̃00 = n
2

− j12 + l12 − k

Because of these relations, base-8 counts can be associated

with base-4 counts like so: C̃10 = 1̃00 + 1̃01, D̃12 = 0̃01 +
0̃11, etc.. This enables us to define a complete set of base-8

quantum numbers that include base-4 quantum numbers like

j10, m10, j02, and m02. In fact, defining a complete set of

base-8 quantum numbers only requires the introduction of

one new quantum number, which can also be interpreted as

a count:

k = 0̃10. (21)

The complete set of base-8 quantum numbers to be used to

label base-8 sequences are n, j10, j02, m10, m02, j12, l12, and

k, which are defined in Table 1, along with m12 for complete-

ness. Table 2 provides the map from quantum numbers back

to base-8 counts. The definitions offered in these tables will

vary depending on how one orders the indices in Eqs. (13)–

(15), though the results obtained herein hold for any choice.
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In all cases but one, the quantum numbers defined

in Table 1 can be found by collecting the three com-

plete sets of base-4 quantum numbers ( j10, m10, g10, l10),

( j02, m02, g02, l02) and ( j12, m12, g12, l12), with the only

exception being k. As discussed in Sect. 3, base-4 quan-

tum numbers arise from the operation depicted in Eq. (12),

which is interpreted as a single measurement. The fact that

the base-8 quantum number k cannot be determined by col-

lecting a group of individual measurements suggests that it

is non-local within this model, while the other seven quan-

tum numbers n, j10, j02, m10, m02, j12, and l12 are local. As

will be seen in the following section, the non-local quantum

number k will play an important role in the phenomenon of

interference.

5 Probabilities

The physical scenario of interest in this section is one in

which a system with spin quantum numbers ( j12, m12) is

comprised of, or decays into two systems with spin quantum

numbers ( j10, m10) and ( j02, m02). The question of interest

is this: Given the priors j10, j02, j12, and m12, what is the

probability of observing a particular combination of m10 and

m02?

Answering this question within the model developed here

will require the construction of two sets of base-8 sequences,

one associated with the experiment used to collect the quan-

tum number m10 and one for m02. These two sets can be inter-

preted as epistemic ensembles representing the knowledge of

observers named Alice and Bob, where Alice is responsible

for collecting m10 and Bob m02. The probabilities of inter-

est can then be calculated by counting the number of unique

ways to pair base-8 sequences from Alice’s ensemble with

those in Bob’s, while accounting for a form of interference.

In particular, we will be interested in those pairs which share

the same combination of local quantum numbers n, j10, j02,

m10, m02, j12, and l12, where interference is driven by the

difference between Alice’s and Bob’s value of the non-local

quantum number k.

A single pair of sequences from separate ensembles is

interpreted as a path within this model. That is, the proba-

bilities being calculated in this section are related to count-

ing local quantum number conserving paths between Alice’s

and Bob’s ensembles. Path interference is then driven by a

measure of disagreement between Alice and Bob regarding

the value of the non-local quantum number k. Specifically,

paths for which k B − k A is odd interfere destructively with

those in which it is even, where the superscript indicates

which ensemble each k is associated with. For each of these

paths, there is an associated map which connects Alice’s and

Bob’s sequences under the addition modulo two operation

(see Appendix B). The maps of interest in this calculation,

which conserve local quantum numbers, generate permuta-

tions of the underlying base-2 sequences.

Now that the general framework of this calculation has

been established, all that remains is to construct Alice’s and

Bob’s ensembles, which will require the introduction of two

combinatorial tools [34]. One which will simply count the

number of base-8 sequences associated with a particular com-

bination of quantum numbers, and one that will account for

the fact that Alice and Bob are actually performing a mea-

surement on part of the total system.

The number of sequences associated with a particular

combination of quantum numbers can be found by count-

ing permutations. For base-8 sequences, this can be accom-

plished by using the following combinatorial tool, where

Table 2 can be used to convert from quantum numbers to

counts:

Φ(n, j10, j02, m10, m02, j12, l12, k) =
n!

0̃10!1̃01!1̃00!0̃11!0̃01!0̃11!0̃00!1̃11!
. (22)

In cases where not all quantum numbers are known,

Eq. (22) can be summed over for all possible combinations of

the unknown quantum numbers. For the calculation of inter-

est in this section, the priors j10, j02, and j12, along with a

particular combination of m10 and m02 constitute five of the

eight quantum numbers necessary to qualify as complete. In

addition to these, we will also require that all sequences share

a common length n, where the only restriction will be that

n ≥ 2 j10 + 2 j02. The two remaining quantum numbers l12

and k must then be summed over, where the bounds of these

sums can be found in Appendix C.

To account for Alice’s and Bob’s measurement of m10 and

m02, respectively, one additional combinatorial tool must be

introduced. The purpose of this tool is to modify the infor-

mation encoded into the base-8 sequences being counted by

Eq. (22). This modification pertains to the base-4 basis ele-

ments associated with the quantum numbers m10 and m02,

which are (C10, D10) and (C02, D02), respectively. This com-

binatorial tool takes the following form, which has the effect

of holding these base-4 basis elements fixed when counting

base-8 permutations:

F A(n, j10, m10) =
C̃10!D̃10!(n − C̃10 − D̃10)!

n!
(23)

F B(n, j02, m02) =
C̃02!D̃02!(n − C̃02 − D̃02)!

n!
. (24)

For clarity, these expressions can also be written in terms

of base-8 counts like so:

F A(n, j10, m10)

=
(1̃01 + 1̃00)!(0̃10 + 0̃11)!(0̃00 + 1̃11 + 1̃10 + 0̃01)!

n!
(25)
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Fig. 4 An example of the path counting procedure between Alice’s

and Bob’s ensemble for the priors n = 6, j10 = 1, j02 = 1, j12 = 1,

and m12 = 0. Each triangle represents a subset of S3(n) (the set of all

base-8 sequences) with a unique combination of eight quantum num-

bers. The probability of obtaining a particular combination of m10 and

m02 can be found by dividing the number of paths associated with that

combination by the total sum of paths for all combinations

F B(n, j02, m02)

=
(0̃10 + 1̃10)!(1̃01 + 0̃01)!(0̃00 + 1̃11 + 1̃00 + 0̃11)!

n!
.

(26)

For a particular combination of m10 and m02, the number

of local quantum number conserving paths between Alice’s

and Bob’s ensembles, while accounting for interference, is

given by the following expression, where we have suppressed

all arguments not being summed over:

Υ (n, j10, j02, m10, m02, j12)

=
∑

k A,k B

∑

l12

(−1)(k
B−k A)Φ(l12, k B)F BΦ(l12, k A)F A.

(27)

The closed form expression for calculating the probability

of observing a particular combination of m10 and m02 is as

follows, where the normalization is simply Eq. (27) summed

over the allowed combinations of m10 and m02, given the

prior m12:

P(m10, m02|n, j10, j02, j12, m12)

=
Υ (n, j10, j02, m10, m02, j12)∑

m1,m2
Υ (n, j10, j02, m10, m02, j12)

. (28)

A depiction of the calculation associated with Eq. (28) is

offered in Fig. 4, in which a sample calculation is performed.

The priors associated with this sample calculation are n = 6,

j10 = 1, j02 = 1, j12 = 1, and m12 = 0. Given these priors,

along with Eqs. (10) and (17), the three allowed combina-

tions of m10 and m02 are (+1,−1), (0, 0), and (−1,+1). By

summing over the paths depicted in Fig. 4, the probability

of obtaining a particular combination of m10 and m02 is as

follows:

P(+1,−1|6, 1, 1, 1, 0) =
1280

2720
= 0.470588

P(0, 0|6, 1, 1, 1, 0) =
160

2720
= 0.058824

P(−1,+1|6, 1, 1, 1, 0) =
1280

2720
= 0.470588.

The difference between these predictions and those of

QM, which are 0.5, 0.0, and 0.5 for (+1,−1), (0, 0), and

(−1,+1), respectively, are plotted as a function of n in Fig. 5.

The deviation between the predictions of this model and that

of QM can be made arbitrarily small by increasing n. In

the limit that n goes to infinity, the number of sequences in

Alice’s and Bob’s ensembles becomes uncountable. While

this model cannot be falsified by studying deviations from

QM, proving that n is finite is certainly possible.

Within Dirac’s formalism for QM, the primary method

of calculating these probabilities, which are the squared

Clebsch–Gordan coefficients, is a recursive algorithm employ-

ing ladder operators. There is also a more technical derivation

associated with tensor decomposition, which requires a back-

ground in representation theory. Regardless of the method of

derivation, there is a closed form, or non-recursive method

of calculating the square roots of these probabilities. This

expression, which is Eq. (60) in Appendix D, is equivalent

to Eq. (28) in the limit of large n (Fig. 5). Beyond issues of

aesthetics, Eq. (60) also lacks any clear explanatory power

within QM. For example, its not even obvious that it is a

probability, whereas Eq. (28) clearly takes the form of a fre-

quency. Finally, the method of calculating probabilities by

counting paths between two epistemic ensembles appears to

be a far more general framework than this particular cal-

culation. One is free to encode a wide variety of physical
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Fig. 5 The magnitude of the difference between the prediction

yielded by Eq. (28) and that of QM, plotted as a function of the

sequence length n, where |∆| = |P (m10, m02| j10, j02, j12, m12) −
〈 j1, j2, m1, m2| j1, j2, J, M〉2 |

scenarios into this scheme, which is of significant interest

for future work.

6 Discussion

Why should spin be the focus of an alternative formalism

for modeling quantum mechanical systems? We can cer-

tainly make a case that spin is among the most fundamen-

tal features of physical systems. Spin is even used as a

building block for space-time itself [35,36]. However, the

truth is that a model for spin was not the original objec-

tive of this research effort. Instead, it began as a deduc-

tive approach to discretizing the quantum state in QM, in

which the starting point was the set of all base-2 sequences

of length n. By considering two and three point correla-

tions between the elements of the set S1(n), or the set of

all base-2 sequences of length n, a relational set of quan-

tum numbers emerged. The selection rules and probabili-

ties for interacting spin systems then developed naturally by

asking simple questions of the resulting formalism. Though

a model for spin was not the original objective of this

research effort, the manner in which it emerged is strik-

ing.

The results presented in this paper represent a small frac-

tion of the modeling potential of this formalism. For example,

one can consider higher order correlations between base-2

sequences. In the case of four point correlations between

base-2 sequences, the associated geometric elements will

typically be tetrahedra (Fig. 6). Though, unlike three point

correlations, there is no guarantee that four randomly selected

base-2 sequences will form a valid simplex. This leads to non-

trivial behavior of geometric elements beyond two spatial

Fig. 6 A correlation of four base-two sequences, which is a base-16

sequence and an element of S4(n), can typically be visualized as a

tetrahedron. These can be interpreted as correlations between two mea-

surements involving separate reference sequences, one associated with

Alice (A) and one with Bob (B)

dimensions, which may shed some light on the importance

of three spatial dimensions in physics. Each of these geo-

metric elements will have quantum numbers beyond those

associated with the lengths of its edges. In the case of four

point correlations, there will be ten such quantum num-

bers.

Four point correlations between base-2 sequences may

also be thought of as two point correlations between base-

4 sequences, which we interpret as measurements (Fig. 6).

In other words, we may interpret four point correlations

as relationships between two spin measurements, which

are necessarily separated in space-time. It is this scenario

which corresponds to Stern–Gerlach experiments involv-

ing sequences of detectors. Of particular interest are those

cases in which two Stern–Gerlach detectors are rotated

with respect to one another. A model for this physical

scenario will enable us to address the issues of comple-

mentarity, as well as the violation of Bell’s inequalities

[37]. This, along with the accompanying geometric picture,

will also inform the development of a model for space-

time.

A motivating observation of the work presented here is

the tension between the countability of empirical data and

the uncountable sets employed by the theories tasked with

modeling that data. What makes the approach taken here

unique is that one need not choose between these two views

of nature. As the length of sequences are taken to infinity,

the number of unique sequences becomes uncountable, lead-

ing to continuous probability distributions. This implies that

expectation values of any observable can then vary continu-

ously, even if that observable is itself discrete. This feature

offers the opportunity to develop discrete physics models

in the finite n regime, while also studying the continuum

limit of those models. This “continuization” approach can

be contrasted with traditional methods of quantization, which
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involve the discretization of continuous mathematical struc-

tures.

Though the results presented here are promising, there

remain many important issues raised in the quantum foun-

dations literature that have not been adequately addressed.

These issues include the measurement problem, contextu-

ality, and the role of complex numbers, among many oth-

ers. Additionally, the precise relationship between various

features of the formalism introduced here and QM must

still be established. Addressing these issues will, in virtu-

ally every case, require a specific model for space-time.

Though, the issues concerning quantum foundations will

not be the only ones that must be addressed to further

justify this research effort. Ultimately, this formalism is

only viable if it has the capacity to support both space-

time and matter degrees of freedom. For this reason, we

must adopt a long term, collaborative approach to model

development. The work presented here is intended to estab-

lish a general framework upon which such a model can be

built.

The formalism and subsequent model we have introduced

are rooted in information theory and have displayed clear pre-

dictive power. While these results recast important physics

in a new and intriguing light, they are far from the end of

the story. There remain important unanswered questions, as

well as new questions which we have not yet thought to ask.

Given the mathematical simplicity and vivid conceptual pic-

ture, we are optimistic that researchers from a broad range of

backgrounds will find this effort both enticing and promising.
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Appendix A: Derivation of the selection rules for inter-

acting spin systems

A.1 Proof of n = 2( j10 + g10) = 2( j02 + g02)

Proving the relation given in Eq. (16) requires us to add

Eqs. (6) and (8), yielding the following:

j + g =
C̃ + D̃

2
+

Ã + B̃

2
. (29)

The length of a particular sequence is given by the total

number of basis elements contained within that sequence. In

the case of a base-4 sequence, that is given by Ã + B̃ + C̃ +
D̃ = n. Substituting this result into Eq. (29) yields:

j + g =
n

2
. (30)

An obvious consequence of two base-4 sequences sharing

a common base-2 reference sequence, as is the requirement

in Sect. 4, is that both base-4 sequences must be the same

length. This fact, together with Eq. (30) yields the result in

Eq. (16):

n = 2( j10 + g10) = 2( j02 + g02). (31)

A.2 Proof of the selection rules for m and l

The simplest path towards proving Eqs. (17) and (18) requires

the introduction of the base-2 counts 0̃0, 1̃0, 0̃1, 1̃1, 0̃2, and

1̃2, where the subscripts indicate which base-2 sequence each

count is associated with. Using the definition of the base-4

basis elements A, B, C , and D offered in Sect. 3, the base-4

counts can be expressed in terms of these base-2 counts like

so:

0̃0 = Ã10 + C̃10 = Ã02 + D̃02 (32)

1̃0 = B̃10 + D̃10 = B̃02 + C̃02 (33)

0̃1 = Ã10 + D̃10 = Ã12 + D̃12 (34)

1̃1 = B̃10 + C̃10 = B̃12 + C̃12 (35)

0̃2 = Ã02 + C̃02 = Ã12 + C̃12 (36)

1̃2 = B̃02 + D̃02 = B̃12 + D̃12. (37)

Using Eqs. (7), (32) and (34), the base-4 quantum numbers

of interest can be expressed as follows:

m10 =
C̃10 − D̃10

2
=

0̃0 − Ã10 − 0̃1 + Ã10

2
=

0̃0 − 0̃1

2
. (38)

Alternatively, m10 can be defined as:

m10 =
C̃10 − D̃10

2
=

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/


690 Page 10 of 12 Eur. Phys. J. C (2022) 82 :690

1̃1 − B̃10 − 1̃0 + B̃10

2
=

1̃1 − 1̃0

2
. (39)

By an identical procedure, the quantum number l10 can

also be defined in terms of base-2 counts. Generalizing the

indices, the following relations between base-4 quantum

numbers and base-2 counts can be defined:

mµν =
0̃ν − 0̃µ

2
=

1̃µ − 1̃ν

2
(40)

lµν =
0̃ν − 1̃µ

2
=

0̃µ − 1̃ν

2
. (41)

Using Eqs. (40) and (41), with the appropriate choice of

indices, Eq. (17) becomes:

m12 = m10 + m02

→
0̃2 − 0̃1

2
=

0̃0 − 0̃1

2
+

0̃2 − 0̃0

2
(42)

m12 = l02 − l10

→
0̃2 − 0̃1

2
=

0̃2 − 1̃0

2
−

0̃1 − 1̃0

2
. (43)

Equations (42) and (43) both evaluate to true statements,

implying the relations given in Eq. (17) are proven. Using

Eqs. (40) and (41), with the appropriate choice of indices,

Eq. (18) becomes:

l12 = l10 + m02

→
0̃1 − 1̃2

2
=

0̃1 − 1̃0

2
+

1̃0 − 1̃2

2
(44)

l12 = l02 − m10

→
0̃1 − 1̃2

2
=

0̃0 − 1̃2

2
−

0̃0 − 0̃1

2
. (45)

Again, Eqs. (44) and (45) both evaluate to true statements,

implying the relations given in Eq. (18) are proven.

A.3 Proof of the selection rules for j and g

As defined in Table 1, the quantum number j12 can be

expressed in terms of base-8 counts like so:

j12 =
1̃00 + 1̃10 + 0̃11 + 0̃01

2
. (46)

As an explicit example, an element of S3(n = 4) is

offered, where brackets around the base-2 basis elements

in s1
j1,m1,g1,l1

and s1
j2,m2,g2,l2

that contribute to the quantum

numbers j10 and j02 have been introduced:
⎛
⎜⎜⎝

1 1 [0]
1 1 1

[1] 0 0

[0] 1 1

⎞
⎟⎟⎠ . (47)

In this element of S3(n = 4), the bracketed base-2 ele-

ments in s1
j1,m1,g1,l1

and s1
j2,m2,g2,l2

do not overlap with one

another. This implies that the quantum number j12 between

s1
j1,m1,g1,l1

and s1
j2,m2,g2,l2

is simply j12 = j10 + j02 =
(2+1)

2
= 3

2
. On the other hand, we could have the follow-

ing situation:

⎛
⎜⎜⎝

[0] 1 [0]
1 1 1

[1] 0 0

1 1 1

⎞
⎟⎟⎠ . (48)

The difference here is that one of the bracketed base-

2 basis elements from s1
j1,m1,g1,l1

now overlaps one from

s1
j2,m2,g2,l2

. This implies that the quantum number j12

between s1
j1,m1,g1,l1

and s1
j2,m2,g2,l2

is now j12 = j10 + j02 −
1 = (2+1)

2
− 1 = 1

2
. In other words, given the quantum num-

bers j10 and j02, we can have either j12 = 3
2

or j12 = 1
2

. In

general, the allowed range of the quantum number j12 is as

follows, which is Eq. (19):

| j10 − j02| ≤ j12 ≤ j10 + j02. (49)

In the case that n < 2( j10 + j02), an overlap is guaran-

teed. Because s2
j10,m10,g10,l10

and s2
j02,m02,g02,l02

share a com-

mon reference sequence, the base-4 basis elements that can

overlap in the resulting base-8 sequence are (A10, A02),

(B10, B02), (C10, A02), (D10, B02), (A10, D02), (B10, C02),

(C10, D02), and (D10, C02). The (C10, D02) and (D10, C02)

cases correspond to the base-8 basis elements 101 and 010

respectively, which are precisely the overlap scenarios of

interest when considering j12. Therefore, the maximum num-

ber of overlaps that may occur are limited by the sum

min
[

D̃10, C̃02

]
+ min

[
C̃10, D̃02

]
. Each overlap leads to a

reduction in j12 by one, leading to the following expression:

j12,min = j10 + j02

−min[D̃10, C̃02] − min[C̃10, D̃02]. (50)

(C10, A02), (D10, B02), (A10, D02), and (B10, C02) cor-

respond to the base-8 basis elements 100, 011, 001, and 110,

respectively. This implies that these overlap scenarios all con-

tribute to j12. However, if n < 2( j10 + j02), then it is guar-

anteed that either D̃10 > B̃02 or C̃10 > Ã02, or equivalently

B̃10 < C̃02 or Ã10 < D̃02. This implies that (C10, D02) and

or (D10, C02) overlap scenarios must occur. This allows us

to define the following expression:

j12,max = j10 + j02

−max
[
0, D̃10 − B̃02

]
− max

[
0, C̃10 − Ã02

]
. (51)

Using the relation between j , g, and n offered in Eq. (30),

the results derived for j12 can be used to derive the corre-

sponding results for g12.
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Appendix B: An example of maps

Within this formalism, a map connects two sequences of

equal basis and length via element-wise addition modulo

two, which is denoted by the ⊕ symbol. That is, given the

proper map, any initial sequence can be mapped to any final

sequence like so, where the basis of these sequences is 2d :

sd
initial ⊕ sd

map = sd
f inal . (52)

As a more concrete example of the operation shown in

Eq. (52), a particular choice of the initial and final sequence is

made, where s2
ini tial = s2

1
2 ,+ 1

2 , 5
2 ,+ 1

2

and s2
f inal = s2

1
2 ,− 1

2 , 5
2 ,− 1

2

:

⎛
⎜⎜⎜⎜⎜⎜⎝

A

A

C

B

B

A

⎞
⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎝

B

A

C

A

A

D

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

B

A

A

B

B

D

⎞
⎟⎟⎟⎟⎟⎟⎠

. (53)

Expressing these base-4 sequences using the base-2 rep-

resentation, we have:
⎛
⎜⎜⎜⎜⎜⎜⎝

00

00

10

11

11

00

⎞
⎟⎟⎟⎟⎟⎟⎠

⊕

⎛
⎜⎜⎜⎜⎜⎜⎝

11

00

10

00

00

01

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

11

00

00

11

11

01

⎞
⎟⎟⎟⎟⎟⎟⎠

. (54)

The example shown here has the effect of conserving the

quantum numbers j and g, but not the quantum numbers m

and l. Maps which conserve all quantum numbers are per-

mutations.

Appendix C: Derivation of summation limits

C.1 Derivation of kmin and kmax

The two overlap scenarios discussed in Appendix A.3 that

lead to cases in which j12 < j10 + j02 are (C10, D02) and

(D10, C02), which correspond to the base-8 basis elements

101 and 010, respectively. In cases where the quantum num-

bers j10, j02, and j12 are all known, there still may be a range

of possible values for the counts 0̃10 and 1̃01, where the count

0̃10 is associated with the quantum number k. It is conve-

nient to introduce the quantum number X = k + 1̃01, where

j12 = j10 + j02 − X . This relation implies that for fixed j10,

j02, and j12, the quantum number X is also fixed. Ignoring

X for the time being, we have 1̃01max = min
[
C̃10, D̃02

]
.

For a given X , kmin must be equivalent to X − 1̃01max . This

allows us to define kmin :

kmin = max
[
0, X − min

[
C̃10, D̃02

]]
. (55)

Again ignoring X , we have kmax = min
[
C̃02, D̃10

]
,

which implies the following:

kmax = min
[

X, min
[
C̃02, D̃10

]]
. (56)

Thus, given the quantum numbers j10, m10, j02, m02, and

j12, we can define bounds on the allowed values of k.

C.2 Derivation of l12,min and l12,max

From Table 1, the definition of l12 in terms of base-8 counts

is as follows:

l12 =
0̃00 + 0̃10 − 1̃11 − 1̃01

2
. (57)

Given the priors n, j10, j02, j12, and a particular com-

bination of k A and k B , along with their definition in terms

of base-8 counts given in Table 1, the bounds on l12 are as

follows:

l12,min = −
n

2
+ j12 + max(k A, k B) (58)

l12,max =
n

2
− j12

−max( j10+ j02− j12−k A, j10+ j02− j12−k B). (59)

Appendix D: The standard closed form Clebsch–Gordan

coefficients

The closed form expression for the Clebsch–Gordan coeffi-

cients within QM takes the following form, where z may take

on any value for which no factorials have negative arguments

[38]:

〈 j1 j2 J M | j1 j2m1m2〉

=

√
(2J + 1)( j1 + j2 − J )!(J + j1 − j2)!(J + j2 − j1)!

( j1 + j2 + J + 1)!

·
∑

z

(−1)z

√
( j1 + m1)!( j1 − m1)!( j2 + m2)!( j2 − m2)!(J + M)!(J − M)!

z!( j1 + j2 − J − z)!( j1 − m1 − z)!( j2 + m2 − z)!(J − j2 + m1 + z)!(J − j1 − m2 + z)!
. (60)
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