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ABSTRACT

In the problem of online learning for changing environments, data

are sequentially received one after another over time, and their

distribution assumptions may vary frequently. Although existing

methods demonstrate the effectiveness of their learning algorithms

by providing a tight bound on either dynamic regret or adaptive

regret, most of them completely ignore learning with model fair-

ness, defined as the statistical parity across different sub-population

(e.g., race and gender). Another drawback is that when adapting

to a new environment, an online learner needs to update model

parameters with a global change, which is costly and inefficient.

Inspired by the sparse mechanism shift hypothesis [22], we claim

that changing environments in online learning can be attributed to

partial changes in learned parameters that are specific to environ-

ments and the rest remain invariant to changing environments. To

this end, in this paper, we propose a novel algorithm under the as-

sumption that data collected at each time can be disentangled with

two representations, an environment-invariant semantic factor and

an environment-specific variation factor. The semantic factor is

further used for fair prediction under a group fairness constraint.

To evaluate the sequence of model parameters generated by the

learner, a novel regret is proposed in which it takes a mixed form

of dynamic and static regret metrics followed by a fairness-aware

long-term constraint. The detailed analysis provides theoretical

guarantees for loss regret and violation of cumulative fairness con-

straints. Empirical evaluations on real-world datasets demonstrate
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our proposed method sequentially outperforms baseline methods

in model accuracy and fairness.
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1 INTRODUCTION

Unlike offline learning approaches, where data is accumulated over

time and collected at once, online learning assumes data batches

are acquired as a continuous flow and sequentially received one

after another, making it ideal for the real world. Although online

learners can learn from new information in real-time as it arrives,

state-of-the-art online learning algorithms may fail catastrophically

when learning environments are dynamic and change over time,

where changing environments refer to shifted distributions of data

features between batches. Therefore, it requires online learning

algorithms to adapt dynamically to new patterns in data sequences.

To address changing environments, adaptive regret [3] and dy-

namic regret [38] are introduced. Adaptive regret evaluates the

learner’s performance on any contiguous time intervals, and it is

defined as themaximum static regret [38] over these intervals [3]. In

contrast, dynamic regret handles changing environments from the

perspective of the entire learning process. It allows the comparator

changes over time. However, minimizing dynamic regret may be
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less efficient because the learner needs to update model parameters

with a global change against changing environments. Inspired by

the sparse mechanism shift hypothesis [22], we state changing en-

vironments in online learning can be attributed to partial changes

of parameters in a long run that are specific to environments. This

implies that some parameters remain semantically invariant across

different environments.

Existing fairness-aware online algorithms are developed with

a focus on either static or adaptive regret. Learning fairness with

dynamic regret for changing environments is barely touched. Data

containing bias on some sensitive characters (e.g. race and gender)

are likely collected sequentially over time. Group fairness is de-

fined by the equality of a predictive utility across different data

sub-populations, and predictions of a model are statistically inde-

pendent on sensitive information. To control bias sequentially, the

summation of fair constraints over time added to static loss regret

is minimized [18]. It ensures the total violation of fair constraints

sublinearly increases in time. Although the adaptive fair regret

proposed in [37] is initially designed for online changing environ-

ments, it allows the learner to make decisions at some time that

do not belong to the fair domain and assumes the total number of

times is known in advance. Therefore, designing fairness-aware

online algorithms associated with dynamic regret for changing

environments becomes desirable.

In this paper, to address the problem of fairness-aware online

learning, where a sequence of data batches (e.g. tasks) are collected

one after another over time with changing task environments (see

Fig. 1), we propose a novel regret metric, namely FairSDR, followed

by long-term fairness-aware constraints. To adapt to dynamic envi-

ronments, we state that shifts in data distributions can be attributed

to partial updates in model parameters in a long run, with some re-

maining invariant to changing environments. Inspired by dynamic

and static regret metrics, FairSDR and the violation of cumulative

fair constraints are minimized and bounded with 𝑂 (
√︁
𝑇 (1 + 𝑃𝑇 ))

and𝑂 (
√
𝑇 ), respectively, where𝑇 is the number of iterations and 𝑃𝑇

is the path-length of the comparator sequence. To learn a sequence

of model parameters satisfying the regret, we propose a novel online

learning algorithm, namely FairDolce. In this algorithm, two learn-

ing networks are introduced, the representation learning network

(RLN) and the prediction learning network (PLN). RLN disentan-

gles an input with environment-invariant and environment-specific

representations. It aims to ensure the semantic invariance of the

learned presentation from RLN to all possible environments. Fur-

thermore, the environment-invariant representations are used to

predict class labels constrained with controllable fair notions in

PLN. The main contributions of this paper are summarized1:

• We propose a novel regret FairSDR that compares the cumula-

tive loss of the learner against any sequence of comparators for

changing environments, where only partial parameters need to

be adapted to the changed environments in the long run. The

proposed new regret takes a mixed form of static and dynamic

regret metrics, subject to a long-term fairness constraint.

• To adapt to changing environments, we postulate that model pa-

rameters are updated with a local change. An effective algorithm

1Code repository: https://github.com/harderbetter/fairdolce

FairDolce is introduced, consisting of two networks: a represen-

tation learning network (RLN) and a prediction learning network

(PLN). In RLN, datapoints are disentangled into two representa-

tions. With semantic representations, PLN is optimized under

fair constraints.

• Theoretically grounded analysis justifies the effectiveness of the

proposedmethod by demonstrating upper bounds𝑂 (
√︁
𝑇 (1 + 𝑃𝑇 ))

for loss regret and 𝑂 (
√
𝑇 ) for violation of cumulative fair con-

straints.

• We validate the performance of our approach with state-of-the-

art techniques on real-world datasets. Our results demonstrate

FairDolce can effectively adapt both accuracy and fairness in

changing environments and it shows substantial improvements

over the best prior works.

2 RELATEDWORK

Fairness-aware online learning. To sequentially ensure fairness

guarantees at each time, a fairness-aware regret [20] considering

the trade-off between model accuracy and fairness is devised and it

provides a fairness guarantee held uniformly over time. Another

trend [13, 18, 28, 36, 37] addressing this problem is to develop a new

metric by adding a long-term fair constraint directly to the loss re-

gret. However, when handling constrained optimization problems,

the computational burden of the projection onto the fair domain

may be too high when constraints are complex. For this reason,

[18] relaxes the output through a simpler closed-form projection.

Thereafter, a number of variants of [18] are proposed with theo-

retical guarantees by modifying stepsizes in [18] to an adaptive

version, adjusting to stochastic constraints [27], and clipping con-

straints into a non-negative orthant [28]. Although such techniques

achieve state-of-the-art bounds for static regrets and violation of

fair constraints, they assume datapoints sampled at each time from

a stationary distribution and make heavy use of the i.i.d assumption.

This does not hold when the environment changes.

Online learning for changing environments. Because low

static regret does not imply a good performance in changing en-

vironments, two regret metrics, dynamic regret [38] and adaptive

regret [11], are devised to measure the learner’s performance in

changing environments. Adaptive regret handles changing environ-

ments from a local perspective by focusing on comparators in short

intervals, in which geometric covering intervals [3, 14, 31] and data

streaming techniques [8] are developed. CBCE [14] improved the

strongly adapted regret bound by combing the sleeping bandits

idea with the Coin Betting algorithm. AOD [31] targets both dy-

namic and adaptive regret and proposes theoretic guarantees to

minimize both regrets simultaneously. Although existing methods

achieve state-of-the-art performance, a major drawback is that they

immerse in minimizing objective functions but ignore the model

fairness of prediction. As the first work addressing the problem of

online fairness learning for changing environments, FairSAOML

[37] combines tasks with a number of sets with different lengths

and develops an effective algorithm inspired by expert-tracking

techniques. A major drawback of FairSAOML is that (1) it assumes

some tasks are known in advance which leads to delays during the

learning process; (2) by designing intervals with long lengths, it is

hard for a learner to adapt to new environments without leaving

3481



Towards Fair Disentangled Online Learning for Changing Environments KDD ’23, August 6ś10, 2023, Long Beach, CA, USA

information from past environments behind. As a consequence, the

adaptation of the learner to new environments may not perform

well.

With concerns from existing works, to tackle the problem of

fairness-aware online learning for changing environments, in this

paper, we propose a novel regret and a learning algorithm, in

which we assume only part of the model parameters is responsible

for adapting to new environments and the rest are environment-

invariant corresponding to fair predictions. Inspired by invariant

learning strategies, the proposed algorithm FairDolce is used to ac-

commodate changing environments and adaptively learn the model

with accuracy and fairness.

3 PRELIMINARIES

Vectors are denoted by lowercase boldface letters. Scalars are de-

noted by lowercase italic letters. Sets are denoted by uppercase

calligraphic letters. For more details refer to Appendix A.1.

3.1 Online Learning

In online learning, data batchesD𝑡 , defined as tasks, arrive one after

another over time. An online machine learner can learn from new

information in real-time as they arrive. Specifically, at each time,

the learner faces a loss function 𝑓𝑡 : R
𝑑 × Θ→ R which does not

need to be drawn from a fixed distribution and could even be chosen

adversarially over time [6]. The goal of the learner over all times 𝑇

is to decide a sequence of model parameters {𝜽 𝑡 }𝑇𝑡=1 by an online

learning algorithm, e.g., follow the leader [9], that performs well

on the loss sequence {𝑓𝑡 (D𝑡 , 𝜽 𝑡 )}𝑇𝑡=1. Particularly, to evaluate the

algorithm, a standard objective for online learning is to minimize

some notion of regret, defined as the overall difference between the

learner’s loss
∑𝑇
𝑡=1 𝑓𝑡 (D𝑡 , 𝜽 𝑡 ) and the best performance achievable

by comparators.

Static regret. In general, one assumes that tasks collected over

time are sampled from a fixed and stationary environment fol-

lowing the i.i.d assumption. Therefore, with a sequence of model

parameters learned from the learner, the objective is to minimize

the accumulative loss of the learned model to that of the best fixed

comparator 𝜽 ∈ Θ in hindsight. This regret is typically referred to

as static regret since the comparator is time-invariant.

𝑅𝑠 =

∑︁𝑇

𝑡=1
𝑓𝑡 (D𝑡 , 𝜽𝑡 ) − min

𝜽 ∈Θ

∑︁𝑇

𝑡=1
𝑓𝑡 (D𝑡 , 𝜽 ) (1)

The goal of online learning under a stationary environment is to

design algorithms such that static regret 𝑅𝑠 sublinearly grows in

𝑇 . However, low static regret does not necessarily imply a good

performance in changing environment, where tasks are sampled

from various distributions, since the time-invariant comparator 𝜽

in Eq. (1) may behave badly. Tasks sequentially collected from non-

stationary environments and distributions of them varying over

time are more realistic. To address this limitation, recent advances

[25, 33] have introduced enhanced regret metrics, i.e., dynamic

regret, to measure the learner’s performance.

Dynamic regret. The dynamic regret [38] is defined as the

difference between the cumulative loss of the learner and that of a

sequence of comparators u1, · · · , u𝑇 ∈ Θ.

𝑅𝑑 =

∑︁𝑇

𝑡=1
𝑓𝑡 (D𝑡 , 𝜽𝑡 ) −

∑︁𝑇

𝑡=1
𝑓𝑡 (D𝑡 , u𝑡 ) (2)

In fact, Eq. (2) is more general since it holds for any sequence of

comparators and thus includes the static regret in Eq. (1). Therefore,

minimizing dynamic regret can automatically adapt to the nature of

environments, either stationary or dynamic. However, distinct from

static regret, bounding dynamic regret is challenging because one

needs to establish a universal guarantee that holds for any sequence

of comparators [32]. An alternative solution for this challenge is to

bound the regret in terms of some regularities of the comparator

sequence, e.g., path-length [38] defined in Eq. (9) which measures

the temporal variability of the comparator sequence.

As alluded to in Sec. 1, most of the state-of-the-art online tech-

niques ignore the significance of learning by being aware of model

fairness, which is an important hallmark of human intelligence.

To control bias, especially ensure group fairness across different

sub-populations, cumulative fairness notions are considered as con-

straints added on regrets.

3.2 Group Fairness

In general, group fairness criteria used for evaluating and designing

machine learning models focus on the relationships between the

sensitive variables and the system output [24, 34, 35]. The problem

of group unfairness prevention can be seen as a constrained opti-

mization problem. For simplicity, we consider one binary sensitive

label, e.g. gender, in this work. However, our ideas can be easily

extended to many sensitive labels with multiple levels.

Let P = X ×Z ×Y × E be the data space, where X ∈ R𝑑 is an

input feature space, Z ∈ {−1, 1} is a sensitive space, Y ∈ {0, 1}
is an output space for binary classification, and E ∈ N denotes

an environment space. Given a task D = {(x𝑖 , 𝑧𝑖 , 𝑦𝑖 , 𝑒𝑖 )}𝑛𝑖=1 ∈ P
in environment 𝑒𝑖 ∈ E, a fine-grained measurement to ensure

group fairness in class label prediction is to design fair classifiers

by controlling the notions of fairness between sensitive subgroups

{𝑧𝑖 = 1}𝑛1

𝑖=1 and {𝑧𝑖 = −1}
𝑛−1
𝑖=1 where 𝑛1 +𝑛−1 = 𝑛, e.g., demographic

parity [17, 24].

Definition 1 (Notions of Fairness [17, 24, 37]). A classifier

𝜔 : R𝑑 × Θ→ R is fair when its predictions are independent of the

sensitive attribute z = {𝑧𝑖 }𝑛𝑖=1. To get rid of the indicator function and
relax the exact values, a linear approximated form of the difference

between sensitive subgroups is defined [17],

𝑔 (D, 𝜽 ) = E(x,𝑧,𝑦,𝑒 )∼P
[ 1

𝑝1 (1 − 𝑝1 )
(𝑧 + 1

2
− 𝑝1

)
𝜔 (x, 𝜽 )

]
(3)

where 𝑝1 is an empirical estimate of 𝑝𝑟1. 𝑝𝑟1 is the proportion of

samples in group 𝑧 = 1 and correspondingly 1 − 𝑝𝑟1 is the proportion
of samples in group 𝑧 = −1.

Notice that, in Eq. (3), when 𝑝1 = P(x,𝑧,𝑦,𝑒 ) ∈P (𝑧 = 1), the fairness
notion 𝑔(D, 𝜽 ) is defined as the difference of demographic parity

(DDP). Similarly, when 𝑝1 = P(x,𝑧,𝑦,𝑒 ) ∈P (𝑦 = 1, 𝑧 = 1), 𝑔(D, 𝜽 )
is defined as the difference of equality of opportunity (DEO) [17].

Therefore, parameters 𝜽 in the domain of a task are feasible if they

strictly satisfy the fairness constraint 𝑔(D, 𝜽 ) = 0.

Motivations. To tackle the problem of fairness-aware online

learning in changing environments, a learner needs to update model

parameters with a global change, which is costly and inefficient.

Inspired by the sparse mechanism shift hypothesis [22], we state

changing environments in online learning can be attributed to
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partial changes in learned parameters in the long run that are

specific to environments. This implies that some parameters remain

semantically invariant across different environments.

4 METHODOLOGY

4.1 Settings and Problem Formulation

We consider a general sequential setting where a learner is faced

with tasks {D𝑡 }𝑇𝑡=1 one after another. Each of these tasks corre-

sponds to a time, denoted as 𝑡 ∈ [𝑇 ]. At each time, the goal of

the learner is to determine model parameters 𝜽 𝑡 using existing

task pool {D𝑖 }𝑡−1𝑖=1 in a fair domain Θ that perform well for the

task arrived at 𝑡 . This is monitored by the loss function 𝑓𝑡 and the

fairness notion 𝑔𝑡 , wherein the fair constraint 𝑔𝑡 (D𝑡 , 𝜽 𝑡 ) = 0 is

satisfied and 𝑓𝑡 (D𝑡 , 𝜽 𝑡 ) is minimized. To adapt to changing envi-

ronments, crucially, model parameters 𝜽 𝑡 = {𝜽𝑠𝑡 , 𝜽 𝑣𝑡 , 𝜽𝑑𝑡 , 𝜽𝑐𝑙𝑠𝑡 } can
be partitioned into multiple elements, specifically in which 𝜽

𝑠
𝑡 cap-

tures the semantic information of data through a semantic encoder

ℎ𝑠 : X × Θ → S, and 𝜽
𝑐𝑙𝑠
𝑡 is used for prediction under fair con-

straints. 𝜽 𝑣𝑡 and 𝜽
𝑑
𝑡 are parameters, later introduced in Secs. 4.2

and 4.3, for encoding the environmental information and decoding

latent representations, respectively, in order to adaptively train a

good 𝜽
𝑠
𝑡 . For data batches sampled from heterogeneous distribu-

tions at different times, 𝜽𝑠𝑡 corresponds to adapting to changing

environments by encoding samples to a latent semantic space. With

latent factors (representations) encoded from the semantic space as

inputs, 𝜽𝑐𝑙𝑠𝑡 is time-invariant in the long run. The overall protocol

for this setting is as follows:

(1) The learner selects semantic parameters 𝜽𝑠𝑡 and classification

parameters 𝜽𝑐𝑙𝑠𝑡 in the fair domain Θ.

(2) The world reveals a loss and fairness notion 𝑓𝑡 and 𝑔𝑡 .

(3) The learner incurs an instantaneous loss 𝑓𝑡 (ℎ𝑠 (D𝑡 , 𝜽
𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡 )

and fairness estimation 𝑔(ℎ𝑠 (D𝑡 , 𝜽
𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡 ).

(4) Advance to the next time.

Asmentioned in Sec. 3.1, the goal of the learner is to minimize regret

under long-term constraints [18], defined as the summation of fair

constraints over time. Since 𝜽𝑠𝑡 adapts to different environments to

encode semantic information from a latent invariant space and 𝜽𝑐𝑙𝑠𝑡

further takes semantic inputs for fair prediction, let {𝜽𝑠𝑡 , 𝜽𝑐𝑙𝑠𝑡 }𝑇𝑡=1 be
the sequence of parameters generated at the Step (1) of the protocol.

We propose a novel fairness-aware regret for changing environments,

namely FairSDR, defined as

𝐹𝑎𝑖𝑟𝑆𝐷𝑅 =

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (D𝑡 , 𝜽
𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡 ) − min

𝜽𝑐𝑙𝑠 ∈Θ

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (D𝑡 , u
𝑠
𝑡 ), 𝜽𝑐𝑙𝑠 )

subject to

𝑇∑︁

𝑡=1

���
���
[
𝑔 (ℎ𝑠 (D𝑡 , 𝜽

𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡 )

]
+

���
��� = 0

where [·]+ is the projection onto the non-negative space. Similar

to {u1, · · · , u𝑇 } denoted in Eq. (2), {u𝑠1, · · · , u
𝑠
𝑇
} are a sequece of

semantic comparators to {𝜽𝑠1, · · · , 𝜽
𝑠
𝑇
}, where each corresponds to

an underlying environment. 𝜽𝑐𝑙𝑠 is the best-fixed comparator for

fair classification, which is time-invariant.

Remarks. In contrast to the regret proposed in [37] in which it

is extended from the interval-based strongly adaptive regret, and it

aims to minimize the maximum static regret for all intervals on the

undivided model parameter, FairSDR takes the mixed form of static

and dynamic regrets. Furthermore, [37] employs the meta-learning

framework in which the function inside 𝑓𝑡 is designed for interval-

level learning with gradient steps on 𝜽 . However, in FairSDR, ℎ𝑠
encodes an input to a semantic representation through a neural

network on 𝜽
𝑠 , which is part of 𝜽 .

4.2 Assumptions for Invariance

Recall that in the learning protocol mentioned in Sec. 4.1, the

main goal for the learner is to generate the parameter sequence

{𝜽𝑠𝑡 , 𝜽𝑐𝑙𝑠𝑡 }𝑇𝑡=1 in Sec. 4.1 that performs well on the loss sequence and

the long-term fair constraints. We make the following assumptions.

Assumption 1 (Shared Semantic Space). Given a task

{(x𝑖 , 𝑧𝑖 , 𝑦𝑖 , 𝑒𝑖 )}𝑛𝑖=1 sampled from a particular environment 𝑒𝑖 ∈ E, we
assume that each datapoint in the task is generated from

• a semantic factor s𝑖 = ℎ𝑠 (x𝑖 , 𝜽𝑠 ) ∈ S, where S refers to a semantic

space shared by all environment E;
• a variation factor v𝑖 = ℎ𝑣 (x𝑖 , 𝜽 𝑣) ∈ V where v𝑖 is specific to the

individual environment 𝑒𝑖 .

where ℎ𝑣 : X × Θ → V is a variation encoder parameterized by

𝜽
𝑣 . We assume that each environment 𝑒𝑖 is represented by specific

variation factor ℎ𝑣 (x𝑖 , 𝜽 𝑣).

This assumption is closely related to the shared latent space

assumption in [16], wherein [16] assumes a fully shared latent

space. We postulate that only the semantic space can be shared

across environments whereas the variation factor is environment

specific, which is a more reasonable assumption when the cross-

environment mapping is many-to-many. In other words, given

datapoints in various environments, each can be encoded into se-

mantic and variation factors within the same semantic space but

with different variation factors depending on the environments.

Under Assumption 1, each datapoint is able to be disentangled

with semantic and variation factors. With two datapoints sampled

from the same environment 𝑒𝑖 , given a decoder𝐷 : S×V×Θ→ X,
we assume that

Assumption 2 (Data Invariance under Homogeneous Envi-

ronments). Given a semantic encoder ℎ𝑠 , a variation encoder ℎ𝑣 ,

and a decoder 𝐷 , for any x𝑖 , x𝑗 ∈ X, 𝑖 ≠ 𝑗 sampled in the same

environment 𝑒 ∈ E, it holds x𝑖 = 𝐷 (ℎ𝑠 (x𝑖 , 𝜽𝑠 ), ℎ𝑣 (x𝑗 , 𝜽 𝑣), 𝜽𝑑 ).

Assumption 2 enforces the data invariance of the original input

x𝑖 and the one that𝐷 (ℎ𝑠 (x𝑖 , 𝜽𝑠 ), ℎ𝑣 (x𝑗 , 𝜽 𝑣), 𝜽𝑑 ) reconstructs jointly
from semantic and variation latent factors when the latter remains

but the former varies.

Assumption 3 (Class Invariance under Heterogeneous En-

vironments [30]). We assume that inter-environment variation

is solely characterized by the environment shift in the distribution

P(𝑋, 𝐸). As a consequence, we assume that P(𝑌 |𝑋, 𝐸) is stable across
environments. Similar to [21, 30], given two datapoints (x𝑖 , 𝑧𝑖 , 𝑦, 𝑒𝑖 )
and (x𝑗 , 𝑧 𝑗 , 𝑦, 𝑒 𝑗 ), we assume the following holds

P(𝑌 = 𝑦 |𝑋 = x𝑖 , 𝐸 = 𝑒𝑖 ) =P(𝑌 = 𝑦 | (𝑋 = 𝐷 (ℎ𝑠 (x𝑖 , 𝜽𝑠 ), ℎ𝑣 (x𝑗 , 𝜽 𝑣 ),

𝜽
𝑑 ), 𝐸 = 𝑒 𝑗 ),

∀x𝑖 , x𝑗 ∈ X, 𝑒𝑖 , 𝑒 𝑗 ∈ E, 𝑖 ≠ 𝑗
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t=1 t=2 t =3 t=4

learn learn learn learn

t=T-1 t=T

learn learn
Environment 1: Environment 2: Environment 6:

Time

Env-Invariant

Env-Specific

Figure 1: A graphical illustration of the proposed framework using Rotated-Colored-MNIST dataset. (Left) Each angle within

{0, 15, 30, 45, 60, 75} represents an environment. In the problem of fairness-aware online learning for changing environments,

data batches arrive one after another over time. Parameters sequence {𝜽𝑠𝑡 , 𝜽𝑐𝑙𝑠𝑡 }𝑇𝑡=1 are learned through the proposed model on

the right. (Right) The model consists of two learning networks, RLN and PLN. The semantic and variation encoders disentangle

an input with two factors (representations). Under Assumptions 2 and 3, the decoder takes both factors and generates new

data by diversifying the variation across environments. Semantic factors go through the classifier presented in PLN under

fair constraints and further output fair predictions. We claim that when 𝑇 is large enough, only a subset of the parameters

sequence, {𝜽𝑠𝑡 }𝑇𝑡=1, are updated to adapt to changing environments.

This assumption shows that the prediction depends only on the

semantic factorℎ𝑠 (x, 𝜽𝑠 ) regardless of the variation factorℎ𝑣 (x, 𝜽 𝑣).
Furthermore, the semantic factors are used for fair prediction under

fairness constraints.

4.3 Learning Dynamically for Adaptation

As the motivation stated in Sec. 3, an efficient online algorithm is

expected to partially update model parameters (i.e., 𝜽𝑠𝑡 ) to adapt

to changing environments sequentially and to remain the rest (i.e.,

𝜽
𝑐𝑙𝑠
𝑡 ). As the illustration shown in Fig. 1, a novel online framework

for changing environments is proposed with two separate networks.

The representation learning network (RLN) aims to learn a good

semantic encoder ℎ𝑠 that is able to accurately disentangle semantic

representations within various environments, associated with the

variation encoder ℎ𝑣 and the decoder 𝐷 . The prediction learning

network (PLN) solely consists of the classifier 𝜔 and it takes seman-

tic representations from RLN and outputs fair predictions under

fair constraints, which is invariant to environments.

Specifically in RLN, to learn a good semantic encoder ℎ𝑠 , at each

time 𝑡 we consider a data batchQ𝑡 = {(r1,𝑞,𝑡 , r2,𝑞,𝑡 , r3,𝑞,𝑡 , r4,𝑞,𝑡 )}𝑄𝑞=1,𝑡
containing multiple quartet data pairs sampled from existing task

pool {D𝑖 }𝑡−1𝑖=1 , where𝑄 denotes the number of quartet pairs in |Q𝑡 |.
• r1,𝑞,𝑡 = (x𝑎,𝑡 , 𝑧𝑎,𝑡 , 𝑦𝑡 , 𝑒𝑡 ) with class 𝑦𝑡 and environment 𝑒𝑡
• r2,𝑞,𝑡 = (x𝑏,𝑡 , 𝑧𝑏,𝑡 , 𝑦′𝑡 , 𝑒𝑡 ) with class 𝑦′𝑡 and environment 𝑒𝑡
• r3,𝑞,𝑡 = (x𝑐,𝑡 , 𝑧𝑐,𝑡 , 𝑦𝑡 , 𝑒′𝑡 ) with class 𝑦𝑡 and environment 𝑒′𝑡
• r4,𝑞,𝑡 = (x𝑑,𝑡 , 𝑧𝑑,𝑡 , 𝑦′𝑡 , 𝑒′𝑡 ) with class 𝑦′𝑡 and environment 𝑒′𝑡

Notice that r1,𝑞,𝑡 and r2,𝑞,𝑡 (same to r3,𝑞,𝑡 and r4,𝑞,𝑡 ) share the same

environment label 𝑒𝑡 but different labels 𝑦𝑡 and 𝑦
′
𝑡 . r1,𝑞,𝑡 and r3,𝑞,𝑡

(same to r2,𝑞,𝑡 and r4,𝑞,𝑡 ) share the same label 𝑦𝑡 but different envi-

ronments 𝑒𝑡 and 𝑒
′
𝑡 . We view r3,𝑞,𝑡 (r4,𝑞,𝑡 ) is an alternative pair to

r1,𝑞,𝑡 (r2,𝑞,𝑡 ) with changing environments. For simplicity, we omit

the subscripts 𝑞 and 𝑡 .

Under Assumption 2, for (r1, r2) and (r3, r4) within the same

environment but different labels, the data reconstruction loss L𝑟𝑒𝑐𝑜𝑛
is given:

L𝑞
𝑟𝑒𝑐𝑜𝑛 = 𝑑𝑖𝑠𝑡 [x𝑎, 𝐷 (s𝑎, v𝑏 , 𝜽𝑑𝑡 ) ] + 𝑑𝑖𝑠𝑡 [x𝑐 , 𝐷 (s𝑐 , v𝑑 , 𝜽𝑑𝑡 ) ] (4)

where s𝑎 = ℎ𝑠 (x𝑎, 𝜽𝑠𝑡 ), s𝑐 = ℎ𝑠 (x𝑐 , 𝜽𝑠𝑡 ), v𝑏 = ℎ𝑣 (x𝑏 , 𝜽 𝑣𝑡 ), and v𝑑 =

ℎ𝑣 (x𝑑 , 𝜽 𝑣𝑡 ). 𝑑𝑖𝑠𝑡 : X × X → R indicates a distance metric, where

we use ℓ1 norm in the experiments.

Similarly, under Assumption 3, for (r1, r3) and (r2, r4) with the

same label but different environments, the class invariance loss L𝑖𝑛𝑣
is given:

L𝑞
𝑖𝑛𝑣 = ℓ𝐶𝐸

(
𝜔
(
ℎ𝑠 (x𝑎→𝑐 , 𝜽

𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡

)
, 𝑦

)
+ ℓ𝐶𝐸

(
𝜔
(
ℎ𝑠 (x𝑏→𝑑 , 𝜽

𝑠
𝑡 ), 𝜽𝑐𝑙𝑠𝑡

)
, 𝑦′

)

(5)

where x𝑎→𝑐 = 𝐷 (s𝑎, v𝑐 , 𝜽𝑑𝑡 ), x𝑏→𝑑 = 𝐷 (s𝑏 , v𝑑 , 𝜽𝑑𝑡 ), and ℓ𝐶𝐸 : R ×
R→ R is the cross-entropy loss function.

Finally, to ensure prediction accuracy within a fair domain, we

combine (r1,𝑞, r2,𝑞, r3,𝑞, r4,𝑞) together over the batch Q𝑡 to estimate

L𝑐𝑙𝑠 and L𝑓 𝑎𝑖𝑟 :

L𝑐𝑙𝑠 = 𝑓𝑡 (Q𝑡 , 𝜽𝑠𝑡 ⊕ 𝜽𝑐𝑙𝑠𝑡 )

=

∑︁𝑄

𝑞=1

∑︁{𝑎,𝑏,𝑐,𝑑}
𝑘

ℓ𝐶𝐸

(
𝜔 (ℎ𝑠 (x𝑘,𝑞, 𝜽𝑠𝑡 ), 𝜽𝑐𝑙𝑠𝑡 ), 𝑦𝑘,𝑞

)

L𝑓 𝑎𝑖𝑟 =

∑︁𝑄

𝑞=1
𝑔 (Q𝑡 , 𝜽𝑠𝑡 ⊕ 𝜽𝑐𝑙𝑠𝑡 )

(6)

where ⊕ denotes concatenation operator between 𝜽
𝑠
𝑡 and 𝜽

𝑐𝑙𝑠
𝑡 .

4.4 A Practical Online Algorithm: FairDolce

In practice, requirements for remaining data invariance for data-

points sampled in the same environment with different labels and

for keeping class invariance for datapoints sampled with the same

label within various environments are hard to be satisfied. Similar

to the fairness constraint, it is a strict equality constraint that is

difficult to enforce in practice. To alleviate some of such difficulties,

we relax the loss functions with empirical constants that

L𝑓 𝑎𝑖𝑟 ≤ 𝜖1

L𝑟𝑒𝑐𝑜𝑛 =
1

𝑄

∑︁𝑄

𝑞=1
L𝑞
𝑟𝑒𝑐𝑜𝑛 ≤ 𝜖2; L𝑖𝑛𝑣 =

1

𝑄

∑︁𝑄

𝑞=1
L𝑞
𝑖𝑛𝑣 ≤ 𝜖3

(7)

𝜖1, 𝜖2, 𝜖3 > 0 are fixed margins that control the extent to violations.

L𝑡𝑜𝑡𝑎𝑙 = L𝑐𝑙𝑠 + 𝜆𝑡,1 (L𝑓 𝑎𝑖𝑟 − 𝜖1 ) + 𝜆𝑡,2 (L𝑟𝑒𝑐𝑜𝑛 − 𝜖2 ) + 𝜆𝑡,3 (L𝑖𝑛𝑣 − 𝜖3 )
(8)

Furthermore, we propose a primal-dual Algorithm 1 for ef-

ficient optimization, wherein it alternates between optimizing
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Algorithm 1 FairDolce

1: Input: batch size 𝑄 , learning rate 𝜂1, 𝜂2, margin 𝜖1, 𝜖2, 𝜖3.

2: Randomly initialize 𝜽 𝑡=0 ∈ Θ and 𝜆0,1, 𝜆0,2, 𝜆0,3 ∈ R+
3: Initial the domain buffer as empty,U ← [ ].
4: Initial the task buffer as empty, T ← [ ].
5: for each 𝑡 ∈ [𝑇 ] do
6: Record the performance of (𝜽𝑠𝑡−1, 𝜽

𝑐𝑙𝑠
𝑡−1) on D𝑡 .

7: if 𝑒𝑡 ∉ U then

8: U ←U ∪ {𝑒𝑡 }
9: end if

10: Assign 𝜽 𝑡 ← 𝜽 𝑡−1, 𝜆𝑡,1 ← 𝜆𝑡−1,1, 𝜆𝑡,2 ← 𝜆𝑡−1,2, 𝜆𝑡,3 ←
𝜆𝑡−1,3

11: for 𝑛 = 1, 2 · · · steps do
12: if |U| ≠ 1 then

13: Randomly sample a batch Q𝑡 ⊂ T indicated in

Sec. 4.3.

14: Compute L𝑞
𝑟𝑒𝑐𝑜𝑛 and L𝑞

𝑖𝑛𝑣 using Eq. (4) and (5) for

each quartet pair.

15: L𝑟𝑒𝑐𝑜𝑛 =
1
𝑄

∑𝑄
𝑞=1 L

𝑞
𝑟𝑒𝑐𝑜𝑛 andL𝑖𝑛𝑣 = 1

𝑄

∑𝑄
𝑞=1 L

𝑞
𝑖𝑛𝑣

16: else

17: Randomly sample a batch of doublet data pairs Q𝑡 =
{((x𝑖,𝑞,𝑡 , 𝑧𝑖,𝑞,𝑡 , 𝑦𝑖,𝑞,𝑡 , 𝑒), (x𝑗,𝑞,𝑡 , 𝑧 𝑗,𝑞,𝑡 , 𝑦 𝑗,𝑞,𝑡 , 𝑒))}𝑄𝑞=1,
where Q𝑡 ⊂ T .

18: Compute L𝑞
𝑟𝑒𝑐𝑜𝑛 using Eq. (4) for each doublet pair.

19: L𝑟𝑒𝑐𝑜𝑛 =
1
𝑄

∑𝑄
𝑞=1 L

𝑞
𝑟𝑒𝑐𝑜𝑛

20: Set L𝑖𝑛𝑣 = 0

21: end if

22: Compute L𝑐𝑙𝑠 , L𝑓 𝑎𝑖𝑟 using Eq. (6).

23: Compute L𝑡𝑜𝑡𝑎𝑙 using Eq. (8).
24: 𝜽

𝑠
𝑡 ← Adam(L𝑡𝑜𝑡𝑎𝑙 , 𝜽𝑠𝑡 , 𝜂1)

25: 𝜽
𝑣
𝑡 ← Adam(𝜆𝑡,2 · L𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑡,3 · L𝑖𝑛𝑣, 𝜽 𝑣𝑡 , 𝜂1)

26: 𝜽
𝑑
𝑡 ← Adam(𝜆𝑡,2 · L𝑟𝑒𝑐𝑜𝑛 + 𝜆𝑡,3 · L𝑖𝑛𝑣, 𝜽𝑑𝑡 , 𝜂1)

27: 𝜽
𝑐𝑙𝑠
𝑡 ← Adam(L𝑐𝑙𝑠 +𝜆𝑡,1 · L𝑓 𝑎𝑖𝑟 +𝜆𝑡,3 · L𝑖𝑛𝑣, 𝜽𝑐𝑙𝑠𝑡 , 𝜂1)

28: 𝜆𝑡,1 ← max
{
𝜆𝑡,1 + 𝜂2 · (L𝑓 𝑎𝑖𝑟 − 𝜖1), 0

}

29: 𝜆𝑡,2 ← max
{
𝜆𝑡,2 + 𝜂2 · (L𝑟𝑒𝑐𝑜𝑛 − 𝜖2), 0

}

30: if |U| ≠ 1 then

31: 𝜆𝑡,3 ← max
{
𝜆𝑡,3 + 𝜂2 · (L𝑖𝑛𝑣 − 𝜖3), 0

}

32: end if

33: end for

34: T ← T ∪ {D𝑡 }
35: end for

𝜽 𝑡 = {𝜽𝑠𝑡 , 𝜽 𝑣𝑡 , 𝜽𝑑𝑡 , 𝜽𝑐𝑙𝑠𝑡 } at each time via minimizing the empiri-

cal Lagrangian with fixed dual 𝜆𝑡 = {𝜆𝑡,1, 𝜆𝑡,2, 𝜆𝑡,3} corresponding
for L𝑓 𝑎𝑖𝑟 , L𝑟𝑒𝑐𝑜𝑛 as well as L𝑖𝑛𝑣 and updating the dual variable

according to the minimizer (lines 24-32). The primal-dual iteration

has clear advantages over stochastic gradient descent in solving

constrained optimization problems. Specifically, it avoids intro-

ducing extra balancing hyperparameters. Moreover, it provides

convergence guarantees once we have sufficient iterations and a

sufficiently small step size [30].

Moreover, because each task corresponds to a timestamp 𝑡 and

an unknown environment beforeD𝑡 arrives, the collected task pool

{D𝑖 }𝑡−1𝑖=1 may be sampled from a single environment. In this sense,

instead of using a batch stated in Sec. 4.3 with multiple quartet pairs,

a sampled batch with doublet pairs containing {(r1,𝑞,𝑡 , r1,𝑞,𝑡 )}𝑄𝑞=1,𝑡
is considered. As a consequence, the class invariance loss in Eq. (5)

is set to zero (lines 17-20).

5 ANALYSIS

We first state assumptions about the online learning problem for

changing environments that are largely used in [6, 31, 32, 37]. Then

we provide theoretical guarantees for the proposed FairSDR regard-

ing the loss regret and violation of cumulative fair constraints.

Assumption 4 (Bounded Parameter Domain). The parameter

domain Θ has a bounded diameter 𝐷 and contains the origin.

max
𝜽 1,𝜽 2∈Θ

| |𝜽 1 − 𝜽 2 | | ≤ 𝐷, ∀𝜽 1, 𝜽 2 ∈ Θ

Assumption 5 (Convexity). Domain Θ is convex and closed. The

loss function 𝑓𝑡 and the fair function 𝑔 are convex.

Assumption 6 (𝐹−Lipschitz). There exists a positive constant 𝐹
such that

max
𝜽 1,𝜽 2∈Θ

| 𝑓𝑡 ( ·, 𝜽 1 ) − 𝑓𝑡 ( ·, 𝜽 2 ) | ≤ 𝐹,

max
𝜽 1∈Θ

| |𝑔 ( ·, 𝜽 1 ) | | ≤ 𝐹, ∀𝜽 1, 𝜽 2 ∈ Θ, ∀𝑡 ∈ [𝑇 ]

Assumption 7 (Bounded gradient). The gradients ∇𝑓𝑡 (𝜽 ) and
∇𝑔(𝜽 ) exist, and they are bounded by a positive constant𝐺 on Θ, i.e.,

max
𝜽 ∈Θ
| |∇𝑓𝑡 ( ·, 𝜽 ) | | ≤ 𝐺, max

𝜽 ∈Θ
| |∇𝑔 ( ·, 𝜽 ) | | ≤ 𝐺, ∀𝜽 ∈ Θ, ∀𝑡 ∈ [𝑇 ]

Examples where these assumptions hold include logistic regres-

sion and 𝐿2 regression over a bounded domain. As for constraints,

a family of fairness notions, such as DDP stated in Eq. (3) of Sec. 3.2,

are applicable as discussed in [17]. For simplicity, in this section,

we omit D used in 𝑓𝑡 ,∀𝑡 and 𝑔.
As introduced in Sec. 4.1, a sequence of parameters {𝜽𝑠1, · · · , 𝜽

𝑠
𝑇
,

𝜽
𝑐𝑙𝑠
1 , · · · , 𝜽𝑐𝑙𝑠

𝑇
} generated by the learner are evaluated with com-

parator sequence {u𝑠1, · · · , u
𝑠
𝑇
, 𝜽𝑐𝑙𝑠 } in FairSDR. We claim that

FairSDR takes a mixed form of the static and dynamic regrets with

respect to {𝜽𝑐𝑙𝑠𝑡 }𝑇𝑡=1 and {𝜽
𝑠
𝑡 }𝑇𝑡=1, respectively. Since the compara-

tor 𝜽𝑐𝑙𝑠 in the static regret is performed as the best fixed one in

hindsight, intuitively the comparator sequence can be extended to

{u𝑠1, · · · , u
𝑠
𝑇
, 𝜽𝑐𝑙𝑠 , · · · , 𝜽𝑐𝑙𝑠 } by making𝑇 copies of 𝜽𝑐𝑙𝑠 . For simplic-

ity, we denote the sequence of the learner’s parameters and com-

parators as {𝜽 𝑙𝑡 }𝑇𝑡=1 and {u
𝑐
𝑡 }𝑇𝑡=1, respectively, where 𝜽

𝑙
𝑡 := 𝜽

𝑠
𝑡 ⊕𝜽𝑐𝑙𝑠𝑡

and u
𝑐
𝑡 := u

𝑠
𝑡 ⊕ 𝜽𝑐𝑙𝑠 , ∀𝑡 ∈ [𝑇 ].

Furthermore, different from the static regret introduced in Eq. (1),

it is impossible to achieve a sub-linear upper bound using dynamic

regret in general. Instead, we can bound the dynamic regret in

terms of some certain regularity of the comparator sequence or the

function sequence, such as the path-length [38] which measures

the temporal variability of the comparator sequence.

𝑃𝑇 =

∑︁𝑇

𝑡=1
| |u𝑐𝑡+1 − u

𝑐
𝑡 | |2 (9)

Finally, under Assumptions 4 to 7 and Eq. (9), we state the key The-

orem 1 that the proposed FairSDR enjoys theoretic guarantees for

both loss regret and violation of the long-term fairness constraint

in the long run for Algorithm 1.
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Table 1: Comparison of upper bounds in loss regret and constraint violations for changing environments across methods.

Algorithms M. Zinkevich [38] Ader [32] AOD [31] CBCE[14] FairSAOML [37] FairSDR (Ours)

Loss Regret O(𝑇 1/2 (1 + 𝑃𝑇 )) O((𝑇 (1 + 𝑃𝑇 ))1/2) 𝑂
(
(𝜏 log𝑇 )1/2

)
𝑂
(
(𝜏 log𝑇 )1/2

)
𝑂
(
(𝜏 log𝑇 )1/2

)
O((𝑇 (1 + 𝑃𝑇 ))1/2)

Constraint Violations - - - - 𝑂
(
(𝜏𝑇 log𝑇 )1/4

)
𝑂 (𝑇 1/2)

Theorem 1. Suppose Assumptions 4 to 7 hold, let {𝜽𝑠𝑡 , 𝜽𝑐𝑙𝑠𝑡 }𝑇𝑡=1
be the sequence generated by the online learner in Algorithm 1 and

{u𝑠𝑡 }𝑇𝑡=1 ∪ {𝜽
𝑐𝑙𝑠 } be the comparator sequence, setting adaptive learn-

ing rates with

𝜂1,𝑡 = 𝜂1,0/
√
𝑇, 𝜂2,𝑡 = 𝜂2,0/

√
𝜂1,𝑡 , ∀𝑡 ∈ [𝑇 ]

where 𝜂1,0 > 0 and 𝜂2,0 ∈ (0, 1√
2𝐺
) are constants. We have

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (𝜽𝑠𝑡 ), 𝜽𝑐𝑙𝑠𝑡 ) − min
𝜽𝑐𝑙𝑠 ∈Θ

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (u𝑠𝑡 ), 𝜽𝑐𝑙𝑠 ) = O
(√︁

𝑇 (1 + 𝑃𝑇 )
)

𝑇∑︁

𝑡=1

���
���
[
𝑔 (ℎ𝑠 (𝜽𝑠𝑡 ), 𝜽𝑐𝑙𝑠𝑡 )

]
+

���
��� = O(

√
𝑇 )

Proof. Proof of Theorem 1 is given in Appendix C. □

Discussion. Under Assumptions 4 to 7, we provide comparable

bounds for FairSDR with respect to both loss regret and violation

of fair constraints. Tab. 1 lists a number of state-of-the-art works

focusing on the problem of online learning in changing environ-

ments, where ours are added at the end. AOD [31], CBCE [14],

and FairSAOML [37] address this problem by proposing strongly

adaptive regret. In contrast to dynamic regret, strongly adaptive

regret handles changing environments from a local perspective by

proposing a set of intervals ranging from 𝜏 tasks. Ader [32] and

M. Zinkevich [38] tackle this problem using dynamic regret using

the length-path regularity in Eq. (9). Although the loss regret we

derived for FairSDR is comparable to the one in Ader, the latter ig-

nores the long-term fair constraint which is essential for fair online

learning.

6 EXPERIMENTAL SETTINGS

In previous sections, we derive a theoretically principled algorithm

assuming convexity everywhere. However, it has been known that

deep learning models provide advanced performance in real-world

applications, but they have a non-convex landscape with challeng-

ing theoretical analysis. Taking inspiration from the success of deep

learning, we empirically evaluate the proposed algorithm FairDolce

using neural networks in this section.

Datasets.We consider four datasets: Rotated-Colored-MNIST

(rcMNIST), New York Stop-and-Frisk [15], Chicago Crime [34], and

German Credit [1] to evaluate our FairDolce against state-of-the-

art baselines, where rcMNIST is an image data and the other three

are tabular datasets. We include the visualization of rcMNIST in

Fig. 2. (1) Rotated-Colored-MNIST is extended from the Rotated-

MNIST dataset [7], which consists of 10,000 digits from 0 to 9

with different rotated angles where environments are determined

by angles {0, 15, 30, 45, 60, 75}. For simplicity, we consider binary

classificationwhere digits are labeledwith 0 and 1 for digits from 0-4

and 5-9, respectively. For fairness concerns, each image has a green

or red digit color as the sensitive attribute. We intentionally make

correlations between labels and digit colors for each corresponding

environment ranging from {0.9, 0.7, 0.5, 0.3, 0.1, 0.05}. We further

divide data from each environment equally into 3 subsets, where

each is considered a task. For 6 environments, there is are total of 18

tasks and each arrives one after another over time in order. (2) New

York Stop-and-Frisk [15] is a real-world dataset on policing in

New York City in 2011. It documents whether a pedestrian who was

stopped on suspicion of weapon possession would in fact possess a

weapon. We consider race (i.e., black and non-black) as the sensitive

label for each datapoint. Since this data consists of data from 5

cities in New York City, Manhattan, Brooklyn, Queens, Bronx, and

Staten, data collected from each city is considered as an individual

environment. To adapt to the setting of online learning, data in each

environment is further split into 3 tasks, 15 tasks in total, where

each task corresponds to a month’s set of data of a city. (3) Chicago

Crime [34] dataset contains information including demographics

information (e.g., race, gender, age, population, etc.), household,

education, unemployment status, etc. We use race (i.e., black and

non-black) as the sensitive label. It consists of 16 tasks and each

corresponds to a county of Chicago city as an environment. This

dataset is initially used formulti-task fair regression learning in [34],

where crime counts are used as continuous labels for data records.

In our experiments, we categorize crime counts into binary labels,

high (≥ 6) and low (< 6). (4) German Credit [1] dataset contains

1000 datapoints with 20 features. Gender (i.e., male and female) is

used as sensitive attribute and credit risk (i.e., good and bad) is the

target. Following [23, 37], to generate dynamic environments, we

construct a larger dataset by combining three copies of the original

data and flipping the original values of non-sensitive attributes

by multiplying -1 for the middle copy. Therefore, each copy is

considered as an environment. Each data copy is split into 2 tasks

by time and there are 6 tasks in total.

Evaluation Metrics. Three popular evaluation metrics to esti-

mate fairness are used and each allows quantifying the extent to

model bias.

• Demographic Parity (DP) [4] is formalized as

DP =





P(𝑌 = 1|𝑍 = −1)
/
P(𝑌 = 1|𝑍 = 1), if DP ≤ 1

P(𝑌 = 1|𝑍 = 1)
/
P(𝑌 = 1|𝑍 = −1), otherwise

This is also known as a lack of disparate impact [5]. A value

closer to 1 indicates fairness.

• Equalized Odds (EO) [10] is formalized as

EO =





P(𝑌 = 1|𝑍 = −1, 𝑌 = 1)
/
P(𝑌 = 1|𝑍 = 1, 𝑌 = 1), if EO ≤ 1

P(𝑌 = 1|𝑍 = 1, 𝑌 = 1)
/
P(𝑌 = 1|𝑍 = −1, 𝑌 = 1), otherwise

EO requires that 𝑌 has equal true positive and false negative

rates between subgroups 𝑧 = −1 and 𝑧 = 1. Same to DP, a value

closer to 1 indicates fairness.

• Mean Difference (MD) [29] is a form of statistical parity, applied

to the classification decisions, measuring the difference in the
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Figure 2: Visualization of the Rotated-Colored-MNIST dataset.

proportion of positive class of individuals in sub-groups.

MD =

���
∑
𝑖:𝑧𝑖=1 𝑦𝑖∑
𝑖:𝑧𝑖=1 1

−
∑
𝑖:𝑧𝑖=−1 𝑦𝑖∑
𝑖:𝑧𝑖=−1 1

���

A value closer to 0 indicates fairness.

Baselines.We compare the performance of our proposed Fair-

Dolce with six baseline methods from three perspectives: online

learning for changing environments (AOD [31], CBCE [14]), online

fairness learning (FairFML [36], FairAOGD [13], FairGLC [28],), and

the state-of-the-art online fairness learning for changing environ-

ments (FairSAOML [37]). AOD minimizes the strongly adaptive

regret by running multiple online gradient descent algorithms over

a set of dense geometric covering intervals. CBCE adapts chang-

ing environment in an online learning paradigm by combining the

idea of sleeping bandits with the coin betting algorithm. FairFML

controls bias in an online working paradigm and aims to attain

zero-shot generalization with task-specific adaptation. FairFML fo-

cuses on a static environment and assumes tasks are sampled from

an unchangeable distribution. FairAOGD is proposed for online

learning with long-term constraints. In order to fit bias-prevention

and compare them to FairDolce, we specify such constraints as DDP

stated in Eq. (3). FairGLC rectifies FairAOGD by square-clipping the

constraints in place of 𝑔𝑖 (·),∀𝑖 . FairSAOML addresses fair online

learning in changing environments by dynamically activating a

subset of learning processes at each time through different combi-

nations of task sets.

Architectures. For the rcMNIST image dataset, all images are

resized to 28 × 28. Following [30], the semantic encoder and the

style encoder consist of 4 strided convolutional layers followed

by ReLU activation functions and Batch Normalization [12]. The

decoder consists of 1 upsampling layer and 6 strided convolutional

layers activated by ReLU. The classifier is performed by 2 FC hid-

den layers activated by ReLU. For tabular datasets (i.e., New York

Stop-and-Frisk, Chicago Crime, and German Credit), followed by

[19], both encoders and the decoder contain one FC layer followed

by LeakyReLU activation functions. The network architecture for

the classifier is 1 FC layer activated by Sigmoid. Details for hyper-

parameters tuning are provided in Appendix A.2.

7 RESULTS

7.1 Adaptability for Changing Environments

As shown in the first three columns in Fig. 3, model performance

is sequentially evaluated by fairness metrics (i.e., DP, EO, and MD)

introduced in Sec. 6. Our results demonstrate FairDolce outperforms

baseline methods by giving the highest DP and EO values and

the lowest MD overall. Specifically, it eventually meets the fair

criteria of "80%-rule" [2] where DP and EO at the last several times

are beyond 0.8. The last column of Fig. 3 shows the change of

model accuracies over time. We claim that FairDolce substantially

outperforms alternative approaches with robust performance under

dynamic environments in achieving the highest accuracy of all time.

As a tough competitor, FairSAOML addresses the same problem

that we stated in this paper by proposing an expert-tracking tech-

nique in which experts’ weights are updated accordingly. It assumes

that larger experts containing information across a large number of

tasks help the learner to adapt to the new environment quickly. In

our experiments, although FairSAOML shows competitive perfor-

mance in bias control, it cannot surpass ours. This is because when

the environment changes, larger experts in FairSAOML retain infor-

mation from the old environments, which hurts the performance of

the learner. Similar reasons are attributed to interval-based learning

algorithms, such as AOD and CBCE. In the case of changing envi-

ronments, one major merit of FairDolce is to disentangle data by

separated representations in latent spaces, where only the semantic

ones correspond to model predictions. This effectively controls the

interference from various environments.

7.2 Ablation Studies

We conduct ablation studies on all datasets to demonstrate the con-

tributions of three key components in our method. Fig. 4 demon-

strates the results on the rcMNIST dataset. Results on other datasets

refer to Figs. 5 to 7 in Appendix B. (1) In this first study (𝑤/𝑜ℎ𝑣&𝐷),

we intentionally remove the variation encoderℎ𝑣 and the decoder𝐷

and only keep the semantic encoder ℎ𝑠 and the classifier𝜔 with fair

constraints. In this sense, the proposed architecture is equivalent

to a simple neural network, and the semantic encoder functions as

a featurizer. (2) In the second study (𝑤/𝑜 fair constraints), we keep
all modules but remove the fairness constraints 𝑔 from the classifier

𝜔 . Without fair constraints, although the model provides better

performance, fairness is not guaranteed over time. (3) In the third

study (𝑤/𝑜 ℎ𝑣 ), only the variation encoder ℎ𝑣 is removed. Without

the variation encoder, the model is similar to conventional auto-

encoders. The generalization ability to changing environments is

weakened.

8 CONCLUSION

To address the problem of fairness-aware online learning for chang-

ing environments, we first introduce a novel regret, namely FairSDR,

in which it takes a mixed form of static and dynamic regret metrics.

We challenge existing online learning methods by sequentially up-

dating model parameters with a local change, where only parts of
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Figure 3: Model performance over datasets through each time. (a-d) Rotated-Colored-MNIST; (e-h) New York Stop-and-Frisk,

(i-l) Chicago Crime; (m-p) German Credit.
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Figure 4: Ablation studies on the Rotated-Colored-MNIST dataset.

the parameters correspond to environmental change, and keep the

remaining invariant to environments and thus solely for fair pre-

dictions. To this end, an effective algorithm FairDolce is introduced,

wherein it consists of two networks with auto-encoders. Through

disentanglement, data are able to be encoded with an environment-

invariant semantic factor and an environment-specific variation

factor. Furthermore, semantic factors are used to learn a classifier

under a group fairness constraint. Detailed theoretic analysis and

corresponding proofs justify the effectiveness of the proposed al-

gorithm by demonstrating upper bounds for the loss regret and

violation of fair constraints. Empirical studies based on real-world

datasets show that our method outperforms state-of-the-art online

learning techniques in both model accuracy and fairness.
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A ADDITIONAL EXPERIMENT DETAILS

A.1 Notations

Vectors are denoted by lowercase bold face letters. Scalars are

denoted by lowercase italic letters. Sets are denoted by upper-

case calligraphic letters. Indices of task sequences are denoted as

[𝑇 ] = {1, · · · ,𝑇 }. | | · | | represents ℓ2 norm.

Table 2: Important notations and corresponding descriptions.

Notations Descriptions

𝑇 total number of learning tasks

𝑡 indices of tasks

𝑓𝑡 loss function at time 𝑡

𝑔 fairness function

𝜔 classification function

ℎ𝑠 semantic encoder

ℎ𝑣 variation encoder

𝐷 decoder

𝜽 model parameters

𝜽
𝑠 parameters of the semantic encoder

𝜽
𝑣 parameters of the variation encoder

𝜽
𝑑 parameters of the decoder

𝜽
𝑐𝑙𝑠 parameters of the classifier

u
𝑠 semantic comparators

s semantic factor (representation)

v variation factor

Q𝑡 data batch sampled from the task pool at time 𝑡

𝑄 total number of quartet/doublet pairs in Q𝑡
𝑞 indices of quartet/doublet pair in Q𝑡
|Q𝑡 | total number of samples in the batch Q𝑡

A.2 Hyperparameter Search

For each dataset, we tune the following hyperparameters: (1) the

initial dual meta parameter 𝜆1, 𝜆2, 𝜆3 is chosen from {0.00001, 0.0001,
0.001, 0.01, 0.1, 1, 10, 100, 1000, 10000 }; (2) learning rates 𝜂1 and

𝜂2 for updating primal and dual variables are chosen from {0.0001,

0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 0.5, 1, 5, 10, 50, 100, 500, 1000};
(3) set margins 𝜂1 = 𝜂2 = 𝜂3 = 0.05.

B ADDITIONAL EXPERIMENT RESULTS

Ablation study results on the New York Stop-and-Frisk, Chicago

Crime, and German Credit datasets are shown in Figs. 5 to 7. Similar

trends are observed as the Rotated-Colored-MNIST in Fig. 4.

C SKETCH PROOF OF THEOREM 1

Proof. Using 𝜂1,𝑡 =
𝜂1,0√
𝑇
, 𝜂2,𝑡 =

𝜂2,0√
𝜂1,𝑡

,∀𝑡 ∈ [𝑇 ] given in the

Theorem yelds

𝑇∑︁

𝑡=1

Δ𝑡 (u𝑐𝑇 ) =
√
𝑇

𝜂1,0

𝑇∑︁

𝑡=1

( | |u𝑐𝑇 − 𝜽
𝑙
𝑡 | |2 − ||u𝑐𝑇 − 𝜽

𝑙
𝑡+1 | |

2)

≤
√
𝑇

𝜂1,0
| |u𝑐𝑇 − 𝜽

𝑙
1 | |

2

Combing the above inequality with the Lemma 1 presented in [26]

yields

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (𝜽𝑠𝑡 ), 𝜽𝑐𝑙𝑠𝑡 ) − min
𝜽
𝑐𝑙𝑠 ∈Θ

𝑇∑︁

𝑡=1

𝑓𝑡 (ℎ𝑠 (u𝑠𝑡 ), 𝜽𝑐𝑙𝑠 )

≤
√
𝑇

𝜂1,0
| |u𝑐𝑇 − 𝜽

𝑙
1 | |

2 + 𝐺
2𝜂1,0

2

√
𝑇

which yields the bound for the loss regret. Similarly, with the

Lemma 1 presented in [26], it yields

| |𝜆𝑇,1 | |2 ≤ 𝛽𝑇

where 𝛽 =
2

𝜂1,0
√
𝑇
| |u𝑐

𝑇
− 𝜽 𝑙1 | |2 +

𝐺2𝜂1,0√
𝑇
+ 𝜂22,0𝐹

2

𝜂1,0𝑇𝑇
+ 2𝐹 . Together the

above inequality with 𝜂1,𝑡 =
𝜂1,0√
𝑇
, 𝜂2,𝑡 =

𝜂2,0√
𝜂1,𝑡

,∀𝑡 ∈ [𝑇 ], we have

𝑇∑︁

𝑡=1

���
���
[
𝑔(ℎ𝑠 (𝜽𝑠𝑡 ), 𝜽𝑐𝑙𝑠𝑡 )

]
+

���
��� ≤
√
𝑚𝜂1,0

𝜂2,0𝑇
| |𝜆𝑇,1 | | ≤

𝑚𝜂1,0𝛽

𝜂2,0
𝑇

1
4

which yields the bounds for the violation of the long-term con-

straints. □
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Figure 5: Ablation studies on the New York Stop-and-Frisk dataset.
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Figure 6: Ablation studies on the Chicago Crime dataset.
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Figure 7: Ablation studies on the German Credit dataset.
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