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A B S T R A C T   

Chlorine remains the most widely used disinfectant in drinking water treatment and distribution systems 
worldwide. To maintain a minimum residual throughout the distribution network, chlorine dosage needs to be 
regulated by optimizing the locations of chlorine boosters and their scheduling (i.e., chlorine injection rates). 
Such optimization can be computationally expensive since it requires numerous evaluations of water quality 
(WQ) simulation models. In recent years, Bayesian optimization (BO) has garnered considerable attention due to 
its efficiency in optimizing black-box functions in a wide range of applications. This study presents the first 
attempt to implement BO for the optimization of WQ in water distribution networks. The developed python- 
based framework couples BO with EPANET-MSX to optimize the scheduling of chlorine sources, while 
ensuring the delivery of water that satisfies water quality standards. Using Gaussian process regression to build 
the BO surrogate model, a comprehensive analysis was conducted to evaluate the performance of different BO 
methods. To that end, systematic testing of different acquisition functions, including the probability of 
improvement, expected improvement, upper confidence bound, and entropy search, in conjunction with 
different covariance kernels, including Matérn, squared-exponential, gamma-exponential, and rational quadratic, 
was conducted. Additionally, a thorough sensitivity analysis was performed to understand the influence of 
different BO parameters, including the number of initial points, covariance kernel length scale, and the level of 
exploration vs exploitation. The results revealed substantial variability in the performance of different BO 
methods and showed that the choice of the acquisition function has a more profound influence on the perfor
mance of BO than the covariance kernel.   

1. Introduction 

Deterioration of the water quality (WQ) in drinking water distribu
tion networks (WDNs) is a significant challenge facing the supply of 
clean and safe water worldwide (Liu et al., 2017; Makris et al., 2014). 
WQ deterioration occurs through various physical, biological, and 
chemical processes that take place in the bulk flow and/or at the walls of 
the WDN pipes (Abokifa et al., 2016a; Biswas et al., 1993; Lu et al., 
1995). Chlorine-based disinfectants are widely applied during water 
treatment to eliminate microbiological contaminants (Deborde and von 
Gunten, 2008), and a sufficient residual is typically maintained 
throughout the distribution system to prevent microbial 

recontamination (LeChevallier, 1999). However, elevated chlorine 
doses have been associated with the excessive formation of harmful 
disinfection byproducts (DBPs) (Li et al., 2019), as well as taste and odor 
complaints from consumers (Fisher et al., 2011). This is particularly an 
issue for large WDNs, where chlorine concentrations may become 
completely depleted by the time the water reaches the far ends of the 
system. Alternatively, injecting chlorine in smaller doses at multiple 
distributed locations in the WDN (i.e., booster stations) has been shown 
to produce a more even distribution of chlorine concentrations while 
reducing the overall cost and amount of injected disinfectant (Abokifa 
et al., 2019; Boccelli et al., 1998; Maheshwari et al., 2018; Ohar and 
Ostfeld, 2014; Ostfeld and Salomons, 2006; Prasad et al., 2004; Tryby 
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et al., 1999). 
Optimizing the design of booster chlorination systems has been 

attempted by several studies that aimed to optimize the placement (i.e., 
locations) and/or the scheduling (i.e., injection rates) of chlorine dosing 
stations. In these studies, a wide range of optimization methods, 
including both linear and nonlinear optimization techniques were 
implemented (Islam et al., 2013; Mala-Jetmarova et al., 2017). To 
enable the formulation of the booster optimization problem as a linear 
programming problem, many studies relied on first-order decay kinetics 
to describe chlorine decay in the WDN. For instance, Boccelli et al. 
(1998) formulated a linear programming (LP) approach to minimize the 
total chlorine dose by applying the principle of linear superposition to 
disinfectant concentrations resulting from multiple injections over time, 
which was then solved using the simplex algorithm. Tryby et al., (2002) 
expressed the booster optimization problem as a mixed-integer linear 
programming (MILP) model by using both binary location variables and 
continuous injection rates. Propato and Uber (2004) formulated a linear 
least-squares (LLS) problem to determine the optimal injection rates that 
minimize space-time variations in residual concentrations. Lansey et al. 
(2007) developed a two-stage approach for optimizing booster locations 
followed by minimizing the injected chlorine mass using a combination 
of LP and a genetic algorithm (GA) or enumeration. Goyal and Patel 
(2017) applied an LP-based approach in Excel coupled with EPANET to 
optimize booster locations and scheduling. More recent works have 
focused on formulating WQ modeling within a linear state-space rep
resentation in which the relationship between network inputs (booster 
injection) and outputs (chlorine concentration at junctions) is explicitly 
described (Wang et al., 2022, 2021). Such control-oriented modeling 
enabled the implementation of scalable Model Predictive Control (MPC) 
algorithms for WQ control in WDNs (Wang et al., 2021). 

Aside from first-order chlorine decay kinetics, a few studies also 
considered nonlinear reaction kinetics for the booster optimization 
problem. For instance, Munavalli and Kumar (2003) formulated the 
optimal scheduling of chlorine sources as a nonlinear optimization 
problem by implementing non-first-order bulk and wall reactions. The 
model was then solved using GA. Several studies have also formulated 
the WQ control problem as a multi-objective optimization problem. 
Prasad et al. (2004) formulated a multi-objective optimization model to 
minimize the total chlorine dose while maximizing volumetric demand 
that satisfies WQ standards, which was then solved using a 
multi-objective GA (MOGA). Behzadian et al. (2012) applied 
non-dominated sorting genetic algorithm II (NSGA-II) to optimize 
booster locations and scheduling using a two-phase multi-objective 
optimization process to optimize both chlorine residuals and DBP levels. 

In addition to optimizing chlorine injection locations and scheduling, 
hydraulic controls have also been considered as decision variables in 
WQ optimization formulations. Ostfeld and Salomons, (2006) formu
lated a model that couples the design and operation of booster chlori
nation stations with the scheduling of pumping units. The model was 
optimized using GA with the objective of either minimizing the total 
costs of pumping and booster chlorination or maximizing the injected 
chlorine dose. Gibbs et al. (2010) applied GA to optimize both booster 
disinfection dosing together with daily pump scheduling for a real-life 
WDN. They showed that considering the hydraulics as well as the 
dosing regime in the optimization process can help maintain disinfectant 
residuals at the extremities of the network while achieving significant 
energy cost savings. Similarly, Kang and Lansey (2010) implemented GA 
to simultaneously optimize valve operation and booster scheduling, 
while Nono et al. (2018) used NSGA-II to integrate booster chlorination 
scheduling within network operational interventions to reduce the 
water age. 

The majority of previous studies focused on optimizing the design of 
booster chlorination systems using either linear programming or 
evolutionary optimization techniques (e.g., GA). Although linear ap
proaches are faster and simpler (Prasad et al., 2004), their application is 
generally limited to first-order decay reactions. On the other hand, 

evolutionary optimization methods are significantly more computa
tionally expensive since they typically involve conducting numerous 
evaluations of the objective function(s). The latter usually includes 
running a numerical model (e.g., EPANET/EPANET-MSX), in which the 
partial differential equation(s) governing the transport and decay of 
chlorine, and potentially other species, in the distribution system are 
numerically solved (Rossman and Boulos, 1996; Rossman et al., 1994; 
Shang et al., 2008). The high computational cost involved in evaluating 
such numerical models prohibits the real-time implementation of WQ 
control algorithms. 

Bayesian Optimization (BO) has been recently gaining significant 
popularity due to its high efficiency in the derivative-free optimization 
of computationally-expensive objective functions (Frazier, 2018; Gel
bart et al., 2014; Snoek et al., 2012; Shahriari et al., 2015; Wu et al., 
2017). Instead of directly optimizing the objective function, BO builds a 
probabilistic model of the objective function (known as the surrogate 
model) that is sequentially updated by sampling the underlying nu
merical model. The sequential sampling process aims to balance 
exploration and exploitation, which is done by using an explicit acqui
sition function that guides the search toward the most promising solu
tions with potentially optimal values of the objective function and/or 
high uncertainty. 

This study presents the first attempt at implementing BO for the 
optimization of water quality in drinking water distribution systems. 
The key contributions of this work are (i) developing a simulation- 
optimization framework that couples EPANET-MSX with a Bayesian 
Optimization algorithm, (ii) applying BO to optimize the scheduling of 
disinfectant booster stations within a case study featuring a real-life, 
mid-size WDN, (iii) conducting a systematic analysis of the perfor
mance of different BO methods (i.e., different covariance kernels and 
acquisition functions), as well as the role of different BO parameters to 
understand the capabilities and limitations of applying BO for water 
quality optimization under different scenarios. 

The rest of this paper is organized as follows: Section 2 provides a 
description of the methods implemented in this in this study, including 
the formulation of the booster optimization model and the underlying 
theory of BO. Section 3 describes the case study WDN, showcases the 
results of the systematic analyses of different BO methods and param
eters, and discusses some of the key limitations of BO. Section 4 offers a 
set of concluding remarks and highlights the key takeaways of the pre
sent study. 

2. Methodology 

2.1. Optimization framework 

Fig. 1 depicts an overview of the general framework developed in 
this study for implementing BO to optimize WQ in WDNs. The Python- 
based framework couples BO, as implemented within the pyGPGO 
package (Jimenez, 2020), with the functions library toolkit of 
EPANET-MSX. The framework is used to conduct a thorough sensitivity 
analysis of BO methods and parameters. Below, details on each of the 
key components of the framework and how they are linked to one 
another are provided. 

2.2. Optimization Model Formulation 

The objective of the booster scheduling optimization is to minimize 
the cost of chlorine injection while satisfying various water quality 
standards at all demand nodes. In this study, the total cost of chlorine 
injection is calculated as the summation of both the capital cost of the 
booster system design (BCD) and the operational cost of booster chlorine 
injection (BCI), which can be described by (Abokifa et al., 2019; Ohar 
and Ostfeld, 2014; Ostfeld and Salomons, 2006): 
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BCI = λ
∑nb

b=1

∑ni

i=1
Clb,i × Δti (1)  

BCD = DRV(AI, BLD)

[
∑nb

b=1
α

(
Clmax

b

)β
+ γVb

]

(2)  

where Clb,i is the chlorine mass injection rate of booster “b” during in
jection event “i” (kg/min); nb is the number of chlorine boosters in the 
WDN; ni is the number of injection events in one day (events /day); Δti is 
the length of the injection event “i” in minutes (min/event); λ is the 
chlorine injection cost per unit mass of chlorine ($/kg); DRV is the daily 
return value coefficient (day−1) as a function of the annual interest AI 
(%) and booster design lifetime BLD (years); Clmax

b is the maximum in
jection rate booster station b can produce (mg/min); Vb is the total 
injected mass of chlorine by booster station b (mg); and α [$(mg/min)-β], 
β [-], and γ [$/mg] are empirical booster chlorination capital cost 
coefficients. 

In order to ensure the satisfaction of water quality standards, the 
concentrations of various species, such as chlorine and DBPs, 
throughout the WDN must be constrained within a range specified by 
minimum and maximum thresholds. To incorporate these constraints 
into the objective function formulation, a penalty function (PEN) is 
constructed to account for violations of the upper and lower concen
tration bounds of the species in the EPANET-MSX simulation: 

PEN =
∑ns

s=1

×
∑nj

j=1

(

δmin,s ×
∑nt

t=1
max

(

1 −
Ct,j,s

Cmin
s

, 0
)

+ δmax,s ×
∑nt

t=1
max

(
Ct,j,s

Cmax
s

− 1, 0
))

(3)  

where, δmin,s and δmax,s are the penalty cost coefficients for violating the 
minimum and maximum constraints of species “s”, respectively; ns is the 

number of species simulated by EPANET-MSX; Cmax
s and Cmin

s are the 
minimum and maximum constraints imposed on the concentration of 
species “s” throughout the WDN; and Ct,j,s is the concentration of species 
“s” at junction “j” during time-step “t” (mg/L). The latter is obtained 
through running a WQ simulation in EPANET-MSX for a given booster 
design. 

Finally, the objective function to be minimized is the summation of 
the aforementioned cost and penalty terms: 

OBJ = BCI + BCD + PEN (4) 

The decision variables of the optimization model are the chlorine 
injection rates at each booster station during each injection event (Clb,i). 
Thus, the number of decision variables is equal to the number of injec
tion events times the number of chlorine boosters (ni × nb). 

2.3. Bayesian Optimization 

Bayesian optimization consists of two main components, (i) the 
surrogate function, which is a probabilistic surrogate model that is 
trained to predict the mean and variance of the objective function at any 
point within the solution space, and (ii) the acquisition function, which 
is a mathematical technique that uses the predicted mean and variance 
generated by the surrogate model to guide the selection of the next point 
to sample within the solution space. 

2.3.1. Surrogate Function 
In this study, Gaussian process regression (GPR) is implemented to 

build a probabilistic surrogate model for the booster optimization 
objective function. GPR builds a surrogate model f(x) of the objective 
function by fitting a Gaussian distribution over the mean (μ) and 
covariance (k) of the evaluated values of the objective function at 
various points (x) (Seeger, 2004). The resulting probabilistic model can 
be described as (Candelieri et al., 2018): 

Fig. 1. Schematic of the booster scheduling optimization framework.  
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f (x) ∼ GP(μ(x); k(x, x′)) (5) 

The mean and covariance of this distribution are updated throughout 
the optimization process based on the new evaluations of the objective 
function to produce the posterior by means of Bayes’ rule. 

2.3.2. Covariance Kernel 
GPR implements a covariance kernel function k(x, x′) to capture the 

correlation between the predicted values of (f) based on the proximity of 
the values of the predictor (x). In this study, four of the more commonly 
used covariance kernels for GPR were systematically tested (Archetti 
and Candelieri, 2019; Scikit-learn, 2023). 

Squared-Exponential (SE). The squared-exponential kernel, also known 
as radial basis function (RBF), can be described by: 

k
(
xi, xj

)
= exp

(

−
d

(
xi, xj

)2

2l2

)

(6)  

where d(xi, xj) is the Euclidean distance, and l is the length scale of the 
kernel. 

Gamma-Exponential (GE). The gamma-exponential kernel is a slightly 
modified version of the squared-exponential kernel: 

k
(
xi, xj

)
= exp

(

−
d

(
xi, xj

)2γ

2l2

)

(7)  

where γ is an adjustable hyperparameter that controls the smoothness of 
the function. 

Matérn (MAT). The Matérn kernel is a generalization of the RBF kernel, 
and can be described by: 

k
(
xi, xj

)
=

21−v

Γ(v)

( ̅̅̅̅̅
2v

√

l
d

(
xi, xj

)
)v

Kv

( ̅̅̅̅̅
2v

√

l
d

(
xi, xj

)
)

(8)  

where Γ(⋅) is the gamma function, Kv(⋅) is a modified Bessel function, 
and v is an adjustable hyperparameter that controls the smoothness of 
the function. The smaller the value of v, the less smooth the approxi
mated function is. As v increases, the kernel approaches the RBF kernel. 

Rational Quadratic (RQ). The rational-quadratic kernel can be seen as a 
scale mixture (an infinite sum) of RBF kernels with different charac
teristic length scales: 

k
(
xi, xj

)
=

(

1 +
d

(
xi, xj

)2

2αl2

)−α

(9)  

where α is the scale mixture parameter. 

Kernel length scale. In this study, the length scale (l) in each of the tested 
covariance kernels was selected by minimizing the cross-validation error 
of fitting the GPR model to the objective function. To that end, 10 sets of 
250 randomly generated evaluations of the objective function were 
generated, and the data was used to train the GPR model. To select the 
best value for the length scale parameter for each kernel function, an 
optimization problem with the objective of minimizing the cross- 
validation mean squared error (CV-RMSE) was formulated. The latter 
was then solved via a univariate bounded optimization routine using the 
minimize_scalar function in the scipy library. 

2.3.3. Acquisition function 
The acquisition function offers a simple and computationally effi

cient approach for finding the best points to sample in order to maximize 
the value of the surrogate function. The acquisition function guides the 

sampling of the surrogate function by balancing the trade-off between 
exploitation and exploration. Exploration seeks to sample from the areas 
in the solution domain that have not been sampled in previous iterations 
(i.e., areas in the domain with higher uncertainty). Exploitation seeks to 
sample from the areas in the solution domain in which the optimum 
value of the surrogate function is expected to be located based on pre
vious iterations. The acquisition function allows the explicit control of 
both exploitation and exploration to guide the optimization process to 
find the optimal solution in the least number of iterations (Candelieri 
et al., 2018). In order to select the next point to sample during each 
iteration, an efficient optimization algorithm, namely the 
Limited-Memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS-B) algo
rithm, was used to locate the optimal value for the acquisition function. 

In this study, four of the more frequently used acquisition functions 
in BO literature (Archetti and Candelieri, 2019), namely probability of 
improvement (PI), expected improvement (EI), upper confidence bound 
(UCB), and entropy search (ES), are tested for the optimization of 
booster chlorination in WDNs. 

Probability of improvement (PI). The PI acquisition function evaluates 
the likelihood of improvement of the surrogate function f(x) by means of 
a normal distribution: 

PI(x) = P(f (x) ≥ f (x+)) = Φ(Z) (10)  

where f(x+) is the best previously observed objective function value, 
and Z is the standardized value of f(x+): 

Z =
μ(x) − f (x+)

σ(x)
(11)  

where μ(x) and σ(x) are the mean and standard deviation of f(x) at 
candidate point x, and Φ(⋅) is the cumulative distribution function of the 
standard normal distribution. 

Expected improvement (EI). The EI acquisition function evaluates the 
expected improvement of the surrogate function f(x) as follows: 

EI(x) = σ(x)(Z Φ(Z) + φ(Z)) (12)  

where φ(⋅) is the probability density function of the standard normal 
distribution. 

Upper confidence bound (UCB). UCB uses the confidence bound concept 
to balance the exploitation and exploration trade-off by considering a 
hyperparameter (β): 

UCB(x) = μ(x) + βσ(x) (13) 

Using a higher value for β results in favoring the predicted variance 
over the mean, which results in favoring exploration over exploitation. 

Entropy Search (ES). The ES acquisition function uses differential en
tropy to reduce the uncertainty in finding the optimal value of the 
acquisition function by maximizing the information obtained using new 
data (Wang and Jegelka, 2017). In other words, ES aims to find the data 
point(s) that would cause the largest possible differential entropy. 
Equations describing the ES approach can be found elsewhere (Hennig 
and Schuler, 2012; Wang and Jegelka, 2017). 

3. Results and Discussion 

3.1. Case study 

The C-Town benchmark WDN (Figure S-1) is implemented herein to 
demonstrate the BO framework. The network comprises one reservoir 
(source), seven tanks, 388 nodes, 432 pipes, 11 pumps grouped into five 
pumping stations, and one valve (Creaco et al., 2016; Sousa et al., 2016). 
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The C-Town WDN has been used in previous literature as a case study for 
optimizing chlorine booster scheduling and location (Abokifa et al., 
2019) as well as other WDN optimization applications (Ostfeld et al., 
2012). Chlorine is assumed to be injected at four optimized locations (i. 
e., nb = 4), namely the reservoir (R1), and junctions J201, J385, and 
J420 (Figure S-1). The optimized locations of the chlorine boosters were 
obtained from (Abokifa et al., 2019), and the proposed BO framework is 
used herein to optimize the scheduling of the four chlorine boosters. 
Each of the four booster stations is assumed to have six different injec
tion events, each lasting 4 hours, within a periodic 24 hours-cycle (i.e., 
ni = 6). Thus, the total number of decision variables is equal to 24. A 
simulation duration of 72 hours was implemented with a timestep of 15 
minutes. Chlorine concentrations during the last 24 hours were 
considered in the calculation of constraint violations to ensure that 
cyclical conditions have been established (Ohar and Ostfeld, 2014). 
Junctions that receive no chlorine due to being present on pipes with no 
flow were excluded from the analysis to avoid biasing the optimization 
results (20 junctions). The empirical booster chlorination cost parame
ters were taken from (Ohar and Ostfeld, 2014): λ=($2/kg), α = 2.21, β =

0.13, and γ = 0. 
To compute the constraint violation penalty term in the objective 

function (PEN) for a given booster system design, the concentrations of 
all species throughout the WDN must be simulated. In this study, this is 
achieved by conducting an EPANET-MSX simulation every time the 
objective function is evaluated. The main inputs to the WQ simulations 
are (1) the layout of the WDN, that is, the locations, connectivity, and 
sizing of each of the network components (i.e., pipes, nodes, pumps, 
tanks, boosters, etc.), (2) water demand information, and (3) chlorine 
injection rates at boosters (Clb,i), which are the decision variables in the 
optimization problem. The outputs of the WQ simulations are the spe
cies’ concentrations at the network junctions at each timestep (Ct,j,s). 

For the case study WDN, a multiple-species WQ model that accounts 
for the simultaneous decay of chlorine as well as the formation of tri
halomethanes (THMs) is adopted (Ohar and Ostfeld, 2014): 

∂CA

∂t
= −kCACB;

∂CB

∂t
= −YBkCACB;

∂CP

∂t
= YPkCACB (14)  

where, CA, CB, and CP are the concentrations of the chlorine disinfectant 
(A), a fictitious reactant (B), and THMs (P), respectively [mg/L]; k is the 
reaction rate constant [L(mg.hr)−1]; YB and YP are the ratios between 
the stoichiometric coefficients of the fictitious reactant (B) and THMs (P) 
to that of chlorine (A) in [mg/mg]. While the present study considers the 

continuous formation of THMs throughout the WDN, more recent work 
on THM formation showed that the rate of THM formation can be more 
simply expressed as proportional to chlorine consumed by the reaction 
after a certain initialization period (Sathasivan et al., 2020). Values of 
the reaction model parameters were taken consistent with those re
ported by Abokifa et al., (2016a) as follows: k = 0.1164 L(mg.hr)−1, 
YB = 1, and YP = 0.05. The minimum and maximum bounds on the 
chlorine concentration throughout the WDN were set to 0.2 mg/L and 
4 mg/L, respectively, and the maximum bound on THMs was set to 0.08 
mg/L. By default, the constraint violation penalty cost coefficients for all 
species were set to the same value (δmin,Cl = δmax,Cl = δmax,THMs = 0.1). 

3.2. Evaluation of Bayesian Optimization Methods 

3.2.1. BO methods comparison 
First, a systematic testing of different BO methods (i.e., different 

combinations of acquisition functions and covariance kernels) was 
performed. For each BO method, ten different optimization runs were 
conducted, where each optimization run started from a different seed of 
randomly generated initial points. Fig. 2 shows box-and-whisker plots 
representing the ranges of the final values of the objective function 
achieved by each of the tested BO methods. The figure shows significant 
variability in the performance of different BO methods, where the best- 
performing method (UCB acquisition function with MAT kernel) pro
duced a median objective function value that is less than half of that 
produced by the worst-performing BO method (ES acquisition with SE 
kernel). This variability shows the importance of the systematic testing 
conducted herein to ensure that the best BO method is identified for WQ 
optimization. The results also imply that similar systematic analyses 
must be conducted before applying BO to other WDN optimization ap
plications. It is also worth noting that the variability between the per
formance of different acquisition functions was generally found to be 
greater than that between different covariance kernels, which is further 
discussed in the following sections. 

3.2.2. Choice of acquisition function and covariance kernel 
Overall, the performance of BO was found to be more sensitive to the 

choice of the acquisition function than that of the covariance kernel. 
This can be seen in Fig. 3, which depicts the mean and standard devi
ation of the best objective values obtained by each of the four (a) 
acquisition functions and (b) covariance kernels, respectively, over the 
ten optimization runs. As can be seen from the figure, significant 

Fig. 2. Ranges of best objective function values achieved by each of the tested BO methods.  
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variability between the performance of different acquisition functions is 
observed. On average, UCB acquisition was found to produce the best 
performance among all four tested acquisition functions. This is fol
lowed by both EI and PI, who appeared to produce similar performances. 
Finally, ES showed the worst performance among all four acquisition 
functions, with an average final objective function value that’s more 
than 1.7X that obtained by UCB. On the other hand, no significant 
variability was observed between the average performance of different 
covariance kernels, with the MAT and SE kernels showing the best and 
worst average performances, respectively. These results imply that the 
choice of the acquisition function is more influential than that of the 
covariance kernel, which can be attributed to the fact that the acquisi
tion function dictates the pathway of the optimization process by con
trolling the successive selection of the solution candidates to sample. 

3.2.3. Convergence profile and number of iterations 
Fig. 4 shows the average convergence profiles of different (a) 

acquisition functions, and (b) covariance kernels over the ten optimi
zation runs. The figures show that the convergence speed of BO is mainly 
controlled by the choice of the acquisition function rather than the 
covariance kernel, further affirming the dominant role of the acquisition 
function in controlling the optimization process. For instance, UCB 
acquisition typically reached the best solution in less than 250 iterations 
(Fig. 4-a). On the other hand, minimal differences were observed be
tween the convergence profiles of different covariance kernels (Fig. 4-b). 
It’s also worth noting that little to no enhancement was generally 

observed in the value of the objective function after 500 iterations for all 
of the tested BO methods. Additionally, stopping the optimization when 
no enhancement is achieved for 100 consecutive iterations could help 
avoid unnecessary computational costs. 

3.2.4. Best solution and constraint violations 
Further investigation of the best solutions achieved by the best- 

performing BO method (UCB-MAT) revealed that BO was indeed able 
to obtain high-quality solutions that minimize the cost of chlorine in
jection in the WDN while maintaining the concentrations of chlorine and 
THMs within the specified constraints throughout the distribution sys
tem. The latter can be seen in Fig. 5, which shows the distribution of the 
hourly chlorine and THMs concentrations at all nodes in the WDN for the 
best solution in the randomly generated initial population (Fig. 5-a, b), 
and for the final solution obtained by the best performing BO method 
(Fig. 5-c, d) for one of the ten optimization runs. As can be seen from the 
figure, the frequency of constraint violations was significantly reduced 
after applying BO. The percentage of hourly concentrations (Ct,j,s) in 
violation of the maximum chlorine and THM constraints dropped from 
6.9% and 39.6% before BO (Fig. 5-a) to 0.4% and 26.8% after applying 
BO (Fig. 5-c). The decrease in maximum constraint violations can be 
attributed to the 30% decrease in the total injected chlorine dose ach
ieved by BO. Surprisingly, despite this decrease in the total applied 
chlorine dose, the percentage of hourly concentrations in violation of the 
minimum chlorine constraint remained the same (13.6%) after applying 
BO. This reflects BO’s ability to find the best distribution for chlorine 

Fig. 3. Mean and standard deviation of the best objective function values achieved by each of the tested (a) acquisition functions and (b) covariance kernels.  

Fig. 4. Average convergence profile of each of the tested (a) acquisition functions and (b) covariance kernels.  
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injection that minimizes DBP formation while maintaining chlorine re
siduals in the system. In addition to the notable decrease in constraint 
violation frequency, the extent of constraint violations, that is, the dif
ferences between the hourly concentrations (Ct,j,s) and the min/max 
concentration thresholds (Cmin

s , Cmax
s ), diminished after applying BO. 

This is evident by the decrease in the value of the penalty function (Eq. 
3) from 329.3 $/day before applying BO to 107.4 $/day after applying 
BO. Taken together, the results showed that BO was able to reduce the 
total objective function by more than 50% from 434 $/day to 200 $/day, 
while reducing both the cost of chlorine injection and constraint viola
tions for chlorine and THMs throughout the network. 

In many cases, the importance of maintaining a minimum chlorine 
residual throughout the WDN, and/or minimizing the formation of 
DBPs, is greater than that of preventing occasional exceedance of the 
maximum chlorine concentration threshold. To simulate these sce
narios, the BO optimization was repeated twice. In the first scenario, the 
constraint violation penalty cost coefficient for the minimum chlorine 
constraint was set to five times that of the maximum chlorine constraint 
(δmin,cl = 0.5 and δmax,cl = 0.1). As expected, the best solution obtained 
using these settings resulted in decreasing the percentage of hourly 

concentrations violating the minimum chlorine constraint from 13.6% 
to 3.9%. Nevertheless, the cost of chlorine injection (BCI) increased by 
45% as a result of adopting a more stringent penalty cost for violating 
the minimum concentration constraint. Furthermore, the frequency of 
maximum THMs violations increased from 26.8% to 48.9%. This can be 
attributed to the increase in the total chlorine dose injected in the sys
tem, which is needed to maintain a minimum residual throughout the 
WDN at all times. 

In the second scenario, the maximum THMs constraint penalty cost 
coefficient was set to (δmax,THMs = 0.3), while those for chlorine con
straints were kept unchanged (δmin,cl = δmax,cl = 0.1). This scenario 
resulted in decreasing the frequency of maximum THMs violations from 
26.8% to 11.6%. However, adopting a more stringent penalty cost for 
violating the maximum THMs constraint also resulted in significantly 
increasing the total penalty for violating the minimum chlorine 
constraint from 13.6% to 24.1%, which can be attributed to the decrease 
in the total chlorine dose injected in the system (BCI decreased by 15%). 
Taken together, these results highlight the important trade-off between 
maintaining a sufficient residual while limiting the formation of DBPs 
within the WDN. 

Fig. 5. Distribution of the hourly concentrations of chlorine and THMs at all junctions in the distribution system for (a), (b) the best solution out within the randomly 
generated initial population, and (c), (d) the final solution obtained by the best performing BO method (UCB-MAT). 
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3.3. Influence of Bayesian Optimization parameters 

3.3.1. Covariance kernel length scale 
The performance of BO was found to be greatly influenced by the 

choice of the length-scale parameter of the covariance kernel function 
(l). This parameter dictates the strength of the relationship between the 
predicted values by the surrogate GPR model at different points along 
the function domain. Fig. 6 depicts the cross-validation root mean 
squared error (CV-RMSE) between the true value of the objective 
function and the mean value predicted by the surrogate GP model (y- 
axis) for different values of the length scale parameter (x-axis) using 
different covariance kernels, namely (a) Matérn (MAT), (b) squared 
exponential (SE), (c) gamma exponential (GE), and (d) rational 
quadratic (RQ). The shaded area represents the range of CV-RMSE 
values for ten different randomly generated sets of 250 solutions. For 
each set, the GPR model was trained using different values of l in the 
range of [1, 1 × 1010], and the five-fold cross validation RMSE was 
computed for each value. As can be observed from Fig. 6, the accuracy of 
the GPR model in predicting the values of the objective function appears 

to be greatly dependent on the choice of the length-scale parameter of 
the covariance kernel. This can be seen from the orders-of-magnitude 
variability in the CV-RMSE values at different length scales for 
different kernel functions. More importantly, optimal values of the 
length-scale parameter for the different covariance kernels spanned a 
wide range [1 × 104, 1 × 106]. Taken together, these results highlight 
the importance of carefully tuning the length scale parameter to ensure 
that the best GPR model performance is achieved for each covariance 
kernel. 

3.3.2. Number of initial points 
Another important parameter that was found to significantly influ

ence the performance of BO was the number of initial points used to fit 
the GPR surrogate model before starting the iterations. Typically, the 
larger and more diverse the initial population is, the better the perfor
mance of the GPR model in predicting the mean and standard deviation 
of the objective function will be. However, the computational cost of 
fitting the GPR model increases as the number of initial points increases. 
Fig. 7 shows the CV-RMSE scores of fitting the GPR model using a 

Fig. 6. Cross-validation RMSE of the GPR model vs. the length-scale of each of the tested covariance kernels: a) Matérn, (b) squared-exponential, (c) gamma- 
exponential, and (d) rational-quadratic. 
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different number of initial points for different covariance kernels. The 
shaded area represents the range of CV-RMSE values for ten different 
randomly generated sets of 250 solutions. The figure shows that the 
performance of the GPR model improves as the number of initial points 
increases. Nevertheless, the additional enhancement in the GPR model’s 
performance decreases as the number of initial points increases, with 
most of the improvement realized in the first 100 initial points. Overall, 
little enhancement is observed beyond 100 initial points for all of the 
tested kernels with the exception of GE. Thus, an initial population size 
of 100 points was found to achieve a sufficient trade-off between GPR 
model accuracy and computational cost. It is also worth noting that the 
GPR model showed remarkable accuracy in learning the highly non- 
linear objective function. This can be seen from Figure S-2, where the 
five-fold cross-validation r2 scores were greater than 0.9 for all four 
covariance kernels when only 150 points were used to train the GPR 
model. 

3.3.3. Exploration vs exploitation level 
Another key advantage of BO is that the choice of the acquisition 

function enables the tuning of the trade-off between exploration and 
exploitation to achieve the best performance. To further investigate this 
property, we examined the performance of the UCB acquisition function, 
which showed the best performance among all tested acquisition func
tions, at different exploration/exploitation levels. In UCB, this level can 
be directly adjusted via the (β) parameter. Increasing the value of β fa
vors the uncertainty component of the acquisition function (i.e., explo
ration) over the mean value of the function (i.e., exploitation). A range 
of different β values [0.5-2.5] was sampled, and the results showed that 
the final value of the objective function achieved by different choices of 
the beta parameter after 500 iterations is consistent. Yet, the conver
gence speed seemed to increase with increasing the value of β. This can 
be seen from Figure S-3, which shows the convergence of UCB during the 
first 200 iterations using different β values. The results indicate that 
increasing the exploration level over that of the exploitation generally 
improves the convergence speed of BO. 

Fig. 7. Cross-validation RMSE of the GPR model vs. the number of initial evaluations used to fit the GPR model using each of the tested covariance kernels: a) 
Matérn, (b) squared-exponential, (c) gamma-exponential, and (d) rational-quadratic. 
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3.4. Computational Cost 

To understand the computational cost of conducting BO, the time 
taken by the different BO processes under different scenarios, including 
the number of decision variables and the size of the WDN, was analyzed. 
All simulations were executed on a desktop computer with Intel(R) Xeon 
(R) W-2133 CPU @ 3.60GHz processor and 32 GB RAM. 

3.4.1. BO initialization 
First, running one water quality simulation of the C-TOWN network 

using EPANET-MSX takes approximately 4.3 seconds, which constitutes 
the cost of evaluating the objective function. Therefore, the computa
tional cost of conducting the initial 100 simulations was 7.2 minutes. 
The cost of fitting the Gaussian process model to the 100 initial points 
was approximately 0.1 seconds. 

3.4.2. Acquisition function optimization 
After the initialization stage, three processes take place with each 

new iteration: (1) the optimization of the acquisition function to select 
the new point to sample, (2) evaluating the objective function at the new 
point, and (3) updating the Gaussian process model. Out of the three 
processes, we found that the optimization of the acquisition functions 
takes up the most time. This cost was found to vary from one acquisition 
function to another. On average, optimization of the UCB function takes 
approximately 13.2 seconds during each iteration, which is higher than 
what the other three acquisition functions require (approximately 8.7 
seconds on average). However, considering how fast UCB converges to 
the optimal solution compared to the other acquisition functions 
(Fig. 4), the overall time needed by UCB to achieve convergence remains 
comparable to the other acquisition functions. More importantly, the 
optimization of the acquisition function can be parallelized over mul
tiple threads. In this study, a 6-8 fold reduction in the computational cost 
of each iteration was achieved when all 12 threads of the computer were 
used to optimize the acquisition function using the multi-start L-BFGS-B 
optimization routine compared to using only one core. Further en
hancements in the computational cost of BO can be achieved by utilizing 
high-performance computing (HPC) resources. 

3.4.3. Updating the surrogate model 
The cost of updating the GPR surrogate model was found to increase 

as the optimization process progressed. This can be attributed to the 
continuous increase in the number of points to which the GPR model is 
being fitted. In this study, the cost of fitting the GPR model increased 
from ~0.1 seconds during the first iteration (101 points) to ~0.6 sec
onds after 500 iterations (600 points). Although this increase remains 
insignificant compared to the cost of optimizing the acquisition func
tion, this may not be the case for systems that require a large number of 
iterations to converge. This can be seen from Figure S-4, which shows 
the computational cost of fitting the GPR model (y-axis) to a different 
number of points (x-axis), compared to that of a random forest (RF) 
regression model. While the RF model displays linear scaling in the 
computational cost, the cost of fitting the GPR model increases expo
nentially with the number of points. The latter can be attributed to the 
cost of inverting the covariance matrix via LU decomposition during 
each iteration, which scales with the cube of the number of points (n3). 
Thus, for optimization applications requiring a significant number of 
iterations (i.e., more than 5000), other surrogate models (e.g., RF) may 
provide significant computational cost reductions over the GPR model. 

3.4.4. Number of decision variables 
To understand how the computational cost of BO scales with the 

number of decision variables, another optimization scenario was con
ducted on the case study network. In this scenario, only one chlorine 
source was placed at the reservoir (R1) instead of four boosters, thus 
reducing the number of decision variables to six instead of 24. Expect
edly, the cost of conducting the EPANET-MSX simulation for the one- 

source scenario was similar to that of the four-source scenario (i.e., ~ 
4.3 second). Yet, the one-source scenario was found to require a smaller 
number of initial points to achieve a satisfactory performance by the 
GPR model, where only 50 initial points were needed to achieve an 
average cross-validation r2>0.95. Thus, the cost of BO initialization for 
the one-source scenario would be half that for the four-source scenario. 
Furthermore, the average cost of optimizing the UCB acquisition func
tion was found to drop 3-folds from 13.2 seconds for the four-source 
scenario to 4.6 seconds for the one-source scenario. 

Taken together, the results of this study indicate that (i) for small 
WDNs, the overall computational cost of BO is limited by the number of 
decision variables in the optimization problem, since the cost of evalu
ating the objective function is minimal compared to that of optimizing 
the acquisition function. On the other hand, for large WDNs, the cost of 
evaluating the objective function would be significant compared to that 
of optimizing the acquisition function. For instance, running an 
EPANET-MSX simulation of the fairly large BWSN-2 network (Ostfeld 
et al., 2008), containing 12,523 nodes and 14,822 pipes, was found to 
take approximately 82 seconds, which is greater than the cost of opti
mizing the acquisition function. 

3.5. Future research needs 

Although BO showed satisfactory performance in the optimization of 
booster chlorination scheduling, several research questions still require 
further investigation. 

3.5.1. Comparison against evolutionary algorithms 
The results of this study indicate that, unlike evolutionary optimi

zation algorithms, BO is capable of converging to high-quality solutions 
within a small number of iterations. For instance, in a previous study 
(Abokifa et al., 2019), it was found that a population size of 100 and a 
maximum number of stall generations of 150 are necessary for opti
mizing booster chlorination in the C-TOWN WDN. Thus, GA would 
require at least 15,000 evaluations of the objective function. Never
theless, it is worth noting that evolutionary algorithms can benefit from 
parallel processing to distribute the computational cost of evaluating the 
objective function over several threads, while for BO, the objective 
function is sampled sequentially during each iteration. However, BO still 
benefits from parallelizing the optimization process of the acquisition 
function, which was found to significantly reduce the computational 
cost of BO in the present study, which makes BO a very efficient opti
mization method overall. Taken together, the results of this study 
highlight the need for conducting further research into how the per
formance of BO compares to evolutionary optimization algorithms (e.g., 
GA or PSO). 

3.5.2. Water quality simulation model 
In this study, the multiple-species model EPANET-MSX was adopted 

for conducting the water quality simulations needed for the evaluation 
of the objective function. The presented framework allows for setting 
constraints on the concentrations of any number of species in the WDN. 
Since chlorine is a highly reactive oxidant, it undergoes side reactions 
with various species. Therefore, chlorine concentrations in the system 
can influence the concentrations of different species of interest from a 
water quality perspective, including DBPs, microbiological species (e.g., 
bacteria/biofilms), and lead concentrations. Future studies can leverage 
the presented framework to study the optimization of chlorine dosage 
that maintains the concentrations of such species within regulatory 
standards. For instance, Maheshwari et al., (2020) proposed an 
approach for the optimization of disinfectant dosage for simultaneous 
control of lead and disinfection-byproducts. Furthermore, previous 
studies highlighted the importance of considering dispersive solute 
transport in water quality simulations used for booster optimization 
(Abokifa et al., 2019), especially in the dead-end branches that experi
ence frequent stagnations and excessive residence times (Abokifa et al., 
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2016b). Other studies indicated that 2-D models can provide a more 
accurate representation of the radial transport of chlorine in WDN pipes 
than 1-D models (Ozdemir and Metin Ger, 1999). 

4. Conclusions 

This study presents the first attempt to apply Bayesian Optimization 
(BO) to the optimization of water quality in drinking water distribution 
networks (WDNs). A systematic analysis of the performance of different 
BO methods in the optimization of booster chlorination scheduling was 
conducted. To that end, various combinations of gaussian process 
regression (GPR) covariance kernels and BO acquisition functions were 
systematically tested on a case study featuring a mid-size real-life WDN. 
The results revealed that the performance of BO was mainly dependent 
on the choice of the acquisition function, whereas little variability was 
observed between the performance of different covariance kernels. The 
results also highlighted the importance of carefully selecting the length 
scale of the covariance kernel and the number of initial evaluations used 
to fit the GPR model to ensure the best performance is achieved. Opti
mization of the acquisition function was found to the be most compu
tationally demanding component of BO, with the computational cost 
increasing with the number of decision variables. 
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