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We establish a new perturbation theory for orthogonal polynomials using a Riemann—
Hilbert approach and consider applications in numerical linear algebra and random
matrix theory. This new approach shows that the orthogonal polynomials with respect
to two measures can be effectively compared using the difference of their Stieltjes
transforms on a suitably chosen contour. Moreover, when two measures are close and
satisfy some regularity conditions, we use the theta functions of a hyperelliptic Riemann
surface to derive explicit and accurate expansion formulae for the perturbed orthogonal
polynomials. In contrast to other approaches, a key strength of the methodology is that
estimates can remain valid as the degree of the polynomial grows. The results are applied
to analyze several numerical algorithms from linear algebra, including the Lanczos
tridiagonalization procedure, the Cholesky factorization, and the conjugate gradient
algorithm. As a case study, we investigate these algorithms applied to a general spiked
sample covariance matrix model by considering the eigenvector empirical spectral
distribution and its limits. For the first time, we give precise estimates on the output
of the algorithms, applied to this wide class of random matrices, as the number of
iterations diverges. In this setting, beyond the first order expansion, we also derive a
new mesoscopic central limit theorem for the associated orthogonal polynomials and

other quantities relevant to numerical algorithms.
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3976 X.Ding and T. Trogdon
1 Introduction

We consider a Riemann-Hilbert approach to the perturbation of orthogonal polynomials.
More specifically, we present an approach to compare the orthogonal polynomials
with respect to two compactly supported measures on R by comparing their Stieltjes
transforms on a contour that encircles and contracts to the union of the supports.
The approach uses and generalizes the Fokas-Its—Kitaev reformulation of orthogo-
nal polynomials [41] as the solution of a Riemann-Hilbert problem. This approach
is especially powerful when the orthogonal polynomials with respect to one of the
measures has known asymptotics. And in particular, it allows one to compare, in a
convenient framework, polynomials orthogonal to a discrete empirical measure, that
is, discrete orthogonal polynomials, to the polynomials orthogonal with respect to a
limiting measure. We refer the reader to [4] for many related details concerning discrete
orthogonal polynomials.

Measures are often compared rather effectively using their moments. But even
measures that are rather close in a variety of senses can have vastly different moments of
high order. For this reason, many studies of the perturbations of orthogonal polynomials
are not infinitesimal in nature, see [42] and the references therein, particularly [78].
One construction of orthogonal polynomials uses their representation in terms of
determinants of Hankel moment matrices (see [18] and [43], for example). This fact was
recently exploited in [33, 64] to compare two sequences of orthogonal polynomials when
the degree is bounded. But as the degree increases, this approach fails because two
sequences of orthogonal polynomials with respect to two similar measures typically
deviate exponentially, see [43, Section 2.1.6]. But the Fokas-Its—Kitaev Riemann-Hilbert
problem gives a mechanism to make sense of the behavior of one sequence of orthogonal
polynomials relative to another, giving a sense in which the mapping from a Stieltjes
transform of a measure to the associated orthogonal polynomials (and their weighted
Cauchy integrals) is well conditioned.

Comparing sequences of orthogonal polynomials via their Stieltjes transforms
lends itself directly to estimates from random matrix theory. For example, the well-
known local laws for Wigner, generalized Wigner, and (spiked) sample covariance matri-
ces are precisely comparisons of Stieltjes transforms of measures on contours approach-
ing the supports on small scales; see the monograph [39] for more details. Importantly,
the standard empirical spectral distributions associated with these matrices, measures
that weight each eigenvalue equally, are not as likely to arise in applications from

computational mathematics. So one, in turn, looks to the so-called anisotropic local
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laws [51], which gives, in particular, the comparison of the Stieltjes transform of the
eigenvector empirical spectral distribution (VESD), which, for an N x N symmetric matrix

W and vector b, is given by [2],

V= Z|(qj/b>|25)\j(w), (1.1)
j=1

where ¢; is a normalized eigenvector associated with eigenvalue A;(W) of W. For the
sake of completeness, we note that if the weights |<qj,b)|2 are each replaced with 1/N
the resulting measure is called the empirical spectral distribution (ESD).
Our main application of the estimates for random polynomials orthogonal to the
VESD concerns the (bi/tri)diagonalization of random matrices and, as a consequence,
applications to other critically important numerical algorithms acting on random
matrices, see Section 3.1 for more details. Here, we take the tridiagonalization as an
example. Going back to the work of Silverstein [69], and the subsequent work of
Dumitriu and Edelman [37], it is well-known that the tridiagonalization T of a Wishart
matrix W = XX*, where Xij ”z N(@O,M™1), and X is N x M, and has independent
entries, has an explicit distributional description in terms of independent y-distributed
random variables (see (5.5) below). But this description is actually derived first from a
distributional description of the Cholesky decomposition (We discuss tridiagonalization
and the Cholesky decomposition in Section 3.1 below.)
T=LL*, L=({;). (1.2)

1

The Cholesky factorization in this context is a lower-bidiagonal factorization of the
tridiagonalization. An immediate consequence of this bidiagonalization is that ¢, , —
VYL and Cpiin— N2 tend to zero and have Gaussian fluctuations provided M — n
and N — n, respectively, tend to oco. It is therefore natural to ask if this behavior persists
for both non-Gaussian entries (universality) and if it persists for sample covariance
matrices with non-trivial covariance. It was recently proved in [64] that for non-Gaussian
entries with trivial covariance, if N/M — c¢ € (0,1] and n is fixed one sees that the
upper-left n x n subblock of L tends to the Cholesky factorization of the three-term
recurrence Jacobi matrix for the orthogonal polynomials with respect to the Marchenko—
Pastur law with parameter c. These arguments do not apply if either n diverges and the
entries X;; are non-Gaussian or if the covariance is non-trivial. Our Riemann-Hilbert
approach extends these results, and the results of [33], to non-trivial covariance and

unbounded n.
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3978 X.Ding and T. Trogdon

We summarize related results in Sections 1.1 and 1.2 and provide an overview of

our results and key innovations in Section 1.3.

1.1 A new application of Riemann-Hilbert analysis in random matrix theory

In this section, we summarize some related results on the Riemann-Hilbert approach
to orthogonal polynomials and various related applications and demonstrate how our
approach differs. It is known from the celebrated work of Fokas, Its, and Kitaev [41] that
orthogonal polynomials can be characterized as the solution of a 2 x 2 matrix Riemann-
Hilbert problem with jump on the real line. Later on, a remarkable steepest descent
method was proposed by Deift and Zhou in [24] to study the asymptotics of the modified
Korteweg—de Vries equation. Since then, various extensions have been made, including
to the asymptotics of orthogonal polynomials. More specifically, the extension on the
unit circle was studied in [5], general measures and universality were studied in [10, 17,
21, 30, 53, 55], the biorthogonal polynomial problem was studied in [8, 49, 54, 75], and
multiple orthogonal polynomials were studied in [74]. For a more comprehensive review,
we refer the reader to [4, 12, 18, 25, 57]. Of particular relevance is the monograph [4]. In a
slightly different form, this text contains the transformation (2.7) and the hyperelliptic
Riemann surface theory employed in Appendix A.

Classically, the way in which Riemann-Hilbert problems and orthogonal poly-
nomial theory connect to random matrix theory is very different from the framework
we propose here. More precisely, Riemann-Hilbert problems historically enter random
matrix theory via the analysis of orthogonal polynomials because the eigenvalues of
many random matrix ensembles can be viewed as a determinantal point processes and
the correlation functions have a determinantal kernel function that can be expressed
as a sum of orthogonal polynomials. Consequently, using the Christoffel-Darboux
formula, the eigenvalue correlation functions can be expressed in terms of the solution
of a Riemann-Hilbert problem; see [18, 61] for a review. On the other hand, the gap
probabilities can be represented as a Fredholm determinant and the limiting expressions
themselves can be expressed in terms of the solution of a Riemann-Hilbert problem;
see the monographs [47, 52] for a review. This approach, combined with the steepest
descent method, allows for the large N asymptotics to be determined explicitly for
various random matrix models leading to the determination of explicit limiting kernels.
For example, for the Gaussian Unitary Ensemble (GUE), the correlation function for the
bulk eigenvalues converge to the sine kernel [30, 38, 61] and the large gap probability

of the edge eigenvalues converge to the Airy kernel [71]. We refer the readers to [12, 18,
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57] for a more exhaustive discussion. The methodology has also been applied to various
other random matrix models, see [9, 11, 15, 19, 26, 36, 56, 58, 75], to name but a few.

In the current paper, we do not study orthogonal polynomials and random
matrices by following the classic research line above. In contrast, we apply a Riemann—
Hilbert approach to study the behavior of orthogonal polynomials with respect to
perturbations of the orthogonality measure. We then apply the theory to polynomials
orthogonal with respect to the VESD (1.1) when W is random. The perturbations we
consider are quantified by the closeness of their Stieltjes transforms. Such a setting
is general. A wide class of (random) measures that can be thought of as appropriate
perturbations of a deterministic measure are measures arising from widely studied
random matrix models, where the local laws [39] guarantee the closeness of the limiting
and empirical measures. Our new approach, and its generality, can best be summarized
by the fact that while some random matrix ensembles have eigenvalue statistics that can
be analyzed by orthogonal polynomial theory, all random matrices generate measures
(again, see (1.1)), and the analyses of the orthogonal polynomials with respect to such a
measure are important. We show exactly how this analysis can be accomplished using

Riemann-Hilbert analysis.

1.2 Some related work on numerical algorithms

Our motivation comes from the analysis of various iterative numerical algorithms in
linear algebra (see Section 3.1 for a review), especially when the inputs are random
matrices. A common feature for these algorithms is that their analysis can be reduced to
understanding certain (discrete) orthogonal polynomials and their associated Cauchy
transforms (see (B.12), (B.14), (B.15), and (B.16) for illustrations). By establishing a
perturbation theory for orthogonal polynomials, we are able to provide the first-order
limits and asymptotic distributions (We determine distributions when the inputs are
random.) related to these algorithms.

In the literature, various numerical algorithms have been studied when the
inputs are random matrices. The tridiagonalization of Wishart matrix (i.e., sample
covariance matrix with standard Gaussian entries) has been analyzed in [37, 69], the finite
iterations of CGA for a sample covariance matrix with trivial covariance was analyzed
in [29, 64], and the Toda algorithm on Wishart matrices was analyzed in [27, 28]. These
analyses rely on either a Gaussian assumption or the trivial covariance assumption.
The finite iterations of CGA with general covariance structure was analyzed in [33].

The general phenomenon that some algorithms have, in an appropriate sense, high
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3980 X.Ding and T. Trogdon

concentration in their outputs even when the inputs are random data can be seen in each
of these works. And quite often the performance of the algorithms under consideration
is universal. We refer to the readers to [23, 31, 66, 67] for further discussions.

There has also been significant developments in the area of smoothed analysis of
algorithms [68, 70]. More closely related to the current work is [62]. We leave the problem

of using the current results in this context as future work.

1.3 An overview of main results

Given a probability measure p with finite moments, we apply the Gram-Schmidt
orthogonalization process to the monomials {1, A, A2,...} to obtain the monic orthogonal

polynomials 7, (A; u), n =0,1,2,..., which can be defined by
(A ) = A"+ oY, A — oo, / T, (A W, (A wpu(dr) =0, n #m. (1.3)
R

Given two measures u and v, where v can be regarded as a perturbed or empirical version
of u, we aim to study how m,,(&; u) and 7,,(}; v) relate asymptotically, both as n increases
and as v — .

The starting point of our analysis is the quantity X, (z; u, v) introduced in (2.11).
The motivation to use X,,(z; u,v) is threefold. First, it naturally connects =, (; 1) and
7, (A;v) and their associated Cauchy transforms (cf. (2.1)). Second, X, is the solution of a
matrix Riemann-Hilbert problem that can be explicitly formulated using the Fokas-Its—
Kitaev approach. Third, the relevant quantities associated to the numerical algorithms
we consider can be expressed in terms of the entries of X, (z; , v). The Riemann-Hilbert
problem for X, (z; p,v) can be solved asymptotically, and this result is recorded in
Proposition 2.1. Equivalently, it establishes a new perturbation result for orthogonal
polynomials. Heuristically, it states that for two compactly supported measures u, v on
R such that

/ v(dr) — pn(dr) 1.4)

A—2zZ

is sufficiently small on a contour that encircles, and is sufficiently close to supp(n) U

supp(v), one has for the monic polynomials =,

c2(p—n)
(1.5)

7,(Z;v) = 7y (z; W1+ f1(25 ) + fo (25 )7, (2, 1) T
||7Tn_1(';M)||L2(M)
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for functions f7, f, = o(1) depending on the size of (1.4) and some constant c. Here p is the
number of spikes (i.e., point masses, see cf. (2.16)); see (2.15) for more details. A further
expansion of the functions f;, f, determine the next order correction, which we, in view
of our primary application to random matrices, call the fluctuation term.

Then, assuming that u satisfies some regularity conditions (cf. Assumption 1), we
first derive some accurate and uniformly valid asymptotic formulae for the unperturbed
orthogonal polynomials utilizing theta functions on a hyperelliptic Riemann surface (cf.
(A.1)). The results are stated in Theorem 2.2. By controlling a key auxiliary quantity (cf.
(2.13)) in Lemma 2.3, we are able use Proposition 2.1 and Theorem 2.2 to provide asymp-
totic formulae for the perturbed orthogonal polynomials and their Cauchy transforms
as in Theorem 2.4 and Remark 2.4. These formulae give explicitly how some critical
exponential prefactors are arranged. Moreover, the leading error terms can be fully
characterized by a variant of (1.4). Thus, the calculation of the fluctuations of 7, (z; v)
reduces to the analysis of (1.4).

We mention several points related to random matrix theory here. First,
Assumption 1 is satisfied by the limiting eigenvalue or eigenvector empirical spectral
distributions of many classically studied random matrix models. In this context, v can
be the eigenvalue or eigenvector empirical spectral distribution. Second, the degree n
is allowed to be unbounded (with respect to some divergent parameter) and it depends
on the closeness of the Stieltjes transforms of the measures u and v. For example, in
the random matrix model setting regarding an N x N matrix, as will be discussed in
Remark 2.3, n can be as large as O(N'/47¢), for some arbitrarily small constant € > 0 for
ESD, and O(N'/6—¢) for VESD. To our best knowledge, this is the first such asymptotic
result allowing n to diverge.

Motivated by several important applications in numerical linear algebra, we
apply Theorems 2.2 and 2.4 to analyze iterative numerical algorithms, including Lanczos
tridiagonalization, the Cholesky factorization, and conjugate gradient algorithm (CGA);
see Section 3.1 for a brief summary of these algorithms. First, we apply Theorem 2.2
to these algorithms and obtain accurate asymptotic formulae for the key quantities.
For Lanczos, it is equivalent to the study of the asymptotics of the three-term recur-
rence coefficients of the (discrete) orthogonal polynomials. The results are recorded in
Corollary 3.2. The Cholesky factorization of the Lanczos Jacobi matrix (cf. (3.5)) can
also be analyzed similarly as in Corollary 3.4. This Cholesky factorization coincides
with the well-known Golub-Kahan bidiagonalization procedure, which, as pointed out
previously, has a full distributional characterization in the isotropic Gaussian case. But

our results hold for non-Gaussian samples with non-trivial covariance. CGA is analyzed
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3982 X.Ding and T. Trogdon

in Corollary 3.3. Based on the unperturbed asymptotics for u, we establish the perturbed
asymptotics for these algorithms and the results are reported in Theorem 3.6. Again,
the leading errors can be fully expressed in terms of (1.4) and the associated theta
functions.

As mentioned earlier, the fluctuations of the perturbed orthogonal polynomials
and related quantities of the numerical algorithms depend on (1.4), which should be
expected to have a problem-specific form. In Section 4, we consider a concrete case study,
in the random matrix context, using a general spiked sample covariance matrix model.
More specifically, v is the VESD of the N x N sample covariance matrix whose determin-
istic equivalent i can be characterized using the anisotropic local laws as discussed in
Section 4.3. The methodology we propose here shows how Riemann-Hilbert problems
can assist yet again, later in the analysis of a random matrix ensemble, once one has
some knowledge of the local law. The main result is Theorem 4.3, which establishes a
general mesoscopic-type central limit theorem (CLT) by analyzing a functional version
of (1.4). We mention that the CLT is mesoscopic as its scaling also depends n. Informally,
we prove that for z € R, when n « N1/6

‘Z/Z—;Tm(z; ) = 7y (7 0)) = N(O,d@)(V, + V),

where Z(z; 1) is a normalization constant that depends on z and p«, V, depends on 1 and
is independent of n, V, depends on both n and the fourth moments of the entries of the
matrix, and % indicates convergence in law. Moreover, as long as n — oo, V, — 0
so that the CLT only depends on the first two moments. Finally, d(z) is a deterministic
function depending on the application under consideration. For example, for the various
aforementioned numerical algorithms, d(z) can be found explicitly is summarized in
Corollary 4.4. Nevertheless, we mention that even though we work on the spiked sample
covariance matrix model in the current paper, our methods can be easily applied to other
random matrix models once the local laws are established.

We emphasize that our results of the case study generalize many existing results
in numerical linear algebra and random matrix theory. First, we show that for a general
class of spiked sample covariance matrices, if n <« N!/® then the upper-left n x n
subblock of L in (1.2) tends to the upper-left subblock of the Cholesky factorization of
the three-term recurrence Jacobi matrix for the orthogonal polynomials with respect
to the limiting VESD, with universal Gaussian fluctuations. We also establish that the
dependence on the fourth moment diminishes as n increases, a phenomenon that was

empirically observed in [64]. Second, we establish precise convergence statistics for
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CGA when the matrix is a general spiked sample covariance matrix model. We allow
n, which here is taken to be the number of iterations in CGA, to be divergent with
N. In particular, we show that the residuals always have Gaussian fluctuations and
become more universal (i.e., only depend on the first two moments) as more iterations
are run. Comparable results have only been previously established for fixed n and trivial
covariance case in [64] for the case of Wishart matrices.

Finally, we highlight an open question. In the current paper, the breakthrough
allows n to increase with N in a moderate way, that is, 1 <n < N% 0 <« < 1/6.Itis
interesting to consider the regime 1/6 < « < 1. Based on our numerical simulations, we
conjecture that our results still hold for all 0 < « < 1. However, when o« = 1, our current
results clearly fail to hold (see Figure 5) and we need to develop entirely new tools to

handle this regime. We will pursue this direction in the future.

Conventions. For two sequences of real values {ay} and {by}, we write ay = O(by) if
lay| < Clby| for some constant C > 0, and ay = o(by) if |ay| < cy|by| for some positive
sequence ¢y | 0. Moreover, we write ay < by if ayy = O(by) and by, = O(ay). The notation
(b, a) is used for the standard ¢2 inner product and ||h||% = (b, b). We use f}, to denote the

kth standard Euclidean basis vector.

2 The Riemann-Hilbert Problem for Orthogonal Polynomials and Their

Perturbations

Consider a probability measure p without a singular continuous part. We suppose its
absolute continuous density p is supported on a finite number of disjoint intervals
[aj,bj],l <j < g+ 1. We also allow p having a finite number of spikes, that is, point
masses at ¢;, 1 <1 < p, with masses w;.

In [41], the authors found a characterization of orthogonal polynomials in terms
of a matrix Riemann-Hilbert problem. We now review such a formulation. Define the

Cauchy transforms of the monic polynomials

1 A
ent@in) = 5 [ T2 i, 2.1)
i Jgp A—2z

and the matrix-valued function

7,(Z; ) c,(z; 1)

EQMZ[
Y1 (W, _1(Z ) v (e, 1(2 1)

} , Z & supp(u), (2.2)
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3984 X.Ding and T. Trogdon

where we used the notation

Vo) = =2illm, (i w2 . (2.3)

It then follows that (see [41] or [57])
+ . — . 1 p(Z) + . . 1 1c°
Yi(zpn) =Y, (zw , Yo(zp) = lim Y, (z i€ n), (2.4)
0 1 e—0t
at all points z € R where u has a continuous density p. Additionally,

Y, (z 0 [Z; ?1} —1+0(1/2), z—> oco. (2.5)
Z

Due to the discrete contributions to u, this does not fully characterize Y,,. We

compute

Reszzcj Y, (z w

1 .
[o mwjnnmj,u)} 2.6
0 Zat Wyt (cji 1)

Wi

0 .
. . 2i .
_zlgIclen(z,u)|:o 0:|, Jj=12,...,p.

Conditions (2.4), (2.5), and (2.6) constitute a Riemann-Hilbert problem for Y, (z; u) and
Y, (z; 1) is the unique solution of this problem if one requires continuous boundary

values.

Remark 2.1. At points where © has a density, but it fails to be continuous, one may
have to impose additional conditions to uniquely characterize Y,,. The assumptions we

impose on p in the current work allow us to ignore such complications.

2.1 Perturbation theory for orthogonal polynomials

Let v be a perturbed (and potentially random) version of x. Suppose u and v are both

measures supported on a finite number (i.e., g + 1) of intervals with a finite number (i.e.,
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p) of spikes for (potentially) different choices of a]-,bj, wj, Cj, hj, and g, p. Define

1 —cylz )
. Y, (2w 0 z inside T,

Y, (zpn) = 0 1 (2.7)

Y, (z w otherwise,

where I' is a simple curve with counter-clockwise orientation that encloses the support

of u. Using (2.4), we then compute the jumps of S?n on Ui(a;, b)):

T (7 o
Yz n) = Yii(z ) |:1 Co (Z; M)] — Yoz |:1 p(Z)j| |:1 cg (zi M):|
0 1 0 1 0 1

@ [(1) p(z>—f§<zm>} @ [(1) CO(Z;M)+;0(12)—C§(Z;M)]‘

Forz e U]

la; bj] the inversion formula holds [3], that is,

]I
c§(ziw) — ¢y (z ) = p(2),

and therefore S?n has a trivial jump on Uj(aj,b-). Next, using (2.2) and residue theorem,

we check the residues of ffn (z; )

- 1 —cy(zw)
ResZ:Can(z; nw) = Reszzchn(z; w) |:0 01

0 Reszzcj(—co(z; w) (Y, (z ) qq + (Y, (2 1) 12)

0 Res,_(—=Co(z; 1)(Yy (2 1)1 + (Y (2 10))22)

We conclude that S?n(z; @) must be analytic inside I' and satisfies

Yz =Y, (z w0 [(1) _CO(IZ; M)] , zeT, (2.8)

.z 0 [Z; ﬂ —1+0(1/2), z—> oco. (2.9)
Z
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3986 X.Ding and T. Trogdon

As we will see in the next section, it is convenient to consider

. 8 1 0
Y, (zip) =c"PBY (z;1), ceC\{0}, o3= [0 J . (2.10)

where ¢ is closely related to the capacity of U;la;, b;] and formally defined in (A.10) after
necessary notation is introduced. Note that the above modification does not affect the
jump satisfied by S?n, only its asymptotics.

To connect the two measures, u and v, we consider
X, (z; 1, v) = Y, (zv)Y, (z; )7L, (2.11)
where we note that det lvfn(z; u) = 1. Using (2.8) and (2.9), by an elementary calculation,
X;{(z;u,v) =X, (z,u,v)J,(z; u,v), z€T; and X, (z;u,v) =1+0(/2), z— o0,

where J,,(z; u, v) is defined as
. o 1.
T,z w,v) = |I+cylz,u — V)Y, (z; 1) 0 0o Y, (z; ) .

Now, suppose that ' = '(W), v = v(N) and n = n(N) depend on a common
asymptotic parameter N. The Riemann-Hilbert problem for X,, can be reformulated as a
singular integral equation for a new unknown U,, defined on I" using the representation

uiz .,

1
X, (z;u,v) =I+CrU,(z n,v), CrU(2):= i 7 _Zdz.

Proposition 2.1. For an integer N, suppose I' = I'(IV) is a piecewise smooth, simple,
closed curve that encircles supp(u) Usupp(v) such that the operator norm of C|- on L)
is bounded by Cy. Suppose n = n() and v = v(N) are functions of N such that as N — oo,

Cylldy, — Iligeory — O. Then we have

2
1 Co@; 1 — VM, (Z; 1) 1% = Tl Zeo ry
X (zyuw,v)y =1+ — d ofCy—————=11, 2.12
n(Zip,v) +27T1/1" 7z —z Z N 14 g ( )
. o 1.
M, (z; ) =Y, (z; u) o o Y, (zw™ ", (2.13)

uniformly on subsets of C bounded uniformly away from .
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Proof. Define the boundary-value operator Cljf U(z) = lim, _, ,C-U(Z"), where the limit is

taken non-tangentially within the interior (+) or exterior (=) of I'. Then U,, must satisfy
v,-C¢U0,J,—-IH=J, -1

This is a near-identity operator equation for NV sufficiently large and it can therefore be

solved by a Neumann series. In particular,
1U,, — G = Dligzry = OCx Ty — o))

which implies the conclusion. |

Remark 2.2. Proposition 2.1 establishes the perturbation for orthogonal polynomials

generated by two close measures using the quantity (2.11). In particular, let

P(z;n) =X, (z; u,v) — L. (2.14)

Using (2.12) and the definition (2.11), we readily see that

T (Zi V) = 7, (2 (1 + Pyy(zi ) + Py, (W, (z; WPy, (zi 1), (2.15)

C,(Zi V) = C(z (1 + Py (z; 1) + FP ™™y, (w)C,_1(Z WP 5(2 1),

where P;; is the (i, j) entry of P. If the two measures are close, the functions P;; will decay
so that, toleading order, n,,(z; v) and c¢,,(z; v) are given by r,,(z; n) and ¢, (z; 1), as expected.
The above results may depend on the choice of the contour I'. In the current paper, we
will choose I' to be the boundary of a rectangle and ||Cy: || 2y is bounded by an absolute

constant [14].

2.2 Large n asymptotics of polynomials orthogonal with respect to measures supported on

multiple intervals

Recall (2.2). In order to directly compare the orthogonal polynomial 7, (x; v) to m,(x; ©)
one needs (1) an estimate on M,,(z; 1) in (2.13). Furthermore, supposing that J, — I — 0,

one is left with

YV, (2 v) = X, (2 1, v) Y,y (2 ) = [+ 0(1) YV, (25 ).
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And so, one needs (2) some information about S?n (z; u) to make conclusions about lvfn (z;v).

One such way to accomplish (1) and (2) is to compute the large n asymptotics of

Y, (z; ). The calculations rely on solving another Riemann-Hilbert problem, and this

is accomplished in Appendix A. We summarize the results in Theorem 2.2 below. The

result relies on the following regularity assumption.

Assumption 1. Consider a probability measure u that satisfies the following

assumptions.

(1)

(2)

(3)

(4)

(5)

Square-root behavior with spikes: The measure u is of the form (One can
include inverse square-roots if needed, but this requires incorporating

additional conditions into the Riemann-Hilbert problem to ensure unique

solvability.)
g+1 p
p(da) =>" Ry ()1, 51 (M), /(B = O — 3p) A + > w;be, (), (2.16)
j=1 j=1

p()

for disjoint intervals [a;, b;] and points c; located away from these intervals.
Uniformity (1): We allow u to depend implicitly on a parameter N but require
that g, p be non-negative, constant (for sufficiently large N) and require that
the distance between any two points in the set {cj} U fa;} U {bs} is bounded
above and below.

Analyticity: To each interval [a;, b;], we associate a bounded open set ;
(independent of N) containing [a;, b;] for all N such that hj has an analytic
continuation to €;.

Uniformity (2): We suppose there is an absolute constant D > 1 such that

sup max{|h;(z)|, Ihj(Z)|_1} <D,

zer

forevery1 <j<g+1.
Uniformity (3): For every j, we assume that either N~ /D < lwijl<D,0<0 <

00, Or w; = 0.

We point out that the limiting ESDs and VESDs for many commonly studied

random matrix models satisfy Assumption 1. We refer the readers to Lemma 4.1 and

the discussion below for more details on this. Now we state the results. Let D; be a small
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region containing [aj,bj], and let f)j be a small ball that has c; as its center. Then we

define a function f as follows:

:I:l/bj(z) zeD;N{+Imz > 0},
flz)={ % ze i)j,

Z—Cj

0 otherwise,

where Wj is defined in (A.6) and ,5j is defined in Section A.2.3 after necessary nota-
tion is introduced. Since D; and X; can be chosen to be well separated according to
Assumption 1, we will see in Section A.2.3 that their choices will not influence our
results much. The function f here captures the fact that the asymptotics for orthogonal
polynomials away from the support of u is different from the asymptotics on or near the

support.

Theorem 2.2. Suppose Assumption 1 holds for u = u(V) for sufficiently large N. Let

Y, (z; 1) be as (2.2) and recall ¢, 05 in (2.10). Then for some constant ¢ > 0

o3

Y, (z; 1) = P08 (I o (le:'r;')) K, (2, ) e @7 [f(lz) ﬂ ﬁ(z —cp| . (217)
Here, we used the notation

K, (z,1) = e RGO L (00)71L, (2), (2.18)

¢, (2) =G(2) + (n — p)g(2), (2.19)

where G(z) is defined (A.11), L,,(2) is defined in (A.5), and g(2z) is defined in Section A.2.2,

after some necessary notation is introduced.

Proof. See Appendix A. u

The function g(z), as defined in Section A.2.2, is classically known as the exterior
Green's function with pole at oo, see [65], for example. It expresses the global distribution
of the zeros of the orthogonal polynomials. The function G(z) is an instance of a so-called
Szegod function [55]. For the definition of L,, see (B.6).

For the reader’s convenience, in Appendix B.1, we provide more detailed expres-

sions for the entries of Y, (z w). Theorem 2.2 has many important consequences. For
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example, it can be used to study the asymptotics of the three-term recurrence coefficients
of the orthogonal polynomials (see Section 3.2.1), the residuals and errors of conjugate
gradient algorithm (see Section 3.2.2) and the Cholesky factorization of the tridiago-
nalization (see Section 3.2.3). We will discuss these applications and provide explicit
formulae in Section 3.2.

Equipped with the above theorem, we now proceed to accomplish the aforemen-
tioned goals (1) and (2) on some specifically chosen contour I'. In sequel, unless otherwise
specified, we will consistently use the following contour. For some small constant > 0,
let 1"]- be the rectangle that is a distance n from [aj,bj], that is,

T; =T = (la; — n,bj + nl +in) U ([a; — n,b; +n] — in) (2.20)

U (bj + 1 +il—n,7]) U (a; — n +il-n, ).

The following lemma accomplishes (1) by providing an estimate on M,,(z; 1) in (2.13). For

definiteness, we consider the matrix norm ||A .4 = max;; |A;l.

Lemma 2.3. Suppose Assumption 1 holds. We have that for z € I'; in (2.20), uniformly,
IM,,(2; 1)l oy < Cn~ L eC™7, (2.21)
for constants C,C’ > 0.

Proof. We start by preparing some basic estimates. First, on I, according to Assump-

tion 1, we have

g+1 g+1
c'n<[]lz-al<c, c'n=]]lz-pjl=<cC,
j=1 j=1

for an absolute constant C > 0. Second, using (A.5) and (A.3) together with (A.12), we see

from (2.18) that for z € Fj, uniformly,

1K (2 1)l max < C(1Z — a1 7% + |z — by 71/,

1K, (2 1) lmay < C(1z — ajl V% + |z =1y 714,

for some absolute constant C > 0. Third, to estimate g(z) in the upper-half plane, we first

note that (Here * denotes the limit from within the upper-half plane.) Reg™(z) = 0 for
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z € [a;, b;] for any j. According to the arguments of Section A.2.2, we find that there exists

some D > 0 such that |Qq4(2)| <D (recall (A.7)) on U.T";, which implies that for z € T

J J’
Reg(z) < D'dist(z, [a;, bj])l/2 < 2l/4pypt/2,
for a new absolute constant D’ > 0.
Next, we estimate M,,(z; u). Inserting (2.17) into (2.13), we obtain
M, (z; 1)

—f(2) e2¢n(2)

p
1] o ) I +0 (e—cn)) K, (z 1) |:—f(Z)2 e—2¢n(2) f(2

] K,(zw ' (I+0(e ™).

Using Lemma A.2, we estimate for z € FJ-

| €22 1K, (25 1)l max 1K (25 1) lmax < Clz — byl 7tz — a1 77,
J J
F @K (2 1) max1Ky (2 1) limax < Clz =151z — a7,

If @)1 €72 [IIK,, (2 1) | max 1K (2 1) Imax < Clz — by Mz — a7,
for a new constant C > 0. The lemma follows. [ |

Armed with Lemma 2.3, we are ready to state a more detailed asymptotic result

on the perturbation of orthogonal polynomials when Assumption 1 holds.

Theorem 2.4. Let N be a positive integer and suppose u = u (V) satisfies Assumption 1

for sufficiently large N. Suppose further that a measure v = v(IV) is such that

14
VvV — Z Wj3cj,
Jj=1

has its support inside I' = T'(n) = J; T';(n), as defined in (2.20), and |lcy(-, . — V) llpeo(ry <
EWN,n).If n < Cyp~Y2,C > 0, and n = n(IV) is such that E(V, n)n~/2 — 0 as N — oo, then

Proposition 2.1 holds. In particular, we have

X,z pu,v) =1+ —

1 / Co(Z; i — V)M, (Z'; 1)

EN,HZH 1
(lz’+0 —( ) ,
2mi z —z

1+ |z|

uniformly for z in sets bounded away from TI.
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Proof. The proof follows directly from Theorem 2.2, Lemma 2.3, and Proposition 2.1.H

Remark 2.3. Theorem 2.4 makes precise the fact that in order to let X,,(z; u, v) be close
to I, we will need cy(z; u —v) to be small. The sense in which this occurs depends on each
specific problem and the related application. In applications of random matrix theory,
for most of the commonly encountered models, when u is the limiting ESD or VESD and
v is the ESD or VESD, one typically has (X,, = Op(g(n)) as n — oo if |, X,,/g(n)] — 0 in

probability for any sequence c,, — 0.)

1 1
|Co(z; w — v)| = Op (N_U) , or|cy(z; u—v)| =0Op (x/T_rl) '

on the entirety of U;X; and this will dictate what 5, or equivalently n, can be. Conse-

quently, we choose

n = 0(n~/?), where n « N'/* for ESD and n <« N'/® for VESD, (2.22)

is required to be able to apply Theorem 2.4. We also point out that if u has spikes, then
v will have spikes near the spikes of . Instead of directly considering u — v we apply
Theorem 2.4 to i —v where the limiting spikes of i are replaced with the nearby random
spikes of v. Despite the fact that i is then random, it satisfies Assumption 1 with high
probability and the asymptotics of the associated orthogonal polynomials follow the

same form, see Remark 2.4 below.

Remark 2.4. Combining Theorems 2.2 and 2.4, we can provide a more detailed perturba-
tion formulae for the orthogonal polynomials compared to (2.15). In particular, inserting
(2.17) (or equivalently the expressions in Appendix B.1) into (2.15), we obtain that for z

bounded away from T",

7, (2; V) = (P~ ePIIR+EE-G(e0) (2.23)
" p
< [[Iz-c<p [(1 + P, (z;n)E;,(z; 1) + Pyy(z; n) 24 E, (z n)] ,
=1

¢, (2 v) = (P~ g~ (=P)82)~G(H)~C(x)

[ p
< [[]z-cp [(1 + P (z;1)E 5 (2; 1) + Pyy(z; 1) 2O B, (z; n)] ,

/=1
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where Eij(z,' n),1 < i,j < 2, defined in Appendix B.1 only depend on x. Compared to
(2.15), the above expressions give much more information as they give explicitly how the

exponential prefactors are arranged.

Remark 2.5. As can be seen from the above discussion, if v is random then the
main random quantity to be understood is the entries of P(z;n) as defined in (2.14).
Consequently, in order to understand the second-order fluctuation of the concerned
quantities, it suffices to derive a CLT for P(z; n). The main task is to understand the
asymptotics of ¢y(Z’; £—v) on the contour I'. This is usually problem-specific and depends
on the measures u and v. Considering applications in random matrix theory where
wu is the limiting distribution and v is the empirical distribution, the distribution of
co(Z’; w — v), of course, depends on the underlying random matrix model. In Section 4,
we consider the spiked sample covariance matrix model and establish a general CLT,

which can be used to understand the distribution of the related quantities.

3 Algorithmic Applications: Asymptotic Formulae for Numerical Algorithms

In this section, we apply the results of Section 2 to study several important numerical

algorithms.
3.1 A high level discussion of matrix factorizations and algorithms

We briefly discuss background for the numerical algorithms under consideration.

3.1.1 Lanczos tridiagonalization

We first introduce the Householder tridiagonalizaton procedure. It is the process by
which a real symmetric or complex Hermitian matrix W is transformed to a real
symmetric tridiagonal matrix using Householder reflectors. Householder reflectors can

be written in the form

I 0
Uk == _ w |
0 Iy_p—2uu

where I is the k x k identity matrix and u € CW-0*®-k ig 3 unit vector. By selecting u

correctly for each k
UnUy_ - Uy WULUS - - U,

is a real symmetric tridiagonal matrix. See [72], for example.
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The Lanczos tridiagonalization algorithm applied to a real symmetric or complex
Hermitian matrix W and vector b accomplishes the same goal as the Householder tridi-
agonalization algorithm with some added flexibility. Run to completion, in exact arith-
metic, the Lanczos algorithm performs Gram-Schmidt on the vectors {b, Wh, ..., WY~ 1b}

constructing an orthogonal or unitary matrix

O=[‘I1 aQ - qN]' (3.1)

and necessarily T = Q*WQ is a tridiagonal matrix. Note that q; = b/|b||,. It is well-
known [72] the entries in the Lanczos matrix T coincides with the three-term recurrence
coefficients for the discrete orthogonal polynomials with respect to the VESD generated
by b and W (cf. (3.5)).

3.1.2 Cholesky factorization

The Cholesky factorization of a positive definite matrix W is a factorization W = LL*,
where L is lower-triangular with positive diagonal entries. When applied to a tridiagonal
matrix T, L is lower-bidiagonal and has non-negative entries if T has non-negative

entries. The Cholesky factorization is a special case of Gaussian elimination.

3.1.3 The conjugate gradient algorithm

The conjugate gradient algorithm (CGA) is an iterative method to solve the linear system
Wx = b. The method begins with an initial guess x; and in the current work we always
take x; = 0. The algorithm is mathematically described by the solution of a sequence of

minimization problems:
X = argminyelckny —X|lyw, Ky =span{b, Wb,..., Wk_lb}, ||y||%,, = (y, Wy). (3.2)
While one has the expression,
X, = Q(QEWQy) 'y,

it is quite remarkable that an extremely efficient iteration process is possible [46]. Here
Q; =1Iq;,--- ,q;lasin (3.1). It is also of intrinsic mathematical interest that this process

makes sense for bounded positive-definite operators on a Hilbert space.

3.2 Unperturbed asymptotics: applications of Theorem 2.2

In this subsection, we consider several important consequences of Theorem 2.2 when

applied to the numerical algorithms in Section 3.1. As we will see later, a common feature
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is that the analysis of these algorithms boil down to the analysis of some functionals of
the orthogonal polynomials and Cauchy transforms evaluated at either z = 0 or z = oc.
The main theorem is now stated and its consequences follow.

Based on {r,(; n)} in (1.3), the orthonormal polynomials p,,(x; n), n =0,1,2,...,
are the defined by

T, (A ) 2 2
Gy = —TnB I, = / 1 (s )220,
Pn EACTn T S TRy M
We write p,(z; 1) = £,2" +5,2" 1 + ... = ¢, 7,(z 1) where ¢, = ¢, (1) satisfies
6, = /R (2 1?1 (dz) = /]R (2 12" 1(d2). (3.3)

Theorem 3.1. Suppose Assumption 1 holds for u = w(V) for sufficiently large N and

n — oo as N — oo. Then for some ¢ > 0 we have the following.
(1) Ifz=0is bounded away from (U, Q2;) U(U; c;) then (This result can be stated

appropriately for any z but for simplicity we just take z = 0 because that is

all that is needed in the sequel.)

p
Y, 0wy = (P~ g=G(00) G(0) o(n—p)g(0) H( C) E;,(0;m),
j=1
p
Y, (0; w)pp = (=1 o= G(oo)e G(O)e (n—p)g(0) H(_cj)_l E,(0;n),
j=1

where

1 g+l bj Ve g a; e ©,(0;dy; (n —p)A+ Q) —cn
E11(0,n)=§ (a_] +H b_] ®l(oo;d2;(n—p)A+§)+0(e &

+0(e™ ).

!
N
S
S
N
ol -
«Q
+
N
RS
N—
=
N
|
«Q
e 3
/—\
o

3"\ 0,0y (n—p)a + )
b; ©;(c0; dy; (n—p)A+¢)
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(2) And
() = —2mi lim 2", (2 1)1,
g+1
_ _—2G(c0) 2(p-m) T Oy(00;dy; (M —p)A +0) —en
=e c — (b; — a;) + 0(e™ "),
2; 7 T 0,(00;dy; (n — p)A +£)
Sp (1) . _
G~ AR a0 =)

m m, I 14 0D (d,; (n — p)A
— 9t g b, e S oy 21 (doi(n—p)A+ D)
= 5= 2ni§(aj+b])+(n P)g; j:ZI:c]+ 8- (o dy T AT D

+0(e™ ).

Here ¢ is defined in (2.10) and g, is the coefficient of the O(1/z) term in the
expansion of g(z) at co. The other quantities will be made explicit in the proof after some
necessary notation is introduced. In particular, ® = (0, ®,) is a vector-valued function
defined in (A.2) using the Riemann theta function (cf. (A.1)), d, is defined in (A.4), A is
defined in (A.9), the entries of ¢ are defined via (A.13), and OV is defined in (B.8).

Proof. See Appendix B.1. |

3.2.1 Asymptotics of the three-term recurrence coefficients

The three-term recurrence coefficients a, (1), b, (1), n > 0, for (p, (x; w)),-o satisfy

A (WP (X; 1) + by (WP (X 1) + by (WP (X5 1) = xp,(X; 1), 1 >0, (3.4)

are often organized into a Jacobi matrix:

ay by
by a; b
T(w) = by ay b, @, = a,(w), by, = b, (). (3.5)

b, as

We let J,(u) denote the upper-left n x n subblock of J(un). The following theorem

establishes the asymptotics of these coefficients.
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Corollary 3.2. Suppose Assumption 1 holds for u = u (V) for sufficiently large N. Then

in the notation of Theorem 3.1 we have that

©2(oc0;d2;(n+1)A+E) —cn

b (u)? = L Ot DAY +0E™™)
n\)" =2 6, (00,dz:(n—p)A+¢)

©1(oc0;d2;(n—p)A+2)

+ 0(e—¢n) !

oldym—pAa+o P dy;n+ 1A +0)

0,(c0;dy; (n—p)A+E)  O(00;dy; (n+ 1A +) +o1+0).

a,(n) =

Proof. See Appendix B.2. |

Remark 3.1. Two remarks are in order. First, Corollary 3.2 shows that the recurrence
coefficients can be well approximated by some quantities involving the Riemann theta
function (cf. (A.1) and (A.2) when g > 0. This, in turn, yields the approximate quasi-
periodicity of {a,} and {b,}. Second, we provide a single interval example to illustrate
how different quantities in the above theorem can be calculated. In the general set-

ting, these quantities can be calculated numerically, as will be discussed in Section

5.1. Consider that g = 0 and p = 0 in (2.16). When b; = 1 and a; = -1, one
can check from (A.2) that ® = ©®, = 1 and g; = 0. Following [65], ¢ 2 = 1
so that

1
@, =0( ™), b, = - +0(™™),

which recovers the result of [55]. For general a; and b,

b,

b —
— 1 + al 4 al + O(e—CTL),

a, o H0E™™), b, =

which matches the result of [55] (see also [33, Theorem 5.2]).

3.2.2 Asymptotics of CGA in infinite dimensions
With the help of Corollary 3.2, we proceed to understand the performance of CGA

(cf. (3.2)) to solve Wx = b with x, = 0, producing iterates x,,, n = 1,2,..., and
(b, W — 2)7'b) = 2micy(z; n) for a measure u. The residual and error vectors are
defined as

r, =b—-Wx,,e =x—Xx

n n n n*
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Then we have the following formulae, where we note that for the assumptions of the

theorem to hold, W must be an infinite-dimensional operator.

Corollary 3.3. Suppose Assumption 1 holds for u = w(IN) for sufficiently large N and
Co(z; 1) = 27i(b, (W — z)~!b). Then

p
i E,On
len 2, = 27ie 260 g-2n-pa0) | [T 2 | 212070

B N E,00;n)

and

g+ O2(00;d2;(n—p)A+E) -
z l(b o ])Ol(OO;dZF(n—p)A-FC) +0E™)

e2n-p)30+260) [[[P_, 2| B, (0;m)?

2
T, ll2 =

Here we recall the definitions of G, g in (2.18) and (2.19), ® in Theorem 3.1, and E;;, E;,

are defined in Appendix B.1 after some necessary notation is introduced.

Proof. See Appendix B.2. |

Remark 3.2. As in Remark 3.1, the parameters of the above formulae can be calculated
numerically as in Section 5.1. In the single interval case, together with (B.6) and (B.7), it
is remarkable to see that

”rn”% —24(0) —cn ||en||%|, —2g(0) —cn
— 2 = +0(e™ "), —"—%-=e +0(e™"").

Ity 12 len_1ll%w

This implies that the ratios of the errors and residuals stay constant and are independent
of the spikes. In fact, following the calculations in Section A.2.2, when a; > 0 and
g = 0 it is easy to see that e %? = (/b — /a;)/(/b; + /a;), which matches [33,
Theorem 3.3]. And in comparing with [29, 64] using the support [(1 — vVd)?, (1 + Vd)?]
of the Marchenko-Pastur distribution with parameter d, 0 < d < 1, one obtains, for

example,

2
I
rnllz ””22 =d+0(e™ ™).
Ir,_1l5
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RHP Approach to Perturbation Theory of OPs 3999

3.2.3 Asymptotics of the Cholesky factorization
It is well known that in the case where supp(n) C (0, 00), the matrix 7 () in (3.5) has a

Cholesky factorization

%o

Bo
Ty = LLW™,  Lw) = Pr oo =), By =Bi(nw).  (3.6)
Bz 3

Let £,,(u) be the upper-left n x n subblock of £,,(1) and it is important that

Tn(w) = L, ()L, (w)*.

The following holds.

Corollary 3.4. Suppose the assumptions of Theorem 2.2 hold, then we have that

- E;(O;n+1)
2 _ 1,000 £11
o, (1) c e —En 0
B (1) = by (W?  Ey;(0;n)
(W2 =

ed® EO;n+1)

where the expansion of b, (1) can be found in Corollary 3.2.
Proof. See Appendix B.2. |

Remark 3.3. First, as in Remark 3.2, in the single interval case g = 0, we can provide a

more explicit formula. In this context, we have that

« +0(e™™), b, = +0(e™M).

n

A+ N
2 2

Second, according to [64, Section 6], we can also write

”rn”Z _ ﬂn—l

”rn—1”2 Up1

Combining the above two formulae will recover the arguments in Remark 3.2.
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4000 X.Ding and T. Trogdon
3.3 Perturbed formulae and perturbed asymptotics: Applications of Theorem 2.4

In this subsection, we consider several important consequences of Theorem 2.4 when
applied to the aforementioned numerical algorithms. In what follows, we use v as
a perturbation of the measure u and suppose that they satisfy the assumptions of
Theorem 2.4. We first state how all the quantities that are analyzed in Theorem 3.1 are

perturbed.

Theorem 3.5. For measures u, v satisfying the hypotheses of Proposition 2.1

Y, (0;v);; = Y,(0; )1, (1 + P1(0;n)) + Y, (0; )y P12(0; 1),

) 2-n)
Y, (0;v)1 = Yy (0; 1) 12(1 + P11 (0 n)) — 2mmYn(z; W)22P12(0; 1),

n—1
6,2(0) = £,2(w) — 27i2PP) (),

60 0w

_ Py,
500 s T

where the matrix P(z;n) = P(z;n, u,v) is defined in (2.14) and PV (n) = PM(n; u,v) is
defined by

PMn) = le)rgo zP(z; n). (3.7)

Proof. This is a direct calculation first using
Y, (z;v) = <P (L 4 P(z; n))cPTVRY, (23 1),
and expanding
Y, (2 v)z "% = (PRI + P(z; )PV, (2 )z ",
in a series at infinity. |

Since these are exact formulae, one can easily add the asymptotics of Theorem 3.1
(adding in the formulae (B.4) and (B.5)) to create perturbed versions of Corollaries 3.2, 3.3,

and 3.4. We summarize this in the following theorem.

Theorem 3.6. Suppose the assumptions of Theorem 2.4 hold.
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(1) For the three-term recurrence coefficients, corresponding to Corollary 3.2,

we have

b oy = LB 200 G~ 2) SIS + Py (n + ) e 10 ™)

nlV _2 g+1 O3(idi(n-pIA+E) | pD) (1) 626

22 0~ )G dnmopare + P12 (M) €26 +0(e~m)
and
od,: (n - p)A od,; DA
1 dy;(n—p)A+90) 1 dy;(n+1)A+9)
a,(v) =

©,(c0;dy; M —p)A+E)  O;(c0idy; (M + 1A +2)

+0,+ PV ) - P+ 1)+ 0™,

where the matrix PV is defined in (3.7).
(2) For CGA, corresponding to Corollary 3.3, we have

p
2 . —2(n—p)g(0)—2G(0 -2
le,ll3, = 2rie (n—p)g(0) 0 ch
j=1
(14 P;,(0; n)E,,(0; n) + P;,(0; n) 2G> E,,(0; n)
(14 Py, (0;n))E;; (0; n) 4 P ,(0; n) €26 E,, (0;n)

2
T2

® ;do;(n—p)A 1 _
5300 0y — &) Sannepars + 1Pz (W60 +0(e )

p
e2(n-p)g(0)+2G(0) [H cf} [(14+Py (0 )Ey; (0 1)+ Py5(0; 1) €269 By, (0; )]
j=1

(3.9

(3) For the Cholesky factorization, corresponding to Corollary 3.4, we have

a, (v)?

00 1+ PO+ DIE (01 + D+P, (0; n+1)e?6() E, (0;n+1)
(14 P,(0; n))E(0; n) + P15(0; n) 26() E,, (0; n)

’

Bn (1)
(14 P;;(0; n)E;;(0; n) + P, (0; n) €20 E, (0; n)

=—ce 90p (1)?

(1+Py1(0; n+1)E}; (0; n+1)+P)5(0; n+1) €260 E, (0; n+1)
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4002 X.Ding and T. Trogdon

We do not present the formulae for E,,(0; n) and E,, (0; n) explicitly, but these can

be found in Section B.1.

Remark 3.4. This theorem is particularly important because our asymptotic formulae
in the previous section only hold when u satisfies Assumption 1, which corresponds to
running CGA on an infinite-dimensional system. But v can arise as a VESD of a finite-
dimensional system, which allows Theorem 3.6 to apply to (large) finite-dimensional
linear algebra computations.

Also, as in Remark 2.5, we can see, from Theorem 3.6, that to obtain the
fluctuations of quantities related to the numerical algorithms, it suffices to focus on
the matrix P(z) either at z = 0 or z = 0. In Section 4, we will focus on the spiked sample
covariance matrix model and study these fluctuations, that is, the limiting behavior
of P(2).

4 Case Study: Spiked Sample Covariance Matrix Model

In this section, we focus our discussion on a concrete random matrix model, the
celebrated spiked sample covariance matrix model, to illustrate how to conduct the
analysis. Motivated by the applications in applied mathematics, we focus on the analysis
of its limiting VESD; see Section 4.3 for more details. For any probability measure p, its

Stieltjes transform is defined as

. 1
m,(2) = 2ricy(z; k) = / mu(dx), zeC,.

4.1 The deformed Marchenko-Pastur law

We first introduce the celebrated deformed Marchenko-Pastur (MP) law. Let X be an N xM
random matrix with independent and identically distributed (iid) centered entries with
variance M~! and the population covariance matrix X, be a positive definite determin-
istic matrix satisfying some regularity conditions (cf. Assumption 2). Denote the sample

covariance matrix and its companion, which are both random matrices, as follows

Q, = 5)2xx*s?, 0, = X* T X. (4.1)

In the sequel, we assume that for some small constant 0 < t < 1

N -1

TSCyi= ST (4.2)
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Denote the spectral decomposition of X as
EO=Zavlvl, O<oy<oy_1=<---<0] <00

The Stieltjes transform m(z) of the deformed MP law can be characterized as the unique

solution of the following equation [51, Lemma 2.2]
z=f(m), Imm(z) >0,

where f(x) is defined as

N

fx) = ——+ . T (4.3)

M= 1X+Uk

Denote ¢ = oy, y as the probability measure associated with m. Then ¢ is referred to as
the deformed MP law, whose properties are summarized as follows; see Lemmas 2.5 and
2.6 of [51] for more details.

Lemma 4.1. The support of ¢ is a union of connected components on R,

q
Supr = U [ezkr e2k71] C (OI OO), (44)
k=1
where g depends on the ESD of %,. Here e; > e, > --- > e, can be characterized as

follows: there exists a real sequence {tk}izci1 such that (x, m) = (e, t) are real solutions

to the equations

x =f(m), and f'(m) = 0.

Based on Lemma 4.1, we shall call the sequence of e;,k = 1,2,---,2q, as the
edges of the deformed MP law p. To avoid repetition, we summarize the assumptions the
will be used in the current paper. These assumptions are standard and commonly used

in the random matrix theory literature; see Definition 2.7 of [51] for more details.

Assumption 2. We assume that (4.2) holds and |cy — 1| = 7. Moreover, for X = (X;;), we

assume that X;;

i1 < i <N, 1<j<M,areiid random variables such that
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4004 X.Ding and T. Trogdon
Moreover, we assume that for all k € N, there exists some constant C;, such that
ElvVMX;* < C. (4.5)
For X, we assume that for some small constant 0 < 7; < 1, the following holds:
Tp=0oy=o0oy_1=:=0; 57{1-
Additionally, for the two sequences of {e;} and {t;} in Lemma 4.1, we assume that
e > 1y, I};ﬁi}gﬂek —¢gl =1, rniinl(fi_1 +tgl = 14

Finally, for any fixed small constant 7,, there exists some constant ¢ = ¢, ., > 0 such

that the density of ¢ in [ey; + 75, e5;_; — 7] is bounded from below by ¢.

Remark 4.1. We make a remark on the deformed MP law. Even though we will not study
o and its perturbation (i.e., the empirical spectral distribution (ESD)), we point out that o
satisfies Assumption 1. According to [51, Section A.2] (or Lemma 3.6 of [34], or Proposition
2.6 of [40]), under Assumption 2, we have that o(x) ~ /ey — X, x € [e; — 7, ;] for some
small constant t > 0. Consequently, we can conclude that ¢ satisfies (2.16) by setting
aj = ey;,b; = ey;_; and w; = 0. Moreover, (2)-(4) of Assumption 1 are satisfied due to

7 J
Assumption 2.

4.2 The spiked model

We are now ready to state our model by adding r spikes to X, where r > 0 is some fixed
integer. Let X be a spiked sample covariance matrix based on % so that it admits the

following spectral decomposition

where 6; = (1 4 d;)o; such that d; > 0,i <rand d; = 0,i > r. To ease our discussion, we

assume the spikes are supercritical as summarized below following [32].

Assumption 3. Fori < r, we assume that there exists some constant = such that
5> -t +o. (4.6)

We also assume that o;,1 < i < r are distinct and bounded.
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Then, the spiked sample covariance matrix and its companion are defined,

respectively, as follows:
9, :=x2xx* %12, 9, := X*TX. (4.7)

The above model is a generalization of Johnstone's spiked sample covariance matrix
model [48]. Let {1;(Q,)} be the eigenvalues Q, in the decreasing order and {i,} be the
associated eigenvector.

Under Assumption 3, we have the following result [32, Theorem 3.6]. Recall f(x)
in (4.3).

Lemma 4.2. Suppose Assumptions 2 and 3 hold. Then we have that forall1 <i<r,

1_=—1
)\i(él)_f(_aiil) =0p(N"1%), and |(@;,v;)? 1f'(=o; )

G2 — L = op(N Y2,
TR

4.3 VESDs and their limits

In this subsection, we introduce the VESDs and their deterministic limits. To be consis-
tent with the notation of Section 2, we denote the VESDs as v = vy, Vv = vy and their
deterministic limits as u = uy, & = ity for the non-spiked model in (4.1) and spiked
model in (4.7), respectively.

For any projection, b, we denote the VESD of 9, as

N
v=">"|(u;,b)% o, (4.8)

i=1

where {u;} are the eigenvectors of Q; and {1;(Q,)} are its eigenvalues. Similarly, we denote
the VESD of O, as

N
V= 1@ b)25, 5,
i=1

The limits of v and v can be characterized by the so-called anisotropic local law (cf.
Lemmas C.1 and C.9). Especially, the Stieltjes transforms of © and i can be characterized,

respectively, as [33, 51]

N 2
1., _ ; 1 _
m,(z) = _Eb (1+m2)Xy) 'y, my(z) = i_él T+ d, (_E(l + m(z)o;) 1 lji) , (4.9
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4006 X.Ding and T. Trogdon

where we denote
w;=vib, L;=1(0 <z ' A +m@0) 2d;' +1— (1 +m(z)0o) H7", (4.10)

and recall that m(z) is the Stieltjes transform of the deformed MP law.
Before concluding this subsection, we explain how the measures © and i satisfy
Assumption 1. First, using the inversion formula that u{[a, bl} = 7! ff Imm, (x+i01)dx,

it is easy to see from (4.9) that the density of i, denoted as gy, satisfies (see (3.4) of [33])

b'¢ _

op(x) = %b*zo[z + 2Rem(x +i07) Ty + [m(x +101)*£§] 'b. (4.11)

Under Assumption 2, it is easy to see that g, (x) ~ o(x) so that u satisfies Assumption 1
as discussed in Remark 4.1.

For the spiked model, it depends crucially on b. We will need the following

assumption to match the condition (5) of Assumption 1.

Assumption 4. For w; defined in (4.10) and all 1 < i < r, we assume that either of the

following holds:

w; =0, or 1/D < || < D.

Under Assumption 4, on one hand, w; = 0 for all 1 < i < r, it is easy to see that u and
i coincide so that Assumption 1 holds. On the other hand, if some of w; are nonzero
satisfying Assumption 4, without loss of generality, say only w; < 1. Using the relation
that di_l +1—-(1+ m(f(—Ei_l))ai)_1 = 0, according to (4.9), Lemma 4.2 and Assumption 4,
we find that ;1 satisfies (2.16) by setting a; = e,;,b; = ey;; and ¢; = f(—&l_l),w1 =
1 f(=5{H

Ty p = 1. The general setting can be analyzed similarly.

4.4 A general CLT

As we can see from Section 3.3, it suffices to establish the CLT of the following form,
Y= \/Mn]{ g(z)cy(z; w — v)dz, or Y= \/Mn]{ g(@)cy(z; n —v)dz, (4.12)
r r
where g(2z) is an analytic in a neighborhood of I" and n = n(n) depending on some other

parameter n is as in (2.22). Here we recall again that n can be the order of orthogonal

polynomials or the number of iterations in the numerical algorithms.
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According to our applications, by Lemma 4.2 and the local law (cf. Lemma C.1),
g(z) can be purely deterministic and given by the entries of M, (z; u)/zX,k = 0,1 after
some proper normalization so that fr |g(2)||dz| < 1 and Y is a real-valued random
variable as required. The main results are reported in Theorem 4.3. We first introduce

the following definition.

Definition 1. For two sequences of random vectors Xy, Yy € Rk, N > 1, we say they are

asymptotically equal in distribution, denoted as x,, > yy, if they are tight and satisfy

lim (El —El =0,
Jim (El(xy) — El(yy))
for any bounded continuous function I : RF — R.

Then we provide some notation. Denote

1
I, (2) := _2(1 +m(2)%,) "}, (4.13)

and for any deterministic vectors h;, h, € RY we define

Vit hy) = #ﬁﬁﬂ/_zlzzg(zl)g(zz)[hf(l +m(z))Zy) " ZoIT4 (z)hy] (4.14)

% [hi(nl(zl) —I1,(z3))h,

:|dz1dzz, (4.15)
Z1 — 2y

where we used the convention that

hi (I, (z)) — 11, (z3)h,

. T/
A, zZ, — 2, = hill @ph,,
and
V,(hy, h,) == —ﬁ(ﬁfrg(zl)g(zz)zlzzm(zl)m(zz)/C(zl,zz)dzldzz), (4.16)

where K(z,, z,) is defined by

K(z,,2y) = \/Z_IZ(E(I)/ZHI(Zl)hlhznl(Zl)Eé/z)ii(z(l)/znl(Zz)hlhznl(ZZ))ii'

1

Let k4 be the cumulant of the random variable X;; as defined in (C.10).
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Theorem 4.3. Suppose ) and Y are real valued. Suppose that Assumption 2 holds, then

we have that
Y ~N(,V;(b,b) + «,V,(b,b)).
Moreover, if Assumptions 3 and 4 hold,
V= NO,V, +k,Vyp),
where we used the notation that fork =1, 2,

2
@j

N
Vi = l_zl 114, (Vk(vi'vi) — Vi vy) — V(v 1) — Vk(z_llifli)) :

where w; is defined in (4.10) and I; is defined in (C.68) after some additional necessary

notation is introduced.
Proof. See Appendix C. u

Remark 4.2. In our applications, when the deterministic function g(z) is properly

normalized, it is easy to check that
V,(b,b) <1, V,(b,b) <.

We recall from (2.22) that V, = O(n~2). Consequently, when n diverges with any poly-
nomial order, V,(b,b) can be negligible asymptotically and hence the fluctuations only
depend on the first two moments and is therefore more universal. Similar phenomenon
has been observed in the mesoscopic CLT of random matrix theory, see, for example, [6,
15, 45, 59, 76].

Remark 4.3. We provide a few examples to illustrate the results of the spiked model,
that is, the CLT of )7 As can be seen in (C.68),

li = 0, i>r.
Consequently, if b € Span({v,;};. ), we find that

Vi =V, (b,b), k=1,2.

20z unp 61 UO Jasn Pa uled g sauy Jo 1dea-ONAON Ad 822612./S.65/S/720/S101e/ulwl/wod dno-olwspeoe)/:sdjy Wwoij papeojumoq



RHP Approach to Perturbation Theory of OPs 4009

That is to say, when b lies in the orthogonal complement of the spiked eigenvectors, the
distribution is the same with the non-spiked model. Moreover, when b = v, 1< i, <r,

we have that

-1 - m(z)ai*
ll* = — 1 .
d; +1—(1+m(zo;)

Consequently, we can simplify \~/k to
\7k = (1 + di*)il (Vk(bl*' bl*) — Vk(li*' bl*) — Vk(bi*’ ]'l*) — Vk(Zilli*, ]'l*))

As a consequence of Theorem 4.3, we can establish the asymptotic fluctuations

of the associated orthogonal polynomials.

Corollary 4.4. Suppose the assumptions of Theorem 4.3 hold. Let the parameters ¢, g, G
and {c;} in (2.23), © in (A.2) and y(2) in (A.3) defined by the limiting VESD as in (4.11).
Denote

p
. (o) J(n—p)g(@)+G(2)—G(c0) A
L:=c¢ e X Il(z <)
J=1

(%) ©,(z; dy; (n—p)A+Q)
0, (00;dy; (n — p)A +¢)

y@ '~y d. s (—
sy (2572 4 (5 dy; (n—-p)A+)

©y(00;dy; (n —p)A+¢)

For the non-spiked model, when ClogN < n < N'/6=¢ for some C > 0 sufficiently large

and € > 0, sufficiently small, for z € R \ supp(u), we have

VM

G,

(m,(z; v) — LE,) = N(o, é(vl(b, b) + 1, V, (b, b))),

g

where V, and V, are defined as in (4.14) and (4.16) by letting n = n=2 and

(Z) = —
Z) = —
9 2riz —z

(Ey M, (2)1; + E;M,(2)15) . C =?§ lg(z)11dz],

where M,, is defined in (2.21). Similar results hold for the spiked model.

Proof. The proof follows directly from Theorem 4.3 and (2.23). ]
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Remark 4.4. The normalization is used to ensure that, . l9(2")1/C41dZ'| is bounded from
below and above so that Theorem 4.3 applies. Using an analogous discussion, we can
derive the CLT for the Cauchy transforms as in (2.23). Since the concerned quantities
of the numerical algorithms depend on the orthogonal polynomials and their Cauchy
transforms, we can also obtain the asymptotic fluctuation of these algorithms using
Theorems 3.6 and 4.3. We omit further details here.

5 Numerical Simulations and Some Discussions

We now provide numerical simulations of our estimates and perturbation theory to
demonstrate the asymptotic behavior of both matrix factorizations and iterative algo-

rithms (cf. Section 3.1) applied to the spiked sample covariance model.
5.1 Calculations of key parameters

As we have seen in the results of Sections 2 and 3 that many essential parameters need
to be estimated before the application of Theorem 3.6. The first quantity is the density
of the limiting VESD, its support, and strength of the spikes. In Appendix D, we provide

a numerical method to approximate this. The outline of the procedure is:

e First, to compute the asymptotic support of the measure we use a rootfinder
guided by Lemma 4.1.

e Second, to compute the asymptotic location of the spikes we use Lemma 4.2.

e Then we fit the coefficients in a mapped Chebyshev approximation of the

density h; on [a;, b;] by solving a constrained optimization problem.

The method works with the empirical resolvent (b, (W — z)~!'b) or with the
limiting Stieltjes transforms m, or m;. In the former case, one should average over a
number of trials. With the density function approximated in a useable form, we can
calculate the other parameters. Appendix D outlines how to then approximate, with good
accuracy, the limiting Jacobi matrix 7 (u) from which many other quantities of interest
are easily computable.

Below, we also compute g(0). Since g in Assumption 1 is small in our compu-
tations one can directly implement the procedure outlined in Section A.2.2 using the

methodology of [73, Section 11.6.1] to compute the integrals that arise.
5.2 Performance of CGA with random inputs

In this subsection, we work on CGA when W is a spiked sample covariance matrix. We

first work on an example where the support of the limiting VESD consists of two disjoint
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intervals (i.e., a single gap) with spikes. Then we study a three intervals (i.e., two gaps)
case. Finally, we study the halting time of CGA, that is, the number of iterations needed
before CGA terminates according to some stopping rule.

In the computations that follow, it is interesting to compare what results to the

classical Chebyshev upper bound for the convergence of CGA [46]:

Ir,ll2 -1 V(W) +1
m = dchepr Ocheb = Jeam—1' (W) = Apax(W)/Apin (W). (5.1)
n—

5.2.1 CGA: single gap with spikes
Consider the spiked sample covariance matrix W = £1/2Xx*1/2 where X is N x M, has

iid entries,

%, = diag8,D), X; ZN©O,M™),

M=|N/03), d;=1, d,=05, d;=0,i>3,

and I is the N/2 x N/2 identity matrix. We choose X;; £ N(0,M™!) for convenience
because, as we have shown, the same limiting behavior will happen for any other
admissible entry distribution. In Figure 1, we apply the CGA to Wx = b with 2b =
f, + £, + f; + f;. The residuals encountered at iteration k concentrate on the black
dashed curve that is computed utilizing the results of Section 3 with parameters
calculated using methodology outlined in Section 5.1. In particular, the choices of the

parameters are
a, ~0.279, b, ~1.667, a,~3.192, b,~ 15.562,

§:=e%0 ~ 1,322, (5.3)

c, ~20.319, c, ~ 33.755.

In addition to the black curve, we also provide a red curve. The motivation is as

follows. According to Corollary 3.3 and Theorem 3.6 (or Remark 3.2), we find that

Ir,ll, ~ e—80)
Iy _1ll2

Note that in this case §¢y,,, ~ 1.309 indicating that when one accounts for the gap in the

spectrum, a faster convergence rate is predicted.
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Fig. 1. The CGA runs on the single gap matrix in (5.2). The black oscillatory dashed curve indicates
the large IV limit for the residual norms |rg| 2 at step k. The shaded gray area is an ensemble of
10000 runs of the conjugate gradient algorithm, displaying the residuals that resulted. The red
dashed line is given by 7%, § = €99, The overlaid histogram shows the rescaled fluctuations
in the norm of the residual at k = 10. As N — oo, this approaches a Gaussian density. Lastly,
the histogram in the main frame gives the halting distribution t(W,b,¢) = min{k : |rgl2 < €}
for e = 1073 (green horizontal line), that is, the statistics of the number of iterations required
to achieve |rgl2 < €. We can see that our results in Theorem 3.6 are reasonably good even for

N = 200. The accuracy improves when N increases.

Then after being properly scaled, we can use e "9 for the prediction. We find
that both our black and red curves are accurate even for small values of N. Furthermore,
a remarkable feature of (3.8) and (3.9) is that the random components are contained in
the P;; and P,, terms, which have a common exponential factor. This implies that the
fluctuations are on the same exponential scale as the asymptotic mean. We demonstrate

this by considering ||rk||26k in Figure 2.

5.2.2 CGA: Two gaps
Consider the non-spiked sample covariance matrix W = Zé/ZXX* 25/2 where X is N x M,

has iid entries,
%o = diag(3.81,1.21,0.250), X;Z N(O,M™Y), M = |N/0.3], (5.4)

and I is the N/3 x N/3 identity matrix (We choose I here to be either |[N/3]| x [N/3] or
[N/3] x [N/3].). In Figure 3, we apply the CGA to Wx = b with +/3b = f, + fyo + fy.
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N =100, M = 333,c, = 0.30 N = 800, M = 2667, c,y = 0.30
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(@) (b)

Fig. 2. The CGA runs on the single gap matrix in (5.2). The black oscillatory dashed curve indicates
the large N limit for the scaled residual norms ||rk||28k at step k. The shaded gray area is an
ensemble of 10000 runs of the conjugate gradient algorithm, displaying the scaled residuals that
resulted. We can see that our predictions in Theorem 3.6 are quite accurate once N is reasonably
large.

We again report both the black and red curves, and they are reasonably accurate. The

choices of the parameters we find are

a, ~0.080, b; ~ 0.349,

a, ~ 0.496, b, ~ 1.828,

ag ~2.029, by~ 6.767,
§:=e9® ~1.248.

Note that in this case §gpep, &~ 1.244.

5.3 The Jacobi and Cholesky matrices

In this subsection, we analyze the entries of the Jacobi matrix in (3.5) and its associated
Cholesky decomposition in (3.6). We first pause to review some classical results. The
Householder tridiagonalization of a real symmetric or complex Hermitian matrix W is a
fundamental numerical process. The process is succinctly described by the selection of

a sequence of Householder reflectors, Uy, ..., Uy, so that

UyUy_y- U, WUT - Uy Uy =J,
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Fig. 3. The CGA runs on the two gap matrix in (5.4). The details of the figures are similar to the
captions of Figure 1. We can see that our results in Theorem 3.6 remain accurate for the new choice
of .

is a symmetric tridiagonal matrix. The typical convention is to select each U; so that
the only non-zero entry in the first row and first column is a one in the (1, 1)-entry. The
off-diagonal entries of J can be chosen to be non-negative.

When W Z XX*, Xij Z N(0,M™1), the case of a Wishart matrix, the distribution
of J can be calculated explicitly [37, 69] and is given by

XBM
Xpw-1)  Xpm-1)
Z T
J=LLY, L=

8-

Xpw—-2) XpM-2) , (5.5)

Xg  XBM—N+1) |

where X, is a x -distributed random variable with y degrees of freedom and all the
entries of L are independent. Here § = 1 if the matrix W has real entries. In another
way of speaking, the matrix L gives the distribution of the Cholesky factorization
of the tridiagonalization of a Wishart matrix. One can generalize this tridiagonal-
ization by asking that the first column of Uj..-Uy_,Uy be a prescribed vector b
so that

T=TW,b), L=L(W,Db). (5.6)
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This can be accomplished by simply constructing a matrix U,, UjU, = I whose first
column is b and apply the Householder tridiagonalization procedure to UjWUj,. In
this case, the tridiagonal matrix that results coincides with the output of the Lanczos
algorithm (In numerical linear algebra these two methods are treated as distinct, in part,
because they have vastly different behavior in finite-precision arithmetic.) .

More is true. Consider the discrete measure
N
2
v=vyp= > (Wb} ),
i=1

for a general positive definite matrix W. Then,

T(W,b) = Ty (v),
L(W,b) = L),

which directly connects the output of the algorithms to the VESD. In the context of
Wishart matrix, supposing ¢y = N/M — c € (0, 1], one can immediately see that the
(k, k) and (k,k — 1) entries of L in (5.5) tend to 1 and ./c, respectively, provided k <« N.
Furthermore, the fluctuations will be Gaussian, by the central limit theorem. It is of
intrinsic interest to ask if this phenomenon persists for the spiked sample covariance
model we analyze here. Our results establish this for k « N'/¢ and we conjecture it holds
fork < N.

We now explain simulations based on the matrix model defined by (5.2) to
demonstrate both our results and add evidence that that k « N is necessary. Let
v be given by (4.8) with limiting measure p using the setting (5.2). As stated, the
tridiagonalization of the spiked sample covariance model and its Cholesky factorization
are given by Jy(v) and L£y(v) using the notation of (3.5) and (3.6). In this section, we
examine a;(v) and o (v) for k < 8N'/® + 10 and k < N/3 using the results of Section 3.
Figure 4 demonstrates a consequence of our results (While our results technically only
hold for k « N/, allowing k < 8N'/® + 10 demonstrates that we expect our results up
to hold up to this threshold.) that the entries of 7, (v) concentrate on those of 7, (i) for
k « N/, 1f we allow k to be proportional to NV, we do not expect this to occur as Figure 5
demonstrates.

Lastly, we consider the fluctuations of the diagonal elements of 7(v) where v
is the VESD in (4.8). We have shown that as N — oo, for k fixed, the fluctuations of a;
are Gaussian. Furthermore, by Theorem 4.3, Corollary 4.4, and Remark 4.4, the variance

depends on the fourth moment of the matrix entries. We confirm this clearly in the top
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Fig. 4. The first k entries of the matrices Jy(v) and Ly(v) for k < 5N1/6 + 10 in the case of (5.2).
The solid blue and dashed red curves give the large N limit of the diagonal and subdiagonal,
respectively, computed using the results of Theorem 3.6 with the parameters calculated using
the methods outlined in Section 5.1. The shaded region is produced using 1000 samples for the
displayed value of N. This demonstrates that if v is given by (4.8) with limiting measure u, using
the setting (5.2), then the entries of J(v) concentrate on those of Ji(n) if k « N1/6,

two panels of Figure 6. But as Remark 4.2 points out, as k increases, the dependence on
the fourth moment should become negligible. Figure 6 demonstrates that this happens

quickly.

Appendix A. Orthogonal Polynomials and Their Asymptotics: Proof of Theorem 2.2

A.1 A Riemann surface

In order to describe the asymptotics of polynomials orthogonal with respect to a measure

wu from (2.16) satisfying the assumptions (1)-(5), we need to describe a Riemann surface.
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Lanczos Tridiagonalization, N = 1600 Cholesky Factorization, N = 1600

Limiting diagonal —— Limiting diagonal
1 Y = b

20

e

s s L L L L s L L L s L
0 100 200 300 400 500 0 100 200 300 400 500
k k

(a) (b)

Fig.5. The first k entries of the matrices Jy(v) and Ly (v) for k < N/3 in the case of (5.2). We can
see that even though the entries of Ji(v) concentrate on those of Ji(u) for not-so-large k as in
Figure 4, the prediction becomes inaccurate when k is larger.

General references for what follows are [4, 7, 21]. Associated with the intervals [aj, bj], 1<
j <g+1,is a Riemann surface, described by the solution set of
g+1

w? = [[(z—aj)(z— b)) =: Py 5 (2),
j=1

in C2. Consider a cut version of the complex plane:

g+1

C=cC\ (Jlaj,bjl
j=1
Then define a sectionally analytic function
R:C—C, R@%*=Py @, R@—1, as z— o.

A Riemann surface I' can be constructed by adjoining copies of C; see Figure A7 for an
illustration and a description of the a-cycles and b-cycles. We have a natural projection
7 : ' — C defined by 7n((z,w)) = z and its right-inverses njfl(z) = (z,(=1Y*R(2)),
j=1,2.

As is well-known (see [7], for example) a basis for holomorphic differentials on I

is given by

j=12,...,g9.
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Fig. 6. Statistics of ay for the model in (5.2) for different choices of distributions on the entries

Xij when N = 1000. For each choice of distribution, we plot a histogram for vM(ay/(ax) — 1) using

50,000 samples where (-) gives the sample average over these 50, 000 samples. The thin black curve

is the density for a normal distribution with mean zero and variance determined by the sample
variance of «/M(ak/(ak) — 1) when Xij Z N(©,M~1). The shaded red area gives the histogram
for A'(0,M~1) entries, the shaded gray area gives the histogram for the discrete distribution on
{—1/+/M, 0, 1/+/M) that matches its first four moments with A’(0, M~!), and the white histogram is
produced by X;; = +1 /~/M with equal probability (Bernoulli). For smaller values of k the variance

clearly is different between the moment matching distribution and the Bernoulli distribution. As

k increases, this difference dramatically diminishes, as predicted in Corollary 4.4.

Define the g x g period matrix A by

Aij = %\ dl)j.
ai

T
Note that if ¢ = [Cl c, - C ] = A‘lej for the standard basis vector ej, then

9

g 9
% chdl)k = ZCkAik = elTAC = e?ej = SU
a,

i k=1 k=1
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Fig. A7. An illustration of the Riemann surface I'.

So, we define a basis of normalized differentials

do, dy,

d(,() de
=27iA~! ,

da)g dvg

which satisfies

The invertibility of the matrix A follows from abstract theory as in [13].

Now fix the base point @ = a; and define

z g
u(z) = ( dwj) ., z&€R,
a j=1

where the path of integration is taken to be a straight line connecting a to z. Note that
this extends to a vector-valued holomorphic function (We abuse notation here and treat
u as both a function of z € C \ R and a function of P € I".) u(P) on the Riemann surface
I’ provided I' is cut along the cycles {a,..., ag, by,..., bg}, making it simply connected.
Another important feature is that for z € C, u(nf1 (2) = —u(yrzf1 (2)).

Define the associated Riemann matrix of b periods,

T = (Tij) :( ) da)L) .
J 1<ij<g

Note that r is symmetric and pure imaginary and —ir is positive definite. Next, define

the vector k of Riemann constants component wise via

2ri+ 1T

LT
k; = 27_[12}{ uido,, j=12,...,9.
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The associated theta function is given by

0(z; 1) = Z exp (%(m,rm) + (m,z)) , zeC9, (A.1)
meZ9

where (-, -) is the real scalar product. This series is convergent because t has a negative-

definite real part. The following hold:
0(z+ 2niej; 7) =0(z; 1),
1
0(z + Te;; T) = exp (—Erjj — Zk) 0(z; ).

A divisor D = ZJ- n;P; is a formal sum of points {P]-} on the Riemann surface I'.

The Abel map of a divisor is defined via
AD) =D nu(Py).
J

We now determine the jumps satisfied by the vector-valued function,

C ey _Nowztv-darn 0(u@+v-d)
B(z;d;v) = O(2) := [ Sam)—d:D) e —dio) | z¢R. (A.2)
Note that the first component function is nothing more than %ﬁ;‘f’;) restricted to the

first sheet. The same is true for the second component function on the second sheet. The
vector v is left arbitrary for now, and it will be chosen in a crucial way in what follows.

Then note that

i—1 9 i—1 9
J ak+1 J
uwr@+u (@=|2 Z/ dw, =D ¢ do =27iN, zela;, by,
k=1""% =1 k=17 % =1
for a vector N of zeros and ones. Then we compute
J b g 9
utz)—u (2= (2 Z/ do, = ( da)z) =te;, zelbjal
k=1" 2k =1 bj =1

Then check

6 (:l:u(z)—i—tej—i-v—d;t) I 0 (fu(z) +v —d: 1)
0 (+u@ + e, — dit) 0 (Fu(2) — d; 1)

Then on (—oco,a;) we have ut(z) = u(2). And on (b o0) we have

g+1

g
ut(z)—u(z) = (% dwj) ,
¢ ')im

where C is a clockwise-oriented simple contour that encircles [a;, b, ;]. Then because all

the differentials dw; are of the form P(z)/R(z) where P is a degree g — 1 polynomial and
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R(z) = 0(z91!) as z — oo, we see that §, dw; = 0. Thus, ignoring any poles ® may have,

we find that © satisfies the following jump conditions:

01

®_(Z) PANS (a]',bj),
1 0

0T (2) = _

e 0

®_ b'l 1 ’

(Z) 0 oV VAS ( J a]+1)
O (2) AS (—oo,al)U(bgH,oo).

Also, note that since u(co) is well-defined, ® has a limit as z — oo and is analytic at
infinity.

Of particular importance are the poles of ®. It is known that (see [7], for example)
ifo(u(P)—AD)—k),D = P;+---+P,,is not identically zero (This holds if D is nonspecial.)
, then, counting multiplicities, 6 (u(P) — A(D) — k), has g zeros on X. These zeros are

characterized by
O(u®P)—AD) -k)=0 <« P=P,

for some j. Next, define

1/4
(72 A3
ra =11\ ;=% : (A.3)
Jj=1 J
analytic on C\ Uj[aj,bj], with y(z) ~ 1,z — oo. It follows that y — y~! has a single root
z; in (bj, aj+1) forj=1,2,...,9, while y + y~! does not vanish on C \ Uj[aj,bj]. So, define

two divisors
g g
Z -1 z -1
Dl = JTl (Zj)' Dz = 7T2 (Z])
j=1 j=1

It follows from [35] (see also [73, Lemma 11.10]) that these divisors are nonspecial and
therefore the 6 functions we will consider do not vanish identically.
Note that for d; := A(D;) + k, the function z — 0(u(z) — d;; r) has zeros at z,

while the function z — 6(—u(z) — d;; v) is non-vanishing. Similarly, for
d, := AD,) +k, (A.4)

the function z — 6(—u(z) — d,; v) has zeros at z;, while the function z — 0(u(z) — d,; 7)

is non-vanishing.
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Inspired by [30], this leads us to consider

which is analytic in C\ U;la;, b;], with a limit as z — oo and satisfies the jumps:

-1 _ -1
(V(Z)+%/(Z) )®1(Z? dy; v) (%) ©,(z; dy; v)

Ly(2) =

o -1
(—V(z) 5 V(Z)) ©,(z;dy; v) (M) ©,(z;dy; v)

Ly (2)

L; (Z) =
L, (2)

L, (2)

AS (ajlb‘)r

Z c (b]’ aj+1),

ze€ (—o0,ap) VU (bgH,oo).

This follows because y(z) =iy~ (z) for z € (aj,bj) and therefore

We point out that (A.5) was first proposed in [30] and then used by many authors, to list

vt + @ Ht =iy @ -w@™h),

vt - @ H =iy @+ @ ™).

but a few, [17, 20, 211].

A.2 Asymptotics of orthogonal polynomials: proof of Theorem 2.2

(A.5)

The derivation of the asymptotic formulae proceeds in six steps, each of which trans-

forms Y,,(z; 1) by explicit algebraic transformations:

Step 1: Turn residue conditions into rational jump conditions.

Step 2: The determination of a differential, also called the exterior Green's

function with pole at infinity, that is used to remove the singularities of Y,, at

infinity.

Step 3: Lens the Riemann-Hilbert problem, invoking analyticity of functions

in the jump matrix, to judiciously factor and move jumps into regions where

exponential decay can be induced.

Step 4: Use the differential to remove the singularities at infinity and induce

exponential decay (decay to the identity matrix) on contours moved away the

support of w.
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 Step 5: Determine the Szegod function that removes the details of the remain-
ing jumps and converts them to piecewise constant jumps.

 Step 6: Now that the original unknown Y,, has been transformed to something
that has jump matrices that are exponentially close to being piecewise
constant, the limiting “model” Riemann-Hilbert problem is solved explicitly

using theta functions.

The result, after unwinding all the transformations, is an explicit asymptotic
expression for Y,, with exponentially small error terms. This procedure is far from new
as it is applied in this form to measures supported on a single interval in [1, 55, 57] and
in greater generality in [77]. We rederive the results of [77] in our special case to make

them more explicit.

A.2.1 Step 1:residue conditions to rational jumps
Consider the function Y, (z; u) as defined in (2.2). Now, consider a new unknown,
[, —cp! 0

0 [Fyz—c )} '

This eliminates poles in the second column and adds them to the first. The residue

Zp(Z ) = Y, (z u)[

condition implies that near c;

i Yn(cjin)
Y,(cji )y, + 0z —c)) 5" 210 4 0(1)

Y. (z:p) = 271 z—cj
n\4r -

wj Yn(c]rn)Zl
271 z— cj

Then, for Z,,, we have

Yn(C VM)11 -1
2w =y ( — e ) Hk;&](c ¢ +0() 2mY (cji 1 Hk#(cj —cp) + 0@z —c)
n\=r n(Cj, _
chlj A Mesi(cj— ) +0(1) 525 ¥y1(cim) [Tiwy(cj — cp) + Oz — ¢))
From this, it follows that
Y, (¢ Hk;éj(cj_ck)_l 0 =lim Z,(z; u) . 0 0
Y, (cii op [Trwi(ci—cp) ™t 0] 77¢ 20T, L (ci—cp)™2 0
n\Cjr W21 L E£i(Cj—C w; LA\ >k
The other important properties of Z,,(z; 1) are given by

p(2) l_[le(z - Cj)z] ze(—1,1)
1 ' o

ResZ:chn (z; n)= |:

1
lim Z, (z+1ie; n) = lim Z, (z — ie;
e—0t n( 2 e—0t n( 2 |:0

Zf(nfp)
Z,(z; ) e I+0(1/z), z— oo.
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Now, let Zj be a small circle centered at F with radius sufficiently small so that
it does not intersect any other ¥ for k # j and so that it does not intersect any X; for all

j. Denote by ﬁj the region enclosed by Z;. Define

Z,(z; ) zeC\ (U}‘?:ll [a;, bjlU Ule(Ej U flj)) ,
Z,(Zi 1) = 1 0 .
Z(z;n) L z € %\ {cj},
Z—Cj
where vT/j is defined as
- 2ri 9

Then it follows that én(z; ) has a removable singularity at z = c; for each j. We
give ¥; counter-clockwise orientation and denote by Z* the limit to Z; from the interior
(+) or exterior (—). We have

1 0

éjlr(z; w) = 2,; (z; ) W , Ze€ E]-.

Z—C]'
A.2.2 Step 2: determine the correct differential

Our next task is to remove the growth/decay at infinity. We look for a function g that

satisfies:

(a) ¢g(z)=1/z+0(1/z%) as z — .
(b) ¢/ (2),9_(2) € iR on [a;, b;].
(c) ;jj“ g(zdz=0,j=1,2,...,9

Based on this, define

g+1

, Q, (2)
g (2) = Rg(z) , where R(@?=]]z-2)z-b), (A.7)

j=1
where Q is a monic polynomial of degree g, providing g degrees of freedom to satisfy the
requisite conditions. We then see that R, (2) is purely imaginary in each interval (a;, b;)

and real-valued on (o, a;41)- The linear system that defines Qq(2) = >k hkzk is given by:

aj1 971 k aj41 59
/1 thz—dz=—/] 2z, j=1,2.....q.
b =R b R

Therefore, h; are real-valued coefficients. This implies (b). The unique solvability of
this system for these coefficients follows from the fact that l%dz, k=0,1,2,...,g—-1
forms a basis for holomorphic differentials on hyperelliptic Riemann surface defined by
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RHP Approach to Perturbation Theory of OPs 4025

w? = R(2)%. Then because R(z) is sign definite in each gap (dj aj1), for (c) to hold, ¢'(2)
must vanish in this interval. This implies that Qy(2) has one root d;in each gap (bj aj41)
and this accounts for all the roots of Q,(2). This implies that g'(z) < 0 for z < a, and

g'(2) > 0 for z > by, ;. With the notation by = —ooc and ay,, = +00, it follows that
R(2)R(Z) <0, ze(bja.1), Z €(®ji1,25),

forj=0,1,2,...,9—1.Since ¢g/(z) < 0 for z < a;, we see that g'(z) > 0 for z € (b;,d;) and
g'(z) < 0for z € (d;,a,). This is true, in general, with g'(z) being positive on (b;,d;) and
negative on (dj, aj+1).

Then g(2) is defined by integration of g'(z) from a, to z by a straight line. We can

compute
g+(Z) + gi(z) = 01 PAS (ajr b])l

where we use the fact that RT(z) = —R~(z) for z € (a;, ;) along with fg“ g (z)dz = 0 for
each j. And for z € (bj aj;) we find

b

J b
'@ - @=2> [ @) T@dz= A, (A.8)
k=1

172k

So this is constant in each gap (bjraj41) and is purely imaginary. Define the vector
_ g
A=yl (A.9)

It is easy to see that the above arguments result in the following proposition.

Proposition A.1. For g(z) defined in (A.7), we have that Re g(z) is strictly positive on any
closed subset of R \ Uj[aj,bj].

Combining Proposition A.1 with the maximum modulus principle applied to
e 9 this statement extends to C \ U,la;, b;. Define

J'
eE(Z)
¢= lim (A.10)
zZ—>00 Z

We remark that |¢| is classically known as the capacity of U;la;, b;] [65].

A.2.3 Step 3:lens the problem

Define ,5J~ to be the analytic continuation of p(2) Hle(z - cj)2 off [aj,bj] to ;. Then let

C; be a curve the encircles [a;, b;] lying in Q;. Denote the interior of this curve by D;.
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4026 X.Ding and T. Trogdon

Then define
. i 1 0
Z,(z; 1) zeD;NCH,
| -1/p@ 1
Spzipn) =1, 1 0
Z,(Z; 1) zeDjﬂ(C_,
_1/)5j(Z) 1
_én (z; 1) otherwise.
We find
1 o
S, (z; w) ze G \R,
| 1/p(2) 1
[ 0 4@
Sy (2 1) = 15,z 1) ! z € (a;,b)),
_—1//5j(z) 0
) 1 o
S, (z; 1) W, yAS E]-
75 !

Note that S,, still has the same normalization at infinity as Zn. And recalling that Zn (z; )
is bounded on D;, we see that we have now introduced unbounded behavior in S, in an

entrywise sense,

_ 4. 11/2 L —1/2
Sn(z;u)=|:0(|z a;| 1% 0(1)] 5. Gz )=|:O(|z b, ~1/2) 0(1)]

0(lz— a2 0(1) O(lz —;71/2)  0(1)
as z — a;, by, respectively.

A.2.4 Step 4: normalize at infinity

Define

§n(z; W) = C(n_p)U3Sn(Z; W) e—(n—D)a(2)o3
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RHP Approach to Perturbation Theory of OPs 4027

Then it follows that S'n(z; w) =1+ 0(z1) as z— oo and it satisfies the jumps

. 1 0
Sy (Z; 1) ze Ci\R,
e—2(m-pa(@) /,5]'(2) 1
. 0 5;(2)
Sy, (z; 1) 5 J z € (a;, b)),
_—l/Pj(Z) 0
SHzip) =
y [e=(n-p)a; 0o |
S (z; ) z e (bj,a; 1),
" 0 e(M—D)A gt
S | ! 0] by
~(z € X..
n (% 1) e—2-pg@ Wi S
L Z—Cj .

A.2.5 Step 5: determine the Szegoé function

The point of the Szego6 function is to replace the jumps on (a;, b;) with something simpler

at the cost of adding to the jumps on (b;, a;;,). Define

__R@® e log 3;(%) da Iy g da
G(z) = —% ~ Z/ P (A)+Z/bj TR0 | (A.11)

where the constants ; are yet to be determined.

Before we determine these constants, note that

Gt (z2+G (2 = —logﬁj(z), z € (a;,b)),

G '@ -G (@=-¢ ze b a)

Since R(z) = 0(z9), we see that G(z) = 0(z97!). To avoid unbounded behavior of G at

infinity, we choose ¢ = (g“j)ngl so that as z — o

G(z) = O(1). (A.12)
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4028 X.Ding and T. Trogdon

Indeed, we find a linear system of equations

m ——i/bjlo 5 ooni-1 3 (A.13)
AL Y R |

91 raj 1 dr
_Z/ §j)»_1 =0, ¢(=1,2,...,g—-1
j=1"bi R

We pause briefly to discuss the singularity behavior of G and note that we have

to take some care because in Assumption 1 we allow x to depend on N.

Lemma A.2. Given Assumption 1, for some ¢ > 0, and for every j = 1,2,...,9 + 1,

we have
1
G(z) = ~1 logl(z — bj)(a; — z)] + R;j(2), dist(z, [aj,b~]) <e,

where R;(2) is a uniformly bounded function for dist(z, [a]-, b]) <e.

Proof. Recall Proposition A.1. We first observe that if h is a uniformly bounded analytic
function in the O, = {z : dist(z, [aj,bj]) < €} then
R(z) % h(») da

EQ) =~ M erywe (A.14)

is bounded for z in any fixed bounded set. Indeed, for z € O, ,

R (% h() dr _h@ R@ [ hZ) dz
2ni Jo A—2zR, () 2 4ni JyZ —zR@)’

where ¥ = 90, 3. This is uniformly bounded. This function is then evidently bounded

uniformly on {|z| < R} \ O¢/2 for any R > 0. So, consider

H < B® b 3log(h —a), da
T 2xi a; r—z R,

in a neighborhood of a; where the branch cut of logz here is chosen to be [0, c0). By

choosing € sufficiently small, we find

R(z) 3log(z —a)) dz’
4ari Jy0,. z —z R(2)

H(z) = ilog(z —a)) — + E(2),
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where 0,, = 0, N {Rez < b;} and h = —xi/2 in (A.14) is a constant. This holds
forz € O, N{Rez < b; — €}. The second two terms are uniformly bounded for these

values of z. We exchange logz for the principal branch in the initial integral for H(z)
and find

1 /
1 R 7 log(z' —a;) dz’
HZ) =+ logz—ay — 2 [ 2982 78 82 _ g,
4 41 Jy0,, zZ —z R(z)
where 0,, = 0, N {Rez > a;}. The second two terms are uniformly bounded for

z € O, N{Rez > a; + ¢}. Similar arguments hold after exchanging log(» — a;) for
log(x —b;), and the facts about E(%) apply to the integral of each of ¢;, and the lemma
follows. u

This system of equations is uniquely solvable for ¢ using the fact that the
normalized differentials exist, and involves the same coefficient matrix that is used to

determine the polynomials Q, above.

Then consider
. G & . —03G
T, (z; n) = €% S, (z; n) e 20@

We check the jumps of T,;:

1 0
T, (z; ) zeCj\R,
_e—2((n—p)g(z)—G(z)) /Iéj(z) 1
0 1
T, (z; 1) z € (a;,b)),
-1 0
Ty (z; ) =
raa | © _ (b, 3,1)
(Z; 1w ze (b;,a.1),
! 0 e(M-PIAHG S
T (z; 1) ! 0 >
(Z, . Z € X
" e—2An-pa@-G@) Wi 1 J
z—cj _
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4030 X.Ding and T. Trogdon

Since the first and last jumps tend to the identity matrix exponentially fast, uniformly

at a rate O(e~“") for some ¢ > 0 and we look to solve the model problem

. 0 1
T, (z; 1) z € (aj,bj),
-1 0
THz p) = _
n (1) . e~ (M=P)Aj—E; 0
T (z; 1) ze (bj,a;,),
" 0 e(M=P)A+Y e

with the condition that Tn(oo; w) =1.

A.2.6 Step 6: solution of the model problem
From (A.5), we find that Tn(z; n) = Ln(oo)_an(z), with v = (n — p)Aj + ;“J-,j =1,2,...,9,
that is, v = (n — p)A + ¢. It then follows that

Ry (2 1) = Ty (2 1) T (2 ),

using the fact that Tn(z; ) and its inverse are uniformly bounded (see [21], for example)

on sets bounded away from the support of u, it follows that

e—Cn
R (z;u)=1I+0 .
n() =1+ (1+|z|)

Appendix B. Algorithmic Asymptotic Expansions: Proof of Theorem 3.1 and Its
Corollaries

B.1 Detailed expressions of (2.17)

We provide some explicit entry-wise formulae for (2.17). Denote

e—CTl
E@zn)=(I+0 L, (00)7 L, (2). B.1
(z;n) (+ (1+|z|)) n(00) "L, (2) (B.1)
According to (2.17), we readily obtain that for z outside any region of deformation
p
Y,z p)y, = P e G0 8@ emP0@ | TT(z — ) | By, (zi ), (B.2)
j=1
p
Y, (Z 1)1, = (P~ g=G(o0) 5 —=Gi(2) g—(n—p)a(2) H(z _ cj)_l Ey,(zn), (B.3)

j=1
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p
Y, (2 )y = ¢ P &80 8@ P& | (7 — ) | By (zi ), (B.4)
j=1
p
Y, (Z 1) 9y = — =) gG(00) ,—Gi(2) o—(n—p)g(2) H(Z _ Cj)—l E,y(z; n). (B.5)
j=1

Recall (A.3). As y(z) — 1 when z — oo, using the definition of L,(z) in (A.5), we

see that

m o o ~ B
Ln(oo)—an(Z) _ OI(OO, dz, (n p)A + c) 0 :|

0 ®y(00;dy,; (n—p)A+¢)7!

_ _ _ -1
(H24522) 0, (z:dyi (n—p)A+E) (L2HE) 0,2 dyi (n—P)A+E)

| (H25712) 0,3 dy; (n-p)A+E) (H2HE) 0, dy; (n—p)A+E)
(5.6)

Finally, we provide more explicit formulae for E in (B.1). Note that

1 (5 (2 v e 3 Ve ©,(0;dy; (n —p)A +9) en
@m=s H(a_) -1l b @1(oo;dz;(n—p)A+C)+O(e o (B

j=1 \7J j=1 \7J

and similar expressions are easily derivable for the other entries of E(0; n).
Define ®(11) by,

1
©,(z;dy; (n — P)A + &) = ©1(00;dy; (n — P)A + &) + E@i”(dz; (m—p)A+¢)+0@z %),
(B.8)

so that ®(11) denotes the residue of ®, at infinity. Together with (B.6), as z — oo, it

leads to
(e8]
1| ©7’dy; (n—p)A+9) - )
E (zzn)=1+—- L +0(e " +z72). (B.9)
! [@woo; dyi (n—p)A +9)
Moreover, using (A.13), we see that as z — oo
1 g+1
~G(00) gG(2) _ 7 4 © b; 0(z 2
e e +Z o 2n12<a+ )| +0@2),

(n-pg(z | P p ]

e 1 _

S (e | =1+ 1 | 0= ey | +oe,
j:l j:l
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4032 X.Ding and T. Trogdon

where g, is defined so that g(z) = logz + logc + g;/z + 0(z%) as z — oco. Combining
(B.13),(B.8), (B.2), (B.6), (A.10), and

. n) —Giso) G()em—p)g(z) p
z[z7 'Y, (z )y, — 1] =2 (P~ g=G(o0) oGz —n (z—cp |Enzn) -1,
j=1
one finds
g+1 p
m m
: -n . __g9tl g . . — — .
Jim 2 ("G00 — 1) = 5 - 5 2R P - D
= Jj=

0" (dy; (n —p)A +8)

O(e™ ).
®1(oo;d2;(n—p)A+§)+ &)

_|_

Also, according to (B1) and (B.6), we see that

. g+1

. . _1 _ ®z(ooid2;(n_p)A+§)
Jim zEyp(zin) = 5 j;(bf 3)) ®,(00; dy; (1 — P)A + &)

+0(e™ M), (B.10)

where we used the definition (A.3). Consequently, using (B.3), we readily obtain that

g+1
i B®,(00;dy; (n —p)A +§) _
—27i lim 2"y, (z; . b; — a;)—2 2 + 0(e™ "
x lim e G()-G@ p-n i 2
2500 em—p)g(2) Hf_l(z —c)!

g+1
_ ,—2G(c0) 2(0-m) T 1 9,(00;dy; (n —p)A +§) —en
e c 2 Z(bj a])®l(oo; dyi(n—pA+E) +0(e™ M),

j=1

where in the last step we used the definition (A.10).

B.2 Asymptotic formulae of Section 3.2

Proof of Corollary 3.2. Recall (3.3). By equating coefficients in (3.4) and the definition
of p,,(z; u), we find that
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There is then, of course, the relation y, (1) = —2ni£,21(u). A direct calculation, using
orthogonality and the definitions (2.3) and (2.1), leads to

. 1. T (X5 1) 1
lim 2" ¢, (z; u) = —— lim Z”/”—dx_ X x; u)dx
z—00 n(Z 1) 27i z—00 1—(x/2) 27 " (6 1)
1
= —— % ().
oaiin ()
This gives
b o = Y2 Mo 20 Gy 2V By (B.12)
" Vg1 lim, oz le (zip) 7m0 YV, (2 1),

The expression

(W) = lim 27" (1, (2 1) — 2" = lim 27w, (2 ) — 27,

directly follows from (B.11) and the definition of s ,, ¢,.. From the definition (2.17), one has

nr-n:
a,(n) =— hm z( n+1(zr' Wi —2Y,(Z 1w)q1)- (B.13)
Then the proof follows immediately from Theorem 3.1. ]

Proof of Corollary 3.3. By [64, Proposition 4.1] and the definition (2.17), we have

0; .Y, (0;
||en||%v=27ficn( " = 2mi n{ M)lz, (B.14)
7, (0; w) Y, (0; u)y
and
[ bjw?  —2rilim, 2"V, (z 1)
I, 113 = == = 200 n & Pz (B.15)

T, (0; )2 Y, (0; Wi

where we used (B.12):

rﬁb,(u) lim ﬁ T T _ iy g B e
L J Y(z M)lz Z— 00 YO(Z; :U“)IZI

and that Y (z; 1)1, = — 55 (1 + O(z71)).
The proof of the first equation follows directly from the above formula and (B.2)
and (B.3). For the second equation, combining with Theorem 3.1, we can complete the

proof. |

Proof of Corollary 3.4. Using the facts

det 7, () = [ [ ejw?,  7,(z p) = det(zl — T, (w)),
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4034 X.Ding and T. Trogdon

we obtain that
n—1
(=)™, (0; 1) = [ ] o50)*.
j=0

Combining with (J)j,]-+1 = ozjﬁj, we immediately see that

’ﬁ Biw?  TIiZ bjw?
aj(? 7, (0; )

j=0

This gives the expressions

T (0 )
7, (0; )

0;
B = =2 O (B.16)

2 _
()" = T1(0; 1)

The proof then follows from Theorem 3.1 and Corollary 3.2. |

Appendix C. CLT for Spiked Sample Covariance Matrix Model: Proof of Theorem 4.3

In this section, we prove the CLT as in Section 4.4. Throughout this section, we will
consistently use the notion of stochastic domination, which provides a precise statement

of the form “£y is bounded by ¢, up to a small power of N with high probability”.

Definition 2. (i) Let
£ = (E(N)(u) :NeNuce U(N)), ¢ = (g“(N)(u) :NeNuce U(N))

be two families of nonnegative random variables, where U is a possibly n-dependent
parameter set. We say £ is stochastically dominated by ¢, uniformly in w, if for any fixed
(small) € > 0 and (large) D > 0,
sup P (MW > NV w) = NP,
ueu®™

for large enough N > Nj(¢,D), and we shall use the notation £ < ¢. Throughout this
paper, the stochastic domination will always be uniform in all parameters that are not
explicitly fixed (such as matrix indices, and z that takes values in some compact set).
Note that Ny(e, D) may depend on quantities that are explicitly constant, such as 7 in
Assumption 2. If for some complex family & we have |£] < ¢, then we will also write & < ¢
or§ =0_(¢).

(ii) We say an event E holds with high probability if for any constant D > O,
P(2) > 1 — NP for large enough N.
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C.1 Technical tools

In this subsection, we collect some preliminary results, which will be used in our proof.

Recall (4.1) and (4.7). Denote their resolvents as

Gr=(Q0,—27 L, G = —27 ', k=1,2. (C.1)

We will use the following linearization. For simplicity, let Y = Eé/zX. Denote the (IV 4

M) x (N + M) linearized matrix H by

H=H(zX) := ﬁ(o Y). (c.2)
Y* 0

Similarly, we can define H by replacing ¥ with ¥. By Schur’'s complement, we have that

G,(2) \/LEGI (2)Y

\L&Y*Gl(z) G,(2)

The resolvents and related quantities are very convenient for us to analyze the VESD and
ESD. Recall the notation in Section 4.3 and the ESD of Q, is

G(z) =Gz X):=H-2"'= (C.3)

1 M
é‘ — EN = M zaki(QZ)'
i=

Denote my and my ) as the Stieltjes transforms of ¢ and v, respectively. Then we
have that

1

First, we state the anisotropic laws in the following lemma. Recall (4.13). Define

the deterministic matrix

1 -1
ne ::(Hl(z) 0 )::( L(1 4+ m(2)%) 0 ) cs)
0 My 0 m(z)

Fix some small constant 7 > 0, denote the set of spectral parameters as
D:D(t):{z:E+in:|Z|zt, M_H’fnft_l}. (C.6)
Moreover, we denote a subset of D as
D, =D,(t)=DN {dist(E, supp(o)) > M’2/3“} , (C.7)

and the control parameter as

W(z) = /% +1ze D\DO)MLT].
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4036 X.Ding and T. Trogdon

Lemma C.1 (Anisotropic local law). For any deterministic unit vectors u,v e RM*+V, we
have that for all z € D(7)

[u*G(2)v — u* Tl (2)v| < ¥(2).
Moreover, we have for all z € D(7)

1
Imy(2) — m(z)| < Ny

Furthermore, when z € Dy(z, r), we have that

Imy(2) — m(2)| < m

Proof. See [51]. |

We point out that Im m(z) can be controlled in the following way. Recall g is the

measure associated with m(z). We have that

Jx+mn, ifEesuppo
Imm(z) < ,

7 .
Nl Otherwise

where « := dist(E, supp o). Moreover, according to [76, (4.15) and (4.16)], we have that for
zeD

, _ 1
im(2)| = 0(1), |m'(@)| = 0 (m) . .8

Throughout this section, for simplicity of notation, we define the index sets 7, :=
{1,2,--- N}, Z, :={N+1,--- ,N+ M}, T :=17, UZ,. We shall consistently use the Latin
letters i,j € Z,, Greek letters u,v € Z,, and a,b € Z. Then we can label the indices of X

as X = (X;, : 1 € I;, n € I,). For simplicity, given a vector v € ¢tz we always identity it
X
with its natural embedding in CZ. For example, we shall identify x € CTr with ( ), and
0
0
y € CZ2 with(

y
we will frequently use the following identities.

). We will also consistently use the notation Gyy(2) = x*G(z)y. Second,
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Lemma C.2 (Ward's identity). Let {u;};.7, and {v,} be orthonormal basis vectors in

nely
R%1 and R%2, respectively. For x € CZ! and y € C%2, we have

|z|2 G
2 Gl = 216yl = = -m (),

i€l i€y
Im GYY (2)

D Gy, 1P = D 1G4 = ,

unely uely

2 _ 2 _ z
Z 1Gyy, 1" = Z Guyl™ = Gyy + ;Im Gyy

iEI] ieZl
G z G
2 2 _ Yxx XX
> 160, = 3 100l = 52 2am (%),
nely uely

Proof. The proofs follow from the spectral decomposition of G as in (C.3) and the

orthonormality of the basis. See Lemma 4.1 of [76] for details. |
Third, we will also need the following estimate.
Lemma C.3. For any two vectors b;, b, € RZ, we have that

Hb1h2(zl) - Hh]bz(ZZ)
21— 23

2. G,u(@)G(2) = +0_ (@ ~Y3,

nely

where we used the convention that

. yp,(Z1) — Ty p,(22)
lim b1by \41 b1by \42
Z2—2Z) Zl — Z2

== Hi)lhz(zl).

Proof. Note that by spectral decomposition, we have that

Gblhz(zl) - Gblbz(zz)
Z1— 2 '

D Gy u(#1)Gyy, (25) = (C.9)

nely
The proof follows from local law and Cauchy’s integral formula. See equation (5.21) of
[76] for more details. |

Finally, we introduce the device of cumulant expansion. Recall that for any

random variable h its kth cumulant is defined as

K (h) = (atk 1ogEe”h) li—o- (C.10)
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Lemma C.4 (Cumulant expansion). Fix any ¢ € N and let f € C*™!(R) be a complex-
valued function. Suppose & is a real valued random variable with finite moments up to

order £ + 2. Then we have that
¢

1
EGF () = 3wk (WEFO () + Ry,
k=0 "

where ki (h) is the kth cumulant of h and R, satisfies

Ry SBR[ IF Vo + EIRIY2 . sup  [fV @),

|X|SN—1/Z+5

for any constant € > 0.

Proof. See [60, Proposition 3.1] or [50, Section II]. [ |

C.2 The non-spiked case: CLT for )

In this subsection, we prove the CLT for ) defined in (4.12). Note that we can write the

integrand into a trace form. As before, we set the natural embedding of b € R¥ as b ¢

RN+M gych that
b
b= ( ) (C.11)
0

Additionally, we denote B = bb*. According to (C.4) and (4.9), we can write

9(z)

—. C.12
27i ( )

Y= \/Mﬂyg 9(2) Tr([G(2) — T1(2)IB)dz, 9(z) =
r
Recall that if x is a real Gaussian random variable, that is, x ~ N (0, 02), denote m, = Ex",
we have that
m,, ,=Mm+ l)Uzmn. (C.13)
Our goal is to prove an asymptotic version of (C.13) for ).

For I(z) defined in (C.5), we introduce the following auxiliary quantities for the

ease of statements
Ay =—zl1(z), Ay =1—A,. (C.14)
In view of (C.3), we will frequently use the following identity:

1
G=—(HG-D. (C.15)
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The starting point is to decompose the following quantity Z := /Mn Tr([G(z) — [1(2)]B),
so that

Z

(Tr(GBA,) — Tr(I1B) + Tr(GBA,))

Jifn
JM ( Tr(HGBA,) — lTrBAl Tr(T1B) +Tr(GBA2))
_ i

( Tr(HGBA, )+Tr(GBA2)) (C.16)

where in the second step we used (C.15) and in the third step we used the definition of

A, as in (C.14). Together with (C.12), for any integer k, we have that

EY* = JMn[ 9tz )Tr(HGBA ydzyk- 1} (C.17)
r

+ /My |:IE7{ 9(2) Tr(GBAz)dzyk_l] .
r

Denote j/ = j+ N and A € RM+ W)X (M+N) 54
1/2
b 0
A= 0 : (C.18)
0 I

TrHGBA, = v/z »_ X;j(GBA| N)jy;. (C.19)
ij

We have that

Let E;; be an (M + N) x (M + N) matrix whose only nonzero entry is the (i,j)th
entry and equals to one. We next prepare some expressions for derivatives that follow

from elementary calculations. Note that

G oH
=-G G =—VzG(AE;; + E;;\)G. C.20
0X; 9X,; VzG( g T EjpiA) ( )
Consequently, for any block diagonal matrix D, we have that
G
e B _Jz [(GA)j,i(GBD)j,i + Gj,j,(AGBD)ii] . (C.21)
Ji

Additionally, we have that

z
= —/zMy Ix (G(AEij, + Ej,iA)GB)
ij

— _ /2y [(GBGA),-J., + (AGBG)j,i] . (C.22)

From now on, we will conduct calculations on (C.17). Our strategy is to focus on

the first term of the right-hand side of (C.17) as we will see later that that second term
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4040 X.Ding and T. Trogdon
will be canceled algebraically. Denote
hy = hy(i,j) = (GBA A, hy = YE71. (C.23)
Since g(z) is purely deterministic, using Lemma C.4, (C.19), and (C.21), we readily obtain
9(2) k-1
VME ¢ == Tr(HGBA,)dzy* ™" = E(Py + Py + Py).
r

Here P, is defined as

P, _f 9@ | - Z(GA)J i(GBA A); — ]Z[ > G;y(AGBA, A),; | dzhy,
iJ iJ
and P, is defined as
(C.24)
i
and P, is defined as
K1 al h.dzh
lelMl/z Z@( lHQ(Z) 1dzhy) + Ry
ij

In the last equation, P5; collects the summation for [ = 2, P, collects that of the sum-

mation for I = 3, and R, := P; — P3; — Py, is the residual. Here we used the notation that

PY 1 olth. al2p I I
JRE— h h = 1 2’ _ ‘
aij( 1h2) Z (11,12) axf]% 8X£]? (ll,lz) 111!

L +p=l
We will see later that I = 2 will contribute nothing, I = 3 will give some extra terms that
explains the fourth moment contributes, and [ = 4 is needed to show R; is small.

For Pl, on one hand, using (C.3), by definitions of A; and A, we have that

1/2

Z(GA)JL(GBA Ay = Z(Y*G £o/2);(Y*G,bb* %,
VM VM 7

ij

_ Vg 502G, YY*G,bb T, 5}/
JM

- %b’{Gl YY*G,b,

where we denote b; := IT; Xyb. In view of (C.3), we have that forz e I

ﬁz « « 1
] GA).:(GBA{A) . < b Ge b Ge =
mi,j( Ll J‘Z NG

nely
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where we used Lemma C.1, the definition of I', and (C.8) in the last step. On the other

hand, using Lemma C.1, we have that

V1 2
~ i > G;i(AGBA, A); = —/Mn Tr G, Tr(GBA, A?)
ij

= —m(z),/My Tr GBA, A% + O_ (@) ~112)

— —/MyTrGBA, + 0. ((Mr;)’l/z) ,

where in the last step we used the fact that m(z)BA; A? = BA,, which follows directly
from (C.14).

Using the above calculations and inserting them back into (C.17), we find that
EY* = EP, + EP; 4+ O_((Mn)~Y/?). (C.26)

We summarize the properties of P, and P; in the following lemma and defer its proof to
Sections C.3 and C.4.

Lemma C.5. We have that
P, = (k—1)V,(b,b)Y*2 4 0_(vn)~V/?), (C.27)

and

Py = (k— i,V, (b, b)VE2 L 0_(vn)~1/3). (C.28)

Recall (C.13).1tis easy to see that Theorem 4.3 follows from Lemma C.5 and (C.26).

C.3 Proof of Lemma C.5: Verification of (C27)

We first provide some useful results. By Lemma C.1, it is easy to see that
Y =0_(). (C.29)

Moreover, using the definition of ) and (C.22), we have

dhy ks % 02
9X; (k=1 rg(Z) BXide
(k= Y2 j,{ 9@) (—/zMn [(GBGA)y; + (AGBG);,;|) dz. (C.30)
r

Consequently, in view of (C.24), we can write

P, = —(k — HpELY* 2, (C.31)
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where L is defined as
L:=2 Z]{* ﬁ \712,9(2,)9(2,)(G(21)BA, (2,) ) j;(G(2,)BG(z5) )y dz, dz,
ij
— Zfrég(zl)g(zz) Tr(Ey/> G, (2,)bb* G, (2,) YY*G, (2,)bb* (1 + m(z)) %) " £4/%)dz, dz,

= zfrjgg(zl)g(zﬁ [b*(l +m(z)%y) 126Gy (zz)b] [b*G, (2) YY" G, (2,)b] dz, dz,.

(C.32)
Using the structure of (C.3) and (C.11), we have that
b*G, (2,)YY*G,(2))b = /Z,Z, »_ b*Ge, b*Ge,
nely
_ \/Zl—zzb*(nl(zl) — I, (22))b +o_ a1, (€.33)

Z1 =23
where in the last step we used Lemma C.3. The rest of the proof follows from Lemma C.1
and (C.29).

C.4 Proof of Lemma C.5: verification of (C28)

To control P;, we separate our discussion in the following three subsections according
to the order of the expansion as in (C.25).
C41 [=2
This corresponds to the term Py, in (C.25). Formally, we can write
K3 /1
Py = ?M]EZ (P31(2,0) + P3;(1,1) + P4, (0,2)),
i

where we denote

392G
P3,(2,0) = P5,(2,0;,j) = f g(z)(aFBAlA) dzh,, (C.34)
r ij i
. AG h
Ps(1,1) =Py (1,1;1,)) = zf g(z)(aX BAlA) dzaTZ, (C.35)
r ij i ij

.. 32h2
P,,(0,2) = P4, (0,2;4,)) =ﬁg(z) (GBA, A) 4 dz— 7. (C.36)

]
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We first prepare some useful identities, which can be obtained using some
elementary calculation. Using (C.22) and (C.20), we have that
2z
2 =z/Mp ((GA)ii(GBGA)j,j, + G, (AGBGA);; + (GBGA);(GA)j; + (GBG);; (AGA);
i
+ (AGA);;(GBG)j; + (AG);; (AGBG),; + (AGBGA);,,Gj; + (AGBG)j,j,(AG)ii).
(C.37)

Moreover, we have that

32h,
2
X2

2 2
=(k—1)(k—2)Yk3 (}'{ 9(2) a; dz) + (k — 1)3}“7{ g(z)gTszz. (C.38)
F .. l_‘ .

9 y ij

Additionally, we have

%G 2
s ZZ[G(AEij/ +Ej,iA)] G.

ij
For the ease of discussion, in what follows, we use the following shorthand notation

Eij = AEij’ =+ .E}/iA. (ng)

For any block-diagonal matrix D = D; & D,, we have that

(87BD)' =2z (GﬁijGﬂijGBD)j/i
Ji

=2z [(Gﬁijc)j,j,(GBD)ii 4 (GﬁijG)j/i(GBD)j,i] . (C.40)
Note that

(G‘Cl]G)J/]/ == Z(GA)]/IGJ/]/, (GBD)u == (Glbb*Dl)ii’ (G‘Cle)ll == (GA)iiGj’i + Gij/ (AG)ll

(C.41)

and
(GL;iG)ji = (GA)jiGyi + Gjy(AG)y, (C.42)
(GBD)j; = (G, bb™Dy);. (C.43)

Moreover, we have that

(AGBG);; = (212G, bb*Gy);;, (AGBG)y; = (S¢/>G,bb*Gyy)y, (C.44)
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and
(AGBG)J/J/ == (G21bb* Glz)j’j/' (C45)

where we used the conventions that G,, = z"1/2G,Y and G,; = Gi,.
We give a more explicitly form of D,. As in (C.19), D = A, A. Consequently, we
shall have that

D, = —zI1, (2% (C.46)
This leads to that
b*D,f; = —zb*I, (2) 5/, = £ = V/211, (2)b. (C.47)

Note that D, is symmetric since I1; and X, share the same eigenvectors.

We summarize the main estimates in the following lemma.

Lemma C.6. We have the following estimates:

K3 fzpsl(l 1) = (ﬁ) (C.49)
K3 /M 1
ERTa z P3;(0,2) =0 (ﬁ) : (C.50)

Proof. (1). Justification of (C.48). In view of (C.40), (C.41), and the definition of P4, we

focus our discussion on some typical terms. By Lemma C.1, we see that

Z|f*G b||f;D; b

V1
ST % G (GA);;(Gbb*D));| < fMS 37

1
< — E If;G,b||f;D, b,
VM =

where in the first step we used (I1A);; = 0 and the symmetry of D, . Applying the Cauchy-

Schwarz inequality, we have that

1/2 1/2
> If;G,b|If;D,b| < (Z|f;‘D1b|2) (Z |f;*Glb|2)

i i i

1/2 1/2
:(Z|f;kplb|2) (Z|Geib|2) . (C.51)

i
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Using (C.47), it is easy to see that
% 2 w5 1/2 * 1/2 *
D D b? < D 7501, (2)bb*IT, 2/ °f; = b*IT, %I, b < 1. (C.52)
i i
Inserting the above estimate back into (C.51), together with Ward's identities in
Lemma C.2, we find that

> £ Gbl|£; Db| < —, (€.53)
- N

where we used Lemma C.1 and (C.8) to obtain that Im (Gy;,/z) < 1. This yields that

ﬁ 1
ﬁZGj,j,(GA)j,i(Glbb*Dl)ii =9\ )
Lj

Similarly, we have that

1

T > I v*G,b*||b* D, f;|

T’ k *
%Z(GA)j,iGii(Y G,bb*Dy) 4| <
i,j i,j
1 1
<—— > b*Dfj| < —,
M./ Z ! Mn

where in the second step we used Lemma C.1 and in the last step we used the Cauchy-

Schwarz inequality and (C.52) to obtain that for some constant C > 0
> Ib*Dyfy| < «/z_v(z |b*D1fi|2) < CVN. (C.54)
i i

Analogously, we can show that

ﬁ >k *k 1
ﬁ Z G]/l(AG)”(Y Glbb Dl)]l < ﬁ
U]

Using (C.40) and the formulas below, in view of the definition (C.34), combing the
above estimates and (C.29), we have concluded our proof.

(2). Justification of (C.49). We again work with some typical terms. Set

v, = 501, (C.55)
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4046 X.Ding and T. Trogdon

By Lemma C.1, we have that
n
\/Mﬁ% 2 GJ/J/(Zl)(AG(Zl)BD(Zl))”(G(ZZ)BG(ZZ)A)U/
ij

fZ(zl/ZG (21)bb* D (2));;(G, (2,)bb* Gy (2,) V), + —= M3/2 Z|b*G1(zl)v b*D, (z)f}]
ij

1
f Zb*c;1 (2))v;0*D, (2))fb* G, (2) YT; + T Z |b*G, (z,)v;b*D, (z))f;].
i

We first consider the second term of the right-hand side of the above equation. The
discussion is similar to (C.51) and (C.53) except that {v;} may not be an orthonormal
basis so that Lemma C.2 cannot be applied directly. Note that since || ;|| is bounded, by

the Cauchy-Schwarz inequality, we have that for some constant C > 0
> b*Gy(z)vi|* =b*G(2)) 4G, (z)b < C D [b*G, (z)f;|%. (C.56)
i i

As a result, together with (C.53), we readily obtain that

1 . . 1
i Z|h G,(z,)v;b*D; (z))f;| < T (C.57)

The first term can be controlled similarly using that

VN 1

> b*G,(z)Yf; = b*G,(2)Y1 < TN

J

where 1 is a vector with all unity and in the last step we used Lemma C.1. This
yields that

1
w/Mn“/Mﬁ Z Gy (1) (AG(2)BD(2));(G(2)BG(2) Ny | < .
lVJ

Similarly, we can show that

n 1
,/Mn% D (G(2))A);(G(2,)BD(27));1(G(22)BG(29) A) | < Wi
ij "
Using(C.22) and (C.21), in view of the definition (C.35), by (C.29), we have completed the
proof.
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(3). Justification of (C.50). We work on some typical terms according to (C.38). By Lemma
C.1, we have that

My Z(G(zo>BA (20) M) ;4(G(2))BG(2) M)y (G(2,)BG(2,) M)y

‘f
= n¥% " b*Gy (2)f|b* Gy (2)E || Y* G, (2))b I Y* G, (25)b [ Y* G, (29)b|[b*TT, (25)v;b|
ij

M
3/2
<% A Zuo*G (z))£;|1b* Gy (25)f;|b*TT; (29)v;|

1 1
< — b*G,(z,)f:||b*I1, (z))V:| < ——,
m? 1 (Z)E;||b*TT, (29) V] Wi

where in the last step we used (C.57). Similarly, we have that
“/—ﬁ‘/M > (G(2)BA(2))A) ; (G(25) M) ;1(G(25)BG(25) N
M n - 1 1(Z1) 8 )iy 2) )i 2 2) N )
ij

n M . 1
< — =7 b*I1, (z,)v,| < —

and
“/Mﬁan Z(G(Zl)BAl (2))N)ji(AG(22) N)ji(G(29)BG(2,)) 4
ij

n M 1
—_— b*l'[ Z1)V:| X ———.
< Jat a2 P @ =

The other terms can be analyzed in the same way. Using (C.38) and (C.37), in view of the
definition (C.36), combing the above estimates and (C.29), we have concluded our proof.
|

c42 [=3

This corresponds to the term Pj, in (C.25). We decompose P5, as follows:

K,
Py, = glv}/;zEz (P32(1,2) + P3,(2, 1) + P4,(0,3) + P(3,0)),
i.j
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where we denote

3%h
BAIA) dz8 2,
Ji

.. 0G
P3a(1,2) = Pgy(1,2,1,)) := 3}5 g(Z)(aX

U}

G oh
P.,(2,1):=3 SBAIA ) dz 2
52(2,1) i= ]{ g(z)( e )ﬂ X

ij

y

P,,(3,0) _j{ g(z)( GBA A) dzh,,
X3 i

93h
P.,(0,3) := GBA.A),.d 2
32( ) %Fg(z)( 1 )]l ZE)XS

We first prepare some identities. Using (C.39), observe that

393G

T 6532 [GE-T G
8Xi3j vl

which yields that

X3
Using (C.41) and (C.42), we readily obtain that

(GL;GL;G) ;i = 2(GL;G)jGj;

We summarize the results in the following lemma. Recall (4.16).

Lemma C.7. We have the following estimates:

1
s S Pa(1,2) = Vb b 0 ().

ij

Ky f 1
6 M3/2 ZP32(2 D= (IM_\/ﬁ) '
kg 1 1
6 M3/2 ZP32(3 0) = ( f)

"641\2/3:2 ZPSZ(O 3) = ( f)

%G
( BD) = —62°/*[(GL;;GL;;G);7(GBD);; + (GL;GL;G);;;(GBD),;].
Ji

1 (GLiGL;G)j; = (GL;GA) ;G + (GL;AG) ;G

(C.58)

(C.59)

(C.60)

(C.61)

(C.62)

(C.63)

Proof. (1). Justification of (C.60). As before, we first study discussion on some typical

terms. Especially, we focus on the following term

K]A‘Z\g:zfg( )BXZdeé 9z )( ——BA A) dz.
ji
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We analyze several terms according to (C.37) and (C.21). For notational convenience, we
set D = A; A. We claim that

Ka/T
2M3/2

f} f;z 9(21)9(22)(—x/51 Gj/j/ (21)(AG(21)BD(2,));})Z5+/ M’?(AG(Zz))j/jf(AG(Zz)BG(Zz))ii
ij
= —% 7§ fr 9(2))9(2)2) > 2ym(z,)M(2,) T (21, 2,)dz,dz, + O_((My)~V/?),

(C.64)

where J(z,,z,) is defined as

J(21,25) = > (S * 11 (2)bb* Dy (2))) (S * T, (2)bb*IT; (2)) 5,

1

where we recall the definition (C.46).
To see (C.64), by (C.44), we notice that

ZEVI > Gj;(2))(AG(2))BD(2));;(AG(2,)) 7 (AG(25)BG(2))
ij

= zlv[ > 61216y (29) (T 2 Gy (2)bb* Gy (2,))1(S¢' 2 Gy (2))bD* Dy ()4
ij

1
= (11_/[ Z Gy (21)Gyy (Zz)) (” Z[VfGl (22)blb* G, (2p)E1Iv; G, (2))blIb*D, (Zl)fi])
j i
= [,1/32,
where we recall (C.55). On one hand, we have from Lemma C.1 that

1
‘Cl = m(Zl)m(Zz) + O_< (\/ﬁ) .

On the other hand, by a discussion similar to (C.57), together with Lemma C.1, we
obtain that

Ly —n Y [V} (z5)blIb* T, (z,)f1[v} T, (z,)blb*D, (z))f;] = O_(M~'/2),
i
Consequently, we have that

L)Ly = nm(z))m(zy) D [V}, (z,)blb* I, (z,)f;1v; T, (2))blb* D, (2, ;] + O_ (M) ~'/?).

1
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Analogously, by Lemma C.1, using (C.45) and (C.57), we can show that

J\i/I Z Gy (2))(AG(2,)BD(2));;(AG(2,));;(AG(25)BG(2,))

n M " « 1
< MﬂTnZi: VG, (z))b||b*D, (z;)f;] < TN (C.65)

and

zlv[ > (GA)j1(2))(G(2))BD(2,));:1(AG(2,))j7 (AG(25)BG(29))
ij
n M 1
Mm ; |V:’< Gl (Zz)b”b*Dl(Zl )fl| |b*D1 (Zz)fi| < Zw—\/ﬁ.
The rest of the terms can be analyzed since they can all be reduced to the form (C.65).
This completes the proof using the above estimates and (C.29).

(2). Justification of (C.61). According to (C.40) and (C.30), we focus on the following term,

which is the leading term

oL S Z(G(zpm] 1G(21)7(Gy (2))bb* Dy (2,));(G(2,)BG(2,) A

Z|f*G (2))b|[b*D, (2)f;|[ViG, (z5)b] < ——
iJ

Mf

Here in the first step we used Lemma C.1 and in the second step we used a discussion
similar to (C.65). The other terms can be analyzed similarly. This completes our proof.
(3). Justification of (C.62). According to (C.58), (C.59), (C.42), and (C.43), we focus our

discussion on the following terms, which is the leading term
32 Z 7 (GA);j1;G;(G bb*Dy)y;

1
<= Z f5G,blIf!D;b| < ——,
M - M./

where in the first step we used Lemma C.1 and in the second step we used (C.53). The

other terms can be studied similarly, and this completes the proof.
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(4). Justification of (C.63). According to (C.37), (C.20), (C.41), and (C.42), we have found

that it suffices to focus on the following leading term:

1\1/[ Z(G(zl)BAl (2)8)j11Gi(2,)(AG(2,)) (A G(25)BG(2) A)
U]

Ui
< — If{T1, (z))b||b* G, (z)f;| < ——
M n i 1 2 \/—
The other terms can be analyzed similarly. This completes our proof. |

C.4.3 The error term R,

Finally, we control the error term R; in the cumulant expansion to complete the
verification of (C.28). Recall (C.23). According to Lemma C.4, it suffices to control the

following two terms:

tw
51 =M ZE‘ 1{|X |>Ne=1/2y| " || Toa , W:% g(Z)hlehz,
9% oo r
and
3w (x)
& =My EIX}|- sup i
i x|<ne-1/z | 0XG;

1/2

By Lemma C.4, it is easy to see that R; < M~ /%, which follows from the lemma below.

Its proof is similar to the discussions in Sections C.4.1 and C.4.2 and we only provide

the key points.

Lemma C.8. We have that

£, & <M7Y2,

Proof. Using an argument similar to the previous subsections on the control of
Bkw/aij, 1 < k < 3, we can show that
tw
4
E)Xi].

1

—_—. (C.66)
< i

For &, using the assumption (4.5), we find that for any fixed large constant D > 0,

E <N D.

Similar arguments hold for &, using (4.5) and (C.66). This completes our proof. |
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C.5 The spiked case: CLT for y

In this subsection, we briefly discuss how to handle the spiked model and establish the
CLT for Y as in (4.12). Due to similarity, we focus on explaining the main differences from
Y. We will utilize the following identity. It reveals the message that the spiked model can
be efficiently reduced to the non-spiked model so that the arguments of Sections C.2-C.4

apply.

Lemma C.9. Recall that D = diag{d,,d,,---,d,} and V, be the collection of the first r

eigenvectors. Then we have that

Gy (z) = x125)/? [Gl (2) — 2G, (2)V, (D' + 1+ 2VG,(2)V,) ' ViG, (z)] IS RSVEN
Proof. See Lemma C.1 of [33]. |

According to Lemma C.9, we have that

2
[On
1 +ld. (V?Gl (2)V; — 2V} G, (2)V, (D! + 1+ 2ViG,(2)V,) V)G, (Z)Vi) ,

1

N
b*G, ()b =D
i=1
where we used the convention that d; = 0,i > r. Denote
A(z) = VE(G,(2) — T1,(2)V,, (C.67)
and
H:=0D ' +1+2V:G (V)" !, L :=O ' + 142V, (z)V,)"L.
Then applying a resolvent expansion till the order of two leads to
H=L, +LA@)L, + (L;A(2)*H.

We now pause to provide the following control.
Lemma C.10. We have that for some constant ¢ > 0

sup [|ILy (2)[| = 7.

zel

Proof. Note thatfor1 <i < r, we have that d;l +1+2zviI, (f(—&'ifl))vi = 0, where f(-) is
defined in (4.3). Consequently, according to Assumption 3, we see that for some constant
C >0,

1 1

1 _gi_IO'i 1 +Z(Tl

sup |d; ' + 1+ zv} 1, (f(2)v;

zel

— sup > Clo; !~z = 0.

zel
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This completes our proof. |

By Lemmas C.1 and C.10, we have that

b*G, (z)b = Z +

wo-(an )

W
K:= Z Tldl (V?HI(Z)VI: - ZV?H](Z)VrLl"iHl(Z)Vi) .
1=

Denote

Applying Lemma C.1, we have that
= 1
b*G,(2)b — K = Tr ((G(2) — T1;(2))A) + O_ (I\Tn) '

where A is defined as

N
_ w; * * * * *
= Z T d (Vi"i — 2V, L, VI, (2)v;v} — zv;viT1, (2)V, L, V;
i=1 L
— 2V,L VI, (2)v,v! T, (z)V,le:),
where we used the definition (C.67).

To ease our discussion, we denote
I, :=2zV, L, VI, (2)v; (C.68)

so that we can rewrite

v,vi —Lv} —vl*—z_lll*
Ta ( i)

A 0
A= ,

we find that it suffices to study the distribution of

Similar to (C.12), by setting

f{ 9(2)/Mn Tr((G(z) — T1(2))A)dz. (C.69)
r

Compared to (C.12), the only difference is the deterministic part A. The calculations of
Sections C.2-C.4 for Y still hold here. In what follows, we only explain how to modify
the steps. Denote 1-"2 and }-"3 in (C.24) and (C.25) by simply replacing B with A. First, by a

v 1G1(2)v; — 2v; G (2)V, L, V; G, (2)V; —zvfl‘[l(z)VrLlA(z)le’r‘l'Il(z)vi)
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discussion similar to (C.31) and (C.32), we can obtain that 132 =—(k—- 1);723/’“2, where £

is defined similar to (C.32) as follows:
L= zjér]{rg(zl)g(zz)’n(zé/zc;l(zz)AGI(zz)YY*Gl(zl)A(l +m(z))%) ' T4/?)dz, dz,.
Note that £ can be controlled using Lemma C.1 as in (C.27) so that we have
Py = (k— DV, Y2+ 0_(im 173,

Second, for the high order terms, using an analogous argument, we find that (C.64) holds
true by replacing bb* with A and using the fact that > ; @?> = 1 so that as in (C.28)

i

we have
Py = (k— i, Vo, D2 + 0_((Np)~Y/2).

This completes our proof.

Appendix D. Density and Jacobi Matrix Approximation

In this section, we first discuss a method to compute an approximation of measures of
the form (2.16) given a (possibly random) approximation r(z) of

/ M(d)\), Imz > 0.
R A—2z

We assume that a;, b; and c; are all known, or are well approximated. The approach uses
the Chebyshev polynomials of the second kind (Uy)y-( [63], which are the orthogonal

polynomials with respect to the semicircle distribution, scaled to [-1, 1]:

1 2T
/1 Uk(X)Uj(X)TXdX = 5

From [73, Lemma 5.6],

/_11 Zk—(xz) zirEdX =2 [z - mVH—l]kH = Ck(Z; Icheb):
Ichep (AX) = ﬁl[_l,l](X)&.
We then define the mapped polynomials fora < b
Uy(x; @, b) = Up(M_ (%)), M, ,(x) = b-a, + b er a.

It is then straightforward to see that

b Uy(x;a,b) b-a) -
/a —kx — (b—-x)(x—a)dx = HTCk(Ma,II:(Z); HCheb)-
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So, given a (small) integer ¢ and unknown coefficients dj,k, we can follow the idea of [22]

to simply compute [ "SAZ) if v is of the form (2.16) and

£—1
k=0

Let x® = (ng), .. ,X](ck)) = (x,....%;) be the k zeros of U, and define the k x ¢ matrix
Ep = (Uj_ (%)) 1<i<k- This is defined so that

1<j<¢t

dje
For a vector z = [z, ..., z,,] of m points in the upper-half plane, define the m x £ matrix
Cp = (€j—1(2;; Uenep))1<i<m-
1<j<¢t
In the non-spiked case, we seek a solution of the following constrained optimiza-

tion problem:

g+1
. T
argming..z, 4.0 Z Z(bj - af)CMa_jfbj(Z)d' —-r@@)| .
j=1 2
where d; = [djo di, - d; 2—1]' If there are spikes c;, one can approximate the
weights w; using the trapezoidal rule around a small circle with center at c;. Then the
above constrained optimization problem applies to r(z) — }021 c?’fz.

Once, the density is approximated, one would like to generate 7 (u). The simplest
way to do this is to use the Gaussian quadrature rule associated to the weight +/1 — x2,

that is, consider the measure

K
=Y w0
=t
where the weights wg =[w, ..., wg]? are chosen so that [ p(x)u(dx)= f_ll p(x) Z—V;_dex
whenever p is a polynomial of degree at most 2K — 1. There are many ways to generate

these weights, see [44]. Then define vectors of nodes and weights, respectively, by

Mallbl (X(K)) bl;al (EKdl )WK

M

K bg+1—ag+1
ag+1 ,bg+1 (X( )) 2 (EKdg—H )WK
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If spikes are present, one needs to append [cl,...,cp] and [wl,...,a)p] onto the end of x
and W, respectively. Now, it follows, in the notation (5.6) that T(diag(x), VW), is a good
approximation of J(u), see [16], for example. Indeed, if we ignore the errors induced
by our approximations of each hj, wj, provided K > K’ + £/2 one has that the upper-left
K’ x K’ block of T(diag(x), VW) coincides with that of 7 (u).

In practice, we generate 100 independent copies of a spiked sample covariance
matrix and for each matrix we compute r(z) = (b, (W — zI)~'b) and take set the points z
to be the union of M, v, (u) +1i/10 where u is m equally spaced points on [-1, 1]. We take
¢ =4,m = 200,k = 20 in our computations. The resulting 100 vectors dj are averaged for
each j. We do not address the accuracy of this algorithm beyond noting that it suffices

to identify the limiting curves in our computations.
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