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ABSTRACT

In the problem of online learning for changing environments, data
are sequentially received one after another over time, and their
distribution assumptions may vary frequently. Although existing
methods demonstrate the effectiveness of their learning algorithms
by providing a tight bound on either dynamic regret or adaptive
regret, most of them completely ignore learning with model fair-
ness, defined as the statistical parity across different sub-population
(e.g., race and gender). Another drawback is that when adapting
to a new environment, an online learner needs to update model
parameters with a global change, which is costly and inefficient.
Inspired by the sparse mechanism shift hypothesis [22], we claim
that changing environments in online learning can be attributed to
partial changes in learned parameters that are specific to environ-
ments and the rest remain invariant to changing environments. To
this end, in this paper, we propose a novel algorithm under the as-
sumption that data collected at each time can be disentangled with
two representations, an environment-invariant semantic factor and
an environment-specific variation factor. The semantic factor is
further used for fair prediction under a group fairness constraint.
To evaluate the sequence of model parameters generated by the
learner, a novel regret is proposed in which it takes a mixed form
of dynamic and static regret metrics followed by a fairness-aware
long-term constraint. The detailed analysis provides theoretical
guarantees for loss regret and violation of cumulative fairness con-
straints. Empirical evaluations on real-world datasets demonstrate
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our proposed method sequentially outperforms baseline methods
in model accuracy and fairness.
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1 INTRODUCTION

Unlike offline learning approaches, where data is accumulated over
time and collected at once, online learning assumes data batches
are acquired as a continuous flow and sequentially received one
after another, making it ideal for the real world. Although online
learners can learn from new information in real-time as it arrives,
state-of-the-art online learning algorithms may fail catastrophically
when learning environments are dynamic and change over time,
where changing environments refer to shifted distributions of data
features between batches. Therefore, it requires online learning
algorithms to adapt dynamically to new patterns in data sequences.

To address changing environments, adaptive regret [3] and dy-
namic regret [38] are introduced. Adaptive regret evaluates the
learner’s performance on any contiguous time intervals, and it is
defined as the maximum static regret [38] over these intervals [3]. In
contrast, dynamic regret handles changing environments from the
perspective of the entire learning process. It allows the comparator
changes over time. However, minimizing dynamic regret may be
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less efficient because the learner needs to update model parameters
with a global change against changing environments. Inspired by
the sparse mechanism shift hypothesis [22], we state changing en-
vironments in online learning can be attributed to partial changes
of parameters in a long run that are specific to environments. This
implies that some parameters remain semantically invariant across
different environments.

Existing fairness-aware online algorithms are developed with
a focus on either static or adaptive regret. Learning fairness with
dynamic regret for changing environments is barely touched. Data
containing bias on some sensitive characters (e.g. race and gender)
are likely collected sequentially over time. Group fairness is de-
fined by the equality of a predictive utility across different data
sub-populations, and predictions of a model are statistically inde-
pendent on sensitive information. To control bias sequentially, the
summation of fair constraints over time added to static loss regret
is minimized [18]. It ensures the total violation of fair constraints
sublinearly increases in time. Although the adaptive fair regret
proposed in [37] is initially designed for online changing environ-
ments, it allows the learner to make decisions at some time that
do not belong to the fair domain and assumes the total number of
times is known in advance. Therefore, designing fairness-aware
online algorithms associated with dynamic regret for changing
environments becomes desirable.

In this paper, to address the problem of fairness-aware online
learning, where a sequence of data batches (e.g. tasks) are collected
one after another over time with changing task environments (see
Fig. 1), we propose a novel regret metric, namely FairSDR, followed
by long-term fairness-aware constraints. To adapt to dynamic envi-
ronments, we state that shifts in data distributions can be attributed
to partial updates in model parameters in a long run, with some re-
maining invariant to changing environments. Inspired by dynamic
and static regret metrics, FairSDR and the violation of cumulative
fair constraints are minimized and bounded with O(4/T(1 + Pr))
and O(VT), respectively, where T is the number of iterations and Pr
is the path-length of the comparator sequence. To learn a sequence
of model parameters satisfying the regret, we propose a novel online
learning algorithm, namely FairDolce. In this algorithm, two learn-
ing networks are introduced, the representation learning network
(RLN) and the prediction learning network (PLN). RLN disentan-
gles an input with environment-invariant and environment-specific
representations. It aims to ensure the semantic invariance of the
learned presentation from RLN to all possible environments. Fur-
thermore, the environment-invariant representations are used to
predict class labels constrained with controllable fair notions in
PLN. The main contributions of this paper are summarized:

e We propose a novel regret FairSDR that compares the cumula-
tive loss of the learner against any sequence of comparators for
changing environments, where only partial parameters need to
be adapted to the changed environments in the long run. The
proposed new regret takes a mixed form of static and dynamic
regret metrics, subject to a long-term fairness constraint.

e To adapt to changing environments, we postulate that model pa-
rameters are updated with a local change. An effective algorithm

1Code repository: https://github.com/harderbetter/fairdolce
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FairDolce is introduced, consisting of two networks: a represen-
tation learning network (RLN) and a prediction learning network
(PLN). In RLN, datapoints are disentangled into two representa-
tions. With semantic representations, PLN is optimized under
fair constraints.

e Theoretically grounded analysis justifies the effectiveness of the

proposed method by demonstrating upper bounds O(4/T(1 + Pr))
for loss regret and O(VT) for violation of cumulative fair con-
straints.

e We validate the performance of our approach with state-of-the-
art techniques on real-world datasets. Our results demonstrate
FairDolce can effectively adapt both accuracy and fairness in
changing environments and it shows substantial improvements
over the best prior works.

2 RELATED WORK

Fairness-aware online learning. To sequentially ensure fairness
guarantees at each time, a fairness-aware regret [20] considering
the trade-off between model accuracy and fairness is devised and it
provides a fairness guarantee held uniformly over time. Another
trend [13, 18, 28, 36, 37] addressing this problem is to develop a new
metric by adding a long-term fair constraint directly to the loss re-
gret. However, when handling constrained optimization problems,
the computational burden of the projection onto the fair domain
may be too high when constraints are complex. For this reason,
[18] relaxes the output through a simpler closed-form projection.
Thereafter, a number of variants of [18] are proposed with theo-
retical guarantees by modifying stepsizes in [18] to an adaptive
version, adjusting to stochastic constraints [27], and clipping con-
straints into a non-negative orthant [28]. Although such techniques
achieve state-of-the-art bounds for static regrets and violation of
fair constraints, they assume datapoints sampled at each time from
a stationary distribution and make heavy use of the i.i.d assumption.
This does not hold when the environment changes.

Online learning for changing environments. Because low
static regret does not imply a good performance in changing en-
vironments, two regret metrics, dynamic regret [38] and adaptive
regret [11], are devised to measure the learner’s performance in
changing environments. Adaptive regret handles changing environ-
ments from a local perspective by focusing on comparators in short
intervals, in which geometric covering intervals [3, 14, 31] and data
streaming techniques [8] are developed. CBCE [14] improved the
strongly adapted regret bound by combing the sleeping bandits
idea with the Coin Betting algorithm. AOD [31] targets both dy-
namic and adaptive regret and proposes theoretic guarantees to
minimize both regrets simultaneously. Although existing methods
achieve state-of-the-art performance, a major drawback is that they
immerse in minimizing objective functions but ignore the model
fairness of prediction. As the first work addressing the problem of
online fairness learning for changing environments, FairSAOML
[37] combines tasks with a number of sets with different lengths
and develops an effective algorithm inspired by expert-tracking
techniques. A major drawback of FairSAOML is that (1) it assumes
some tasks are known in advance which leads to delays during the
learning process; (2) by designing intervals with long lengths, it is
hard for a learner to adapt to new environments without leaving
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information from past environments behind. As a consequence, the
adaptation of the learner to new environments may not perform
well.

With concerns from existing works, to tackle the problem of
fairness-aware online learning for changing environments, in this
paper, we propose a novel regret and a learning algorithm, in
which we assume only part of the model parameters is responsible
for adapting to new environments and the rest are environment-
invariant corresponding to fair predictions. Inspired by invariant
learning strategies, the proposed algorithm FairDolce is used to ac-
commodate changing environments and adaptively learn the model
with accuracy and fairness.

3 PRELIMINARIES

Vectors are denoted by lowercase boldface letters. Scalars are de-
noted by lowercase italic letters. Sets are denoted by uppercase
calligraphic letters. For more details refer to Appendix A.1.

3.1 Online Learning

In online learning, data batches Dy, defined as tasks, arrive one after
another over time. An online machine learner can learn from new
information in real-time as they arrive. Specifically, at each time,
the learner faces a loss function f; : R? x ® — R which does not
need to be drawn from a fixed distribution and could even be chosen
adversarially over time [6]. The goal of the learner over all times T
is to decide a sequence of model parameters {Ot}thl by an online
learning algorithm, e.g., follow the leader [9], that performs well
on the loss sequence {f; (Dy, 9;)}th1. Particularly, to evaluate the
algorithm, a standard objective for online learning is to minimize
some notion of regret, defined as the overall difference between the
learner’s loss Zthl f: (D4, ;) and the best performance achievable
by comparators.

Static regret. In general, one assumes that tasks collected over
time are sampled from a fixed and stationary environment fol-
lowing the i.i.d assumption. Therefore, with a sequence of model
parameters learned from the learner, the objective is to minimize
the accumulative loss of the learned model to that of the best fixed
comparator 6 € © in hindsight. This regret is typically referred to
as static regret since the comparator is time-invariant.

Rs = ZtT:1ﬁ(Dt’ 0:) - 2232?:117(@’ 9) (1)

The goal of online learning under a stationary environment is to
design algorithms such that static regret R; sublinearly grows in
T. However, low static regret does not necessarily imply a good
performance in changing environment, where tasks are sampled
from various distributions, since the time-invariant comparator 0
in Eq. (1) may behave badly. Tasks sequentially collected from non-
stationary environments and distributions of them varying over
time are more realistic. To address this limitation, recent advances
[25, 33] have introduced enhanced regret metrics, i.e, dynamic
regret, to measure the learner’s performance.

Dynamic regret. The dynamic regret [38] is defined as the
difference between the cumulative loss of the learner and that of a
sequence of comparators uy, - - - ,ur € ©.

Ru= Y fi(D000) = 31 fi(Drwe) ®

3482

KDD ’23, August 6-10, 2023, Long Beach, CA, USA

In fact, Eq. (2) is more general since it holds for any sequence of
comparators and thus includes the static regret in Eq. (1). Therefore,
minimizing dynamic regret can automatically adapt to the nature of
environments, either stationary or dynamic. However, distinct from
static regret, bounding dynamic regret is challenging because one
needs to establish a universal guarantee that holds for any sequence
of comparators [32]. An alternative solution for this challenge is to
bound the regret in terms of some regularities of the comparator
sequence, e.g., path-length [38] defined in Eq. (9) which measures
the temporal variability of the comparator sequence.

As alluded to in Sec. 1, most of the state-of-the-art online tech-
niques ignore the significance of learning by being aware of model
fairness, which is an important hallmark of human intelligence.
To control bias, especially ensure group fairness across different
sub-populations, cumulative fairness notions are considered as con-
straints added on regrets.

3.2 Group Fairness

In general, group fairness criteria used for evaluating and designing
machine learning models focus on the relationships between the
sensitive variables and the system output [24, 34, 35]. The problem
of group unfairness prevention can be seen as a constrained opti-
mization problem. For simplicity, we consider one binary sensitive
label, e.g. gender, in this work. However, our ideas can be easily
extended to many sensitive labels with multiple levels.

Let # = X X Z X Y X & be the data space, where X € R4 is an
input feature space, Z € {-1, 1} is a sensitive space, Y € {0,1}
is an output space for binary classification, and & € N denotes
an environment space. Given a task D = {(x;, zi, yi, 1)}, € P
in environment e; € &, a fine-grained measurement to ensure
group fairness in class label prediction is to design fair classifiers
by controlling the notions of fairness between sensitive subgroups
{zi = 1}?:‘1 and {z; —1}?;11 where ny+n_1 = n, e.g., demographic
parity [17, 24].

DEFINITION 1 (NoTIONS OF FAIRNESS [17, 24, 37]). A classifier
w:RIxO >R is fair when its predictions are independent of the
sensitive attributez = {z;}]_,. To get rid of the indicator function and
relax the exact values, a linear approximated form of the difference
between sensitive subgroups is defined [17],

1 (z +1
p=-p)\ 2
where py is an empirical estimate of pry. pry is the proportion of
samples in group z = 1 and correspondingly 1 — pry is the proportion
of samples in group z = —1.

9(D,0) = Exzy-r | ~p)oxo)| @

Notice that, in Eq. (3), when p1 = P(y  y ¢)ep (z = 1), the fairness
notion g(D, 0) is defined as the difference of demographic parity
(DDP). Similarly, when p1 = Py, ye)ep(y = Lz = 1), (D, 0)
is defined as the difference of equality of opportunity (DEO) [17].
Therefore, parameters 0 in the domain of a task are feasible if they
strictly satisfy the fairness constraint g(D, 6) = 0.

Motivations. To tackle the problem of fairness-aware online
learning in changing environments, a learner needs to update model
parameters with a global change, which is costly and inefficient.
Inspired by the sparse mechanism shift hypothesis [22], we state
changing environments in online learning can be attributed to
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partial changes in learned parameters in the long run that are
specific to environments. This implies that some parameters remain
semantically invariant across different environments.

4 METHODOLOGY

4.1 Settings and Problem Formulation

We consider a general sequential setting where a learner is faced
with tasks {Z),}thl one after another. Each of these tasks corre-
sponds to a time, denoted as t € [T]. At each time, the goal of
the learner is to determine model parameters 8; using existing
task pool {D; f:’ll in a fair domain © that perform well for the
task arrived at ¢. This is monitored by the loss function f; and the
fairness notion g;, wherein the fair constraint g;(Dy, 0;) = 0 is
satisfied and f; (Dy, 0;) is minimized. To adapt to changing envi-
ronments, crucially, model parameters 6; = {03, 67, 0?, 9?15} can
be partitioned into multiple elements, specifically in which 63 cap-
tures the semantic information of data through a semantic encoder
hs : X x© — S, and Gfls is used for prediction under fair con-
straints. 87 and 0?' are parameters, later introduced in Secs. 4.2
and 4.3, for encoding the environmental information and decoding
latent representations, respectively, in order to adaptively train a
good 6;. For data batches sampled from heterogeneous distribu-
tions at different times, 6} corresponds to adapting to changing
environments by encoding samples to a latent semantic space. With
latent factors (representations) encoded from the semantic space as
inputs, 0?15 is time-invariant in the long run. The overall protocol
for this setting is as follows:

(1) The learner selects semantic parameters 63 and classification
parameters 0?13 in the fair domain ©.

(2) The world reveals a loss and fairness notion f; and g;.

(3) The learner incurs an instantaneous loss f; (hs(Dy, 6%), 0;13)
and fairness estimation g(hs(D, 03), 0?15).

(4) Advance to the next time.

As mentioned in Sec. 3.1, the goal of the learner is to minimize regret
under long-term constraints [18], defined as the summation of fair
constraints over time. Since 85 adapts to different environments to

ocls

t

further takes semantic inputs for fair prediction, let {67, 0?“ }thl be
the sequence of parameters generated at the Step (1) of the protocol.
We propose a novel fairness-aware regret for changing environments,
namely FairSDR, defined as

encode semantic information from a latent invariant space and

T
FairSDR =) f; (hs(Dy, 6%), 05%) —

t=1

T
: h s ecls
o2y 2 (D00 6°0)

subject to ZT: H [g(hs (D, 07), 05") l+“ =0
=1

where [-]+ is the projection onto the non-negative space. Similar
to {uy, - -+, ur} denoted in Eq. (2), {u}, -, u}} are a sequece of
semantic comparators to {9?, cee OST}, where each corresponds to
an underlying environment. 0¢%s is the best-fixed comparator for
fair classification, which is time-invariant.

Remarks. In contrast to the regret proposed in [37] in which it
is extended from the interval-based strongly adaptive regret, and it
aims to minimize the maximum static regret for all intervals on the
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undivided model parameter, FairSDR takes the mixed form of static
and dynamic regrets. Furthermore, [37] employs the meta-learning
framework in which the function inside f; is designed for interval-
level learning with gradient steps on 6. However, in FairSDR, h;
encodes an input to a semantic representation through a neural
network on 6%, which is part of 6.

4.2 Assumptions for Invariance

Recall that in the learning protocol mentioned in Sec. 4.1, the
main goal for the learner is to generate the parameter sequence
(63,665 }thl in Sec. 4.1 that performs well on the loss sequence and
the long-term fair constraints. We make the following assumptions.

ASSUMPTION 1 (SHARED SEMANTIC SPACE). Given a task
{(xi, i, yi, ei)};’zl sampled from a particular environment e; € &, we
assume that each datapoint in the task is generated from

e a semantic factors; = hs(x;, 0°) € S, where S refers to a semantic
space shared by all environment &;

e a variation factor v; = hy(xj, 0%) € V where v; is specific to the
individual environment e;.

where hy : X X © — V is a variation encoder parameterized by
6°. We assume that each environment e; is represented by specific
variation factor hy(x;, 0°).

This assumption is closely related to the shared latent space
assumption in [16], wherein [16] assumes a fully shared latent
space. We postulate that only the semantic space can be shared
across environments whereas the variation factor is environment
specific, which is a more reasonable assumption when the cross-
environment mapping is many-to-many. In other words, given
datapoints in various environments, each can be encoded into se-
mantic and variation factors within the same semantic space but
with different variation factors depending on the environments.

Under Assumption 1, each datapoint is able to be disentangled
with semantic and variation factors. With two datapoints sampled
from the same environment e;, given a decoder D : SXV X0 — X,
we assume that

AssuUMPTION 2 (DATA INVARIANCE UNDER HOMOGENEOUS ENVI-
RONMENTS). Given a semantic encoder hg, a variation encoder hy,
and a decoder D, for any x;,Xj € X,i # j sampled in the same
environment e € &, it holds x; = D(hs(x;, 6°), hy(x;, 0°), Gd).

Assumption 2 enforces the data invariance of the original input
x; and the one that D (ks (x;, 6°), hy(x;, 6°), 0%) reconstructs jointly
from semantic and variation latent factors when the latter remains
but the former varies.

AssUMPTION 3 (CLASS INVARIANCE UNDER HETEROGENEOUS EN-
VIRONMENTS [30]). We assume that inter-environment variation
is solely characterized by the environment shift in the distribution
P(X, E). As a consequence, we assume that P(Y|X, E) is stable across
environments. Similar to [21, 30], given two datapoints (x;, zi, , €;)
and (xj,zj,y, ej), we assume the following holds

P(Y = y|X = x;, E = ¢;) =P(Y = y|(X = D(hs(x;, 6°), hy(x;,0°),
0).E=e¢;),
in,Xj € X,ei,ej €e&itj
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Invariant Classifier
w("), 0%

Env-Specific

|| Representation Learning Network (RLN)

Figure 1: A graphical illustration of the proposed framework using Rotated-Colored-MNIST dataset. (Left) Each angle within
{0, 15,30, 45, 60, 75} represents an environment. In the problem of fairness-aware online learning for changing environments,

data batches arrive one after another over time. Parameters sequence {63, Gfls }thl

are learned through the proposed model on

the right. (Right) The model consists of two learning networks, RLN and PLN. The semantic and variation encoders disentangle
an input with two factors (representations). Under Assumptions 2 and 3, the decoder takes both factors and generates new
data by diversifying the variation across environments. Semantic factors go through the classifier presented in PLN under
fair constraints and further output fair predictions. We claim that when T is large enough, only a subset of the parameters
sequence, {0§}th1, are updated to adapt to changing environments.

This assumption shows that the prediction depends only on the
semantic factor hg(x, 0°) regardless of the variation factor h, (x, 8°).
Furthermore, the semantic factors are used for fair prediction under
fairness constraints.

4.3 Learning Dynamically for Adaptation

As the motivation stated in Sec. 3, an efficient online algorithm is
expected to partially update model parameters (i.e., 87) to adapt
to changing environments sequentially and to remain the rest (i.e.,
0?15 ). As the illustration shown in Fig. 1, a novel online framework
for changing environments is proposed with two separate networks.
The representation learning network (RLN) aims to learn a good
semantic encoder h; that is able to accurately disentangle semantic
representations within various environments, associated with the
variation encoder h, and the decoder D. The prediction learning
network (PLN) solely consists of the classifier w and it takes seman-
tic representations from RLN and outputs fair predictions under
fair constraints, which is invariant to environments.

Specifically in RLN, to learn a good semantic encoder ks, at each
time ¢t we consider a databatch Q; = {(r1,q,¢, T2,¢,t> 3,985 l'4,q,t)}§:1’[
containing multiple quartet data pairs sampled from existing task
pool {D;}!=1, where Q denotes the number of quartet pairs in |@Q;|.

=1’
T1,qt = (Xa,t, Za,t Yt ) With class y; and environment e;
o 124t = (Xp 1. Zp 1> Uy, €) With class y; and environment e;
® 134+ = (Xct: Ze 1, Yz, €;) With class y; and environment e;
o r4gt = (X4t 241 ;. €;) with class y; and environment e;
Notice that r1,q s and rz g4 (same to 13 ¢+ and ry,q ;) share the same
environment label e; but different labels y; and y;. 11, and 13,4+
(same to 13,4+ and rq g ) share the same label y; but different envi-
ronments e; and e;. We view 13,4+ (r4,q,:) is an alternative pair to
r1,9,¢ (r2,9,+) With changing environments. For simplicity, we omit
the subscripts g and ¢.

Under Assumption 2, for (r1,rz) and (r3,r4) within the same
environment but different labels, the data reconstruction loss Lrecon
is given:

‘C:’Iecun =dist[Xa, D(8q, Vp, 0?’)] +dist[x¢, D(s¢, Va, 0;1)] 4)
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where s; = hs(Xq, 03), s¢ = hs(xc, 0%), v = hy(xp, 07), and vy =
ho(xg4,07). dist : X x X — R indicates a distance metric, where
we use £1 norm in the experiments.

Similarly, under Assumption 3, for (rq, r3) and (r, r4) with the
same label but different environments, the class invariance loss Liny
is given:
£, =t (©(hs (xame, 0), 65), y) + tcr (o (hs (xp-a: 69,655, )

)

where x5—c = D(sg, Ve, 9?), Xp_sd = D(sp, vy, 9?), and {cg : R X
R — R is the cross-entropy loss function.

Finally, to ensure prediction accuracy within a fair domain, we

combine (ry,q, T2,¢, 13,4 T4,¢) together over the batch Q; to estimate
Lcls and -Efair:

Lcls :ft(Qt; 63@9013)
{a,b,c,d} s cls
—Zq_ Do tep (@ (hs (xk.g, 09,05, ykg)  (6)

Lfair = Zq:l g

where & denotes concatenation operator between 03 and 9?’3.

(Q1, 6 @ 657%)

4.4 A Practical Online Algorithm: FairDolce

In practice, requirements for remaining data invariance for data-
points sampled in the same environment with different labels and
for keeping class invariance for datapoints sampled with the same
label within various environments are hard to be satisfied. Similar
to the fairness constraint, it is a strict equality constraint that is
difficult to enforce in practice. To alleviate some of such difficulties,
we relax the loss functions with empirical constants that
Lf air < €1
1
Q
€1, €2, €3 > 0 are fixed margins that control the extent to violations.
Ltotal = -£cls + /11,1 (Lfair - el) + AZ,Z(-Erecan - 52) + /1!,3(~£inu - 63)
®
Furthermore, we propose a primal-dual Algorithm 1 for ef-
ficient optimization, wherein it alternates between optimizing

™
Lrecon < € .Etnv = Zq_ ino = < €3

Lrecon = _
q=1
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Algorithm 1 FairDolce

1: Input: batch size Q, learning rate 51, 72, margin €1, €z, €3.
2: Randomly initialize 8;,=9 € ® and Ao 1, 40,2, 403 € R4

3: Initial the domain buffer as empty, U « [ ].

4: Initial the task buffer as empty, 7 « [ ].

5. for eacht € [T] do

6: Record the performance of (0
7: if e; ¢ U then

S

cls
1072 on Dy,

8: U — UV {et}

9: end if

10:  Assign 0y « 01, A1 — Ar-1,1, Arz — Ade-12, A3

At-13

11: forn=1,2--- steps do

12: if |U| # 1 then

13: Randomly sample a batch Q; C 7 indicated in
Sec. 4.3.

14: Compute £, and L:.Zn o using Eq. (4) and (5) for
each quartet pair.

15: Lrecon = é Zqul L‘rzecon and Liny = é Zqul 'E?nv

16: else

17: Randomly sample a batch of doublet data pairs Q; =
{(Xig.t zig.t> Yigts €)s (Xjq.ts Zj.qut> Yjuquts e))}‘?:l,
where Q; C 7.

18: Compute £7,.,,, using Eq. (4) for each doublet pair.

19: -Erecon = é Z§=l -[-:‘r]econ

20: Set Liny =0

21: end if

22: Compute L5, Lfgir using Eq. (6).

23: Compute L;,;4; using Eq. (8).

24: 03 «— Adam(Lypsq1, 03, 11)

25: 0? «— Adam(Az2 - Lrecon + At3 - Linos 9?, n1)

26: G(ti «— Adam(As2 - Lrecon + At3 - Lino, 9?, n1)

27: 05 — Adam(Less + 01+ Lyair +At3 - Lino, 05, n1)

28: At,1 < max {/1;,1 +12- (Lfa,-r - €1), O}

29: At2 < max {At,z +12 + (Lrecon — €2)s 0}

30: if |U| # 1 then

31: A3 max {/1;,3 +n2 - (Lino — €3), 0}

32: end if

33: end for

34: T «—T U {Dt}

35: end for

6; = {65,620 6%} at each time via minimizing the empiri-
cal Lagrangian with fixed dual A; = {As,1, As2, A3} corresponding
for £ Fairs Lrecon as well as L, and updating the dual variable
according to the minimizer (lines 24-32). The primal-dual iteration
has clear advantages over stochastic gradient descent in solving
constrained optimization problems. Specifically, it avoids intro-
ducing extra balancing hyperparameters. Moreover, it provides
convergence guarantees once we have sufficient iterations and a
sufficiently small step size [30].

Moreover, because each task corresponds to a timestamp ¢ and
an unknown environment before D; arrives, the collected task pool
{Z),-}g;f may be sampled from a single environment. In this sense,
instead of using a batch stated in Sec. 4.3 with multiple quartet pairs,
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Q
q=1t
is considered. As a consequence, the class invariance loss in Eq. (5)

is set to zero (lines 17-20).

a sampled batch with doublet pairs containing {(r1,q,¢,T1,4,+) }

5 ANALYSIS

We first state assumptions about the online learning problem for
changing environments that are largely used in [6, 31, 32, 37]. Then
we provide theoretical guarantees for the proposed FairSDR regard-
ing the loss regret and violation of cumulative fair constraints.

ASSUMPTION 4 (BOUNDED PARAMETER DOMAIN). The parameter
domain © has a bounded diameter D and contains the origin.

01— 6,]] <D, V61,0,€0
92;5;>é9||1 2|l < 1,02

AssuMPTION 5 (CONVEXITY). Domain © is convex and closed. The
loss function f; and the fair function g are convex.

ASSUMPTION 6 (F—LipscHITZ). There exists a positive constant F
such that

oM [fe (-, 01) — fr (-, 02)| < F,

max ||g(-,01)|| < F, V61,0, € ©,Vt e [T]
010

AssUMPTION 7 (BOUNDED GRADIENT). The gradients V f;(6) and
Vg(0) exist, and they are bounded by a positive constant G on ©, i.e.,

max |[|Vf; (-, 0)|] <G, max||Vg(-,0)|| <G, VOe®VtelT]
0ecO 0€c0

Examples where these assumptions hold include logistic regres-
sion and L2 regression over a bounded domain. As for constraints,
a family of fairness notions, such as DDP stated in Eq. (3) of Sec. 3.2,
are applicable as discussed in [17]. For simplicity, in this section,
we omit D used in f;, Vt and g.

As introduced in Sec. 4.1, a sequence of parameters {65, - -, OST,
Gfls, Sl GCTIS} generated by the learner are evaluated with com-
parator sequence {ui, e ,ug., ocls } in FairSDR. We claim that
FairSDR takes a mixed form of the static and dynamic regrets with
respect to {Gfls}th1 and {Gf}tT:l,
tor in the static regret is performed as the best fixed one in
hindsight, intuitively the comparator sequence can be extended to
{ui, cee uST, ocls ... 0013} by making T copies of 0°!s For simplic-
ity, we denote the sequence of the learner’s parameters and com-
parators as {Olt}le and {uf}le, respectively, where Olt = 9?@9?13
anduf :=u} @ 05, vt € [T].

Furthermore, different from the static regret introduced in Eq. (1),
it is impossible to achieve a sub-linear upper bound using dynamic
regret in general. Instead, we can bound the dynamic regret in
terms of some certain regularity of the comparator sequence or the
function sequence, such as the path-length [38] which measures

the temporal variability of the comparator sequence.

T
Pr=> o, —ufllz

Finally, under Assumptions 4 to 7 and Eq. (9), we state the key The-
orem 1 that the proposed FairSDR enjoys theoretic guarantees for
both loss regret and violation of the long-term fairness constraint
in the long run for Algorithm 1.

respectively. Since the compara-
ocls

©)
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Table 1: Comparison of upper bounds in loss regret and constraint violations for changing environments across methods.

Algorithms M. Zinkevich [38] Ader [32] AOD [31] CBCE[14] FairSAOML [37] | FairSDR (Ours)
Loss Regret O(T'2(1+Pr)) O((T(1+Pr))/?) O((rlogT)7?) O((rlogT)/?) O((rlogT)/?) |O((T(1+Pr))/?)
Constraint Violations - - - - O((«Tlog T)'7%) O(T1/?)

THEOREM 1. Suppose Assumptions 4 to 7 hold, let {653, Ogls}thl
be the sequence generated by the online learner in Algorithm 1 and
{uf}tT:1 U {0/} be the comparator sequence, setting adaptive learn-
ing rates with

ne = mo/VT,  n2r = nao/ N ¥t € [T]

where n1,0 > 0 and 2,0 € (0, ﬁ) are constants. We have
T T
D Filhs(89),65%) — min " fi(h(u5),6°%%) = O(VT(1+Pr))
= 650 1

= 0(VT)

i\\[g<h5<oi>,ei’3>1+
t=1

Proor. Proof of Theorem 1 is given in Appendix C. O

Discussion. Under Assumptions 4 to 7, we provide comparable
bounds for FairSDR with respect to both loss regret and violation
of fair constraints. Tab. 1 lists a number of state-of-the-art works
focusing on the problem of online learning in changing environ-
ments, where ours are added at the end. AOD [31], CBCE [14],
and FairSAOML [37] address this problem by proposing strongly
adaptive regret. In contrast to dynamic regret, strongly adaptive
regret handles changing environments from a local perspective by
proposing a set of intervals ranging from 7 tasks. Ader [32] and
M. Zinkevich [38] tackle this problem using dynamic regret using
the length-path regularity in Eq. (9). Although the loss regret we
derived for FairSDR is comparable to the one in Ader, the latter ig-
nores the long-term fair constraint which is essential for fair online
learning.

6 EXPERIMENTAL SETTINGS

In previous sections, we derive a theoretically principled algorithm
assuming convexity everywhere. However, it has been known that
deep learning models provide advanced performance in real-world
applications, but they have a non-convex landscape with challeng-
ing theoretical analysis. Taking inspiration from the success of deep
learning, we empirically evaluate the proposed algorithm FairDolce
using neural networks in this section.

Datasets. We consider four datasets: Rotated-Colored-MNIST
(rcMNIST), New York Stop-and-Frisk [15], Chicago Crime [34], and
German Credit [1] to evaluate our FairDolce against state-of-the-
art baselines, where rceMNIST is an image data and the other three
are tabular datasets. We include the visualization of rcMNIST in
Fig. 2. (1) Rotated-Colored-MNIST is extended from the Rotated-
MNIST dataset [7], which consists of 10,000 digits from 0 to 9
with different rotated angles where environments are determined
by angles {0, 15, 30, 45, 60, 75}. For simplicity, we consider binary
classification where digits are labeled with 0 and 1 for digits from 0-4
and 5-9, respectively. For fairness concerns, each image has a green
or red digit color as the sensitive attribute. We intentionally make
correlations between labels and digit colors for each corresponding
environment ranging from {0.9,0.7,0.5,0.3,0.1,0.05}. We further
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divide data from each environment equally into 3 subsets, where
each is considered a task. For 6 environments, there is are total of 18
tasks and each arrives one after another over time in order. (2) New
York Stop-and-Frisk [15] is a real-world dataset on policing in
New York City in 2011. It documents whether a pedestrian who was
stopped on suspicion of weapon possession would in fact possess a
weapon. We consider race (i.e., black and non-black) as the sensitive
label for each datapoint. Since this data consists of data from 5
cities in New York City, Manhattan, Brooklyn, Queens, Bronx, and
Staten, data collected from each city is considered as an individual
environment. To adapt to the setting of online learning, data in each
environment is further split into 3 tasks, 15 tasks in total, where
each task corresponds to a month’s set of data of a city. (3) Chicago
Crime [34] dataset contains information including demographics
information (e.g., race, gender, age, population, etc.), household,
education, unemployment status, etc. We use race (i.e., black and
non-black) as the sensitive label. It consists of 16 tasks and each
corresponds to a county of Chicago city as an environment. This
dataset is initially used for multi-task fair regression learning in [34],
where crime counts are used as continuous labels for data records.
In our experiments, we categorize crime counts into binary labels,
high (> 6) and low (< 6). (4) German Credit [1] dataset contains
1000 datapoints with 20 features. Gender (i.e., male and female) is
used as sensitive attribute and credit risk (i.e., good and bad) is the
target. Following [23, 37], to generate dynamic environments, we
construct a larger dataset by combining three copies of the original
data and flipping the original values of non-sensitive attributes
by multiplying -1 for the middle copy. Therefore, each copy is
considered as an environment. Each data copy is split into 2 tasks
by time and there are 6 tasks in total.

Evaluation Metrics. Three popular evaluation metrics to esti-
mate fairness are used and each allows quantifying the extent to
model bias.

e Demographic Parity (DP) [4] is formalized as

P(Y =1|Z = —1)/1?(1? =1|Z=1), ifDP<1

DP = . .
P(Y = 1|2 = 1)/IP(Y —1|Z=-1), otherwise
This is also known as a lack of disparate impact [5]. A value
closer to 1 indicates fairness.
e Equalized Odds (EO) [10] is formalized as

P(f’:1|Z=—1,Y=1)/P(§?=1|Z=1,Y:1), ifEO <1

E0=1{ . .
P(Y=1Z=1Y = l)/P(Y —1|Z=-1,Y=1), otherwise

EO requires that ¥ has equal true positive and false negative
rates between subgroups z = —1 and z = 1. Same to DP, a value
closer to 1 indicates fairness.

e Mean Difference (MD) [29] is a form of statistical parity, applied
to the classification decisions, measuring the difference in the



KDD ’23, August 6-10, 2023, Long Beach, CA, USA

Chen Zhao et al.

Rotated angle = 0°

Rotated angle = 15°

Rotated angle = 30°

Rotated angle = 45°

proportion of positive class of individuals in sub-groups.

Zi:zizl ﬁi _ Zi:zi:—l gi
Zi:z,:] 1 Zi:z 11

A value closer to 0 indicates fairness.

MD =

==

Baselines. We compare the performance of our proposed Fair-
Dolce with six baseline methods from three perspectives: online
learning for changing environments (AOD [31], CBCE [14]), online
fairness learning (FairFML [36], FairAOGD [13], FairGLC [28],), and
the state-of-the-art online fairness learning for changing environ-
ments (FairSAOML [37]). AOD minimizes the strongly adaptive
regret by running multiple online gradient descent algorithms over
a set of dense geometric covering intervals. CBCE adapts chang-
ing environment in an online learning paradigm by combining the
idea of sleeping bandits with the coin betting algorithm. FairFML
controls bias in an online working paradigm and aims to attain
zero-shot generalization with task-specific adaptation. FairFML fo-
cuses on a static environment and assumes tasks are sampled from
an unchangeable distribution. FairAOGD is proposed for online
learning with long-term constraints. In order to fit bias-prevention
and compare them to FairDolce, we specify such constraints as DDP
stated in Eq. (3). FairGLC rectifies FairAOGD by square-clipping the
constraints in place of g;(-), Vi. FairSAOML addresses fair online
learning in changing environments by dynamically activating a
subset of learning processes at each time through different combi-
nations of task sets.

Architectures. For the rcMNIST image dataset, all images are
resized to 28 x 28. Following [30], the semantic encoder and the
style encoder consist of 4 strided convolutional layers followed
by ReLU activation functions and Batch Normalization [12]. The
decoder consists of 1 upsampling layer and 6 strided convolutional
layers activated by ReLU. The classifier is performed by 2 FC hid-
den layers activated by ReLU. For tabular datasets (i.e., New York
Stop-and-Frisk, Chicago Crime, and German Credit), followed by
[19], both encoders and the decoder contain one FC layer followed
by LeakyReLU activation functions. The network architecture for
the classifier is 1 FC layer activated by Sigmoid. Details for hyper-
parameters tuning are provided in Appendix A.2.

7 RESULTS
7.1 Adaptability for Changing Environments

As shown in the first three columns in Fig. 3, model performance
is sequentially evaluated by fairness metrics (i.e., DP, EO, and MD)
introduced in Sec. 6. Our results demonstrate FairDolce outperforms
baseline methods by giving the highest DP and EO values and
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Figure 2: Visualization of the Rotated-Colored-MNIST dataset.

the lowest MD overall. Specifically, it eventually meets the fair
criteria of "80%-rule" [2] where DP and EO at the last several times
are beyond 0.8. The last column of Fig. 3 shows the change of
model accuracies over time. We claim that FairDolce substantially
outperforms alternative approaches with robust performance under
dynamic environments in achieving the highest accuracy of all time.

As a tough competitor, FairSAOML addresses the same problem
that we stated in this paper by proposing an expert-tracking tech-
nique in which experts’ weights are updated accordingly. It assumes
that larger experts containing information across a large number of
tasks help the learner to adapt to the new environment quickly. In
our experiments, although FairSAOML shows competitive perfor-
mance in bias control, it cannot surpass ours. This is because when
the environment changes, larger experts in FairSAOML retain infor-
mation from the old environments, which hurts the performance of
the learner. Similar reasons are attributed to interval-based learning
algorithms, such as AOD and CBCE. In the case of changing envi-
ronments, one major merit of FairDolce is to disentangle data by
separated representations in latent spaces, where only the semantic
ones correspond to model predictions. This effectively controls the
interference from various environments.

7.2 Ablation Studies

We conduct ablation studies on all datasets to demonstrate the con-
tributions of three key components in our method. Fig. 4 demon-
strates the results on the rceMNIST dataset. Results on other datasets
refer to Figs. 5 to 7 in Appendix B. (1) In this first study (w/o hy & D),
we intentionally remove the variation encoder h, and the decoder D
and only keep the semantic encoder hg and the classifier w with fair
constraints. In this sense, the proposed architecture is equivalent
to a simple neural network, and the semantic encoder functions as
a featurizer. (2) In the second study (w/o fair constraints), we keep
all modules but remove the fairness constraints g from the classifier
. Without fair constraints, although the model provides better
performance, fairness is not guaranteed over time. (3) In the third
study (w/o hy), only the variation encoder h, is removed. Without
the variation encoder, the model is similar to conventional auto-
encoders. The generalization ability to changing environments is
weakened.

8 CONCLUSION

To address the problem of fairness-aware online learning for chang-
ing environments, we first introduce a novel regret, namely FairSDR,
in which it takes a mixed form of static and dynamic regret metrics.
We challenge existing online learning methods by sequentially up-
dating model parameters with a local change, where only parts of
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Figure 3: Model performance over datasets through each time. (a-d) Rotated-Colored-MNIST; (e-h) New York Stop-and-Frisk,
(i-1) Chicago Crime; (m-p) German Credit.

1.0 Rotated-Colored-MNIST 1.0 Rotated-Colored-MNIST 0.7 ) Rotated-Colored-MNIST 0.9 Rotated-Colored-MNIST
: —h— w/oh,&D - . | .
i
wio 4.
’,2'."0.8 o F;-J;w(luwnwk‘ 008 | } JT/+‘+\* 0.8 N NS
< k] = AL A PO
S MLE | A TH AL o7
A S |
EO'G / \ .505 - ¥ M F—t i §0_6kﬂ/¢ \h
g IQ \ N 8 - | & o 3 WH/‘/\‘H |
=04 | J = i Al R
B SRS N § gFos £ £\ | <09 Y
£ o 0.2 i -
502 Wy, 4 wioh, 8D = 7|+ woneo A 04fa wonso
a ' i3 01| = = 4] st N
) o HNA 03
0'01 2345678 9101112131415161718 0'01 2345678 910111213141516171 0‘01 23456 10111213 141516 17 1 12345678 910111213141516171
Task Indices Task Indices Task Indices Task Indices
Figure 4: Ablation studies on the Rotated-Colored-MNIST dataset.

the parameters correspond to environmental change, and keep the corresponding proofs justify the effectiveness of the proposed al-
remaining invariant to environments and thus solely for fair pre- gorithm by demonstrating upper bounds for the loss regret and
dictions. To this end, an effective algorithm FairDolce is introduced, violation of fair constraints. Empirical studies based on real-world
wherein it consists of two networks with auto-encoders. Through datasets show that our method outperforms state-of-the-art online
disentanglement, data are able to be encoded with an environment- learning techniques in both model accuracy and fairness.

invariant semantic factor and an environment-specific variation

factor. Furthermore, semantic factors are used to learn a classifier ACKNOWLEDGMENTS
under a group fairness constraint. Detailed theoretic analysis and The research reported was supported by the National Science Foun-
dation under grant number 2147375 and 1750911.
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A ADDITIONAL EXPERIMENT DETAILS
A.1 Notations

Vectors are denoted by lowercase bold face letters. Scalars are
denoted by lowercase italic letters. Sets are denoted by upper-
case calligraphic letters. Indices of task sequences are denoted as

[T]1={1,---,T}. || - || represents £, norm.
Table 2: Important notations and corresponding descriptions.
Notations ‘ Descriptions
T total number of learning tasks
t indices of tasks
fr loss function at time ¢
g fairness function
® classification function
hs semantic encoder
hy variation encoder
D decoder
0 model parameters
0’ parameters of the semantic encoder
0° parameters of the variation encoder
64 parameters of the decoder
ocls parameters of the classifier
u® semantic comparators
s semantic factor (representation)
v variation factor
Q: data batch sampled from the task pool at time ¢
Q total number of quartet/doublet pairs in Q;
q indices of quartet/doublet pair in Q;
| Q¢ total number of samples in the batch Q;

A.2 Hyperparameter Search

For each dataset, we tune the following hyperparameters: (1) the
initial dual meta parameter A1, Az, A3 is chosen from {0.00001, 0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000 }; (2) learning rates r; and
n2 for updating primal and dual variables are chosen from {0.0001,
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0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000};
(3) set margins 71 = n2 = 113 = 0.05.

B ADDITIONAL EXPERIMENT RESULTS

Ablation study results on the New York Stop-and-Frisk, Chicago
Crime, and German Credit datasets are shown in Figs. 5 to 7. Similar
trends are observed as the Rotated-Colored-MNIST in Fig. 4.

C SKETCH PROOF OF THEOREM 1

Proor. Using 1 = '%O,ryzjt = %,Vt € [T] given in the
Theorem yelds
T \/— T
T
D Ag) = —— > (Il - O1[* — [[u§ - 0}, 11%)
=1 1,0 4=

VT

< ——|ug - 631"
Combing the above inequality with the Lemma 1 presented in [26]
yields

T

T
2, fihs(8).05%) = min Zﬁ(hsmt) 6°L)
=1 €e
VT

< —uf
no !

7710\/—

which yields the bound for the loss regret. Similarly, with the
Lemma 1 presented in [26], it yields

01”2

IAzall* < BT
2
where f = zﬁ”u% - 911“2 + G\/UTJ’O + :7720 + 2F. Together the
1,0
above inequality with ny; = L‘/ﬁ Mot = \/7 [T], we have
V ’710 108, 1
ZH lahs (6 il < =05

which yields the bounds for the violation of the long-term con-
straints. O



KDD ’23, August 6-10, 2023, Long Beach, CA, USA Chen Zhao et al.

1.0 New Yor d-Fris| 10 New York Stop-and-Frisk 08 New York Stop-and-Frisk lew York Stop-and-Frisk
—— wioh,&D ~~ wioh,&D 0.70 T T T T T
o || weteremsns - wioairconstraints -
wioh, 4 wioh,
§ 0.8 [ FairDolce (ul) 0 08| o Facts ) 0.65 -
o
o ° 0.60 HH
L06 Qo6 I | 2
£ H [_‘ Q 2 So55 ™
2 P X 3 ans
504 = S04 | © 0.50 I
b5 A ] < - ]
£ = 045 A I
302 “‘02 =& wioh, &D . A wioh, &D
al 2|k wiotar o 0.40 o wio o constants
wioh, - o wioh,
0.0 = FairDolce (full) e Faf:Do\cu (ful)
023 45678 0wmniziun 99723456 7 8 90111213741 0053456 7 6 94011121314 1 035 4 10 11 12 13 14 1
Task Indices Task Indices Task Indices Task Indices

Figure 5: Ablation studies on the New York Stop-and-Frisk dataset.
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Figure 6: Ablation studies on the Chicago Crime dataset.
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Figure 7: Ablation studies on the German Credit dataset.
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