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A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS

JOHANNES MALY AND RAYAN SAAB

ABSTRACT. In this short note, we propose a new method for quantizing the weights of a fully trained
neural network. A simple deterministic pre-processing step allows us to quantize network layers
via memoryless scalar quantization while preserving the network performance on given training
data. On one hand, the computational complexity of this pre-processing slightly exceeds that of
state-of-the-art algorithms in the literature. On the other hand, our approach does not require any
hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide
rigorous theoretical guarantees in the case of quantizing single network layers and show that the
relative error decays with the number of parameters in the network if the training data behaves
well, e.g., if it is sampled from suitable random distributions. The developed method also readily

allows the quantization of deep networks by consecutive application to single layers.

1. INTRODUCTION

An L-layer feedforward neural network, ® : RNo — RN is a function whose action on a vector
x € RN is given by

(1) @(X) ZZCPOA(L).O---ogpoA(l)(X),

where the activation function ¢ : R — R acts entry-wise on vectors, and A® : RNe-1 — RNe are
affine maps given by A (z) := WOTz 4+ b, We call WO € RNe-1xNe and b € RN: the weight
matriz and bias vector associated with the ¢-th layer of ®. The i-th neuron (without activation) of
the ¢-th layer is then the map z +— (WZ(Z))TZ + bgz), where WZ@ denotes the i-th column of W, In
modern machine learning, neural networks have become the state-of-the-art tool for various tasks
like speech recognition, autonomous driving, and games [9} 12 5]. Nevertheless, such networks tend
to require a large number of layers, and a large number of parameters N, per layer. As a result, they
are associated with high computational costs, both in storage/memory and in power usage. In order
to reduce these costs, one approach is to use coarsly quantized parameters, i.e., quantized weights
of the neural network (see [7,13,/4]). This can be achieved either by restricting the elements of W)
and b at training time to take on values from a discrete finite set, or by replacing them with
elements from such a set after training [8]. The first approach entails quantization-aware training,
whereas the second involves post-training quantization and is the focus of our work. In this context,
quantization consists of replacing the, e.g., 32-bit floating point numbers that constitute the weights
of an already trained neural network with coarsly quantized counterparts that can be represented
with many fewer bits. The challenge lies in not degrading the performance of the network by doing
S0.

To accomplish this task, one can progressively approach the problem one layer at a time, quan-
tizing each neuron (column of W(g)) in the layer before advancing to the next layer. Ignoring the

bias terms for the moment and considering, for example, the first layer of the neural network of
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width N7, one can select an appropriate alphabet A and devise a map
Q: RN 5 gMNo
w—q

that respects w' X ~ q' X or equivalently X'w ~ X Tq, where X € RNoX™ ig a matrix with
m training samples as its columns. Defining B := log,(].A), each quantized neuron q from among
the Nj neurons in the first layer can now be represented using BNy bits. Variants of this approach
have been explored recently (e.g., [L, 2, 18, [10} 1T}, 17]), including in the nascent literature that
seeks rigorous theoretical guarantees for neural network quantization (e.g., [11} 17, [16. 16]).

While this general approach seems to work reasonably well in practice, and includes recent
algorithms with theoretical guarantees, there are some important challenges associated with it.
First, an appropriate alphabet A must be chosen for each layer so that there even exists q € AN°
with XTw ~ XTq. Second, the obvious approach once such an A is chosen, consists in finding
q € AN that minimizes the objective function ||XT(w — q)||2. However, this constitutes an
integer program, so it is generally NP-hard, and remains so for other objective functions. Despite
these challenges, various ad-hoc computationally feasible approaches have been proposed, including
1], 12} 18], [10].

1.1. Related work. As already alluded to, there has been recent progress in developing compu-
tationally efficient algorithms with rigorous theoretical guarantees [11, [17]. The authors of [11]
propose a greedy quantization algorithm based on noise-shaping and analyze its performance in
the case of a single layer neural network with Gaussian random training data, and they restrict
their analysis to the case of the alphabet {—1,0,1}. Notably, the algorithm proposed in [11] has
computational complexity O(mNy) per neuron, which is near optimal, as the size of the training
data is mNp. Subsequently [17] extends the analysis to more general distributions and alphabets.
For example, if X is uniformly distributed in the ball of R™ of radius r, [17] shows that the error
of quantizing a neuron w € R0 satisfies

(2) IXTw —X"ql3 < mr?log No,
with high probability, where q € ANo contains the quantized weights. As a corollary, one can see
that for generic vectors w that are independent of X,

3) HXTW—XTqH%<mlogN0
IXTwl3  ~ Ny

with high probability. One issue with the theory in [11, [17] is that it requires the largest element
in A to be at least as large as |[wW||s. While this may seem innocuous for a single neuron w, in
practice the different columns in a weight matrix W may be bounded differently. As a result,
one must either use different alphabets for each neuron, or accept a potentially large error bound.
In practice, however, the numerical experiments in [11, [17] use a single alphabet with a carefully
tuned range to optimize the performance of the algorithm. In other words, they introduced an
additional hyper-parameter that needs to be set a priori.
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1.2. Contribution. In this work, we examine how one can reliably quantize a fully trained network
® via memoryless scalar quantization. Like [11) [17] before, we restrict our analysis to quantizing
a single network layer. We show that, surprisingly, a simple pre-processing step on w allows us
to quantize the weights in a naive way and obtain theoretical guarantees as in (3). In contrast
to the noise-shaping approaches in [11} [L7], the analysis is however remarkably simple. Moreover,
even when quantizing full network layers no additional hyper-parameter tuning is required to boost
the performance. The price we pay is that the pre-processing step is slightly more expensive
in computation time. Let us mention that while our analysis is restricted to a single layer, the
developed method readily lends itself to the quantization of deep networks as well by consecutive

application to single layers.

1.3. Notation. We abbreviate [n] := {1,...,n}, for n € N. We use C, ¢, to denote absolute
constants, while a < b denotes @ < Cb. Similarly, @ 2 b means a > Cb and a ~ b denotes
a < b < a. Henceforth, as justified by the observation w'x +b = ((w,b), (x,1)), we will ignore the

(¢

bias term b in (L) as it can simply be treated as an extra column of WO . Under this prerequisite,

the i-th neuron of the /-th layer is defined as the map z — (WZ(Z))TZ, where WZ(Z) denotes the i-th
column of W), We define 0 and 1 to be the vector/matrix of zeros and ones, respectively (the
dimensions will always be clear from the context). For a matrix W, we denote the operator norm
by ||[W]| and the maximum entry in absolute value by [|[W]|s. If A is an n; X ng matrix and
J C [ng], we define the restricted kernel

(4) kerj(A) :={b € ker(A): b; =0 if i € J°}.
For K > 1, we define midrise alphabets having 2K elements, as sets of the form
(5) A={x(k—-1/2)0 : 1<k <K,k e€Z}
and, similarly, midtread alphabets with 2K + 1 elements as sets of the form
(6) A={xkd:0< k<K, ke€Z}

where 6 > 0 denotes the quantization step size. The simplest examples of such alphabets are
the 1-bit alphabet {—1,1}, and the ternary alphabet {—1,0,1}. The memoryless scalar quantizer
(MSQ) associated with an alphabet A is given by @ : R — A with

7 = i —pl.
(7) Q(2) = argmin |z — p|
For instance, the MSQ map @ with A = {—1,1} is given by the two-valued sign-function

) 1 x>0
sign(x) = L ow oo
-1 z<0.

In the following, we apply the quantizer @) entry-wise to vectors and matrices.

2. QUANTIZING A NETWORK LAYER

In this work, we consider uniform memoryless quantization.
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Algorithm 1 : Neuron Preprocessing

Given: Ay € R™*™ (n > m), zg € R", and ¢ > ||2zo||0o

1: Initialize Jy = {7 € [n]: the i-th column of Ay is zero}
2: Define b € R" via bje = 0 and b; = ¢ — (20);, for i € Jyp. Then b € ker(Ao) and [(20); + bi| = ¢
for i € Jy
Replace zg with zg + b
Initialize £ =0
while |||zx| — c1||p > m (which implies that ker; (Aj) # {0}, cf. Equation {)) do
Compute b € ker, (Ag), b #0
Compute o € R with ||z + abljs = ¢
zp11=2; +ab € R?
Jpr1=Jk U {i € [n]: [(z11)i] = ¢}
10: Ak+1:(Ak)Jg+1 € R™*" (Matrix in which all columns indexed by J41 are set to zero.)
11: k< k+1
12: end while
13: kgpa = K

Return: z;,  for which Az, = = Az, ||zk, . |lcc = ¢, and |||z, | — c1l]lo < m

Definition 2.1 (Uniform B-bit quantizer). For any midrise or midtread alphabet A with

-1
I;lgf!q\ :

we define the quantization alphabet as A. =c- A = {—c,...,c}, for some suitable ¢ > 0.
If |A.] = 2B, for B € N, then A, can be encoded in B bits, the worst-case distortion of A. on
[_67 C]

04, = max |z —Q(2)]
z€[—c,(]

satisfies 64, = 272 | and we call the associated MSQ map Q. defined in (Z), a uniform B-bit

quantizer.

We focus on quantization of single layer networks, i.e., the network ®: RNo — RM & = po A
consists of one layer. It is thus determined by the weight matrix W € RN >*No of A, We furthermore
assume that we have access to training data x;,7 € [m] for which we have ®(x;) = y;. We
consider the overparametrized setting Ny, N1 > m, i.e., there are far more trainable parameters
than training samples. For convenience, we define the matrix of input data X = (Xl, . ,xm) €
RNoxm - For fixed B € N, i.e., |[A.] = 25, our goal is thus to find a constant ¢ > 0 and a matrix
Q ¢ ANoxNi guch that Q"X ~ W 'X. Lipschitz-continuity of the activation function ¢ then
guarantees p(Q'X) ~ o(W'X).

2.1. Quantizing a single neuron. As a proof of concept, let us begin with the simpler case of

quantizing one single neuron, i.e., the map z — w'z. Given the data X we wish to construct

q € AN such that q' X ~ w'X, or equivalently, X q ~ X w. To this end, we define ¢ = ||w]|s
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and
(8) w' € arg min |||z — €1]o, st. X'z =X"w and ||z]je <G,
zeRMo
where || - [|p is not a norm but counts the number of non-zero entries and | - | is applied entry-wise.

The idea behind (8) is to find a vector w# that mimics the action of w on the data, while at the
same time having most of its entries exactly take on the values +¢. Depending on the quantizer
alphabet, the remaining entries can then be quantized more finely and the error can be easily
bounded well. Unfortunately, the objective in (8) is discrete and renders the optimization problem
hard to solve.

As a work-around, we propose Algorithm [I] as an efficient procedure to compute substitute
solutions. It is straight-forward to check that the algorithm (applied to Ay = X" zy=w, and
¢ = C) stops after at most Ny—m iterations and produces a vector W with X 'w = X Tw, |W||leo = ¢,
and |||w| — €1]jp < m: indeed, Algorithm [l changes the input only along the kernel of X, keeps
the foo-norm of the iterates constant, and reduces the quantity |||zx| — c1|lo by at least one in
each iteration. Although the computed solution W is not necessarily optimal in the sense of (), it

suffices for our purpose. We now set

(9) q = Qz(W),
where the MSQ @z is applied entry-wise. We can deduce the following result.

Theorem 2.2. Let Ny > m, w € RN and let X € RNoX™ Define the data complexity parameter

LX) = sup [|XT|7[,
TC[No]
|T|=m
where X |7 denotes X with all columns not indexed by T set to zero. Let Qg be a uniform B-bit
quantizer as in Definition 2.1, for ¢ = ||w|lc and B € N. Then, if q is constructed via (9)), where

W is the output of Algorithm [, we have that

IXTw—XTqlz g VlWloo
10 <9 (X)) Y—.
(10) XKwl =2 T IxTw]

Proof. First note that, for any matrix X € RM*™ with Ny > m, the approximate solution W of
(8) computed by Algorithm [1] consists of Ny — m entries that are of magnitude ¢ = |w||o and has
m remaining entries of (possibly) smaller magnitude. Let us denote the set of these m indices by
T C [No]. Recall that X"w = X Tw and that the B-bit quantizer Q; has an entry-wise worst-case
distortion of 275¢ = 278||w||» on the cube [-¢,¢]o. By the definition of q, it then follows that

IXTw = XTal; = X% - X all = X | (% — a)ll2 < T(X) - v/l % — al]
< T(X) - 27 ][] .

where X |7 denotes the matrix X restricted to the columns indexed in 7. We thus have that

Tw _ XT =
[XTw —X"q]| <9 B.1(X).- V[ Wllee
X Tw(l2 X Tw(l2

The desired result follows trivially from the fact that |[W| s = [|[W| s, cf. Algorithm [1. O
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If the data X is, e.g., Gaussian, Theorem [2.2] shows that the quantized neuron defined via q

behaves similarly to the original neuron.

Corollary 2.3. Let Ny > m, w € RM | and let X € RNOX™ hauve i.i.d. entries X; ;i ~N(0,1). Let
Q¢ be a uniform B-bit quantizer as defined in Definition 2.1, for ¢ = ||w||o and B € N. Then,

—mlog(No)

with probability at least 1 — 4e on the draw of X, if q is constructed via (9), where W is

the output of Algorithm [, we have that

X Twll [[wil2

Proof. Since the non-zero entries of X |7 form an m x m sub-matrix of an m x Ny Gaussian matrix,

we get from [14, Theorem 4.4.5], and a union bound over the (]Xf)

(12) I'(X) < y/mlog(No)

—mlog(No)

submatrices of size m x m, that

with probability at least 1 —2e . At the same time, the vector X w is Gaussian, so Lemma
[A.1] yields that with probability at least 1 — 2e™™

(13) X w2 Z Vmwlo.
Combining (I2]) and (I3]) by a union bound and inserting them into (I0), we obtain that (III) holds
with probability at least 1 — 4e—108(No) O

A couple of comments are in order. First, the assumption that the entries of X in Corollary
[2.3] are standard Gaussian is only for ease of exposition. Indeed, the conclusions of the corollary
hold for any (e.g., subgaussian) distribution for which (I2]) and (I3)) are satisfied with appropriately
high probability. Second, Corollary [2.3 strongly resembles the state-of-the-art results |11, Theorem
2] and [I7, Section 2]. Its proof is, however, remarkably simpler since our quantization technique
is not adaptive but relies on the single pre-processing step in (8). For a generic weight vector
w € RY e, [[w|2 ~ vNo||Wl|/s, the bound in (1) becomes

IXTw—XTalls _, 5 mlog(No)
Wi|2 0
XTwlz N

Being of the same form as the just mentioned results, cf. Equation (3) above, this is a meaningful
estimate in the overparametrized regime where the number of parameters exceeds the number of
training data points, i.e., Ng > m. Let us also emphasize that if the activation function ¢ is
L-Lipschitz continuous, the bound in (II]) directly extends to the concatenation of neuron and
activation function and becomes

) X" w) ~ p(XTa)ls 15 v/ 10BN Wil

IXTwll2 w2

Remark 2.4. Computing the complexity parameter I'(X) that appears in Theorem [2.2]is challenging

in general. However, it can trivially be bounded by ||X]||. If X is a frame with upper frame bound
C, this implies that I'(X) < C. In particular, if X € R™*No is a concatenation of Ny/m frames
with upper frame bound C' (assuming for simplicity that m divides Ny), it is easy to check that
I'(X) < Cy/No/m. For Ny = O(m?), this leads to I'(X) < /m and thus to the same bound as

in (L1).
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Remark 2.5. In order to improve the bound in Theorem [2.2] and Corollary 2.3] we can find a z
that minimizes the £o-norm among all vectors satisfying |||z| — ||z]|ecc1]lo < m and X'z = X Tw.
Indeed, if the rows of X are in general position, Lemma [A.2] shows that any solution

(15) W € arg min ||z|oo, st. X'z=X"w
zeRNo
fulfills |||w| — €1]jop < m, for ¢ := ||[W|lco < |[W|lco. This means we can solve (15 instead of using

Algorithm [T, which, can be more efficient, depending on the ratio between Ny and m, cf. Section
2.3l We emphasize, however, that Algorithm [1] does not require the rows of X to be in general
position.

One may wonder how the quantized neuron performs on data from outside of the training set.
The following theorem is an improved version of [11, Theorem 3| and answers this question in the
case of new data drawn from the span of the training set.

Theorem 2.6. Let X,w and q be as in Corollary [2.3 and suppose that Ny > m. Then with
probability at least 1 — 4e=2m108(No) e have for any data point z that lies in the span of X that

T < 0B m+/log(No)
(16) 2 (w=q)| S277 | == | lz]2[|Wl|e-
VNG~ im
Proof. Define the set X(Bévo) = {¢ € RN: ¢ = Xh with ||h|]z <1 } which is a bounded subset of
the span of the data points. Then, for any ¢ € X(Bévo) one has

T w =)l = | > hax! (w = )| < [BIXT (W = a)ll2 S 27 7my/log(No) Wl
i=1

where we first used the Cauchy-Schwarz inequality, then the bound for the numerator in Corollary
2.3l in the second inequality, which holds with probability at least 1 — 2e=™1°8(Vo) " For z defined
as in the statement, let p = a,z with

Oy = maxa, s.t. az € X(Bévo).
a>0

By using that p € X(Bév 0), any strictly positive lower bound on «, would then yield a bound on
our quantity of interest in (1G] via

K

|z

_ 2B TNy
Oy

1
w-q)=— p'(w—a)| <
*

All that remains is to find a suitable lower bound for a,. Since z is in the span of X, there exists
h, € R™ with z = Xh,. Since Ny > m and X is Gaussian, the embedding is almost surely injective

and h, is unique. Setting h, = ”ﬁ‘ﬁ, we have that Xh, = ”hi”2 and ||hg||2 = 1 which implies that

oy > ||hy5". We can now estimate that

Z = .
”hH2 = | Xh,|> > min || X2 2 /No — vm,
[haz]|2 lI¢lla=1

where the last inequality holds with probability at least 1 —2e~"™ (over the draw of X) and follows
from standard bounds on the singular values of Gaussian matrices, e.g., [14, Theorem 4.6.1]. Con-

sequently, we obtain with the same probability that a, > ||}_1z||2_ 1> % The claim follows

from a union bound over both events. O
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2.2. Quantizing a network layer. The main challenge in generalizing (8)-(9) to a whole layer
is that each neuron of the layer has a different upper bound on the magnitude of its entries, i.e.,
a different 2. There is, however, a simple way to deal with this. First, define C' = |lW oo where
W is the weight-matrix with columns w; € R corresponding to single neurons, for i € [N;]. The

value of C corresponds to the maximum ¢; = ||w;|| of all single neurons w;. We now solve
(17) Wi carg min  ||Z| - Clllo, st X'Z=X"W and |Z[ < C.
C ZERNOXNl

Since the optimization in (17]) decouples in the single neurons, the columns W#a of Wﬁ@ can be

2y

computed separately via

(18) Wfa € argzrel%é%o llz| — /C\lﬂo, st. X'z =XTw; and [|z]|s < C.

Algorithm Mapplied to Ag = X', zg = w;, and ¢ = C can be used to get approximate solutions WZ. &

of (18)). Having obtained a matrix W@ with columns W, & by consecutively applying Algorithm [1}

we can now define
(19) Q= Qs(Wp).

Since each column of W@ has at most Ny — m entries that are smaller than C in magnitude, it is
straight-forward to extend Theorem and Corollary 2.3 to the following results.

Theorem 2.7. Let Ny > m, W &€ RNoxXN = gnd let X € RNoX™  [et Qg be a uniform B-bit
quantizer as in Definition 21 with C = IW|leo and B € N. Then, if Q is constructed via (19,
where the columns of Wz are computed by Algorithm 1, we have that

IXTW - X"Q||r VNm||W[o
IXTW][r IXTW(p -

where T'(X) is the data complezity parameter from Theorem [Z.2

(20) <278.17(X)

Proof. The result follows by applying the same reasoning as in the proof of Theorem [2.2] to each of
the columns q; of Q independently, i.e.,

IXTwi = XTqy]l2 < T(X) - 277 Vim|[Wi o,

for any ¢ € [Ny]. This yields

IXTW - XTQIE: _ X X Twi — XTaill} _yon gy MmIWells
IXTW(% IXTW% - IXTW(%
and thus the claim since HW@HOO = |[W]x. O

Along the lines of Corollary [2.3 one obtains then the following.

Theorem 2.8. Let Ny > m > log(Ny), W € RNo*M " gnd let X € RNoX™ hape i.i.d. entries
Xij~N(0,1). Let Qg be a uniform B-bit quantizer as defined in Definition 2.1, for C = W/l
and B € N. Then, with probability at least 1 — 4e°6N)=" on the draw of X, if Q is constructed
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via ([I9), where the columns of W(? are computed by Algorithm [1, we have that

<o B v/ N1m1og(No) [W || o '

IWlr

IXTW - XTQ|F

21
@1) XTWIIr

Proof. Since X |7 is a Gaussian m x m-submatrix, Theorem 2.7 and (12) yield with probability
at least 1 — 2e~™18(No) that

”XTW B XTQ”F _B
<92 IN(X
XWir - X)

VN[ Wloo _op my/Nilog(No) | W]oo

22
(22) XWir = XTWir

Moreover, by applying Lemma [A] for each X'w; and using a union bound, we obtain with
probability at least 1 — 2Nie™™ that

(23) X will2 2 viml w2,
for all ¢ € [N;]. Combining (22) and (23) by another union bound, we thus have with probability
at least 1 — 4el°8(N)=™ that

IXTW =XTQllr _ o p my/NilosMN)[Wlleo _ o /N 10g(No) | Wloo

IXTW]r Vm||Wi|g N IWl[r

0

A similar discussion as in the single neuron case applies. If the activation function ¢ is L-Lipschitz
continuous, then for any generic weight matrix W € RNoXN ‘je |W|p ~ /NoNi|W]|s, the
bound in (21) becomes
g mlog(No)

SL277 ———-.

lo(XTW) — o(XTQ)|2
IXTWIl;

As soon as m < Ny this guarantees a small quantization error of the network when evaluated on
the available data.

(24)

2.3. Computational complexity. As LemmalA.3in the appendix shows, Algorithm [I requires a
run time of O(m3Ny) per single neuron. This is, by a factor of m?, more computationally intensive
than the near-optimal guarantees O(mNp) provided in [11, [I7]. Meanwhile, Algorithm [I has only
one hyper-parameter, namely the bit-budget B, since the required quantizer range c is automatically
determined by w resp. W. Moreover, we will now present two algorithmic modifications to reduce

our computational complexity when X is in general position.

2.3.1. First variation. One can slightly adapt Algorithm [1] as follows:

(1) Define in the beginning A(®) € R™*("+1) and A(0) ¢ R™*™ a5

| | |

By computing (A®)~1 and b = (A(©)1a,,,,, the first kernel vector can be obtained via
b=(b",-1)" €ker(AO).
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(2) Compute « as in Algorithm [1] but reduced to the first (m + 1) entries of zy.

(3) Choose j' € [m+ 1] as the smallest index j with |(zg + ab);| = c and define J; = Jy U{j'}.
Note that only the first (m + 1) entries of zy are updated to get z;.

(4) Generate A from A by replacing the j/-th column with a,,o.

(5) If 7/ = m+1, set (AM) = (A©), compute b = (A1) 'a,, 5, and obtain b= (b, -1)T €
ker(AM). If j < m+1, abbreviate a = a2 —aj and note that A1) = A —i—aejT,, where
ejr € R™ denotes the j/-th unit vector. The Woodbury identity then yields

1 ~

A(\—=1 _ (A (0)y—1 0)y—1 TA0)y—1
A = A+ o am A7) el (AC)
]/

and b = (AM)~1a,, ;. (The matrix (A(M) is invertible since the columns of Ag are in
general position.)

(6) While keeping thorough track of index switches, repeat Steps (2)-(B) until all columns
a2, ...,a, have been used.

As Lemma [A.4] shows, this accelerated procedure requires a run time of O(m?Ny) which differs
from [11], [17] only by a factor m.

2.3.2. Second wvariation. One can use {s-minimization, as per (15 in Remark [2.5] instead of ap-
plying Algorithm [I} Lemma [A.5] shows that, if the rows of X are in general position, (15]) can be
solved by interior point methods up to accuracy § > 0 in O(NZ5log(No/§)) time. If m is of the
same order as Ny, i.e., m = 0Ny for some 6 € (0,1), this run time differs from [11, [L7] only by

a factor NO% ~ m3 (up to log-factors). Note, however, that some adaptions are necessary when
pre-processing a whole layer W via f.,-minimization. Indeed, to obtain one C for W one would
solve
(25) W carg min_ |Z]e, st X Z=XW.

ZERNOXNl
However, as (25) entails minimizing the infinity norm for each neuron, it follows that for several
neurons the strict inequality ||W;||co < C := ||W||s may hold. This implies that we cannot quantize
these neurons using Qa and still use Lemma [A.2] to control the error. To resolve this issue, after
solving (25) one can find for each of the N; neurons,

|2lloc < C

26 wr€carg min a'z subject to ,
(26) i €arg j {XTZ CXTw

zcRNo

where a € R0 is an arbitrary vector such that (X \ a) e RNox(m+1) ig gtill in general position.
As (26) is also a linear program it can be solved in O(Ng->log(Ny/d)) time (by [13, Theorem 1.1]).

Surprisingly, however, the minimizers w} of (26) all satisfy |[w}|lcc = C and |{i € [Ny]: lwr| =

6}| > Ny —m as we will now argue.
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To see that [|[w}]|oc = C, suppose by way of contradiction that Wi loo < C. Then, we can select
h with X "h =0, and a'h < 0. There exists an a > 0, small enough such that |w? + ahl|o, < C,
with X' (z* + ah) = XTw, and a’ (wr + ah) < a'w?. This contradicts the optimality of w?.
Now, consider the following auxiliary optimization problem, which we only use to prove that w;
of (I0) satisfies |{i € [No]: |w}| = C}| > Ny — m:
X'z =XTw?

T T ok
(]

(27) W € arg min ||z]|. subject to {
ZER™ a'lz =a w

Notice that |[W||eo < C since w7, which satisfies ||W}||c = C, satisfies the constraints of 7).

In turn, this means that w satisfies the constraints of (26)). Moreover, as a' T

w = a' w; is the
optimal value for (26]), it follows that w minimizes (26) and, as such, must satisfy ||W|s = C,
which is also achieved by w}. Thus the optimal value for (27)) is also ||W|ec = C. Collecting these
results we see that (26) and (27) have the same minimizers. Now apply Lemmal[A.2]to (27]), noting
that the concatenated matrix consisting of X7 and a' is of size (m + 1) x Ny, to conclude that

[{i € [No] : [w}] = C} = No—m.

APPENDIX A. TECHNICAL ADDENDUM

It is well-known that the norm of n-dimensional Gaussian vectors strongly concentrates around
v/n. For the reader’s convenience we recall this fact in the following lemma.

Lemma A.1 ([I5, Ch. 2]). Let g ~ N(0,1,,x,) be an n-dimensional standard Gaussian vector.
Then, for any 6 > 0,

2

[
Pllglz — vl > 6] <2 %

The next lemma proves the claim made in Remark 2.5 namely that £,.-minimization provides
the same properties as Algorithm [1] if the columns of X are in general position.

Lemma A.2. Let m < n, let A € R™*™ have columns in general position, i.e., any m columns of
A span R™, and let b € R™. Then any

(28) z* € arg min ||z, s.t. b= Az
zER"
has the property that |{i € [n] : |2f| = ||z*]|oc }| > —m + 1.

Proof. Suppose that any collection of m columns of A spans R™. Suppose further that z* solves
(28) and that T := {i € [n] : |z}| = ||2*||ec} has |T'| < n —m + 1, thus |T¢| > m. Then there exists
a non-zero vector n° € ker(A) parametrized by € > 0 with

Ny =—c-zp=—c-sign(zy) - [|2°|ec and  ArnT = —Arpenie,

where Ap € R™IT! and Arc € R™%IT°l are the submatrices of A formed by the columns indexed
by T" and T*. Indeed, to construct such a vector, simply pick n%5 to satisfy the first equation above
and pick S C T with |S| = m, then set

N =—Ag' (Arn7) and  nieg =0
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Now, notice that A(z* +n°) = Az* = Db, i.e., z* + n° is feasible to (28) and

12" + 0 [loc = max{[|z} + 170, (125 + N5 lloc, 127e\sllo0 }-
= max{(1 - ¢)||z} | o, |25 + eAg' ArzTlloo, |27\ 5]l

Since there is a non-zero gap between the magnitude of entries of z* on T and T respectively, by
continuity there is an € > 0 small enough so that

(1= o)l#F oo > max{||z% + A5 ArnT oo, |27e\slloc )

and thus ||z* + 7| < ||2*[|cc. However, z* was defined as a minimizer of (28), which is a
contradiction. It follows that T must satisfy |T| > n —m + 1. O

The final three lemmas formalize the claims made in Section 2.3l by analyzing the computational
complexity of Algorithm [1| (Lemma [A.3)), of the accelerated version of Algorithm [1] described in
Section 23] (Lemma [A.4)), and of the {,-minimization described in Remark 25 (Lemma [A.5).

Lemma A.3. Let m <n. For Ag € R™*™ and zy € R", Algorithm Ul computes an output Zggy U1
O(m3n) time.

Proof. The steps before the while-loop require O(n) time since they only involve adding n-dimensional
vectors.

The only steps in the while-loop that are relevant for determining the computational complexity
are (i) determining b € ker, (A) and (ii) computing .

First note that in (i) an arbitrary kernel element of the restricted matrix A, is needed. One
thus can reduce Ay to (m + 1) non-zero columns before computing b, which then requires O(m?)
time. Let us denote the subset of indices of these (m + 1) columns by I C [n].

Furthermore, it is straight-forward to check that (ii) can be computed in O(m) time. One
just determines «; € R with |(2;); + a;b;| = ¢ and |o;| minimal, for all ¢ € I, and then sets
a = argmin, |o;|. Here it is important to note that the only relevant coordinates of b (and z)
are the entries indexed by I.

Since these computations are performed (n — m)-times in the worst case (in each iteration the
quantity |||zx| — ¢1||o is reduced by at least one), we obtain the claimed time complexity. O

Lemma A.4. Let m < n. For any zg € R" and Ay € R™*"™ with columns in general position,
i.e., any m columns of A span R™, the accelerated version of Algorithm |1 described in Section 2.3
outputs zyy,,, i O(m?n) time.

Proof. Note that there is only one full matrix inversion in Step ({) which costs O(m?). In Steps

(2)-(5) only the computation of a — complexity O(m) — and matrix-vector multiplications of
dimension m — complexity O(m?) — take place. Since these are repeated (n — m)-times, the
overall complexity is O(m?3) + O(m?(n —m)) = O(m?n). O

Lemma A.5. Let m < n. For A € R™*" and y € R", the minimization

2 i . Az =
(29) min ||z]lo, st Az=y

can be solved by interior point methods up to accuracy 6 > 0 in O(n*log(n/d)) time. Here O(n“)
1s the time required to multiply two n X n-matrices, with the best w known to satisfy w < 2.5.
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Proof. Note that (29) is equivalent to the linear program

Az =y
(30) min  u st. Sul—2z>0
zER",uERZO -
z+ul>0
By introducing the auxiliary variables w, = ul —z € R" and w_ = ul + z € R", and denoting
w=(wl,wl,u)" € R?"" we can re-write (30) as
Aw =
(31) min ey, W s.t. Y ,
WGRQnJrl W 2 O

where eg,,11 is the (2n + 1)-th unit vector and
A=(-A A 0)eRrm@ntD,

The claim now follows by applying [13, Theorem 1.1] to (BI). O
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