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Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems
worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be
regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates).
Such optimization can be computationally expensive since it requires numerous evaluations of water quality
(WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to
its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first
attempt to implement BO for the optimization of WQ in water distribution networks. The developed python-
based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while
ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build
the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO
methods. To that end, systematic testing of different acquisition functions, including the probability of
improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with
different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic,
was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of
different BO parameters, including the number of initial points, covariance kernel length scale, and the level of
exploration vs exploitation. The results revealed substantial variability in the performance of different BO
methods and showed that the choice of the acquisition function has a more profound influence on the perfor-
mance of BO than the covariance kernel.

1. Introduction

Deterioration of the water quality (WQ) in drinking water distribu-
tion networks (WDNSs) is a significant challenge facing the supply of
clean and safe water worldwide (Liu et al., 2017; Makris et al., 2014).
WQ deterioration occurs through various physical, biological, and
chemical processes that take place in the bulk flow and/or at the walls of
the WDN pipes (Abokifa et al., 2016a; Biswas et al., 1993; Lu et al.,
1995). Chlorine-based disinfectants are widely applied during water
treatment to eliminate microbiological contaminants (Deborde and von
Gunten, 2008), and a sufficient residual is typically maintained
throughout the distribution system to prevent microbial
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recontamination (LeChevallier, 1999). However, elevated chlorine
doses have been associated with the excessive formation of harmful
disinfection byproducts (DBPs) (Li et al., 2019), as well as taste and odor
complaints from consumers (Fisher et al., 2011). This is particularly an
issue for large WDNs, where chlorine concentrations may become
completely depleted by the time the water reaches the far ends of the
system. Alternatively, injecting chlorine in smaller doses at multiple
distributed locations in the WDN (i.e., booster stations) has been shown
to produce a more even distribution of chlorine concentrations while
reducing the overall cost and amount of injected disinfectant (Abokifa
et al., 2019; Boccelli et al., 1998; Maheshwari et al., 2018; Ohar and
Ostfeld, 2014; Ostfeld and Salomons, 2006; Prasad et al., 2004; Tryby
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et al., 1999).

Optimizing the design of booster chlorination systems has been
attempted by several studies that aimed to optimize the placement (i.e.,
locations) and/or the scheduling (i.e., injection rates) of chlorine dosing
stations. In these studies, a wide range of optimization methods,
including both linear and nonlinear optimization techniques were
implemented (Islam et al., 2013; Mala-Jetmarova et al., 2017). To
enable the formulation of the booster optimization problem as a linear
programming problem, many studies relied on first-order decay kinetics
to describe chlorine decay in the WDN. For instance, Boccelli et al.
(1998) formulated a linear programming (LP) approach to minimize the
total chlorine dose by applying the principle of linear superposition to
disinfectant concentrations resulting from multiple injections over time,
which was then solved using the simplex algorithm. Tryby et al., (2002)
expressed the booster optimization problem as a mixed-integer linear
programming (MILP) model by using both binary location variables and
continuous injection rates. Propato and Uber (2004) formulated a linear
least-squares (LLS) problem to determine the optimal injection rates that
minimize space-time variations in residual concentrations. Lansey et al.
(2007) developed a two-stage approach for optimizing booster locations
followed by minimizing the injected chlorine mass using a combination
of LP and a genetic algorithm (GA) or enumeration. Goyal and Patel
(2017) applied an LP-based approach in Excel coupled with EPANET to
optimize booster locations and scheduling. More recent works have
focused on formulating WQ modeling within a linear state-space rep-
resentation in which the relationship between network inputs (booster
injection) and outputs (chlorine concentration at junctions) is explicitly
described (Wang et al., 2022, 2021). Such control-oriented modeling
enabled the implementation of scalable Model Predictive Control (MPC)
algorithms for WQ control in WDNs (Wang et al., 2021).

Aside from first-order chlorine decay kinetics, a few studies also
considered nonlinear reaction kinetics for the booster optimization
problem. For instance, Munavalli and Kumar (2003) formulated the
optimal scheduling of chlorine sources as a nonlinear optimization
problem by implementing non-first-order bulk and wall reactions. The
model was then solved using GA. Several studies have also formulated
the WQ control problem as a multi-objective optimization problem.
Prasad et al. (2004) formulated a multi-objective optimization model to
minimize the total chlorine dose while maximizing volumetric demand
that satisfies WQ standards, which was then solved using a
multi-objective  GA (MOGA). Behzadian et al. (2012) applied
non-dominated sorting genetic algorithm II (NSGA-II) to optimize
booster locations and scheduling using a two-phase multi-objective
optimization process to optimize both chlorine residuals and DBP levels.

In addition to optimizing chlorine injection locations and scheduling,
hydraulic controls have also been considered as decision variables in
WQ optimization formulations. Ostfeld and Salomons, (2006) formu-
lated a model that couples the design and operation of booster chlori-
nation stations with the scheduling of pumping units. The model was
optimized using GA with the objective of either minimizing the total
costs of pumping and booster chlorination or maximizing the injected
chlorine dose. Gibbs et al. (2010) applied GA to optimize both booster
disinfection dosing together with daily pump scheduling for a real-life
WDN. They showed that considering the hydraulics as well as the
dosing regime in the optimization process can help maintain disinfectant
residuals at the extremities of the network while achieving significant
energy cost savings. Similarly, Kang and Lansey (2010) implemented GA
to simultaneously optimize valve operation and booster scheduling,
while Nono et al. (2018) used NSGA-II to integrate booster chlorination
scheduling within network operational interventions to reduce the
water age.

The majority of previous studies focused on optimizing the design of
booster chlorination systems using either linear programming or
evolutionary optimization techniques (e.g., GA). Although linear ap-
proaches are faster and simpler (Prasad et al., 2004), their application is
generally limited to first-order decay reactions. On the other hand,

Water Research 242 (2023) 120117

evolutionary optimization methods are significantly more computa-
tionally expensive since they typically involve conducting numerous
evaluations of the objective function(s). The latter usually includes
running a numerical model (e.g., EPANET/EPANET-MSX), in which the
partial differential equation(s) governing the transport and decay of
chlorine, and potentially other species, in the distribution system are
numerically solved (Rossman and Boulos, 1996; Rossman et al., 1994;
Shang et al., 2008). The high computational cost involved in evaluating
such numerical models prohibits the real-time implementation of WQ
control algorithms.

Bayesian Optimization (BO) has been recently gaining significant
popularity due to its high efficiency in the derivative-free optimization
of computationally-expensive objective functions (Frazier, 2018; Gel-
bart et al., 2014; Snoek et al., 2012; Shahriari et al., 2015; Wu et al.,
2017). Instead of directly optimizing the objective function, BO builds a
probabilistic model of the objective function (known as the surrogate
model) that is sequentially updated by sampling the underlying nu-
merical model. The sequential sampling process aims to balance
exploration and exploitation, which is done by using an explicit acqui-
sition function that guides the search toward the most promising solu-
tions with potentially optimal values of the objective function and/or
high uncertainty.

This study presents the first attempt at implementing BO for the
optimization of water quality in drinking water distribution systems.
The key contributions of this work are (i) developing a simulation-
optimization framework that couples EPANET-MSX with a Bayesian
Optimization algorithm, (ii) applying BO to optimize the scheduling of
disinfectant booster stations within a case study featuring a real-life,
mid-size WDN, (iii) conducting a systematic analysis of the perfor-
mance of different BO methods (i.e., different covariance kernels and
acquisition functions), as well as the role of different BO parameters to
understand the capabilities and limitations of applying BO for water
quality optimization under different scenarios.

The rest of this paper is organized as follows: Section 2 provides a
description of the methods implemented in this in this study, including
the formulation of the booster optimization model and the underlying
theory of BO. Section 3 describes the case study WDN, showcases the
results of the systematic analyses of different BO methods and param-
eters, and discusses some of the key limitations of BO. Section 4 offers a
set of concluding remarks and highlights the key takeaways of the pre-
sent study.

2. Methodology
2.1. Optimization framework

Fig. 1 depicts an overview of the general framework developed in
this study for implementing BO to optimize WQ in WDNs. The Python-
based framework couples BO, as implemented within the pyGPGO
package (Jimenez, 2020), with the functions library toolkit of
EPANET-MSX. The framework is used to conduct a thorough sensitivity
analysis of BO methods and parameters. Below, details on each of the
key components of the framework and how they are linked to one
another are provided.

2.2. Optimization Model Formulation

The objective of the booster scheduling optimization is to minimize
the cost of chlorine injection while satisfying various water quality
standards at all demand nodes. In this study, the total cost of chlorine
injection is calculated as the summation of both the capital cost of the
booster system design (BCD) and the operational cost of booster chlorine
injection (BCI), which can be described by (Abokifa et al., 2019; Ohar
and Ostfeld, 2014; Ostfeld and Salomons, 2006):
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Objective Function Value
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a covariance kernel:

¢ Matérn (MAT)

* Squared Exponential (SE)
* Gamma Exponential (GE)
* Rational Quadratic (RQ)

and Variance

A
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*  Probability of Improvement (PI)
* Expected Improvement (EI)
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Calculate flow rates in WDN pipes
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Calculate species’ conc. at nodes

Booster Injection
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Fig. 1. Schematic of the booster scheduling optimization framework.
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where Cly; is the chlorine mass injection rate of booster “b” during in-
jection event “i” (kg/min); ny is the number of chlorine boosters in the
WDN; n; is the number of injection events in one day (events /day); At; is
the length of the injection event “i” in minutes (min/event); A is the
chlorine injection cost per unit mass of chlorine ($/kg); DRV is the daily
return value coefficient (day’l) as a function of the annual interest AI
(%) and booster design lifetime BLD (years); C[;'* is the maximum in-
jection rate booster station b can produce (mg/min); V, is the total
injected mass of chlorine by booster station b (mg); and a [$(mg/min)‘ﬂ 1,
B [-1, and y [$/mg] are empirical booster chlorination capital cost
coefficients.

In order to ensure the satisfaction of water quality standards, the
concentrations of various species, such as chlorine and DBPs,
throughout the WDN must be constrained within a range specified by
minimum and maximum thresholds. To incorporate these constraints
into the objective function formulation, a penalty function (PEN) is
constructed to account for violations of the upper and lower concen-
tration bounds of the species in the EPANET-MSX simulation:

PEN = Zn:
s=1
X Z Smins X Zmax 1- o 0 ) + Opaxs X Z max | = —

j=1 =1 1% =1 %

3

where, Spmins and Smaxs are the penalty cost coefficients for violating the
minimum and maximum constraints of species “s”, respectively; n; is the

9

number of species simulated by EPANET-MSX; C™* and C™" are the
minimum and maximum constraints imposed on the concentration of
species “s” throughout the WDN; and C;;; is the concentration of species
“s” at junction “j” during time-step “t” (mg/L). The latter is obtained
through running a WQ simulation in EPANET-MSX for a given booster
design.

Finally, the objective function to be minimized is the summation of
the aforementioned cost and penalty terms:

OBJ = BCI + BCD + PEN (€]

The decision variables of the optimization model are the chlorine
injection rates at each booster station during each injection event (Cl, ).
Thus, the number of decision variables is equal to the number of injec-
tion events times the number of chlorine boosters (n; x ny).

2.3. Bayesian Optimization

Bayesian optimization consists of two main components, (i) the
surrogate function, which is a probabilistic surrogate model that is
trained to predict the mean and variance of the objective function at any
point within the solution space, and (ii) the acquisition function, which
is a mathematical technique that uses the predicted mean and variance
generated by the surrogate model to guide the selection of the next point
to sample within the solution space.

2.3.1. Surrogate Function

In this study, Gaussian process regression (GPR) is implemented to
build a probabilistic surrogate model for the booster optimization
objective function. GPR builds a surrogate model f(x) of the objective
function by fitting a Gaussian distribution over the mean (x) and
covariance (k) of the evaluated values of the objective function at
various points (x) (Seeger, 2004). The resulting probabilistic model can
be described as (Candelieri et al., 2018):
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F(x) ~ GP(u(x); k(x,x)) (5)

The mean and covariance of this distribution are updated throughout
the optimization process based on the new evaluations of the objective
function to produce the posterior by means of Bayes’ rule.

2.3.2. Covariance Kernel

GPR implements a covariance kernel function k(x, x) to capture the
correlation between the predicted values of (f) based on the proximity of
the values of the predictor (x). In this study, four of the more commonly
used covariance kernels for GPR were systematically tested (Archetti
and Candelieri, 2019; Scikit-learn, 2023).

Squared-Exponential (SE). The squared-exponential kernel, also known
as radial basis function (RBF), can be described by:

2
k(xi,x;) = exp< — d(x,,x])> 6)

2P

where d(x;, x;) is the Euclidean distance, and [ is the length scale of the
kernel.

Gamma-Exponential (GE). The gamma-exponential kernel is a slightly
modified version of the squared-exponential kernel:

2y
k(x,»,x,) = exp( — M) @

2P

where y is an adjustable hyperparameter that controls the smoothness of
the function.

Matérn (MAT). The Matérn kernel is a generalization of the RBF kernel,
and can be described by:

% (@d(x,,)q))vl(v (@d(x[,x,)) ®)

k(xi,x) =
where I'(-) is the gamma function, K,(-) is a modified Bessel function,
and v is an adjustable hyperparameter that controls the smoothness of
the function. The smaller the value of v, the less smooth the approxi-
mated function is. As v increases, the kernel approaches the RBF kernel.

Rational Quadratic (RQ). The rational-quadratic kernel can be seen as a
scale mixture (an infinite sum) of RBF kernels with different charac-
teristic length scales:

2 —a
K(xi,) = (1 L) ) ©)

2al?
where « is the scale mixture parameter.

Kernel length scale. In this study, the length scale (1) in each of the tested
covariance kernels was selected by minimizing the cross-validation error
of fitting the GPR model to the objective function. To that end, 10 sets of
250 randomly generated evaluations of the objective function were
generated, and the data was used to train the GPR model. To select the
best value for the length scale parameter for each kernel function, an
optimization problem with the objective of minimizing the cross-
validation mean squared error (CV-RMSE) was formulated. The latter
was then solved via a univariate bounded optimization routine using the
minimize_scalar function in the scipy library.

2.3.3. Acquisition function

The acquisition function offers a simple and computationally effi-
cient approach for finding the best points to sample in order to maximize
the value of the surrogate function. The acquisition function guides the
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sampling of the surrogate function by balancing the trade-off between
exploitation and exploration. Exploration seeks to sample from the areas
in the solution domain that have not been sampled in previous iterations
(i.e., areas in the domain with higher uncertainty). Exploitation seeks to
sample from the areas in the solution domain in which the optimum
value of the surrogate function is expected to be located based on pre-
vious iterations. The acquisition function allows the explicit control of
both exploitation and exploration to guide the optimization process to
find the optimal solution in the least number of iterations (Candelieri
et al., 2018). In order to select the next point to sample during each
iteration, an efficient optimization algorithm, namely the
Limited-Memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS-B) algo-
rithm, was used to locate the optimal value for the acquisition function.

In this study, four of the more frequently used acquisition functions
in BO literature (Archetti and Candelieri, 2019), namely probability of
improvement (PI), expected improvement (EI), upper confidence bound
(UCB), and entropy search (ES), are tested for the optimization of
booster chlorination in WDNs.

Probability of improvement (PI). The PI acquisition function evaluates
the likelihood of improvement of the surrogate function f(x) by means of
a normal distribution:

PI(x) = P(f(x) > f(x")) = ®(Z) (10)

where f(x*) is the best previously observed objective function value,
and Z is the standardized value of f(x"):

1D

where p(x) and o(x) are the mean and standard deviation of f(x) at
candidate point x, and ®@(-) is the cumulative distribution function of the
standard normal distribution.

Expected improvement (EI). The EI acquisition function evaluates the
expected improvement of the surrogate function f(x) as follows:

El(x) = o(x)(Z ®(2) + ¢(Z)) (12)

where ¢(-) is the probability density function of the standard normal
distribution.

Upper confidence bound (UCB). UCB uses the confidence bound concept
to balance the exploitation and exploration trade-off by considering a
hyperparameter (5):

UCB(x) = u(x) + po(x) 13)

Using a higher value for g results in favoring the predicted variance
over the mean, which results in favoring exploration over exploitation.

Entropy Search (ES). The ES acquisition function uses differential en-
tropy to reduce the uncertainty in finding the optimal value of the
acquisition function by maximizing the information obtained using new
data (Wang and Jegelka, 2017). In other words, ES aims to find the data
point(s) that would cause the largest possible differential entropy.
Equations describing the ES approach can be found elsewhere (Hennig
and Schuler, 2012; Wang and Jegelka, 2017).

3. Results and Discussion
3.1. Case study

The C-Town benchmark WDN (Figure S-1) is implemented herein to
demonstrate the BO framework. The network comprises one reservoir

(source), seven tanks, 388 nodes, 432 pipes, 11 pumps grouped into five
pumping stations, and one valve (Creaco et al., 2016; Sousa et al., 2016).
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The C-Town WDN has been used in previous literature as a case study for
optimizing chlorine booster scheduling and location (Abokifa et al.,
2019) as well as other WDN optimization applications (Ostfeld et al.,
2012). Chlorine is assumed to be injected at four optimized locations (i.
e., n, = 4), namely the reservoir (R1), and junctions J201, J385, and
J420 (Figure S-1). The optimized locations of the chlorine boosters were
obtained from (Abokifa et al., 2019), and the proposed BO framework is
used herein to optimize the scheduling of the four chlorine boosters.
Each of the four booster stations is assumed to have six different injec-
tion events, each lasting 4 hours, within a periodic 24 hours-cycle (i.e.,
n; = 6). Thus, the total number of decision variables is equal to 24. A
simulation duration of 72 hours was implemented with a timestep of 15
minutes. Chlorine concentrations during the last 24 hours were
considered in the calculation of constraint violations to ensure that
cyclical conditions have been established (Ohar and Ostfeld, 2014).
Junctions that receive no chlorine due to being present on pipes with no
flow were excluded from the analysis to avoid biasing the optimization
results (20 junctions). The empirical booster chlorination cost parame-
ters were taken from (Ohar and Ostfeld, 2014): A=($2/kg), a =2.21, 5 =
0.13,and y = 0.

To compute the constraint violation penalty term in the objective
function (PEN) for a given booster system design, the concentrations of
all species throughout the WDN must be simulated. In this study, this is
achieved by conducting an EPANET-MSX simulation every time the
objective function is evaluated. The main inputs to the WQ simulations
are (1) the layout of the WDN, that is, the locations, connectivity, and
sizing of each of the network components (i.e., pipes, nodes, pumps,
tanks, boosters, etc.), (2) water demand information, and (3) chlorine
injection rates at boosters (Cly;), which are the decision variables in the
optimization problem. The outputs of the WQ simulations are the spe-
cies’ concentrations at the network junctions at each timestep (C).

For the case study WDN, a multiple-species WQ model that accounts
for the simultaneous decay of chlorine as well as the formation of tri-
halomethanes (THMs) is adopted (Ohar and Ostfeld, 2014):
aa% = —kCyCy; 0{% = —YpkC,Cy: aa% = YpkC4Cj a4
where, C4, Cg, and Cp are the concentrations of the chlorine disinfectant
(A), a fictitious reactant (B), and THMs (P), respectively [mg/L]; k is the
reaction rate constant [L(mg.hr)’l] ; Y and Yp are the ratios between
the stoichiometric coefficients of the fictitious reactant (B) and THMs (P)
to that of chlorine (A) in [mg/mg]. While the present study considers the

500

Water Research 242 (2023) 120117

continuous formation of THMs throughout the WDN, more recent work
on THM formation showed that the rate of THM formation can be more
simply expressed as proportional to chlorine consumed by the reaction
after a certain initialization period (Sathasivan et al., 2020). Values of
the reaction model parameters were taken consistent with those re-
ported by Abokifa et al., (2016a) as follows: k = 0.1164 L(mg.hr)’l,
Yp = 1, and Yp = 0.05. The minimum and maximum bounds on the
chlorine concentration throughout the WDN were set to 0.2 mg/L and
4 mg/L, respectively, and the maximum bound on THMs was set to 0.08
mg/L. By default, the constraint violation penalty cost coefficients for all
species were set to the same value (6minci = Smax,ct = Omax,7HMs = 0.1).

3.2. Evaluation of Bayesian Optimization Methods

3.2.1. BO methods comparison

First, a systematic testing of different BO methods (i.e., different
combinations of acquisition functions and covariance kernels) was
performed. For each BO method, ten different optimization runs were
conducted, where each optimization run started from a different seed of
randomly generated initial points. Fig. 2 shows box-and-whisker plots
representing the ranges of the final values of the objective function
achieved by each of the tested BO methods. The figure shows significant
variability in the performance of different BO methods, where the best-
performing method (UCB acquisition function with MAT kernel) pro-
duced a median objective function value that is less than half of that
produced by the worst-performing BO method (ES acquisition with SE
kernel). This variability shows the importance of the systematic testing
conducted herein to ensure that the best BO method is identified for WQ
optimization. The results also imply that similar systematic analyses
must be conducted before applying BO to other WDN optimization ap-
plications. It is also worth noting that the variability between the per-
formance of different acquisition functions was generally found to be
greater than that between different covariance kernels, which is further
discussed in the following sections.

3.2.2. Choice of acquisition function and covariance kernel

Overall, the performance of BO was found to be more sensitive to the
choice of the acquisition function than that of the covariance kernel.
This can be seen in Fig. 3, which depicts the mean and standard devi-
ation of the best objective values obtained by each of the four (a)
acquisition functions and (b) covariance kernels, respectively, over the
ten optimization runs. As can be seen from the figure, significant

Best Obj ($/day)
w
o
o

il

:
PFTT I

EI_SE -
El_GE -
EI_RQ -

ES_MAT
ES_SE -
ES_GE 1

El_MAT -

ES_RQ

PI_GE -
PI_RQ -
UCB_GE 1
UCB_RQ 1

PI_MAT -

PI_SE -
CB_MAT -
UCB_SE -

u

Fig. 2. Ranges of best objective function values achieved by each of the tested BO methods.
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(b)
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450 1
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50 1
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Best Obj ($/day)
N w w
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150 1

MAT  SE GE RQ

Fig. 3. Mean and standard deviation of the best objective function values achieved by each of the tested (a) acquisition functions and (b) covariance kernels.

variability between the performance of different acquisition functions is
observed. On average, UCB acquisition was found to produce the best
performance among all four tested acquisition functions. This is fol-
lowed by both EI and PI, who appeared to produce similar performances.
Finally, ES showed the worst performance among all four acquisition
functions, with an average final objective function value that’s more
than 1.7X that obtained by UCB. On the other hand, no significant
variability was observed between the average performance of different
covariance kernels, with the MAT and SE kernels showing the best and
worst average performances, respectively. These results imply that the
choice of the acquisition function is more influential than that of the
covariance kernel, which can be attributed to the fact that the acquisi-
tion function dictates the pathway of the optimization process by con-
trolling the successive selection of the solution candidates to sample.

3.2.3. Convergence profile and number of iterations

Fig. 4 shows the average convergence profiles of different (a)
acquisition functions, and (b) covariance kernels over the ten optimi-
zation runs. The figures show that the convergence speed of BO is mainly
controlled by the choice of the acquisition function rather than the
covariance kernel, further affirming the dominant role of the acquisition
function in controlling the optimization process. For instance, UCB
acquisition typically reached the best solution in less than 250 iterations
(Fig. 4-a). On the other hand, minimal differences were observed be-
tween the convergence profiles of different covariance kernels (Fig. 4-b).
It’s also worth noting that little to no enhancement was generally

500
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450 +
400 +
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— Pl
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100 . , . . .
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observed in the value of the objective function after 500 iterations for all
of the tested BO methods. Additionally, stopping the optimization when
no enhancement is achieved for 100 consecutive iterations could help
avoid unnecessary computational costs.

3.2.4. Best solution and constraint violations

Further investigation of the best solutions achieved by the best-
performing BO method (UCB-MAT) revealed that BO was indeed able
to obtain high-quality solutions that minimize the cost of chlorine in-
jection in the WDN while maintaining the concentrations of chlorine and
THMs within the specified constraints throughout the distribution sys-
tem. The latter can be seen in Fig. 5, which shows the distribution of the
hourly chlorine and THMs concentrations at all nodes in the WDN for the
best solution in the randomly generated initial population (Fig. 5-a, b),
and for the final solution obtained by the best performing BO method
(Fig. 5-c, d) for one of the ten optimization runs. As can be seen from the
figure, the frequency of constraint violations was significantly reduced
after applying BO. The percentage of hourly concentrations (C;;) in
violation of the maximum chlorine and THM constraints dropped from
6.9% and 39.6% before BO (Fig. 5-a) to 0.4% and 26.8% after applying
BO (Fig. 5-c). The decrease in maximum constraint violations can be
attributed to the 30% decrease in the total injected chlorine dose ach-
ieved by BO. Surprisingly, despite this decrease in the total applied
chlorine dose, the percentage of hourly concentrations in violation of the
minimum chlorine constraint remained the same (13.6%) after applying
BO. This reflects BO’s ability to find the best distribution for chlorine
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Fig. 5. Distribution of the hourly concentrations of chlorine and THMs at all junctions in the distribution system for (a), (b) the best solution out within the randomly
generated initial population, and (c), (d) the final solution obtained by the best performing BO method (UCB-MAT).

injection that minimizes DBP formation while maintaining chlorine re-
siduals in the system. In addition to the notable decrease in constraint
violation frequency, the extent of constraint violations, that is, the dif-
ferences between the hourly concentrations (C;js) and the min/max
concentration thresholds (C™", C™"*), diminished after applying BO.
This is evident by the decrease in the value of the penalty function (Eq.
3) from 329.3 $/day before applying BO to 107.4 $/day after applying
BO. Taken together, the results showed that BO was able to reduce the
total objective function by more than 50% from 434 $/day to 200 $/day,
while reducing both the cost of chlorine injection and constraint viola-
tions for chlorine and THMs throughout the network.

In many cases, the importance of maintaining a minimum chlorine
residual throughout the WDN, and/or minimizing the formation of
DBPs, is greater than that of preventing occasional exceedance of the
maximum chlorine concentration threshold. To simulate these sce-
narios, the BO optimization was repeated twice. In the first scenario, the
constraint violation penalty cost coefficient for the minimum chlorine
constraint was set to five times that of the maximum chlorine constraint
(Sminct = 0.5 and Spaxq = 0.1). As expected, the best solution obtained
using these settings resulted in decreasing the percentage of hourly

concentrations violating the minimum chlorine constraint from 13.6%
to 3.9%. Nevertheless, the cost of chlorine injection (BCI) increased by
45% as a result of adopting a more stringent penalty cost for violating
the minimum concentration constraint. Furthermore, the frequency of
maximum THMs violations increased from 26.8% to 48.9%. This can be
attributed to the increase in the total chlorine dose injected in the sys-
tem, which is needed to maintain a minimum residual throughout the
WDN at all times.

In the second scenario, the maximum THMs constraint penalty cost
coefficient was set to (Smaxums = 0.3), while those for chlorine con-
straints were kept unchanged (Sminc = Omaxc = 0.1). This scenario
resulted in decreasing the frequency of maximum THMs violations from
26.8% to 11.6%. However, adopting a more stringent penalty cost for
violating the maximum THMs constraint also resulted in significantly
increasing the total penalty for violating the minimum chlorine
constraint from 13.6% to 24.1%, which can be attributed to the decrease
in the total chlorine dose injected in the system (BCI decreased by 15%).
Taken together, these results highlight the important trade-off between
maintaining a sufficient residual while limiting the formation of DBPs
within the WDN.
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3.3. Influence of Bayesian Optimization parameters

3.3.1. Covariance kernel length scale

The performance of BO was found to be greatly influenced by the
choice of the length-scale parameter of the covariance kernel function
(D. This parameter dictates the strength of the relationship between the
predicted values by the surrogate GPR model at different points along
the function domain. Fig. 6 depicts the cross-validation root mean
squared error (CV-RMSE) between the true value of the objective
function and the mean value predicted by the surrogate GP model (y-
axis) for different values of the length scale parameter (x-axis) using
different covariance kernels, namely (a) Matérn (MAT), (b) squared
exponential (SE), (c) gamma exponential (GE), and (d) rational
quadratic (RQ). The shaded area represents the range of CV-RMSE
values for ten different randomly generated sets of 250 solutions. For
each set, the GPR model was trained using different values of [ in the
range of [1, 1 x 10'°], and the five-fold cross validation RMSE was
computed for each value. As can be observed from Fig. 6, the accuracy of
the GPR model in predicting the values of the objective function appears
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to be greatly dependent on the choice of the length-scale parameter of
the covariance kernel. This can be seen from the orders-of-magnitude
variability in the CV-RMSE values at different length scales for
different kernel functions. More importantly, optimal values of the
length-scale parameter for the different covariance kernels spanned a
wide range [1 x 10, 1 x 10°]. Taken together, these results highlight
the importance of carefully tuning the length scale parameter to ensure
that the best GPR model performance is achieved for each covariance
kernel.

3.3.2. Number of initial points

Another important parameter that was found to significantly influ-
ence the performance of BO was the number of initial points used to fit
the GPR surrogate model before starting the iterations. Typically, the
larger and more diverse the initial population is, the better the perfor-
mance of the GPR model in predicting the mean and standard deviation
of the objective function will be. However, the computational cost of
fitting the GPR model increases as the number of initial points increases.
Fig. 7 shows the CV-RMSE scores of fitting the GPR model using a
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Fig. 6. Cross-validation RMSE of the GPR model vs. the length-scale of each of the tested covariance kernels: a) Matérn, (b) squared-exponential, (¢) gamma-

exponential, and (d) rational-quadratic.
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different number of initial points for different covariance kernels. The
shaded area represents the range of CV-RMSE values for ten different
randomly generated sets of 250 solutions. The figure shows that the
performance of the GPR model improves as the number of initial points
increases. Nevertheless, the additional enhancement in the GPR model’s
performance decreases as the number of initial points increases, with
most of the improvement realized in the first 100 initial points. Overall,
little enhancement is observed beyond 100 initial points for all of the
tested kernels with the exception of GE. Thus, an initial population size
of 100 points was found to achieve a sufficient trade-off between GPR
model accuracy and computational cost. It is also worth noting that the
GPR model showed remarkable accuracy in learning the highly non-
linear objective function. This can be seen from Figure S-2, where the
five-fold cross-validation r? scores were greater than 0.9 for all four

covariance kernels when only 150 points were used to train the GPR
model.

3.3.3. Exploration vs exploitation level
Another key advantage of BO is that the choice of the acquisition

function enables the tuning of the trade-off between exploration and
exploitation to achieve the best performance. To further investigate this
property, we examined the performance of the UCB acquisition function,
which showed the best performance among all tested acquisition func-
tions, at different exploration/exploitation levels. In UCB, this level can
be directly adjusted via the (8) parameter. Increasing the value of j fa-
vors the uncertainty component of the acquisition function (i.e., explo-
ration) over the mean value of the function (i.e., exploitation). A range
of different  values [0.5-2.5] was sampled, and the results showed that
the final value of the objective function achieved by different choices of
the beta parameter after 500 iterations is consistent. Yet, the conver-
gence speed seemed to increase with increasing the value of . This can
be seen from Figure S-3, which shows the convergence of UCB during the
first 200 iterations using different § values. The results indicate that
increasing the exploration level over that of the exploitation generally
improves the convergence speed of BO.
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3.4. Computational Cost

To understand the computational cost of conducting BO, the time
taken by the different BO processes under different scenarios, including
the number of decision variables and the size of the WDN, was analyzed.
All simulations were executed on a desktop computer with Intel(R) Xeon
(R) W-2133 CPU @ 3.60GHz processor and 32 GB RAM.

3.4.1. BO initialization

First, running one water quality simulation of the C-TOWN network
using EPANET-MSX takes approximately 4.3 seconds, which constitutes
the cost of evaluating the objective function. Therefore, the computa-
tional cost of conducting the initial 100 simulations was 7.2 minutes.
The cost of fitting the Gaussian process model to the 100 initial points
was approximately 0.1 seconds.

3.4.2. Acquisition function optimization

After the initialization stage, three processes take place with each
new iteration: (1) the optimization of the acquisition function to select
the new point to sample, (2) evaluating the objective function at the new
point, and (3) updating the Gaussian process model. Out of the three
processes, we found that the optimization of the acquisition functions
takes up the most time. This cost was found to vary from one acquisition
function to another. On average, optimization of the UCB function takes
approximately 13.2 seconds during each iteration, which is higher than
what the other three acquisition functions require (approximately 8.7
seconds on average). However, considering how fast UCB converges to
the optimal solution compared to the other acquisition functions
(Fig. 4), the overall time needed by UCB to achieve convergence remains
comparable to the other acquisition functions. More importantly, the
optimization of the acquisition function can be parallelized over mul-
tiple threads. In this study, a 6-8 fold reduction in the computational cost
of each iteration was achieved when all 12 threads of the computer were
used to optimize the acquisition function using the multi-start L-BFGS-B
optimization routine compared to using only one core. Further en-
hancements in the computational cost of BO can be achieved by utilizing
high-performance computing (HPC) resources.

3.4.3. Updating the surrogate model

The cost of updating the GPR surrogate model was found to increase
as the optimization process progressed. This can be attributed to the
continuous increase in the number of points to which the GPR model is
being fitted. In this study, the cost of fitting the GPR model increased
from ~0.1 seconds during the first iteration (101 points) to ~0.6 sec-
onds after 500 iterations (600 points). Although this increase remains
insignificant compared to the cost of optimizing the acquisition func-
tion, this may not be the case for systems that require a large number of
iterations to converge. This can be seen from Figure S-4, which shows
the computational cost of fitting the GPR model (y-axis) to a different
number of points (x-axis), compared to that of a random forest (RF)
regression model. While the RF model displays linear scaling in the
computational cost, the cost of fitting the GPR model increases expo-
nentially with the number of points. The latter can be attributed to the
cost of inverting the covariance matrix via LU decomposition during
each iteration, which scales with the cube of the number of points (ns).
Thus, for optimization applications requiring a significant number of
iterations (i.e., more than 5000), other surrogate models (e.g., RF) may
provide significant computational cost reductions over the GPR model.

3.4.4. Number of decision variables

To understand how the computational cost of BO scales with the
number of decision variables, another optimization scenario was con-
ducted on the case study network. In this scenario, only one chlorine
source was placed at the reservoir (R1) instead of four boosters, thus
reducing the number of decision variables to six instead of 24. Expect-
edly, the cost of conducting the EPANET-MSX simulation for the one-
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source scenario was similar to that of the four-source scenario (i.e., ~
4.3 second). Yet, the one-source scenario was found to require a smaller
number of initial points to achieve a satisfactory performance by the
GPR model, where only 50 initial points were needed to achieve an
average cross-validation r?>0.95. Thus, the cost of BO initialization for
the one-source scenario would be half that for the four-source scenario.
Furthermore, the average cost of optimizing the UCB acquisition func-
tion was found to drop 3-folds from 13.2 seconds for the four-source
scenario to 4.6 seconds for the one-source scenario.

Taken together, the results of this study indicate that (i) for small
WDNS, the overall computational cost of BO is limited by the number of
decision variables in the optimization problem, since the cost of evalu-
ating the objective function is minimal compared to that of optimizing
the acquisition function. On the other hand, for large WDNs, the cost of
evaluating the objective function would be significant compared to that
of optimizing the acquisition function. For instance, running an
EPANET-MSX simulation of the fairly large BWSN-2 network (Ostfeld
et al., 2008), containing 12,523 nodes and 14,822 pipes, was found to
take approximately 82 seconds, which is greater than the cost of opti-
mizing the acquisition function.

3.5. Future research needs

Although BO showed satisfactory performance in the optimization of
booster chlorination scheduling, several research questions still require
further investigation.

3.5.1. Comparison against evolutionary algorithms

The results of this study indicate that, unlike evolutionary optimi-
zation algorithms, BO is capable of converging to high-quality solutions
within a small number of iterations. For instance, in a previous study
(Abokifa et al., 2019), it was found that a population size of 100 and a
maximum number of stall generations of 150 are necessary for opti-
mizing booster chlorination in the C-TOWN WDN. Thus, GA would
require at least 15,000 evaluations of the objective function. Never-
theless, it is worth noting that evolutionary algorithms can benefit from
parallel processing to distribute the computational cost of evaluating the
objective function over several threads, while for BO, the objective
function is sampled sequentially during each iteration. However, BO still
benefits from parallelizing the optimization process of the acquisition
function, which was found to significantly reduce the computational
cost of BO in the present study, which makes BO a very efficient opti-
mization method overall. Taken together, the results of this study
highlight the need for conducting further research into how the per-
formance of BO compares to evolutionary optimization algorithms (e.g.,
GA or PSO).

3.5.2. Water quality simulation model

In this study, the multiple-species model EPANET-MSX was adopted
for conducting the water quality simulations needed for the evaluation
of the objective function. The presented framework allows for setting
constraints on the concentrations of any number of species in the WDN.
Since chlorine is a highly reactive oxidant, it undergoes side reactions
with various species. Therefore, chlorine concentrations in the system
can influence the concentrations of different species of interest from a
water quality perspective, including DBPs, microbiological species (e.g.,
bacteria/biofilms), and lead concentrations. Future studies can leverage
the presented framework to study the optimization of chlorine dosage
that maintains the concentrations of such species within regulatory
standards. For instance, Maheshwari et al., (2020) proposed an
approach for the optimization of disinfectant dosage for simultaneous
control of lead and disinfection-byproducts. Furthermore, previous
studies highlighted the importance of considering dispersive solute
transport in water quality simulations used for booster optimization
(Abokifa et al., 2019), especially in the dead-end branches that experi-
ence frequent stagnations and excessive residence times (Abokifa et al.,
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2016b). Other studies indicated that 2-D models can provide a more
accurate representation of the radial transport of chlorine in WDN pipes
than 1-D models (Ozdemir and Metin Ger, 1999).

4. Conclusions

This study presents the first attempt to apply Bayesian Optimization
(BO) to the optimization of water quality in drinking water distribution
networks (WDNs). A systematic analysis of the performance of different
BO methods in the optimization of booster chlorination scheduling was
conducted. To that end, various combinations of gaussian process
regression (GPR) covariance kernels and BO acquisition functions were
systematically tested on a case study featuring a mid-size real-life WDN.
The results revealed that the performance of BO was mainly dependent
on the choice of the acquisition function, whereas little variability was
observed between the performance of different covariance kernels. The
results also highlighted the importance of carefully selecting the length
scale of the covariance kernel and the number of initial evaluations used
to fit the GPR model to ensure the best performance is achieved. Opti-
mization of the acquisition function was found to the be most compu-
tationally demanding component of BO, with the computational cost
increasing with the number of decision variables.
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