2201.11113v3 [cs.LG] 15 Jan 2023

.
.

arxiv

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH
PROVABLE GUARANTEES

JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

ABSTRACT. While neural networks have been remarkably successful in a wide array of
applications, implementing them in resource-constrained hardware remains an area of intense
research. By replacing the weights of a neural network with quantized (e.g., 4-bit, or binary)
counterparts, massive savings in computation cost, memory, and power consumption are
attained. To that end, we generalize a post-training neural-network quantization method,
GPFQ, that is based on a greedy path-following mechanism. Among other things, we propose
modifications to promote sparsity of the weights, and rigorously analyze the associated
error. Additionally, our error analysis expands the results of previous work on GPFQ to
handle general quantization alphabets, showing that for quantizing a single-layer network,
the relative square error essentially decays linearly in the number of weights — i.e., level of
over-parametrization. Our result holds across a range of input distributions and for both
fully-connected and convolutional architectures thereby also extending previous results. To
empirically evaluate the method, we quantize several common architectures with few bits
per weight, and test them on ImageNet, showing only minor loss of accuracy compared
to unquantized models. We also demonstrate that standard modifications, such as bias
correction and mixed precision quantization, further improve accuracy.

1. INTRODUCTION

Over the past decade, deep neural networks (DNNs) have achieved great success in many
challenging tasks, such as computer vision, natural language processing, and autonomous
vehicles. Nevertheless, over-parameterized DNNs are computationally expensive to train,
memory intensive to store, and energy consuming to apply. This hinders the deployment of
DNNSs to resource-limited applications. Therefore, model compression without significant
performance degradation is an important active area of deep learning research [11], 6, [10]. One
prominent approach to compression is quantization. Here, rather than adopt a 32-bit floating
point format for the model parameters, one uses significantly fewer bits for representing
weights, activations, and even gradients. Since the floating-point operations are substituted
by more efficient low-bit operations, quantization can reduce inference time and power
consumption.

Following [16], we can classify quantization methods into two categories: quantization-aware
training and post-training quantization. The fundamental difficulty in quantization-aware
training stems from the fact that it reduces to an integer programming problem with a
non-convex loss function, making it NP-hard in general. Nevertheless, many well-performing
heuristic methods exist, e.g., |4, [12] 35 [15} 33, 211, [31]. Here one, for example, either modifies
the training procedure to produce quantized weights, or successively quantizes each layer

and then retrains the subsequent layers. Retraining is a powerful, albeit computationally
1

2 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

intensive way to compensate for the accuracy loss resulting from quantization and it remains
generally difficult to analyze rigorously.

Hence, much attention has recently been dedicated to post-training quantization schemes,
which directly quantize pretrained DNNs having real-valued weights, without retraining.
These quantization methods either rely on a small amount of data [1} 3], 34} 24} [14] [30} 19} 22] or
can be implemented without accessing training data, i.e. data-free compression [23] 2] 32} 20].

1.1. Related Work. We now summarize some prior work on post-training quantization
methods. The majority of these methods aim to reduce quantization error by minimizing a

W—a L%W , where W is a weight matrix
F

and |-] is a round-off operator that represents a map from the set of real numbers to the low-

mean squared error (MSE) objective, e.g. ming~g

bit alphabet. Generally |-| simply assigns numbers in different intervals or “bins” to different
elements of the alphabet. Algorithms in the literature differ in their choice of | -], as they use
different strategies for determining the quantization bins. However, they share the property
that once the quantization bins are selected, weights are quantized independently of each other.
For example, Banner et al. [I] (see also [34]) choose the thresholds to minimize a MSE metric.
Their numerical results also show that for convolutional networks using different quantization
thresholds “per-channel” and bias correction can improve the accuracy of quantized models.
Choukroun et al. [3] solve a minimum mean squared error (MMSE) problem for both weights
and activations quantization. Based on a small calibration data set, Hubara et al. [14] suggest
a per-layer optimization method followed by integer programming to determine the bit-width
of different layers. A bit-split and stitching technique is used by [30] that “splits” integers into
multiple bits, then optimizes each bit, and finally stitches all bits back to integers. Li et al.
[19] leverage the basic building blocks in DNNs and reconstructs them one-by-one. As for
data-free model quantization, there are different strategies, such as weight equalization [23],
reconstructing calibration data samples according to batch normalization statistics (BNS)
[2, 32], and adversarial learning [20].

1.2. Contribution. In spite of reasonable heuristic explanations and empirical results, all
quantization methods mentioned in Section lack rigorous theoretical guarantees. Recently,
Lybrand and Saab [22] proposed and analyzed a method for quantizing the weights of
pretrained DNNs called greedy path following quantization (GPFQ), see Section for details.
In this paper, we substantially improve GPFQ’s theoretical analysis, propose a modification
to handle convolutional layers, and propose a sparsity promoting version to encourage the
algorithm to set many of the weights to zero. We demonstrate that the performance of our
quantization methods is not only good in experimental settings, but, equally importantly,
has favorable and rigorous error guarantees. Specifically, the contributions of this paper are
threefold:

1. We generalize the results of [22] in several directions. Indeed, the results of [22] apply
only to alphabets, A, of the form A = {0, £1} and standard Gaussian input because the
proof technique in [22] relies heavily on properties of Gaussians and case-work over elements
of the alphabet. It also requires the assumption that floating point weights are e-away from

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 3

alphabet elements. In contrast, by using a different and more natural proof technique, our
results avoid this assumption and extend to general alphabets like A in and make the
main result in [22] a special case of our Theorem [3.2 which in turn follows from Theorem [3.1]
Moreover, we extend the class of input vectors for which the theory applies. For example,
in Section , we show that if the input data X € R™*™ is either bounded or drawn from a
mixture of Gaussians, then the relative square error of quantizing a neuron w € R™ satisfies
the following inequality with high probability:

[Xwl|3 No

where ¢ € A™ is the quantized weights. A mixture of Gaussians is a reasonable model
for the output of some of the deeper layers in neural networks that focus on classification,
thus our results are relevant in those contexts. Further, to handle convolutional neural
networks (CNNs), we introduce a modification to GPFQ in Section that relies on random
subsampling to make quantizing DNNs practically feasible with large batch size m. This also
allows us to obtain quantization error bounds that resemble , for single-layer CNNs in
Section 3.3

2. In order to reduce the storage, computational, and power requirements of DNNs one
complimentary approach to quantization is to sparsify the weights, i.e., set many of them to
zero. In Section |4, we propose modifications to GPF(Q that leverage soft and hard thresholding
to increase sparsity of the weights of the quantized neural networks. We present error bounds,
similar to the ones in Theorem [3.1], and provide their proofs in Appendix [E]

3. We provide extensive numerical experiments to illustrate the performance of GPFQ and
its proposed modifications on common computer vision DNNs. First, we provide comparisons
with other post-training quantization approaches (Section |5) and show that GPFQ achieves
near-original model performance using 4 bits and that the results for 5 bits are competitive with
state-of-the-art methods. Our experiments also demonstrate that GPFQ is compatible with
various ad-hoc performance enhancing modifications such as bias correction [1], unquantizing
the last layer [35] [19], and mixed precision [7, 2]. To illustrate the effects of sparsity, we
further explore the interactions among prediction accuracy, sparsity of the weights, and
regularization strength in our numerical experiments. Our results show that one can achieve
near-original model performance even when half the weights (or more) are quantized to zero.

2. PRELIMINARIES

In this section, we first introduce the notation that will be used throughout this paper and
then recall the original GPFQ algorithm in [22].

2.1. Notation. Various positive absolute constants are denoted by C, ¢. We use a < b as
shorthand for @ < Cb, and a 2 b for a > Cb. Let S C R" be a Borel set. Unif(S) denotes the
uniform distribution over S. An L-layer multi-layer perceptron, ®, acts on a vector € R™o
via

(2) O(z) = o™ 0 AP 6. .. 0oM 0 AD(z)

4 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

where @ : RM — RN is an activation function acting entrywise, and A® : RNi-1 — RN
is an affine map given by AW (z) := W®Tz 4+ p® ., Here, W® € RNi-1XNi ig a weight matrix
and b € RM: is a bias vector. Since w'z +b = ((w,b), (x,1)), the bias term b® can be
treated as an extra row to the weight matrix W so we will henceforth ignore it. We focus
on midtread alphabets

(3) A=A = {+ké:0< k< K,kecZ)}
and their variants
(4) A=A = {0V U{+(A\+ k) :0< k<K, keZ)

where 0 > 0 denotes the quantization step size and A > 0 is a threshold. For example,
Al = {0, £1} is a ternary alphabet. Moreover, for alphabet A = A%, we define the associated
memoryless scalar quantizer (MSQ) Q : R — A by

)

1
(5) Q(z) := argmin, 4 |z — p| = dsign(2) min{‘ E + §J

Further, the MSQ over A = A% is given by

N 0 if |z] <A,
Q(Z) - = arg m]g |Z — p| otherwise
pEA
. . S,\(Z) 1
(6) = 12>y sign(z) | A + d min 5 + 5).

Here, s)(z) := sign(z) max{|z| — A, 0} is the soft thresholding function and its counterpart,
hard thresholding function, is defined by

z if|z| > A,

ha(2) == 2120 = {0 otherwise

2.2. GPFQ. Given a data set X € R™No with vectorized data stored as rows and a
trained neural network ® with weight matrices W, the GPFQ algorithm [22] is a map
WO — QW e ANi-1%Ni giving a new quantized neural network ® with ®(X) ~ ®(X). The
matrices W ... W& are quantized sequentially and in each layer every neuron (a column
of W®) is quantized independently of other neurons, which allows parallel quantization
across neurons in a layer.

Thus, GPFQ can be implemented recursively. Let @@, &® denote the original and
quantized neural networks up to layer ¢ respectively. Assume the first ¢ — 1 layers have been
quantized and define X1 := @-D(X), X1 := $(-1(X) € R™*Ni-1, Then each neuron
w € RYi-1 in layer i is quantized by constructing ¢ € AYi-! such that

Ni—l Ni—l
X-Dg = Z tht(ifl) ~ Z tht(ifl) — x =1y,
t=1 t=1

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 5

Algorithm 1: Using GPFQ to quantize MLPs
Input: A L-layer MLP & with weight matrices W € RYi-1*Ni input mini-batches
{ X}, C R
fori=1to L do
Phase I: Forward propagation
Generate X(~1) = (=D (X;) € R™Ni-1 and X (-1 = §l-D(X;) € Rm*Nim1
Phase II: Parallel quantization for W
repeat
Pick a column (neuron) w € RYi-1 of W and set ug = 0 € R™
fort =1 to N;,_; do
t Implement @ and u; = us_g + tht(i_l) — qtyt(i_l)

N =

w =N o o~ ®

9 until All columns of W® are quantized
10 Obtain quantized i-th layer Q¥ e ANi—1xN:

Output: Quantized neural network d

where XV, X" are the ¢-th columns of X1, X~ This is done by selecting ¢, for
t=1,2,...,N;_1, so the running sum Z;zl qujQ_l) tracks its analog Z;Zl ij;l_l)
as possible in an /5 sense. So,

as well

2
2.

t t—1
: i-1 S(i-1 i
(7) G Zarggnegluzwj)(ﬁ P XY - pxY
j=1 =1

This is equivalent to the following iteration, which facilitates the analysis of the approxi-
mation error:
Ug = 0e Rm’
. i—1 F(i—1) 112
(8) = argmmpeAHut_l + thtF) _ pXt(1)H2,
Up = U1 + tht(l_l) - QtXt(Z_l)'

By induction, one can verify that u; = Zzzl(ij](i_l) — qj)?](-i_l)) fort =0,1,...,NV;_1, and
thus ||uy, |2 = [| X Dw — X(=Dg|l,. Moreover, one can derive a closed-form expression of

q; in as
) 0=0f

(XS + tht(il)>>
(-1 ;
112

which is proved in Lemma[A 1] The whole algorithm for quantizing multilayer perceptrons
(MLPs) is summarized in Algorithm . For the i-th layer, this parallelizable algorithm has
run time complexity O(mN;_1) per neuron. Note that in order to quantize convolutional
neural networks (CNNs), one can simply vectorize the sliding (convolutional) kernels and
unfold, i.e., vectorize, the corresponding image patches. Then, taking the usual inner product
on vectors, one can reduce to the case of MLPs, also see Section [3.3]

6 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

3. NEwW THEORETICAL RESULTS FOR GPFQ

In this section, we present error bounds for GPFQ with single-layer networks ® in with
L = 1. Since the error bounds associated with the sparse GPFQ in and are very
similar to the one we have for @, we focus on original GPFQ here and leave the theoretical
analysis for sparse GPFQ to Appendix [E]

In the single-layer case, we quantize the weight matrix W := W1 € RNo*M and implement
and (9) using ¢ = 1. Defining the input data X := X© = X© ¢ R™*No_ the iteration
can be expressed as

Uy = 0 €]Rm’
X, ug
(10) g = Q(wy + HtTﬁ%l%
Up = U1 + we Xy — ¢ X

Moreover, we have u; = Zzzl(ijj —q;X;) fort =1,2..., Ny. Clearly, our goal is to control
|ug]|2. In particular, given ¢t = Ny, we recover the ¢ distance between full-precision and
quantized pre-activations: |[up,l|le = [[Xw — Xq||2-

3.1. Bounded Input Data. We start with a quantization error bound where the feature
vectors, i.e. columns, of the input data matrix X € R™ ™ are bounded. This general result
is then applied to data drawn uniformly from a Euclidean ball, and to Bernoulli random
data, showing that the resulting relative square error due to quantization decays linearly
with the width Ny of the network.

Theorem 3.1 (Bounded input data). Suppose that the columns X; of X € R™™ gre drawn
independently from a probability distribution for which there exists s € (0,1) and r > 0 such
that || X¢|l2 < r almost surely, and such that for all unit vector u € S™! we have

<Xt7u>2 > 82.

1Xell3

Let A be the alphabet in with step size 6 > 0, and the largest element quax. Let w € RN
be the weights associated with a neuron with ||w|es < gmax. Quantizing w using (10)), we have

(11) E

7242 1 1
12 P(X — Xq|} < —-1 N>>1——<2 —)
(12) IXw = Xqll; < —5-log No) = 2t e
and
252
, 2%) 1(1)
<= >1— — —).
(13) P<1I§Tt12>]§0||ut||2— o logNo) 21—+ 2+\/1_782

Furthermore, if the activation function ¢ : R — R is -Lipschitz continuous, that is, |p(z) —
o(y)| < €&lx —y| for all z,y € R, then we have
25242
o _ T70%E 1 1
) P(lexn) - (X0l < T 0wy) 21— a2+ o).

Proof. Let a > 0 and n > 0. In the t-th step, by Markov’s inequality, one can get
(15) P(|[w]|? >) = Pl > ¢no) < gmmeRenluls,

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 7

According to Lemma
(16) Eerllul < maX{E(eﬁ||Xt|\§€n||ut71||§<1—cos2 m)’Eennan%},

Moreover, observing that || X;||3 < r? a.s., then applying the law of total expectation,
Lemma (2) with 8 = 1, and assumption sequentially, we obtain

]E(@ . ||XtH2€77||ut 113(1— C0529t)) < 777“252/41|51;€77||w 1113 (1—cos? ;)
262/4E(E(6n||w71Hg(l—cos2Gt) | Fii1))
< e”T252/4E(—]E(COSQ 0, | Foot)(eMu113 1) 4 enuutfln%)
< TR (= g2 (enlmlE — 1) 4 enlluetlE)
= (1 —)" P/ Eenlu—lE 4 2enr??/4
Hence, for each t, inequality becomes
(17) Eenlwll} < max{aEen”W—ﬂ‘% 40, Eenuut_ln%}

where a = (1 — §2)e™ /4 and b = 2e"°%/4 Let to = |{1 < i < t : Eenlwils <
aEenllui-1lz 4 b}|. Then, noting that ug = 0, the following inequality follows from (17),

_ ato
(18) Eenlluell3 < aloEenluoll3 +b(1+a+... + atO*l) — gl 4 b(ll—a) <14+ T
—a —a

where the last inequality holds provided that a = (1 — s2)e””%/4 < 1. Since the result above
hold for all n > 0 such that (1 — s2)e”%*/* < 1, we can choose 1 = %51[82)

a=(1-5%"2and b= s?1—s?)"'2 It follows from and that
N b 2alog(1 — s%) s2(1 — s2)~1/2
2 [e% —
Pl 2) < e (1412) = e (AT) (14 SU)

= eXP(%};;SQ)) (1 + (1= 1+ (1 - 32>”2))

B (2a log(1 — 32)) <2 1)
= exp T + —m

- <—2a52) (2 N 1 >
< exp| —55 =)

The last inequality can be obtained using the fact log(1 4+ z) < z for all x > —1. Picking
_ 125%log Ng
= o g

. Then we get

, we get

r26* 1 1
(19) P fluell3 > —logNO NQ 2+ Vo)

From ({19 we can first deduce , by setting ¢ = Ny and using the fact uy, = Xw — Xq. If
the activation function ¢ is -Lipschitz, then ||p(Xw) — ¢(Xq)||2 < || Xw — X¢l|2 and
implies . Moreover, applying a union bound over ¢ to , one can get . 0J

8 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Next, we illustrate how Theorem [3.1] can be applied to obtain error bounds associated with
uniformly distributed and Bernoulli distributed input data.

3.1.1. Uniformly Distributed Data. Let B, C R™ be the closed ball with center 0 and radius
r > 0. Suppose that columns X; of X € R™®M are drawn i.i.d. from Unif(B,). Then
| X¢|l2 < 7 and Z := X,;/|| X¢||2 ~ Unif(S™!). Since Z is rotation invariant, for any unit

2
vector u € S, we have E<L u> = E(Z,u)? = B(Z,e))? = EZ2 = L. The last

[Xell2?
equality holds because ||Z]|s =1 and EZ} =EZ3 = ... =EZ2 = ~E (ZZL Zf) =+ So
Theorem [3.1] implies that, with high probability

(20) [Xw — Xq||5 < mr?6*log No.

Moreover, by Lemma |A.3] E||X,[]3 = anQ It follows that E(X T X) = E|| X, |3y, = nT—iINO
2

and thus E[| Xwl|3 = w E(X " X)w = 2= |lw|3. If the weight vector w € R is generic in
the sense that ||w||3 = Np, then

mNyr?

m4+2

(21) E|lXwl]; 2

Combining with (21)), the relative error satisfies ”ﬁ&jﬁg”g < m52jl\%gN°.

3.1.2. Data from a Symmetric Bernoulli Distribution. We say that a random vector Z =

(Z1,Zs, ..., Zy) is symmetric Bernoulli if the coordinates Z; are independent and P(Z; =

1) = P(Z; = —1) = ;. Now assume that columns X; of X € R™" are independent and

subject to symmetric Bernoulli distribution. Clearly, || X2 = v/m. If v € R™ is a unit
(Xew)? _ wTEGXDu _ [ul3

vector, then E =
X113 m m

(22) [Xw — Xql||5 < m?6°log Ny

= % Hence, by Theorem ,

holds with high probability. Again, a generic w € R™ with ||wl|3 = N satisfies E|| Xw]|3 =

T T — 2 | Xw—Xq]||3 mé2log No
w' E(X ' X)w = m|wl|jz 2 mNy and therefore Xl S e

3.2. Gaussian Clusters. Here, we consider data drawn from Gaussian clusters, which
unlike the previously considered models, are unbounded. One reason for considering Gaussian
clusters is that they are a reasonable model for the activations in deeper layers of networks
designed for classification. Specifically, suppose our samples are drawn from d normally
distributed clusters K; := N(2%), 02Iy,) with fixed centers 2V € R™ and ¢ > 0. Suppose,
for simplicity, that we independently draw n samples from each cluster and vertically stack
them in order as rows of X (this ordering does not affect our results in Theorem [3.2). Let
m :=nd. So, for 1 <i < d, the row indices of X ranging from (i — 1)n + 1 to in come from
cluster KC;. Then the t-th column of X is of the form

(23) X, = YO v® v T e R

where Y, ~ N (2171, 021,,).

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 9

Theorem 3.2 (Gaussian clusters). Let X € R™*™ pe as in and let A be as in (3)), with
step size § > 0 and the largest element qmax. Let p €N, K 1= 1+ 0~ 2max;<;<q ||2V|%,, and
w € RN be the weights associated with a neuron, with | W]/ < ¢max- Quantizing w using

, we have

3

P(HXw — Xql|3 > 4pm*K?6%0° log N0> S and

=
5 %
=

25 275252 2 > < .
P<11§1%2%0 |wl|3 > 4pm“K=6=0~log No | < Né’_l

If the activation function o is £-Lipschitz continuous, then

S

~—
5
=

P(Il(Xw) - o(Xa)I3 2 apm? K25% log Ny) £ 0
0

The proof of Theorem [3.2] can be found in Appendix [D.1.

3.2.1. Normally Distributed Data. As a special case of , let X € R™MNo be a Gaussian
matrix with Xj; R N(0,0?) corresponding to d = 1, n = m, and z(!) = 0. Theorem @
implies that K = 1 and
(24) P(||Xw — Xql|3 > 4pm?*§*0? log N0> < \]/V_?'
0

Further, suppose that w € RM is generic, i.e. |w|3 = No. In this case, E|Xw|3 =
mao?||w||? = mo?Ny. So, with high probability, the relative error in our quantization satisfies
X — Xqllp _ milog N,

[Xwl3 ~ N
Thus, here again, the relative square error for quantizing a single-layer MLLP decays linearly

(up to a log factor) in the number of neurons Ny. Note that , for ternary alphabets, is
the main result given by [22], which we now obtain as a special case of Theorem

(25)

Remark 3.3. Tn Section[3.1]and Section [3.2 we have shown that if the columns of X € R™*No
are drawn from proper distributions, then the relative error for quantization is small when
m < Ny. Now consider the case where the feature vectors { X}, live in a [-dimensional
subspace with [< m. In this case, X = VF where V € R™* satisfies V'V = I, and the
columns F, of F € R>*No are drawn i.i.d. from a distribution P. Suppose, for example, that
P = Unif(B,). Due to X = V F, one can express any unit vector in the range of X asu = Vv
with v € RY. Then we have 1 = |[ull = [|Vv|lz = [[vllz, | Xill2 = |V E|l2 = [|Fill2 < r, and
Eﬁ(;:ﬁf = E“ﬁitg”%y = Eﬂf ;;i); = [~! by our assumption for P. Because u; in Theorem is
a line;r combinatfon of X, t2he proof of Theorem remains unchanged if holds for
all unit vectors u in the range of X. It follows that Theorem [3.1 holds for X with % = [~*

and thus the relative error for quantizing the data in a [-dimensional subspace is improved
| Xw—Xq|) < 162 log No

P ST A

Bernoulli distribution or Gaussian distribution, one can replace m in their corresponding

. Applying a similar argument to P representing either a symmetric

10 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

relative errors by [. In short, the relative error depends not on the number of training samples
m but on the intrinsic dimension of the features (.

3.3. Convolutional Neural Networks. In this section, we derive error bounds for single-
layer CNNs. Let Z € RBXCinx51x%2 he a mini-batch of images with batch size B, input
channels CY,, height S;, and width S;. Suppose that all entries of Z are i.i.d. drawn from
N(0,1) and suppose we have C,y, convolutional kernels {w;}° C RC»*k1xk2 - Lot these
kernels “slide” over Z with fixed stride (kq, k2) such that sliding local blocks generated by
moving w; on Z are disjoint. Additionally, if 7" is the number of randomly selected sliding
local blocks (in R%»*k1xk2) from each image, then one can vectorize all BT local blocks

REBT*Cmkik2 — Noreover, each

and stack them together to obtain a single data matrix X €
kernel w; can be viewed as a column vector in R“=*%2 and thus W = [wy, ws, ..., we,,,] €
RCnkik2xCout g the weight matrix to be quantized. Thus, we need to convert W to @ =
(41,2, - - -, 40y,] € ACmFik2xCout wwith XQ ~ XW, as before. Since extracted local blocks
from Z are disjoint, columns of X are independent and subject to N (0, Ipr). Hence, one
can apply with m = BT, Ny = Ciy,kiks, 0 = 1, and any p € N. Specifically, for

1 < i < Cyy, we get P(HXwZ- — Xq|3 > 4pB*T?6? log(C’inklkz)> < % By a union

bound, P<maX1§i§Cout [Xw; — Xqi[3 > 4pB*T26? 10g(0mk1k2)> S Gl

4. SPARSE GPFQ AND ERROR ANALYSIS

Having extended the results pertaining to GPFQ to cover multiple distributions of the
input data, as well as general alphabets, we now propose modifications to produce quantized
weights that are also sparse, i.e., that have a large fraction of coefficients being 0. Our sparse
quantization schemes result from adding a regularization term to . Specifically, in order to
generate sparse q € ANi-1 we compute ¢ via

, 12 ~i
e+ X ROV AR

(26) - i (1‘
g = argmin 5

where A > 0 is a regularization parameter. Conveniently, Lemma shows that the solution

of is given by
(21) 0= Qo

<5(’t(i—1)7 S tht(i—l)>>
X718

where s) denotes soft thresholding. It is then natural to consider a variant of replacing sy

with hard thresholding, hy. Since h)(z) has jump discontinuities at z = £, the corresponding

alphabet and quantizer should be adapted to this change. Thus, we use @(z) over A = Ai’()‘

as in @ and q; € A is obtained via

N S(i-1) (i—1)
(28) g = Qo hy < (X ’uf:éj) u;tXt >).
12X 15

In both cases, we update the error vector via u; = u;_1 + tht(Fl) — qt)A(/t(i*l), as before. In
summary, for quantizing a single-layer network, similar to the two sparse GPFQ schemes
related to soft and hard thresholding are given by

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 11

UQ:OGRm UOZOERm
X Ut X ut -
(29) ¢ = Qo sy (wt + HX ”21), (30) qe = Q o hy (wt + ”X ”21)7 In
Up = U1 + We Xy — @ Xy Up = U1 + we Xy — G X4

teresting, with these sparsity promoting modifications, one can prove similar error bounds to
GPFQ. To illustrate with bounded or Gaussian clustered data, we show that sparse GPFQ
admits similar error bounds as in Theorem [3.1 and Theorem [3.2. The following results are
proved in Appendix

Theorem 4.1 (Sparse GPFQ with bounded input data). Under the conditions of Theorem @,
we have the following.
(a) Quantizing w using with the alphabet A in (3)), we have

s _ P2\ +0) 1 1
P(IIXw - Xql} < =2 tog No) > 1 - i (2+ ﬁ)

(b) Quantizing w using with the alphabet A in (), we have
r? max{2), § }2
52

P (|| Xw - Xq|} < log N) > 1~

1 1
v L)
w2 =
Theorem 4.2 (Sparse GPFQ for Gaussian clusters). Under the assumptions of Theorem 3.2,

the followings inequalities hold.
(a) Quantizing w using with the alphabet A in (3), we have

vmK
Ny

P<||Xw ~ Xq|? > 4pm2K2(2) + 8)%0% log N0> <

(b) Quantizing w using with the alphabet A in), we have

P(HXw — Xql|3 > 4pm*K? max{2), §}*0” log N0> <

=
=

Np

Note that the sparsity regularization term A only appears in the error bounds, making them
slightly worse than those where no sparsity is enforced. In Section we will numerically
explore the impact of A on the sparsity and accuracy of quantized neural networks.

5. EXPERIMENTS

To evaluate the performance of our method and compare it with the approaches reviewed
in Section we test our modified GPFQ on the ImageNet classification task E In particular,
we focus on ILSVRC-2012 [5], a 1000-category dataset with over 1.2 million training images
and 50 thousand validation images. All images in ILSVRC-2012 are preprocessed in a
standard manner before they are fed into neural networks: we resize each image to 256 x 256
and use the normalized 224 x 224 center crop. The evaluation metrics we use are top-1 and
top-5 accuracy of the quantized models on the validation dataset.

LOur code for experiments is available: https : //github.com/YixuanSeanZhou/Quantized_Neural_Nets.git

https://github.com/YixuanSeanZhou/Quantized_Neural_Nets.git

12 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

5.1. Experimental Setup. For reproducibility and fairness of comparison, we use the
pretrained 32-bit floating point neural networks provided by torchvisioxf in PyTorch [25].
We test several well-known neural network architectures including: AlexNet [17], VGG-16
[26], GoogLeNet [27], ResNet-18, ResNet-50 [13], and EfficeintNet-B1 [28]. In the following
experiments, we will focus on quantizing the weights of fully-connected and convolutional
layers of the above architectures, as our theory applies specifically to these types of layersE.
Let b € N denote the number of bits used for quantization. Here, we fix b for all the layers.
In our experiments with GPFQ, we adopt the midtread alphabets A% in with
(31) K=2"" ¢§= R

T 9b-17

where R > 0 is a hyper-paramter. Indeed, according to , A% is symmetric with maximal
element ¢, = K0 = R. Since b is fixed, all that remains is to select R in based on the
distribution of weights. To that end, suppose we are quantizing the i-th layer of a neural
network with weight matrix W € R¥i-1*Ni . Then, Theorem @ and Theorem @ require
that R = gmax > maxy,j |W,§ZJ)|, and yield error bounds that favor a smaller step size 0 x R.
In practice, however, the weights may have outliers with large magnitudes, which would
entail unnecessarily using a large R. Thus, rather than choosing R = max;, ; |W,§lj)\, we will
consider the average infinity norm of weights across all neurons w, i.e. columns of W®. That
is R N% D oi<i<n ||I/V](Z) |oo- Then, by (1)), the step size used for quantizing the i-th layer is
given by

(52) 5 = e 3 I

251N, £
1<G<N;

Here, C' > 1 is independent of 7 and fixed across layers, batch-sizes, and bit widths. To obtain
a good choice of C, we perform a grid search with cross-validation over the interval [1, 2],
albeit on a small batch size m < 128. So the tuning of C' takes very little time compared to
the quantization with the full training data. Note that the tuning and quantization scale
linearly in the size of the data set and the number of parameters of the network. This means
that this entire process’s computational complexity is dominated by the original training of
the network and there is no problem with its scaling to large networks. Moreover, by choosing
the maximal element in our alphabet, i.e. guax = 2716, to be a constant C € [1,2] times
the average ¢, norm of all the neurons, we are selecting a number that is effectively larger
than most of the weights and thereby corresponding perfectly with the theory for most of
the neurons. For the remaining neurons, the vast majority of the weights will be below this
threshold, and only the outlier weights, in general, will exceed it. In Appendix [C| we present
a theoretical analysis of the expected error when a few weights exceed qunax. We not only
show that the proposed algorithm is still effective in this scenario, but also that in some

https:/ /pytorch.org/vision /stable/models.html

3Batch normalization layers, while not explicitly covered by our methods in the preceeding sections, are easy
to handle. Indeed, in Appendix [B, we show that our approach can effectively quantize batch normalization
layers by merging them with their preceding convolutional layers before quantization, and we demonstrate
experimentally that this does not negatively impact performance.

https://pytorch.org/vision/stable/models.html

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 13

cases, it may be beneficial to choose ¢ small enough such that some weights exceed ¢ax. The
analysis in Appendix [C]is consistent with, and helps explain the experimental results in this
section. Further, we comment that a more thorough search for an optimal C' depending on
these individual parameters, e.g. b, may improve performance.

TABLE 1. Top-1/Top-5 accuracy drop using b = 5 bits.

Model C m Acc Drop (%) ‘ Model C m Acc Drop (%)

AlexNet 1.1 2048 0.85/0.33 GoogLeNet 1.41 2048 0.60/0.46
VGG-16 1.0 512 0.63/0.32 EfficientNet-B1 1.6 2048 0.45/0.18
ResNet-18 1.16 4096 0.49/0.23 ResNet-50 1.81 2048 0.62/0.11

0.8 1 0.9 0.9 4 '/v,v
0.7 08
0.8 4
> > >
g 06 8 3
g 307 3 o ey e e T T I
® 8 § 07 | ¥ e
5 s 5 =T =TT T
= =2 E=] \ ,/'/
5 0.]] _
s S 06 b e
= s g /
> > > 4 =
0.6 7
0.4 / :
0.5 / X 3 bits
7/ 4 bits
.) 0547 ¥ 5bits
031y m Original £ . Original e m Original
0.4
26 27 23 29 210 211 25 27 28 29 2]0 2]1 25 26 27 25 29
Batch size Batch size Batch size
(A) AlexNet (B) GoogLeNet (c) VGG-16

0.9 1

e
©

o
<

> > >
I 3 I
g e g
5 5 5
3 3 3
g e ey g g
5 =T ——x 505 5
=1 \g L = S k=1
3 =T 3 3
3 - s 2 064 ;
2 064 - g 04 S !
X 7
7/ - 03 ; !

/ X 3 bits / X 3bits 0.5 / X 4 bits

a 4 bits / 4 bits / 5 bits

051/ ¥ 5bits 0217 ¥ 5bits 7/ ¥ 6bits

X B Original £ W Original 0al X W Original
0.1 -
27 ZB 29 210 211 212 26 27 28 29 210 211 27 28 29 210 211
Batch size Batch size Batch size
(D) ResNet-18 (E) ResNet-50 (r) EfficientNet-B1

FIGURE 1. Top-1 (dashed lines) and Top-5 (solid lines) accuracy for original
and quantized models on ImageNet.

As mentioned in Section , we introduce a sampling probability p € (0, 1], associated with
GPFQ for convolutional layers. This is motivated, in part, by decreasing the computational
cost associated with quantizing such layers. Indeed, a batched input tensor of a convolutional
layer can be unfolded as a stack of vectorized sliding local blocks, i.e., a matrix. Since,

14 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

additionally, the kernel can be reshaped into a column vector, matrix-vector multiplication
followed by reshaping gives the output of this convolutional layer. On the other hand, due to
potentially large overlaps between sliding blocks, the associated matrices have large row size
and thus the computational complexity is high. To accelerate our computations, we extract
the data used for quantization by setting the stride (which defines the step size of the kernel
when sliding through the image) equal to the kernel size and choosing p = 0.25. This choice
gives a good trade-off between accuracy and computational complexity, which both increase
with p. Recall that the batch size m € N denotes the number of samples used for quantizing
each layer of a neural network. In all experiments, b is chosen from {3,4,5,6}.

5.2. Results on ImageNet.

5.2.1. Impact of b and m. The first experiment is designed to explore the effect of the
batch size m, as well as bit-width b, on the accuracy of the quantized models. We compute
the validation accuracy of quantized networks with respect to different choices of b and m.
In particular, Table (1| shows that, using b = 5 bits, all quantized models achieve less than
1% loss in top-1 and top-5 accuracy. Moreover, we illustrate the relationship between the
quantization accuracy and the batch size m in Figure [1] where the horizontal lines in cyan,
obtained directly from the original validation accuracy of unquantized models, are used for
comparison against our quantization method. We observe that (1) all curves with distinct
b quickly approach an accuracy ceiling while curves with high b eventually reach a higher
ceiling; (2) Quantization with b > 4 attains near-original model performance with sufficiently
large m; (3) one can expect to obtain higher quantization accuracy by taking larger m but
the extra improvement that results from increasing the batch size rapidly diminishes.

5.2.2. Comparisons with Baselines. Next, we compare GPF(Q against other post-training
quantization schemes discussed in Section [1.1 on various architectures. We note, however,
that for a fixed architecture each post-training quantization method starts with a potentially
different set of parameters (weights and biases), and these parameters are not available to
us. As such, we simply report other methods’ accuracies as they appear in their associated
papers. Due to this, a perfect comparison between methods is not possible. Another factor
that impacts the comparison is that following DoReFa-Net [36], many baseline quantization
schemes [34], [14], [19] leave the first and the last layers of DNNs unquantized to alleviate
accuracy degradation. On the other hand, we quantize all layers of the model. Table
displays the number of bits and the method used to quantize each network. It also contains
the accuracy of quantized and full-precision models respectively, as well as their difference,
i.e. accuracy drop. We report the results of GPF(Q (without the T superscript) for all models
with b = 3,4,5. The important observation here is that our method is competitive across
architectures and bit-widths, and shows the best performance on a number of them.

5.2.3. Further Improvement of GPF(Q. In this section, we show that the validation
accuracy of the proposed approach can be further improved by incorporating the following
modifications used by prior work: (1) mixing precision for quantization, such as using different
bit-widths to quantize fully-connected and convolutional layers respectively [2] or leaving

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 15

TABLE 2. ImageNet Top-1 accuracy with weight quantization.

Model | Bits Method Quant Acc (%) Ref Acc (%) Acc Drop (%)
5 | GPFQ (Ours) 53.22 56.52 3.30
GPFQ (Ours)t 54.77 56.52 1.75
OMSE[3] 55.52 56.62 1.10
Alexaet 4 | GPFQ (Ours 55.15 56.52 1.37
GPFQ (Ours)? 55.51 56.52 1.01
s | GPFQ (Ours) 55.67 56.52 0.85
GPFQ (Ours)t 55.94 56.52 0.58
8 | DoReFa [36] 53.00 55.90 2.90
5 | GPFQ (Ours) 69.67 71.59 1.92
GPFQ (Ours)f 70.24 71.59 1.35
MSE [1] 70.50 71.60 1.10
, | OMSE [3] 71.48 73.48 2.00
VGG-16 GPFQ (Ours) 70.70 71.59 0.89
GPFQ (Ours)f 70.90 71.59 0.69
s | GPFQ (Ours) 70.96 71.59 0.63
GPFQ (Ours)t 71.05 71.59 0.54
8 | Lee et al. [I§] 68.05 68.34 0.29
5 | GPFQ (Ours) 66.55 69.76 3.21
GPFQ (Ours)? 67.63 69.76 2.13
MSE [1] 67.00 69.70 2.70
OMSE [3] 68.38 69.64 1.26
S-AdaQuant [14] 69.40 71.97 2.57
4 | AdaRound [24] 68.71 69.68 0.97
BRECQ [19] 70.70 71.08 0.38
ResNet-18 GPFQ (Ours) 68.55 69.76 1.21
GPFQ (Ours)t 68.81 69.76 0.95
RQ 1 65.10 69.54 4.44
5 | GPFQ (Ours) 69.27 69.76 0.49
GPFQ (Ours)f 69.50 69.76 0.26
¢ | PrQ 23] 66.30 70.50 4.20
RQ 1] 68.65 69.54 0.89
3 GPFQ (Ours) 71.80 76.13 4.33
GPFQ (Ours)f 72.18 76.13 3.95
MSE [1] 73.80 76.10 2.30
OMSE [3] 73.39 76.01 2.62
OCS + Clip [34] 69.30 76.10 6.80
PWLQ [§] 73.70 76.10 2.40
AdaRound [24] 75.23 76.07 0.84
ResNet-50 141 g daQuant [14] 75.10 77.20 2.10
BRECQ [19] 76.29 77.00 0.71
GPFQ (Ours) 75.10 76.13 1.03
GPFQ (Ours)f 75.30 76.13 0.83
OCS + Clip [34] 73.40 76.10 2.70
5 | GPFQ (Ours) 75.51 76.13 0.62
GPFQ (Ours)f 75.66 76.13 0.47
8§ | TAOI [15] 74.90 76.40 1.50

the last fully-connected layer unquantized [36]; (2) applying bias correction [1, 23] to the
last layer, that is, subtracting the average quantization error from the layer’s bias term.
In Table [2| we examine some of these empirical rules by leaving the last layer intact and

16

JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

performing bias correction to remove the noise due to quantization. This variant of GPFQ is
highlighted by a { symbol. By using the enhanced GPFQ, the average increment of accuracy
exceeds 0.2% for b = 4,5 bits, and is greater than 0.7% for b = 3 bits. This demonstrates,
empirically, that GPFQ can be easily adapted to incorporate heuristic modifications that

improve performance.

0.80 A
0.75 A)
g " o4
5 0.70 —¥- Topl
¥ X p .
® | . M- Top5 =
s 0.65 .- Sparsity [0.3 g
% 0.60 4 X B Original o
g
0.55 4
0.50 T T T T T T T
0.000 0.002 0.004 0.006 0.008 0.010 0.012
A
(A) AlexNet with (27))
F 0.5
B Tttt a1 .
0.9 a =EIIRITT X
=~
0.8 s
g X - F0.4
5
5 0.7 4 2
© e A i
= x ~. 0.3 &
2 06 1 S &
he) -¥- Topl \'\.
S 05 M- Top5 AN 0.2
i - Sparsity .
044 5 mm Original Ny
- - - - - - : - 0.1
0.000 0.002 0.004 0.006 0.008 0.010 0.012
A
(c) VGG-16 with (27)
=% 1050
0.90
% @ Loas
g 0.85
g X —¥- Topl 0.40 >
® 0.80 - -M- Top5 @
s - Sparsity g
= o &
So7s B Original 0.35
g
0.70 - 030
~.
~.
0.000 0002 0004 0006 0008 0010 0.012

A

(E) ResNet-50 with

0.80
0.75 4
>
8 o 0.5
2 0.70 4 - -¥- Topl o
® M- Top5 Lo4 5
é 0.65 - X Y Splarlsity §
g I Original | 0.3
< 0.60 A .
X F0.2
0.55 4 ;_ Sroptumit ¥ = S v— . _ v o
0.000 0.002 0.004 0.006 0.008 0.010 0.012 ‘
A
(B) AlexNet with ([28))
X L
3 0.85 1 06
. >(-¥- Topl F05 o
® 0.80 4 -H- Top5 ‘é
.5 ’ -- Sparsity [0.4 g
§ B Original v
S X Fo0.3
T 0.75 4 S
B
0.70 4
0.000 0.002 0.004 0.006 0.008 0.010 0.012
A
(D) VGG-16 with (28)
0.925
0.900
% 0875 F0.45
3 " ¥- Topl [040
g 0850 . B Tops . %
S 0.825 =X Sparsity s
© R mm Original | 0.30 Y
2 0.800 X
2 X, Fo.25
0.775
F0.20
0.750
F0.15

0000 0002 0004 0006 0008 0010 0.012
2

(F) ResNet-50 with

FIGURE 2. (1) Left y-axis: Top-1 (dashed-dotted lines) and Top-5 (dash lines)
accuracy for original (in red) and quantized (in blue) models on ImageNet. (2)
Right y-axis: The sparsity of quantized models plotted by dotted green lines.

5.2.4. Sparse Quantization. For our final experiment, we illustrate the effects of sparsity
via the sparse quantization introduced in Section] Recall that the sparse GPFQ with soft
thresholding in uses alphabets A% as in while the version of hard thresholding, see

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 17

(28)), relies on alphabets Ai’(’\ as in Equation 1} In the setting of our experiment, both K
and § are still defined and computed as in Section [5.1, where the number of bits b = 5 and
the corresponding scalar C' > 0 and batch size m € N for each neural network is provided
by Table [l Moreover, the sparsity of a given neural network is defined as the proportion
of zeros in the weights. According to Equation and Equation (28]), in general, the
sparsity of DNNs is boosted as A increases. Hence, we treat A > 0 as a variable to control
sparsity and explore its impact on validation accuracy of different DNNs. As shown in
Figure , we quantize AlexNet, VGG-16, and ResNet-50 using both and , with
A € {0,0.0025,0.005,0.0075,0.01,0.0125}. Curves for validation accuracy and sparsity are
plotted against A. We note that, for all tested models, sparse GPFQ with hard thresholding,
ie. , outperforms soft thresholding, achieving significantly higher sparsity and better
accuracy. For example, by quantizing AlexNet and VGG-16 with , one can maintain
near-original model accuracy when half the weights are quantized to zero, which implies a

remarkable compression rate 03—5217 = %—25 ~ 7.8%. Similarly, Figure [2f| and Figure [2¢| show that
ResNet-50 can attain 40% sparsity with subtle decrement in accuracy. Additionally, in all
cases, one can expect to get higher sparsity by increasing A\ while the validation accuracy
tends to drop gracefully. Moreover, in Figure [2e, we observe that the sparsity of quantized
ResNet50 with A = 0.0025 is even lower than the result when thresholding functions are not
used, that is, A = 0. A possible reason is given as follows. In contrast with A%, the alphabet
A‘;’()‘ has only one element 0 between —\ and A. Thus, to compensate for the lack of small
alphabet elements and also reduce the path following error, sparse GPFQ in converts

more weights to nonzero entries of Ai’{’\, which in turn dampens the upward trend in sparsity.

ACKNOWLEDGEMENTS

This work was supported in part by National Science Foundation Grant DMS-2012546.
The authors thank Eric Lybrand for stimulating discussions on the topics of this paper.

REFERENCES

[1] R. Banner, Y. Nahshan, E. Hoffer, and D. Soudry. Post-training 4-bit quantization of
convolution networks for rapid-deployment. arXiv preprint arXiv:1810.05723, 2018.

[2] Y. Cai, Z. Yao, Z. Dong, A. Gholami, M. W. Mahoney, and K. Keutzer. Zeroq: A
novel zero shot quantization framework. In Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition, pages 13169-13178, 2020.

[3] Y. Choukroun, E. Kravchik, F. Yang, and P. Kisilev. Low-bit quantization of neural
networks for efficient inference. In ICCV Workshops, pages 3009-3018, 2019.

[4] M. Courbariaux, Y. Bengio, and J.-P. David. Binaryconnect: Training deep neural
networks with binary weights during propagations. In Advances in neural information
processing systems, pages 3123-3131, 2015.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248-255. leee, 2009.

18 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

[6] L. Deng, G. Li, S. Han, L. Shi, and Y. Xie. Model compression and hardware acceleration
for neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485-532,
2020.

[7] Z. Dong, Z. Yao, A. Gholami, M. W. Mahoney, and K. Keutzer. Hawq: Hessian aware
quantization of neural networks with mixed-precision. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 293-302, 2019.

[8] J. Fang, A. Shafiee, H. Abdel-Aziz, D. Thorsley, G. Georgiadis, and J. H. Hassoun. Post-
training piecewise linear quantization for deep neural networks. In European Conference
on Computer Vision, pages 69-86. Springer, 2020.

[9] S. Foucart and H. Rauhut. An invitation to compressive sensing. In A mathematical
introduction to compressive sensing, pages 1-39. Springer, 2013.

[10] A. Gholami, S. Kim, Z. Dong, Z. Yao, M. W. Mahoney, and K. Keutzer. A survey of quan-
tization methods for efficient neural network inference. arXiv preprint arXiw:2103.13630,
2021.

[11] Y. Guo. A survey on methods and theories of quantized neural networks. arXiv preprint
arXiv:1808.04752, 2018.

[12] S. Han, H. Mao, and W. J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding. arXiv preprint arXiv:1510.00149,
2015.

[13] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pages
T770-778, 2016.

[14] T. Hubara, Y. Nahshan, Y. Hanani, R. Banner, and D. Soudry. Improving post training
neural quantization: Layer-wise calibration and integer programming. arXiv preprint
arXiv:2006.10518, 2020.

[15] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam, and
D. Kalenichenko. Quantization and training of neural networks for efficient integer-
arithmetic-only inference. In Proceedings of the IEEE conference on computer vision
and pattern recognition, pages 2704-2713, 2018.

[16] R. Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A
whitepaper. arXiv preprint arXiw:1806.08342, 2018.

[17] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep
convolutional neural networks. Advances in neural information processing systems, 25:
10971105, 2012.

[18] J. H. Lee, S. Ha, S. Choi, W.-J. Lee, and S. Lee. Quantization for rapid deployment of
deep neural networks. arXww preprint arXiv:1810.05488, 2018.

[19] Y. Li, R. Gong, X. Tan, Y. Yang, P. Hu, Q. Zhang, F. Yu, W. Wang, and S. Gu. Brecq:
Pushing the limit of post-training quantization by block reconstruction. arXiv preprint
arXiv:2102.05426, 2021.

[20] Y. Liu, W. Zhang, and J. Wang. Zero-shot adversarial quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1512-1521,
2021.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 19

[21] C. Louizos, M. Reisser, T. Blankevoort, E. Gavves, and M. Welling. Relaxed quantization
for discretized neural networks. In International Conference on Learning Representations,
2019.

[22] E. Lybrand and R. Saab. A greedy algorithm for quantizing neural networks. Journal of
Machine Learning Research, 22(156):1-38, 2021.

[23] M. Nagel, M. v. Baalen, T. Blankevoort, and M. Welling. Data-free quantization through
weight equalization and bias correction. In Proceedings of the IEEE/CVFE International
Conference on Computer Vision, pages 1325-1334, 2019.

[24] M. Nagel, R. A. Amjad, M. Van Baalen, C. Louizos, and T. Blankevoort. Up or down?
adaptive rounding for post-training quantization. In International Conference on Machine
Learning, pages 7197-7206. PMLR, 2020.

[25] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin,
N. Gimelshein, L. Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32:8026-8037, 2019.

[26] K. Simonyan and A. Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

[27] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Vanhoucke,
and A. Rabinovich. Going deeper with convolutions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 1-9, 2015.

[28] M. Tan and Q. Le. Efficientnet: Rethinking model scaling for convolutional neural
networks. In International Conference on Machine Learning, pages 6105-6114. PMLR,
2019.

[29] R. Vershynin. High-dimensional probability: An introduction with applications in data
science, volume 47. Cambridge university press, 2018.

[30] P. Wang, Q. Chen, X. He, and J. Cheng. Towards accurate post-training network
quantization via bit-split and stitching. In International Conference on Machine Learning,
pages 9847-9856. PMLR, 2020.

[31] P. Wang, X. He, G. Li, T. Zhao, and J. Cheng. Sparsity-inducing binarized neural
networks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34,
pages 12192-12199, 2020.

[32] S. Xu, H. Li, B. Zhuang, J. Liu, J. Cao, C. Liang, and M. Tan. Generative low-
bitwidth data free quantization. In European Conference on Computer Vision, pages
1-17. Springer, 2020.

[33] D. Zhang, J. Yang, D. Ye, and G. Hua. Lg-nets: Learned quantization for highly
accurate and compact deep neural networks. In Proceedings of the European conference
on computer vision (ECCV), pages 365-382, 2018.

[34] R. Zhao, Y. Hu, J. Dotzel, C. De Sa, and Z. Zhang. Improving neural network quantization
without retraining using outlier channel splitting. In International conference on machine
learning, pages 7543-7552. PMLR, 2019.

[35] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incremental network quantization:
Towards lossless cnns with low-precision weights. arXw preprint arXiv:1702.05044, 2017.

20 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

[36] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and Y. Zou. Dorefa-net: Training low
bitwidth convolutional neural networks with low bitwidth gradients. arXwv preprint
arXiv:1606.06160, 2016.

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 21

APPENDIX A. USEFUL LEMMATA

»Ut—1+tht(i71))
b1t
1X5)12

$G-1)
Lemma A.1. In the context of , we have q; = Q(<Xt) Here, we suppose

X5 £ o.

Proof. According to (8), ¢; = arg mi}é’llHth + tht(i_l) — p)z(i_l)H; Expanding the square
pe

and removing the terms irrelevant to p, we obtain

= argmin (p| X3 - 2p(XE Y gy +wn X))

~(i-1) (i-1)
. 2 <Xt U1+ w Xy >>
= —2p -
arg géln (p D

(-1
113

B . <Xt(zfl)7ut_l + tht(zfl)> 2
= argmin| p — =0

Pe X113

‘ <)(t(z—1)7 Uy - tht(z—l)>

= argmin|p — =~ 0

Pe 12X 13
— (<Xt(ll)aut1 + tht(Zl)>)

113
In the last equality, we used the definition of . 0

Lemma A.2. Suppose)?t(i_l) # 0. The closed-form expression of q; in s given

-1 (1)
by ¢ = Qo s,\<<Xt "E@iﬁ;;xt)>. Here, sy(z) := sign(x) max{|z| — X\, 0} is the soft
t 2

thresholding function.

Proof. Expanding the square and removing the terms irrelevant to p, we obtain

2
(P - (i i (-
Qt:arggélil(?HXt(D12 — oY ey 4w XYY Apl[| X 1)||§>

2 v (i=1) (i-1)
(P (Xy g +wXy)
= argmm(— —p- — + Alp|
b 2 1XE 13
(P
(33) = arg ggg(; —ap+ A|p|>

-1 (1)
where a; 1= & |’|§(3(’iif'ljl’;xt) Define 9:(p) == 2p* — ayp + Alp| for p € R. By (3)), we have
t 2

¢ = argmin,e 4 g¢(p) = arg miny<x g:(kd). Now we analyze two cases ay > 0 and a; < 0.

The idea is to investigate the beﬁzi%fiour of g:(kd) over k € {—K, ..., K}.

(I) Assume «a; > 0. Since g:(kd) > g+(0) = 0 for all —K < k < —1, then ¢;(kd) is minimized

at some k > 0. Note that g;(p) is a convex function passing through the origin. So, for

1 <k<K-1, g(kd) is the minimum if and only if g;(kd) < min{g;((k + 1)9), g:((k — 1)0)}.
It is easy to verify that the condition above is equivalent to

(34) (k—%>6+>\§at§<k+%>5+)\.

22 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

It only remains to check k =0 and k = K. For k = 0, note that when oy € [0,0/2 4)], we
have

(35) 9:(8) = g:(0) =0,
and if oy > (K — 3)d + A, then
(36) ge(K0) < gi((K = 1)9).

Combining , , and , we conclude that
0 o< <+

(37) ¢ = arg ‘g‘g?{gt(k& =qkd ifloy—A—kf<fandl<k<K-1,
Kez K& ifoy > A+ 5+ (K—1)0

(IT) In the opposite case where a; < 0, it suffices to minimize ¢;(kd) with & < 0 because
gi(kd) > 0 for all k > 1. Again, notice that g;(p) is a convex function on [—o0, 0] satisfying
9¢(0) = 0. Applying a similar argument as in the case o; > 0, one can get

0 if —2-X<a <0,
(38) g =arg |£1|a<ir[1(gt(k5) = ks if|lag+A—kd|<Sand — (K —1) <k < -1,
= ~K§ ifay <-X—%—(K-1)d.
(1) (i-1)
It follows from and that ¢, = Q(sa(ay)) = Qo s,\(<Xt "ll)ﬁ;(’ilj;ﬁ Xy >> where
t 2
sx(x) = sign(z) max{|z| — A, 0} is the soft thresholding function. O

Lemma A.3. Let Unif(B,) denote the uniform distribution on the closed ball B, C R™ with
center at the origin and radius r > 0. Suppose that the random vector X € R™ is drawn from
Unif(B,). Then we have E||X||3 = g—_’é

Proof. Note that the density function of Unif(B,) is given by f(x) = m]l B, () where
vol(B,) = r™r2 /T(2 + 1) is the volume of B,. Moreover, by integration in spherical
coordinates, one can get

BIXIE = [lelirede = [[el ea) dote) as

" ZmH o(S™1) [T mr?
- E do(z)de =T [i, = .
/0 /Sm1 vol(B,) 4ot &= =2 g /0 S)

Here, o(S™') = 2% /T'(2) is the spherical measure (area) of the unit sphere S"~! C R™. [

Orthogonal Projections. Given a closed subspace S C R™, we denote the orthogonal
projection onto S by Ps. In particular, if z € R™ is a vector, then we use P, and P,. to
represent orthogonal projections onto span(z) and span(z)* respectively. Hence, for any
x € R™, we have

(39) Pux) = , w=P(a)+ Pufe), and |zl = [P()[3 + [P (2)]3-

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 23

Lemma A.4. Let A be as in with step size & > 0, and largest element 4. Suppose
that w € R0 satisfies ||w]|oo < Gmax, and consider the quantization scheme given by (10).
Let 0, := Z(X;,us_1) be the angle between X; and w;_y. Then, fort =1,2,..., Ny, we have

2
W)l — [< 4 TIVIB— NemallBeos® 6 if e+ g cos
2 “1ll2 =
0 otherwise.

< Gmaz

Proof. By applying and , we get

(X) (X + (wi = a0)|| X0[3)
12X,]2 X3

X, 2 2 w1l 2 2
—a) I3 = (wi+ cos b — 1) (1.3
[P : Pl :

1Px, ()5 = 113

(41) - (wt +
The last equation holds because X, u; 1 = || X¢||a||us_1]|2 cos ;. Note that

[l 2 [[we—1]l2 2 2w]2
Wy 1 cos 0; — Qt) - (cos 9t> = (wt + e cos b — Qt> (we — @),
(1l Xl X2 =

M

|wt| S Gmax and g = Q(wt + H”;(‘1‘”2 COs 6t> If <wt + ””;(hHQ COs 9t> > Qmax; then qt = Qmax

and thus 0 < ¢, —w; < Hﬂ‘;(‘1‘”2 cosby. So (I) > w;+ 2(q — wy) — g = ¢4 — wy, > 0 and (II) < 0.

Moreover, if (wt + % coS 0t> < —(max, then ¢ = —@gmax and ||1|‘;{ hllz cos by < g —wy, < 0,

Hence, (I) < wy +2(¢ —wy) — ¢ = ¢ —wy < 0 and (II) > 0. It follows that

12 2 Jui1ll2 2
(42) (wt + cos 0, — qt) < (coS 0t>
[Xel[2 [Xel[2
when |w; + % co8 6| > Gmax. Now, assume that ‘wt + % €08 0;| < @max. In this case,

since the argument of Q lies in the active range of A, we obtain

12 2_ ¢
4 (0, —) <2
(43) wy + X0 cosl, —q;) < 1

Applying and to (1), one can get

2 3 Ut —
(44) Ptz < 4 TIXE i B cosO| < s
t 2 =

|lus_1]|3 cos? 0; otherwise.
Further, we have

(45) PXtL (Ut> == PXtL (Ut,]_ + tht - tht) == PXtL (Utfl).

24 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB
It follows that
lell3 = llue—1l3 = [[Px, (ue) |3 + 1Py (u) 13 = Nlusall3

(us)

= [[1Px, (ue) 13 + 1P ()13 = llue—s 3 (by ({3))
()
(us)

Uy

= || Px, (ue) 2 = | Px, (we1) 13 (using ([39))

= || Px, (w13 — |lws—1]|3 cos® 6;.

Uy

Substituting || Px, (u¢)|| with its upper bounds in (44]), we obtain ([40)). O

Lemma A.5. Let A be as in with step size d > 0, and largest element quax. Suppose
that w € R0 satisfies ||w]|oo < Gmax, and consider the quantization scheme given by (10).
Additionally, denote the information of the first t — 1 quantization steps by a o-algebra F;_q,
and let 8,1 >0, s* € (0,1). Then the following results hold fort =1,2,..., Ny.

(1) Eerlul3 < max{E(eﬁthn%ennut_l||3<1fcos2 eo)’Eennut_ln%},
(2) B(enlu-rl3-cos0) | 7)) < —(cos? Oy | Fyq)(en?luemrlls — 1) 4 enfllueslls,

Here, 0, is the angle between X; and u;_;.

Proof. (1) In the t-th step, by Lemma we have

ENX3 — w13 cos? 0, if |w; + ”F&:h!Q cos Qt’ < Guax

luell3 = llue—l3 < .
otherwise,

where 0, = Z(X;,u;—1) is the angle between X; and w;_;. On the one hand, if ‘wt +

”ﬁ;h? c0s ;| < Gumax, We obtain

(46) el — f(enliucli-lulD g3y < g(e™ X0 gnlue 150 —cos0,))
On the other hand, if ‘wt + % coS 0| > Gmax, We get

(47) Eenlluld — E@n(\lutllﬁfllw—l||§)e77Hut—1II§) < Eellue-1l3

Combining and (47), we conclude that
Eerlul} < maX{E(eﬁ||Xt|\§€n||ut71||§<1—cos2 00) Eerli],

(2) Conditioning on F;_y, the function f(z) = e?*lu—13 is convex. It follows that
E(emPluel30=cos®00) | 7, 1) — B(f(cos®; - 0+ (1 — cos? ;) - 1) | F_y)

(cos® O, + (1 — cos? B,)e"lu—ls | 7,y

(cos® 0, | Fo1) + (1 — B(cos® b, | Fy_y))eP Il

= —E(cos® 0, | Fy_q)(eMPlu—lz — 1) 4 gnbllulls,

<E
<E

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 25

APPENDIX B. FUSING CONVOLUTION AND BATCH NORMALIZATION LAYERS

For many neural networks, e.g. MobileNets and ResNets, a convolutional layer is usually
followed by a batch normalization (BN) layer to normalize the output. Here, we show how
our quantization approach admits a simple modification that takes into account such BN
layers. Specifically, denote the convolution operator by * and suppose that a convolutional
layer

(48) fconv (x) "= Weonv ¥ T + bconv
is followed by a BN layer given by

T —[i
49 n(2) (= ——— - Wpy + bpy.
() fb() \/m b b

Here, Weony, Won, beonv, and by, are learned parameters and fi, & are the running mean and
standard-deviation respectively while € > 0 is to keep the denominator bounded away from 0.
Note that the parameters in both Equation (48) and Equation are calculated per-channel
over the mini-batches during training, but fixed thereafter.

TABLE 3. Top-1 accuracy drop for ResNet-18 and ResNet-50.

Model bom Unfused Fused
C Acc Drop (%) | C Acc Drop (%)

4 2048 1.63 1.72

4 4096 1.21 1.18
ResNet-18 5 2048 1.16 0.71 1.29 0.72

5 4096 0.49 0.51

5 512 0.97 1.03
ResNet-50 5 1024 | 1.81 0.90 1.82 0.81

5 2048 0.62 0.64

Thus, to quantize the convolutional and subsequent BN layers simultaneously, we first
observe that we can write

(50) fbn o fconv($) = Wpew * T + bnew

with A
T — wconvwbn7 bnew — (bconv - N)wbn + bbn-
Vo?+e Vo2 +e

As a result, to quantize the convolutional and subsequent BN layer simulatenously, we
can simply quantize the parameters wyey, bpew 0 using our methods. Although BN
layers are not quantized in our experiments in Section |b, we will show here that the proposed
algorithm GPFQ is robust to neural network fusion as described above. In Table [3| we
compare the Top-1 quantization accuracy between fused ResNets and unfused ResNets when
quantized using our methods with different bits and batch sizes. Note that the scalar C' for

unfused networks remains the same as in Table 1| while C' for fused networks is selected using

26 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

the procedure after Equation . We observe that the performance of GPFQ for fused
ResNet-18 and ResNet-50 is quite similar to that for unfused networks.

APPENDIX C. QUANTIZING LARGE WEIGHTS

In this section, we demonstrate that the proposed quantization algorithm is still
effective for weights with magnitudes that exceed the largest element, qu.. = K6, in the
alphabet set A.

Specifically, we prove Theorem bounding the expected error when n := n(J) entries
of w are greater than K¢. In turn, Theorem suggests that in some cases, choosing o
such that n(d) > 0 may be advantageous, a finding that is consistent with our experiments in
Section |5, We begin with the following lemma needed to prove Theorem

Lemma C.1. Let A be as in with step size & > 0, and largest element ¢pq.. Suppose
that w € RN satisfies ||w|co < kqmax for some k > 1, and consider the quantization scheme
given by . Let 0, := Z(X;,ui—1) be the angle between X; and u;_1. Then
(51)

ENXI3 + et 31 = cos260,) if fwy + T2 cos 0,] < guiase

Xl

HutHg S ||ut—1||% 2f|u)t + HUt hHQ COs 9t| > Gmax and |wt| < Gmax;

(”ut—1”2 +(- 1)qmaX”Xt|| Zf|wt + ”” ||” COs 9t| > Qmax and ’wt| > Qmax
holds fort=1,2,..., Ny.

Proof. The first two cases in are covered by Lemma . So it remains to consider the
case where ‘wt + % cos Ht‘ > (max and |wy| > Gmax- As in the proof of Lemma |A.4, we

have

luell3 = (v = @) * 1 Xl + (1 = cos® 00) [5

— llue—1ll2
where Vp 1= W + W

follows that

cosB;. Since ¢, = Q(vy) and |vy| > Guax, We get ¢ = sign(v;)gmax- 1t

luell3 = (v — sign(ve)gumax)*[| X3 + (1 = cos” 00) ue— |13
(52) = (vel = Gmax)* | Xell2 + (1 — cos®) [Jue—1 -

By symmetry, we can assume without loss of generality that v; > quax. In this case, since
|wt| S HwHoo S kaaxa

[Jue1]l2 Jue—1l2
‘Ut’ — Gmax = Ut — Qmax = W¢ — Qmax + COS et S (k - 1)Qmax + COS et-
[Xe]]2 1 X2

Then becomes

Up_ 2
HutHg S ((k - 1)(]max + HH;(:”!Q oS 9t> HXtH% + (1 - COS2 6t>|‘ut71”§

= (k= 1?qna | X035 + lue-all3 + 20k — 1) gmax (Xe, ur—1)
H(- 1>QmaxXt + Up— 1“2
< (Hut 1”2 +(- 1)qmax||Xt||2)2-

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 27

This completes the proof. O

We are now ready to bound the expected quantization error in the case when some weights
have magnitude greater than guax.

Theorem C.2. Suppose that the columns X, of X € R™No are drawn independently from a
probability distribution for which there exists s € (0,1) and r > 0 such that | X¢||2 < r almost
surely, and such that for all unit vector u € S™ ! we have

<Xtvu>2 2
(53) JORARRTARS S)
1 X415

Let A be the alphabet in with step size 6 > 0, and the largest element quax. Let w € RN
be the weights associated with a neuron such that | w|le < k@max for some k > 1. Let
n = |{t : |w| > Gmax}| be the number of weights with magnitude greater than ¢max. Quantizing

w using , we have

5 2
(54) E||Xw — Xq|3 < (m’(k — 1) qmax + 2—2) .

Proof. Let 0; be the angle between X; and u;_1. It follows from that

(Xn Ut71>2

E(cos? 0, |) = E(—
Y 113 ee—1 113

‘ ut_1> > s2.
Since || X;|]2 < r almost surely and E(cos?#6; | u;_1) > s?, by Lemma we obtain

(55) B(flull3 | 1) <

(IHUt_l”% + b if }wt + |||'L|t)t€t‘1‘!2 COS et} S (max,

e+ |3 if |wy + ”ﬁ;h!Q €08 0| > Gmax and |wy| < gmax,

(w2 +¢)? if }wt + % cos Ht} > (max and |wi] > ¢max

where a := (1 — s%), b:= %rQ, and ¢ := (k — 1)r¢max. Define the indices tp:=0<t; < ... <
tn <tny1:= No + 1 where |wy,| > Guax for 1 < j < n and let

||Ut—1||2
| Xt |2

m; 1= ‘{tj,1 <t< tj D lwe + COSHt

< Gmax }

, 1<73<n+1.

We first consider the case where n = 1. Applying the law of total expectation to the first two
cases in , one obtains

(56) Elus,_1]2 < a™E|jup|2 + b1 +a+...+a™) =b1+a+... +a™).

28 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

In the last equation, we used the fact ug = 0. Next, the last case in can be used to
bound E|uy,||3. Specifically, we have

Ellur, |2 = E(E([Jue, |13 | we, 1)

< Ellug,-1l3 + 2¢El|ug 1|z + ¢ (using (55))
< Ellug, 1)1 + 2¢(E|jug, 1]|2)2 + (by Jensen’s inequality)

= ((E|lugy1[|2)7 + ¢)?

(57) < <c+ \/b(1+a+...+am1_1)>2 (using (56))).

Since |wy| < gmax for t1 <t <ty = Np+ 1, using (55), we can derive

Ellug,-1]5 < a™Ellug, |53 +b(1 +a+...+a™")

2
T—am 1—qam
< a™ (ch b- ¢) +5b- ¢ (using (57)))

1—a 1—a

1 — gmitms b(1 — am
: ¢ +2a"™c —(am)

— ma 2 b
et 1—a 1—a

1 _ om1+ma b 1 _ ami1+mo
<a™c* +b- f— + 2am2/20\/¥ (since 0 < a < 1)
—a —a

(58) < (c—i— \/W> |

2
Hence, we obtain E|luy,||3 < (c + \/ﬁ) when n = 1. Proceeding by induction on n, we
obtain

2
b 57")2
5 < \— = ~ il
(59) E|lun, |5 < <nc+ - a) (nr(k‘ 1)Gmax + 55)

Since uy, = Xw — X¢q, we have E||Xw — X¢[3 < (nr(k — 1)qmax + %)2. O

Our numerical experiments in Section [5| demonstrated that choosing our alphabet with
(max < ||w|le can yield better results than if we strictly conformed to choosing A with
(max > ||W]|so- Let us now see how Theorem can help explain these experimental results.
First, recall from that guax = K0 = 2°71§ where b is the number of bits, and observe that
the condition ||w||oo < k¢max in Theorem implies that we can set k = ||w||co/¢max- Thus
, coupled with Jensen’s inequality, yields

or _ or
(60) ElXw = Xqllz < nr([wlloeo = gmax) + 5 = nr(l[wllo — 2"716) + %5
Now, note that s, r are fixed parameters that only depend on the input data distribution so
for a fixed b, n = n(d) = |{t : |wy| > 2°715}| is a decreasing function of §. In other words, the
right hand side of is the sum of an increasing function of 4 and a decreasing function

of 9. This means that there exists an optimal value of 0* that minimizes the bound. In

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 29

particular, it may not always be optimal to choose a large ¢ such that ||w||s = 2°~16. This
gives a theoretical justification for why the simple grid search we used in Section 5| yielded
better results.

APPENDIX D. THEORETICAL ANALYSIS FOR GAUSSIAN CLUSTERS

In this section, we will prove Theorem |3.2] which we first restate here for convenience.

Theorem : Let X € R™Mo he as in and let A be as in ({3)), with step size 6 > 0 and
the largest element gua. Let p € N, K := 1 + 02 max;<;<q [|2?|?%,, and w € R be the

o)

weights associated with a neuron, with ||w[|e < gmax. Quantizing w using (10)), we have

vmK

P(|IXw — Xq|}} > 4pm* K*6%0% log No) T, and
0
vmK
25 277252 2 > < ‘
P(lgtlg)]%o lu|l; > dpm=K=6“0° log No | < Ng_l
If the activation function ¢ is £-Lipschitz continuous, then
K
P(Ilp(xw) — o(Xq) 3 = dpm* K€% log Ny) < Yot
0
D.1. Proof of Theorem [3.2. Due to || X,||2 = 3%, 1,12,
d . d . d .
(61) B X5 =Y BVl =) _(n0® +n(z")?) =mo® +n) (")’
i=1 i=1 i=1
Additionally, given a unit vector u = (uM,u® ... u®) € R™ with u) € R", we have

(X, u) = S (v u@y ~ N(Z?Zl 20T, 02). In fact, once we get the lower bound of

E% as in , the quantization error for unbounded data can be derived similarly to
2

the proof of Theorem|3.1] albeit using different techniques. It follows from the Cauchy-Schwarz
inequality that

(Xe,u)® _ (E[(X, u)|)?

1 X3 B[XI5

E|| X;||3 is given by while E|(X;, u)| can be evaluated by the following results.

(62) E

>

Lemma D.1. Let Z ~ N(u,0?) be a normally distributed random variable. Then

(63) E|Z| > J@(l _ 2%)

Proof. Let ¥(x) = \/%—W ffoo e~*/2 dt be the normal cumulative distribution function. Due to

Z ~ N(u,0?), the folded normal distribution |Z| has mean E|Z| = U\/ge*’ﬂ/%Q + u(l —
20 (—£)). A well-known result [9, 29] that can be used to bound W¥(z) is

> 1
(64) / e P12 dt < min(\/g, —)emz/Q, forz > 0.
x

T

30 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Additionally, in order to evaluate E|Z|, it suffices to analyze the case p > 0 because one can
replace Z by —Z without changing |Z| when u < 0. So we suppose p > 0.

By , we obtain

E|Z| = a\/ie“Q/Q"Q o= 2uW(—p)o) = g\/ie;ﬂ/zaz b u\ﬁ/ g
i T T Jufo
Z U\/§6H2/20’2 +M_min(u70\/§)eu2/252.
m T

If u > 0\/% then one can easily get E|Z| > p > a\/g. Further, if 0 < p < 0\/27 then
E|Z| > (04/2/7 — p)e /%" + 1. Due to e* > 1+ x for all z € R, one can get

E|Z| > (o 2/W—u)(1—u2/202)+u—$ ’ \/>>"\/7<1_ﬂ)

In the last inequality, we optimized in u € (0,0 2/7T) and thus chose p = 5 : a\/;. O

Lemma D.2. Let clustered data X = [X1, Xs, ..., Xn,] € R™N be defined as in and
u € R™ be a unit vector. Then, for 1 <t < Ny, we have
(X, u)? 25 o?
1Xell3 — 9 m(o? +maxi<i<a [|29]12)
Proof. Since (X;,u) is normally distributed with variance o2, implies E[(Xy, u)| >

0\/> (1 — —) Plugging the inequality above and into (62), we obtain

(65)

27T
2 2 2 1_i 2 2 2
guf) B0 20-P 5
IX%03 = EIX.I3 T me a5 T 9 mo4n Tl (o))
Therefore, holds due to (§)) < 22, < maxi<i<q |27 |12, and m = nd. O

Now we are ready to prove Theorem [3.2]

Proof. Let a« > 0 and i > 0. By using exactly the same argument as in , at the t-th step
of , we have

(66) P(||lug|? > o) < e " Reluel3,
Moreover, Lemma, implies

w3 < %\\thg nllw—1]13(1—cos? 6;) nllur—113
(67) Ee < maxJ E(e e), Ee

Until now our analysis here has been quite similar to what we did for bounded input data
in Theorem [3.1. Nevertheless, unlike Theorem [3.1, we will control the moment generating
function of || X¢||3 because || X;||3 is unbounded. Specifically, applying the Cauchy-Schwarz
inequality and Lemma (2) with 8 = 2, we obtain

[NIES

E(@ e ||XtH2677||Ut 1/|3(1—cos? 6:) | Fiq) < (]Ee . ”XtH) (E(e2nllwf1||§(1—cos2Gz) |]:t_l))

(68) < (EeF XY (“E(cos® 0, | Fiy) (eIl — 1) 4 el

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 31

In the first step, we also used the fact that X; is independent of F;,_;. By , we have

X u 5
E 29 - :E(U—tl’) Y . &2
(cos” 00 | Fio) = B\ IR w2 | 7 2 Gk~ °

Plugging the inequality above into (68)), we get

222 11X, 13 nllue—1 [3(1—cos? 0r) 2(p2nllur—1113 2nljue—1)3) 2
E(es 2e 2 | Fio1) < —s(e 2—1)+e 2

(NI

&=
[
4
S
2
o
(NI
-

e2llue—lB (] g2y 4 32>

e””“t””%(l — 32)% + 5)

1
2

~—~

1
(69) < ell(1 - 2 5%) + 5)

1

where the last two inequalities hold due to (z* + 3?)2 < |z| + |y| for all z,y € R, and
(1-— x)% <1-— %x whenever z < 1.

2
Now we evaluate]Ee%”XtH% and note that
d d
f 7752 i 7752 i
(70) R’ 10 = Bexp(E- 30 10)) = [T Resp(B-1%713).
i=1 i=1
Since Y, ~ N (21, 021I,.), we have
(1)y2 2,.2 n
) o ol 5T
EeXp(9 ||Yt ||2 - 0_\/% ReXp 202 + 2 dx
(2 en(L) [l (o))
= cexp| ———F— exp | — T — T
o2 P\oz 2n6%02/) Jx P 202 1 —nd20?

- [y ten(FTe)|

2n620?

where the last equality holds if né?c? < 1 and we use the integral of the normal density

function:
15252\ 2 8242 (2) 2
1 —no‘o 1 —né‘o 2,
— exp|— 5 xr — o dr = 1.
2no R 20 1 —nd?o

Notice that ﬁ < 14 2x for x € [0, %] and 1 +x < ¢e” for all x € R. Now, we suppose

1
7620 < L and thus (1 —7d202)~2 = (H%) P < (14 2n0%02)2 < em9" Tt follows that

(52 i (5ZZ‘ " i "
Eesp (" 1v913) < [exp (oot + SN < Josp (o2 + o202

2 — 277(5202

)

xp(nKné*o?)

/\

—
EN|
—

~—

| /\

32 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Substituting into , we get
(72) B IX3 < gndKni®o® _ jmEKni®o®
Combining and , if noZo? < %, then
E(e#HXt”%e??HUt—l||%(1—0032 9t)) —]E<E(e§||XtH%erlnut—lng(l—COSQ 1) | ft—l))
< E<e%mK7762g-2 <€T)||ut71||g(1 _ %82) + 8))
= e%mKT]‘sQUQ(l _ 152)]}367]”%’1”% + Se%mKn(s?UQ

with @ := (1 — s2/2)ez™Em%* and b = sez™5 97" Plugging into ([67), we have
Eenllutl < max{aEelv- iz 4+ p, Ee"”"%l”z}, Next, similar to the argument in ((18)), iterating
expectations yields Ee"l“l? < gloR(enlwl3) 4 b(1 4+ a+ ...+ a') = a' + b(l - 0) <1+

where the last inequality holds if a := (1 — s?/ 2)6’”[(’7(52 7*/2 < 1. So we can now choose
2

n = %, which satisfies né%0? € [0,1/2] as required from before. Indeed, due to

m, K >1and s? = ﬁ < g, we have nd%o? = %}jz/?‘) < —log(1— %) < % Then we get

a=(1- 552)1/2 and b = s(1 — %52)—1/2 1t follows from and s2 — ﬁ that
b log(1 — s2/2 1 — 1g2)-1/2
Pl > o) < e (14 2) = e LB (14 oL)

l1—a mK§2o? 1—+/1—s%/2
—as? s(1— 3872+ '
S exp(m) (1 + 52/2) (smce log(l + l‘) S ZL')
—as (1-— %52)_1/2 +1
=exp(—2mmz)(l+2)

~1/2
:exp<) {1—1—6\/ () —|—6\/@}
187712[(25202 18mK 5

< Vo)

where ¢ > 0 is an absolute constant. Pick a = 4m?K?§%0? log(N}) to get
(74) P(HutHg > dpm*K?6%0” log N0> < evVmKNy P

From we can first conclude, by setting t = Ny and using the fact uy, = Xw — Xg¢, that

cvmK

P
0

P(HXw — Xql|3 > 4pm*K?5°0° log No) <
If the activation function ¢ is &-Lipschitz, then [[o(Xw) — (X ¢q)|l2 < £]|Xw — X¢l|2 and

thus
cvmK

14
0

P(lp(Xw) — (X0} 2 4pm* K*65% log Ny) <

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 33

Moreover, applying a union bound over ¢, yields

P(max. |e||3 > dpm? K26%0? logN()) < ¢

1<t<N(

o§
=

NPt

APPENDIX E. THEORETICAL ANALYSIS FOR SPARSE GPFQ

In this section, we will show that Theorem E and Theorem @ (restated here for
convenience) hold.

Theorem [4.1} Under the conditions of Theorem [3.1] we have the following.
(a) Quantizing w using with the alphabet A in (3]), we have

r2(2\ +0)?
&2

1 1
P<||Xw—Xq||§§ 1ogN0) >1——<2+—).

Ng V1 — s?

(b) Quantizing w using with the alphabet Ain (), we have

r? max{2\, 0}
2

P(IIXw—XQ\@ < 10gNo> >1-

1 1
e L)
N; N2 (* V1—s?
Theorem [4.2} Under the assumptions of Theorem [3.2] the followings inequalities hold.
(a) Quantizing w using with the alphabet A in , we have

vmK
P(HXw — Xql|3 > 4pm*K?(2)\ + §)*c* log N0> <]7\7;0 ,
0

(b) Quantizing w using with the alphabet Ain (), we have

vmK
P(HXw — Xql|3 > 4pm*K? max{2), §}*0” log N0> S]pr :
0
Note that the difference between the sparse GPFQ and the GPFQ in ((10) is the usage of
thresholding functions. So the key point is to adapt Lemma[A.4 and Lemma[A.5 for those
changes.

E.1. Sparse GPFQ with Soft Thresholding. We first focus on the error analysis for
which needs the following lemmata.

Lemma E.1. Let A be one of the alphabets defined in with step size 0 > 0, and the
largest element Qaz. Let 0, := Z(Xy, u;—1) be the angle between Xy and uy;_1. Suppose that
w € RM satisfies ||w]loo < Gmax, and consider the quantization scheme given by (29). Then,
fort=1,2,... Ny, we have

2 X, 3 — a3 eos? 6y i |+ Ll cos 0] < g+ A

[[X¢ll2

(75) [Juells = lue—al3 <
otherwise.

34 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Proof. By applying exactly the same argument as in Lemma [A.4] one can get

Us_ 2
(76) IPx, ()3 = (i + ”n §<f|||l2 costy —) 1,3
and
|12 2 |12 2 2w 1]l
wy + cosQ—q) —(cos@) :<w —i——cosé’—q)w—q,
(et Ty conte =) = (g, eoste) = (e g, cost —a Sl

@

ug—1||2

TSl oS Qt). We proceed by going through the

where |w;| < gmax and ¢, = Q o s), (wt 4 luile
cases.

First, if (wt + HH ”H Cos 8t> > (max + A, then ¢ = gmax and thus A < ¢, —wy + A <

%COS Or. So (I) > wy +2(qp —we + A) — ¢ = ¢ — wy + 2X > 2\ and (II) < 0. Moreover,

if <wt + ”HS< hHQ coS 8t> < —(Qmax — A, then ¢ = —@max and HH;(hHQ cosly < q—wy — X< =\

Hence, (I) < wy +2(q — wy — A) — ¢4 = ¢ — wy — 2A < —2X and (II) > 0. It follows that

Up— 2 Up— 2
(77) (wt + HH;(SH‘E cos b, — qt) < (HH;(:”H; cos 9t>
when ’wt + ”F&:h!Q cos 0| > Gmax + .
Now, assume that ‘wﬁ—% €08 0| < @max+A. In this case, let v, := s, (wt—l—% cos 9t>.
Then |vs| < ¢ax and ‘wt 4 e ”H cos 0y — vy| < A. Since ¢; = Q(v;), we obtain

[[ue—1ll2 2 [lue1ll2 2
w+—cos@—q> :’w—l— cosb; — v —i—v—q‘
(vt s oot) = T oot m et
2
—(It|>

< (‘wt + H’r)t(l”HQ cos 6, — v,
tl]2

SN 2
(78) < ()\ + 5) .
Applying and to , one can get
CUTNX 3 if [+ Bt c0s 00| < e+ A
(79) 1Px, (w3 < ’ i

||ut_1||2(jos 0, 0therw1se.

Again, by the same discussion after in LemmalA.4] we have [|u;||3—||us—1 |3 = || Px, (u:)||3—
|ug—1]|3 cos® ;. Replacing || Px, (u:)||3 with its upper bounds in ([79)), we obtain (75)). O

Lemma E.2. Let A be one of the alphabets defined in with step size & > 0, and the largest
element Guax. Suppose that w € RN satisfies ||w]|co < qmax, and consider the quantization
scheme given by . Additionally, denote the information of the first t — 1 quantization
steps by a o-algebra F_1, and let 3,7 > 0, s*> € (0,1). Then the following results hold for
t=1,2,...,N,.

2 n(2A+6)2 2 201 _ a2 2
(1) Eenlul < maX{E(e—4 12113 gnllue—1 13 (1—cos en),Eenuut_ub},

POST-TRAINING QUANTIZATION FOR NEURAL NETWORKS WITH PROVABLE GUARANTEES 35

(2) E(enPlul3-cos?00) | 7, 1) < —R(cos? 6, | Fr_y)(e?luls — 1) 4 enflluel,

Here, 0, is the angle between X; and u;_1.

Proof. Similar to Lemma [A.5] the inequality (1) follows immediately from (75]). The proof of
part (2) is identical with the one in Lemma O

Now we are ready to prove Theorem [.1] as follows.

Proof. The only difference between Lemma and its analogue Lemma is that 6% in
Lemma[A.5 is replaced by (2A + 0)%. Note that Lemma[A.5 was used in the proof of both
Theorem and Theorem in which 42 serves as a coefficient. Hence, by substituting §2
with (2 + §)?, every step in the proof still works and thus Theorem holds. O

E.2. Sparse GPFQ with Hard Thresholding. Now we navigate to the error analysis for
. Again, Lemma and Lemma are altered as follows.

Lemma E.3. Let A be one of the alphabets defined in with step size 6 > 0, the largest
element Gpaz, and threshold \ € (0, Gmax). Let 0; := Z(X;,us_1) be the angle between X; and
us_1. Suppose that w € RN satisfies ||w|loo < Gmax, and consider the quantization scheme

given by . Then, fort=1,2,..., Ny, we have

,6 2
(80) [luell? — [Juer |2 < A 3 — [cos? 01 if a4+ L5l cos 01] < g
til2 — t—1ll2 >

otherwise.

Proof. By applying exactly the same argument as in Lemma [A.4] we obtain

U 2
1) 1Pl = (o 12 cos, —) x5
[Xel[2
where |w;| < ¢max and ¢ = Qo hA<wt + |I||;<‘1|II2 0089t>. Due to A € (0, ¢max), We have
Qo hy(z) = Q(z) for |z| > ¢max. Thus, it follows from the discussion in Lemma that
12 2 Jui1ll2 2
82 (w + cos 6, —) < (cos@)
2 e) = U, o
when |w; + ”ﬁ;h!Q cos 0;| > Gmax-
Now, assume that ‘wt + % cos 0;| < @max- In this case, because the argument of Q lies

in the active range of A, we obtain

Up_ 2 02
(83) (wt + “||)t(t1||‘l2 cos b, — qt> < maX{)\, 5})

Applying and to , one can get

max{2\,§}2 2 . [Jut—1]l2
|| X5 i jwy + X cos b

< Gmax;

(84) 1Px, (ue) 3 <
t |lus—1]|3 cos?6; otherwise.

Again, by the same discussion after in Lemmal[A.4] we have [[u||3—||u,—1 |3 = || Px, (u;)||3—
|ug—1]|3 cos® 6;. Replacing || Px, (u:)||3 with its upper bounds in (84)), we obtain (80). O

36 JINJIE ZHANG, YIXUAN ZHOU, AND RAYAN SAAB

Lemma E.4. Let A be one of the alphabets defined in with step size 6 > 0, the largest
element qmax and A € (0, Gmax). Suppose that w € RN satisfies ||w|so < Gmax, and consider
the quantization scheme given by . Additionally, denote the information of the first t — 1
quantization steps by a o-algebra F;_1, and let B,m > 0, s*> € (0,1). Then the following results
hold fort=1,2,..., Ny.

(1) Eerlml3 < maX{E(eM||XzH%ennutflnau—cos? 9t)),Ee77IIUt—1H§},

(2) E(enPlul53=cos®0) | 7) < —E(cos? 0 | Foy)(e?Plue—1lls — 1) 4 enBllulis,

Here, 0, is the angle between X; and u;_.

Proof. Similar to Lemma , the inequality (1) follows immediately from (80). The proof of
part (2) is identical with the one in Lemma O

The proof of Theorem [4.2]is given as follows.

Proof. The only difference between Lemma and its analogue Lemma is that 62 in
Lemma [A.5 is replaced by max{2X + §}?. Note that Lemma was used in the proof of
both Theorem [3.1]and Theorem [3.2]in which 6% serves as a coefficient. Hence, by substituting
62 with max{2X + §}?, it is not hard to verify that Theorem 4.2 holds. O

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA SAN DIEGO
Email address: jiz003Qucsd.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA SAN DIEGO
Email address: yiz0440Qucsd.edu

DEPARTMENT OF MATHEMATICS AND HALICIOGLU DATA SCIENCE INSTITUTE, UNIVERSITY OF CALI-
FORNIA SAN DIEGO
Email address: rsaab@ucsd.edu

	1. Introduction
	1.1. Related Work
	1.2. Contribution

	2. Preliminaries
	2.1. Notation
	2.2. GPFQ

	3. New Theoretical Results for GPFQ
	3.1. Bounded Input Data
	3.2. Gaussian Clusters
	3.3. Convolutional Neural Networks

	4. Sparse GPFQ and Error Analysis
	5. Experiments
	5.1. Experimental Setup
	5.2. Results on ImageNet

	Acknowledgements
	References
	Appendix A. Useful Lemmata
	Appendix B. Fusing Convolution and Batch Normalization Layers
	Appendix C. Quantizing Large Weights
	Appendix D. Theoretical Analysis for Gaussian Clusters
	D.1. Proof of Theorem 3.2

	Appendix E. Theoretical Analysis for Sparse GPFQ
	E.1. Sparse GPFQ with Soft Thresholding
	E.2. Sparse GPFQ with Hard Thresholding

