
POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH
PROVABLE GUARANTEES

JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Abstract. While neural networks have been remarkably successful in a wide array of
applications, implementing them in resource-constrained hardware remains an area of intense
research. By replacing the weights of a neural network with quantized (e.g., 4-bit, or binary)
counterparts, massive savings in computation cost, memory, and power consumption are
attained. To that end, we generalize a post-training neural-network quantization method,
GPFQ, that is based on a greedy path-following mechanism. Among other things, we propose
modifications to promote sparsity of the weights, and rigorously analyze the associated
error. Additionally, our error analysis expands the results of previous work on GPFQ to
handle general quantization alphabets, showing that for quantizing a single-layer network,
the relative square error essentially decays linearly in the number of weights – i.e., level of
over-parametrization. Our result holds across a range of input distributions and for both
fully-connected and convolutional architectures thereby also extending previous results. To
empirically evaluate the method, we quantize several common architectures with few bits
per weight, and test them on ImageNet, showing only minor loss of accuracy compared
to unquantized models. We also demonstrate that standard modifications, such as bias
correction and mixed precision quantization, further improve accuracy.

1. Introduction

Over the past decade, deep neural networks (DNNs) have achieved great success in many
challenging tasks, such as computer vision, natural language processing, and autonomous
vehicles. Nevertheless, over-parameterized DNNs are computationally expensive to train,
memory intensive to store, and energy consuming to apply. This hinders the deployment of
DNNs to resource-limited applications. Therefore, model compression without significant
performance degradation is an important active area of deep learning research [11, 6, 10]. One
prominent approach to compression is quantization. Here, rather than adopt a 32-bit floating
point format for the model parameters, one uses significantly fewer bits for representing
weights, activations, and even gradients. Since the floating-point operations are substituted
by more e�cient low-bit operations, quantization can reduce inference time and power
consumption.

Following [16], we can classify quantization methods into two categories: quantization-aware
training and post-training quantization. The fundamental di�culty in quantization-aware
training stems from the fact that it reduces to an integer programming problem with a
non-convex loss function, making it NP-hard in general. Nevertheless, many well-performing
heuristic methods exist, e.g., [4, 12, 35, 15, 33, 21, 31]. Here one, for example, either modifies
the training procedure to produce quantized weights, or successively quantizes each layer
and then retrains the subsequent layers. Retraining is a powerful, albeit computationally

1

ar
X

iv
:2

20
1.

11
11

3v
3

 [c
s.L

G
]

15
 Ja

n
20

23

2 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

intensive way to compensate for the accuracy loss resulting from quantization and it remains
generally di�cult to analyze rigorously.

Hence, much attention has recently been dedicated to post-training quantization schemes,
which directly quantize pretrained DNNs having real-valued weights, without retraining.
These quantization methods either rely on a small amount of data [1, 3, 34, 24, 14, 30, 19, 22] or
can be implemented without accessing training data, i.e. data-free compression [23, 2, 32, 20].

1.1. Related Work. We now summarize some prior work on post-training quantization
methods. The majority of these methods aim to reduce quantization error by minimizing a

mean squared error (MSE) objective, e.g. min↵>0

����W �↵

õ
W
↵

§����
F

, where W is a weight matrix

and b·e is a round-o↵ operator that represents a map from the set of real numbers to the low-
bit alphabet. Generally b·e simply assigns numbers in di↵erent intervals or “bins” to di↵erent
elements of the alphabet. Algorithms in the literature di↵er in their choice of b·e, as they use
di↵erent strategies for determining the quantization bins. However, they share the property
that once the quantization bins are selected, weights are quantized independently of each other.
For example, Banner et al. [1] (see also [34]) choose the thresholds to minimize a MSE metric.
Their numerical results also show that for convolutional networks using di↵erent quantization
thresholds “per-channel” and bias correction can improve the accuracy of quantized models.
Choukroun et al. [3] solve a minimum mean squared error (MMSE) problem for both weights
and activations quantization. Based on a small calibration data set, Hubara et al. [14] suggest
a per-layer optimization method followed by integer programming to determine the bit-width
of di↵erent layers. A bit-split and stitching technique is used by [30] that “splits” integers into
multiple bits, then optimizes each bit, and finally stitches all bits back to integers. Li et al.
[19] leverage the basic building blocks in DNNs and reconstructs them one-by-one. As for
data-free model quantization, there are di↵erent strategies, such as weight equalization [23],
reconstructing calibration data samples according to batch normalization statistics (BNS)
[2, 32], and adversarial learning [20].

1.2. Contribution. In spite of reasonable heuristic explanations and empirical results, all
quantization methods mentioned in Section 1.1 lack rigorous theoretical guarantees. Recently,
Lybrand and Saab [22] proposed and analyzed a method for quantizing the weights of
pretrained DNNs called greedy path following quantization (GPFQ), see Section 2.2 for details.
In this paper, we substantially improve GPFQ’s theoretical analysis, propose a modification
to handle convolutional layers, and propose a sparsity promoting version to encourage the
algorithm to set many of the weights to zero. We demonstrate that the performance of our
quantization methods is not only good in experimental settings, but, equally importantly,
has favorable and rigorous error guarantees. Specifically, the contributions of this paper are
threefold:

1. We generalize the results of [22] in several directions. Indeed, the results of [22] apply
only to alphabets, A, of the form A = {0,±1} and standard Gaussian input because the
proof technique in [22] relies heavily on properties of Gaussians and case-work over elements
of the alphabet. It also requires the assumption that floating point weights are ✏-away from

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 3

alphabet elements. In contrast, by using a di↵erent and more natural proof technique, our
results avoid this assumption and extend to general alphabets like A in (3) and make the
main result in [22] a special case of our Theorem 3.2, which in turn follows from Theorem 3.1.
Moreover, we extend the class of input vectors for which the theory applies. For example,
in Section 3, we show that if the input data X 2 Rm⇥N0 is either bounded or drawn from a
mixture of Gaussians, then the relative square error of quantizing a neuron w 2 RN0 satisfies
the following inequality with high probability:

(1)
kXw �Xqk22

kXwk22
. m logN0

N0

where q 2 AN0 is the quantized weights. A mixture of Gaussians is a reasonable model
for the output of some of the deeper layers in neural networks that focus on classification,
thus our results are relevant in those contexts. Further, to handle convolutional neural
networks (CNNs), we introduce a modification to GPFQ in Section 5.1 that relies on random
subsampling to make quantizing DNNs practically feasible with large batch size m. This also
allows us to obtain quantization error bounds that resemble (1), for single-layer CNNs in
Section 3.3.

2. In order to reduce the storage, computational, and power requirements of DNNs one
complimentary approach to quantization is to sparsify the weights, i.e., set many of them to
zero. In Section 4, we propose modifications to GPFQ that leverage soft and hard thresholding
to increase sparsity of the weights of the quantized neural networks. We present error bounds,
similar to the ones in Theorem 3.1, and provide their proofs in Appendix E.

3. We provide extensive numerical experiments to illustrate the performance of GPFQ and
its proposed modifications on common computer vision DNNs. First, we provide comparisons
with other post-training quantization approaches (Section 5) and show that GPFQ achieves
near-original model performance using 4 bits and that the results for 5 bits are competitive with
state-of-the-art methods. Our experiments also demonstrate that GPFQ is compatible with
various ad-hoc performance enhancing modifications such as bias correction [1], unquantizing
the last layer [35, 19], and mixed precision [7, 2]. To illustrate the e↵ects of sparsity, we
further explore the interactions among prediction accuracy, sparsity of the weights, and
regularization strength in our numerical experiments. Our results show that one can achieve
near-original model performance even when half the weights (or more) are quantized to zero.

2. Preliminaries

In this section, we first introduce the notation that will be used throughout this paper and
then recall the original GPFQ algorithm in [22].

2.1. Notation. Various positive absolute constants are denoted by C, c. We use a . b as
shorthand for a  Cb, and a & b for a � Cb. Let S ✓ Rn be a Borel set. Unif(S) denotes the
uniform distribution over S. An L-layer multi-layer perceptron, �, acts on a vector x 2 RN0

via

(2) �(x) := '
(L) � A(L) � · · · � '(1) � A(1)(x)

4 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

where '
(i) : RNi ! RNi is an activation function acting entrywise, and A

(i) : RNi�1 ! RNi

is an a�ne map given by A
(i)(z) := W

(i)>
z + b

(i). Here, W (i) 2 RNi�1⇥Ni is a weight matrix
and b

(i) 2 RNi is a bias vector. Since w
>
x + b = h(w, b), (x, 1)i, the bias term b

(i) can be
treated as an extra row to the weight matrix W

(i), so we will henceforth ignore it. We focus
on midtread alphabets

(3) A = A�
K := {±k� : 0  k  K, k 2 Z}

and their variants

(4) ‹A = A�,�
K := {0} [{±(�+ k�) : 0  k  K, k 2 Z}

where � > 0 denotes the quantization step size and � > 0 is a threshold. For example,
A1

1 = {0,±1} is a ternary alphabet. Moreover, for alphabet A = A�
K , we define the associated

memoryless scalar quantizer (MSQ) Q : R ! A by

(5) Q(z) := argminp2A |z � p| = � sign(z)min

ß����
õ
z

�
+

1

2

û����, K
™
.

Further, the MSQ over ‹A = A�,�
K is given by

‹Q(z) : =

8
<

:
0 if |z|  �,

argmin
p2 ‹A

|z � p| otherwise

= {|z|>�} sign(z)

Å
�+ �min

ß����
õ
s�(z)

�
+

1

2

û����, K
™ã

.(6)

Here, s�(z) := sign(z)max{|z|� �, 0} is the soft thresholding function and its counterpart,
hard thresholding function, is defined by

h�(z) := z {|z|>�} =

(
z if |z| > �,

0 otherwise.

2.2. GPFQ. Given a data set X 2 Rm⇥N0 with vectorized data stored as rows and a
trained neural network � with weight matrices W

(i), the GPFQ algorithm [22] is a map
W

(i) ! Q
(i) 2 ANi�1⇥Ni , giving a new quantized neural network e� with e�(X) ⇡ �(X). The

matrices W (1)
, . . . ,W

(L) are quantized sequentially and in each layer every neuron (a column
of W (i)) is quantized independently of other neurons, which allows parallel quantization
across neurons in a layer.
Thus, GPFQ can be implemented recursively. Let �(i), e�(i) denote the original and

quantized neural networks up to layer i respectively. Assume the first i� 1 layers have been
quantized and define X(i�1) := �(i�1)(X), ‹X(i�1) := e�(i�1)(X) 2 Rm⇥Ni�1 . Then each neuron
w 2 RNi�1 in layer i is quantized by constructing q 2 ANi�1 such that

‹X(i�1)
q =

Ni�1X

t=1

qt
‹X(i�1)

t ⇡
Ni�1X

t=1

wtX
(i�1)
t = X

(i�1)
w

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 5

Algorithm 1: Using GPFQ to quantize MLPs

Input: A L-layer MLP � with weight matrices W (i) 2 RNi�1⇥Ni , input mini-batches
{Xi}Li=1 ⇢ Rm⇥N0

1 for i = 1 to L do
2 Phase I: Forward propagation

3 Generate X
(i�1) = �(i�1)(Xi) 2 Rm⇥Ni�1 and ‹X(i�1) = e�(i�1)(Xi) 2 Rm⇥Ni�1

4 Phase II: Parallel quantization for W (i)

5 repeat

6 Pick a column (neuron) w 2 RNi�1 of W (i) and set u0 = 0 2 Rm

7 for t = 1 to Ni�1 do

8 Implement (9) and ut = ut�1 + wtX
(i�1)
t � qt

‹X(i�1)
t

9 until All columns of W (i) are quantized

10 Obtain quantized i-th layer Q(i) 2 ANi�1⇥Ni

Output: Quantized neural network e�

where X
(i�1)
t , ‹X(i�1)

t are the t-th columns of X(i�1), ‹X(i�1). This is done by selecting qt, for
t = 1, 2, . . . , Ni�1, so the running sum

Pt
j=1 qj

‹X(i�1)
j tracks its analog

Pt
j=1 wjX

(i�1)
j as well

as possible in an `2 sense. So,

(7) qt = argmin
p2A

���
tX

j=1

wjX
(i�1)
j �

t�1X

j=1

qj
‹X(i�1)

j � p‹X(i�1)
t

���
2

2
.

This is equivalent to the following iteration, which facilitates the analysis of the approxi-
mation error:

(8)

8
>><

>>:

u0 = 0 2 Rm
,

qt = argminp2A
��ut�1 + wtX

(i�1)
t � p‹X(i�1)

t

��2
2
,

ut = ut�1 + wtX
(i�1)
t � qt

‹X(i�1)
t .

By induction, one can verify that ut =
Pt

j=1(wjX
(i�1)
j � qj

‹X(i�1)
j) for t = 0, 1, . . . , Ni�1, and

thus kuNi�1k2 = kX(i�1)
w � ‹X(i�1)

qk2. Moreover, one can derive a closed-form expression of
qt in (8) as

(9) qt = Q
Åh‹X(i�1)

t , ut�1 + wtX
(i�1)
t i

k‹X(i�1)
t k22

ã
,

which is proved in Lemma A.1. The whole algorithm for quantizing multilayer perceptrons
(MLPs) is summarized in Algorithm 1. For the i-th layer, this parallelizable algorithm has
run time complexity O(mNi�1) per neuron. Note that in order to quantize convolutional
neural networks (CNNs), one can simply vectorize the sliding (convolutional) kernels and
unfold, i.e., vectorize, the corresponding image patches. Then, taking the usual inner product
on vectors, one can reduce to the case of MLPs, also see Section 3.3.

6 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

3. New Theoretical Results for GPFQ

In this section, we present error bounds for GPFQ with single-layer networks � in (2) with
L = 1. Since the error bounds associated with the sparse GPFQ in (27) and (28) are very
similar to the one we have for (9), we focus on original GPFQ here and leave the theoretical
analysis for sparse GPFQ to Appendix E.

In the single-layer case, we quantize the weight matrix W := W
(1) 2 RN0⇥N1 and implement

(8) and (9) using i = 1. Defining the input data X := X
(0) = ‹X(0) 2 Rm⇥N0 , the iteration

can be expressed as

(10)

8
>><

>>:

u0 = 0 2 Rm
,

qt = Q
�
wt +

X>
t ut�1

kXtk22

�
,

ut = ut�1 + wtXt � qtXt.

Moreover, we have ut =
Pt

j=1(wjXj � qjXj) for t = 1, 2 . . . , N0. Clearly, our goal is to control
kutk2. In particular, given t = N0, we recover the `2 distance between full-precision and
quantized pre-activations: kuN0k2 = kXw �Xqk2.

3.1. Bounded Input Data. We start with a quantization error bound where the feature
vectors, i.e. columns, of the input data matrix X 2 Rm⇥N0 are bounded. This general result
is then applied to data drawn uniformly from a Euclidean ball, and to Bernoulli random
data, showing that the resulting relative square error due to quantization decays linearly
with the width N0 of the network.

Theorem 3.1 (Bounded input data). Suppose that the columns Xt of X 2 Rm⇥N0 are drawn

independently from a probability distribution for which there exists s 2 (0, 1) and r > 0 such

that kXtk2  r almost surely, and such that for all unit vector u 2 Sm�1
we have

(11) EhXt, ui2

kXtk22
� s

2
.

Let A be the alphabet in (3) with step size � > 0, and the largest element qmax. Let w 2 RN0

be the weights associated with a neuron with kwk1  qmax. Quantizing w using (10), we have

(12) P

Å
kXw �Xqk22 

r
2
�
2

s2
logN0

ã
� 1� 1

N2
0

Å
2 +

1p
1� s2

ã
,

and

(13) P

Å
max

1tN0

kutk22 
r
2
�
2

s2
logN0

ã
� 1� 1

N0

Å
2 +

1p
1� s2

ã
.

Furthermore, if the activation function ' : R ! R is ⇠-Lipschitz continuous, that is, |'(x)�
'(y)|  ⇠|x� y| for all x, y 2 R, then we have

(14) P

Å
k'(Xw)� '(Xq)k22 

r
2
�
2
⇠
2

s2
logN0

ã
� 1� 1

N2
0

Å
2 +

1p
1� s2

ã
.

Proof. Let ↵ > 0 and ⌘ > 0. In the t-th step, by Markov’s inequality, one can get

(15) P(kutk22 � ↵) = P(e⌘kutk22 � e
⌘↵)  e

�⌘↵Ee⌘kutk22 .

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 7

According to Lemma A.5,

(16) Ee⌘kutk22  max
n
E(e

⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22
o
.

Moreover, observing that kXtk22  r
2 a.s., then applying the law of total expectation,

Lemma A.5 (2) with � = 1, and assumption (11) sequentially, we obtain

E(e
⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t))  e
⌘r2�2/4Ee⌘kut�1k22(1�cos2 ✓t)

= e
⌘r2�2/4E(E(e⌘kut�1k22(1�cos2 ✓t) | Ft�1))

 e
⌘r2�2/4E

⇣
�E(cos2 ✓t | Ft�1)(e

⌘kut�1k22 � 1) + e
⌘kut�1k22

⌘

 e
⌘r2�2/4E(�s

2(e⌘kut�1k22 � 1) + e
⌘kut�1k22)

= (1� s
2)e⌘r

2�2/4Ee⌘kut�1k22 + s
2
e
⌘r2�2/4

Hence, for each t, inequality (16) becomes

(17) Ee⌘kutk22  max
n
aEe⌘kut�1k22 + b,Ee⌘kut�1k22

o
.

where a := (1 � s
2)e⌘r

2�2/4 and b := s
2
e
⌘r2�2/4. Let t0 = |{1  i  t : Ee⌘kui�1k22 

aEe⌘kui�1k22 + b}|. Then, noting that u0 = 0, the following inequality follows from (17),

(18) Ee⌘kutk22  a
t0Ee⌘ku0k22 + b(1 + a+ . . .+ a

t0�1) = a
t0 +

b(1� a
t0)

1� a
 1 +

b

1� a

where the last inequality holds provided that a = (1� s
2)e⌘r

2�2/4
< 1. Since the result above

hold for all ⌘ > 0 such that (1� s
2)e⌘r

2�2/4
< 1, we can choose ⌘ = �2 log(1�s2)

r2�2 . Then we get
a = (1� s

2)1/2 and b = s
2(1� s

2)�1/2. It follows from (15) and (18) that

P(kutk22 � ↵)  e
�⌘↵

Å
1 +

b

1� a

ã
= exp

Å
2↵ log(1� s

2)

r2�2

ãÅ
1 +

s
2(1� s

2)�1/2

1� (1� s2)1/2

ã

= exp

Å
2↵ log(1� s

2)

r2�2

ã⇣
1 + (1� s

2)�1/2(1 + (1� s
2)1/2)

⌘

= exp

Å
2↵ log(1� s

2)

r2�2

ãÅ
2 +

1p
1� s2

ã

 exp

Å�2↵s2

r2�2

ãÅ
2 +

1p
1� s2

ã
.

The last inequality can be obtained using the fact log(1 + x)  x for all x > �1. Picking

↵ = r2�2 logN0

s2 , we get

P

Å
kutk22 �

r
2
�
2

s2
logN0

ã
 1

N2
0

Å
2 +

1p
1� s2

ã
.(19)

From (19) we can first deduce (12), by setting t = N0 and using the fact uN0 = Xw �Xq. If
the activation function ' is ⇠-Lipschitz, then k'(Xw)� '(Xq)k2  ⇠kXw �Xqk2 and (12)
implies (14). Moreover, applying a union bound over t to (19), one can get (13). ⇤

8 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Next, we illustrate how Theorem 3.1 can be applied to obtain error bounds associated with
uniformly distributed and Bernoulli distributed input data.

3.1.1. Uniformly Distributed Data. Let Br ⇢ Rm be the closed ball with center 0 and radius
r > 0. Suppose that columns Xt of X 2 Rm⇥N0 are drawn i.i.d. from Unif(Br). Then
kXtk2  r and Z := Xt/kXtk2 ⇠ Unif(Sm�1). Since Z is rotation invariant, for any unit

vector u 2 Sm�1, we have E
D

Xt
kXtk2 , u

E2
= EhZ, ui2 = EhZ, e1i2 = EZ2

1 = 1
m . The last

equality holds because kZk2 = 1 and EZ2
1 = EZ2

2 = . . . = EZ2
m = 1

mE
⇣Pm

i=1 Z
2
i

⌘
= 1

m . So

Theorem 3.1 implies that, with high probability

(20) kXw �Xqk22  mr
2
�
2 logN0.

Moreover, by Lemma A.3, EkXtk22 = mr2

m+2 . It follows that E(X
>
X) = EkX1k22IN0 =

mr2

m+2IN0

and thus EkXwk22 = w
>E(X>

X)w = mr2

m+2kwk
2
2. If the weight vector w 2 RN0 is generic in

the sense that kwk22 & N0, then

(21) EkXwk22 &
mN0r

2

m+ 2
.

Combining (20) with (21), the relative error satisfies kXw�Xqk22
kXwk22

. m�2 logN0

N0
.

3.1.2. Data from a Symmetric Bernoulli Distribution. We say that a random vector Z =
(Z1, Z2, . . . , Zm) is symmetric Bernoulli if the coordinates Zi are independent and P(Zi =
1) = P(Zi = �1) = 1

2 . Now assume that columns Xt of X 2 Rm⇥N0 are independent and
subject to symmetric Bernoulli distribution. Clearly, kXtk2 =

p
m. If u 2 Rm is a unit

vector, then E hXt,ui2
kXtk22

= u>E(XtX>
t)u

m = kuk22
m = 1

m . Hence, by Theorem 3.1,

(22) kXw �Xqk22  m
2
�
2 logN0

holds with high probability. Again, a generic w 2 RN0 with kwk22 & N0 satisfies EkXwk22 =
w

>E(X>
X)w = mkwk22 & mN0 and therefore kXw�Xqk22

kXwk22
. m�2 logN0

N0
.

3.2. Gaussian Clusters. Here, we consider data drawn from Gaussian clusters, which
unlike the previously considered models, are unbounded. One reason for considering Gaussian
clusters is that they are a reasonable model for the activations in deeper layers of networks
designed for classification. Specifically, suppose our samples are drawn from d normally
distributed clusters Ki := N (z(i), �2

IN0) with fixed centers z(i) 2 RN0 and � > 0. Suppose,
for simplicity, that we independently draw n samples from each cluster and vertically stack
them in order as rows of X (this ordering does not a↵ect our results in Theorem 3.2). Let
m := nd. So, for 1  i  d, the row indices of X ranging from (i� 1)n+ 1 to in come from
cluster Ki. Then the t-th column of X is of the form

(23) Xt = [Y (1)
t , Y

(2)
t , . . . , Y

(d)
t]> 2 Rm

where Y
(i)
t ⇠ N (z(i)t n, �

2
In).

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 9

Theorem 3.2 (Gaussian clusters). Let X 2 Rm⇥N0 be as in (23) and let A be as in (3), with
step size � > 0 and the largest element qmax. Let p 2 N, K := 1 + �

�2 max1id kz(i)k21, and

w 2 RN0 be the weights associated with a neuron, with kwk1  qmax. Quantizing w using

(10), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2
�
2
�
2 logN0

⌘
.

p
mK

N
p
0

, and

P
⇣
max

1tN0

kutk22 � 4pm2
K

2
�
2
�
2 logN0

⌘
.

p
mK

N
p�1
0

.

If the activation function ' is ⇠-Lipschitz continuous, then

P

Å
k'(Xw)� '(Xq)k22 � 4pm2

K
2
⇠
2
�
2
�
2 logN0

ã
.

p
mK

N
p
0

.

The proof of Theorem 3.2 can be found in Appendix D.1.

3.2.1. Normally Distributed Data. As a special case of (23), let X 2 Rm⇥N0 be a Gaussian

matrix with Xij
i.i.d.⇠ N (0, �2) corresponding to d = 1, n = m, and z

(1) = 0. Theorem 3.2
implies that K = 1 and

(24) P

Å
kXw �Xqk22 � 4pm2

�
2
�
2 logN0

ã
.

p
m

N
p
0

.

Further, suppose that w 2 RN0 is generic, i.e. kwk22 & N0. In this case, EkXwk22 =
m�

2kwk22 & m�
2
N0. So, with high probability, the relative error in our quantization satisfies

(25)
kXw �Xqk22

kXwk22
. m�

2 logN0

N0
.

Thus, here again, the relative square error for quantizing a single-layer MLP decays linearly
(up to a log factor) in the number of neurons N0. Note that (25), for ternary alphabets, is
the main result given by [22], which we now obtain as a special case of Theorem 3.2.

Remark 3.3. In Section 3.1 and Section 3.2, we have shown that if the columns of X 2 Rm⇥N0

are drawn from proper distributions, then the relative error for quantization is small when
m ⌧ N0. Now consider the case where the feature vectors {Xt}N0

t=1 live in a l-dimensional
subspace with l < m. In this case, X = V F where V 2 Rm⇥l satisfies V >

V = I, and the
columns Ft of F 2 Rl⇥N0 are drawn i.i.d. from a distribution P . Suppose, for example, that
P = Unif(Br). Due to X = V F , one can express any unit vector in the range of X as u = V v

with v 2 Rl. Then we have 1 = kuk2 = kV vk2 = kvk2, kXtk2 = kV Ftk2 = kFtk2  r, and

E hXt,ui2
kXtk22

= E hV Ft,V vi2
kV Ftk22

= E hFt,vi2
kFtk22

= l
�1 by our assumption for P . Because ut in Theorem 3.1 is

a linear combination of Xj, the proof of Theorem 3.1 remains unchanged if (11) holds for
all unit vectors u in the range of X. It follows that Theorem 3.1 holds for X with s

2 = l
�1

and thus the relative error for quantizing the data in a l-dimensional subspace is improved

to kXw�Xqk22
kXwk22

 l�2 logN0

N0
. Applying a similar argument to P representing either a symmetric

Bernoulli distribution or Gaussian distribution, one can replace m in their corresponding

10 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

relative errors by l. In short, the relative error depends not on the number of training samples
m but on the intrinsic dimension of the features l.

3.3. Convolutional Neural Networks. In this section, we derive error bounds for single-
layer CNNs. Let Z 2 RB⇥Cin⇥S1⇥S2 be a mini-batch of images with batch size B, input
channels Cin, height S1, and width S2. Suppose that all entries of Z are i.i.d. drawn from
N (0, 1) and suppose we have Cout convolutional kernels {wi}Cout

i=1 ✓ RCin⇥k1⇥k2 . Let these
kernels “slide” over Z with fixed stride (k1, k2) such that sliding local blocks generated by
moving wi on Z are disjoint. Additionally, if T is the number of randomly selected sliding
local blocks (in RCin⇥k1⇥k2) from each image, then one can vectorize all BT local blocks
and stack them together to obtain a single data matrix X 2 RBT⇥Cink1k2 . Moreover, each
kernel wi can be viewed as a column vector in RCink1k2 and thus W = [w1, w2, . . . , wCout] 2
RCink1k2⇥Cout is the weight matrix to be quantized. Thus, we need to convert W to Q =
[q1, q2, . . . , qCout] 2 ACink1k2⇥Cout with XQ ⇡ XW , as before. Since extracted local blocks
from Z are disjoint, columns of X are independent and subject to N (0, IBT). Hence, one
can apply (24) with m = BT , N0 = Cink1k2, � = 1, and any p 2 N. Specifically, for

1  i  Cout, we get P
⇣
kXwi � Xqik22 � 4pB2

T
2
�
2 log(Cink1k2)

⌘
.

p
BT

(Cink1k2)p
. By a union

bound, P
⇣
max1iCout kXwi �Xqik22 � 4pB2

T
2
�
2 log(Cink1k2)

⌘
. Cout

p
BT

(Cink1k2)p
.

4. Sparse GPFQ and Error Analysis

Having extended the results pertaining to GPFQ to cover multiple distributions of the
input data, as well as general alphabets, we now propose modifications to produce quantized
weights that are also sparse, i.e., that have a large fraction of coe�cients being 0. Our sparse
quantization schemes result from adding a regularization term to (8). Specifically, in order to
generate sparse q 2 ANi�1 , we compute qt via

(26) qt = argmin
p2A

Å
1

2

���ut�1 + wtX
(i�1)
t � p‹X(i�1)

t

���
2

2
+ �|p|k‹X(i�1)

t k22
ã

where � > 0 is a regularization parameter. Conveniently, Lemma A.2 shows that the solution
of (26) is given by

(27) qt = Q � s�
Åh‹X(i�1)

t , ut�1 + wtX
(i�1)
t i

k‹X(i�1)
t k22

ã

where s� denotes soft thresholding. It is then natural to consider a variant of (27) replacing s�

with hard thresholding, h�. Since h�(z) has jump discontinuities at z = ±�, the corresponding

alphabet and quantizer should be adapted to this change. Thus, we use ‹Q(z) over ‹A = A�,�
K

as in (6) and qt 2 ‹A is obtained via

(28) qt = ‹Q � h�

Åh‹X(i�1)
t , ut�1 + wtX

(i�1)
t i

k‹X(i�1)
t k22

ã
.

In both cases, we update the error vector via ut = ut�1 + wtX
(i�1)
t � qt

‹X(i�1)
t , as before. In

summary, for quantizing a single-layer network, similar to (10) the two sparse GPFQ schemes
related to soft and hard thresholding are given by

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 11

(29)

8
>><

>>:

u0 = 0 2 Rm
,

qt = Q � s�
�
wt +

X>
t ut�1

kXtk22

�
,

ut = ut�1 + wtXt � qtXt.

(30)

8
>><

>>:

u0 = 0 2 Rm
,

qt = ‹Q � h�

�
wt +

X>
t ut�1

kXtk22

�
,

ut = ut�1 + wtXt � qtXt.

In-

teresting, with these sparsity promoting modifications, one can prove similar error bounds to
GPFQ. To illustrate with bounded or Gaussian clustered data, we show that sparse GPFQ
admits similar error bounds as in Theorem 3.1 and Theorem 3.2. The following results are
proved in Appendix E.

Theorem 4.1 (Sparse GPFQ with bounded input data). Under the conditions of Theorem 3.1,

we have the following.

(a) Quantizing w using (29) with the alphabet A in (3), we have

P
⇣
kXw �Xqk22 

r
2(2�+ �)2

s2
logN0

⌘
� 1� 1

N2
0

⇣
2 +

1p
1� s2

⌘
.

(b) Quantizing w using (30) with the alphabet ‹A in (4), we have

P
⇣
kXw �Xqk22 

r
2 max{2�, �}2

s2
logN0

⌘
� 1� 1

N2
0

⇣
2 +

1p
1� s2

⌘
.

Theorem 4.2 (Sparse GPFQ for Gaussian clusters). Under the assumptions of Theorem 3.2,

the followings inequalities hold.

(a) Quantizing w using (29) with the alphabet A in (3), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2(2�+ �)2�2 logN0

⌘
.

p
mK

N
p
0

.

(b) Quantizing w using (30) with the alphabet ‹A in (4), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2 max{2�, �}2�2 logN0

⌘
.

p
mK

N
p
0

.

Note that the sparsity regularization term � only appears in the error bounds, making them
slightly worse than those where no sparsity is enforced. In Section 5.2.4, we will numerically
explore the impact of � on the sparsity and accuracy of quantized neural networks.

5. Experiments

To evaluate the performance of our method and compare it with the approaches reviewed
in Section 1.1, we test our modified GPFQ on the ImageNet classification task 1. In particular,
we focus on ILSVRC-2012 [5], a 1000-category dataset with over 1.2 million training images
and 50 thousand validation images. All images in ILSVRC-2012 are preprocessed in a
standard manner before they are fed into neural networks: we resize each image to 256⇥ 256
and use the normalized 224⇥ 224 center crop. The evaluation metrics we use are top-1 and
top-5 accuracy of the quantized models on the validation dataset.

1Our code for experiments is available: https : //github.com/YixuanSeanZhou/Quantized Neural Nets.git

https://github.com/YixuanSeanZhou/Quantized_Neural_Nets.git

12 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

5.1. Experimental Setup. For reproducibility and fairness of comparison, we use the
pretrained 32-bit floating point neural networks provided by torchvision2 in PyTorch [25].
We test several well-known neural network architectures including: AlexNet [17], VGG-16
[26], GoogLeNet [27], ResNet-18, ResNet-50 [13], and E�ceintNet-B1 [28]. In the following
experiments, we will focus on quantizing the weights of fully-connected and convolutional
layers of the above architectures, as our theory applies specifically to these types of layers3.

Let b 2 N denote the number of bits used for quantization. Here, we fix b for all the layers.
In our experiments with GPFQ, we adopt the midtread alphabets A�

K in (3) with

(31) K = 2b�1
, � =

R

2b�1
,

where R > 0 is a hyper-paramter. Indeed, according to (3), A�
K is symmetric with maximal

element qmax = K� = R. Since b is fixed, all that remains is to select R in (31) based on the
distribution of weights. To that end, suppose we are quantizing the i-th layer of a neural
network with weight matrix W

(i) 2 RNi�1⇥Ni . Then, Theorem 3.1 and Theorem 3.2 require
that R = qmax � maxk,j |W (i)

k,j |, and yield error bounds that favor a smaller step size � / R.
In practice, however, the weights may have outliers with large magnitudes, which would
entail unnecessarily using a large R. Thus, rather than choosing R = maxk,j |W (i)

k,j |, we will

consider the average infinity norm of weights across all neurons w, i.e. columns of W (i). That
is R / 1

Ni

P
1jNi

kW (i)
j k1. Then, by (31), the step size used for quantizing the i-th layer is

given by

(32) �
(i) :=

C

2b�1Ni

X

1jNi

kW (i)
j k1.

Here, C � 1 is independent of i and fixed across layers, batch-sizes, and bit widths. To obtain
a good choice of C, we perform a grid search with cross-validation over the interval [1, 2],
albeit on a small batch size m  128. So the tuning of C takes very little time compared to
the quantization with the full training data. Note that the tuning and quantization scale
linearly in the size of the data set and the number of parameters of the network. This means
that this entire process’s computational complexity is dominated by the original training of
the network and there is no problem with its scaling to large networks. Moreover, by choosing
the maximal element in our alphabet, i.e. qmax = 2b�1

�
(i), to be a constant C 2 [1, 2] times

the average `1 norm of all the neurons, we are selecting a number that is e↵ectively larger
than most of the weights and thereby corresponding perfectly with the theory for most of
the neurons. For the remaining neurons, the vast majority of the weights will be below this
threshold, and only the outlier weights, in general, will exceed it. In Appendix C, we present
a theoretical analysis of the expected error when a few weights exceed qmax. We not only
show that the proposed algorithm is still e↵ective in this scenario, but also that in some

2https://pytorch.org/vision/stable/models.html
3Batch normalization layers, while not explicitly covered by our methods in the preceeding sections, are easy

to handle. Indeed, in Appendix B, we show that our approach can e↵ectively quantize batch normalization
layers by merging them with their preceding convolutional layers before quantization, and we demonstrate
experimentally that this does not negatively impact performance.

https://pytorch.org/vision/stable/models.html

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 13

cases, it may be beneficial to choose � small enough such that some weights exceed qmax. The
analysis in Appendix C is consistent with, and helps explain the experimental results in this
section. Further, we comment that a more thorough search for an optimal C depending on
these individual parameters, e.g. b, may improve performance.

Table 1. Top-1/Top-5 accuracy drop using b = 5 bits.

Model C m Acc Drop (%) Model C m Acc Drop (%)

AlexNet 1.1 2048 0.85/0.33 GoogLeNet 1.41 2048 0.60/0.46
VGG-16 1.0 512 0.63/0.32 E�cientNet-B1 1.6 2048 0.45/0.18
ResNet-18 1.16 4096 0.49/0.23 ResNet-50 1.81 2048 0.62/0.11

(a) AlexNet (b) GoogLeNet (c) VGG-16

(d) ResNet-18 (e) ResNet-50 (f) E�cientNet-B1

Figure 1. Top-1 (dashed lines) and Top-5 (solid lines) accuracy for original
and quantized models on ImageNet.

As mentioned in Section 3.3, we introduce a sampling probability p 2 (0, 1], associated with
GPFQ for convolutional layers. This is motivated, in part, by decreasing the computational
cost associated with quantizing such layers. Indeed, a batched input tensor of a convolutional
layer can be unfolded as a stack of vectorized sliding local blocks, i.e., a matrix. Since,

14 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

additionally, the kernel can be reshaped into a column vector, matrix-vector multiplication
followed by reshaping gives the output of this convolutional layer. On the other hand, due to
potentially large overlaps between sliding blocks, the associated matrices have large row size
and thus the computational complexity is high. To accelerate our computations, we extract
the data used for quantization by setting the stride (which defines the step size of the kernel
when sliding through the image) equal to the kernel size and choosing p = 0.25. This choice
gives a good trade-o↵ between accuracy and computational complexity, which both increase
with p. Recall that the batch size m 2 N denotes the number of samples used for quantizing
each layer of a neural network. In all experiments, b is chosen from {3, 4, 5, 6}.

5.2. Results on ImageNet.

5.2.1. Impact of b and m. The first experiment is designed to explore the e↵ect of the
batch size m, as well as bit-width b, on the accuracy of the quantized models. We compute
the validation accuracy of quantized networks with respect to di↵erent choices of b and m.
In particular, Table 1 shows that, using b = 5 bits, all quantized models achieve less than
1% loss in top-1 and top-5 accuracy. Moreover, we illustrate the relationship between the
quantization accuracy and the batch size m in Figure 1, where the horizontal lines in cyan,
obtained directly from the original validation accuracy of unquantized models, are used for
comparison against our quantization method. We observe that (1) all curves with distinct
b quickly approach an accuracy ceiling while curves with high b eventually reach a higher
ceiling; (2) Quantization with b � 4 attains near-original model performance with su�ciently
large m; (3) one can expect to obtain higher quantization accuracy by taking larger m but
the extra improvement that results from increasing the batch size rapidly diminishes.

5.2.2. Comparisons with Baselines. Next, we compare GPFQ against other post-training
quantization schemes discussed in Section 1.1 on various architectures. We note, however,
that for a fixed architecture each post-training quantization method starts with a potentially
di↵erent set of parameters (weights and biases), and these parameters are not available to
us. As such, we simply report other methods’ accuracies as they appear in their associated
papers. Due to this, a perfect comparison between methods is not possible. Another factor
that impacts the comparison is that following DoReFa-Net [36], many baseline quantization
schemes [34, 14, 19] leave the first and the last layers of DNNs unquantized to alleviate
accuracy degradation. On the other hand, we quantize all layers of the model. Table 2
displays the number of bits and the method used to quantize each network. It also contains
the accuracy of quantized and full-precision models respectively, as well as their di↵erence,
i.e. accuracy drop. We report the results of GPFQ (without the † superscript) for all models
with b = 3, 4, 5. The important observation here is that our method is competitive across
architectures and bit-widths, and shows the best performance on a number of them.

5.2.3. Further Improvement of GPFQ. In this section, we show that the validation
accuracy of the proposed approach can be further improved by incorporating the following
modifications used by prior work: (1) mixing precision for quantization, such as using di↵erent
bit-widths to quantize fully-connected and convolutional layers respectively [2] or leaving

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 15

Table 2. ImageNet Top-1 accuracy with weight quantization.

Model Bits Method Quant Acc (%) Ref Acc (%) Acc Drop (%)

Alexnet

3
GPFQ (Ours) 53.22 56.52 3.30
GPFQ (Ours)† 54.77 56.52 1.75

4
OMSE[3] 55.52 56.62 1.10
GPFQ (Ours) 55.15 56.52 1.37
GPFQ (Ours)† 55.51 56.52 1.01

5
GPFQ (Ours) 55.67 56.52 0.85
GPFQ (Ours)† 55.94 56.52 0.58

8 DoReFa [36] 53.00 55.90 2.90

VGG-16

3
GPFQ (Ours) 69.67 71.59 1.92
GPFQ (Ours)† 70.24 71.59 1.35

4

MSE [1] 70.50 71.60 1.10
OMSE [3] 71.48 73.48 2.00
GPFQ (Ours) 70.70 71.59 0.89
GPFQ (Ours)† 70.90 71.59 0.69

5
GPFQ (Ours) 70.96 71.59 0.63
GPFQ (Ours)† 71.05 71.59 0.54

8 Lee et al. [18] 68.05 68.34 0.29

ResNet-18

3
GPFQ (Ours) 66.55 69.76 3.21
GPFQ (Ours)† 67.63 69.76 2.13

4

MSE [1] 67.00 69.70 2.70
OMSE [3] 68.38 69.64 1.26
S-AdaQuant [14] 69.40 71.97 2.57
AdaRound [24] 68.71 69.68 0.97
BRECQ [19] 70.70 71.08 0.38
GPFQ (Ours) 68.55 69.76 1.21
GPFQ (Ours)† 68.81 69.76 0.95

5
RQ [21] 65.10 69.54 4.44
GPFQ (Ours) 69.27 69.76 0.49
GPFQ (Ours)† 69.50 69.76 0.26

6
DFQ [23] 66.30 70.50 4.20
RQ [21] 68.65 69.54 0.89

ResNet-50

3
GPFQ (Ours) 71.80 76.13 4.33
GPFQ (Ours)† 72.18 76.13 3.95

4

MSE [1] 73.80 76.10 2.30
OMSE [3] 73.39 76.01 2.62
OCS + Clip [34] 69.30 76.10 6.80
PWLQ [8] 73.70 76.10 2.40
AdaRound [24] 75.23 76.07 0.84
S-AdaQuant [14] 75.10 77.20 2.10
BRECQ [19] 76.29 77.00 0.71
GPFQ (Ours) 75.10 76.13 1.03
GPFQ (Ours)† 75.30 76.13 0.83

5
OCS + Clip [34] 73.40 76.10 2.70
GPFQ (Ours) 75.51 76.13 0.62
GPFQ (Ours)† 75.66 76.13 0.47

8 IAOI [15] 74.90 76.40 1.50

the last fully-connected layer unquantized [36]; (2) applying bias correction [1, 23] to the
last layer, that is, subtracting the average quantization error from the layer’s bias term.
In Table 2, we examine some of these empirical rules by leaving the last layer intact and

16 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

performing bias correction to remove the noise due to quantization. This variant of GPFQ is
highlighted by a † symbol. By using the enhanced GPFQ, the average increment of accuracy
exceeds 0.2% for b = 4, 5 bits, and is greater than 0.7% for b = 3 bits. This demonstrates,
empirically, that GPFQ can be easily adapted to incorporate heuristic modifications that
improve performance.

(a) AlexNet with (27) (b) AlexNet with (28)

(c) VGG-16 with (27) (d) VGG-16 with (28)

(e) ResNet-50 with (27) (f) ResNet-50 with (28)

Figure 2. (1) Left y-axis: Top-1 (dashed-dotted lines) and Top-5 (dash lines)
accuracy for original (in red) and quantized (in blue) models on ImageNet. (2)
Right y-axis: The sparsity of quantized models plotted by dotted green lines.

5.2.4. Sparse Quantization. For our final experiment, we illustrate the e↵ects of sparsity
via the sparse quantization introduced in Section 4. Recall that the sparse GPFQ with soft
thresholding in (27) uses alphabets A�

K as in (3) while the version of hard thresholding, see

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 17

(28), relies on alphabets A�,�
K as in Equation (4). In the setting of our experiment, both K

and � are still defined and computed as in Section 5.1, where the number of bits b = 5 and
the corresponding scalar C > 0 and batch size m 2 N for each neural network is provided
by Table 1. Moreover, the sparsity of a given neural network is defined as the proportion
of zeros in the weights. According to Equation (27) and Equation (28), in general, the
sparsity of DNNs is boosted as � increases. Hence, we treat � > 0 as a variable to control
sparsity and explore its impact on validation accuracy of di↵erent DNNs. As shown in
Figure 2, we quantize AlexNet, VGG-16, and ResNet-50 using both (27) and (28), with
� 2 {0, 0.0025, 0.005, 0.0075, 0.01, 0.0125}. Curves for validation accuracy and sparsity are
plotted against �. We note that, for all tested models, sparse GPFQ with hard thresholding,
i.e. (28), outperforms soft thresholding, achieving significantly higher sparsity and better
accuracy. For example, by quantizing AlexNet and VGG-16 with (28), one can maintain
near-original model accuracy when half the weights are quantized to zero, which implies a
remarkable compression rate 0.5b

32 = 2.5
32 ⇡ 7.8%. Similarly, Figure 2f and Figure 2e show that

ResNet-50 can attain 40% sparsity with subtle decrement in accuracy. Additionally, in all
cases, one can expect to get higher sparsity by increasing � while the validation accuracy
tends to drop gracefully. Moreover, in Figure 2e, we observe that the sparsity of quantized
ResNet50 with � = 0.0025 is even lower than the result when thresholding functions are not
used, that is, � = 0. A possible reason is given as follows. In contrast with A�

K , the alphabet
A�,�

K has only one element 0 between �� and �. Thus, to compensate for the lack of small
alphabet elements and also reduce the path following error, sparse GPFQ in (28) converts
more weights to nonzero entries of A�,�

K , which in turn dampens the upward trend in sparsity.

Acknowledgements

This work was supported in part by National Science Foundation Grant DMS-2012546.
The authors thank Eric Lybrand for stimulating discussions on the topics of this paper.

References

[1] R. Banner, Y. Nahshan, E. Ho↵er, and D. Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

[2] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer. Zeroq: A
novel zero shot quantization framework. In Proceedings of the IEEE/CVF Conference

on Computer Vision and Pattern Recognition, pages 13169–13178, 2020.
[3] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev. Low-bit quantization of neural

networks for e�cient inference. In ICCV Workshops, pages 3009–3018, 2019.
[4] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural

networks with binary weights during propagations. In Advances in neural information

processing systems, pages 3123–3131, 2015.
[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale

hierarchical image database. In 2009 IEEE conference on computer vision and pattern

recognition, pages 248–255. Ieee, 2009.

18 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

[6] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware acceleration
for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532,
2020.

[7] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF

International Conference on Computer Vision, pages 293–302, 2019.
[8] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Georgiadis, and J. H. Hassoun. Post-

training piecewise linear quantization for deep neural networks. In European Conference

on Computer Vision, pages 69–86. Springer, 2020.
[9] S. Foucart and H. Rauhut. An invitation to compressive sensing. In A mathematical

introduction to compressive sensing, pages 1–39. Springer, 2013.
[10] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quan-

tization methods for e�cient neural network inference. arXiv preprint arXiv:2103.13630,
2021.

[11] Y. Guo. A survey on methods and theories of quantized neural networks. arXiv preprint

arXiv:1808.04752, 2018.
[12] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks

with pruning, trained quantization and hu↵man coding. arXiv preprint arXiv:1510.00149,
2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
770–778, 2016.

[14] I. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry. Improving post training
neural quantization: Layer-wise calibration and integer programming. arXiv preprint

arXiv:2006.10518, 2020.
[15] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and

D. Kalenichenko. Quantization and training of neural networks for e�cient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2704–2713, 2018.
[16] R. Krishnamoorthi. Quantizing deep convolutional networks for e�cient inference: A

whitepaper. arXiv preprint arXiv:1806.08342, 2018.
[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep

convolutional neural networks. Advances in neural information processing systems, 25:
1097–1105, 2012.

[18] J. H. Lee, S. Ha, S. Choi, W.-J. Lee, and S. Lee. Quantization for rapid deployment of
deep neural networks. arXiv preprint arXiv:1810.05488, 2018.

[19] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. Brecq:
Pushing the limit of post-training quantization by block reconstruction. arXiv preprint

arXiv:2102.05426, 2021.
[20] Y. Liu, W. Zhang, and J. Wang. Zero-shot adversarial quantization. In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1512–1521,
2021.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 19

[21] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling. Relaxed quantization
for discretized neural networks. In International Conference on Learning Representations,
2019.

[22] E. Lybrand and R. Saab. A greedy algorithm for quantizing neural networks. Journal of
Machine Learning Research, 22(156):1–38, 2021.

[23] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quantization through
weight equalization and bias correction. In Proceedings of the IEEE/CVF International

Conference on Computer Vision, pages 1325–1334, 2019.
[24] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort. Up or down?

adaptive rounding for post-training quantization. In International Conference on Machine

Learning, pages 7197–7206. PMLR, 2020.
[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,

N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026–8037, 2019.

[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 1–9, 2015.
[28] M. Tan and Q. Le. E�cientnet: Rethinking model scaling for convolutional neural

networks. In International Conference on Machine Learning, pages 6105–6114. PMLR,
2019.

[29] R. Vershynin. High-dimensional probability: An introduction with applications in data

science, volume 47. Cambridge university press, 2018.
[30] P. Wang, Q. Chen, X. He, and J. Cheng. Towards accurate post-training network

quantization via bit-split and stitching. In International Conference on Machine Learning,
pages 9847–9856. PMLR, 2020.

[31] P. Wang, X. He, G. Li, T. Zhao, and J. Cheng. Sparsity-inducing binarized neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 12192–12199, 2020.

[32] S. Xu, H. Li, B. Zhuang, J. Liu, J. Cao, C. Liang, and M. Tan. Generative low-
bitwidth data free quantization. In European Conference on Computer Vision, pages
1–17. Springer, 2020.

[33] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceedings of the European conference

on computer vision (ECCV), pages 365–382, 2018.
[34] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang. Improving neural network quantization

without retraining using outlier channel splitting. In International conference on machine

learning, pages 7543–7552. PMLR, 2019.
[35] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:

Towards lossless cnns with low-precision weights. arXiv preprint arXiv:1702.03044, 2017.

20 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

[36] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXiv preprint

arXiv:1606.06160, 2016.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 21

Appendix A. Useful Lemmata

Lemma A.1. In the context of (8), we have qt = Q
Å

h‹X(i�1)
t ,ut�1+wtX

(i�1)
t i

k‹X(i�1)
t k22

ã
. Here, we suppose

‹X(i�1)
t 6= 0.

Proof. According to (8), qt = argmin
p2A

��ut�1 + wtX
(i�1)
t � p‹X(i�1)

t

��2
2
. Expanding the square

and removing the terms irrelevant to p, we obtain

qt = argmin
p2A

⇣
p
2k‹X(i�1)

t k22 � 2ph‹X(i�1)
t , ut�1 + wtX

(i�1)
t i

⌘

= argmin
p2A

Å
p
2 � 2p · h

‹X(i�1)
t , ut�1 + wtX

(i�1)
t i

k‹X(i�1)
t k22

ã

= argmin
p2A

Å
p� h‹X(i�1)

t , ut�1 + wtX
(i�1)
t i

k‹X(i�1)
t k22

ã2

= argmin
p2A

����p�
h‹X(i�1)

t , ut�1 + wtX
(i�1)
t i

k‹X(i�1)
t k22

����

= Q
Åh‹X(i�1)

t , ut�1 + wtX
(i�1)
t i

k‹X(i�1)
t k22

ã
.

In the last equality, we used the definition of (5). ⇤
Lemma A.2. Suppose ‹X(i�1)

t 6= 0. The closed-form expression of qt in (26) is given

by qt = Q � s�

Å
h‹X(i�1)

t ,ut�1+wtX
(i�1)
t i

k‹X(i�1)
t k22

ã
. Here, s�(x) := sign(x)max{|x| � �, 0} is the soft

thresholding function.

Proof. Expanding the square and removing the terms irrelevant to p, we obtain

qt = argmin
p2A

⇣
p
2

2
k‹X(i�1)

t k22 � ph‹X(i�1)
t , ut�1 + wtX

(i�1)
t i+ �|p|k‹X(i�1)

t k22
⌘

= argmin
p2A

Å
p
2

2
� p · h

‹X(i�1)
t , ut�1 + wtX

(i�1)
t i

k‹X(i�1)
t k22

+ �|p|
ã

= argmin
p2A

Å
p
2

2
� ↵tp+ �|p|

ã
(33)

where ↵t :=
h‹X(i�1)

t ,ut�1+wtX
(i�1)
t i

k‹X(i�1)
t k22

. Define gt(p) :=
1
2p

2 � ↵tp+ �|p| for p 2 R. By (3), we have

qt = argminp2A gt(p) = argmin|k|K
k2Z

gt(k�). Now we analyze two cases ↵t � 0 and ↵t < 0.

The idea is to investigate the behaviour of gt(k�) over k 2 {�K, ...,K}.
(I) Assume ↵t � 0. Since gt(k�) > gt(0) = 0 for all �K  k  �1, then gt(k�) is minimized
at some k � 0. Note that gt(p) is a convex function passing through the origin. So, for
1  k  K � 1, gt(k�) is the minimum if and only if gt(k�)  min{gt((k + 1)�), gt((k � 1)�)}.

It is easy to verify that the condition above is equivalent to

(34)
⇣
k � 1

2

⌘
� + �  ↵t 

⇣
k +

1

2

⌘
� + �.

22 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

It only remains to check k = 0 and k = K. For k = 0, note that when ↵t 2 [0, �/2 + �], we
have

(35) gt(�) � gt(0) = 0,

and if ↵t � (K � 1
2)� + �, then

(36) gt(K�)  gt((K � 1)�).

Combining (34), (35), and (36), we conclude that

(37) qt = arg min
|k|K
k2Z

gt(k�) =

8
>><

>>:

0 if 0  ↵t <
�
2 + �,

k� if |↵t � �� k�|  �
2 and 1  k  K � 1,

K� if ↵t � �+ �
2 + (K � 1)�.

(II) In the opposite case where ↵t < 0, it su�ces to minimize gt(k�) with k  0 because
gt(k�) > 0 for all k � 1. Again, notice that gt(p) is a convex function on [�1, 0] satisfying
gt(0) = 0. Applying a similar argument as in the case ↵t � 0, one can get

(38) qt = arg min
|k|K
k2Z

gt(k�) =

8
>><

>>:

0 if � �
2 � � < ↵t < 0,

k� if |↵t + �� k�|  �
2 and � (K � 1)  k  �1,

�K� if ↵t  ��� �
2 � (K � 1)�.

It follows from (37) and (38) that qt = Q(s�(↵t)) = Q � s�

Å
h‹X(i�1)

t ,ut�1+wtX
(i�1)
t i

k‹X(i�1)
t k22

ã
where

s�(x) := sign(x)max{|x|� �, 0} is the soft thresholding function. ⇤

Lemma A.3. Let Unif(Br) denote the uniform distribution on the closed ball Br ⇢ Rm
with

center at the origin and radius r > 0. Suppose that the random vector X 2 Rm
is drawn from

Unif(Br). Then we have EkXk22 = mr2

m+2 .

Proof. Note that the density function of Unif(Br) is given by f(x) = 1
vol(Br) Br(x) where

vol(Br) = r
m
⇡

m
2 /�(m2 + 1) is the volume of Br. Moreover, by integration in spherical

coordinates, one can get

EkXk22 =
Z

Rm

kxk22f(x) dx =

Z 1

0

Z

Sm�1

z
m�1kzxk22f(zx) d�(x) dz

=

Z r

0

Z

Sm�1

z
m+1

vol(Br)
d�(x) dz =

�(Sm�1)

vol(Br)

Z r

0

z
m+1

dz =
mr

2

m+ 2
.

Here, �(Sm�1) = 2⇡
m
2 /�(m2) is the spherical measure (area) of the unit sphere Sm�1 ⇢ Rm. ⇤

Orthogonal Projections. Given a closed subspace S ✓ Rm, we denote the orthogonal
projection onto S by PS. In particular, if z 2 Rm is a vector, then we use Pz and Pz? to
represent orthogonal projections onto span(z) and span(z)? respectively. Hence, for any
x 2 Rm, we have

(39) Pz(x) =
hz, xiz
kzk22

, x = Pz(x) + Pz?(x), and kxk22 = kPz(x)k22 + kPz?(x)k22.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 23

Lemma A.4. Let A be as in (3) with step size � > 0, and largest element qmax. Suppose

that w 2 RN0 satisfies kwk1  qmax, and consider the quantization scheme given by (10).
Let ✓t := \(Xt, ut�1) be the angle between Xt and ut�1. Then, for t = 1, 2, . . . , N0, we have

(40) kutk22 � kut�1k22 

8
<

:

�2

4 kXtk22 � kut�1k22 cos2 ✓t if

���wt +
kut�1k2
kXtk2 cos ✓t

���  qmax,

0 otherwise.

Proof. By applying (39) and (10), we get

kPXt(ut)k22 =
(X>

t ut)2

kXtk22
=

(X>
t ut�1 + (wt � qt)kXtk22)2

kXtk42
kXtk22

=
⇣
wt +

X
>
t ut�1

kXtk22
� qt

⌘2
kXtk22 =

⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
kXtk22.(41)

The last equation holds because X
>
t ut�1 = kXtk2kut�1k2 cos ✓t. Note that

⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
�
⇣kut�1k2

kXtk2
cos ✓t

⌘2
=
⇣
wt +

2kut�1k2
kXtk2

cos ✓t � qt

| {z }
(I)

⌘
(wt � qt| {z }

(II)

),

|wt|  qmax, and qt = Q
⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
. If

⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
> qmax, then qt = qmax

and thus 0  qt �wt  kut�1k2
kXtk2 cos ✓t. So (I) � wt +2(qt �wt)� qt = qt �wt � 0 and (II)  0.

Moreover, if
⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
< �qmax, then qt = �qmax and kut�1k2

kXtk2 cos ✓t  qt � wt  0.

Hence, (I)  wt + 2(qt � wt)� qt = qt � wt  0 and (II) � 0. It follows that

(42)
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2

⇣kut�1k2

kXtk2
cos ✓t

⌘2

when
���wt +

kut�1k2
kXtk2 cos ✓t

��� > qmax. Now, assume that
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax. In this case,

since the argument of Q lies in the active range of A, we obtain

(43)
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
 �

2

4
.

Applying (42) and (43) to (41), one can get

(44) kPXt(ut)k22 

8
<

:

�2

4 kXtk22 if
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax,

kut�1k22 cos2 ✓t otherwise.

Further, we have

(45) PX?
t
(ut) = PX?

t
(ut�1 + wtXt � qtXt) = PX?

t
(ut�1).

24 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

It follows that

kutk22 � kut�1k22 = kPXt(ut)k22 + kPX?
t
(ut)k22 � kut�1k22

= kPXt(ut)k22 + kPX?
t
(ut�1)k22 � kut�1k22 (by (45))

= kPXt(ut)k22 � kPXt(ut�1)k22 (using (39))

= kPXt(ut)k22 � kut�1k22 cos2 ✓t.

Substituting kPXt(ut)k22 with its upper bounds in (44), we obtain (40). ⇤

Lemma A.5. Let A be as in (3) with step size � > 0, and largest element qmax. Suppose

that w 2 RN0 satisfies kwk1  qmax, and consider the quantization scheme given by (10).
Additionally, denote the information of the first t� 1 quantization steps by a �-algebra Ft�1,

and let �, ⌘ > 0, s2 2 (0, 1). Then the following results hold for t = 1, 2, . . . , N0.

(1) Ee⌘kutk22  max
n
E(e ⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22
o
.

(2) E(e⌘�kut�1k22(1�cos2 ✓t) | Ft�1)  �E(cos2 ✓t | Ft�1)(e⌘�kut�1k22 � 1) + e
⌘�kut�1k22.

Here, ✓t is the angle between Xt and ut�1.

Proof. (1) In the t-th step, by Lemma A.4, we have

kutk22 � kut�1k22 

8
<

:

�2

4 kXtk22 � kut�1k22 cos2 ✓t if
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax,

0 otherwise,

where ✓t = \(Xt, ut�1) is the angle between Xt and ut�1. On the one hand, if
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax, we obtain

(46) Ee⌘kutk22 = E(e⌘(kutk22�kut�1k22)e⌘kut�1k22)  E(e
⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t))

On the other hand, if
���wt +

kut�1k2
kXtk2 cos ✓t

��� > qmax, we get

(47) Ee⌘kutk22 = E(e⌘(kutk22�kut�1k22)e⌘kut�1k22)  Ee⌘kut�1k22 .

Combining (46) and (47), we conclude that

Ee⌘kutk22  max
n
E(e

⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22
o
.

(2) Conditioning on Ft�1, the function f(x) = e
⌘�xkut�1k22 is convex. It follows that

E(e⌘�kut�1k22(1�cos2 ✓t) | Ft�1) = E(f(cos2 ✓t · 0 + (1� cos2 ✓t) · 1) | Ft�1)

 E(cos2 ✓t + (1� cos2 ✓t)e
⌘�kut�1k22 | Ft�1)

 E(cos2 ✓t | Ft�1) + (1� E(cos2 ✓t | Ft�1))e
⌘�kut�1k22

= �E(cos2 ✓t | Ft�1)(e
⌘�kut�1k22 � 1) + e

⌘�kut�1k22 .

⇤

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 25

Appendix B. Fusing Convolution and Batch Normalization Layers

For many neural networks, e.g. MobileNets and ResNets, a convolutional layer is usually
followed by a batch normalization (BN) layer to normalize the output. Here, we show how
our quantization approach admits a simple modification that takes into account such BN
layers. Specifically, denote the convolution operator by * and suppose that a convolutional
layer

(48) fconv(x) := wconv ⇤ x+ bconv

is followed by a BN layer given by

(49) fbn(x) :=
x� µ̂p
�̂2 + ✏

· wbn + bbn.

Here, wconv, wbn, bconv, and bbn are learned parameters and µ̂, �̂ are the running mean and
standard-deviation respectively while ✏ > 0 is to keep the denominator bounded away from 0.
Note that the parameters in both Equation (48) and Equation (49) are calculated per-channel
over the mini-batches during training, but fixed thereafter.

Table 3. Top-1 accuracy drop for ResNet-18 and ResNet-50.

Model b m
Unfused Fused

C Acc Drop (%) C Acc Drop (%)

ResNet-18

4 2048

1.16

1.63

1.29

1.72
4 4096 1.21 1.18
5 2048 0.71 0.72
5 4096 0.49 0.51

ResNet-50
5 512

1.81
0.97

1.82
1.03

5 1024 0.90 0.81
5 2048 0.62 0.64

Thus, to quantize the convolutional and subsequent BN layers simultaneously, we first
observe that we can write

(50) fbn � fconv(x) = wnew ⇤ x+ bnew

with

wnew :=
wconvwbnp
�̂2 + ✏

, bnew :=
(bconv � µ̂)wbnp

�̂2 + ✏
+ bbn.

As a result, to quantize the convolutional and subsequent BN layer simulatenously, we
can simply quantize the parameters wnew, bnew in (50) using our methods. Although BN
layers are not quantized in our experiments in Section 5, we will show here that the proposed
algorithm GPFQ is robust to neural network fusion as described above. In Table 3, we
compare the Top-1 quantization accuracy between fused ResNets and unfused ResNets when
quantized using our methods with di↵erent bits and batch sizes. Note that the scalar C for
unfused networks remains the same as in Table 1 while C for fused networks is selected using

26 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

the procedure after Equation (32). We observe that the performance of GPFQ for fused
ResNet-18 and ResNet-50 is quite similar to that for unfused networks.

Appendix C. Quantizing Large Weights

In this section, we demonstrate that the proposed quantization algorithm (10) is still
e↵ective for weights with magnitudes that exceed the largest element, qmax = K�, in the
alphabet set A.
Specifically, we prove Theorem C.2, bounding the expected error when n := n(�) entries

of w are greater than K�. In turn, Theorem C.2 suggests that in some cases, choosing �

such that n(�) > 0 may be advantageous, a finding that is consistent with our experiments in
Section 5. We begin with the following lemma needed to prove Theorem C.2.

Lemma C.1. Let A be as in (3) with step size � > 0, and largest element qmax. Suppose

that w 2 RN0 satisfies kwk1  kqmax for some k > 1, and consider the quantization scheme

given by (10). Let ✓t := \(Xt, ut�1) be the angle between Xt and ut�1. Then

(51)

kutk22 

8
>><

>>:

�2

4 kXtk22 + kut�1k22(1� cos2 ✓t) if
��wt +

kut�1k2
kXtk2 cos ✓t

��  qmax,

kut�1k22 if
��wt +

kut�1k2
kXtk2 cos ✓t

�� > qmax and |wt|  qmax,

(kut�1k2 + (k � 1)qmaxkXtk2)2 if
��wt +

kut�1k2
kXtk2 cos ✓t

�� > qmax and |wt| > qmax

holds for t = 1, 2, . . . , N0.

Proof. The first two cases in (51) are covered by Lemma A.4. So it remains to consider the
case where

��wt +
kut�1k2
kXtk2 cos ✓t

�� > qmax and |wt| > qmax. As in the proof of Lemma A.4, we
have

kutk22 = (vt � qt)
2kXtk22 + (1� cos2 ✓t)kut�1k22

where vt := wt +
kut�1k2
kXtk2 cos ✓t. Since qt = Q(vt) and |vt| > qmax, we get qt = sign(vt)qmax. It

follows that

kutk22 = (vt � sign(vt)qmax)
2kXtk22 + (1� cos2 ✓t)kut�1k22

= (|vt|� qmax)
2kXtk22 + (1� cos2 ✓t)kut�1k22.(52)

By symmetry, we can assume without loss of generality that vt > qmax. In this case, since
|wt|  kwk1  kqmax,

|vt|� qmax = vt � qmax = wt � qmax +
kut�1k2
kXtk2

cos ✓t  (k � 1)qmax +
kut�1k2
kXtk2

cos ✓t.

Then (52) becomes

kutk22 
⇣
(k � 1)qmax +

kut�1k2
kXtk2

cos ✓t
⌘2
kXtk22 + (1� cos2 ✓t)kut�1k22

= (k � 1)2q2maxkXtk22 + kut�1k22 + 2(k � 1)qmaxhXt, ut�1i
= k(k � 1)qmaxXt + ut�1k22
 (kut�1k2 + (k � 1)qmaxkXtk2)2.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 27

This completes the proof. ⇤

We are now ready to bound the expected quantization error in the case when some weights
have magnitude greater than qmax.

Theorem C.2. Suppose that the columns Xt of X 2 Rm⇥N0 are drawn independently from a

probability distribution for which there exists s 2 (0, 1) and r > 0 such that kXtk2  r almost

surely, and such that for all unit vector u 2 Sm�1
we have

(53) EhXt, ui2

kXtk22
� s

2
.

Let A be the alphabet in (3) with step size � > 0, and the largest element qmax. Let w 2 RN0

be the weights associated with a neuron such that kwk1  kqmax for some k > 1. Let

n = |{t : |wt| > qmax}| be the number of weights with magnitude greater than qmax. Quantizing

w using (10), we have

(54) EkXw �Xqk22 
Å
nr(k � 1)qmax +

�r

2s

ã2
.

Proof. Let ✓t be the angle between Xt and ut�1. It follows from (53) that

E(cos2 ✓t | ut�1) = E
⇣ hXt, ut�1i2

kXtk22kut�1k22

��� ut�1

⌘
� s

2
.

Since kXtk2  r almost surely and E(cos2 ✓t | ut�1) � s
2, by Lemma C.1, we obtain

E(kutk22 | ut�1) (55)
8
>><

>>:

akut�1k22 + b if
��wt +

kut�1k2
kXtk2 cos ✓t

��  qmax,

kut�1k22 if
��wt +

kut�1k2
kXtk2 cos ✓t

�� > qmax and |wt|  qmax,

(kut�1k2 + c)2 if
��wt +

kut�1k2
kXtk2 cos ✓t

�� > qmax and |wt| > qmax

where a := (1� s
2), b := �2

4 r
2, and c := (k � 1)rqmax. Define the indices t0 := 0 < t1 < . . . <

tn < tn+1 := N0 + 1 where |wtj | > qmax for 1  j  n and let

mj :=
���{tj�1 < t < tj :

���wt +
kut�1k2
kXtk2

cos ✓t
���  qmax}

���, 1  j  n+ 1.

We first consider the case where n = 1. Applying the law of total expectation to the first two
cases in (55), one obtains

(56) Ekut1�1k22  a
m1Eku0k22 + b(1 + a+ . . .+ a

m1�1) = b(1 + a+ . . .+ a
m1�1).

28 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

In the last equation, we used the fact u0 = 0. Next, the last case in (55) can be used to
bound Ekut1k22. Specifically, we have

Ekut1k22 = E(E(kut1k22 | ut1�1)

 Ekut1�1k22 + 2cEkut1�1k2 + c
2 (using (55))

 Ekut1�1k22 + 2c(Ekut1�1k22)
1
2 + c

2 (by Jensen’s inequality)

= ((Ekut1�1k22)
1
2 + c)2


⇣
c+
»

b(1 + a+ . . .+ am1�1)
⌘2

(using (56)).(57)

Since |wt|  qmax for t1 < t < t2 = N0 + 1, using (55), we can derive

Ekut2�1k22  a
m2Ekut1k22 + b(1 + a+ . . .+ a

m2�1)

 a
m2

Ç
c+

…
b · 1� am1

1� a

å2

+ b · 1� a
m2

1� a
(using (57))

= a
m2c

2 + b · 1� a
m1+m2

1� a
+ 2am2c

b(1� am1)

1� a

 a
m2c

2 + b · 1� a
m1+m2

1� a
+ 2am2/2c

b(1� am1+m2)

1� a
(since 0 < a < 1)



c+

b(1� am1+m2)

1� a

!2

.(58)

Hence, we obtain EkuN0k22 
Ä
c+
»

b
1�a

ä2
when n = 1. Proceeding by induction on n, we

obtain

EkuN0k22 

nc+

b

1� a

!2

=

Å
nr(k � 1)qmax +

�r

2s

ã2
.(59)

Since uN0 = Xw �Xq, we have EkXw �Xqk22 
�
nr(k � 1)qmax +

�r
2s

�2
. ⇤

Our numerical experiments in Section 5 demonstrated that choosing our alphabet with
qmax < kwk1 can yield better results than if we strictly conformed to choosing A with
qmax � kwk1. Let us now see how Theorem C.2 can help explain these experimental results.
First, recall from (3) that qmax = K� = 2b�1

� where b is the number of bits, and observe that
the condition kwk1  kqmax in Theorem C.2 implies that we can set k = kwk1/qmax. Thus
(54), coupled with Jensen’s inequality, yields

(60) EkXw �Xqk2  nr(kwk1 � qmax) +
�r

2s
= nr(kwk1 � 2b�1

�) +
�r

2s
.

Now, note that s, r are fixed parameters that only depend on the input data distribution so
for a fixed b, n = n(�) = |{t : |wt| > 2b�1

�}| is a decreasing function of �. In other words, the
right hand side of (60) is the sum of an increasing function of � and a decreasing function
of �. This means that there exists an optimal value of �⇤ that minimizes the bound. In

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 29

particular, it may not always be optimal to choose a large � such that kwk1 = 2b�1
�. This

gives a theoretical justification for why the simple grid search we used in Section 5 yielded
better results.

Appendix D. Theoretical Analysis for Gaussian Clusters

In this section, we will prove Theorem 3.2, which we first restate here for convenience.
Theorem 3.2: Let X 2 Rm⇥N0 be as in (23) and let A be as in (3), with step size � > 0 and
the largest element qmax. Let p 2 N, K := 1 + �

�2 max1id kz(i)k21, and w 2 RN0 be the
weights associated with a neuron, with kwk1  qmax. Quantizing w using (10), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2
�
2
�
2 logN0

⌘
.

p
mK

N
p
0

, and

P
⇣
max

1tN0

kutk22 � 4pm2
K

2
�
2
�
2 logN0

⌘
.

p
mK

N
p�1
0

.

If the activation function ' is ⇠-Lipschitz continuous, then

P

Å
k'(Xw)� '(Xq)k22 � 4pm2

K
2
⇠
2
�
2
�
2 logN0

ã
.

p
mK

N
p
0

.

D.1. Proof of Theorem 3.2. Due to kXtk22 =
Pd

i=1 kY
(i)
t k22,

(61) EkXtk22 =
dX

i=1

EkY (i)
t k22 =

dX

i=1

(n�2 + n(z(i)t)2) = m�
2 + n

dX

i=1

(z(i)t)2

Additionally, given a unit vector u = (u(1)
, u

(2)
, . . . , u

(d)) 2 Rm with u
(i) 2 Rn, we have

hXt, ui =
Pd

i=1hY
(i)
t , u

(i)i ⇠ N
⇣Pd

i=1 z
(i)
t u

(i)>
n, �

2
⌘
. In fact, once we get the lower bound of

E hXt,ui2
kXtk22

as in (11), the quantization error for unbounded data (23) can be derived similarly to

the proof of Theorem 3.1, albeit using di↵erent techniques. It follows from the Cauchy-Schwarz
inequality that

(62) EhXt, ui2

kXtk22
� (E|hXt, ui|)2

EkXtk22
.

EkXtk22 is given by (61) while E|hXt, ui| can be evaluated by the following results.

Lemma D.1. Let Z ⇠ N (µ, �2) be a normally distributed random variable. Then

(63) E|Z| � �

…
2

⇡

Å
1� 4

27⇡

ã
.

Proof. Let (x) = 1p
2⇡

R x

�1 e
�t2/2

dt be the normal cumulative distribution function. Due to

Z ⇠ N (µ, �2), the folded normal distribution |Z| has mean E|Z| = �

»
2
⇡e

�µ2/2�2
+ µ(1 �

2 (�µ
�)). A well-known result [9, 29] that can be used to bound (x) is

(64)

Z 1

x

e
�t2/2

dt  min

Å…
⇡

2
,
1

x

ã
e
�x2/2

, for x > 0.

30 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Additionally, in order to evaluate E|Z|, it su�ces to analyze the case µ � 0 because one can
replace Z by �Z without changing |Z| when µ < 0. So we suppose µ � 0.

By (64), we obtain

E|Z| = �

…
2

⇡
e
�µ2/2�2

+ µ� 2µ (�µ/�) = �

…
2

⇡
e
�µ2/2�2

+ µ� µ

…
2

⇡

Z 1

µ/�

e
�t2/2

dt

� �

…
2

⇡
e
�µ2/2�2

+ µ�min

Å
µ, �

…
2

⇡

ã
e
�µ2/2�2

.

If µ � �

»
2
⇡ , then one can easily get E|Z| � µ � �

»
2
⇡ . Further, if 0  µ < �

»
2
⇡ , then

E|Z| � (�
p

2/⇡ � µ)e�µ2/2�2
+ µ. Due to e

x � 1 + x for all x 2 R, one can get

E|Z| � (�
»

2/⇡ � µ)(1� µ
2
/2�2) + µ =

1

2�2
µ
3 � 1

�
p
2⇡

µ
2 + �

…
2

⇡
� �

…
2

⇡

Å
1� 4

27⇡

ã
.

In the last inequality, we optimized in µ 2 (0, �
p
2/⇡) and thus chose µ = 2

3 · �
»

2
⇡ . ⇤

Lemma D.2. Let clustered data X = [X1, X2, . . . , XN0] 2 Rm⇥N0 be defined as in (23) and
u 2 Rm

be a unit vector. Then, for 1  t  N0, we have

(65) EhXt, ui2

kXtk22
� 5

9
· �

2

m(�2 +max1id kz(i)k21)
.

Proof. Since hXt, ui is normally distributed with variance �
2, (63) implies E|hXt, ui| �

�

»
2
⇡

Å
1� 4

27⇡

ã
. Plugging the inequality above and (61) into (62), we obtain

EhXt, ui2

kXtk22
� (E|hXt, ui|)2

EkXtk22
�

2(1� 4
27⇡)

2

⇡
· �

2

m�2 + n
Pd

i=1(z
(i)
t)2

� 5

9
· �

2

m�2 + n
Pd

i=1(z
(i)
t)2

.

Therefore, (65) holds due to (z(i)t)2  kz(i)k21  max1id kz(i)k21 and m = nd. ⇤
Now we are ready to prove Theorem 3.2.

Proof. Let ↵ > 0 and ⌘ > 0. By using exactly the same argument as in (15), at the t-th step
of (10), we have

(66) P(kutk22 � ↵)  e
�⌘↵Ee⌘kutk22 .

Moreover, Lemma A.5 implies

(67) Ee⌘kutk22  max
n
E(e

⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22
o

Until now our analysis here has been quite similar to what we did for bounded input data
in Theorem 3.1. Nevertheless, unlike Theorem 3.1, we will control the moment generating
function of kXtk22 because kXtk22 is unbounded. Specifically, applying the Cauchy-Schwarz
inequality and Lemma A.5 (2) with � = 2, we obtain

E(e
⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t) | Ft�1) 
�
Ee

⌘�2

2 kXtk22
� 1

2
�
E(e2⌘kut�1k22(1�cos2 ✓t) | Ft�1)

� 1
2


�
Ee

⌘�2

2 kXtk22
� 1

2
�
�E(cos2 ✓t | Ft�1)(e

2⌘kut�1k22 � 1) + e
2⌘kut�1k22

� 1
2(68)

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 31

In the first step, we also used the fact that Xt is independent of Ft�1. By (65), we have

E(cos2 ✓t | Ft�1) = E
Å hXt, ut�1i2

kXtk22kut�1k22

���Ft�1

ã
� 5

9mK
=: s2.

Plugging the inequality above into (68), we get

E(e
⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t) | Ft�1) 
�
Ee

⌘�2

2 kXtk22
� 1

2

⇣
�s

2(e2⌘kut�1k22 � 1) + e
2⌘kut�1k22

⌘ 1
2

=
�
Ee

⌘�2

2 kXtk22
� 1

2

⇣
e
2⌘kut�1k22(1� s

2) + s
2
⌘ 1

2


�
Ee

⌘�2

2 kXtk22
� 1

2 (e⌘kut�1k22(1� s
2)

1
2 + s)


�
Ee

⌘�2

2 kXtk22
� 1

2 (e⌘kut�1k22(1� 1

2
s
2) + s)(69)

where the last two inequalities hold due to (x2 + y
2)

1
2  |x| + |y| for all x, y 2 R, and

(1� x)
1
2  1� 1

2x whenever x  1.

Now we evaluate Ee ⌘�2

2 kXtk22 and note that

(70) Ee
⌘�2

2 kXtk22 = E exp
⇣
⌘�

2

2

dX

i=1

kY (i)
t k22

⌘
=

dY

i=1

E exp
⇣
⌘�

2

2
kY (i)

t k22
⌘
.

Since Y
(i)
t ⇠ N (z(i)t n, �

2
In), we have

E exp
⇣
⌘�

2

2
kY (i)

t k22
⌘
=

ï
1

�
p
2⇡

Z

R
exp

Å
�(x� z

(i)
t)2

2�2
+

⌘�
2
x
2

2

ã
dx

òn

=

ß
1

�
p
2⇡

· exp
Å

⌘�
2(z(i)t)2

2� 2⌘�2�2

ãZ

R
exp

ï
�1� ⌘�

2
�
2

2�2

Å
x� z

(i)
t

1� ⌘�2�2

ã2ò
dx

™n

=

ï
(1� ⌘�

2
�
2)�

1
2 exp

Å
⌘�

2(z(i)t)2

2� 2⌘�2�2

ãòn

where the last equality holds if ⌘�2�2
< 1 and we use the integral of the normal density

function: Å
1� ⌘�

2
�
2

2⇡�2

ã 1
2
Z

R
exp

ï
�1� ⌘�

2
�
2

2�2

Å
x� z

(i)
t

1� ⌘�2�2

ã2ò
dx = 1.

Notice that 1
1�x  1 + 2x for x 2 [0, 12] and 1 + x  e

x for all x 2 R. Now, we suppose

⌘�
2
�
2  1

2 and thus (1� ⌘�
2
�
2)�

1
2 =

⇣
1

1�⌘�2�2

⌘ 1
2  (1 + 2⌘�2�2)

1
2  e

⌘�2�2
. It follows that

E exp
⇣
⌘�

2

2
kY (i)

t k22
⌘

ï
exp

Å
⌘�

2
�
2 +

⌘�
2(z(i)t)2

2� 2⌘�2�2

ãòn

ï
exp

Å
⌘�

2
�
2 + ⌘�

2(z(i)t)2
ãòn

 exp

Å
n⌘�

2
�
2

Å
1 +

kz(i)k21
�2

ãã

 exp(nK⌘�
2
�
2)(71)

32 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Substituting (71) into (70), we get

(72) Ee
⌘�2

2 kXtk22  e
ndK⌘�2�2

= e
mK⌘�2�2

.

Combining (69) and (72), if ⌘�2�2  1
2 , then

E(e
⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)) = E
⇣
E(e

⌘�2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t) | Ft�1)
⌘

 E
⇣
e

1
2mK⌘�2�2

(e⌘kut�1k22(1� 1

2
s
2) + s)

⌘

= e
1
2mK⌘�2�2

(1� 1

2
s
2)Ee⌘kut�1k22 + se

1
2mK⌘�2�2

=: aEe⌘kut�1k22 + b(73)

with a := (1 � s
2
/2)e

1
2mK⌘�2�2

and b := se
1
2mK⌘�2�2

. Plugging (73) into (67), we have
Ee⌘kutk22  max{aEe⌘kut�1k22 + b,Ee⌘kut�1k22}. Next, similar to the argument in (18), iterating

expectations yields Ee⌘kutk22  a
t0E(e⌘ku0k22) + b(1 + a+ . . .+ a

t0) = a
t0 + b(1�at0)

1�a  1 + b
1�a

where the last inequality holds if a := (1 � s
2
/2)emK⌘�2�2/2

< 1. So we can now choose

⌘ = � log(1�s2/2)
mK�2�2 , which satisfies ⌘�

2
�
2 2 [0, 1/2] as required from before. Indeed, due to

m,K � 1 and s
2 = 5

9Km  5
9 , we have ⌘�2�2 = � log(1�s2/2)

mK  � log(1� 5
18) <

1
2 . Then we get

a = (1� 1
2s

2)1/2 and b = s(1� 1
2s

2)�1/2 . It follows from (66) and s
2 = 5

9mK that

P(kutk22 � ↵)  e
�⌘↵

Å
1 +

b

1� a

ã
= exp

Å
↵ log(1� s

2
/2)

mK�2�2

ãÅ
1 +

s(1� 1
2s

2)�1/2

1�
p
1� s2/2

ã

 exp

Å �↵s
2

2mK�2�2

ãÅ
1 +

s(1� 1
2s

2)�1/2 + s

s2/2

ã
(since log(1 + x)  x)

= exp

Å �↵s
2

2mK�2�2

ãÅ
1 + 2

(1� 1
2s

2)�1/2 + 1

s

ã

= exp

Å
� 5↵

18m2K2�2�2

ãï
1 + 6

…
mK

5

Å
1� 5

18mK

ã�1/2

+ 6

…
mK

5

ò

 c

p
mK exp

Å
� ↵

4m2K2�2�2

ã

where c > 0 is an absolute constant. Pick ↵ = 4m2
K

2
�
2
�
2 log(Np

0) to get

(74) P

Å
kutk22 � 4pm2

K
2
�
2
�
2 logN0

ã
 c

p
mKN

�p
0 .

From (74) we can first conclude, by setting t = N0 and using the fact uN0 = Xw �Xq, that

P

Å
kXw �Xqk22 � 4pm2

K
2
�
2
�
2 logN0

ã
 c

p
mK

N
p
0

.

If the activation function ' is ⇠-Lipschitz, then k'(Xw) � '(Xq)k2  ⇠kXw � Xqk2 and
thus

P

Å
k'(Xw)� '(Xq)k22 � 4pm2

K
2
⇠
2
�
2
�
2 logN0

ã
 c

p
mK

N
p
0

.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 33

Moreover, applying a union bound over t, yields

P

Å
max

1tN0

kutk22 � 4pm2
K

2
�
2
�
2 logN0

ã
 c

p
mK

N
p�1
0

.

⇤

Appendix E. Theoretical Analysis for Sparse GPFQ

In this section, we will show that Theorem 4.1 and Theorem 4.2 (restated here for
convenience) hold.

Theorem 4.1: Under the conditions of Theorem 3.1, we have the following.
(a) Quantizing w using (29) with the alphabet A in (3), we have

P
⇣
kXw �Xqk22 

r
2(2�+ �)2

s2
logN0

⌘
� 1� 1

N2
0

⇣
2 +

1p
1� s2

⌘
.

(b) Quantizing w using (30) with the alphabet ‹A in (4), we have

P
⇣
kXw �Xqk22 

r
2 max{2�, �}2

s2
logN0

⌘
� 1� 1

N2
0

⇣
2 +

1p
1� s2

⌘
.

Theorem 4.2: Under the assumptions of Theorem 3.2, the followings inequalities hold.
(a) Quantizing w using (29) with the alphabet A in (3), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2(2�+ �)2�2 logN0

⌘
.

p
mK

N
p
0

.

(b) Quantizing w using (30) with the alphabet ‹A in (4), we have

P
⇣
kXw �Xqk22 � 4pm2

K
2 max{2�, �}2�2 logN0

⌘
.

p
mK

N
p
0

.

Note that the di↵erence between the sparse GPFQ and the GPFQ in (10) is the usage of
thresholding functions. So the key point is to adapt Lemma A.4 and Lemma A.5 for those
changes.

E.1. Sparse GPFQ with Soft Thresholding. We first focus on the error analysis for (29)
which needs the following lemmata.

Lemma E.1. Let A be one of the alphabets defined in (3) with step size � > 0, and the

largest element qmax. Let ✓t := \(Xt, ut�1) be the angle between Xt and ut�1. Suppose that

w 2 RN0 satisfies kwk1  qmax, and consider the quantization scheme given by (29). Then,
for t = 1, 2, . . . , N0, we have

(75) kutk22 � kut�1k22 

8
<

:

(2�+�)2

4 kXtk22 � kut�1k22 cos2 ✓t if

���wt +
kut�1k2
kXtk2 cos ✓t

���  qmax + �,

0 otherwise.

34 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Proof. By applying exactly the same argument as in Lemma A.4, one can get

(76) kPXt(ut)k22 =
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
kXtk22.

and
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
�
⇣kut�1k2

kXtk2
cos ✓t

⌘2
=
⇣
wt +

2kut�1k2
kXtk2

cos ✓t � qt

| {z }
(I)

⌘
(wt � qt| {z }

(II)

),

where |wt|  qmax and qt = Q � s�
⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
. We proceed by going through the

cases.
First, if

⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
> qmax + �, then qt = qmax and thus �  qt � wt + � <

kut�1k2
kXtk2 cos ✓t. So (I) > wt + 2(qt � wt + �)� qt = qt � wt + 2� � 2� and (II)  0. Moreover,

if
⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
< �qmax � �, then qt = �qmax and kut�1k2

kXtk2 cos ✓t < qt � wt � �  ��.

Hence, (I) < wt + 2(qt � wt � �)� qt = qt � wt � 2�  �2� and (II) � 0. It follows that

(77)
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2

⇣kut�1k2

kXtk2
cos ✓t

⌘2

when
���wt +

kut�1k2
kXtk2 cos ✓t

��� > qmax + �.

Now, assume that
���wt+

kut�1k2
kXtk2 cos ✓t

���  qmax+�. In this case, let vt := s�

⇣
wt+

kut�1k2
kXtk2 cos ✓t

⌘
.

Then |vt|  qmax and
���wt +

kut�1k2
kXtk2 cos ✓t � vt

���  �. Since qt = Q(vt), we obtain

⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
=
���wt +

kut�1k2
kXtk2

cos ✓t � vt + vt � qt

���
2


Å���wt +

kut�1k2
kXtk2

cos ✓t � vt

���+ |vt � qt|
ã2


⇣
�+

�

2

⌘2
.(78)

Applying (77) and (78) to (76), one can get

(79) kPXt(ut)k22 

8
<

:

(2�+�)2

4 kXtk22 if
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax + �,

kut�1k22 cos2 ✓t otherwise.

Again, by the same discussion after (45) in Lemma A.4, we have kutk22�kut�1k22 = kPXt(ut)k22�
kut�1k22 cos2 ✓t. Replacing kPXt(ut)k22 with its upper bounds in (79), we obtain (75). ⇤

Lemma E.2. Let A be one of the alphabets defined in (3) with step size � > 0, and the largest

element qmax. Suppose that w 2 RN0 satisfies kwk1  qmax, and consider the quantization

scheme given by (29). Additionally, denote the information of the first t � 1 quantization

steps by a �-algebra Ft�1, and let �, ⌘ > 0, s2 2 (0, 1). Then the following results hold for

t = 1, 2, . . . , N0.

(1) Ee⌘kutk22  max
n
E(e

⌘(2�+�)2

4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22
o
.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 35

(2) E(e⌘�kut�1k22(1�cos2 ✓t) | Ft�1)  �E(cos2 ✓t | Ft�1)(e⌘�kut�1k22 � 1) + e
⌘�kut�1k22.

Here, ✓t is the angle between Xt and ut�1.

Proof. Similar to Lemma A.5, the inequality (1) follows immediately from (75). The proof of
part (2) is identical with the one in Lemma A.5. ⇤

Now we are ready to prove Theorem 4.1 as follows.

Proof. The only di↵erence between Lemma A.5 and its analogue Lemma E.2 is that �2 in
Lemma A.5 is replaced by (2�+ �)2. Note that Lemma A.5 was used in the proof of both
Theorem 3.1 and Theorem 3.2 in which �

2 serves as a coe�cient. Hence, by substituting �
2

with (2�+ �)2, every step in the proof still works and thus Theorem 4.1 holds. ⇤

E.2. Sparse GPFQ with Hard Thresholding. Now we navigate to the error analysis for
(30). Again, Lemma A.4 and Lemma A.5 are altered as follows.

Lemma E.3. Let ‹A be one of the alphabets defined in (4) with step size � > 0, the largest

element qmax, and threshold � 2 (0, qmax). Let ✓t := \(Xt, ut�1) be the angle between Xt and

ut�1. Suppose that w 2 RN0 satisfies kwk1  qmax, and consider the quantization scheme

given by (30). Then, for t = 1, 2, . . . , N0, we have

(80) kutk22 � kut�1k22 

8
<

:

max{2�,�}2
4 kXtk22 � kut�1k22 cos2 ✓t if

���wt +
kut�1k2
kXtk2 cos ✓t

���  qmax,

0 otherwise.

Proof. By applying exactly the same argument as in Lemma A.4, we obtain

(81) kPXt(ut)k22 =
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
kXtk22.

where |wt|  qmax and qt = Q � h�

⇣
wt +

kut�1k2
kXtk2 cos ✓t

⌘
. Due to � 2 (0, qmax), we have

Q � h�(z) = Q(z) for |z| > qmax. Thus, it follows from the discussion in Lemma A.4 that

(82)
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2

⇣kut�1k2

kXtk2
cos ✓t

⌘2

when
���wt +

kut�1k2
kXtk2 cos ✓t

��� > qmax.

Now, assume that
���wt +

kut�1k2
kXtk2 cos ✓t

���  qmax. In this case, because the argument of Q lies

in the active range of A, we obtain

(83)
⇣
wt +

kut�1k2
kXtk2

cos ✓t � qt

⌘2
 max

n
�,

�

2

o2

.

Applying (82) and (83) to (81), one can get

(84) kPXt(ut)k22 

8
<

:

max{2�,�}2
4 kXtk22 if

���wt +
kut�1k2
kXtk2 cos ✓t

���  qmax,

kut�1k22 cos2 ✓t otherwise.

Again, by the same discussion after (45) in Lemma A.4, we have kutk22�kut�1k22 = kPXt(ut)k22�
kut�1k22 cos2 ✓t. Replacing kPXt(ut)k22 with its upper bounds in (84), we obtain (80). ⇤

36 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Lemma E.4. Let ‹A be one of the alphabets defined in (4) with step size � > 0, the largest

element qmax and � 2 (0, qmax). Suppose that w 2 RN0 satisfies kwk1  qmax, and consider

the quantization scheme given by (30). Additionally, denote the information of the first t� 1
quantization steps by a �-algebra Ft�1, and let �, ⌘ > 0, s2 2 (0, 1). Then the following results

hold for t = 1, 2, . . . , N0.

(1) Ee⌘kutk22  max
n
E(e

⌘max{2�,�}2
4 kXtk22e⌘kut�1k22(1�cos2 ✓t)),Ee⌘kut�1k22

o
.

(2) E(e⌘�kut�1k22(1�cos2 ✓t) | Ft�1)  �E(cos2 ✓t | Ft�1)(e⌘�kut�1k22 � 1) + e
⌘�kut�1k22.

Here, ✓t is the angle between Xt and ut�1.

Proof. Similar to Lemma A.5, the inequality (1) follows immediately from (80). The proof of
part (2) is identical with the one in Lemma A.5. ⇤

The proof of Theorem 4.2 is given as follows.

Proof. The only di↵erence between Lemma A.5 and its analogue Lemma E.4 is that �2 in
Lemma A.5 is replaced by max{2� + �}2. Note that Lemma A.5 was used in the proof of
both Theorem 3.1 and Theorem 3.2 in which �

2 serves as a coe�cient. Hence, by substituting
�
2 with max{2�+ �}2, it is not hard to verify that Theorem 4.2 holds. ⇤

Department of Mathematics, University of California San Diego

Email address: jiz003@ucsd.edu

Department of Mathematics, University of California San Diego

Email address: yiz044@ucsd.edu

Department of Mathematics and Halıcıoğlu Data Science Institute, University of Cali-

fornia San Diego

Email address: rsaab@ucsd.edu

	1. Introduction
	1.1. Related Work
	1.2. Contribution

	2. Preliminaries
	2.1. Notation
	2.2. GPFQ

	3. New Theoretical Results for GPFQ
	3.1. Bounded Input Data
	3.2. Gaussian Clusters
	3.3. Convolutional Neural Networks

	4. Sparse GPFQ and Error Analysis
	5. Experiments
	5.1. Experimental Setup
	5.2. Results on ImageNet

	Acknowledgements
	References
	Appendix A. Useful Lemmata
	Appendix B. Fusing Convolution and Batch Normalization Layers
	Appendix C. Quantizing Large Weights
	Appendix D. Theoretical Analysis for Gaussian Clusters
	D.1. Proof of Theorem 3.2

	Appendix E. Theoretical Analysis for Sparse GPFQ
	E.1. Sparse GPFQ with Soft Thresholding
	E.2. Sparse GPFQ with Hard Thresholding

