
ar
X

iv
:2

20
9.

03
48

7v
2

 [c
s.L

G
]

4
A

pr
 2

02
3

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS

JOHANNES MALY AND RAYAN SAAB

Abstract. In this short note, we propose a new method for quantizing the weights of a fully trained

neural network. A simple deterministic pre-processing step allows us to quantize network layers

via memoryless scalar quantization while preserving the network performance on given training

data. On one hand, the computational complexity of this pre-processing slightly exceeds that of

state-of-the-art algorithms in the literature. On the other hand, our approach does not require any

hyper-parameter tuning and, in contrast to previous methods, allows a plain analysis. We provide

rigorous theoretical guarantees in the case of quantizing single network layers and show that the

relative error decays with the number of parameters in the network if the training data behaves

well, e.g., if it is sampled from suitable random distributions. The developed method also readily

allows the quantization of deep networks by consecutive application to single layers.

1. Introduction

An L-layer feedforward neural network, Φ : RN0 → RNL is a function whose action on a vector

x ∈ RN0 is given by

(1) Φ(x) := ϕ ◦ A(L). ◦ · · · ◦ ϕ ◦ A(1)(x),

where the activation function ϕ : R → R acts entry-wise on vectors, and A(!) : RN!−1 → RN! are

affine maps given by A(!)(z) := W(!)!z+b(!). We call W(!) ∈ RN!−1×N! and b(!) ∈ RN! the weight

matrix and bias vector associated with the "-th layer of Φ. The i-th neuron (without activation) of

the "-th layer is then the map z $→ (w(!)
i)!z+ b(!)i , where w(!)

i denotes the i-th column of W(!). In

modern machine learning, neural networks have become the state-of-the-art tool for various tasks

like speech recognition, autonomous driving, and games [9, 12, 5]. Nevertheless, such networks tend

to require a large number of layers, and a large number of parameters N! per layer. As a result, they

are associated with high computational costs, both in storage/memory and in power usage. In order

to reduce these costs, one approach is to use coarsly quantized parameters, i.e., quantized weights

of the neural network (see [7, 3, 4]). This can be achieved either by restricting the elements of W(!)

and b(!) at training time to take on values from a discrete finite set, or by replacing them with

elements from such a set after training [8]. The first approach entails quantization-aware training,

whereas the second involves post-training quantization and is the focus of our work. In this context,

quantization consists of replacing the, e.g., 32-bit floating point numbers that constitute the weights

of an already trained neural network with coarsly quantized counterparts that can be represented

with many fewer bits. The challenge lies in not degrading the performance of the network by doing

so.

To accomplish this task, one can progressively approach the problem one layer at a time, quan-

tizing each neuron (column of W(!)) in the layer before advancing to the next layer. Ignoring the

bias terms for the moment and considering, for example, the first layer of the neural network of
1

http://arxiv.org/abs/2209.03487v2

2 JOHANNES MALY AND RAYAN SAAB

width N1, one can select an appropriate alphabet A and devise a map

Q : R
N0 → AN0

w $→ q

that respects w!X ≈ q!X or equivalently X!w ≈ X!q, where X ∈ RN0×m is a matrix with

m training samples as its columns. Defining B := log2(|A|), each quantized neuron q from among

the N1 neurons in the first layer can now be represented using BN0 bits. Variants of this approach

have been explored recently (e.g., [1, 2, 18, 10, 11, 17]), including in the nascent literature that

seeks rigorous theoretical guarantees for neural network quantization (e.g., [11, 17, 16, 6]).

While this general approach seems to work reasonably well in practice, and includes recent

algorithms with theoretical guarantees, there are some important challenges associated with it.

First, an appropriate alphabet A must be chosen for each layer so that there even exists q ∈ AN0

with X!w ≈ X!q. Second, the obvious approach once such an A is chosen, consists in finding

q ∈ AN0 that minimizes the objective function ‖X!(w − q)‖2. However, this constitutes an

integer program, so it is generally NP-hard, and remains so for other objective functions. Despite

these challenges, various ad-hoc computationally feasible approaches have been proposed, including

[1, 2, 18, 10].

1.1. Related work. As already alluded to, there has been recent progress in developing compu-

tationally efficient algorithms with rigorous theoretical guarantees [11, 17]. The authors of [11]

propose a greedy quantization algorithm based on noise-shaping and analyze its performance in

the case of a single layer neural network with Gaussian random training data, and they restrict

their analysis to the case of the alphabet {−1, 0, 1}. Notably, the algorithm proposed in [11] has

computational complexity O(mN0) per neuron, which is near optimal, as the size of the training

data is mN0. Subsequently [17] extends the analysis to more general distributions and alphabets.

For example, if X is uniformly distributed in the ball of Rm of radius r, [17] shows that the error

of quantizing a neuron w ∈ RN0 satisfies

(2) ‖X!w −X!q‖22 ! mr2 logN0,

with high probability, where q ∈ AN0 contains the quantized weights. As a corollary, one can see

that for generic vectors w that are independent of X,

(3)
‖X!w −X!q‖22
‖X!w‖22

!
m logN0

N0

with high probability. One issue with the theory in [11, 17] is that it requires the largest element

in A to be at least as large as ‖w‖∞. While this may seem innocuous for a single neuron w, in

practice the different columns in a weight matrix W(!) may be bounded differently. As a result,

one must either use different alphabets for each neuron, or accept a potentially large error bound.

In practice, however, the numerical experiments in [11, 17] use a single alphabet with a carefully

tuned range to optimize the performance of the algorithm. In other words, they introduced an

additional hyper-parameter that needs to be set a priori.

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 3

1.2. Contribution. In this work, we examine how one can reliably quantize a fully trained network

Φ via memoryless scalar quantization. Like [11, 17] before, we restrict our analysis to quantizing

a single network layer. We show that, surprisingly, a simple pre-processing step on w allows us

to quantize the weights in a naive way and obtain theoretical guarantees as in (3). In contrast

to the noise-shaping approaches in [11, 17], the analysis is however remarkably simple. Moreover,

even when quantizing full network layers no additional hyper-parameter tuning is required to boost

the performance. The price we pay is that the pre-processing step is slightly more expensive

in computation time. Let us mention that while our analysis is restricted to a single layer, the

developed method readily lends itself to the quantization of deep networks as well by consecutive

application to single layers.

1.3. Notation. We abbreviate [n] := {1, . . . , n}, for n ∈ N. We use C, c, to denote absolute

constants, while a ! b denotes a ≤ Cb. Similarly, a " b means a ≥ Cb and a * b denotes

a ! b ! a. Henceforth, as justified by the observation w!x+ b = 〈(w, b), (x, 1)〉, we will ignore the

bias term b(!) in (1) as it can simply be treated as an extra column of W(!). Under this prerequisite,

the i-th neuron of the "-th layer is defined as the map z $→ (w(!)
i)!z, where w

(!)
i denotes the i-th

column of W(!). We define 0 and 1 to be the vector/matrix of zeros and ones, respectively (the

dimensions will always be clear from the context). For a matrix W, we denote the operator norm

by ‖W‖ and the maximum entry in absolute value by ‖W‖∞. If A is an n1 × n2 matrix and

J ⊂ [n2], we define the restricted kernel

kerJ(A) := {b ∈ ker(A) : bi = 0 if i ∈ Jc}.(4)

For K ≥ 1, we define midrise alphabets having 2K elements, as sets of the form

(5) A = {±(k − 1/2)δ : 1 ≤ k ≤ K, k ∈ Z}

and, similarly, midtread alphabets with 2K + 1 elements as sets of the form

(6) A = {±kδ : 0 ≤ k ≤ K, k ∈ Z}

where δ > 0 denotes the quantization step size. The simplest examples of such alphabets are

the 1-bit alphabet {−1, 1}, and the ternary alphabet {−1, 0, 1}. The memoryless scalar quantizer

(MSQ) associated with an alphabet A is given by Q : R→ A with

(7) Q(z) := argmin
p∈A

|z − p|.

For instance, the MSQ map Q with A = {−1, 1} is given by the two-valued sign-function

sign(x) =





1 x ≥ 0

−1 x < 0.

In the following, we apply the quantizer Q entry-wise to vectors and matrices.

2. Quantizing a network layer

In this work, we consider uniform memoryless quantization.

4 JOHANNES MALY AND RAYAN SAAB

Algorithm 1 : Neuron Preprocessing

Given: A0 ∈ Rm×n (n > m), z0 ∈ Rn, and c ≥ ‖z0‖∞

1: Initialize J0 = {i ∈ [n] : the i-th column of A0 is zero}
2: Define b ∈ Rn via bJc

0
= 0 and bi = c− (z0)i, for i ∈ J0. Then b ∈ ker(A0) and |(z0)i + bi| = c

for i ∈ J0
3: Replace z0 with z0 + b
4: Initialize k = 0
5: while ‖|zk|− c1‖0 > m (which implies that kerJk(Ak) /= {0}, cf. Equation (4)) do
6: Compute b ∈ kerJk(Ak), b /= 0
7: Compute α ∈ R with ‖zk + αb‖∞ = c
8: zk+1=zk + αb ∈ Rn

9: Jk+1=Jk ∪ {i ∈ [n] : |(zk+1)i| = c}
10: Ak+1=(Ak)Jc

k+1
∈ Rm×n (Matrix in which all columns indexed by Jk+1 are set to zero.)

11: k ← k + 1
12: end while
13: kfinal = k

Return: zkfinal for which Azkfinal = Az0, ‖zkfinal‖∞ = c, and ‖|zkfinal |− c1‖0 ≤ m

Definition 2.1 (Uniform B-bit quantizer). For any midrise or midtread alphabet A with

max
q∈A

|q| = 1,

we define the quantization alphabet as Ac = c · A = {−c, . . . , c}, for some suitable c > 0.

If |Ac| = 2B , for B ∈ N, then Ac can be encoded in B bits, the worst-case distortion of Ac on

[−c, c]

δAc
= max

z∈[−c,c]
|z −Q(z)|

satisfies δAc
= c2−B , and we call the associated MSQ map Qc defined in (7), a uniform B-bit

quantizer.

We focus on quantization of single layer networks, i.e., the network Φ : RN0 → RN1 , Φ = ϕ ◦ A
consists of one layer. It is thus determined by the weight matrixW ∈ RN1×N0 of A. We furthermore

assume that we have access to training data xi, i ∈ [m] for which we have Φ(xi) = yi. We

consider the overparametrized setting N0, N1 2 m, i.e., there are far more trainable parameters

than training samples. For convenience, we define the matrix of input data X =
(
x1, . . . ,xm

)
∈

RN0×m. For fixed B ∈ N, i.e., |Ac| = 2B , our goal is thus to find a constant c > 0 and a matrix

Q ∈ AN0×N1
c such that Q!X ≈ W!X. Lipschitz-continuity of the activation function ϕ then

guarantees ϕ(Q!X) ≈ ϕ(W!X).

2.1. Quantizing a single neuron. As a proof of concept, let us begin with the simpler case of

quantizing one single neuron, i.e., the map z $→ w!z. Given the data X we wish to construct

q ∈ AN0
c such that q!X ≈ w!X, or equivalently, X!q ≈ X!w. To this end, we define ĉ = ‖w‖∞

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 5

and

w" ∈ arg min
z∈RN0

‖|z|− ĉ1‖0, s.t. X!z = X!w and ‖z‖∞ ≤ ĉ,(8)

where ‖ · ‖0 is not a norm but counts the number of non-zero entries and | · | is applied entry-wise.

The idea behind (8) is to find a vector w" that mimics the action of w on the data, while at the

same time having most of its entries exactly take on the values ±ĉ. Depending on the quantizer

alphabet, the remaining entries can then be quantized more finely and the error can be easily

bounded well. Unfortunately, the objective in (8) is discrete and renders the optimization problem

hard to solve.

As a work-around, we propose Algorithm 1 as an efficient procedure to compute substitute

solutions. It is straight-forward to check that the algorithm (applied to A0 = X!, z0 = w, and

c = ĉ) stops after at mostN0−m iterations and produces a vector “w withX!“w = X!w, ‖“w‖∞ = ĉ,

and ‖|“w| − ĉ1‖0 ≤ m: indeed, Algorithm 1 changes the input only along the kernel of X!, keeps

the "∞-norm of the iterates constant, and reduces the quantity ‖|zk| − c1‖0 by at least one in

each iteration. Although the computed solution “w is not necessarily optimal in the sense of (8), it

suffices for our purpose. We now set

q = Qĉ(“w),(9)

where the MSQ Qĉ is applied entry-wise. We can deduce the following result.

Theorem 2.2. Let N0 > m, w ∈ RN0, and let X ∈ RN0×m. Define the data complexity parameter

Γ(X) = sup
T⊂[N0]
|T |=m

‖X!|T ‖,

where X!|T denotes X! with all columns not indexed by T set to zero. Let Qĉ be a uniform B-bit

quantizer as in Definition 2.1, for ĉ = ‖w‖∞ and B ∈ N. Then, if q is constructed via (9), where

“w is the output of Algorithm 1, we have that

‖X!w −X!q‖2
‖X!w‖2

≤ 2−B · Γ(X) ·
√
m‖w‖∞
‖X!w‖2

.(10)

Proof. First note that, for any matrix X ∈ RN0×m with N0 > m, the approximate solution “w of

(8) computed by Algorithm 1 consists of N0 −m entries that are of magnitude ĉ = ‖w‖∞ and has

m remaining entries of (possibly) smaller magnitude. Let us denote the set of these m indices by

T ⊂ [N0]. Recall that X!w = X!“w and that the B-bit quantizer Qĉ has an entry-wise worst-case

distortion of 2−B ĉ = 2−B‖w‖∞ on the cube [−ĉ, ĉ]N0 . By the definition of q, it then follows that

‖X!w −X!q‖2 = ‖X!“w −X!q‖2 = ‖X!|T · (“w − q)‖2 ≤ Γ(X) ·
√
m‖“w − q‖∞

≤ Γ(X) · 2−B√m‖“w‖∞,

where X!|T denotes the matrix X! restricted to the columns indexed in T . We thus have that

‖X!w −X!q‖2
‖X!w‖2

! 2−B · Γ(X) ·
√
m‖“w‖∞
‖X!w‖2

.

The desired result follows trivially from the fact that ‖“w‖∞ = ‖w‖∞, cf. Algorithm 1. #

6 JOHANNES MALY AND RAYAN SAAB

If the data X is, e.g., Gaussian, Theorem 2.2 shows that the quantized neuron defined via q

behaves similarly to the original neuron.

Corollary 2.3. Let N0 > m, w ∈ RN0, and let X ∈ RN0×m have i.i.d. entries Xi,j ∼ N (0, 1). Let

Qĉ be a uniform B-bit quantizer as defined in Definition 2.1, for ĉ = ‖w‖∞ and B ∈ N. Then,

with probability at least 1 − 4e−m log(N0) on the draw of X, if q is constructed via (9), where “w is

the output of Algorithm 1, we have that

‖X!w −X!q‖2
‖X!w‖2

! 2−B

√
m log(N0)‖w‖∞
‖w‖2

.(11)

Proof. Since the non-zero entries of X!|T form an m×m sub-matrix of an m×N0 Gaussian matrix,

we get from [14, Theorem 4.4.5], and a union bound over the
(N0

m

)
submatrices of size m×m, that

Γ(X) !
»

m log(N0)(12)

with probability at least 1−2e−m log(N0). At the same time, the vector X!w is Gaussian, so Lemma

A.1 yields that with probability at least 1− 2e−m

‖X!w‖2 "
√
m‖w‖2.(13)

Combining (12) and (13) by a union bound and inserting them into (10), we obtain that (11) holds

with probability at least 1− 4e−m log(N0). #

A couple of comments are in order. First, the assumption that the entries of X in Corollary

2.3 are standard Gaussian is only for ease of exposition. Indeed, the conclusions of the corollary

hold for any (e.g., subgaussian) distribution for which (12) and (13) are satisfied with appropriately

high probability. Second, Corollary 2.3 strongly resembles the state-of-the-art results [11, Theorem

2] and [17, Section 2]. Its proof is, however, remarkably simpler since our quantization technique

is not adaptive but relies on the single pre-processing step in (8). For a generic weight vector

w ∈ RN0 , i.e., ‖w‖2 *
√
N0‖w‖∞, the bound in (11) becomes

‖X!w −X!q‖2
‖X!w‖2

! 2−B

m log(N0)

N0
.

Being of the same form as the just mentioned results, cf. Equation (3) above, this is a meaningful

estimate in the overparametrized regime where the number of parameters exceeds the number of

training data points, i.e., N0 2 m. Let us also emphasize that if the activation function ϕ is

L-Lipschitz continuous, the bound in (11) directly extends to the concatenation of neuron and

activation function and becomes

‖ϕ(X!w)− ϕ(X!q)‖2
‖X!w‖2

! L2−B

√
m log(N0)‖w‖∞
‖w‖2

.(14)

Remark 2.4. Computing the complexity parameter Γ(X) that appears in Theorem 2.2 is challenging

in general. However, it can trivially be bounded by ‖X‖. If X is a frame with upper frame bound

C, this implies that Γ(X) ≤ C. In particular, if X ∈ Rm×N0 is a concatenation of N0/m frames

with upper frame bound C (assuming for simplicity that m divides N0), it is easy to check that

Γ(X) ≤ C
√

N0/m. For N0 = O(m2), this leads to Γ(X) !
√
m and thus to the same bound as

in (11).

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 7

Remark 2.5. In order to improve the bound in Theorem 2.2 and Corollary 2.3, we can find a z

that minimizes the "∞-norm among all vectors satisfying ‖|z| − ‖z‖∞1‖0 ≤ m and X!z = X!w.

Indeed, if the rows of X are in general position, Lemma A.2 shows that any solution

“w ∈ arg min
z∈RN0

‖z‖∞, s.t. X!z = X!w(15)

fulfills ‖|“w| − ĉ1‖0 ≤ m, for ĉ := ‖“w‖∞ ≤ ‖w‖∞. This means we can solve (15) instead of using

Algorithm 1, which, can be more efficient, depending on the ratio between N0 and m, cf. Section

2.3. We emphasize, however, that Algorithm 1 does not require the rows of X to be in general

position.

One may wonder how the quantized neuron performs on data from outside of the training set.

The following theorem is an improved version of [11, Theorem 3] and answers this question in the

case of new data drawn from the span of the training set.

Theorem 2.6. Let X,w and q be as in Corollary 2.3 and suppose that N0 > m. Then with

probability at least 1− 4e−2m log(N0) we have for any data point z that lies in the span of X that

|z!(w − q)| ! 2−B

Ç
m
√

log(N0)√
N0 −

√
m

å
‖z‖2‖w‖∞.(16)

Proof. Define the set X(BN0

2) = {ζ ∈ RN0 : ζ = Xh with ‖h‖2 ≤ 1 } which is a bounded subset of

the span of the data points. Then, for any ζ ∈ X(BN0

2) one has

|ζ!(w − q)| =
∣∣∣

m∑

i=1

hix
!
i (w − q)

∣∣∣ ≤ ‖h‖2‖X!(w − q)‖2 ! 2−Bm
»

log(N0)‖w‖∞,

where we first used the Cauchy-Schwarz inequality, then the bound for the numerator in Corollary

2.3 in the second inequality, which holds with probability at least 1 − 2e−m log(N0). For z defined

as in the statement, let p = α#z with

α# = max
α≥0

α, s.t. αz ∈ X(BN0

2).

By using that p ∈ X(BN0

2), any strictly positive lower bound on α# would then yield a bound on

our quantity of interest in (16) via

|z!(w − q)| = 1

α#
|p!(w − q)| ! 2−Bm

√
log(N0)‖w‖∞
α#

.

All that remains is to find a suitable lower bound for α#. Since z is in the span of X, there exists

hz ∈ Rm with z = Xhz. Since N0 > m and X is Gaussian, the embedding is almost surely injective

and hz is unique. Setting h̄z =
hz

‖hz‖2 , we have that Xh̄z =
z

‖hz‖2 and ‖h̄z‖2 = 1 which implies that

α# ≥ ‖h̄z‖−1
2 . We can now estimate that

‖z‖2
‖hz‖2

= ‖Xh̄z‖2 ≥ min
‖ζ‖2=1

‖Xζ‖2 "
√

N0 −
√
m,

where the last inequality holds with probability at least 1− 2e−m (over the draw of X) and follows

from standard bounds on the singular values of Gaussian matrices, e.g., [14, Theorem 4.6.1]. Con-

sequently, we obtain with the same probability that α# ≥ ‖h̄z‖−1
2 "

√
N0−

√
m

‖z‖2 . The claim follows

from a union bound over both events. #

8 JOHANNES MALY AND RAYAN SAAB

2.2. Quantizing a network layer. The main challenge in generalizing (8)-(9) to a whole layer

is that each neuron of the layer has a different upper bound on the magnitude of its entries, i.e.,

a different ĉ. There is, however, a simple way to deal with this. First, define “C = ‖W‖∞ where

W is the weight-matrix with columns wi ∈ RN0 corresponding to single neurons, for i ∈ [N1]. The

value of “C corresponds to the maximum ĉi = ‖wi‖∞ of all single neurons wi. We now solve

W
"
“C
∈ arg min

Z∈RN0×N1

‖|Z|− “C1‖0, s.t. X!Z = X!W and ‖Z‖∞ ≤ “C.(17)

Since the optimization in (17) decouples in the single neurons, the columns w
"

i,“C
of W"

“C
can be

computed separately via

w
"

i,“C
∈ arg min

z∈RN0

‖|z| − “C1‖0, s.t. X!z = X!wi and ‖z‖∞ ≤ “C.(18)

Algorithm 1 applied toA0 = X!, z0 = wi, and c = “C can be used to get approximate solutions “w
i,“C

of (18). Having obtained a matrix Ŵ“C with columns “w
i,“C by consecutively applying Algorithm 1,

we can now define

Q = Q“C(Ŵ“C).(19)

Since each column of Ŵ“C has at most N0 −m entries that are smaller than “C in magnitude, it is

straight-forward to extend Theorem 2.2 and Corollary 2.3 to the following results.

Theorem 2.7. Let N0 > m, W ∈ RN0×N1, and let X ∈ RN0×m. Let Q“C be a uniform B-bit

quantizer as in Definition 2.1 with “C = ‖W‖∞ and B ∈ N. Then, if Q is constructed via (19),

where the columns of Ŵ“C are computed by Algorithm 1, we have that

‖X!W −X!Q‖F
‖X!W‖F

≤ 2−B · Γ(X) ·
√
N1m‖W‖∞
‖X!W‖F

,(20)

where Γ(X) is the data complexity parameter from Theorem 2.2.

Proof. The result follows by applying the same reasoning as in the proof of Theorem 2.2 to each of

the columns qi of Q independently, i.e.,

‖X!wi −X!qi‖2 ≤ Γ(X) · 2−B√m‖“wi‖∞,

for any i ∈ [N1]. This yields

‖X!W −X!Q‖2F
‖X!W‖2F

=

∑N1

i=1 ‖X!wi −X!qi‖22
‖X!W‖2F

≤ 2−2B · Γ(X)2 ·
N1m‖Ŵ“C‖

2
∞

‖X!W‖2F
,

and thus the claim since ‖Ŵ“C‖∞ = ‖W‖∞. #

Along the lines of Corollary 2.3 one obtains then the following.

Theorem 2.8. Let N0 > m ≥ log(N1), W ∈ RN0×N1 , and let X ∈ RN0×m have i.i.d. entries

Xi,j ∼ N (0, 1). Let Q“C be a uniform B-bit quantizer as defined in Definition 2.1, for “C = ‖W‖∞
and B ∈ N. Then, with probability at least 1 − 4elog(N1)−m on the draw of X, if Q is constructed

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 9

via (19), where the columns of Ŵ“C are computed by Algorithm 1, we have that

‖X!W −X!Q‖F
‖X!W‖F

! 2−B

√
N1m log(N0)‖W‖∞

‖W‖F
.(21)

Proof. Since X!|T is a Gaussian m ×m-submatrix, Theorem 2.7 and (12) yield with probability

at least 1− 2e−m log(N0) that

‖X!W −X!Q‖F
‖X!W‖F

≤ 2−B · Γ(X) ·
√
N1m‖W‖∞
‖X!W‖F

≤ 2−B · m
√

N1 log(N0)‖W‖∞
‖X!W‖F

.(22)

Moreover, by applying Lemma A.1 for each X!wi and using a union bound, we obtain with

probability at least 1− 2N1e−m that

‖X!wi‖2 "
√
m‖wi‖2,(23)

for all i ∈ [N1]. Combining (22) and (23) by another union bound, we thus have with probability

at least 1− 4elog(N1)−m that

‖X!W −X!Q‖F
‖X!W‖F

! 2−B ·
m
√

N1 log(N0)‖W‖∞√
m‖W‖F

≤ 2−B

√
N1m log(N0)‖W‖∞

‖W‖F
.

#

A similar discussion as in the single neuron case applies. If the activation function ϕ is L-Lipschitz

continuous, then for any generic weight matrix W ∈ RN0×N1 , i.e., ‖W‖F *
√
N0N1‖W‖∞, the

bound in (21) becomes

‖ϕ(X!W) − ϕ(X!Q)‖2
‖X!W‖2

! L2−B

m log(N0)

N0
.(24)

As soon as m 5 N0 this guarantees a small quantization error of the network when evaluated on

the available data.

2.3. Computational complexity. As Lemma A.3 in the appendix shows, Algorithm 1 requires a

run time of O(m3N0) per single neuron. This is, by a factor of m2, more computationally intensive

than the near-optimal guarantees O(mN0) provided in [11, 17]. Meanwhile, Algorithm 1 has only

one hyper-parameter, namely the bit-budget B, since the required quantizer range c is automatically

determined by w resp. W. Moreover, we will now present two algorithmic modifications to reduce

our computational complexity when X is in general position.

2.3.1. First variation. One can slightly adapt Algorithm 1 as follows:

(1) Define in the beginning A(0) ∈ Rm×(m+1) and Ã(0) ∈ Rm×m as

A(0) =

Ö
| |
a1 · · · am+1

| |

è

=

Ö
|

Ã(0) am+1

|

è

.

By computing (Ã(0))−1 and b̃ = (Ã(0))−1am+1, the first kernel vector can be obtained via

b = (b̃!,−1)! ∈ ker(A(0)).

10 JOHANNES MALY AND RAYAN SAAB

(2) Compute α as in Algorithm 1 but reduced to the first (m+ 1) entries of z0.

(3) Choose j′ ∈ [m+1] as the smallest index j with |(z0 +αb)j | = c and define J1 = J0 ∪ {j′}.
Note that only the first (m+ 1) entries of z0 are updated to get z1.

(4) Generate A(1) from A(0) by replacing the j′-th column with am+2.

(5) If j′ = m+1, set (Ã(1)) = (Ã(0)), compute b̃ = (Ã(1))−1am+2, and obtain b = (b̃!,−1)! ∈
ker(A(1)). If j′ < m+1, abbreviate a = am+2−aj′ and note that Ã(1) = Ã(0)+ae!j′, where

ej′ ∈ Rm denotes the j′-th unit vector. The Woodbury identity then yields

(Ã(1))−1 = (Ã(0))−1 +
1

1 + e!j′(Ã
(0))−1a

(Ã(0))−1a e!j′(Ã
(0))−1

and b̃ = (Ã(1))−1am+1. (The matrix (Ã(1)) is invertible since the columns of A0 are in

general position.)

(6) While keeping thorough track of index switches, repeat Steps (2)-(5) until all columns

am+2, . . . ,an have been used.

As Lemma A.4 shows, this accelerated procedure requires a run time of O(m2N0) which differs

from [11, 17] only by a factor m.

2.3.2. Second variation. One can use "∞-minimization, as per (15) in Remark 2.5 instead of ap-

plying Algorithm 1. Lemma A.5 shows that, if the rows of X are in general position, (15) can be

solved by interior point methods up to accuracy δ > 0 in O(N2.5
0 log(N0/δ)) time. If m is of the

same order as N0, i.e., m = θN0 for some θ ∈ (0, 1), this run time differs from [11, 17] only by

a factor N
1
2

0 * m
1
2 (up to log-factors). Note, however, that some adaptions are necessary when

pre-processing a whole layer W via "∞-minimization. Indeed, to obtain one “C for W one would

solve

Ŵ ∈ arg min
Z∈RN0×N1

‖Z‖∞, s.t. X!Z = X!W.(25)

However, as (25) entails minimizing the infinity norm for each neuron, it follows that for several

neurons the strict inequality ‖“wi‖∞ < “C := ‖Ŵ‖∞ may hold. This implies that we cannot quantize

these neurons using Q“C and still use Lemma A.2 to control the error. To resolve this issue, after

solving (25) one can find for each of the N1 neurons,

w#
i ∈ arg min

z∈RN0

a!z subject to

®
‖z‖∞ ≤ “C
X!z = X!w

,(26)

where a ∈ RN0 is an arbitrary vector such that
Ä
X | a

ä
∈ RN0×(m+1) is still in general position.

As (26) is also a linear program it can be solved in O(N2.5
0 log(N0/δ)) time (by [13, Theorem 1.1]).

Surprisingly, however, the minimizers w#
i of (26) all satisfy ‖w#

i ‖∞ = “C and |{i ∈ [N0] : |w#
i | =

“C}| ≥ N0 −m as we will now argue.

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 11

To see that ‖w#
i ‖∞ = “C, suppose by way of contradiction that ‖w#

i ‖∞ < “C. Then, we can select

h with X!h = 0, and a!h < 0. There exists an α > 0, small enough such that ‖w#
i + αh‖∞ ≤ “C,

with X!(z∗ + αh) = X!w, and a!(w#
i + αh) < a!w#

i . This contradicts the optimality of w#
i .

Now, consider the following auxiliary optimization problem, which we only use to prove that w#
i

of (26) satisfies |{i ∈ [N0] : |w∗
i | = “C}| ≥ N0 −m:

w̄ ∈ arg min
z∈Rn

‖z‖∞ subject to

®
X!z = X!w#

i

a!z = a!w#
i

.(27)

Notice that ‖w̄‖∞ ≤ “C since w#
i , which satisfies ‖w#

i ‖∞ = “C, satisfies the constraints of (27).

In turn, this means that w̄ satisfies the constraints of (26). Moreover, as a!w̄ = a!w#
i is the

optimal value for (26), it follows that w̄ minimizes (26) and, as such, must satisfy ‖w̄‖∞ = “C,

which is also achieved by w#
i . Thus the optimal value for (27) is also ‖w̄‖∞ = “C. Collecting these

results we see that (26) and (27) have the same minimizers. Now apply Lemma A.2 to (27), noting

that the concatenated matrix consisting of XT and a! is of size (m + 1) × N0, to conclude that

|{i ∈ [N0] : |w#
i | = “C}| ≥ N0 −m.

Appendix A. Technical addendum

It is well-known that the norm of n-dimensional Gaussian vectors strongly concentrates around
√
n. For the reader’s convenience we recall this fact in the following lemma.

Lemma A.1 ([15, Ch. 2]). Let g ∼ N (0, In×n) be an n-dimensional standard Gaussian vector.

Then, for any θ > 0,

P
[
|‖g‖2 −

√
n| ≥ θ

]
≤ 2e−

θ
2

8 .

The next lemma proves the claim made in Remark 2.5, namely that "∞-minimization provides

the same properties as Algorithm 1 if the columns of X are in general position.

Lemma A.2. Let m ≤ n, let A ∈ Rm×n have columns in general position, i.e., any m columns of

A span Rm, and let b ∈ Rm. Then any

z# ∈ arg min
z∈Rn

‖z‖∞, s.t. b = Az(28)

has the property that |{i ∈ [n] : |z#i | = ‖z#‖∞}| ≥ n−m+ 1.

Proof. Suppose that any collection of m columns of A spans Rm. Suppose further that z# solves

(28) and that T := {i ∈ [n] : |z#i | = ‖z#‖∞} has |T | < n−m+ 1, thus |T c| ≥ m. Then there exists

a non-zero vector ηε ∈ ker(A) parametrized by ε > 0 with

ηε
T = −ε · z#T = −ε · sign(z#T) · ‖z#‖∞ and ATη

ε
T = −AT cηε

T c ,

where AT ∈ Rm×|T | and AT c ∈ Rm×|T c| are the submatrices of A formed by the columns indexed

by T and T c. Indeed, to construct such a vector, simply pick ηε
T to satisfy the first equation above

and pick S ⊂ T c with |S| = m, then set

ηε
S = −A−1

S (ATη
ε
T) and ηε

T c\S = 0

12 JOHANNES MALY AND RAYAN SAAB

Now, notice that A(z# + ηε) = Az# = b, i.e., z# + ηε is feasible to (28) and

‖z# + ηε‖∞ = max{‖z#T + ηε
T ‖∞, ‖z#S + ηε

S‖∞, ‖z#T c\S‖∞}.

= max{(1− ε)‖z#T ‖∞, ‖z#S + εA−1
S AT z

#
T ‖∞, ‖z#T c\S‖∞}.

Since there is a non-zero gap between the magnitude of entries of z# on T and T c respectively, by

continuity there is an ε > 0 small enough so that

(1− ε)‖z#T ‖∞ ≥ max{‖z#S + εA−1
S ATη

ε
T ‖∞, ‖z#T c\S‖∞},

and thus ‖z# + ηε‖∞ < ‖z#‖∞. However, z# was defined as a minimizer of (28), which is a

contradiction. It follows that T must satisfy |T | ≥ n−m+ 1. #

The final three lemmas formalize the claims made in Section 2.3 by analyzing the computational

complexity of Algorithm 1 (Lemma A.3), of the accelerated version of Algorithm 1 described in

Section 2.3 (Lemma A.4), and of the "∞-minimization described in Remark 2.5 (Lemma A.5).

Lemma A.3. Let m ≤ n. For A0 ∈ Rm×n and z0 ∈ Rn, Algorithm 1 computes an output zkfinal in

O(m3n) time.

Proof. The steps before the while-loop requireO(n) time since they only involve adding n-dimensional

vectors.

The only steps in the while-loop that are relevant for determining the computational complexity

are (i) determining b ∈ kerJk(A) and (ii) computing α.

First note that in (i) an arbitrary kernel element of the restricted matrix AJk is needed. One

thus can reduce Ak to (m+ 1) non-zero columns before computing b, which then requires O(m3)

time. Let us denote the subset of indices of these (m+ 1) columns by I ⊂ [n].

Furthermore, it is straight-forward to check that (ii) can be computed in O(m) time. One

just determines αi ∈ R with |(zk)i + αibi| = c and |αi| minimal, for all i ∈ I, and then sets

α = argmini∈I |αi|. Here it is important to note that the only relevant coordinates of b (and zk)

are the entries indexed by I.

Since these computations are performed (n −m)-times in the worst case (in each iteration the

quantity ‖|zk|− c1‖0 is reduced by at least one), we obtain the claimed time complexity. #

Lemma A.4. Let m ≤ n. For any z0 ∈ Rn and A0 ∈ Rm×n with columns in general position,

i.e., any m columns of A span Rm, the accelerated version of Algorithm 1 described in Section 2.3

outputs zkfinal in O(m2n) time.

Proof. Note that there is only one full matrix inversion in Step (1) which costs O(m3). In Steps

(2)-(5) only the computation of α — complexity O(m) — and matrix-vector multiplications of

dimension m — complexity O(m2) — take place. Since these are repeated (n − m)-times, the

overall complexity is O(m3) +O(m2(n−m)) = O(m2n). #

Lemma A.5. Let m ≤ n. For A ∈ Rm×n and y ∈ Rn, the minimization

min
z∈Rn

‖z‖∞, s.t. Az = y(29)

can be solved by interior point methods up to accuracy δ > 0 in O(nω log(n/δ)) time. Here O(nω)

is the time required to multiply two n× n-matrices, with the best ω known to satisfy ω < 2.5.

A SIMPLE APPROACH FOR QUANTIZING NEURAL NETWORKS 13

Proof. Note that (29) is equivalent to the linear program

min
z∈Rn,u∈R≥0

u s.t.






Az = y

u1− z ≥ 0

z+ u1 ≥ 0

.(30)

By introducing the auxiliary variables w+ = u1 − z ∈ Rn and w− = u1 + z ∈ Rn, and denoting

w = (w!
+,w

!
−, u)

! ∈ R2n+1, we can re-write (30) as

min
w∈R2n+1

e!2n+1w s.t.





Ãw = y

w ≥ 0
,(31)

where e2n+1 is the (2n+ 1)-th unit vector and

Ã =
Ä
−A A 0

ä
∈ R

m×(2n+1).

The claim now follows by applying [13, Theorem 1.1] to (31). #

Acknowledgments

RS was supported in part by National Science Foundation Grant DMS-2012546, and by a Simons

Fellowship.

References

[1] Ron Banner, Yury Nahshan, and Daniel Soudry. Post training 4-bit quantization of convolutional networks for

rapid-deployment. In Advances in Neural Information Processing Systems, 2019.

[2] Yoni Choukroun, Eli Kravchik, Fan Yang, and Pavel Kisilev. Low-bit quantization of neural networks for efficient

inference. In ICCV Workshops, pages 3009–3018, 2019.

[3] Lei Deng, Guoqi Li, Song Han, Luping Shi, and Yuan Xie. Model compression and hardware acceleration for

neural networks: A comprehensive survey. Proceedings of the IEEE, 108(4):485–532, 2020.

[4] Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A survey of

quantization methods for efficient neural network inference. arXiv preprint arXiv:2103.13630, 2021.

[5] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.

[6] C Sinan Güntürk and Weilin Li. Approximation of functions with one-bit neural networks. arXiv preprint

arXiv:2112.09181, 2021.

[7] Yunhui Guo. A survey on methods and theories of quantized neural networks. arXiv preprint arXiv:1808.04752,

2018.

[8] Raghuraman Krishnamoorthi. Quantizing deep convolutional networks for efficient inference: A whitepaper.

arXiv preprint arXiv:1806.08342, 2018.

[9] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[10] Yuhang Li, Ruihao Gong, Xu Tan, Yang Yang, Peng Hu, Qi Zhang, Fengwei Yu, Wei Wang, and Shi Gu. BRECQ:

Pushing the limit of post-training quantization by block reconstruction. arXiv preprint arXiv:2102.05426, 2021.

[11] Eric Lybrand and Rayan Saab. A greedy algorithm for quantizing neural networks. Journal of Machine Learning

Research, 22(156):1–38, 2021.

[12] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural Networks, 61:85–117, 2015.

[13] Jan van den Brand. A deterministic linear program solver in current matrix multiplication time. In Proceedings

of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 259–278. SIAM, 2020.

[14] Roman Vershynin. High-dimensional probability: An introduction with applications in data science, volume 47.

Cambridge university press, 2018.

14 JOHANNES MALY AND RAYAN SAAB

[15] Martin J Wainwright. High-dimensional statistics: A non-asymptotic viewpoint, volume 48. Cambridge university

press, 2019.

[16] P Yin, J Lyu, S Zhang, S Osher, YY Qi, and J Xin. Understanding straight-through estimator in training

activation quantized neural nets. In International Conference on Learning Representations, 2019.

[17] Jinjie Zhang, Yixuan Zhou, and Rayan Saab. Post-training quantization for neural networks with provable

guarantees. arXiv preprint arXiv:2201.11113, 2022.

[18] Ritchie Zhao, Yuwei Hu, Jordan Dotzel, Chris De Sa, and Zhiru Zhang. Improving neural network quantization

without retraining using outlier channel splitting. In International conference on machine learning, pages 7543–

7552. PMLR, 2019.

Department of Mathematics, LMU Munich

and Munich Center for Machine Learning (MCML)

Email address: maly@math.lmu.de

Department of Mathematics and Halıcıoğlu Data Science Institute, University of California San

Diego

Email address: rsaab@ucsd.edu

	1. Introduction
	1.1. Related work
	1.2. Contribution
	1.3. Notation

	2. Quantizing a network layer
	2.1. Quantizing a single neuron
	2.2. Quantizing a network layer
	2.3. Computational complexity

	Appendix A. Technical addendum
	Acknowledgments
	References

