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We establish a new perturbation theory for orthogonal polynomials using a Riemann–

Hilbert approach and consider applications in numerical linear algebra and random

matrix theory. This new approach shows that the orthogonal polynomials with respect

to two measures can be effectively compared using the difference of their Stieltjes

transforms on a suitably chosen contour. Moreover, when two measures are close and

satisfy some regularity conditions,we use the theta functions of a hyperelliptic Riemann

surface to derive explicit and accurate expansion formulae for the perturbed orthogonal

polynomials. In contrast to other approaches, a key strength of the methodology is that

estimates can remain valid as the degree of the polynomial grows.The results are applied

to analyze several numerical algorithms from linear algebra, including the Lanczos

tridiagonalization procedure, the Cholesky factorization, and the conjugate gradient

algorithm. As a case study, we investigate these algorithms applied to a general spiked

sample covariance matrix model by considering the eigenvector empirical spectral

distribution and its limits. For the first time, we give precise estimates on the output

of the algorithms, applied to this wide class of random matrices, as the number of

iterations diverges. In this setting, beyond the first order expansion, we also derive a

new mesoscopic central limit theorem for the associated orthogonal polynomials and

other quantities relevant to numerical algorithms.
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3976 X. Ding and T. Trogdon

1 Introduction

We consider a Riemann–Hilbert approach to the perturbation of orthogonal polynomials.

More specifically, we present an approach to compare the orthogonal polynomials

with respect to two compactly supported measures on R by comparing their Stieltjes

transforms on a contour that encircles and contracts to the union of the supports.

The approach uses and generalizes the Fokas–Its–Kitaev reformulation of orthogo-

nal polynomials [41] as the solution of a Riemann–Hilbert problem. This approach

is especially powerful when the orthogonal polynomials with respect to one of the

measures has known asymptotics. And in particular, it allows one to compare, in a

convenient framework, polynomials orthogonal to a discrete empirical measure, that

is, discrete orthogonal polynomials, to the polynomials orthogonal with respect to a

limiting measure. We refer the reader to [4] for many related details concerning discrete

orthogonal polynomials.

Measures are often compared rather effectively using their moments. But even

measures that are rather close in a variety of senses can have vastly differentmoments of

high order. For this reason,many studies of the perturbations of orthogonal polynomials

are not infinitesimal in nature, see [42] and the references therein, particularly [78].

One construction of orthogonal polynomials uses their representation in terms of

determinants of Hankel moment matrices (see [18] and [43], for example). This fact was

recently exploited in [33, 64] to compare two sequences of orthogonal polynomials when

the degree is bounded. But as the degree increases, this approach fails because two

sequences of orthogonal polynomials with respect to two similar measures typically

deviate exponentially, see [43, Section 2.1.6]. But the Fokas–Its–Kitaev Riemann–Hilbert

problem gives a mechanism to make sense of the behavior of one sequence of orthogonal

polynomials relative to another, giving a sense in which the mapping from a Stieltjes

transform of a measure to the associated orthogonal polynomials (and their weighted

Cauchy integrals) is well conditioned.

Comparing sequences of orthogonal polynomials via their Stieltjes transforms

lends itself directly to estimates from random matrix theory. For example, the well-

known local laws for Wigner, generalized Wigner, and (spiked) sample covariance matri-

ces are precisely comparisons of Stieltjes transforms of measures on contours approach-

ing the supports on small scales; see the monograph [39] for more details. Importantly,

the standard empirical spectral distributions associated with these matrices, measures

that weight each eigenvalue equally, are not as likely to arise in applications from

computational mathematics. So one, in turn, looks to the so-called anisotropic local
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RHP Approach to Perturbation Theory of OPs 3977

laws [51], which gives, in particular, the comparison of the Stieltjes transform of the

eigenvector empirical spectral distribution (VESD),which, for anN×N symmetric matrix

W and vector b, is given by [2],

ν =
N∑

j=1
|〈qj,b〉|2δλj(W), (1.1)

where qj is a normalized eigenvector associated with eigenvalue λj(W) of W. For the

sake of completeness, we note that if the weights |〈qj,b〉|2 are each replaced with 1/N

the resulting measure is called the empirical spectral distribution (ESD).

Our main application of the estimates for random polynomials orthogonal to the

VESD concerns the (bi/tri)diagonalization of random matrices and, as a consequence,

applications to other critically important numerical algorithms acting on random

matrices, see Section 3.1 for more details. Here, we take the tridiagonalization as an

example. Going back to the work of Silverstein [69], and the subsequent work of

Dumitriu and Edelman [37], it is well-known that the tridiagonalization T of a Wishart

matrix W = XX∗, where Xij
L= N (0,M−1), and X is N × M, and has independent

entries, has an explicit distributional description in terms of independent χ-distributed

random variables (see (5.5) below). But this description is actually derived first from a

distributional description of the Cholesky decomposition (We discuss tridiagonalization

and the Cholesky decomposition in Section 3.1 below.)

T = LL∗, L = (�i,j). (1.2)

The Cholesky factorization in this context is a lower-bidiagonal factorization of the

tridiagonalization. An immediate consequence of this bidiagonalization is that �n,n −√
M−n+1

M and �n+1,n−
√

N−n
M tend to zero and have Gaussian fluctuations providedM −n

and N − n, respectively, tend to∞. It is therefore natural to ask if this behavior persists

for both non-Gaussian entries (universality) and if it persists for sample covariance

matrices with non-trivial covariance. It was recently proved in [64] that for non-Gaussian

entries with trivial covariance, if N/M → c ∈ (0, 1] and n is fixed one sees that the

upper-left n × n subblock of L tends to the Cholesky factorization of the three-term

recurrence Jacobi matrix for the orthogonal polynomials with respect to theMarchenko–

Pastur law with parameter c. These arguments do not apply if either n diverges and the

entries Xij are non-Gaussian or if the covariance is non-trivial. Our Riemann–Hilbert

approach extends these results, and the results of [33], to non-trivial covariance and

unbounded n.
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3978 X. Ding and T. Trogdon

We summarize related results in Sections 1.1 and 1.2 and provide an overview of

our results and key innovations in Section 1.3.

1.1 A new application of Riemann–Hilbert analysis in random matrix theory

In this section, we summarize some related results on the Riemann–Hilbert approach

to orthogonal polynomials and various related applications and demonstrate how our

approach differs. It is known from the celebrated work of Fokas, Its, and Kitaev [41] that

orthogonal polynomials can be characterized as the solution of a 2×2 matrix Riemann–

Hilbert problem with jump on the real line. Later on, a remarkable steepest descent

method was proposed by Deift and Zhou in [24] to study the asymptotics of the modified

Korteweg–de Vries equation. Since then, various extensions have been made, including

to the asymptotics of orthogonal polynomials. More specifically, the extension on the

unit circle was studied in [5], general measures and universality were studied in [10, 17,

21, 30, 53, 55], the biorthogonal polynomial problem was studied in [8, 49, 54, 75], and

multiple orthogonal polynomials were studied in [74]. For a more comprehensive review,

we refer the reader to [4, 12, 18, 25, 57]. Of particular relevance is the monograph [4]. In a

slightly different form, this text contains the transformation (2.7) and the hyperelliptic

Riemann surface theory employed in Appendix A.

Classically, the way in which Riemann–Hilbert problems and orthogonal poly-

nomial theory connect to random matrix theory is very different from the framework

we propose here. More precisely, Riemann–Hilbert problems historically enter random

matrix theory via the analysis of orthogonal polynomials because the eigenvalues of

many random matrix ensembles can be viewed as a determinantal point processes and

the correlation functions have a determinantal kernel function that can be expressed

as a sum of orthogonal polynomials. Consequently, using the Christoffel–Darboux

formula, the eigenvalue correlation functions can be expressed in terms of the solution

of a Riemann–Hilbert problem; see [18, 61] for a review. On the other hand, the gap

probabilities can be represented as a Fredholm determinant and the limiting expressions

themselves can be expressed in terms of the solution of a Riemann–Hilbert problem;

see the monographs [47, 52] for a review. This approach, combined with the steepest

descent method, allows for the large N asymptotics to be determined explicitly for

various random matrix models leading to the determination of explicit limiting kernels.

For example, for the Gaussian Unitary Ensemble (GUE), the correlation function for the

bulk eigenvalues converge to the sine kernel [30, 38, 61] and the large gap probability

of the edge eigenvalues converge to the Airy kernel [71]. We refer the readers to [12, 18,
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RHP Approach to Perturbation Theory of OPs 3979

57] for a more exhaustive discussion. The methodology has also been applied to various

other random matrix models, see [9, 11, 15, 19, 26, 36, 56, 58, 75], to name but a few.

In the current paper, we do not study orthogonal polynomials and random

matrices by following the classic research line above. In contrast, we apply a Riemann–

Hilbert approach to study the behavior of orthogonal polynomials with respect to

perturbations of the orthogonality measure. We then apply the theory to polynomials

orthogonal with respect to the VESD (1.1) when W is random. The perturbations we

consider are quantified by the closeness of their Stieltjes transforms. Such a setting

is general. A wide class of (random) measures that can be thought of as appropriate

perturbations of a deterministic measure are measures arising from widely studied

random matrix models, where the local laws [39] guarantee the closeness of the limiting

and empirical measures. Our new approach, and its generality, can best be summarized

by the fact that while some randommatrix ensembles have eigenvalue statistics that can

be analyzed by orthogonal polynomial theory, all random matrices generate measures

(again, see (1.1)), and the analyses of the orthogonal polynomials with respect to such a

measure are important. We show exactly how this analysis can be accomplished using

Riemann–Hilbert analysis.

1.2 Some related work on numerical algorithms

Our motivation comes from the analysis of various iterative numerical algorithms in

linear algebra (see Section 3.1 for a review), especially when the inputs are random

matrices. A common feature for these algorithms is that their analysis can be reduced to

understanding certain (discrete) orthogonal polynomials and their associated Cauchy

transforms (see (B.12), (B.14), (B.15), and (B.16) for illustrations). By establishing a

perturbation theory for orthogonal polynomials, we are able to provide the first-order

limits and asymptotic distributions (We determine distributions when the inputs are

random.) related to these algorithms.

In the literature, various numerical algorithms have been studied when the

inputs are random matrices. The tridiagonalization of Wishart matrix (i.e., sample

covariancematrixwith standardGaussian entries) has been analyzed in [37,69], the finite

iterations of CGA for a sample covariance matrix with trivial covariance was analyzed

in [29, 64], and the Toda algorithm on Wishart matrices was analyzed in [27, 28]. These

analyses rely on either a Gaussian assumption or the trivial covariance assumption.

The finite iterations of CGA with general covariance structure was analyzed in [33].

The general phenomenon that some algorithms have, in an appropriate sense, high

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/5

/3
9
7
5
/7

2
1
9
2
7
8
 b

y
 U

C
D

M
C

-D
e
p
t. o

f A
n
e
s
 &

 P
a
in

 M
e
d
 u

s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
4



3980 X. Ding and T. Trogdon

concentration in their outputs even when the inputs are random data can be seen in each

of these works. And quite often the performance of the algorithms under consideration

is universal. We refer to the readers to [23, 31, 66, 67] for further discussions.

There has also been significant developments in the area of smoothed analysis of

algorithms [68, 70].More closely related to the current work is [62].We leave the problem

of using the current results in this context as future work.

1.3 An overview of main results

Given a probability measure μ with finite moments, we apply the Gram–Schmidt

orthogonalization process to the monomials {1, λ, λ2, · · · } to obtain the monic orthogonal

polynomials πn(λ;μ), n = 0, 1, 2, . . ., which can be defined by

πn(λ;μ) = λn + O(λn−1), λ→∞,

∫

R

πn(λ;μ)πm(λ;μ)μ(dλ) = 0, n �=m. (1.3)

Given twomeasures μ and ν, where ν can be regarded as a perturbed or empirical version

of μ, we aim to study how πn(λ;μ) and πn(λ; ν) relate asymptotically, both as n increases

and as ν → μ.

The starting point of our analysis is the quantity Xn(z;μ, ν) introduced in (2.11).

The motivation to use Xn(z;μ, ν) is threefold. First, it naturally connects πn(λ;μ) and

πn(λ; ν) and their associated Cauchy transforms (cf. (2.1)). Second, Xn is the solution of a

matrix Riemann–Hilbert problem that can be explicitly formulated using the Fokas–Its–

Kitaev approach. Third, the relevant quantities associated to the numerical algorithms

we consider can be expressed in terms of the entries of Xn(z;μ, ν). The Riemann–Hilbert

problem for Xn(z;μ, ν) can be solved asymptotically, and this result is recorded in

Proposition 2.1. Equivalently, it establishes a new perturbation result for orthogonal

polynomials. Heuristically, it states that for two compactly supported measures μ, ν on

R such that

∫
ν(dλ)− μ(dλ)

λ− z , (1.4)

is sufficiently small on a contour that encircles, and is sufficiently close to supp(μ) ∪
supp(ν), one has for the monic polynomials πn,

πn(z; ν) = πn(z;μ)(1+ f1(z;μ, ν))+ f2(z;μ, ν)πn−1(z,μ)
c2(p−n)

‖πn−1(·;μ)‖2L2(μ)
, (1.5)
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RHP Approach to Perturbation Theory of OPs 3981

for functions f1, f2 = o(1) depending on the size of (1.4) and some constant c. Here p is the

number of spikes (i.e., point masses, see cf. (2.16)); see (2.15) for more details. A further

expansion of the functions f1, f2 determine the next order correction, which we, in view

of our primary application to random matrices, call the fluctuation term.

Then, assuming that μ satisfies some regularity conditions (cf. Assumption 1),we

first derive some accurate and uniformly valid asymptotic formulae for the unperturbed

orthogonal polynomials utilizing theta functions on a hyperelliptic Riemann surface (cf.

(A.1)). The results are stated in Theorem 2.2. By controlling a key auxiliary quantity (cf.

(2.13)) in Lemma 2.3, we are able use Proposition 2.1 and Theorem 2.2 to provide asymp-

totic formulae for the perturbed orthogonal polynomials and their Cauchy transforms

as in Theorem 2.4 and Remark 2.4. These formulae give explicitly how some critical

exponential prefactors are arranged. Moreover, the leading error terms can be fully

characterized by a variant of (1.4). Thus, the calculation of the fluctuations of πn(z; ν)

reduces to the analysis of (1.4).

We mention several points related to random matrix theory here. First,

Assumption 1 is satisfied by the limiting eigenvalue or eigenvector empirical spectral

distributions of many classically studied random matrix models. In this context, ν can

be the eigenvalue or eigenvector empirical spectral distribution. Second, the degree n

is allowed to be unbounded (with respect to some divergent parameter) and it depends

on the closeness of the Stieltjes transforms of the measures μ and ν. For example, in

the random matrix model setting regarding an N × N matrix, as will be discussed in

Remark 2.3, n can be as large as O(N1/4−ε), for some arbitrarily small constant ε > 0 for

ESD, and O(N1/6−ε) for VESD. To our best knowledge, this is the first such asymptotic

result allowing n to diverge.

Motivated by several important applications in numerical linear algebra, we

apply Theorems 2.2 and 2.4 to analyze iterative numerical algorithms, including Lanczos

tridiagonalization, the Cholesky factorization, and conjugate gradient algorithm (CGA);

see Section 3.1 for a brief summary of these algorithms. First, we apply Theorem 2.2

to these algorithms and obtain accurate asymptotic formulae for the key quantities.

For Lanczos, it is equivalent to the study of the asymptotics of the three-term recur-

rence coefficients of the (discrete) orthogonal polynomials. The results are recorded in

Corollary 3.2. The Cholesky factorization of the Lanczos Jacobi matrix (cf. (3.5)) can

also be analyzed similarly as in Corollary 3.4. This Cholesky factorization coincides

with the well-known Golub–Kahan bidiagonalization procedure, which, as pointed out

previously, has a full distributional characterization in the isotropic Gaussian case. But

our results hold for non-Gaussian samples with non-trivial covariance. CGA is analyzed
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3982 X. Ding and T. Trogdon

in Corollary 3.3. Based on the unperturbed asymptotics for μ, we establish the perturbed

asymptotics for these algorithms and the results are reported in Theorem 3.6. Again,

the leading errors can be fully expressed in terms of (1.4) and the associated theta

functions.

As mentioned earlier, the fluctuations of the perturbed orthogonal polynomials

and related quantities of the numerical algorithms depend on (1.4), which should be

expected to have a problem-specific form. In Section 4,we consider a concrete case study,

in the random matrix context, using a general spiked sample covariance matrix model.

More specifically, ν is the VESD of the N ×N sample covariance matrix whose determin-

istic equivalent μ can be characterized using the anisotropic local laws as discussed in

Section 4.3. The methodology we propose here shows how Riemann–Hilbert problems

can assist yet again, later in the analysis of a random matrix ensemble, once one has

some knowledge of the local law. The main result is Theorem 4.3, which establishes a

general mesoscopic-type central limit theorem (CLT) by analyzing a functional version

of (1.4).We mention that the CLT is mesoscopic as its scaling also depends n. Informally,

we prove that for z ∈ R, when n� N1/6

√
N/n2

Z(z;μ)
(πn(z;μ)− πn(z; ν))

(d)−−−−→
N→∞

N (0,d(z)(V1 + V2)),

where Z(z;μ) is a normalization constant that depends on z and μ, V1 depends on μ and

is independent of n, V2 depends on both n and the fourth moments of the entries of the

matrix, and
(d)−−−−→

N→∞
indicates convergence in law. Moreover, as long as n → ∞, V2 → 0

so that the CLT only depends on the first two moments. Finally, d(z) is a deterministic

function depending on the application under consideration. For example, for the various

aforementioned numerical algorithms, d(z) can be found explicitly is summarized in

Corollary 4.4. Nevertheless, we mention that even though we work on the spiked sample

covariance matrix model in the current paper, our methods can be easily applied to other

random matrix models once the local laws are established.

We emphasize that our results of the case study generalize many existing results

in numerical linear algebra and random matrix theory. First, we show that for a general

class of spiked sample covariance matrices, if n � N1/6 then the upper-left n × n

subblock of L in (1.2) tends to the upper-left subblock of the Cholesky factorization of

the three-term recurrence Jacobi matrix for the orthogonal polynomials with respect

to the limiting VESD, with universal Gaussian fluctuations. We also establish that the

dependence on the fourth moment diminishes as n increases, a phenomenon that was

empirically observed in [64]. Second, we establish precise convergence statistics for
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RHP Approach to Perturbation Theory of OPs 3983

CGA when the matrix is a general spiked sample covariance matrix model. We allow

n, which here is taken to be the number of iterations in CGA, to be divergent with

N. In particular, we show that the residuals always have Gaussian fluctuations and

become more universal (i.e., only depend on the first two moments) as more iterations

are run. Comparable results have only been previously established for fixed n and trivial

covariance case in [64] for the case of Wishart matrices.

Finally, we highlight an open question. In the current paper, the breakthrough

allows n to increase with N in a moderate way, that is, 1 ≤ n ≤ Nα, 0 ≤ α < 1/6. It is

interesting to consider the regime 1/6 ≤ α ≤ 1. Based on our numerical simulations, we

conjecture that our results still hold for all 0 ≤ α < 1. However, when α = 1, our current

results clearly fail to hold (see Figure 5) and we need to develop entirely new tools to

handle this regime. We will pursue this direction in the future.

Conventions. For two sequences of real values {aN} and {bN}, we write aN = O(bN) if

|aN | ≤ C|bN | for some constant C > 0, and aN = o(bN) if |aN | ≤ cN |bN | for some positive

sequence cN ↓ 0. Moreover, we write aN � bN if aN = O(bN) and bN = O(aN). The notation

〈b,a〉 is used for the standard �2 inner product and ‖b‖22 = 〈b,b〉. We use fk to denote the

kth standard Euclidean basis vector.

2 The Riemann–Hilbert Problem for Orthogonal Polynomials and Their

Perturbations

Consider a probability measure μ without a singular continuous part. We suppose its

absolute continuous density ρ is supported on a finite number of disjoint intervals

[aj,bj], 1 ≤ j ≤ g + 1. We also allow μ having a finite number of spikes, that is, point

masses at ci, 1 ≤ i ≤ p, with masses wj.

In [41], the authors found a characterization of orthogonal polynomials in terms

of a matrix Riemann–Hilbert problem. We now review such a formulation. Define the

Cauchy transforms of the monic polynomials

cn(z;μ) =
1

2πi

∫

R

πn(λ;μ)

λ− z μ(dλ), (2.1)

and the matrix-valued function

Yn(z;μ) =
[

πn(z;μ) cn(z;μ)

γn−1(μ)πn−1(z;μ) γn−1(μ)cn−1(z;μ)

]
, z �∈ supp(μ), (2.2)
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3984 X. Ding and T. Trogdon

where we used the notation

γn(μ) = −2πi‖πn(·;μ)‖−2L2(μ). (2.3)

It then follows that (see [41] or [57])

Y+n (z;μ) = Y−n (z;μ)

[
1 ρ(z)

0 1

]
, Y±n (z;μ) := lim

ε→0+
Yn(z± iε;μ), (2.4)

at all points z ∈ R where μ has a continuous density ρ. Additionally,

Yn(z;μ)

[
z−n 0

0 zn

]
= I + O(1/z), z→∞. (2.5)

Due to the discrete contributions to μ, this does not fully characterize Yn. We

compute

Resz=cjYn(z;μ) =
[
0 1

2πi
wjπn(cj;μ)

0
γn−1
2πi

wjπn−1(cj;μ)

]
(2.6)

= lim
z→cj

Yn(z;μ)

[
0

wj

2πi

0 0

]
, j = 1, 2, . . . ,p.

Conditions (2.4), (2.5), and (2.6) constitute a Riemann–Hilbert problem for Yn(z;μ) and

Yn(z;μ) is the unique solution of this problem if one requires continuous boundary

values.

Remark 2.1. At points where μ has a density, but it fails to be continuous, one may

have to impose additional conditions to uniquely characterize Yn. The assumptions we

impose on μ in the current work allow us to ignore such complications.

2.1 Perturbation theory for orthogonal polynomials

Let ν be a perturbed (and potentially random) version of μ. Suppose μ and ν are both

measures supported on a finite number (i.e., g+ 1) of intervals with a finite number (i.e.,
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RHP Approach to Perturbation Theory of OPs 3985

p) of spikes for (potentially) different choices of aj,bj,wj,cj,hj, and g,p. Define

Ỹn(z;μ) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

Yn(z;μ)

⎡
⎣1 −c0(z;μ)

0 1

⎤
⎦ z inside �,

Yn(z;μ) otherwise,

(2.7)

where � is a simple curve with counter-clockwise orientation that encloses the support

of μ. Using (2.4), we then compute the jumps of Ỹn on ∪j(aj,bj):

Ỹ+n (z;μ) = Y+n (z;μ)

[
1 −c+0 (z;μ)
0 1

]
= Y−n (z;μ)

[
1 ρ(z)

0 1

][
1 −c+0 (z;μ)
0 1

]

= Y−n (z;μ)

[
1 ρ(z)− c+0 (z;μ)
0 1

]
= Ỹ−n (z;μ)

[
1 c−0 (z;μ)+ ρ(z)− c

+
0 (z;μ)

0 1

]
.

For z ∈ ∪j[aj,bj] the inversion formula holds [3], that is,

c+0 (z;μ)− c
−
0 (z;μ) = ρ(z),

and therefore Ỹn has a trivial jump on ∪j(aj,bj). Next, using (2.2) and residue theorem,

we check the residues of Ỹn(z;μ)

Resz=cj Ỹn(z;μ) = Resz=cjYn(z;μ)

[
1 −c0(z;μ)
0 1

]

=

⎡
⎣0 Resz=cj(−c0(z;μ)(Yn(z;μ))11 + (Yn(z;μ))12)
0 Resz=cj(−c0(z;μ)(Yn(z;μ))21 + (Yn(z;μ))22)

⎤
⎦ = 0.

We conclude that Ỹn(z;μ) must be analytic inside � and satisfies

Ỹ+n (z;μ) = Ỹ−n (z;μ)

[
1 −c0(z;μ)
0 1

]
, z ∈ �, (2.8)

Ỹn(z;μ)

[
z−n 0

0 zn

]
= I + O(1/z), z→∞. (2.9)
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3986 X. Ding and T. Trogdon

As we will see in the next section, it is convenient to consider

Y̌n(z;μ) = c(n−p)σ3Ỹn(z;μ), c ∈ C \ {0}, σ3 =
[
1 0

0 −1

]
, (2.10)

where c is closely related to the capacity of ∪i[ai,bi] and formally defined in (A.10) after

necessary notation is introduced. Note that the above modification does not affect the

jump satisfied by Y̌n, only its asymptotics.

To connect the two measures, μ and ν, we consider

Xn(z;μ, ν) = Y̌n(z; ν)Y̌n(z;μ)
−1, (2.11)

where we note that det Y̌n(z;μ) ≡ 1. Using (2.8) and (2.9), by an elementary calculation,

X+n (z;μ, ν) = X−n (z;μ, ν)Jn(z;μ, ν), z ∈ �; and Xn(z;μ, ν) = I + O(1/z), z→∞,

where Jn(z;μ, ν) is defined as

Jn(z;μ, ν) :=
[
I + c0(z,μ− ν)Y̌−n (z;μ)

[
0 1

0 0

]
Y̌−n (z;μ)

−1
]
.

Now, suppose that � = �(N), ν = ν(N) and n = n(N) depend on a common

asymptotic parameter N. The Riemann–Hilbert problem for Xn can be reformulated as a

singular integral equation for a new unknown Un defined on � using the representation

Xn(z;μ, ν) = I + C�Un(z;μ, ν), C�U(z) :=
1

2πi

∫

�

U(z′)

z′ − zdz
′.

Proposition 2.1. For an integer N, suppose � = �(N) is a piecewise smooth, simple,

closed curve that encircles supp(μ)∪supp(ν) such that the operator norm of C−� on L2(�)

is bounded by CN . Suppose n = n(N) and ν = ν(N) are functions ofN such that asN →∞,

CN‖Jn − I‖L∞(�)→ 0. Then we have

Xn(z;μ, ν) = I + 1

2πi

∫

�

c0(z
′;μ− ν)Mn(z

′;μ)

z′ − z dz′ + O

(
CN
‖Jn − I‖2L∞(�)

1+ |z|

)
, (2.12)

Mn(z;μ) = Y̌−n (z;μ)

[
0 1

0 0

]
Y̌−n (z;μ)

−1, (2.13)

uniformly on subsets of C bounded uniformly away from �.
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RHP Approach to Perturbation Theory of OPs 3987

Proof. Define the boundary-value operator C±�U(z) = limz′→z C�U(z
′), where the limit is

taken non-tangentially within the interior (+) or exterior (−) of �. Then Un must satisfy

Un − C−�Un(Jn − I) = Jn − I.

This is a near-identity operator equation for N sufficiently large and it can therefore be

solved by a Neumann series. In particular,

‖Un − (Jn − I)‖L2(�) = O(CN‖Jn − I‖2L∞(�)),

which implies the conclusion. �

Remark 2.2. Proposition 2.1 establishes the perturbation for orthogonal polynomials

generated by two close measures using the quantity (2.11). In particular, let

P(z;n) = Xn(z;μ, ν)− I. (2.14)

Using (2.12) and the definition (2.11), we readily see that

πn(z; ν) = πn(z;μ)(1+ P11(z;n))+ c2(p−n)γn−1(μ)πn−1(z;μ)P12(z;n), (2.15)

cn(z; ν) = cn(z;μ)(1+ P11(z;n))+ c2(p−n)γn−1(μ)cn−1(z;μ)P12(z;n),

where Pij is the (i, j) entry of P. If the two measures are close, the functions Pij will decay

so that, to leading order,πn(z; ν) and cn(z; ν) are given by πn(z;μ) and cn(z;μ), as expected.

The above results may depend on the choice of the contour �. In the current paper, we

will choose � to be the boundary of a rectangle and ‖C−� ‖L2(�) is bounded by an absolute

constant [14].

2.2 Large n asymptotics of polynomials orthogonal with respect to measures supported on

multiple intervals

Recall (2.2). In order to directly compare the orthogonal polynomial πn(x; ν) to πn(x;μ)

one needs (1) an estimate on Mn(z;μ) in (2.13). Furthermore, supposing that Jn − I → 0,

one is left with

Y̌n(z; ν) = Xn(z;μ, ν)Y̌n(z;μ) = (I + o(1))Y̌n(z;μ).
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3988 X. Ding and T. Trogdon

And so, one needs (2) some information about Y̌n(z;μ) to make conclusions about Y̌n(z; ν).

One such way to accomplish (1) and (2) is to compute the large n asymptotics of

Yn(z;μ). The calculations rely on solving another Riemann–Hilbert problem, and this

is accomplished in Appendix A. We summarize the results in Theorem 2.2 below. The

result relies on the following regularity assumption.

Assumption 1. Consider a probability measure μ that satisfies the following

assumptions.

(1) Square-root behavior with spikes: The measure μ is of the form (One can

include inverse square-roots if needed, but this requires incorporating

additional conditions into the Riemann–Hilbert problem to ensure unique

solvability.)

μ(dλ) =
g+1∑

j=1
hj(λ)1[aj,bj](λ)

√
(bj − λ)(λ− aj)

︸ ︷︷ ︸
ρ(λ)

dλ+
p∑

j=1
wjδcj(dλ), (2.16)

for disjoint intervals [aj,bj] and points cj located away from these intervals.

(2) Uniformity (1): We allow μ to depend implicitly on a parameter N but require

that g,p be non-negative, constant (for sufficiently large N) and require that

the distance between any two points in the set {cj} ∪ {aj} ∪ {bj} is bounded

above and below.

(3) Analyticity: To each interval [aj,bj], we associate a bounded open set �j

(independent of N) containing [aj,bj] for all N such that hj has an analytic

continuation to �j.

(4) Uniformity (2): We suppose there is an absolute constant D ≥ 1 such that

sup
z∈�j

max{|hj(z)|, |hj(z)|−1} ≤ D,

for every 1 ≤ j ≤ g+ 1.

(5) Uniformity (3): For every j, we assume that either N−σ /D ≤ |wj| ≤ D, 0 ≤ σ <
∞, or wj = 0.

We point out that the limiting ESDs and VESDs for many commonly studied

random matrix models satisfy Assumption 1. We refer the readers to Lemma 4.1 and

the discussion below for more details on this. Now we state the results. Let Dj be a small
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RHP Approach to Perturbation Theory of OPs 3989

region containing [aj,bj], and let
◦

�j be a small ball that has cj as its center. Then we

define a function f as follows:

f (z) =

⎧
⎪⎪⎪⎨
⎪⎪⎪⎩

±1/ρ̌j(z) z ∈ Dj ∩ {±Im z > 0},
w̃j

z−cj z ∈
◦

�j,

0 otherwise,

where w̃j is defined in (A.6) and ρ̌j is defined in Section A.2.3 after necessary nota-

tion is introduced. Since Dj and
◦

�j can be chosen to be well separated according to

Assumption 1, we will see in Section A.2.3 that their choices will not influence our

results much. The function f here captures the fact that the asymptotics for orthogonal

polynomials away from the support of μ is different from the asymptotics on or near the

support.

Theorem 2.2. Suppose Assumption 1 holds for μ = μ(N) for sufficiently large N. Let

Yn(z;μ) be as (2.2) and recall c, σ3 in (2.10). Then for some constant c > 0

Yn(z;μ) = c(p−n)σ3
(
I + O

(
e−cn

1+ |z|

))
Kn(z,μ) e

ϕn(z)σ3

[
1 0

f (z) 1

]⎛
⎝

p∏

j=1
(z− cj)

⎞
⎠
σ3

. (2.17)

Here, we used the notation

Kn(z,μ) = e−σ3G(∞) Ln(∞)−1Ln(z), (2.18)

ϕn(z) = G(z)+ (n− p)g(z), (2.19)

where G(z) is defined (A.11), Ln(z) is defined in (A.5), and g(z) is defined in Section A.2.2,

after some necessary notation is introduced.

Proof. See Appendix A. �

The function g(z), as defined in Section A.2.2, is classically known as the exterior

Green’s functionwith pole at∞, see [65], for example. It expresses the global distribution

of the zeros of the orthogonal polynomials. The functionG(z) is an instance of a so-called

Szegoő function [55]. For the definition of Ln see (B.6).

For the reader’s convenience, in Appendix B.1, we provide more detailed expres-

sions for the entries of Yn(z;μ). Theorem 2.2 has many important consequences. For
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3990 X. Ding and T. Trogdon

example, it can be used to study the asymptotics of the three-term recurrence coefficients

of the orthogonal polynomials (see Section 3.2.1), the residuals and errors of conjugate

gradient algorithm (see Section 3.2.2) and the Cholesky factorization of the tridiago-

nalization (see Section 3.2.3). We will discuss these applications and provide explicit

formulae in Section 3.2.

Equipped with the above theorem, we now proceed to accomplish the aforemen-

tioned goals (1) and (2) on some specifically chosen contour �. In sequel, unless otherwise

specified, we will consistently use the following contour. For some small constant η > 0,

let �j be the rectangle that is a distance η from [aj,bj], that is,

�j = �j(η) =
(
[aj − η,bj + η]+ iη

)
∪
(
[aj − η,bj + η]− iη

)
(2.20)

∪
(
bj + η + i[−η, η]

)
∪
(
aj − η + i[−η, η]

)
.

The following lemma accomplishes (1) by providing an estimate onMn(z;μ) in (2.13). For

definiteness, we consider the matrix norm ‖A‖max = maxij |Aij|.

Lemma 2.3. Suppose Assumption 1 holds. We have that for z ∈ �j in (2.20), uniformly,

‖Mn(z;μ)‖max ≤ Cη−1 eC
′nη1/2 , (2.21)

for constants C,C′ > 0.

Proof. We start by preparing some basic estimates. First, on �j, according to Assump-

tion 1, we have

C−1η ≤
g+1∏

j=1
|z− aj| ≤ C, C−1η ≤

g+1∏

j=1
|z− bj| ≤ C,

for an absolute constant C > 0. Second, using (A.5) and (A.3) together with (A.12), we see

from (2.18) that for z ∈ �j, uniformly,

‖Kn(z;μ)‖max ≤ C(|z− aj|−1/4 + |z− bj|−1/4),

‖Kn(z;μ)
−1‖max ≤ C(|z− aj|−1/4 + |z− bj|−1/4),

for some absolute constant C > 0. Third, to estimate g(z) in the upper-half plane, we first

note that (Here + denotes the limit from within the upper-half plane.) Re g+(z) = 0 for
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RHP Approach to Perturbation Theory of OPs 3991

z ∈ [aj,bj] for any j. According to the arguments of Section A.2.2, we find that there exists

some D > 0 such that |Qg(z)| ≤ D (recall (A.7)) on ∪j�j, which implies that for z ∈ �j

Re g(z) ≤ D′dist(z, [aj,bj])
1/2 ≤ 21/4D′η1/2,

for a new absolute constant D′ > 0.

Next, we estimate Mn(z;μ). Inserting (2.17) into (2.13), we obtain

Mn(z;μ)

=
p∏

j=1
(z− cj)2

(
I + O

(
e−cn

))
Kn(z;μ)

[
−f (z) e2ϕn(z)

−f (z)2 e−2ϕn(z) f (z)

]
Kn(z;μ)

−1 (I + O
(
e−cn

))
.

Using Lemma A.2, we estimate for z ∈ �j

| e2ϕn(z) |‖Kn(z;μ)‖max‖Kn(z;μ)
−1‖max ≤ C|z− bj|−1|z− aj|−1,

|f (z)|‖Kn(z;μ)‖max‖Kn(z;μ)
−1‖max ≤ C|z− bj|−1|z− aj|−1,

|f (z)|2| e−2ϕn(z) |‖Kn(z;μ)‖max‖Kn(z;μ)
−1‖max ≤ C|z− bj|−1|z− aj|−1,

for a new constant C > 0. The lemma follows. �

Armed with Lemma 2.3, we are ready to state a more detailed asymptotic result

on the perturbation of orthogonal polynomials when Assumption 1 holds.

Theorem 2.4. Let N be a positive integer and suppose μ = μ(N) satisfies Assumption 1

for sufficiently large N. Suppose further that a measure ν = ν(N) is such that

ν −
p∑

j=1
wjδcj ,

has its support inside � = �(η) =
⋃

j �j(η), as defined in (2.20), and ‖c0(·,μ − ν)‖L∞(�) ≤
E(N, η). If n ≤ Cη−1/2, C > 0, and η = η(N) is such that E(N, η)η−1/2 → 0 as N →∞, then

Proposition 2.1 holds. In particular, we have

Xn(z;μ, ν) = I + 1

2πi

∫

�

c0(z
′;μ− ν)Mn(z

′;μ)

z′ − z dz′ + O

(
E(N, η)2η−1

1+ |z|

)
,

uniformly for z in sets bounded away from �.
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3992 X. Ding and T. Trogdon

Proof. The proof follows directly from Theorem 2.2, Lemma 2.3, and Proposition 2.1.�

Remark 2.3. Theorem 2.4 makes precise the fact that in order to let Xn(z;μ, ν) be close

to I, we will need c0(z;μ−ν) to be small. The sense in which this occurs depends on each

specific problem and the related application. In applications of random matrix theory,

for most of the commonly encountered models, when μ is the limiting ESD or VESD and

ν is the ESD or VESD, one typically has (Xn = O
P
(g(n)) as n → ∞ if |cnXn/g(n)| → 0 in

probability for any sequence cn→ 0.)

|c0(z;μ− ν)| = O
P

(
1

Nη

)
, or |c0(z;μ− ν)| = O

P

(
1√
Nη

)
,

on the entirety of ∪j�j and this will dictate what η, or equivalently n, can be. Conse-

quently, we choose

n = O(η−1/2), where n� N1/4 for ESD and n� N1/6 for VESD, (2.22)

is required to be able to apply Theorem 2.4. We also point out that if μ has spikes, then

ν will have spikes near the spikes of μ. Instead of directly considering μ − ν we apply

Theorem 2.4 to μ̃−ν where the limiting spikes of μ are replaced with the nearby random

spikes of ν. Despite the fact that μ̃ is then random, it satisfies Assumption 1 with high

probability and the asymptotics of the associated orthogonal polynomials follow the

same form, see Remark 2.4 below.

Remark 2.4. Combining Theorems 2.2 and 2.4,we can provide amore detailed perturba-

tion formulae for the orthogonal polynomials compared to (2.15). In particular, inserting

(2.17) (or equivalently the expressions in Appendix B.1) into (2.15), we obtain that for z

bounded away from �,

πn(z; ν) = c(p−n) e(n−p)g(z)+G(z)−G(∞) (2.23)

×

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦
[
(1+ P11(z;n))E11(z;n)+ P12(z;n) e2G(∞) E21(z;n)

]
,

cn(z; ν) = c(p−n) e−(n−p)g(z)−G(z)−G(∞)

×

⎡
⎣

p∏

j=1
(z− cj)−1

⎤
⎦
[
(1+ P11(z;n))E12(z;n)+ P12(z;n) e2G(∞) E22(z;n)

]
,
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RHP Approach to Perturbation Theory of OPs 3993

where Eij(z;n), 1 ≤ i, j ≤ 2, defined in Appendix B.1 only depend on μ. Compared to

(2.15), the above expressions give much more information as they give explicitly how the

exponential prefactors are arranged.

Remark 2.5. As can be seen from the above discussion, if ν is random then the

main random quantity to be understood is the entries of P(z;n) as defined in (2.14).

Consequently, in order to understand the second-order fluctuation of the concerned

quantities, it suffices to derive a CLT for P(z;n). The main task is to understand the

asymptotics of c0(z
′;μ−ν) on the contour �. This is usually problem-specific and depends

on the measures μ and ν. Considering applications in random matrix theory where

μ is the limiting distribution and ν is the empirical distribution, the distribution of

c0(z
′;μ − ν), of course, depends on the underlying random matrix model. In Section 4,

we consider the spiked sample covariance matrix model and establish a general CLT,

which can be used to understand the distribution of the related quantities.

3 Algorithmic Applications: Asymptotic Formulae for Numerical Algorithms

In this section, we apply the results of Section 2 to study several important numerical

algorithms.

3.1 A high level discussion of matrix factorizations and algorithms

We briefly discuss background for the numerical algorithms under consideration.

3.1.1 Lanczos tridiagonalization

We first introduce the Householder tridiagonalizaton procedure. It is the process by

which a real symmetric or complex Hermitian matrix W is transformed to a real

symmetric tridiagonal matrix using Householder reflectors. Householder reflectors can

be written in the form

Uk =
[
Ik 0

0 IN−k − 2uu∗

]
,

where Ik is the k× k identity matrix and u ∈ C
(N−k)×(N−k) is a unit vector. By selecting u

correctly for each k

UNUN−1 · · ·U1WU∗1U
∗
2 · · ·U∗N ,

is a real symmetric tridiagonal matrix. See [72], for example.
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3994 X. Ding and T. Trogdon

The Lanczos tridiagonalization algorithm applied to a real symmetric or complex

Hermitian matrixW and vector b accomplishes the same goal as the Householder tridi-

agonalization algorithm with some added flexibility. Run to completion, in exact arith-

metic, the Lanczos algorithm performs Gram–Schmidt on the vectors {b,Wb, . . . ,WN−1b}
constructing an orthogonal or unitary matrix

Q =
[
q1 q2 · · · qN

]
, (3.1)

and necessarily T = Q∗WQ is a tridiagonal matrix. Note that q1 = b/‖b‖2. It is well-

known [72] the entries in the Lanczos matrix T coincides with the three-term recurrence

coefficients for the discrete orthogonal polynomials with respect to the VESD generated

by b and W (cf. (3.5)).

3.1.2 Cholesky factorization

The Cholesky factorization of a positive definite matrix W is a factorization W = LL∗,

where L is lower-triangular with positive diagonal entries.When applied to a tridiagonal

matrix T, L is lower-bidiagonal and has non-negative entries if T has non-negative

entries. The Cholesky factorization is a special case of Gaussian elimination.

3.1.3 The conjugate gradient algorithm

The conjugate gradient algorithm (CGA) is an iterative method to solve the linear system

Wx = b. The method begins with an initial guess x0 and in the current work we always

take x0 = 0. The algorithm is mathematically described by the solution of a sequence of

minimization problems:

xk = argminy∈Kk
‖y− x‖W , Kk = span{b,Wb, . . . ,Wk−1b}, ‖y‖2W = 〈y,Wy〉. (3.2)

While one has the expression,

xk = Qk(Q
∗
kWQk)

−1f1,

it is quite remarkable that an extremely efficient iteration process is possible [46]. Here

Qk := [q1, · · · ,qk] as in (3.1). It is also of intrinsic mathematical interest that this process

makes sense for bounded positive-definite operators on a Hilbert space.

3.2 Unperturbed asymptotics: applications of Theorem 2.2

In this subsection, we consider several important consequences of Theorem 2.2 when

applied to the numerical algorithms in Section 3.1. As wewill see later, a common feature
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RHP Approach to Perturbation Theory of OPs 3995

is that the analysis of these algorithms boil down to the analysis of some functionals of

the orthogonal polynomials and Cauchy transforms evaluated at either z = 0 or z = ∞.

The main theorem is now stated and its consequences follow.

Based on {πn(λ;μ)} in (1.3), the orthonormal polynomials pn(λ;μ), n = 0, 1, 2, . . .,

are the defined by

pn(λ;μ) =
πn(λ;μ)

‖πn(·;μ)‖L2(μ)
, ‖πn(·;μ)‖2L2(μ) =

∫

R

πn(λ;μ)
2μ(dλ).

We write pn(z;μ) = �nzn + snzn−1 + · · · = �nπn(z;μ) where �n = �n(μ) satisfies

�−2n =
∫

R

πn(z;μ)
2μ(dz) =

∫

R

πn(z;μ)z
nμ(dz). (3.3)

Theorem 3.1. Suppose Assumption 1 holds for μ = μ(N) for sufficiently large N and

n→∞ as N →∞. Then for some c > 0 we have the following.

(1) If z = 0 is bounded away from
(
∪j�j

)
∪
(
∪j cj

)
then (This result can be stated

appropriately for any z but for simplicity we just take z = 0 because that is

all that is needed in the sequel.)

Yn(0;μ)11 = c(p−n) e−G(∞) eG(0) e(n−p)g(0)

⎡
⎣

p∏

j=1
(−cj)

⎤
⎦E11(0;n),

Yn(0;μ)12 = c(p−n) e−G(∞) e−G(0) e−(n−p)g(0)

⎡
⎣

p∏

j=1
(−cj)−1

⎤
⎦E12(0;n),

where

E11(0;n) =
1

2

⎛
⎝
g+1∏

j=1

(
bj

aj

)1/4

+
g+1∏

j=1

(
aj

bj

)1/4
⎞
⎠ �1(0;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn),

E12(0;n) =
1

2i

⎛
⎝
g+1∏

j=1

(
bj

aj

)1/4

−
g+1∏

j=1

(
aj

bj

)1/4
⎞
⎠ �2(0;d2; (n− p)�+ ζ )

�1(∞;d2; (n−p)�+ ζ )
+ O(e−cn).
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3996 X. Ding and T. Trogdon

(2) And

�−2n (μ) = −2πi lim
z→∞

zn+1Yn(z;μ)12

= e−2G(∞)c2(p−n)
π

2

g+1∑

j=1
(bj − aj)

�2(∞;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn),

sn(μ)

�n(μ)
= lim

z→∞
z
(
z−nYn(z;μ)11 − 1

)

=
mg+1
2πi

−
mg

2πi

g+1∑

j=1
(aj+bj)+ (n−p)g1 −

p∑

j=1
cj+

�
(1)
1 (d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )

+ O(e−cn).

Here c is defined in (2.10) and g1 is the coefficient of the O(1/z) term in the

expansion of g(z) at∞. The other quantities will be made explicit in the proof after some

necessary notation is introduced. In particular,� = (�1,�2) is a vector-valued function

defined in (A.2) using the Riemann theta function (cf. (A.1)), d2 is defined in (A.4), � is

defined in (A.9), the entries of ζ are defined via (A.13), and �(1) is defined in (B.8).

Proof. See Appendix B.1. �

3.2.1 Asymptotics of the three-term recurrence coefficients

The three-term recurrence coefficients an(μ),bn(μ), n ≥ 0, for (pn(x;μ))n≥0 satisfy

an(μ)pn(x;μ)+ bn(μ)pn+1(x;μ)+ bn−1(μ)pn−1(x;μ) = xpn(x;μ), n ≥ 0, (3.4)

are often organized into a Jacobi matrix:

J (μ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a0 b0

b0 a1 b1

b1 a2 b2

b2 a3
. . .

. . .
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

,an = an(μ),bn = bn(μ). (3.5)

We let Jn(μ) denote the upper-left n × n subblock of J (μ). The following theorem

establishes the asymptotics of these coefficients.
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RHP Approach to Perturbation Theory of OPs 3997

Corollary 3.2. Suppose Assumption 1 holds for μ = μ(N) for sufficiently large N. Then

in the notation of Theorem 3.1 we have that

bn(μ)
2 = 1

c2

�2(∞;d2;(n+1)�+ζ )
�1(∞;d2;(n+1)�+ζ )

+ O(e−cn)
�2(∞;d2;(n−p)�+ζ )

�1(∞;d2;(n−p)�+ζ )
+ O(e−cn)

,

an(μ) =
�
(1)
1 (d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
− �

(1)
1 (d2; (n+ 1)�+ ζ )

�1(∞;d2; (n+ 1)�+ ζ )
+ g1 + O(e−cn).

Proof. See Appendix B.2. �

Remark 3.1. Two remarks are in order. First, Corollary 3.2 shows that the recurrence

coefficients can be well approximated by some quantities involving the Riemann theta

function (cf. (A.1) and (A.2) when g > 0. This, in turn, yields the approximate quasi-

periodicity of {an} and {bn}. Second, we provide a single interval example to illustrate

how different quantities in the above theorem can be calculated. In the general set-

ting, these quantities can be calculated numerically, as will be discussed in Section

5.1. Consider that g = 0 and p = 0 in (2.16). When b1 = 1 and a1 = −1, one

can check from (A.2) that �1 = �2 = 1 and g1 = 0. Following [65], c−2 = 1
4

so that

an = O(e−cn), bn =
1

2
+ O(e−cn),

which recovers the result of [55]. For general a1 and b1,

an =
b1 + a1

2
+ O(e−cn), bn =

b1 − a1
4

+ O(e−cn),

which matches the result of [55] (see also [33, Theorem 5.2]).

3.2.2 Asymptotics of CGA in infinite dimensions

With the help of Corollary 3.2, we proceed to understand the performance of CGA

(cf. (3.2)) to solve Wx = b with x0 = 0, producing iterates xn, n = 1, 2, . . . , and

〈b, (W − z)−1b〉 = 2πic0(z;μ) for a measure μ. The residual and error vectors are

defined as

rn = b−Wxn, en = x− xn.
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3998 X. Ding and T. Trogdon

Then we have the following formulae, where we note that for the assumptions of the

theorem to hold,W must be an infinite-dimensional operator.

Corollary 3.3. Suppose Assumption 1 holds for μ = μ(N) for sufficiently large N and

c0(z;μ) = 2πi〈b, (W − z)−1b〉. Then

‖en‖2W = 2πi e−2G(0) e−2(n−p)g(0)

⎡
⎣

p∏

j=1
c
−2
j

⎤
⎦ E12(0;n)

E11(0;n)
,

and

‖rn‖22 =
π
2

∑g+1
j=1 (bj − aj)

�2(∞;d2;(n−p)�+ζ )

�1(∞;d2;(n−p)�+ζ )
+ O(e−cn)

e2(n−p)g(0)+2G(0)
[∏p

j=1 c
2
j

]
E11(0;n)

2
.

Here we recall the definitions of G, g in (2.18) and (2.19), � in Theorem 3.1, and E11,E12

are defined in Appendix B.1 after some necessary notation is introduced.

Proof. See Appendix B.2. �

Remark 3.2. As in Remark 3.1, the parameters of the above formulae can be calculated

numerically as in Section 5.1. In the single interval case, together with (B.6) and (B.7), it

is remarkable to see that

‖rn‖22
‖rn−1‖22

= e−2g(0)+O(e−cn),
‖en‖2W
‖en−1‖2W

= e−2g(0)+O(e−cn).

This implies that the ratios of the errors and residuals stay constant and are independent

of the spikes. In fact, following the calculations in Section A.2.2, when a1 > 0 and

g = 0 it is easy to see that e−g(0) = (
√
b1 −

√
a1)/(

√
b1 +

√
a1), which matches [33,

Theorem 3.3]. And in comparing with [29, 64] using the support [(1 −
√
d)2, (1 +

√
d)2]

of the Marchenko–Pastur distribution with parameter d, 0 < d ≤ 1, one obtains, for

example,

‖rn‖22
‖rn−1‖22

= d+ O(e−cn).
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RHP Approach to Perturbation Theory of OPs 3999

3.2.3 Asymptotics of the Cholesky factorization

It is well known that in the case where supp(μ) ⊂ (0,∞), the matrix J (μ) in (3.5) has a

Cholesky factorization

J (μ) = L(μ)L(μ)∗, L(μ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

α0

β0 α1

β1 α2

β2 α3
. . .

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, αj = αj(μ), βj = βj(μ). (3.6)

Let Ln(μ) be the upper-left n× n subblock of Ln(μ) and it is important that

Jn(μ) = Ln(μ)Ln(μ)
∗.

The following holds.

Corollary 3.4. Suppose the assumptions of Theorem 2.2 hold, then we have that

αn(μ)
2 = −c−1 eg(0) E11(0;n+ 1)

E11(0;n)
,

βn(μ)
2 = − cbn(μ)

2

eg(0)
E11(0;n)

E11(0;n+ 1)
,

where the expansion of bn(μ) can be found in Corollary 3.2.

Proof. See Appendix B.2. �

Remark 3.3. First, as in Remark 3.2, in the single interval case g = 0, we can provide a

more explicit formula. In this context, we have that

αn =
√
a1 +

√
b1

2
+ O(e−cn), bn =

√
b1 −

√
a1

2
+ O(e−cn).

Second, according to [64, Section 6], we can also write

‖rn‖2
‖rn−1‖2

=
βn−1
αn−1

.

Combining the above two formulae will recover the arguments in Remark 3.2.
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4000 X. Ding and T. Trogdon

3.3 Perturbed formulae and perturbed asymptotics: Applications of Theorem 2.4

In this subsection, we consider several important consequences of Theorem 2.4 when

applied to the aforementioned numerical algorithms. In what follows, we use ν as

a perturbation of the measure μ and suppose that they satisfy the assumptions of

Theorem 2.4. We first state how all the quantities that are analyzed in Theorem 3.1 are

perturbed.

Theorem 3.5. For measures μ, ν satisfying the hypotheses of Proposition 2.1

Yn(0; ν)11 = Yn(0;μ)11(1+ P11(0;n))+ Yn(0;μ)21P12(0;n),

Yn(0; ν)12 = Yn(0;μ)12(1+ P11(0;n))− 2πi
c2(p−n)

�2n−1(μ)
Yn(z;μ)22P12(0;n),

�−2n (ν) = �−2n (μ)− 2πic2(p−n)P(1)12 (n),

�n(ν)

sn(ν)
= �n(μ)
sn(μ)

+ P(1)11 (n),

where the matrix P(z;n) = P(z;n,μ, ν) is defined in (2.14) and P(1)(n) = P(1)(n;μ, ν) is

defined by

P(1)(n) = lim
z→∞

zP(z;n). (3.7)

Proof. This is a direct calculation first using

Yn(z; ν) = c(n−p)σ3(I + P(z;n))c(p−n)σ3Yn(z;μ),

and expanding

Yn(z; ν)z
−nσ3 = c(n−p)σ3(I + P(z;n))c(p−n)σ3Yn(z;μ)z−nσ3 ,

in a series at infinity. �

Since these are exact formulae, one can easily add the asymptotics of Theorem 3.1

(adding in the formulae (B.4) and (B.5)) to create perturbed versions of Corollaries 3.2, 3.3,

and 3.4. We summarize this in the following theorem.

Theorem 3.6. Suppose the assumptions of Theorem 2.4 hold.
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RHP Approach to Perturbation Theory of OPs 4001

(1) For the three-term recurrence coefficients, corresponding to Corollary 3.2,

we have

bn(ν)
2 = 1

c2

π
2

∑g+1
j=1 (bj − aj)

�2(∞;d2;(n+1)�+ζ )
�1(∞;d2;(n+1)�+ζ )

+ P(1)12 (n+ 1) e2G(∞)+O(e−cn)
π
2

∑g+1
j=1 (bj − aj)

�2(∞;d2;(n−p)�+ζ )

�1(∞;d2;(n−p)�+ζ )
+ P(1)12 (n) e

2G(∞)+O(e−cn)
,

and

an(ν) =
�
(1)
1 (d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
− �

(1)
1 (d2; (n+ 1)�+ ζ )

�1(∞;d2; (n+ 1)�+ ζ )

+ g1 + P
(1)
11 (n)− P

(1)
11 (n+ 1)+ O(e−cn),

where the matrix P(1) is defined in (3.7).

(2) For CGA, corresponding to Corollary 3.3, we have

‖en‖2W = 2πi e−2(n−p)g(0)−2G(0)

⎡
⎣

p∏

j=1
c
−2
j

⎤
⎦

(1+ P11(0;n))E12(0;n)+ P12(0;n) e2G(∞) E22(0;n)
(1+ P11(0;n))E11(0;n)+ P12(0;n) e2G(∞) E21(0;n)

, (3.8)

‖rn‖22

=
π
2

∑g+1
j=1 (bj − aj)

�2(∞;d2;(n−p)�+ζ )

�1(∞;d2;(n−p)�+ζ )
+ 2π

i
P
(1)
12 (n) e

2G(∞)+O(e−cn)

e2(n−p)g(0)+2G(0)

[
p∏
j=1

c
2
j

]
[
(1+P11(0;n))E11(0;n)+P12(0;n) e2G(∞) E21(0;n)

]2
.

(3.9)

(3) For the Cholesky factorization, corresponding to Corollary 3.4, we have

αn(ν)
2

= −c−1 eg(0) (1+ P11(0;n+ 1))E11(0;n+ 1)+P12(0;n+1) e2G(∞) E21(0;n+1)
(1+ P11(0;n))E11(0;n)+ P12(0;n) e2G(∞) E21(0;n)

,

βn(ν)
2

= −c e−g(0) bn(ν)2
(1+ P11(0;n))E11(0;n)+ P12(0;n) e2G(∞) E21(0;n)

(1+P11(0;n+1))E11(0;n+1)+P12(0;n+1) e2G(∞) E21(0;n+1)
.
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4002 X. Ding and T. Trogdon

We do not present the formulae for E12(0;n) and E22(0;n) explicitly, but these can

be found in Section B.1.

Remark 3.4. This theorem is particularly important because our asymptotic formulae

in the previous section only hold when μ satisfies Assumption 1, which corresponds to

running CGA on an infinite-dimensional system. But ν can arise as a VESD of a finite-

dimensional system, which allows Theorem 3.6 to apply to (large) finite-dimensional

linear algebra computations.

Also, as in Remark 2.5, we can see, from Theorem 3.6, that to obtain the

fluctuations of quantities related to the numerical algorithms, it suffices to focus on

the matrix P(z) either at z = 0 or z = ∞. In Section 4, we will focus on the spiked sample

covariance matrix model and study these fluctuations, that is, the limiting behavior

of P(z).

4 Case Study: Spiked Sample Covariance Matrix Model

In this section, we focus our discussion on a concrete random matrix model, the

celebrated spiked sample covariance matrix model, to illustrate how to conduct the

analysis.Motivated by the applications in appliedmathematics,we focus on the analysis

of its limiting VESD; see Section 4.3 for more details. For any probability measure μ, its

Stieltjes transform is defined as

mμ(z) = 2πic0(z;μ) =
∫

1

x − zμ(dx), z ∈ C+.

4.1 The deformed Marchenko–Pastur law

Wefirst introduce the celebrated deformedMarchenko–Pastur (MP) law.LetX be anN×M
random matrix with independent and identically distributed (iid) centered entries with

variance M−1 and the population covariance matrix �0 be a positive definite determin-

istic matrix satisfying some regularity conditions (cf. Assumption 2). Denote the sample

covariance matrix and its companion, which are both random matrices, as follows

Q1 = �
1/2
0 XX∗�1/2

0 , Q2 = X∗�0X. (4.1)

In the sequel, we assume that for some small constant 0 < τ < 1

τ ≤ cN := N

M
≤ τ−1. (4.2)
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RHP Approach to Perturbation Theory of OPs 4003

Denote the spectral decomposition of �0 as

�0 =
N∑

k=1
σiviv

∗
i , 0 < σN ≤ σN−1 ≤ · · · ≤ σ1 <∞.

The Stieltjes transformm(z) of the deformed MP law can be characterized as the unique

solution of the following equation [51, Lemma 2.2]

z = f (m), Imm(z) ≥ 0,

where f (x) is defined as

f (x) = −1

x
+ 1

M

N∑

k=1

1

x + σ−1
k

. (4.3)

Denote � = ��0,N
as the probability measure associated with m. Then � is referred to as

the deformed MP law, whose properties are summarized as follows; see Lemmas 2.5 and

2.6 of [51] for more details.

Lemma 4.1. The support of � is a union of connected components on R+ :

supp � =
q⋃

k=1
[e2k,e2k−1] ⊂ (0,∞), (4.4)

where q depends on the ESD of �0. Here e1 ≥ e2 ≥ · · · ≥ e2q can be characterized as

follows: there exists a real sequence {tk}
2q
k=1 such that (x,m) = (ek,tk) are real solutions

to the equations

x = f (m), and f ′(m) = 0.

Based on Lemma 4.1, we shall call the sequence of ek,k = 1, 2, · · · , 2q, as the

edges of the deformed MP law �. To avoid repetition, we summarize the assumptions the

will be used in the current paper. These assumptions are standard and commonly used

in the random matrix theory literature; see Definition 2.7 of [51] for more details.

Assumption 2. We assume that (4.2) holds and |cN − 1| ≥ τ . Moreover, for X = (Xij), we

assume that Xij, 1 ≤ i ≤ N, 1 ≤ j ≤ M, are iid random variables such that

EXij = 0, EX2
ij =

1

M
.
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4004 X. Ding and T. Trogdon

Moreover, we assume that for all k ∈ N, there exists some constant Ck such that

E|
√
MXij|k ≤ Ck. (4.5)

For �0, we assume that for some small constant 0 < τ1 < 1, the following holds:

τ1 ≤ σN ≤ σN−1 ≤ · · · ≤ σ1 ≤ τ−11 .

Additionally, for the two sequences of {ek} and {tk} in Lemma 4.1, we assume that

ek ≥ τ1, min
l �=k
|ek − el| ≥ τ1, min

i
|σ−1
i
+ tk| ≥ τ1.

Finally, for any fixed small constant τ2, there exists some constant ς = ςτ1,τ2 > 0 such

that the density of � in [e2k + τ2,e2k−1 − τ2] is bounded from below by ς .

Remark 4.1. Wemake a remark on the deformedMP law. Even though we will not study

� and its perturbation (i.e., the empirical spectral distribution (ESD)), we point out that �

satisfies Assumption 1.According to [51, Section A.2] (or Lemma 3.6 of [34], or Proposition

2.6 of [40]), under Assumption 2, we have that �(x) ∼ √ek − x, x ∈ [ek − τ ,ek] for some

small constant τ > 0. Consequently, we can conclude that � satisfies (2.16) by setting

aj = e2j,bj = e2j−1 and wj = 0. Moreover, (2)–(4) of Assumption 1 are satisfied due to

Assumption 2.

4.2 The spiked model

We are now ready to state our model by adding r spikes to �0, where r ≥ 0 is some fixed

integer. Let � be a spiked sample covariance matrix based on �0 so that it admits the

following spectral decomposition

� =
M∑

i=1
σ̃iviv

∗
i ,

where σ̃i = (1+ di)σi such that di > 0, i ≤ r and di = 0, i > r. To ease our discussion, we

assume the spikes are supercritical as summarized below following [32].

Assumption 3. For i ≤ r, we assume that there exists some constant � such that

σ̃i > −t−11 +� . (4.6)

We also assume that σi, 1 ≤ i ≤ r are distinct and bounded.
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RHP Approach to Perturbation Theory of OPs 4005

Then, the spiked sample covariance matrix and its companion are defined,

respectively, as follows:

Q̃1 := �1/2XX∗�1/2, Q̃2 := X∗�X. (4.7)

The above model is a generalization of Johnstone’s spiked sample covariance matrix

model [48]. Let {λi(Q̃1)} be the eigenvalues Q̃1 in the decreasing order and {ũi} be the

associated eigenvector.

Under Assumption 3, we have the following result [32, Theorem 3.6]. Recall f (x)

in (4.3).

Lemma 4.2. Suppose Assumptions 2 and 3 hold. Then we have that for all 1 ≤ i ≤ r,

∣∣∣λi(Q̃1)− f (−σ̃−1i
)

∣∣∣ = O
P
(N−1/2), and

∣∣∣∣∣〈ũi,vi〉
2 − 1

σ̃i

f ′(−σ̃−1
i
)

f (−σ̃−1
i
)

∣∣∣∣∣ = O
P
(N−1/2).

4.3 VESDs and their limits

In this subsection, we introduce the VESDs and their deterministic limits. To be consis-

tent with the notation of Section 2, we denote the VESDs as ν = νN , ν̃ = ν̃N and their

deterministic limits as μ = μN , μ̃ = μ̃N for the non-spiked model in (4.1) and spiked

model in (4.7), respectively.

For any projection, b, we denote the VESD of Q1 as

ν =
N∑

i=1
|〈ui,b〉|2δλi(Q1)

, (4.8)

where {ui} are the eigenvectors ofQ1 and {λi(Q1)} are its eigenvalues. Similarly,we denote

the VESD of Q̃1 as

ν̃ =
N∑

i=1
|〈ũi,b〉|2δλi(Q̃1)

.

The limits of ν and ν̃ can be characterized by the so-called anisotropic local law (cf.

Lemmas C.1 and C.9). Especially, the Stieltjes transforms ofμ and μ̃ can be characterized,

respectively, as [33, 51]

mμ(z) = −
1

z
b∗(1+m(z)�0)

−1b, mμ̃(z) =
N∑

i=1

ω2
i

1+ di

(
−1

z
(1+m(z)σi)−1 − Li

)
, (4.9)
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4006 X. Ding and T. Trogdon

where we denote

ωi = v∗i b, Li = 1(i ≤ r)z−1(1+m(z)σi)−2(d−1i + 1− (1+m(z)σi)−1)−1, (4.10)

and recall that m(z) is the Stieltjes transform of the deformed MP law.

Before concluding this subsection, we explain how the measures μ and μ̃ satisfy

Assumption 1. First, using the inversion formula that μ{[a,b]} = π−1
∫ b
a Immμ(x+i0+)dx,

it is easy to see from (4.9) that the density of μ, denoted as �b satisfies (see (3.4) of [33])

�b(x) =
�(x)

x
b∗�0

[
I + 2Rem(x + i0+)�0 + |m(x + i0+)|2�2

0

]−1
b. (4.11)

Under Assumption 2, it is easy to see that �b(x) ∼ �(x) so that μ satisfies Assumption 1

as discussed in Remark 4.1.

For the spiked model, it depends crucially on b. We will need the following

assumption to match the condition (5) of Assumption 1.

Assumption 4. For ωi defined in (4.10) and all 1 ≤ i ≤ r, we assume that either of the

following holds:

ωi = 0, or 1/D ≤ |ωi| ≤ D.

Under Assumption 4, on one hand, ωi = 0 for all 1 ≤ i ≤ r, it is easy to see that μ and

μ̃ coincide so that Assumption 1 holds. On the other hand, if some of ωi are nonzero

satisfying Assumption 4, without loss of generality, say only ω1 � 1. Using the relation

that d−1
i
+1− (1+m(f (−σ̃−1

i
))σi)

−1 = 0, according to (4.9), Lemma 4.2 and Assumption 4,

we find that μ̃ satisfies (2.16) by setting aj = e2j,bj = e2j−1 and c1 = f (−σ̃−11 ),w1 =
1
σ̃1

f ′(−σ̃−11 )

f (−σ̃−11 )
,p = 1. The general setting can be analyzed similarly.

4.4 A general CLT

As we can see from Section 3.3, it suffices to establish the CLT of the following form,

Y :=
√
Mη

∮

�

g(z)c0(z;μ− ν)dz, or Ỹ :=
√
Mη

∮

�

g(z)c0(z; μ̃− ν̃)dz, (4.12)

where g(z) is an analytic in a neighborhood of � and η = η(n) depending on some other

parameter n is as in (2.22). Here we recall again that n can be the order of orthogonal

polynomials or the number of iterations in the numerical algorithms.
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RHP Approach to Perturbation Theory of OPs 4007

According to our applications, by Lemma 4.2 and the local law (cf. Lemma C.1),

g(z) can be purely deterministic and given by the entries of Mn(z;μ)/z
k,k = 0, 1 after

some proper normalization so that
∮
�
|g(z)||dz| � 1 and Y is a real-valued random

variable as required. The main results are reported in Theorem 4.3. We first introduce

the following definition.

Definition 1. For two sequences of random vectors xN ,yN ∈ R
k,N ≥ 1, we say they are

asymptotically equal in distribution, denoted as xN � yN , if they are tight and satisfy

lim
N→∞

(
El(xN)− El(yN)

)
= 0,

for any bounded continuous function l : Rk → R.

Then we provide some notation. Denote

�1(z) := −
1

z
(1+m(z)�0)

−1, (4.13)

and for any deterministic vectors h1,h2 ∈ R
N , we define

V1(h1,h2) :=
η

2π2

∮

�

∮

�

√
z1z2g(z1)g(z2)

[
h∗1(1+m(z1)�0)

−1�0�1(z2)h2

]
(4.14)

×
[
h∗1(�1(z1)−�1(z2))h2

z1 − z2

]
dz1dz2, (4.15)

where we used the convention that

lim
z1→z2

h∗1(�1(z1)−�1(z2))h2

z1 − z2
= h∗1�

′
1(z1)h2,

and

V2(h1,h2) := −
η

4π2

( ∮

�

∮

�

g(z1)g(z2)z1z2m(z1)m(z2)K(z1, z2)dz1dz2

)
, (4.16)

where K(z1, z2) is defined by

K(z1, z2) :=
√
z1

∑

i

(�
1/2
0 �1(z1)h1h

∗
2�1(z1)�

1/2
0 )ii(�

1/2
0 �1(z2)h1h

∗
2�1(z2))ii.

Let κ4 be the cumulant of the random variable Xij as defined in (C.10).
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4008 X. Ding and T. Trogdon

Theorem 4.3. Suppose Y and Ỹ are real valued. Suppose that Assumption 2 holds, then

we have that

Y � N (0,V1(b,b)+ κ4V2(b,b)).

Moreover, if Assumptions 3 and 4 hold,

Ỹ � N (0, Ṽ1 + κ4Ṽ2),

where we used the notation that for k = 1, 2,

Ṽk :=
N∑

i=1

ω2
i

1+ di

(
Vk(vi,vi)− Vk(li,vi)− Vk(vi, li)− Vk(z

−1li, li)
)
.

where ωi is defined in (4.10) and li is defined in (C.68) after some additional necessary

notation is introduced.

Proof. See Appendix C. �

Remark 4.2. In our applications, when the deterministic function g(z) is properly

normalized, it is easy to check that

V1(b,b) � 1, V2(b,b) � η.

We recall from (2.22) that V2 = O(n−2). Consequently, when n diverges with any poly-

nomial order, V2(b,b) can be negligible asymptotically and hence the fluctuations only

depend on the first two moments and is therefore more universal. Similar phenomenon

has been observed in the mesoscopic CLT of random matrix theory, see, for example, [6,

15, 45, 59, 76].

Remark 4.3. We provide a few examples to illustrate the results of the spiked model,

that is, the CLT of Ỹ. As can be seen in (C.68),

li = 0, i > r.

Consequently, if b ∈ Span({vi}i>r), we find that

Ṽk = Vk(b,b), k = 1, 2.
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RHP Approach to Perturbation Theory of OPs 4009

That is to say, when b lies in the orthogonal complement of the spiked eigenvectors, the

distribution is the same with the non-spiked model. Moreover, when b = vi∗ , 1 ≤ i∗ ≤ r,

we have that

li∗ =
−1−m(z)σi∗

di∗ + 1− (1+m(z)σi∗)−1
b.

Consequently, we can simplify Ṽk to

Ṽk := (1+ di∗)
−1(Vk(bi∗ ,bi∗)− Vk(li∗ ,bi∗)− Vk(bi∗ , li∗)− Vk(z

−1li∗ , li∗)
)
.

As a consequence of Theorem 4.3, we can establish the asymptotic fluctuations

of the associated orthogonal polynomials.

Corollary 4.4. Suppose the assumptions of Theorem 4.3 hold. Let the parameters c, g,G

and {cj} in (2.23), � in (A.2) and γ (z) in (A.3) defined by the limiting VESD as in (4.11).

Denote

L := c(p−n) e(n−p)g(z)+G(z)−G(∞)×

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦ ,

E1 :=

(
γ (z)+γ (z)−1

2

)
�1(z;d2; (n−p)�+ζ )

�1(∞;d2; (n− p)�+ ζ )
, E2 := e2G(∞)

(
γ (z)−1−γ (z)

2i

)
�1(z;d1; (n−p)�+ζ )

�2(∞;d1; (n− p)�+ ζ )
.

For the non-spiked model, when C logN ≤ n ≤ N1/6−ε for some C > 0 sufficiently large

and ε > 0, sufficiently small, for z ∈ R \ supp(μ), we have

√
M

nCg

(
πn(z; ν)− LE1

)
� N

(
0,

L

C2
g

(V1(b,b)+ κ4V2(b,b))

)
,

where V1 and V2 are defined as in (4.14) and (4.16) by letting η = n−2 and

g(z′) = 1

2πi

1

z′ − z
(
E1Mn(z

′)11 + E2Mn(z
′)12

)
, Cg =

∮

�

|g(z′)||dz′|,

where Mn is defined in (2.21). Similar results hold for the spiked model.

Proof. The proof follows directly from Theorem 4.3 and (2.23). �
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4010 X. Ding and T. Trogdon

Remark 4.4. The normalization is used to ensure that,
∮
�
|g(z′)|/Cg|dz′| is bounded from

below and above so that Theorem 4.3 applies. Using an analogous discussion, we can

derive the CLT for the Cauchy transforms as in (2.23). Since the concerned quantities

of the numerical algorithms depend on the orthogonal polynomials and their Cauchy

transforms, we can also obtain the asymptotic fluctuation of these algorithms using

Theorems 3.6 and 4.3. We omit further details here.

5 Numerical Simulations and Some Discussions

We now provide numerical simulations of our estimates and perturbation theory to

demonstrate the asymptotic behavior of both matrix factorizations and iterative algo-

rithms (cf. Section 3.1) applied to the spiked sample covariance model.

5.1 Calculations of key parameters

As we have seen in the results of Sections 2 and 3 that many essential parameters need

to be estimated before the application of Theorem 3.6. The first quantity is the density

of the limiting VESD, its support, and strength of the spikes. In Appendix D, we provide

a numerical method to approximate this. The outline of the procedure is:

• First, to compute the asymptotic support of the measure we use a rootfinder

guided by Lemma 4.1.

• Second, to compute the asymptotic location of the spikes we use Lemma 4.2.

• Then we fit the coefficients in a mapped Chebyshev approximation of the

density hj on [aj,bj] by solving a constrained optimization problem.

The method works with the empirical resolvent 〈b, (W − z)−1b〉 or with the

limiting Stieltjes transforms mμ or mμ̃. In the former case, one should average over a

number of trials. With the density function approximated in a useable form, we can

calculate the other parameters. Appendix D outlines how to then approximate,with good

accuracy, the limiting Jacobi matrix J (μ) from which many other quantities of interest

are easily computable.

Below, we also compute g(0). Since g in Assumption 1 is small in our compu-

tations one can directly implement the procedure outlined in Section A.2.2 using the

methodology of [73, Section 11.6.1] to compute the integrals that arise.

5.2 Performance of CGA with random inputs

In this subsection, we work on CGA when W is a spiked sample covariance matrix. We

first work on an example where the support of the limiting VESD consists of two disjoint
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RHP Approach to Perturbation Theory of OPs 4011

intervals (i.e., a single gap) with spikes. Then we study a three intervals (i.e., two gaps)

case. Finally, we study the halting time of CGA, that is, the number of iterations needed

before CGA terminates according to some stopping rule.

In the computations that follow, it is interesting to compare what results to the

classical Chebyshev upper bound for the convergence of CGA [46]:

‖rn‖2
‖rn−1‖2

≤ δ−1Cheb, δCheb :=
√
κ(W)+ 1√
κ(W)− 1

, κ(W) = λmax(W)/λmin(W). (5.1)

5.2.1 CGA: single gap with spikes

Consider the spiked sample covariance matrix W = �1/2XX∗�1/2 where X is N ×M, has

iid entries,

�0 = diag(8I, I), Xij
L= N (0,M−1),

M = �N/0.3�, d1 = 1, d2 = 0.5, di = 0, i ≥ 3,

(5.2)

and I is the N/2 × N/2 identity matrix. We choose Xij
L= N (0,M−1) for convenience

because, as we have shown, the same limiting behavior will happen for any other

admissible entry distribution. In Figure 1, we apply the CGA to Wx = b with 2b =
f1 + f2 + f3 + fN . The residuals encountered at iteration k concentrate on the black

dashed curve that is computed utilizing the results of Section 3 with parameters

calculated using methodology outlined in Section 5.1. In particular, the choices of the

parameters are

a1 ≈ 0.279, b1 ≈ 1.667, a2 ≈ 3.192, b2 ≈ 15.562,

δ := eg(0) ≈ 1.322,

c1 ≈ 20.319, c2 ≈ 33.755.

(5.3)

In addition to the black curve, we also provide a red curve. The motivation is as

follows. According to Corollary 3.3 and Theorem 3.6 (or Remark 3.2), we find that

‖rn‖2
‖rn−1‖2

≈ e−g(0) .

Note that in this case δCheb ≈ 1.309 indicating that when one accounts for the gap in the

spectrum, a faster convergence rate is predicted.

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/5

/3
9
7
5
/7

2
1
9
2
7
8
 b

y
 U

C
D

M
C

-D
e
p
t. o

f A
n
e
s
 &

 P
a
in

 M
e
d
 u

s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
4



4012 X. Ding and T. Trogdon

(a) (b)

Fig. 1. The CGA runs on the single gap matrix in (5.2). The black oscillatory dashed curve indicates

the large N limit for the residual norms ‖rk‖2 at step k. The shaded gray area is an ensemble of

10000 runs of the conjugate gradient algorithm, displaying the residuals that resulted. The red

dashed line is given by δ−k, δ = eg(0). The overlaid histogram shows the rescaled fluctuations

in the norm of the residual at k = 10. As N → ∞, this approaches a Gaussian density. Lastly,

the histogram in the main frame gives the halting distribution τ(W,b, ε) = min{k : ‖rk‖2 < ε}
for ε = 10−3 (green horizontal line), that is, the statistics of the number of iterations required

to achieve ‖rk‖2 < ε. We can see that our results in Theorem 3.6 are reasonably good even for

N = 200. The accuracy improves when N increases.

Then after being properly scaled, we can use e−ng(0) for the prediction. We find

that both our black and red curves are accurate even for small values of N. Furthermore,

a remarkable feature of (3.8) and (3.9) is that the random components are contained in

the P11 and P12 terms, which have a common exponential factor. This implies that the

fluctuations are on the same exponential scale as the asymptotic mean.We demonstrate

this by considering ‖rk‖2δk in Figure 2.

5.2.2 CGA: Two gaps

Consider the non-spiked sample covariance matrixW = �1/2
0 XX∗�1/2

0 where X is N ×M,

has iid entries,

�0 = diag(3.8I, 1.2I, 0.25I), Xij
L= N (0,M−1), M = �N/0.3�, (5.4)

and I is the N/3 × N/3 identity matrix (We choose I here to be either �N/3� × �N/3� or
�N/3� × �N/3�.). In Figure 3, we apply the CGA to Wx = b with

√
3b = f1 + fN/2 + fN .
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RHP Approach to Perturbation Theory of OPs 4013

(a) (b)

Fig. 2. The CGA runs on the single gap matrix in (5.2). The black oscillatory dashed curve indicates

the large N limit for the scaled residual norms ‖rk‖2δk at step k. The shaded gray area is an

ensemble of 10000 runs of the conjugate gradient algorithm, displaying the scaled residuals that

resulted. We can see that our predictions in Theorem 3.6 are quite accurate once N is reasonably

large.

We again report both the black and red curves, and they are reasonably accurate. The

choices of the parameters we find are

a1 ≈ 0.080, b1 ≈ 0.349,

a2 ≈ 0.496, b2 ≈ 1.828,

a3 ≈ 2.029, b3 ≈ 6.767,

δ := eg(0) ≈ 1.248.

Note that in this case δCheb ≈ 1.244.

5.3 The Jacobi and Cholesky matrices

In this subsection, we analyze the entries of the Jacobi matrix in (3.5) and its associated

Cholesky decomposition in (3.6). We first pause to review some classical results. The

Householder tridiagonalization of a real symmetric or complex Hermitian matrixW is a

fundamental numerical process. The process is succinctly described by the selection of

a sequence of Householder reflectors, U1, . . . ,UN , so that

UNUN−1 · · ·U1WU∗1 · · ·U∗N−1U∗N = J,
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4014 X. Ding and T. Trogdon

(a) (b)

Fig. 3. The CGA runs on the two gap matrix in (5.4). The details of the figures are similar to the

captions of Figure 1.We can see that our results in Theorem 3.6 remain accurate for the new choice

of �0.

is a symmetric tridiagonal matrix. The typical convention is to select each Uj so that

the only non-zero entry in the first row and first column is a one in the (1, 1)-entry. The

off-diagonal entries of J can be chosen to be non-negative.

When W
L= XX∗, Xij

L= N (0,M−1), the case of a Wishart matrix, the distribution

of J can be calculated explicitly [37, 69] and is given by

J
L= LLT , L = 1√

M

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

χβM

χβ(N−1) χβ(M−1)
χβ(N−2) χβ(M−2)

. . .
. . .

χβ χβ(M−N+1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5.5)

where χγ is a χ-distributed random variable with γ degrees of freedom and all the

entries of L are independent. Here β = 1 if the matrix W has real entries. In another

way of speaking, the matrix L gives the distribution of the Cholesky factorization

of the tridiagonalization of a Wishart matrix. One can generalize this tridiagonal-

ization by asking that the first column of U∗1 · · ·U∗N−1U∗N be a prescribed vector b

so that

T = T(W,b), L = L(W,b). (5.6)
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RHP Approach to Perturbation Theory of OPs 4015

This can be accomplished by simply constructing a matrix U0, U
∗
0U0 = I whose first

column is b and apply the Householder tridiagonalization procedure to U∗0WU0. In

this case, the tridiagonal matrix that results coincides with the output of the Lanczos

algorithm (In numerical linear algebra these twomethods are treated as distinct, in part,

because they have vastly different behavior in finite-precision arithmetic.) .

More is true. Consider the discrete measure

ν = νW,b =
N∑

i=1
|〈ui,b〉|2δλi(W),

for a general positive definite matrix W. Then,

T(W,b) = JN(ν),

L(W,b) = LN(ν),

which directly connects the output of the algorithms to the VESD. In the context of

Wishart matrix, supposing cN = N/M → c ∈ (0, 1], one can immediately see that the

(k,k) and (k,k − 1) entries of L in (5.5) tend to 1 and
√
c, respectively, provided k � N.

Furthermore, the fluctuations will be Gaussian, by the central limit theorem. It is of

intrinsic interest to ask if this phenomenon persists for the spiked sample covariance

model we analyze here. Our results establish this for k� N1/6 and we conjecture it holds

for k� N.

We now explain simulations based on the matrix model defined by (5.2) to

demonstrate both our results and add evidence that that k � N is necessary. Let

ν be given by (4.8) with limiting measure μ using the setting (5.2). As stated, the

tridiagonalization of the spiked sample covariance model and its Cholesky factorization

are given by JN(ν) and LN(ν) using the notation of (3.5) and (3.6). In this section, we

examine ak(ν) and αk(ν) for k ≤ 8N1/6 + 10 and k ≤ N/3 using the results of Section 3.

Figure 4 demonstrates a consequence of our results (While our results technically only

hold for k � N1/6, allowing k ≤ 8N1/6 + 10 demonstrates that we expect our results up

to hold up to this threshold.) that the entries of Jk(ν) concentrate on those of Jk(μ) for

k� N1/6. If we allow k to be proportional to N, we do not expect this to occur as Figure 5

demonstrates.

Lastly, we consider the fluctuations of the diagonal elements of J (ν) where ν

is the VESD in (4.8). We have shown that as N → ∞, for k fixed, the fluctuations of ak

are Gaussian. Furthermore, by Theorem 4.3, Corollary 4.4, and Remark 4.4, the variance

depends on the fourth moment of the matrix entries. We confirm this clearly in the top
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4016 X. Ding and T. Trogdon

(c) (d)

(a) (b)

Fig. 4. The first k entries of the matrices JN(ν) and LN(ν) for k ≤ 5N1/6 + 10 in the case of (5.2).

The solid blue and dashed red curves give the large N limit of the diagonal and subdiagonal,

respectively, computed using the results of Theorem 3.6 with the parameters calculated using

the methods outlined in Section 5.1. The shaded region is produced using 1000 samples for the

displayed value of N. This demonstrates that if ν is given by (4.8) with limiting measure μ, using

the setting (5.2), then the entries of Jk(ν) concentrate on those of Jk(μ) if k� N1/6.

two panels of Figure 6. But as Remark 4.2 points out, as k increases, the dependence on

the fourth moment should become negligible. Figure 6 demonstrates that this happens

quickly.

Appendix A. Orthogonal Polynomials and Their Asymptotics: Proof of Theorem 2.2

A.1 A Riemann surface

In order to describe the asymptotics of polynomials orthogonalwith respect to ameasure

μ from (2.16) satisfying the assumptions (1)–(5), we need to describe a Riemann surface.
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RHP Approach to Perturbation Theory of OPs 4017

(a) (b)

Fig. 5. The first k entries of the matrices JN(ν) and LN(ν) for k ≤ N/3 in the case of (5.2). We can

see that even though the entries of Jk(ν) concentrate on those of Jk(μ) for not-so-large k as in

Figure 4, the prediction becomes inaccurate when k is larger.

General references for what follows are [4, 7, 21]. Associated with the intervals [aj,bj], 1 ≤
j ≤ g+ 1, is a Riemann surface, described by the solution set of

w2 =
g+1∏

j=1
(z− aj)(z− bj) =: P2g+2(z),

in C
2. Consider a cut version of the complex plane:

Ĉ = C \
g+1⋃

j=1
[aj,bj].

Then define a sectionally analytic function

R : Ĉ→ C, R(z)2 = P2g+2(z), R(z)→ 1, as z→∞.

A Riemann surface � can be constructed by adjoining copies of Ĉ; see Figure A7 for an

illustration and a description of the a-cycles and b-cycles. We have a natural projection

π : � → C defined by π((z,w)) = z and its right-inverses π−1
j
(z) = (z, (−1)j+1R(z)),

j = 1, 2.

As is well-known (see [7], for example) a basis for holomorphic differentials on �

is given by

dνj =
zj−1

R(z)
dz, j = 1, 2, . . . ,g.
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4018 X. Ding and T. Trogdon

Fig. 6. Statistics of ak for the model in (5.2) for different choices of distributions on the entries

Xij when N = 1000. For each choice of distribution, we plot a histogram for
√
M(ak/〈ak〉−1) using

50, 000 samples where 〈·〉 gives the sample average over these 50, 000 samples. The thin black curve

is the density for a normal distribution with mean zero and variance determined by the sample

variance of
√
M(ak/〈ak〉 − 1) when Xij

L= N (0,M−1). The shaded red area gives the histogram

for N (0,M−1) entries, the shaded gray area gives the histogram for the discrete distribution on

{−1/
√
M, 0, 1/

√
M} that matches its first four moments withN (0,M−1), and the white histogram is

produced by Xij = ±1/
√
M with equal probability (Bernoulli). For smaller values of k the variance

clearly is different between the moment matching distribution and the Bernoulli distribution. As

k increases, this difference dramatically diminishes, as predicted in Corollary 4.4.

Define the g× g period matrix A by

Aij =
∮

ai

dνj.

Note that if c =
[
c1 c2 · · · cg

]T
= A−1ej for the standard basis vector ej, then

∮

ai

g∑

k=1
ckdνk =

g∑

k=1
ckAik = eTi Ac = eTi ej = δij.
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RHP Approach to Perturbation Theory of OPs 4019

Fig. A7. An illustration of the Riemann surface �.

So, we define a basis of normalized differentials

⎡
⎢⎢⎢⎢⎢⎣

dω1

dω2
...

dωg

⎤
⎥⎥⎥⎥⎥⎦
= 2πiA−1

⎡
⎢⎢⎢⎢⎢⎣

dν1

dν2
...

dνg

⎤
⎥⎥⎥⎥⎥⎦
,

which satisfies
∮

ai

dωj = 2πiδij.

The invertibility of the matrix A follows from abstract theory as in [13].

Now fix the base point a = a1 and define

u(z) =
(∫ z

a

dωj

)g

j=1
, z �∈ R,

where the path of integration is taken to be a straight line connecting a to z. Note that

this extends to a vector-valued holomorphic function (We abuse notation here and treat

u as both a function of z ∈ C \ R and a function of P ∈ �.) u(P) on the Riemann surface

� provided � is cut along the cycles {a1, . . . , ag, b1, . . . , bg}, making it simply connected.

Another important feature is that for z ∈ Ĉ, u(π−11 (z)) = −u(π−12 (z)).

Define the associated Riemann matrix of b periods,

τ =
(
τij

)
=

(∫

bj

dωi

)

1≤i,j≤g
.

Note that τ is symmetric and pure imaginary and −iτ is positive definite. Next, define

the vector k of Riemann constants component wise via

kj =
2πi+ τjj

2
− 1

2πi

∑

� �=j

∮

a�

ujdω�, j = 1, 2, . . . ,g.
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4020 X. Ding and T. Trogdon

The associated theta function is given by

θ(z; τ) =
∑

m∈Zg
exp

(
1

2
(m, τm)+ (m, z)

)
, z ∈ C

g, (A.1)

where (·, ·) is the real scalar product. This series is convergent because τ has a negative-

definite real part. The following hold:

θ(z+ 2πiej; τ) = θ(z; τ),

θ(z+ τej; τ) = exp

(
−1

2
τjj − zk

)
θ(z; τ).

A divisor D =
∑

j njPj is a formal sum of points {Pj} on the Riemann surface �.

The Abel map of a divisor is defined via

A(D) =
∑

j

nju(Pj).

We now determine the jumps satisfied by the vector-valued function,

�(z;d;v) = �(z) :=
[
θ(u(z)+v−d;τ)
θ(u(z)−d;τ)

θ (−u(z)+ v − d; τ)
θ (−u(z)− d; τ)

]
, z �∈ R. (A.2)

Note that the first component function is nothing more than θ(u(P)+v−d;τ)
θ(u(P)−d;τ) restricted to the

first sheet. The same is true for the second component function on the second sheet. The

vector v is left arbitrary for now, and it will be chosen in a crucial way in what follows.

Then note that

u+(z)+ u−(z) =

⎛
⎝2

j−1∑

k=1

∫
ak+1

bk

dω�

⎞
⎠
g

�=1

=

⎛
⎝
j−1∑

k=1

∮

ak

dω�

⎞
⎠
g

�=1

= 2πiN, z ∈ [aj,bj],

for a vector N of zeros and ones. Then we compute

u+(z)− u−(z) =

⎛
⎝2

j∑

k=1

∫
bk

ak

dω�

⎞
⎠
g

�=1

=
(∮

bj

dω�

)g

�=1
= τej, z ∈ [bj,aj+1].

Then check

θ
(
±u(z)+ τej + v − d; τ

)

θ
(
±u(z)+ τej − d; τ

) = e±vk
θ (±u(z)+ v − d; τ)
θ (±u(z)− d; τ) .

Then on (−∞,a1) we have u+(z) = u−(z). And on (bg+1,∞) we have

u+(z)− u−(z) =
(∮

C

dωj

)g

j=1
,

where C is a clockwise-oriented simple contour that encircles [a1,bg+1]. Then because all

the differentials dωj are of the form P(z)/R(z) where P is a degree g− 1 polynomial and
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RHP Approach to Perturbation Theory of OPs 4021

R(z) = O(zg+1) as z → ∞, we see that
∮
C
dωj = 0. Thus, ignoring any poles � may have,

we find that � satisfies the following jump conditions:

�+(z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�−(z)

⎡
⎣0 1

1 0

⎤
⎦ z ∈ (aj,bj),

�−(z)

⎡
⎣e
−vj 0

0 evj

⎤
⎦ z ∈ (bj,aj+1),

�−(z) z ∈ (−∞,a1) ∪ (bg+1,∞).

Also, note that since u(∞) is well-defined, � has a limit as z → ∞ and is analytic at

infinity.

Of particular importance are the poles of�. It is known that (see [7], for example)

if θ(u(P)−A(D)−k),D = P1+· · ·+Pg, is not identically zero (This holds ifD is nonspecial.)

, then, counting multiplicities, θ(u(P) − A(D) − k), has g zeros on �. These zeros are

characterized by

θ(u(P)−A(D)− k) = 0 ⇔ P = Pj,

for some j. Next, define

γ (z) =

⎡
⎣
g+1∏

j=1

(
z− bj
z− aj

)⎤
⎦
1/4

, (A.3)

analytic on C \ ∪j[aj,bj], with γ (z) ∼ 1, z → ∞. It follows that γ − γ−1 has a single root

zj in (bj,aj+1) for j = 1, 2, . . . ,g, while γ + γ−1 does not vanish on C \ ∪j[aj,bj]. So, define
two divisors

D1 =
g∑

j=1
π−11 (zj), D2 =

g∑

j=1
π−12 (zj).

It follows from [35] (see also [73, Lemma 11.10]) that these divisors are nonspecial and

therefore the θ functions we will consider do not vanish identically.

Note that for d1 := A(D1) + k, the function z !→ θ(u(z) − d1; τ) has zeros at zj,

while the function z !→ θ(−u(z)− d1; τ) is non-vanishing. Similarly, for

d2 := A(D2)+ k, (A.4)

the function z !→ θ(−u(z) − d2; τ) has zeros at zj, while the function z !→ θ(u(z) − d2; τ)

is non-vanishing.
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4022 X. Ding and T. Trogdon

Inspired by [30], this leads us to consider

Ln(z) =

⎡
⎢⎢⎣

(
γ (z)+γ (z)−1

2

)
�1(z;d2;v)

(
γ (z)−γ (z)−1

2i

)
�2(z;d2;v)

(
γ (z)−1−γ (z)

2i

)
�1(z;d1;v)

(
γ (z)+γ (z)−1

2

)
�2(z;d1;v)

⎤
⎥⎥⎦ , (A.5)

which is analytic in C \ ∪j[aj,bj], with a limit as z→∞ and satisfies the jumps:

L+n (z) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

L−n (z)

⎡
⎣ 0 1

−1 0

⎤
⎦ z ∈ (aj,bj),

L−n (z)

⎡
⎣e
−vj 0

0 evj

⎤
⎦ z ∈ (bj,aj+1),

L−n (z) z ∈ (−∞,a1) ∪ (bg+1,∞).

This follows because γ+(z) = iγ−(z) for z ∈ (aj,bj) and therefore

γ+(z)+ (γ (z)−1)+ = i
(
γ−(z)− (γ (z)−1)−

)
,

γ+(z)− (γ (z)−1)+ = i
(
γ−(z)+ (γ (z)−1)−

)
.

We point out that (A.5) was first proposed in [30] and then used by many authors, to list

but a few, [17, 20, 21].

A.2 Asymptotics of orthogonal polynomials: proof of Theorem 2.2

The derivation of the asymptotic formulae proceeds in six steps, each of which trans-

forms Yn(z;μ) by explicit algebraic transformations:

• Step 1: Turn residue conditions into rational jump conditions.

• Step 2: The determination of a differential, also called the exterior Green’s

function with pole at infinity, that is used to remove the singularities of Yn at

infinity.

• Step 3: Lens the Riemann–Hilbert problem, invoking analyticity of functions

in the jump matrix, to judiciously factor and move jumps into regions where

exponential decay can be induced.

• Step 4: Use the differential to remove the singularities at infinity and induce

exponential decay (decay to the identity matrix) on contours moved away the

support of μ.
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RHP Approach to Perturbation Theory of OPs 4023

• Step 5: Determine the Szegoő function that removes the details of the remain-

ing jumps and converts them to piecewise constant jumps.

• Step 6: Now that the original unknown Yn has been transformed to something

that has jump matrices that are exponentially close to being piecewise

constant, the limiting “model” Riemann–Hilbert problem is solved explicitly

using theta functions.

The result, after unwinding all the transformations, is an explicit asymptotic

expression for Yn with exponentially small error terms. This procedure is far from new

as it is applied in this form to measures supported on a single interval in [1, 55, 57] and

in greater generality in [77]. We rederive the results of [77] in our special case to make

them more explicit.

A.2.1 Step 1: residue conditions to rational jumps

Consider the function Yn(z;μ) as defined in (2.2). Now, consider a new unknown,

Zn(z;μ) = Yn(z;μ)

[∏p
j=1(z− cj)−1 0

0
∏p

j=1(z− cj)

]
.

This eliminates poles in the second column and adds them to the first. The residue

condition implies that near cj

Yn(z;μ) =

⎡
⎣Yn(cj;μ)11 + O(z− cj)

wj

2πi

Yn(cj;μ)11
z−cj + O(1)

Yn(cj;μ)21 + O(z− cj)
wj

2πi

Yn(cj;n)21
z−cj + O(1)

⎤
⎦ .

Then, for Zn, we have

Zn(z;μ) =

⎡
⎣
Yn(cj;μ)11

z−cj
∏

k �=j(cj − ck)−1 + O(1)
wj

2πi
Yn(cj;μ)11

∏
k �=j(cj − ck)+ O(z− cj)

Yn(cj;μ)21
z−cj

∏
k �=j(cj − ck)−1 + O(1)

wj

2πi
Y21(cj;n)

∏
k �=j(cj − ck)+ O(z− cj)

⎤
⎦ .

From this, it follows that

Resz=cjZn(z;μ)=
[
Yn(cj;μ)11

∏
k �=j(cj−ck)−1 0

Yn(cj;μ)21
∏

k �=j(cj−ck)−1 0

]
= lim
z→cj

Zn(z;μ)

⎡
⎣ 0 0

2πi
wj

∏
k �=j(cj−ck)−2 0

⎤
⎦.

The other important properties of Zn(z;μ) are given by

lim
ε→0+

Zn(z+ iε;μ) = lim
ε→0+

Zn(z− iε;μ)

[
1 ρ(z)

∏p
j=1(z− cj)2

0 1

]
, z ∈ (−1, 1),

Zn(z;μ)

[
z−(n−p) 0

0 zn−p

]
= I + O(1/z), z→∞.
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4024 X. Ding and T. Trogdon

Now, let �j be a small circle centered at cj with radius sufficiently small so that

it does not intersect any other �k for k �= j and so that it does not intersect any �j for all

j. Denote by
◦

�j the region enclosed by �j. Define

Žn(z;μ) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Zn(z;μ) z ∈ C \
(⋃g+1

j=1 [aj,bj] ∪
⋃p

j=1(�j ∪
◦

�j)
)
,

Z(z;n)

⎡
⎣ 1 0

− w̃j

z−cj 1

⎤
⎦ z ∈

◦

�j \ {cj},

where w̃j is defined as

w̃j :=
2πi

wj

∏

k �=j
(cj − ck)−2. (A.6)

Then it follows that Žn(z;μ) has a removable singularity at z = cj for each j. We

give �j counter-clockwise orientation and denote by Ž±n the limit to �j from the interior

(+) or exterior (−). We have

Ž+n (z;μ) = Ž−n (z;μ)

⎡
⎣ 1 0

w̃j

z−cj 1

⎤
⎦ , z ∈ �j.

A.2.2 Step 2: determine the correct differential

Our next task is to remove the growth/decay at infinity. We look for a function g that

satisfies:

(a) g′(z) = 1/z+ O(1/z2) as z→∞.

(b) g′+(z), g
′
−(z) ∈ iR on [aj,bj].

(c)
∫ aj+1
bj

g′(z)dz = 0, j = 1, 2, . . . ,g

Based on this, define

g′(z) =
Qg(z)

R(z)
, where R(z)2 =

g+1∏

j=1
(z− aj)(z− bj), (A.7)

whereQg is a monic polynomial of degree g, providing g degrees of freedom to satisfy the

requisite conditions. We then see that R+(z) is purely imaginary in each interval (aj,bj)

and real-valued on (bj,aj+1). The linear system that defines Qg(z) =
∑

k hkz
k is given by:

∫
aj+1

bj

g−1∑

k=0
hk

zk

R(z)
dz = −

∫
aj+1

bj

zg

R(z)
dz, j = 1, 2, . . . ,g.

Therefore, hk are real-valued coefficients. This implies (b). The unique solvability of

this system for these coefficients follows from the fact that zk

R(z)dz, k = 0, 1, 2, . . . ,g − 1

forms a basis for holomorphic differentials on hyperelliptic Riemann surface defined by
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RHP Approach to Perturbation Theory of OPs 4025

w2 = R(z)2. Then because R(z) is sign definite in each gap (bj,aj+1), for (c) to hold, g′(z)

must vanish in this interval. This implies that Qg(z) has one root dj in each gap (bj,aj+1)

and this accounts for all the roots of Qg(z). This implies that g′(z) < 0 for z < a1 and

g′(z) > 0 for z > bg+1. With the notation b0 = −∞ and ag+2 = +∞, it follows that

R(z)R(z′) < 0, z ∈ (bj,aj+1), z′ ∈ (bj+1,aj+2),

for j = 0, 1, 2, . . . ,g− 1. Since g′(z) < 0 for z < a1, we see that g′(z) > 0 for z ∈ (b1,d1) and
g′(z) < 0 for z ∈ (d1,a2). This is true, in general, with g′(z) being positive on (bj,dj) and

negative on (dj,aj+1).

Then g(z) is defined by integration of g′(z) from a1 to z by a straight line. We can

compute

g+(z)+ g−(z) = 0, z ∈ (aj,bj),

where we use the fact that R+(z) = −R−(z) for z ∈ (aj,bj) along with
∫ aj+1
bj

g′(z)dz = 0 for

each j. And for z ∈ (bj,aj+1) we find

g+(z)− g−(z) = 2

j∑

k=1

∫
bk

ak

(g′)+(z)dz =: �j. (A.8)

So this is constant in each gap (bj,aj+1) and is purely imaginary. Define the vector

� = (�j)
g
j=1. (A.9)

It is easy to see that the above arguments result in the following proposition.

Proposition A.1. For g(z) defined in (A.7), we have that Re g(z) is strictly positive on any

closed subset of R \ ∪j[aj,bj].

Combining Proposition A.1 with the maximum modulus principle applied to

e−g(z), this statement extends to C \ ∪j[aj,bj]. Define

c = lim
z→∞

eg(z)

z
. (A.10)

We remark that |c| is classically known as the capacity of ∪j[aj,bj] [65].

A.2.3 Step 3: lens the problem

Define ρ̌j to be the analytic continuation of ρ(z)
∏p

j=1(z − cj)
2 off [aj,bj] to �j. Then let

Cj be a curve the encircles [aj,bj] lying in �j. Denote the interior of this curve by Dj.
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4026 X. Ding and T. Trogdon

Then define

Sn(z;μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Žn(z;μ)

⎡
⎣ 1 0

−1/ρ̌j(z) 1

⎤
⎦ z ∈ Dj ∩ C

+,

Žn(z;μ)

⎡
⎣ 1 0

1/ρ̌j(z) 1

⎤
⎦ z ∈ Dj ∩ C

−,

Žn(z;μ) otherwise.

We find

S+n (z;μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S−n (z;μ)

⎡
⎣ 1 0

1/ρ̌j(z) 1

⎤
⎦ z ∈ Cj \ R,

S−n (z;μ)

⎡
⎣ 0 ρ̌j(z)

−1/ρ̌j(z) 0

⎤
⎦ z ∈ (aj,bj),

S−n (z;μ)

⎡
⎣ 1 0

w̃j

z−cj 1

⎤
⎦ z ∈ �j

Note that Sn still has the same normalization at infinity as Žn. And recalling that Žn(z;μ)

is bounded on Dj, we see that we have now introduced unbounded behavior in Sn, in an

entrywise sense,

Sn(z;μ) =
[
O(|z− aj|−1/2) O(1)

O(|z− aj|−1/2) O(1)

]
, Sn(z;μ) =

[
O(|z− bj|−1/2) O(1)

O(|z− bj|−1/2) O(1)

]
,

as z→ aj,bj, respectively.

A.2.4 Step 4: normalize at infinity

Define

Šn(z;μ) = c(n−p)σ3Sn(z;μ) e
−(n−p)g(z)σ3
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RHP Approach to Perturbation Theory of OPs 4027

Then it follows that Šn(z;μ) = I + O(z−1) as z→∞ and it satisfies the jumps

Š+n (z;μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Š−n (z;μ)

⎡
⎣ 1 0

e−2(n−p)g(z) /ρ̌j(z) 1

⎤
⎦ z ∈ Cj \ R,

Š−n (z;μ)

⎡
⎣ 0 ρ̌j(z)

−1/ρ̌j(z) 0

⎤
⎦ z ∈ (aj,bj),

Š−n (z;μ)

⎡
⎣e
−(n−p)�j 0

0 e(n−p)�j

⎤
⎦ z ∈ (bj,aj+1),

Š−n (z;μ)

⎡
⎣ 1 0

e−2(n−p)g(z)
w̃j

z−cj 1

⎤
⎦ z ∈ �j.

A.2.5 Step 5: determine the Szegoő function

The point of the Szegoő function is to replace the jumps on (aj,bj)with something simpler

at the cost of adding to the jumps on (bj,aj+1). Define

G(z) = −R(z)
2πi

⎡
⎣
g+1∑

j=1

∫
bj

aj

log ρ̌j(λ)

λ− z
dλ

R+(λ)
+

g∑

j=1

∫
aj−1

bj

ζj

λ− z
dλ

R(λ)

⎤
⎦ , (A.11)

where the constants ζj are yet to be determined.

Before we determine these constants, note that

G+(z)+G−(z) = − log ρ̌j(z), z ∈ (aj,bj),

G+(z)−G−(z) = −ζj, z ∈ (bj,aj+1).

Since R(z) = O(zg), we see that G(z) = O(zg−1). To avoid unbounded behavior of G at

infinity, we choose ζ = (ζj)
g
j=1 so that as z→∞

G(z) = O(1). (A.12)
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4028 X. Ding and T. Trogdon

Indeed, we find a linear system of equations

m� = −
g∑

j=1

∫
bj

aj

log ρ̌j(λ)λ
�−1 dλ

R+(λ)
(A.13)

−
g−1∑

j=1

∫ aj−1

bj

ζjλ
�−1 dλ

R+(λ)
= 0, � = 1, 2, . . . ,g− 1.

We pause briefly to discuss the singularity behavior of G and note that we have

to take some care because in Assumption 1 we allow μ to depend on N.

Lemma A.2. Given Assumption 1, for some ε > 0, and for every j = 1, 2, . . . ,g + 1,

we have

G(z) = −1

4
log[(z− bj)(aj − z)]+ Rj(z), dist(z, [aj,bj]) ≤ ε,

where Rj(z) is a uniformly bounded function for dist(z, [aj,bj]) ≤ ε.

Proof. Recall Proposition A.1.We first observe that if h is a uniformly bounded analytic

function in the Oε = {z : dist(z, [aj,bj]) ≤ ε} then

E(λ) = R(z)

2πi

∫
bj

aj

h(λ)

λ− z
dλ

R+(λ)
(A.14)

is bounded for z in any fixed bounded set. Indeed, for z ∈ Oε/2

R(z)

2πi

∫
bj

aj

h(λ)

λ− z
dλ

R+(λ)
= h(z)

2
− R(z)

4πi

∫

�

h(z′)

z′ − z
dz′

R(z′)
,

where � = ∂O2ε/3. This is uniformly bounded. This function is then evidently bounded

uniformly on {|z| ≤ R} \ Oε/2 for any R > 0. So, consider

H(z) = R(z)

2πi

∫
bj

aj

1
2 log(λ− aj)+

λ− z
dλ

R+(λ)
,

in a neighborhood of aj where the branch cut of log z here is chosen to be [0,∞). By
choosing ε sufficiently small, we find

H(z) = 1

4
log(z− aj)−

R(z)

4πi

∫

∂Õ2ε

1
2 log(z

′ − aj)
z′ − z

dz′

R(z)
+ E(z),
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RHP Approach to Perturbation Theory of OPs 4029

where Õ2ε = O2ε ∩ {Re z ≤ bj} and h = −πi/2 in (A.14) is a constant. This holds

for z ∈ Oε ∩ {Re z ≤ bj − ε}. The second two terms are uniformly bounded for these

values of z. We exchange log z for the principal branch in the initial integral for H(z)

and find

H(z) = 1

4
log(z− aj)−

R(z)

4πi

∫

∂Ǒ2ε

1
2 log(z

′ − aj)
z′ − z

dz′

R(z)
− E(z),

where Ǒ2ε = O2ε ∩ {Re z ≥ aj}. The second two terms are uniformly bounded for

z ∈ Oε ∩ {Re z ≥ aj + ε}. Similar arguments hold after exchanging log(λ − aj) for

log(λ − bj), and the facts about E(λ) apply to the integral of each of ζj, and the lemma

follows. �

This system of equations is uniquely solvable for ζ using the fact that the

normalized differentials exist, and involves the same coefficient matrix that is used to

determine the polynomials Qg above.

Then consider

Tn(z;μ) = eσ3G(∞) Šn(z;μ) e
−σ3G(z) .

We check the jumps of Tn:

T+n (z;μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

T−n (z;μ)

⎡
⎣ 1 0

e−2((n−p)g(z)−G(z)) /ρ̌j(z) 1

⎤
⎦ z ∈ Cj \ R,

T−n (z;μ)

⎡
⎣ 0 1

−1 0

⎤
⎦ z ∈ (aj,bj),

T−n (z;μ))

⎡
⎣e
−(n−p)�j−ζj 0

0 e(n−p)�j+ζj

⎤
⎦ z ∈ (bj,aj+1),

T−n (z;μ)

⎡
⎣ 1 0

e−2((n−p)g(z)−G(z))
w̃j

z−cj 1

⎤
⎦ z ∈ �j.
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4030 X. Ding and T. Trogdon

Since the first and last jumps tend to the identity matrix exponentially fast, uniformly

at a rate O(e−cn) for some c > 0 and we look to solve the model problem

Ť+n (z;μ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ť−n (z;μ)

⎡
⎣ 0 1

−1 0

⎤
⎦ z ∈ (aj,bj),

Ť−n (z;μ)

⎡
⎣e
−(n−p)�j−ζj 0

0 e(n−p)�j+ζj

⎤
⎦ z ∈ (bj,aj+1),

with the condition that Ťn(∞;μ) = I.

A.2.6 Step 6: solution of the model problem

From (A.5), we find that Ťn(z;μ) = Ln(∞)−1Ln(z), with vj = (n − p)�j + ζj, j = 1, 2, . . . ,g,

that is, v = (n− p)�+ ζ . It then follows that

Rn(z;μ) := Tn(z;μ)Ťn(z;μ)
−1,

using the fact that Ťn(z;μ) and its inverse are uniformly bounded (see [21], for example)

on sets bounded away from the support of μ, it follows that

Rn(z;μ) = I + O

(
e−cn

1+ |z|

)
.

Appendix B. Algorithmic Asymptotic Expansions: Proof of Theorem 3.1 and Its

Corollaries

B.1 Detailed expressions of (2.17)

We provide some explicit entry-wise formulae for (2.17). Denote

E(z;n) =
(
I + O

(
e−cn

1+ |z|

))
Ln(∞)−1Ln(z). (B.1)

According to (2.17), we readily obtain that for z outside any region of deformation

Yn(z;μ)11 = c(p−n) e−G(∞) eG(z) e(n−p)g(z)

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦E11(z;n), (B.2)

Yn(z;μ)12 = c(p−n) e−G(∞) e−G(z) e−(n−p)g(z)

⎡
⎣

p∏

j=1
(z− cj)−1

⎤
⎦E12(z;n), (B.3)
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RHP Approach to Perturbation Theory of OPs 4031

Yn(z;μ)21 = c−(p−n) eG(∞) eG(z) e(n−p)g(z)

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦E21(z;n), (B.4)

Yn(z;μ)22 = c−(p−n) eG(∞) e−G(z) e−(n−p)g(z)

⎡
⎣

p∏

j=1
(z− cj)−1

⎤
⎦E22(z;n). (B.5)

Recall (A.3). As γ (z) → 1 when z → ∞, using the definition of Ln(z) in (A.5), we

see that

Ln(∞)−1Ln(z) =
[
�1(∞;d2; (n− p)�+ ζ )−1 0

0 �2(∞;d1, ; (n− p)�+ ζ )−1

]

×

⎡
⎢⎢⎣

(
γ (z)+γ (z)−1

2

)
�1(z;d2; (n−p)�+ζ )

(
γ (z)−γ (z)−1

2i

)
�2(z;d2; (n−p)�+ζ )

(
γ (z)−1−γ (z)

2i

)
�1(z;d1; (n−p)�+ζ )

(
γ (z)+γ (z)−1

2

)
�2(z;d1; (n−p)�+ζ )

⎤
⎥⎥⎦.

(B.6)

Finally, we provide more explicit formulae for E in (B.1). Note that

E11(0;n) =
1

2

⎛
⎝
g+1∏

j=1

(
bj

aj

)1/4

+
g+1∏

j=1

(
aj

bj

)1/4
⎞
⎠ �1(0;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn), (B.7)

and similar expressions are easily derivable for the other entries of E(0;n).

Define �
(1)
1 by,

�1(z;d2; (n− p)�+ ζ ) = �1(∞;d2; (n− p)�+ ζ )+ 1

z
�
(1)
1 (d2; (n− p)�+ ζ )+ O(z−2),

(B.8)

so that �
(1)
1 denotes the residue of �1 at infinity. Together with (B.6), as z → ∞, it

leads to

E11(z;n) = 1+ 1

z

[
�
(1)
1 (d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )

]
+ O(e−cn+z−2). (B.9)

Moreover, using (A.13), we see that as z→∞

e−G(∞) eG(z) = 1+ 1

z

⎡
⎣mg+1

2πi
−

mg

2πi

g+1∑

j=1
(aj + bj)

⎤
⎦+ O(z−2),

c(p−n)
e(n−p)g(z)

zn

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦ = 1+ 1

z

⎡
⎣g1 −

p∑

j=1
cj

⎤
⎦+ O(z−2),
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4032 X. Ding and T. Trogdon

where g1 is defined so that g(z) = log z + log c + g1/z + O(z2) as z → ∞. Combining

(B.13),(B.8), (B.2), (B.6), (A.10), and

z
[
z−nYn(z;μ)11 − 1

]
= z

⎡
⎣c(p−n) e−G(∞) eG(z) e

(n−p)g(z)

zn

⎡
⎣

p∏

j=1
(z− cj)

⎤
⎦E11(z;n)− 1

⎤
⎦ ,

one finds

lim
z→∞

z
(
z−nYn(z;μ)11 − 1

)
=
mg+1
2πi

−
mg

2πi

g+1∑

j=1
(aj + bj)+ (n− p)g1 −

p∑

j=1
cj

+ �
(1)
1 (d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn).

Also, according to (B1) and (B.6), we see that

lim
z→∞

zE12(z;n) =
i

4

g+1∑

j=1
(bj − aj)

�2(∞;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn), (B.10)

where we used the definition (A.3). Consequently, using (B.3), we readily obtain that

−2πi lim
z→∞

zn+1Yn(z;μ)12 =

⎡
⎣π
2

g+1∑

j=1
(bj − aj)

�2(∞;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+ O(e−cn)

⎤
⎦

× lim
z→∞

e−G(∞)−G(z)cp−n
zn−p

e(n−p)g(z)
zp

∏p
j=1(z− cj)−1

= e−2G(∞)c2(p−n)
π

2

g+1∑

j=1
(bj − aj)

�2(∞;d2; (n− p)�+ ζ )

�1(∞;d2; (n− p)�+ ζ )
+O(e−cn),

where in the last step we used the definition (A.10).

B.2 Asymptotic formulae of Section 3.2

Proof of Corollary 3.2. Recall (3.3). By equating coefficients in (3.4) and the definition

of pn(z;μ), we find that

�n(μ) = bn(μ)�n+1(μ), (B.11)

sn(μ) = an(μ)�n(μ)+ bn(μ)sn+1(μ).
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RHP Approach to Perturbation Theory of OPs 4033

There is then, of course, the relation γn(μ) = −2πi�2n(μ). A direct calculation, using

orthogonality and the definitions (2.3) and (2.1), leads to

lim
z→∞

zn+1cn(z;μ) = −
1

2πi
lim
z→∞

zn
∫
πn(x;μ)

1− (x/z)dx = −
1

2πi

∫
xnπn(x;μ)dx

= − 1

2πi
�−2n (μ).

This gives

bn(μ)
2 = γn(μ)

γn+1(μ)
=

limz→∞ zn+2cn+1(z;μ)

limz→∞ zn+1cn(z;μ)
= lim

z→∞
zYn+1(z;μ)12
Yn(z;μ)12

. (B.12)

The expression

an(μ) = lim
z→∞

z−n+1(πn(z;μ)− zn)− lim
z→∞

z−n(πn+1(z;μ)− zn+1),

directly follows from (B.11) and the definition of sn, �n. From the definition (2.17), one has

an(μ) = − lim
z→∞

z−n(Yn+1(z;μ)11 − zYn(z;μ)11). (B.13)

Then the proof follows immediately from Theorem 3.1. �

Proof of Corollary 3.3. By [64, Proposition 4.1] and the definition (2.17), we have

‖en‖2W = 2πi
cn(0;μ)

πn(0;μ)
= 2πi

Yn(0;μ)12
Yn(0;μ)11

, (B.14)

and

‖rn‖22 =
∏n−1

j=0 bj(μ)
2

πn(0;μ)
2
= −2πi limz→∞ zn+1Yn(z;μ)12

Yn(0;μ)
2
11

, (B.15)

where we used (B.12):

n−1∏

j=0
bj(μ)

2 = lim
z→∞

n−1∏

j=0

zYj+1(z;μ)12
Yj(z;μ)12

= lim
z→∞

zn
Yn(z;μ)12
Y0(z;μ)12

,

and that Y0(z;μ)12 = − 1
2πiz

(1+ O(z−1)).

The proof of the first equation follows directly from the above formula and (B.2)

and (B.3). For the second equation, combining with Theorem 3.1, we can complete the

proof. �

Proof of Corollary 3.4. Using the facts

detJn(μ) =
n−1∏

j=0
αj(μ)

2, πn(z;μ) = det(zI − Jn(μ)),
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4034 X. Ding and T. Trogdon

we obtain that

(−1)nπn(0;μ) =
n−1∏

j=0
αj(μ)

2.

Combining with (J )j,j+1 = αjβj, we immediately see that

n−1∏

j=0

βj(μ)
2

αj(μ)
2
=

∏n−1
j=0 bj(μ)

2

πn(0;μ)
2

.

This gives the expressions

αn(μ)
2 = −

πn+1(0;μ)

πn(0;μ)
, βn(μ)

2 = −b2n(μ)
πn(0;μ)

πn+1(0;μ)
. (B.16)

The proof then follows from Theorem 3.1 and Corollary 3.2. �

Appendix C. CLT for Spiked Sample Covariance Matrix Model: Proof of Theorem 4.3

In this section, we prove the CLT as in Section 4.4. Throughout this section, we will

consistently use the notion of stochastic domination,which provides a precise statement

of the form “ξN is bounded by ζN up to a small power of N with high probability”.

Definition 2. (i) Let

ξ =
(
ξ (N)(u) : N ∈ N,u ∈ U(N)

)
, ζ =

(
ζ (N)(u) : N ∈ N,u ∈ U(N)

)

be two families of nonnegative random variables, where U(N) is a possibly n-dependent

parameter set. We say ξ is stochastically dominated by ζ , uniformly in u, if for any fixed

(small) ε > 0 and (large) D > 0,

sup
u∈U(N)

P

(
ξ (N)(u) > Nεζ (N)(u)

)
≤ N−D,

for large enough N ≥ N0(ε,D), and we shall use the notation ξ ≺ ζ . Throughout this

paper, the stochastic domination will always be uniform in all parameters that are not

explicitly fixed (such as matrix indices, and z that takes values in some compact set).

Note that N0(ε,D) may depend on quantities that are explicitly constant, such as τ in

Assumption 2. If for some complex family ξ we have |ξ | ≺ ζ , then we will also write ξ ≺ ζ
or ξ = O≺(ζ ).

(ii) We say an event  holds with high probability if for any constant D > 0,

P( ) ≥ 1− N−D for large enough N.
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RHP Approach to Perturbation Theory of OPs 4035

C.1 Technical tools

In this subsection, we collect some preliminary results, which will be used in our proof.

Recall (4.1) and (4.7). Denote their resolvents as

Gk = (Qk − z)−1, G̃k = (Q̃k − z)−1, k = 1, 2. (C.1)

We will use the following linearization. For simplicity, let Y = �1/2
0 X. Denote the (N +

M)× (N +M) linearized matrix H by

H = H(z,X) :=
√
z

(
0 Y

Y∗ 0

)
. (C.2)

Similarly, we can define H̃ by replacing �0 with �. By Schur’s complement, we have that

G(z) = G(z,X) := (H − z)−1 =

⎛
⎝ G1(z)

1√
z
G1(z)Y

1√
z
Y∗G1(z) G2(z)

⎞
⎠ . (C.3)

The resolvents and related quantities are very convenient for us to analyze the VESD and

ESD. Recall the notation in Section 4.3 and the ESD of Q2 is

ζ = ζN := 1

M

M∑

i=1
δλi(Q2)

.

Denote mN and mN,b as the Stieltjes transforms of ζ and ν, respectively. Then we

have that

mN =
1

M
TrG2(z), mN,b = b∗G1(z)b. (C.4)

First, we state the anisotropic laws in the following lemma. Recall (4.13). Define

the deterministic matrix

�(z) :=
(
�1(z) 0

0 �2(z)

)
:=

(
−1

z (1+m(z)�0)
−1 0

0 m(z)

)
. (C.5)

Fix some small constant τ > 0, denote the set of spectral parameters as

D = D(τ ) =
{
z = E + iη : |z| ≥ τ , M−1+τ ≤ η ≤ τ−1

}
. (C.6)

Moreover, we denote a subset of D as

Do = Do(τ ) = D ∩
{
dist(E, supp(�)) ≥ M−2/3+τ

}
, (C.7)

and the control parameter as

!(z) :=
√
Imm(z)

Mη
+ 1(z ∈ D\Do)

1

Mη
.
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4036 X. Ding and T. Trogdon

Lemma C.1 (Anisotropic local law). For any deterministic unit vectors u,v ∈ R
M+N , we

have that for all z ∈ D(τ )

∣∣u∗G(z)v− u∗�(z)v
∣∣ ≺ !(z).

Moreover, we have for all z ∈ D(τ )

|mN(z)−m(z)| ≺
1

Nη
.

Furthermore, when z ∈ D0(z, τ), we have that

|mN(z)−m(z)| ≺
1

N(κ + η) .

Proof. See [51]. �

We point out that Imm(z) can be controlled in the following way. Recall � is the

measure associated with m(z). We have that

Imm(z) �

⎧
⎨
⎩

√
κ + η, if E ∈ supp �

η√
κ+η , Otherwise

,

where κ := dist(E, supp �). Moreover, according to [76, (4.15) and (4.16)], we have that for

z ∈ D

|m(z)| = O(1), |m′(z)| = O

(
1√
κ + η

)
. (C.8)

Throughout this section, for simplicity of notation, we define the index sets I1 :=
{1, 2, · · · ,N}, I2 := {N + 1, · · · ,N +M}, I := I1 ∪ I2. We shall consistently use the Latin

letters i, j ∈ I1, Greek letters μ, ν ∈ I2, and a,b ∈ I. Then we can label the indices of X

as X = (Xiμ : i ∈ I1,μ ∈ I2). For simplicity, given a vector v ∈ CI1,2 , we always identity it

with its natural embedding in C
I . For example, we shall identify x ∈ C

I1 with

(
x

0

)
, and

y ∈ C
I2 with

(
0

y

)
. We will also consistently use the notation Gxy(z) = x∗G(z)y. Second,

we will frequently use the following identities.
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RHP Approach to Perturbation Theory of OPs 4037

Lemma C.2 (Ward’s identity). Let {ui}i∈I1 and {vμ}μ∈I2 be orthonormal basis vectors in

R
I1 and R

I2 , respectively. For x ∈ C
I1 and y ∈ C

I2 , we have

∑

i∈I1
|Gxui

|2 =
∑

i∈I1
|Guix

|2 = |z|
2

η
Im

(
Gxx

z

)
,

∑

μ∈I2
|Gyvμ

|2 =
∑

μ∈I2
|Gvμy

|2 =
ImGyy(z)

η
,

∑

i∈I1
|Gyui

|2 =
∑

i∈I1
|Guiy

|2 = Gyy +
z̄

η
ImGyy,

∑

μ∈I2
|Gxvμ

|2 =
∑

μ∈I2
|Gvμx

|2 = Gxx

z
+ z̄

η
Im

(
Gxx

z

)
.

Proof. The proofs follow from the spectral decomposition of G as in (C.3) and the

orthonormality of the basis. See Lemma 4.1 of [76] for details. �

Third, we will also need the following estimate.

Lemma C.3. For any two vectors b1,b2 ∈ R
I , we have that

∑

μ∈I2
Gb1μ

(z1)Gb2μ
(z2) =

�b1b2
(z1)−�b1b2

(z2)

z1 − z2
+ O≺(η

−1(Nη)−1/2),

where we used the convention that

lim
z2→z1

�b1b2
(z1)−�b1b2

(z2)

z1 − z2
= �′b1b2(z1).

Proof. Note that by spectral decomposition, we have that

∑

μ∈I2
Gb1μ

(z1)Gb2μ
(z2) =

Gb1b2
(z1)− Gb1b2

(z2)

z1 − z2
. (C.9)

The proof follows from local law and Cauchy’s integral formula. See equation (5.21) of

[76] for more details. �

Finally, we introduce the device of cumulant expansion. Recall that for any

random variable h its kth cumulant is defined as

κk(h) =
(
∂kt logEe

th
)
|t=0. (C.10)
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4038 X. Ding and T. Trogdon

Lemma C.4 (Cumulant expansion). Fix any � ∈ N and let f ∈ C�+1(R) be a complex-

valued function. Suppose h is a real valued random variable with finite moments up to

order �+ 2. Then we have that

E(f (h)h) =
�∑

k=0

1

k!
κk+1(h)Ef

(k)(h)+ R�+1,

where κk(h) is the kth cumulant of h and R�+1 satisfies

R�+1 � E

∣∣∣h�+21|h|>N−1/2+ε
∣∣∣ · ‖f (�+1)‖∞ + E|h|�+2 · sup

|x|≤N−1/2+ε
|f (�+1)(x)|,

for any constant ε > 0.

Proof. See [60, Proposition 3.1] or [50, Section II]. �

C.2 The non-spiked case: CLT for Y

In this subsection, we prove the CLT for Y defined in (4.12). Note that we can write the

integrand into a trace form. As before, we set the natural embedding of b ∈ R
N as b ∈

R
N+M such that

b =
(
b

0

)
. (C.11)

Additionally, we denote B = bb∗. According to (C.4) and (4.9), we can write

Y =
√
Mη

∮

�

g(z)Tr([G(z)−�(z)]B)dz, g(z) = g(z)

2πi
. (C.12)

Recall that if x is a real Gaussian random variable, that is,x ∼ N (0, σ 2), denote mn = Exn,

we have that

mn+2 = (n+ 1)σ 2mn. (C.13)

Our goal is to prove an asymptotic version of (C.13) for Y.

For �(z) defined in (C.5), we introduce the following auxiliary quantities for the

ease of statements

A1 = −z�(z), A2 = I − A1. (C.14)

In view of (C.3), we will frequently use the following identity:

G = 1

z
(HG− I). (C.15)
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RHP Approach to Perturbation Theory of OPs 4039

The starting point is to decompose the following quantity Z :=
√
MηTr([G(z) −�(z)]B),

so that

Z =
√
Mη

(
Tr(GBA1)− Tr(�B)+ Tr(GBA2)

)

=
√
Mη

(
1

z
Tr(HGBA1)−

1

z
TrBA1 − Tr(�B)+ Tr(GBA2)

)

=
√
Mη

(
1

z
Tr(HGBA1)+ Tr(GBA2)

)
, (C.16)

where in the second step we used (C.15) and in the third step we used the definition of

A1 as in (C.14). Together with (C.12), for any integer k, we have that

EYk =
√
Mη

[
E

∮

�

g(z)

z
Tr(HGBA1)dzY

k−1
]

(C.17)

+
√
Mη

[
E

∮

�

g(z)Tr(GBA2)dzY
k−1

]
.

Denote j′ = j+ N and " ∈ R
(M+N)×(M+N) as

" :=
(
�

1/2
0 0

0 I

)
. (C.18)

We have that

TrHGBA1 =
√
z
∑

i,j

Xij(GBA1")ji′ . (C.19)

Let Eij′ be an (M + N) × (M + N) matrix whose only nonzero entry is the (i, j′)th

entry and equals to one. We next prepare some expressions for derivatives that follow

from elementary calculations. Note that

∂G

∂Xij
= −G ∂H

∂Xij
G = −

√
zG("Eij′ + Ej′i")G. (C.20)

Consequently, for any block diagonal matrix D, we have that
(
∂G

∂Xij
BD

)

j′i

= −
√
z
[
(G")j′i(GBD)j′i + Gj′j′("GBD)ii

]
. (C.21)

Additionally, we have that

∂Z

∂Xij
= −

√
zMηTr

(
G("Eij′ + Ej′i")GB

)

= −
√
zMη

[
(GBG")ij′ + ("GBG)j′i

]
. (C.22)

From now on, we will conduct calculations on (C.17). Our strategy is to focus on

the first term of the right-hand side of (C.17) as we will see later that that second term
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4040 X. Ding and T. Trogdon

will be canceled algebraically. Denote

h1 = h1(i, j) := (GBA1")j′i, h2 = Yk−1. (C.23)

Since g(z) is purely deterministic, using Lemma C.4, (C.19), and (C.21), we readily obtain

√
MηE

∮

�

g(z)

z
Tr(HGBA1)dzY

k−1 = E(P1 + P2 + P3).

Here P1 is defined as

P1 :=
∮

�

g(z)

⎛
⎝−
√
η

√
M

∑

i,j

(G")j′i(GBA1")j′i −
√
η

√
M

∑

i,j

Gj′j′("GBA1")ii

⎞
⎠dzh2,

and P2 is defined as

P2 :=
√
η

√
M

∮

�

√
zg(z)

∑

i,j

(
GBA1"

)
j′i dz

∂h2
∂Xij

, (C.24)

and P3 is defined as

P3 : = √η
3∑

l=2

κl+1
l!M l/2

∑

i,j

∂ l

∂X l
ij

(

∮

�

g(z)h1dzh2)+ R1

:= P31 + P32 + R1. (C.25)

In the last equation, P31 collects the summation for l = 2, P32 collects that of the sum-

mation for l = 3, and R1 := P3 − P31 − P32 is the residual. Here we used the notation that

∂ l

∂X l
ij

(h1h2) =
∑

l1+l2=l

(
l

l1, l2

)
∂ l1h1

∂X
l1
ij

∂ l2h2

∂X
l2
ij

,

(
l

l1, l2

)
= l!

l1! l2!
.

We will see later that l = 2 will contribute nothing, l = 3 will give some extra terms that

explains the fourth moment contributes, and l = 4 is needed to show R1 is small.

For P1, on one hand, using (C.3), by definitions of A1 and ", we have that
√
η

√
M

∑

i,j

(G")j′i(GBA1")j′i �
√
η

√
M

∑

i,j

(Y∗G1�
1/2
0 )ji(Y

∗G1bb
∗��1/2

0 )ji

=
√
η

√
M

Tr�
1/2
0 G1YY

∗G1bb
∗�1�

1/2
0

=
√
η

√
M

b∗1G1YY
∗G1b,

where we denote b1 := �1�0b. In view of (C.3), we have that for z ∈ �
√
η

√
M

∑

i,j

(G")j′i(GBA1")j′i �
√
η

√
M

∑

μ∈I2
b∗1Geμb

∗Geμ ≺
1√
M

,
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RHP Approach to Perturbation Theory of OPs 4041

where we used Lemma C.1, the definition of �, and (C.8) in the last step. On the other

hand, using Lemma C.1, we have that

−
√
η

√
M

∑

i,j

Gj′j′("GBA1")ii = −
√
MηTrG2 Tr(GBA1"

2)

= −m(z)
√
MηTrGBA1"

2 + O≺
(
(Mη)−1/2

)

= −
√
MηTrGBA2 + O≺

(
(Mη)−1/2

)
,

where in the last step we used the fact that m(z)BA1"
2 = BA2, which follows directly

from (C.14).

Using the above calculations and inserting them back into (C.17), we find that

EYk = EP2 + EP3 + O≺((Mη)
−1/2). (C.26)

We summarize the properties of P2 and P3 in the following lemma and defer its proof to

Sections C.3 and C.4.

Lemma C.5. We have that

P2 = (k− 1)V1(b,b)Y
k−2 + O≺((Nη)

−1/2), (C.27)

and

P3 = (k− 1)κ4V2(b,b)Y
k−2 + O≺((Nη)

−1/2). (C.28)

Recall (C.13). It is easy to see that Theorem 4.3 follows fromLemma C.5 and (C.26).

C.3 Proof of Lemma C.5: Verification of (C27)

We first provide some useful results. By Lemma C.1, it is easy to see that

Y = O≺(1). (C.29)

Moreover, using the definition of Y and (C.22), we have

∂h2
∂Xij

= (k− 1)Yk−2
∮

�

g(z)
∂Z

∂Xij
dz

= (k− 1)Yk−2
∮

�

g(z)
(
−
√
zMη

[
(GBG")ij′ + ("GBG)j′i

])
dz. (C.30)

Consequently, in view of (C.24), we can write

P2 = −(k− 1)ηELYk−2, (C.31)
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4042 X. Ding and T. Trogdon

where L is defined as

L : = 2
∑

i,j

∮

�

∮

�

√
z1z2g(z1)g(z2)(G(z1)BA1(z1)")j′i(G(z2)BG(z2)")ij′dz1dz2

= 2

∮

�

∮

�

g(z1)g(z2)Tr(�
1/2
0 G1(z2)bb

∗G1(z2)YY
∗G1(z1)bb

∗(1+m(z1)�0)
−1�1/2

0 )dz1dz2

= 2

∮

�

∮

�

g(z1)g(z2)
[
b∗(1+m(z1)�0)

−1�0G1(z2)b
] [

b∗G1(z2)YY
∗G1(z1)b

]
dz1dz2.

(C.32)

Using the structure of (C.3) and (C.11), we have that

b∗G1(z2)YY
∗G1(z1)b =

√
z1z2

∑

μ∈I2
b∗Geμb

∗Geμ

= √z1z2
b∗(�1(z1)−�1(z2))b

z1 − z2
+ O≺(η

−1(Nη)−1/2), (C.33)

where in the last step we used Lemma C.3. The rest of the proof follows from Lemma C.1

and (C.29).

C.4 Proof of Lemma C.5: verification of (C28)

To control P3, we separate our discussion in the following three subsections according

to the order of the expansion as in (C.25).

C.4.1 l = 2

This corresponds to the term P31 in (C.25). Formally, we can write

P31 =
κ3

2

√
η

M
E

∑

i,j

(
P31(2, 0)+ P31(1, 1)+ P31(0, 2)

)
,

where we denote

P31(2, 0) = P31(2, 0; i, j) =:
∮

�

g(z)

(
∂2G

∂X2
ij

BA1"

)

j′i

dzh2, (C.34)

P31(1, 1) = P31(1, 1; i, j) = 2

∮

�

g(z)

(
∂G

∂Xij
BA1"

)

j′i

dz
h2
∂Xij

, (C.35)

P31(0, 2) = P31(0, 2; i, j) =
∮

�

g(z)
(
GBA1"

)
j′i dz

∂2h2

∂X2
ij

. (C.36)
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RHP Approach to Perturbation Theory of OPs 4043

We first prepare some useful identities, which can be obtained using some

elementary calculation. Using (C.22) and (C.20), we have that

∂2Z

∂X2
ij

=z
√
Mη

(
(G")ii(GBG")j′j′ + Gij′("GBG")ij′ + (GBG")ii(G")j′j′ + (GBG)ij′("G")ij′

+ ("G")j′i(GBG)j′i + ("G)j′j′("GBG)ii + ("GBG")j′iGj′i + ("GBG)j′j′("G)ii
)
.

(C.37)

Moreover, we have that

∂2h2

∂X2
ij

= (k− 1)(k− 2)Yk−3
(∮

�

g(z)
∂Z

∂Xij
dz

)2

+ (k− 1)Yk−2
∮

�

g(z)
∂2Z

∂X2
ij

dz. (C.38)

Additionally, we have

∂2G

∂X2
ij

= 2z
[
G("Eij′ + Ej′i")

]2
G.

For the ease of discussion, in what follows, we use the following shorthand notation

Lij := "Eij′ + Ej′i". (C.39)

For any block-diagonal matrix D = D1 ⊕ D2, we have that

(
∂2G

∂X2
ij

BD

)

j′i

= 2z
(
GLijGLijGBD

)
j′i

= 2z
[
(GLijG)j′j′(GBD)ii + (GLijG)j′i(GBD)j′i

]
. (C.40)

Note that

(GLijG)j′j′ = 2(G")j′iGj′j′ , (GBD)ii = (G1bb
∗D1)ii, (GLijG)ii = (G")iiGj′i + Gij′("G)ii.

(C.41)

and

(GLijG)j′i = (G")j′iGii + Gj′i("G)ii, (C.42)

(GBD)j′i = (G21bb
∗D1)ji. (C.43)

Moreover, we have that

("GBG)ii = (�1/2G1bb
∗G1)ii, ("GBG)ij′ = (�

1/2
0 G1bb

∗G12)ij, (C.44)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/5

/3
9
7
5
/7

2
1
9
2
7
8
 b

y
 U

C
D

M
C

-D
e
p
t. o

f A
n
e
s
 &

 P
a
in

 M
e
d
 u

s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
4



4044 X. Ding and T. Trogdon

and

("GBG)j′j′ = (G21bb
∗G12)j′j′ , (C.45)

where we used the conventions that G12 = z−1/2G1Y and G21 = G∗12.

We give a more explicitly form of D1. As in (C.19), D = A1". Consequently, we

shall have that

D1 = −z�1(z)�
1/2
0 . (C.46)

This leads to that

b∗D1fi = −zb∗�1(z)�
1/2
0 fi = f∗i �

1/2�1(z)b. (C.47)

Note that D1 is symmetric since �1 and �0 share the same eigenvectors.

We summarize the main estimates in the following lemma.

Lemma C.6. We have the following estimates:

κ3

2

√
η

M

∑

i,j

P31(2, 0) = O≺

(
1√
Mη

)
, (C.48)

κ3

2

√
η

M

∑

i,j

P31(1, 1) = O≺

(
1√
Mη

)
, (C.49)

κ3

2

√
η

M

∑

i,j

P31(0, 2) = O≺

(
1√
Mη

)
. (C.50)

Proof. (1). Justification of (C.48). In view of (C.40), (C.41), and the definition of P31, we

focus our discussion on some typical terms. By Lemma C.1, we see that
∣∣∣∣∣∣

√
η

M

∑

i,j

Gj′j′(G")j′i(G1bb
∗D1)ii

∣∣∣∣∣∣
≺ 1
√
η

√
η

M3/2

∑

i,j

|f∗i G1b||f∗i D1b|

≺ 1√
M

∑

i

|f∗i G1b||f∗i D1b|,

where in the first step we used (�")j′i = 0 and the symmetry of D1. Applying the Cauchy–

Schwarz inequality, we have that

∑

i

|f∗i G1b||f∗i D1b| ≤
(
∑

i

|f∗i D1b|2
)1/2 (∑

i

|f∗i G1b|2
)1/2

=
(
∑

i

|f∗i D1b|2
)1/2 (∑

i

|Geib
|2
)1/2

. (C.51)
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RHP Approach to Perturbation Theory of OPs 4045

Using (C.47), it is easy to see that

∑

i

|f∗i D1b|2 �
∑

i

f∗i �
1/2
0 �1(z)bb

∗�1�
1/2
0 fi = b∗�1�0�1b � 1. (C.52)

Inserting the above estimate back into (C.51), together with Ward’s identities in

Lemma C.2, we find that

∑

i

|f∗i Gb||f∗i Db| ≺
1
√
η
, (C.53)

where we used Lemma C.1 and (C.8) to obtain that Im (Gbb/z) � 1. This yields that
∣∣∣∣∣∣

√
η

M

∑

i,j

Gj′j′(G")j′i(G1bb
∗D1)ii

∣∣∣∣∣∣
= O≺

(
1√
Mη

)
.

Similarly, we have that

∣∣∣∣∣∣

√
η

M

∑

i,j

(G")j′iGii(Y
∗G1bb

∗D1)ji

∣∣∣∣∣∣
≺ 1

M3/2

∑

i,j

|f∗j Y∗G1b
∗||b∗D1fi|

≺ 1

M
√
η

∑

i

|b∗Dfi| ≺
1√
Mη

,

where in the second step we used Lemma C.1 and in the last step we used the Cauchy–

Schwarz inequality and (C.52) to obtain that for some constant C > 0

∑

i

|b∗D1fi| ≤
√
N

(
∑

i

|b∗D1fi|2
)
≤ C
√
N. (C.54)

Analogously, we can show that

∣∣∣∣∣∣

√
η

M

∑

i,j

Gj′i("G)ii(Y
∗G1bb

∗D1)ji

∣∣∣∣∣∣
≺ 1√

Mη
.

Using (C.40) and the formulas below, in view of the definition (C.34), combing the

above estimates and (C.29), we have concluded our proof.

(2). Justification of (C.49).We again work with some typical terms. Set

vi = �
1/2
0 fi. (C.55)
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4046 X. Ding and T. Trogdon

By Lemma C.1, we have that

∣∣∣∣∣∣
√
Mη

√
η

M

∑

i,j

Gj′j′(z1)("G(z1)BD(z1))ii(G(z2)BG(z2)")ij′

∣∣∣∣∣∣

≺ η√
M

∑

i,j

(�
1/2
0 G1(z1)bb

∗D1(z1))ii(G1(z2)bb
∗G1(z2)Y)ij +

1

M3/2

∑

i,j

|b∗G1(z1)vib
∗D1(z1)fi|

≺ η√
M

∑

i,j

b∗G1(z1)vib
∗D1(z1)fib

∗G1(z2)Yfj +
1√
M

∑

i

|b∗G1(z1)vib
∗D1(z1)fi|.

We first consider the second term of the right-hand side of the above equation. The

discussion is similar to (C.51) and (C.53) except that {vi} may not be an orthonormal

basis so that Lemma C.2 cannot be applied directly. Note that since ‖�0‖ is bounded, by

the Cauchy-Schwarz inequality, we have that for some constant C > 0

∑

i

|b∗G1(z1)vi|2 = b∗G1(z1)�0G1(z1)b ≤ C
∑

i

|b∗G1(z1)fi|2. (C.56)

As a result, together with (C.53), we readily obtain that

1√
M

∑

i

|b∗G1(z1)vib
∗D1(z1)fi| ≺

1√
Mη

. (C.57)

The first term can be controlled similarly using that

∑

j

b∗G1(z2)Yfj = b∗G1(z)Y1 ≺
√
N√
Nη
= 1
√
η
,

where 1 is a vector with all unity and in the last step we used Lemma C.1. This

yields that

∣∣∣∣∣∣
√
Mη

√
η

M

∑

i,j

Gj′j′(z1)("G(z1)BD(z1))ii(G(z2)BG(z2)")ij′

∣∣∣∣∣∣
≺ 1√

Mη
.

Similarly, we can show that

∣∣∣∣∣∣
√
Mη

√
η

M

∑

i,j

(G(z1)")j′i(G(z1)BD(z2))j′i(G(z2)BG(z2)")ij′

∣∣∣∣∣∣
≺ 1√

Mη
.

Using(C.22) and (C.21), in view of the definition (C.35), by (C.29), we have completed the

proof.
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RHP Approach to Perturbation Theory of OPs 4047

(3). Justification of (C.50).Wework on some typical terms according to (C.38). By Lemma

C.1, we have that

∣∣∣∣∣∣

√
η

M
Mη

∑

i,j

(G(z0)BA1(z0)")j′i(G(z1)BG(z1)")ij′(G(z2)BG(z2)")ij′

∣∣∣∣∣∣

� η3/2
∑

i,j

|b∗G1(z1)fi||b∗G1(z2)fi||f∗j Y∗G1(z1)b||f∗j Y∗G1(z2)b||f∗j Y∗G1(z0)b||b∗�1(z0)vib|

≺ η3/2 M

(Mη)3/2

∑

i,j

|b∗G1(z1)fi||b∗G1(z2)fi||b∗�1(z0)vi|

≺ 1√
M

∑

i

|b∗G1(z2)fi||b∗�1(z0)vi| ≺
1√
Mη

,

where in the last step we used (C.57). Similarly, we have that

∣∣∣∣∣∣

√
η

M

√
Mη

∑

i,j

(
G(z1)BA1(z1)"

)
j′i (G(z2)")ii(G(z2)BG(z2)")j′j′

∣∣∣∣∣∣

≺ η√
M

M

(Mη)3/2

∑

i

|b∗�1(z1)vi| �
1√
Mη

,

and

∣∣∣∣∣∣

√
η

M

√
Mη

∑

i,j

(G(z1)BA1(z1)")j′i("G(z2)")j′i(G(z2)BG(z2))j′i

∣∣∣∣∣∣

≺ η√
M

M

(Mη)3/2

∑

i

|b∗�1(z1)vi| �
1√
Mη

.

The other terms can be analyzed in the same way. Using (C.38) and (C.37), in view of the

definition (C.36), combing the above estimates and (C.29), we have concluded our proof.

�

C.4.2 l = 3

This corresponds to the term P32 in (C.25). We decompose P32 as follows:

P31 =
κ4

6

√
η

M3/2
E

∑

i,j

(
P32(1, 2)+ P32(2, 1)+ P32(0, 3)+ P(3, 0)

)
,

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/5

/3
9
7
5
/7

2
1
9
2
7
8
 b

y
 U

C
D

M
C

-D
e
p
t. o

f A
n
e
s
 &

 P
a
in

 M
e
d
 u

s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
4



4048 X. Ding and T. Trogdon

where we denote

P32(1, 2) = P32(1, 2, i, j) := 3

∮

�

g(z)

(
∂G

∂Xij
BA1"

)

j′i

dz
∂2h2

∂X2
ij

,

P32(2, 1) := 3

∮

�

g(z)

(
∂2G

∂X2
ij

BA1"

)

j′i

dz
∂h2
∂Xij

,

P32(3, 0) :=
∮

�

g(z)

(
∂3G

∂X3
ij

BA1"

)

j′i

dzh2,

P32(0, 3) :=
∮

�

g(z)
(
GBA1"

)
j′i dz

∂3h2

∂X3
ij

.

We first prepare some identities. Using (C.39), observe that

∂3G

∂X3
ij

= −6z3/2
[
GLij

]3
G,

which yields that

(
∂3G

∂X3
ij

BD

)

j′i

= −6z3/2
[
(GLijGLijG)j′j′(GBD)ii + (GLijGLijG)j′i(GBD)j′i

]
. (C.58)

Using (C.41) and (C.42), we readily obtain that

(GLijGLijG)j′j′ = 2(GLijG)j′iGj′j′ , (GLijGLijG)j′i = (GLijG")j′iGii + (GLij"G)iiGj′i. (C.59)

We summarize the results in the following lemma. Recall (4.16).

Lemma C.7. We have the following estimates:

κ4

6

√
η

M3/2

∑

i,j

P32(1, 2) = κ4V2(b,b)Y
k−2 + O≺

(
1√
Mη

)
, (C.60)

κ4

6

√
η

M3/2

∑

i,j

P32(2, 1) = O≺

(
1

M
√
η

)
, (C.61)

κ4

6

√
η

M3/2

∑

i,j

P32(3, 0) = O≺

(
1

M
√
η

)
, (C.62)

κ4

6

√
η

M3/2

∑

i,j

P32(0, 3) = O≺

(
1

M
√
η

)
. (C.63)

Proof. (1). Justification of (C.60). As before, we first study discussion on some typical

terms. Especially, we focus on the following term

κ4
√
η

2M3/2

∮

�

g(z)
∂2Z

∂X2
ij

dz

∮

�

g(z)

(
∂G

∂Xij
BA1"

)

j′i

dz.
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RHP Approach to Perturbation Theory of OPs 4049

We analyze several terms according to (C.37) and (C.21). For notational convenience, we

set D = A1". We claim that

κ4
√
η

2M3/2

∮

�

∮

�

∑

i,j

g(z1)g(z2)(−
√
z1Gj′j′(z1)("G(z1)BD(z1))ii)z2

√
Mη("G(z2))j′j′("G(z2)BG(z2))ii

= −κ4η
2

∮

�

∮

�

g(z1)g(z2)z
1/2
1 z2m(z1)m(z2)J (z1, z2)dz1dz2 + O≺((Mη)

−1/2),

(C.64)

where J (z1, z2) is defined as

J (z1, z2) :=
∑

i

(�
1/2
0 �1(z1)bb

∗D1(z1))ii(�
1/2
0 �1(z2)bb

∗�1(z2))ii,

where we recall the definition (C.46).

To see (C.64), by (C.44), we notice that

η

M

∑

i,j

Gj′j′(z1)("G(z1)BD(z1))ii("G(z2))j′j′("G(z2)BG(z2))ii

= η

M

∑

i,j

Gj′j′(z1)Gj′j′(z2)(�
1/2
0 G1(z2)bb

∗G1(z2))ii(�
1/2
0 G1(z1)bb

∗D1(z1))ii

=

⎛
⎝ 1

M

∑

j

Gj′j′(z1)Gj′j′(z2)

⎞
⎠

(
η
∑

i

[v∗iG1(z2)b][b
∗G1(z2)fi][v

∗
iG1(z1)b][b

∗D1(z1)fi]

)

:= L1L2,

where we recall (C.55). On one hand, we have from Lemma C.1 that

L1 =m(z1)m(z2)+ O≺

(
1√
Mη

)
.

On the other hand, by a discussion similar to (C.57), together with Lemma C.1, we

obtain that

L2 − η
∑

i

[v∗i�1(z2)b][b
∗�1(z2)fi][v

∗
i�1(z1)b][b

∗D1(z1)fi] = O≺(M
−1/2).

Consequently, we have that

L1L2 = ηm(z1)m(z2)
∑

i

[v∗i�1(z2)b][b
∗�1(z2)fi][v

∗
i�1(z1)b][b

∗D1(z1)fi]+ O≺((Mη)
−1/2).
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4050 X. Ding and T. Trogdon

Analogously, by Lemma C.1, using (C.45) and (C.57), we can show that

∣∣∣∣∣∣
η

M

∑

i,j

Gj′j′(z1)("G(z1)BD(z1))ii("G(z2))ii("G(z2)BG(z2))j′j′

∣∣∣∣∣∣

≺ η

M

M

Mη

∑

i

|v∗iG1(z1)b||b∗D1(z1)fi| ≺
1

M
√
η
, (C.65)

and

∣∣∣∣∣∣
η

M

∑

i,j

(G")j′i(z1)(G(z1)BD(z1))j′i("G(z2))j′j′("G(z2)BG(z2))ii

∣∣∣∣∣∣

≺ η

M

M

Mη

∑

i

|v∗iG1(z2)b||b∗D1(z1)fi||b∗D1(z2)fi| ≺
1

M
√
η
.

The rest of the terms can be analyzed since they can all be reduced to the form (C.65).

This completes the proof using the above estimates and (C.29).

(2). Justification of (C.61).According to (C.40) and (C.30), we focus on the following term,

which is the leading term

∣∣∣∣∣∣

√
η

M3/2

√
Mη

∑

i,j

(G(z1)")j′iG(z1)j′j′(G1(z1)bb
∗D1(z1))ii(G(z2)BG(z2)")j′i

∣∣∣∣∣∣

≺ η

M

1

Mη

∑

i,j

|f∗i G1(z1)b||b∗D1(z1)fi||v∗iG1(z2)b| ≺
1

M
√
η
.

Here in the first step we used Lemma C.1 and in the second step we used a discussion

similar to (C.65). The other terms can be analyzed similarly. This completes our proof.

(3). Justification of (C.62). According to (C.58), (C.59), (C.42), and (C.43), we focus our

discussion on the following terms, which is the leading term

∣∣∣∣∣∣

√
η

M3/2

∑

i,j

Gj′j′(G")j′iGii(G1bb
∗D1)ii

∣∣∣∣∣∣

≺ 1

M

∑

i

|f∗i G1b||f∗i D1b| ≺
1

M
√
η
,

where in the first step we used Lemma C.1 and in the second step we used (C.53). The

other terms can be studied similarly, and this completes the proof.
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RHP Approach to Perturbation Theory of OPs 4051

(4). Justification of (C.63). According to (C.37), (C.20), (C.41), and (C.42), we have found

that it suffices to focus on the following leading term:
∣∣∣∣∣∣
η

M

∑

i,j

(G(z1)BA1(z1)")j′iGj′j′(z2)("G(z2))ii("G(z2)BG(z2)")j′i

∣∣∣∣∣∣

≺ η

M2η

∑

i,j

|f∗i�1(z1)b||b∗G1(z2)fi| ≺
1

M
√
η
.

The other terms can be analyzed similarly. This completes our proof. �

C.4.3 The error term R1

Finally, we control the error term R1 in the cumulant expansion to complete the

verification of (C.28). Recall (C.23). According to Lemma C.4, it suffices to control the

following two terms:

E1 :=
√
Mη

∑

i,j

E

∣∣∣X5
ij1{|Xij|>Nε−1/2}

∣∣∣ ·
∥∥∥∥∥
∂4w

∂X4
ij

∥∥∥∥∥
∞
, w =

∮

�

g(z)h1dzh2,

and

E2 :=
√
Mη

∑

i,j

E|X5
ij| · sup
|x|≤Nε−1/2

∣∣∣∣∣
∂4w(x)

∂X4
ij

∣∣∣∣∣ .

By Lemma C.4, it is easy to see that R1 ≺ M−1/2, which follows from the lemma below.

Its proof is similar to the discussions in Sections C.4.1 and C.4.2 and we only provide

the key points.

Lemma C.8. We have that

E1, E2 ≺ M−1/2.

Proof. Using an argument similar to the previous subsections on the control of

∂kw/∂Xk
ij
, 1 ≤ k ≤ 3, we can show that

∣∣∣∣∣
∂4w

∂X4
ij

∣∣∣∣∣ ≺
1√
Mη

. (C.66)

For E1, using the assumption (4.5), we find that for any fixed large constant D > 0,

E

∣∣∣X5
ij1{|Xij|>Nε−1/2}

∣∣∣ ≤ N−D.

Similar arguments hold for E2 using (4.5) and (C.66). This completes our proof. �
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4052 X. Ding and T. Trogdon

C.5 The spiked case: CLT for Ỹ

In this subsection, we briefly discuss how to handle the spiked model and establish the

CLT for Ỹ as in (4.12). Due to similarity,we focus on explaining the main differences from

Ỹ.We will utilize the following identity. It reveals the message that the spiked model can

be efficiently reduced to the non-spiked model so that the arguments of Sections C.2–C.4

apply.

Lemma C.9. Recall that D = diag{d1,d2, · · · ,dr} and Vr be the collection of the first r

eigenvectors. Then we have that

G̃1(z) = �−1/2�
1/2
0

[
G1(z)− zG1(z)Vr(D

−1 + 1+ zV∗rG1(z)Vr)
−1V∗rG1(z)

]
�

1/2
0 �−1/2.

Proof. See Lemma C.1 of [33]. �

According to Lemma C.9, we have that

b∗G̃1(z)b =
N∑

i=1

ω2
i

1+ di

(
v∗iG1(z)vi − zv∗iG1(z)Vr(D

−1 + I + zV∗rG1(z)Vr)
−1V∗rG1(z)vi

)
,

where we used the convention that di ≡ 0, i > r. Denote

�(z) = V∗r(G1(z)−�1(z))Vr, (C.67)

and

H := (D−1 + I + zV∗rG1(z)Vr)
−1, L1 := (D−1 + I + zV∗r�1(z)Vr)

−1.

Then applying a resolvent expansion till the order of two leads to

H = L1 + L1�(z)L1 + (L1�(z))
2H.

We now pause to provide the following control.

Lemma C.10. We have that for some constant ϑ > 0

sup
z∈�
‖L1(z)‖ ≥ ϑ .

Proof. Note that for 1 ≤ i ≤ r, we have that d−1
i
+1+zv∗

i
�1(f (−σ̃−1i

))vi = 0, where f (·) is
defined in (4.3). Consequently, according to Assumption 3, we see that for some constant

C > 0,

sup
z∈�

∣∣∣d−1i + 1+ zv∗i�1(f (z))vi

∣∣∣ = sup
z∈�

∣∣∣∣∣
1

1− σ̃−1
i
σi

− 1

1+ zσi

∣∣∣∣∣ ≥ C|̃σ−1
i
− z| ≥ ϑ .
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This completes our proof. �

By Lemmas C.1 and C.10, we have that

b∗G̃1(z)b =
N∑

i=1

ω2
i

1+ di
(
v∗iG1(z)vi − zv∗iG1(z)VrL1V

∗
rG1(z)vi − zv∗i�1(z)VrL1�(z)L1V

∗
r�1(z)vi

)

+ O≺

(
1

Mη

)
.

Denote

K :=
N∑

i=1

ω2
i

1+ di
(
v∗i�1(z)vi − zv∗i�1(z)VrL1V

∗
r�1(z)vi

)
.

Applying Lemma C.1, we have that

b∗G̃1(z)b− K = Tr
(
(G1(z)−�1(z))A

)
+ O≺

(
1

Mη

)
,

where A is defined as

A :=
N∑

i=1

ωi

1+ di

(
viv
∗
i − zVrL1V

∗
r�1(z)viv

∗
i − zviv∗i�1(z)VrL1V

∗
r

− zVrL1V
∗
r�1(z)viv

∗
i�1(z)VrL1V

∗
r

)
,

where we used the definition (C.67).

To ease our discussion, we denote

li := zVrL1V
∗
r�1(z)vi (C.68)

so that we can rewrite

A :=
N∑

i=1

ωi

1+ di

(
viv
∗
i − liv

∗
i − vil

∗
i − z−1lil∗i

)
.

Similar to (C.12), by setting

A :=
(
A 0

0 0

)
,

we find that it suffices to study the distribution of
∮

�

g(z)
√
MηTr((G(z)−�(z))A)dz. (C.69)

Compared to (C.12), the only difference is the deterministic part A. The calculations of

Sections C.2–C.4 for Ỹ still hold here. In what follows, we only explain how to modify

the steps. Denote P̃2 and P̃3 in (C.24) and (C.25) by simply replacing B with A. First, by a
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4054 X. Ding and T. Trogdon

discussion similar to (C.31) and (C.32), we can obtain that P̃2 = −(k− 1)ηL̃Yk−2, where L̃

is defined similar to (C.32) as follows:

L̃ := 2

∮

�

∮

�

g(z1)g(z2)Tr(�
1/2
0 G1(z2)AG1(z2)YY

∗G1(z1)A(1+m(z1)�0)
−1�1/2

0 )dz1dz2.

Note that L̃ can be controlled using Lemma C.1 as in (C.27) so that we have

P̃2 = (k− 1)Ṽ1Ỹ
k−2 + O≺((Nη)

−1/2),

Second, for the high order terms, using an analogous argument, we find that (C.64) holds

true by replacing bb∗ with A and using the fact that
∑N

i=1 ω
2
i
= 1 so that as in (C.28)

we have

P̃3 = (k− 1)κ4Ṽ2Ỹ
k−2 + O≺((Nη)

−1/2).

This completes our proof.

Appendix D. Density and Jacobi Matrix Approximation

In this section, we first discuss a method to compute an approximation of measures of

the form (2.16) given a (possibly random) approximation r(z) of
∫

R

μ(dλ)

λ− z , Im z > 0.

We assume that aj,bj and cj are all known, or are well approximated. The approach uses

the Chebyshev polynomials of the second kind (Uk)k≥0 [63], which are the orthogonal

polynomials with respect to the semicircle distribution, scaled to [−1, 1]:
∫ 1

−1
Uk(x)Uj(x)

2
√
1− x2
π

dx = δjk.

From [73, Lemma 5.6],

∫ 1

−1

Uk(x)

x − z
2
√
1− x2
π

dx = −2
[
z−
√
z− 1

√
z+ 1

]k+1
= ck(z;μCheb),

μCheb(dx) =
2
√
1− x2
π

1[−1,1](x)dx.

We then define the mapped polynomials for a < b

Uk(x;a,b) = Uk(M
−1
a,b
(x)), Ma,b(x) =

b− a
2

x + b+ a
2

.

It is then straightforward to see that

∫ b

a

Uk(x;a,b)

x − z
√
(b− x)(x − a)dx = π(b− a)

4
ck(M

−1
a,b
(z);μCheb).

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/im
rn

/a
rtic

le
/2

0
2
4
/5

/3
9
7
5
/7

2
1
9
2
7
8
 b

y
 U

C
D

M
C

-D
e
p
t. o

f A
n
e
s
 &

 P
a
in

 M
e
d
 u

s
e
r o

n
 1

9
 J

u
n
e
 2

0
2
4
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So, given a (small) integer � and unknown coefficients dj,k, we can follow the idea of [22]

to simply compute
∫
ν(dλ)
λ−z if ν is of the form (2.16) and

hj(λ) =
�−1∑

k=0
dj,kUk(λ;aj,bj).

Let x(k) = (x(k)1 , . . . ,x
(k)
k
) = (x1, . . . ,xk) be the k zeros of Uk and define the k × � matrix

Ek = (Uj−1(xi))1≤i≤k
1≤j≤�

. This is defined so that

hj(x
(k)) = Ek

⎡
⎢⎢⎢⎢⎢⎣

dj,0

dj,1
...

dj,�−1

⎤
⎥⎥⎥⎥⎥⎦
.

For a vector z = [z1, . . . , zm] of m points in the upper-half plane, define the m× � matrix

Cz = (cj−1(zi;μCheb))1≤i≤m
1≤j≤�

.

In the non-spiked case,we seek a solution of the following constrained optimiza-

tion problem:

argmindj:Ekdj≥0

∥∥∥∥∥∥

g+1∑

j=1

π

4
(bj − aj)CM−1

aj ,bj
(z)dj − r(z)

∥∥∥∥∥∥
2

,

where dj =
[
dj,0 dj,1 · · · dj,�−1

]
. If there are spikes cj, one can approximate the

weights wj using the trapezoidal rule around a small circle with center at cj. Then the

above constrained optimization problem applies to r(z)−
∑p

j=1
wj

cj−z .

Once, the density is approximated, one would like to generate J (μ). The simplest

way to do this is to use the Gaussian quadrature rule associated to the weight
√
1− x2,

that is, consider the measure

μK =
K∑

j=1
wjδx(K)

j

,

where the weightswK= [w1, . . . ,wK ]
T are chosen so that

∫
p(x)μK(dx)=

∫ 1
−1 p(x)

2
√
1−x2
π

dx

whenever p is a polynomial of degree at most 2K − 1. There are many ways to generate

these weights, see [44]. Then define vectors of nodes and weights, respectively, by

x =

⎡
⎢⎢⎣

M
a1,b1

(x(K))
...

M
ag+1,bg+1(x

(K))

⎤
⎥⎥⎦ , W =

⎡
⎢⎢⎣

b1−a1
2 (EKd1)wK

...
bg+1−ag+1

2 (EKdg+1)wK

⎤
⎥⎥⎦ .
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4056 X. Ding and T. Trogdon

If spikes are present, one needs to append [c1, . . . ,cp] and [ω1, . . . ,ωp] onto the end of x

and W, respectively. Now, it follows, in the notation (5.6) that T(diag(x),
√
W), is a good

approximation of JK(μ), see [16], for example. Indeed, if we ignore the errors induced

by our approximations of each hj,ωj, provided K > K′ + �/2 one has that the upper-left

K′ × K′ block of T(diag(x),
√
W) coincides with that of J (μ).

In practice, we generate 100 independent copies of a spiked sample covariance

matrix and for each matrix we compute r(z) = 〈b, (W − zI)−1b〉 and take set the points z

to be the union ofM
aj,bj

(u)+ i/10 where u ism equally spaced points on [−1, 1]. We take

� = 4,m = 200,k = 20 in our computations. The resulting 100 vectors dj are averaged for

each j. We do not address the accuracy of this algorithm beyond noting that it suffices

to identify the limiting curves in our computations.
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