Check for
Updates

Weighted Minwise Hashing Beats Linear Sketching
for Inner Product Estimation

Aline Bessa“ Majid Daliri Juliana Freire Cameron Musco
New York University New York University New York University University of
aline.bessa@nyu.edu daliri.majid@nyu.edu juliana.freire@nyu.edu Massachusetts Amherst

cmusco@cs.umass.edu
Christopher Musco Aécio Santos Haoxiang Zhang
New York University New York University New York University
cmusco@nyu.edu aecio.santos@nyu.edu haoxiang.zhang@nyu.edu

ABSTRACT

We present a new approach for independently computing compact
sketches that can be used to approximate the inner product be-
tween pairs of high-dimensional vectors. Based on the Weighted
MinHash algorithm, our approach admits strong accuracy guar-
antees that improve on the guarantees of popular linear sketching
approaches for inner product estimation, such as CountSketch and
Johnson-Lindenstrauss projection. Specifically, while our method
exactly matches linear sketching for dense vectors, it yields signifi-
cantly lower error for sparse vectors with limited overlap between
non-zero entries. Such vectors arise in many applications involving
sparse data, as well as in increasingly popular dataset search appli-
cations, where inner products are used to estimate data covariance,
conditional means, and other quantities involving columns in un-
Jjoined tables. We complement our theoretical results by showing
that our approach empirically outperforms existing linear sketches
and unweighted hashing-based sketches for sparse vectors.

CCS CONCEPTS

« Information systems — Data management systems; Data
structures; Join algorithms; « Theory of computation — Sketch-
ing and sampling.

KEYWORDS
inner product estimation, vector sketching, join-size estimation

ACM Reference Format:

Aline Bessa, Majid Daliri, Juliana Freire, Cameron Musco, Christopher
Musco, Aécio Santos, and Haoxiang Zhang. 2023. Weighted Minwise Hash-
ing Beats Linear Sketching for Inner Product Estimation . In Proceedings of
the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS °23), June 18-23, 2023, Seattle, WA, USA. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3584372.3588679

“Author names are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

PODS °23, June 18-23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0127-6/23/06....$15.00
https://doi.org/10.1145/3584372.3588679

169

1 INTRODUCTION

The inner product of two vectors a and b, (a,b) = Z:l a[k]b[k], is
a ubiquitous operation. Among many other applications, inner prod-
ucts can be used to compute document similarities [46], to evaluate
learned classification models, and to estimate join sizes [1, 4, 45].
However, in modern applications involving very high-dimensional
vectors, computing exact inner products can be intractable. The
computational cost is O(n) and computing (a, b) requires loading
O(n) numbers from memory, or communicating O(n) numbers if a
and b are stored on different machines.

A common approach for resolving this issue is to pre-compute a
small space compression (a sketch) of each vector, which we will
denote by S(a) and S(b), respectively. An estimation function
is then used to approximate the inner product as ¥ (S(a), S(b)) ~
(a,b). The beauty of sketching is that it simultaneously reduces
storage, communication, and runtime complexity. Moreover, once
computed, sketches can be reused again and again to estimate inner
products with other vectors. For example, given another vector ¢
we can estimate (a, ¢) = F (S(a), S(c)).

Sketching methods for approximating inner products are already
widely used throughout computer science. In machine learning,
they can be used to accelerate the training of large-scale linear
models like support vector machines or logistic regression [5, 40].
In relational databases, inner product sketches are used in query
optimizers to choose optimal query plans without having to execute
expensive queries that involve large joins [19]. More recently, inner
product sketches have found applications in dataset search and
discovery, where they are used to discover joinable tables [22]
and to estimate other column statistics, such as correlation [47],
without explicitly performing a join operation between two tables.
We discuss these applications and others in Section 1.2.

What was Previously Known? In all of the applications above, a
primary concern is optimizing the trade-off between the sketch size
(which governs storage, communication, and runtime efficiency)
and how accurately ¥ (S(a), S(b)) approximates (a,b). A large
sketch size will in general lead to better approximation, but the
question is by exactly how much. Currently, the only methods with
strong theoretical guarantees on this tradeoff for general vectors (i.e.,
vectors without any assumed value distribution or magnitude) are
based on linear sketching algorithms. Such algorithms include the
famous “tug-of-war” sketch, a.k.a. the AMS sketch [2, 4], the CountS-
ketch algorithm [12], and methods based on Johnson-Lindenstrauss
(JL) random projection [1, 20].

https://doi.org/10.1145/3584372.3588679
https://doi.org/10.1145/3584372.3588679
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584372.3588679&domain=pdf&date_stamp=2023-06-18

PODS ’23, June 18-23, 2023, Seattle, WA, USA

All of these approaches have a similar form. We choose a random
matrix IT € R™" (IT might have i.i.d. random entries or more
complex structure) and sets S(a) = ITa and S(b) = ITb. Each sketch
is a length m vector and is considered a linear sketch since S is a
linear function. To estimate the inner product, the typical approach
is to simply return the sketch inner product (S(a), S(b)).!

A textbook theoretical accuracy guarantee for inner product
estimation based on linear sketching is:

FACT 1 (LINEAR SKETCHING FOR INNER PRODUCTS [5]). Lete,d €
(0,1) be accuracy and failure probability parameters respectively
and let m = O(log(1/8)/€%). Let I1 € R™ " be a random matrix
with each entry set independently to ++/1/m or —/1/m with equal
probability. For length n vectorsa,b € R", let S(a) = I1a and S(b) =
ITb. With probability at least 1 — 6,

[{S(a),S(b)) — (a,b)| < ella]l|[b]]
where ||x|| denotes the standard Euclidean norm.

In addition to dense random matrices, analogous results to Fact 1
can be proven for sparse JL matrices, CountSketch matrices, and
other linear sketches [19]. The fact provides a powerful accuracy
guarantee that improves with the sketch size m and depends natu-
rally on the norms of a and b. To the best of our knowledge, linear
sketching methods were previously the only known algorithms to
obtain such a strong theoretical guarantee.

1.1 Our Contributions

In this paper we introduce a novel method for inner product sketch-
ing based on the Weighted MinHash sketch [25, 28, 41], which is
a variant of the classic MinHash method [8, 9]. We prove that our
method obtains a refined guarantee than Fact 1. In particular, it
matches the result for linear sketches in the worst case when a
and b are dense?, but always obtains a better bound when a and b
are sparse vectors with limited overlap between non-zero entries.
As discussed further in Section 1.2, such pairs of vectors are the
norm in many applications of inner product sketching to database
problems and modern dataset search applications.

THEOREM 2 (MAIN REsULT). Let €,8 € (0,1) be accuracy and
failure probability parameters and let m = O(log(1/8)/€?). There is
an algorithm S that produces size-m sketches (Algorithm 3), along
with an estimation procedure ¥ (Algorithm 5), such that for any
a,b € R", with probability at least 1 — 6,

|7 (S(a), S(b)) = (a,b)| < emax (|laz||[Ibll, [lalllbz])

Above, I = {i:a[i] # 0 andb[i] # 0} is the intersection of a’s and
b’s supports. ay and b denote a andb restricted to indices in I.

We always have ||laz|| < ||a]| and ||bz]|| < ||b]|, so we can bound
max (||laz]||||bll, llallllbrll) < |lall||bl|. That is, the guarantee of The-
orem 2 matches that of Fact 1 in the worse-case, but can be signifi-
cantly better. For example, consider a and b that have roughly the
same number of non-zero entries, but only a y < 1 fraction of those

1Other estimators involving e.g., the median of multiple approximate inner products,
are also used [33]. However, theoretical guarantees are similar, typically differing in
the dependence on the failure probability &

2For dense vectors, Fact 1 is actually optimal up to constants: recent work implies that
no sketch of size m = 0(log(1/8)/€?) can achieve error €||a||||b|| with probability
1 — & for all inputs [3, 32]. Our result also matches this lower bound.

170

Aline Bessa et al.

entries are non-zero in both a and b. In this case, it is reasonable to
expect that [laz||? ~ yl|la||? and ||b7||? ~ y|/b||? sinceas and bz
contain just a y fraction of entries from the original vectors. Our
course, the actually improvement is data dependent; for example,
we might have that ||az||? is significantly smaller than y||a||?, or
that it is not much smaller than |a]|2.

Nevertheless, considering the “typical case” when a y fraction of
non-zeros overlap, we might expect the bound from Theorem 2 to
be better than Fact 1 by a factor of 4/y. So, to obtain the same error
as a linear sketch, our method could set m smaller by a factor of y.
In many applications, y is very small. E.g., in Section 5 we consider
a document similarity problem where y < .05 for 95% of vector
pairs sketched. This could equate to roughly a 20x improvement in
sketch size required to achieve a specified level of error.

Thanks to their strong theoretical guarantees, linear sketching
algorithms have become the go-to approach for generic inner prod-
uct estimation [19]. Our results show for the first time that an
alternative method can provide stronger bounds. We hope that this
paper will serve as a starting point for further investigation into
hashing-based algorithms for inner product sketching.

1.2 Motivating Application: Dataset Search

Before presenting the technical details of our results and discussing
related work, we detail one application that could benefit from
our proposed sketches, and helps illustrate the importance of ob-
taining bounds for inner product estimation that are sensitive to
the number of overlapping non-zero entries in a and b. Specifi-
cally, we consider the problem of dataset search which has received
increasing attention in recent years [22, 34, 47, 48, 54-56].

Suppose that a data scientist wants to understand the reasons
for fluctuations in taxi ridership in New York City in 2022. The
analyst only has a table containing two columns: a date column
and the number of taxi rides taken on that day. In order to carry
out the analysis, she needs to find other tables, either in her orga-
nization’s data lake or in public repositories like NYC Open Data
(which contain thousands of datasets [15]), that would bring in
other relevant variables when joined with the original table. For
example, the analyst might hope to find weather data, which can
impact taxi ridership. Moreover, she would like to find relevant
factors that she might not think of on her own, in an automatic way.

To solve this problem, we would like methods to automatically
discover tables that are both 1) joinable with the target table (i.e.,
also contain columns with dates from 2022) and 2) meaningfully
related with the analyst’s data. For example, a table containing
precipitation data should be returned if taxi ridership is significantly
higher or lower on days with high precipitation. To find such tables,
brute force search is not infeasible — we typically cannot afford to
join the analyst’s table with all tables in the search set to look for
good candidates. Instead, we need to efficiently estimate statistics
between disparate tables without materializing their join [47].

Sketching has become the most popular approach for performing
this sort of estimation between unjoined data tables [22, 47, 48,
54, 56]. Specifically, a small-space sketch is precomputed for all
data tables in the search set. When the analyst issues a query to
find relevant data, a sketch of her table is compared against these
preexisting sketches using a fraction of the computational resources
in comparison to explicitly materializing table joins [47].

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS °23, June 18-23, 2023, Seattle, WA, USA

Method Error for sketches of size O(1/¢%) Assumptions
JL [5], AMS [2, 4], CountSketch [12] € - ||a|l||b]| None
MinHash (MH) Sampling [6, 44] e-max (|laz|l||bll, llallllbrll) a,b are binary, i.e. with {0, 1} entries.
Weighted MinHash (WMH) Sampling (our method) e -max (Jlag|lbll, llalllibrII) None

Table 1: High-probability additive error guarantees for estimating (a,b) using various sketching methods. We let 7 = {i :
ali] # 0 and b[i] # 0} denote the intersection of a’s and b’s supports. a; and by are a and b restricted to indices in 7. Since
max ([laz|l|[bll, lallllbzI]) < |lall|/bll, the bound for our Weighted MinHash method is better than the linear sketching methods.
Unweighted MinHash only matches our bound under the strong limiting assumption that a and b are binary.

Ta T8 Tavap index [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Ka Va Kg VB KassB Vasa Vpea
1 60 2 1.0 n 60 50 xA |60 0 20 60 1.0 40 2.0 20 80 0 30 0 0 0 0 0
320 4 50 5 10 1.0 xMKall1 00101 1 1 1. 1. 1 0 1 0 0 0 0 0
4 60 5 1.0 8 20 20 v
510 s 20 1 30 25 fuf 0 1.0 0 50 1.0 0 0 2.0 0 40 25 60 0 0 6.0 37
6 40 10 40 xMKsllo 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1
7 2.0 11 2.5 SIZE(Vpa) = 4
8 20 12 60 SUM(Vgna) = 12.0 Figure 2: Vector representation of tables 74 with 75 from Fig-
o 80 6o SUM(V-) = 10.5 ure 1. The vector x! [K4l (resp. x! [K51) is the vector represen-

—_
_
w
=}
—_
°N
w
N

MEAN(V) = 12.0/4 = 3.0

tation for the join key K4 (resp. Kg) and x"4 (resp. x'B) is
the vector representation for the column V4 (resp. V). Bold

Figure 1: The table 74..p is the output of a one-to-one join e . .
numbers are entries included in the join result 74.p.

between the tables 74 with 7. We are interested in approx-
imating post-join statistics (e.g., join size, sums, means, and

covariances) of the table 74..p using only inner products. dataset search problem. We simply need to precompute S (x![K5])

and S(x"B) for all tables 73 in our search set. Sketching other

Inner product sketching for dataset search. Interestingly, in vector transformations like S((x"%)%) opens up the possibility of
the framework discussed above, many problems of interest can also estimating other quantities like post-join variance.
be formulated precisely as inner product sketching problems. To In search applications, we note that the vector length n can be
see why this is the case, consider the example tables 74 and 7g very large. However, computing sketches does not require fully
shown in Figure 1: each contains a column of keys, K4 and Kp, and materializing the vectors x1 [Kal and x1 K81 all sketching methods
a column of values, V4 and Vp. A join operation between the tables discussed in this paper only need to process the vectors’ non-zero
on their keys generates the output table 74,.p.> entries. Furthermore, it is not necessary to know the n beforehand:
We list in Figure 1 a number of statistics that we might hope to we can simply set n to be large enough to cover the whole domain
estimate in 7a..p When searching for relevant datasets. We claim of the keys being sketched (e.g., n = 232 or n = 26%),
that all of these statistics can be estimated using inner products To compare methods, Fact 1 and Theorem 2 suggest that any
between vector representations of the tables, which we denote asymptotic differences in performance between our WMH method
xL[Kal xKa and x1[Ks] xKb respectively and show in Figure 2. and linear sketching will depend on the overlap in non-zero entries
First, it is easy to see that the size of 74.<p is equal to the inter- between the vectors being sketched. In dataset search, this exactly
section between the keys in K4 and Kp, i.e., |[K4 N Kg| = 4. This is corresponds to the Jaccard similarity of the key sets K4 and Kp.
in turn equal to the inner product between xLKal gnd x2KB] Simi- Our method will perform better when the Jaccard similarity is small.
larly, the SUM aggregate of the values in V4 after join (i.e., SUM(V4pa)) For example, in Figure 1, only 4 out of 14 unique keys are shared
is equal to the inner product SUM(V4.o) = (x¥4,x1 (KBl). To esti- in both tables, so the similarity is = .29. In the scenario discussed
mate a post-join mean (i.e., MEAN(V4,.)), we can combine the join- above, we could imagine a much smaller ratio: for example, our
size estimate with the SUM estimate: data analyst might only have a table containing taxi data from 2022,

but compare it to a weather data table with dates from 1960 through
the present day. The Jaccard similarity would be 1/63 ~ .016. In
Section 5 we consider a dataset search use case involving data from
the World Bank [51] where 42% percent of table pairs had Jaccard
similarity < .1, and 35% have Jaccard similarity < .05.

(xVa, x1 K]y

MEAN(V45<) = ARSI

Finally, computing a post-join inner product, (x"4,x"B) could be
useful. In the application above, for tables containing precipitation
data and taxi ridership, a high inner-product might signify that
high precipitation days align with high ridership days. 1.3 Paper Roadmap
Comparison of different methods. Given the above reductions,
both linear sketching methods like JL projection and CountSketch,
and our Weighted MinHash method, can be directly applied to the

In Section 2 we review related prior work. In Section 3 we outline
an analysis of the standard unweighted MinHash method for inner

product estimation. This analysis serves as a technical warm-up

Fe——— o o for our main result (Theorem 2) on Weighted MinHash, which is
Note that, in the example described in Figure 1, we assume a one-to-one join. Dataset

search problems can involve many-to-many joins as well, although a typical approach presented in Section 4. Flnally, in Section 5 we support Theorem 2
is to use a data aggregation function to reduce to the one-to-one setting [31, 47, 48]. with a detailed empirical evaluation of our method.

171

PODS ’23, June 18-23, 2023, Seattle, WA, USA

2 RELATED WORK

Inner Product Estimation for Binary Vectors. Beyond linear
sketching methods for estimating the inner product between gen-
eral real-valued vectors a and b, there has been a lot of prior work on
the special case of binary vectors with {0, 1} entries. For such vec-
tors, approximating the inner product amounts to approximating
the size of the intersection of two sets. Concretely, any a,b € {0, 1}"
can be associated with sets A and B that contain integers from
{1,...,n}. We define A to contain all i for which a[i] = 1, and simi-
larly B to contain all i for which b[i] = 1. Note that (a,b) = [ANSB|.

Applying Fact 1, we know that a linear sketch of size m =

O(1/€?) can estimate (a, b) up to additive error e||al|||b]| = e+/|A[|B].

However, a better bound can be obtained using non-linear sketch-
ing methods based on the classic MinHash sketch [8, 9, 27, 42],
the k-minimum value (KMV) sketch [6], or related techniques
[37, 39]. With m = O(1/€?) space, such methods are achieve error
eymax(|Al, |B]) - | A N B|, which is always smaller than e+/|.A||B|
[6, 44]. For binary vectors, this bound was proven optimal in [44].

Our work was motivated by this pre-existing result for binary
vectors. In fact, our Theorem 2, is a strict generalization of the
bound to all real-valued vectors. When a and b are binary, we have
that |jaz]|? = |bz||> = |A N B|. So it is not hard to see that
eymax(JAL,|8]) - |A N B| = e - max (laz[llIb], [lalllIb£), which
is exactly our bound from Theorem 2. We summarize how all prior
inner product sketching methods compare to our result in Table 1.
Beyond Binary Vectors. There has been less work on obtaining
better results for estimating inner products of vectors with non-
binary entries. One recent paper [33] proves refined bounds for
the CountSketch method that depend on the #; norm of a and b
(instead of the Euclidean norm). These bounds can be tighter than
Fact 1 for some vectors, especially when the sketch size m is large.
However, the results are not directly comparable to ours.

We take a different approach, moving beyond linear sketch-
ing entirely. Our main result is based on a class of sketches that
we collectively refer to as “Weighted MinHash” methods [13, 49].
These methods include weighted versions of coordinated random
sampling [17, 18], as well as the “Consistent Weighted Sampling”
algorithm [25, 41] and its descendants, which are essentially equiva-
lent, but computationally cheaper to apply [26, 28, 53]. As shown in
Section 4, Weighted MinHash sketches allows us to handle vectors
whose entries have highly varying magnitude (in contrast to binary
vectors, where all non-zero entries have the same magnitude of 1).

Weighted MinHash sketches have been used in a number of
applications, including for approximating weighted Jaccard sim-
ilarity [53], for near-duplicate detection with weighted features
[41], for approximating the distance between two vectors [28], and
for sketching image histograms [49]. In many of these applica-
tions, the weighted sketches empirically outperform unweighted
sketches. Weighted MinHash sketches have also been used to com-
pute general “sum aggregate” queries, for which the inner product
is a special case [18]. However, we are not aware of strong worst-
case error guarantees for the above applications, let alone for the
problem of general inner product estimation. Consistent Weighted
Sampling has also been used to approximate inner products in
[35], albeit using a different estimator than in our work. However,
non-asymptotic worst-case guarantees are not provided.

172

Aline Bessa et al.

Locality Sensitive Hashing. Finally, our problem of estimating
inner products from sketches is closely related to cosine similarity
and maximum inner product search (MIPS), where the goal is to
retrieve vectors from a database with the highest cosine similar-
ity (respectively, inner product) with a given query vector. One
approach for solving these problems is locality sensitive hashing
[24], and there are methods based on both MinHash and random
projections, like SimHash [11]. It has been observed that MinHash
often outperforms SimHash for binary data, which parallels what
was previously known for binary inner product estimation [50].

3 WARMUP: UNWEIGHTED MINHASH

Notation. We use bold letters to denote vectors, and for a vector
a, a[k] denotes the k™ entry (indexing starts with 1). For two
length n vectors, a,b, (a,b) = 22:1 a[k]b[k] denotes the inner

product. ||a|]| = +/(a, a) denotes the Euclidean norm and ||a||co =
maxge (1, n) |a[k]| denotes the infinity norm. ||a]|; = Z]':zl la[k]|
denotes the £; norm. As is standard in the literature [6], we assume
access to uniformly random hash functions that map to the real line.
Le., we assume that we can construct a random function h such
that for any input j € {1,...,n}, h(j) is distributed uniformly and
independently on the interval [0, 1]. In practice, h can be replaced
with a low-randomness function that map to a sufficient large
discrete set {1/U,2/U ..., 1}. Typically U is chosen to equal n¢ for
constant ¢ (e.g. ¢ = 3) [19]. We let Pr[E] denote the probability that
arandom event E occurs, and 1 [E] is the indicator random variable
that evaluates to 1 if E occurs and to 0 otherwise. E[X] and Var[X]
denote the expectation and variance of a random variable X.

An unweighted method. Before introducing our Weighted Min-
Hash sketching method, we review the unweighted MinHash al-
gorithm and prove a inner product estimation bound that can be
obtained from this method. The bound closely follows prior work on
binary vectors [6, 44] and only holds under strong assumptions on
the sketched vectors a and b - specifically that their entries are uni-
formly bounded in magnitude. Nevertheless, it serves as a warmup
for our main result, which is proven using a similar strategy, but
eliminates the assumption by using weighted sampling.

Given a vector a, we obtain an entry in the standard MinHash
sketch (see e.g., [8]) by hashing the index of every non-zero entry in
a to the interval [0, 1]. We then store the smallest hash value. This
process is repeated m times with independently chosen random
hash functions. For binary vectors a and b with non-zero index
sets A = {k : a[k] # 0} and B = {k : b[k] # 0}, the minimum
hash value alone can be used to estimate the Jaccard similarity
|A N B|/|A U B| or the union size |A U B [6, 23, 30].

For non-binary vectors, is it common to augment the standard
MinHash sketch by also storing the value of the index with min-
imum hash value. This idea is used in “coordinated sampling” or
“conditional random sampling” sketches [16, 18, 36], and was re-
cently used to extend MinHash and the closely related k-minimum
values (KMV) sketch to estimate vector correlations [47]. The basic
augmented MinHash sketching method is shown in Algorithm 1,
which returns H2%" and H2# as vectors of minimum hashes and
their corresponding vector values, respectively.

For any single vector a, the augmented MinHash sketch H,
contains a uniform subsample (collected with replacement) of the

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation

Algorithm 1 Unweighted MinHash Sketch

Input: Length n vector a, sample number m, random seed s.
Output: Sketch H, = {H" H?%}, where HI%" and H?¥ have
length m and contain values in [0, 1] and from a, respectively

1: Initialize random number generator with seed s.
2: fori=1,...,mdo

3 Select uniformly random hash func. h? :
4 Compute j* = argmin¢q

5. Set HMash[j] =
6: end for

7. return {H}sh graly

{1
120 P (J)-
a[j*]

.n} — [0,1].

wn},alj

K (j*) and HZ[i] =

Algorithm 2 Unweighted MinHash Estimate

Input: Sketches Hy = {H;’“Sh, H;’“l}, H, = {H{:“S}’,Hg“l} con-
structed using Algorithm 1 with the same inputs m, s.
Output: Estimate of (a, b).

1: Set U = m -
mln(Hhash[] Hhaeh [l])

2. return & Zm 1 [Hhash[] Hhash[]] Hval[] Hval[]

non-zero values in a. This is because for all i € {1,...,m} the
minimum value of the i" hash is equally likely to come from any
of the indices with non-zero value. More importantly, sketch can be
used to obtain a uniform subsample from the intersection of a and b,
i.e., from entries where both vectors are non-zero. This subsample
can in turn be used to estimate the sum (a,b) = Zzzl alk]b[k],
since a[k]b[k] only contributes to the sum if a[k] and b[k] are

both non-zero. Concretely, we have the following well-known fact:

Fact 3. Consider vectors a andb sketched using Algorithm 1 to
produce sketches H, and Hy,. Define the sets A = {i : a[i] # 0} and
B ={i:b[i] # 0}. Then foralli € {1,...,m} we have:

(1) Hh‘”h[i] = Hh“Sh[i| with probability |ANB|

[AUB]"
(2) IfHRosh(i] = HM9sh[i], then HZ9![i] = a[j] and HP*![i] =

b[Jj] for j chosen uniformly at random from A N B.

Fact 3 indicates that, to obtain a uniform subsample from the
intersection of a and b, we can simply take all entries in H:“l and
Hé’“l where the corresponding entries in H?%5" and H{)‘“Sh are equal
- and, as per (1), they will be equal with good probability.

With Fact 3 in place, we describe an inner product estimator
based on MinHash (Algorithm 2). This estimator will serve as a
template for our weighted MinHash estimator in the next section.

Consider the summation in line 2 of Algorithm 2. Using linearity
of expectation and Fact 3, we can compute the expectation:

E

i 1 [Hhash[il = Hhash[]] Hval[il - Hval[]}

i=1
-m-E []1 [H;laSh[l] :Hlilash[l]] -H:al[l] _Hval[l]]

1
2 Aus”

JEANB

=m- [iIb[j] = “(ab).

I?(UBI

It follows from the above that, if we multiplied the summation
]l [Hhash il= Hhash l]] Hval [i] - Hval[i by |~7‘U8| . then

173

PODS 23, June 18-23, 2023, Seattle, WA, USA

we would have an unbiased estimate for (a,b), as desired. The
only catch is that we do not know |A U B|. This union size cannot
be computed exactly from our sketches H, and Hy,. However, it
can be estimated using the same information contained in our
MinHash sketches. In particular, since hi hashes uniformly to [0, 1],

m . .
—1 provides a good estimate for | AU B).
Z;{gl min(Hfash[i]’Hgash[i] p g

This is actually a standard variant of the well-known Flajolet-Martin
distinct elements estimator [6, 23]. In Line 1 of Algorithm 2, we

set U equal to this estimator and we multiply by % in Line 2 as a

surrogate for % This gives our final estimator for (a, b).

Overall, we are able to prove the following concentration bound
for the estimator for computing the inner product between any pair
of bounded vectors. For binary vectors, the constant ¢ below equals
1 and we exactly recover the bounds from prior work [44].

THEOREM 4 (INTERMEDIATE RESULT: INNER PRODUCT SKETCHING
wiITH UNWEIGHTED MINHASH). Let €,6 € (0,1) be accuracy and
failure probability parameters and let m = O(log(1/8)/€?). There is
an algorithm S that produces size-m sketches (Algorithm 1), along
with an estimation procedure ¥, such that for any a,b € R" with
entries bounded in [—c, c|, with probability at least 1 — 6,

|F (S(a), (b)) - (a,b)| < €-c* - ymax(|AL|B]) - | AN B
for A ={i:ali] # 0} and B = {i : b[i] # 0}.

The full proof of Theorem 4 is included in Appendix A.1. It re-
quires two technical ingredients. First, we must bound the variance
of an “ideal” estimator that uses the exact value of |A U B|. This
can be done by using the fact that a and b have entries bounded
in [—c, c]. Second, we can bound the error introduced by replacing
| A U B| with an estimate for the union, as discussed above. To do
so, we rely on the following standard result, which shows that Min-
Hash sketches for a and b can be used to compute a (1 + €) relative
error approximation to the true union | A U 8| when m = O(1/€?):

LeEMMA 1 (UnioN SizE ESTIMATOR [7]). Let A and B be non-
empty subsets of {1,...,n} and let [LT {1,...,n} > [0,1]
be independent, uniform random hash functions. For any €, € (0,1),
ifm=0 (é) then with prob. at least 1 — 6, the estimator U=

m .
m——— 57— — 1 satisfies:
ST i B0 fi

(1-e)|AUB|<U < (1+e)AUB|

Note that, while it is written in a slightly different way, the U
in Lemma 1 is exactly equivalent to the U in Algorithm 2 (when
A and B contain the non-zero indices of a and b). To see why this
is the case, note that Hh“Sh['] = minjeq hi(j) and H]i“”h[i] =

min ¢ hi(j). So min (H’msh[i, Hhesh]) = min;c 205 b ().

4 MAIN RESULT: WEIGHTED MINHASH

The main technical challenge in our work is extending the results
of the previous section (Theorem 4) to vectors whose entries have
highly varying magnitude. It is not hard to see that the simple
MinHash method fails for such vectors. For example, consider the
extreme case when a and b both contain a very large values at
some index i, so large that the term a[i]b[i] dominates the inner
product (a,b) = Zzzl alk]b[k]. To correctly approximate the inner

PODS ’23, June 18-23, 2023, Seattle, WA, USA

Aline Bessa et al.

Algorithm 3 Weighted MinHash Sketch

Algorithm 5 Weighted MinHash Estimate

Input: Length n vector a, sample number m, random seed s, integer
discretization parameter L.

Output: Sketch W, = {Wah‘“h, Wa”al, |la]|}, where Wah‘“h is a
length m vector of values in [0, 1], Wa”“l is a length m vec-
tor containing a subset of entries from a, and ||a|| is a scalar,
the Euclidean norm of a.

1: Initialize random number generator with seed s.

2: Set a = Rounp(a/||a|, L) using Algorithm 4.

3. Foreachi € {1,...,n}, let ad bea length L vector whose first
a[i]? - L entries are set to a[i]. Set the remaining entries to 0.

4 Leta=[aW,. . aM]bea length n - L vector obtained by
concatenating the vectors defined above.

5: fori=1,...,mdo '
6: Select uniform random hash func. ' : {1, -onL} — [0,1].
7: Compute j* = argmil ey n.1} a[j]#0 R (j).

8- Set Whash[j] = pi(j*) and W2 [i] = a[j*].
9: end for
. return {Wah“Sh, Waml, [lall}.

Algorithm 4 Vector Rounding for Weighted MinHash
Input: Length n unit vector z, integer discretization parameter L.

Output: Length n unit vector z with z[i]? an integer multiple of
1/L for all i.

1 Foralli € {1,...,n}, 2[i] = sign(z[i]) - \/ LZLEL,
2 Leti* = argmax;¢; _, |z[i]l.

3: Fix § = 1 — ||2]|, then set Z[i*] = sign(z[i*]) - VZ[i*]2 + 6.

4: return z.

product, we need to include a[i] and b[i] in our sketches for a
and b, respectively. A MinHash sketch will only do so with low
probability, since it uniformly samples entries from the intersection
of the vectors. Thus, it will obtain a poor estimate for (a, b).

To address the issue with heavy entries, we modify the approach
of Section 3 to incorporate non-uniform sampling weights using a
Weighted MinHash sketch [41]. This allows us to sample high mag-
nitude entries in the vectors with higher probability. Specifically,
our goal is to sample the ith entry of a with probability proportional
to the squared magnitude, a[i]2. The Weighted MinHash sketch
achieves non-uniform sampling in a simple way: we construct an
extended vector a which has the same entries as a, but entries are
repeated multiple times, with the exact number of repetitions pro-
portional to their magnitude. We then apply the standard MinHash
sketch to a. This approach is detailed in Algorithm 3.
Rounding & Normalization. While Weighted MinHash allows us
to sample entries with non-uniform probability, another challenge
arises: since sketches for a and b are computed independently, we
no longer sample with the same probability from both vectors. For b,
Weighted MinHash samples indices with probability proportional
to b[i]? instead of a[i]%. This mismatch can actually reduce the
probability that we select entries from a and b with the same index.

We are able to balance this issue with a normalization strategy.
In particular, line 2 in Algorithm 3 performs a simple but important
preprocessing step that scales and rounds a to a unit vector a whose
squared entries are all integer multiples of 1/L for some large integer

174

Input: Sketches W, = {Wah‘”h, Wa”“l, llal|]} and W, =
{th“Sh, Wb"“l, |Ib]|} constructed using Algorithm 3 with the
same inputs m, s, and L.

Output: Estimate of (a,b).

1: Forie{1,...,m}, set g; = min (W;’“l[i]z, Wb"“l[i]z).

2: Set M = % . m —-1].
l{gl min(WahaSh [i],thaSh [1])
~ anl : ,Wual ;
3 SetI=Mym 1 [W;lash[i] = thash[i]] . M

4 return [[a|||[b[| - I

L (to be chosen later). The rounding handles a minor issue: since
we control the frequency with which each entry a[i] is sampled
by repetition, we need the squared value of all entries to be integer
multiples of the same fixed constant in order to sample precisely
with probability proportional to a[i]?. As will be proven, L can be
chosen so that the discretization has little impact on the accuracy
of our final inner product estimate, and the parameter also has no
impact on the size of the sketch returned by Algorithm 1.4

The scaling is what deals with the bigger issue discussed above,
which is the mismatch in sampling probabilities between a and b.
Surprisingly, we can show that the impact of this mismatch can
be controlled when ||a|| = ||b||. So while it is possible to come up
with examples where the algorithm fails if we directly sketch a
and b, we can obtain a worst-case bound by sketching a/||a|| and
b/||b||, approximating (a/||a||, b/|/b||}, and then post-multiplying
the result by ||al|||b|| to get our final estimator.
Deriving the Inner Product Estimator. We next motivate Algo-
rithm 2, which is the algorithm used to estimate (a,b) from our
sketches. Note that Weighted MinHash Sketch (Algorithm 3) in fact
returns an Unweighted MinHash Sketch (Algorithm 1) for the ex-
panded vectors a, b. So, we can apply Fact 3 to obtain the following:

Fact 5. Consider vectors a and b sketched using Algorithm 3
to produce W, and W,. Define A and B as in Fact 3. For all i €
{1,...,m} we have:

(1) Wah“h [i] = th‘”h [i] with probabilit~y equal to the weighted

o= 2 min(a[j12b[J]%)
accard similarity, | = =F——— .
J ¥ = S GUIERLT)

(2) Ifwhash[i] = whash i), then we have that We! = &[j] and
sz’al =b[j] for j chosen from A N B with probability equal
tomin(a[j]% b[j1%)/ L}, max(a[j]% b[j1%).

A proof of Fact 5 is given in Appendix A.2. With the statement
in place, we present our procedure for estimating (a, b) based the
sketches computed by Algorithm 3. This procedure, shown in Al-
gorithm 5, is reminiscent of our estimator for unweighted sketches
from the previous section. The only difference is that, since we
are sampling with non-uniform probabilities, we need to inversely
weight samples in our sum to keep everything correct in expecta-
tion. In particular, consider the sum in line 3 of the algorithm.
“Note that our rounding method (Algorithm 4) is non-standard: It rounds all entries of
the input vector down to smaller magnitude values, except for the largest magnitude

entry in the vector, which gets rounded up. This scheme allows us to achieve small
relative error when rounding and to avoid additive error depending on 1/L.

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation

By Fact 5 and linearity of expectation, we have that:

i 1 [Wahash[i] — thash[i]] .

B wel[i] - wpal[i]
i=1 qi
anl[i] . anl[i]
hash:1 _ yyhashy; 2 b
m- 2|1 [wheshpi) = wheshpi] | -
—m. 4 aljlblj]
JeANB Limt max(a[i]%b[i]?) 4j

=— r ____ .&b).

", max(a[i]2 b[i]2)
So, we have obtained an estimator that in expectation is_equal
to (a,b), multiplied by m over a term M = 3, max(a[j]2,b[j]%).
This term M is referred to as the weighted union size between the

vectors. We can multiply by % to obtain an unbiased estimator for

(a,b). Since a and b were obtained by scaling a and b inversely by
their Euclidean norms (ignoring the effect of rounding for now),
our final estimator in Line 4 of Algorithm 5 multiplies by ||a]|||b]|.
The values of ||a|| and ||b|| are stored explicitly in the sketches for
a and b, respectively (as just one extra number per sketch).

The formal analysis of Algorithm 5, which yields Theorem 2, is
included in Appendix A.2. It contains three parts. First, when analyz-
ing the unweighted estimator, we do not know M exactly, so must es-
timate it. We can take advantage of the fact that M is exactly equal to
the unweighted union size | A U B| between the non-zero index sets
A and B of the expanded vectors a and b constructed in Algorithm 3.
We can apply Lemma 1 directly to obtain an estimator, which is de-
noted as M in Algorithm 5. Second, we need to analyze the variance

val [; val 1;
of the sum £, 1 [wash(i] = whash(j)| . BTN gy
analysis uses the fact that 4 and b are unit vectors. Third, we need to
rigorously analyze the impact of the rounding procedure performed
in Line 2 of Algorithm 3 to establish that a good estimate for (&, f))
actually yields a good estimate for (a/||a||,b/[|b]|) = m(a,b).

We conclude by noting that our final analysis of Algorithm 5
requires setting L to be on the order of n®/e? when sketching using
Algorithm 3. This may sound large, but note that the parameter has
no impact on the size of the sketches returned by Algorithm 3, or on
the runtime of our estimation procedure Algorithm 5. L does impact
the runtime of Algorithm 3, but as discussed in Section 5, prior work
can be used to implement the Weighted MinHash sketching method
so that it has a logarithmic dependence on L - i.e., on O(log(n/¢)).

5 EXPERIMENTS

To support the results presented in Section 4, we performed an ex-
perimental evaluation using synthetic data and real-world datasets.
Baselines. We compare our Weighted MinHash approach against
4 baseline methods, 2 linear and 2 sampling-based, with the goal
of evaluating the trade-off between sketch size and accuracy in
estimating inner products. Those methods are:
Johnson-Lindenstrauss Projection (JL): equivalent to the AMS
sketch [1, 4]. Uses a random matrix IT with scaled +1 entries (Fact 1).
CountSketch (CS): classic linear sketch introduced in [12], and
corresponds to multiplication with a IT that has sparse random
entries. We follow the implementation in [33], using 5 repetitions
of the sketch and taking the median to improve performance.

175

PODS 23, June 18-23, 2023, Seattle, WA, USA

MinHash Sampling (MH): method described in Algorithm 1; we
use a single sketch without any median estimate.

k-Minimum Values Sampling (KMV): sampling-based sketch
closely related to MinHash, but it draws samples from the vector
being sketched without replacement. It can also be used to estimate
union size. We follow the implementations from [6] and [47].
Weighted MinHash Sampling (WMH): our method described in
Algorithm 3; we use a single sketch without any median estimate.

Storage Size. For linear sketches, we store the output of the matrix
multiplication Ia as 64-bit doubles. We also store W% and H?%
as 64-bit doubles. Since sampling-based sketches need to store hash
values (which in our case are 32-bit ints), a sampling-based sketch
with m samples takes 1.5x as much space as a JL sketch with m rows.
In our experiments, we plot storage size which denotes the total
number of bits in the sketch divided by 64, i.e., the total number of
64-bit doubles (or equivalent) used in the sketch. Standard quanti-
zation tricks could likely be used to reduce the size of numbers in
all sketches (linear and sampling), but we leave the development
of such methods to future work. As a starting point, we note that
there has already been interesting work on quantized JL projections
[29, 38], and the SimHash method for estimating cosine similarity
can be viewed as a “1-bit” quantization of a JL sketch [11].
Estimation Error. For all plots, we report the absolute difference
between (a,b) and the estimate, divided by ||a||||b||. This is the
term appearing on the right-hand side of the accuracy guarantee
for linear sketches Fact 1, so this scaling roughly ensures that errors
are between 0 and 1, making it easier to compare across different
datasets. We always report average error over 10 independent trials.
Choice of L. Note that the choice of L in Algorithm 3 does not
impact the size of our final sketch, so in general, it should be set
as large as possible. Our bounds from Lemma 3 that suggest L
should be set > n® are likely loose (we did not attempt to optimize
polynomial factors), but we did find that it is necessary to at least
ensure that L > n. Ideally it should be larger by a multiplicative
factor 100 or 1000. The reason for this is that, if a is dense and is
normalized to have unit norm, as in Algorithm 1, most of its entries
could have squared value < 1/n (as the average value of a squared
entry in a unit norm vector is always 1/n). If we set L < 1/n, then
any entries with value < 1/n would get rounded to 0, which could
negatively impact the accuracy of an inner product estimate.
Efficient Weighted Hashing. When L is large, a naive implemen-
tation of Algorithm 3 would be prohibitively slow. The “extended”
vector a has length n- L and we must apply a hash function to every
non-zero entry in that vector. Let A = {i : a[i] # 0} as before, so
|A| is equal to the number of non-zero values in a. If each hash
computation is considered unit cost, this amounts to a runtime of
O(|A|m - L), which is too large, since L is chosen larger than n.
Fortunately, it is possible to improve this cost to O(|A|m-log L) =
O(|A|m - logn) using techniques for speeding up weighted Min-
Hash sketches. Such techniques have been heavily studied in recent
years [26, 28, 49, 53]. The savings are significant, reducing the com-
putation cost of sketching to nearly-linear in the size of the input
for each of our m samples. Among faster methods, we specifically
employ the simple “active index” technique, which was first in-
troduced in [25]. The rough idea is that, when hashing non-zero
entries in a particular length L block of a, there is no need to hash

PODS ’23, June 18-23, 2023, Seattle, WA, USA

~= JL -—=C = KMV -—=— MH WMH

o

o

©
e
o
-
N

o
o
=)

o
o
N

Scaled Average Difference
o
o
R

o
o
=3

Scaled Average Differenc

200 400 600

Storage Size

(a) 1% overlap

800 1000 200 400 600

Storage Size

(b) 5% overlap

800 1000

Scaled Average Difference
Scaled Average Difference

200 400 600

Storage Size

(c) 10% overlap

800 1000 200 400 600

Storage Size

(d) 50% overlap

800 1000

Figure 3: Inner product estimation (synthetic data).

all non-zero indices in that block. We can skip over large sections of
indices by observing that if z is the minimum hash value generated
so far, the next index where a lower hash value will be seen is a
distributed as a geometric random variable with parameter z. We
can sample from the geometric distribution efficiently (e.g. using a
built-in Python routine) and skip ahead to that index. It is possible
to prove that the expected cost of this approach is just O(log L) per
block. See the exposition in [41] for further details.

Since initially releasing this paper, we became aware of even
faster implementations of weighted MinHash that reduce the run-
time to O(|A| + mlogm), which is nearly linear in the number
of non-zeros in the vector being sketched [14, 21]. Such methods
should be able to be adapted for use in our inner product sketching
application, although we leave further exploration to future work.
Choice of Hash Function. In practice we cannot obtain a truly
uniform random hash function from {1, ..., n} to the reals, so we
must use an approximation. In our experiments, we employ a stan-
dard 2-wise independent hash function (linear function with ran-
dom coefficients) that maps from {1,...,n} to {1,..., p} for a 31-bit
prime p [10]. > We then use as our hash value h(i)/p, which is a
number between 0 and 1. Since p is chosen to have 31 bits, we can
store the value of h(i) in our sketch using a standard 32-bit int.

5.1 Synthetic Data

We begin with an evaluation of our approach using synthetic data.
We generate length 10000 vectors a and b, each with 2000 non-zero
entries. The ratio of non-zero entries that overlap, i.e., are non-zero
in both a and b, is adjusted to simulate different practical settings
with different levels of joinability between tables (see Section 1.2).
The non-zero entries in a and b are normal random variables with
values between —1 and 1, except 10% of entries are chosen randomly
as outliers and set to random values between 20 and 30.

5Our choice to use a 2-wise independent hash function was based on prior implemen-
tations of the weighted MinHash method [52] that do so.

176

Aline Bessa et al.

Kurtosis>0 Kurtosis>10 Kurtosis>50 Kurtosis>0 Kurtosis>10 Kurtosis>50

Overlap<0.05 -0.018 -0.019 -0.018 Overlap<0.05 -0.012
Overlap<0.1 -0.013 -0.014 -0.014 Overlap<0.1 -0.009 -0.012 -0.013

Overlap<0.25 -0.006 -0.007 -0.010 Overlap<0.25 -0.004 -0.007 -0.008
Overlap<0.5 0.000 -0.001 -0.006 Overlap<0.5 -0.008

Overlap<0.75 0.005 0.003 -0.003 Overlap<0.75 -0.014

Overlap<1.0 0.006 0.004 -0.003 Overlap<1.0

(a) WMH estimation error mi-
nus JL estimation error.

(b) WMH estimation error mi-
nus MH estimation error.

Figure 4: Inner product estimation (World Bank data). Differ-
ent shades of blue highlight combinations for which WMH
outperforms the other methods.

Results for varying amounts of overlap are reported in Figure 3.
They closely align with our theoretical findings: when the over-
lap is small, the bounds for Weighted MinHash are significantly
better than those of linear sketching methods. Accordingly, WMH
outperforms all other methods for overlap ratio < 10%. Note that un-
weighted sampling based sketches also outperform linear sketches
for very low overlap (1%). But as the overlap increases, the advan-
tage brought about by Theorem 2 over Fact 1 decreases. We can
see this in Figure 3(d): at 50% overlap, the performance of linear
sketching is comparable to that of Weighted MinHash.

5.2 Real-World Data

Assessing the Effect of Overlap and Outliers. Using sketches
of size 400,° we estimate the inner product between 5000 pairs
of numerical columns from 56 datasets published by the World
Bank Group [51]. We normalize columns to have norm 1 so that
all inner products have magnitude less than 1. We visual results
using a winning table in Figure 4, filting vector pairs based on
different overlap ratios (column) and kurtosis values, a measure of
outliers (row). Each cell shows the average error difference (WMH
estimation error minus the error of other method) for vector pairs
with the specified overlap and kurtosis values.

The blue cells (negative difference) correspond to combinations
in which WMH outperforms the other methods, while the red cells
(positive difference) represent combinations in which the other
methods win. The darker the cells, the bigger the difference. A high
kurtosis often indicates the presence of outliers, which will, based
on our theoretical results, present a difficulty for unweighted sam-
pling methods like MH in comparison to JL or our WMH method.
This is supported by the experiments, which show that WMH has
a great improvement over MH when kurtosis is high (up to -.031 vs.
at most -.020 when kurtosis is low). As predicted by Theorem 2 and
shown in our synthetic experiments, WMH also has a great edge
over]JL for low overlap values. For large overlaps (greater than .75),
JL leads to slightly smaller errors (from 0.003 to 0.006).

This suggests that WMH provides a good compromise for applica-
tions in which the distribution of data is unknown: it provides much
better estimates for many cases, and when it does not, its estimates
are comparable to the best results from existing sketching methods.

Document Similarity Estimation. We also evaluated the perfor-
mance of WMH sketches for text similarity estimation using the 20

®The size was chosen empirically. Our goal here is to simulate the real-world situation
where a fixed parameter must be selected for a given application.

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation

—=— CS —=— KMV —=— MH WMH

—=— JL

0.150

o o
-
5 &
S

e o
o o
[~
o u

Average Difference
Average Difference

0.025

100

200 300
Storage Size

(a) All Documents

100 200 300

Storage Size

(b) Documents > 700 words

Figure 5: Text similarity estimation (20 Newsgroups dataset).
Note that in the left plot, the lines for MH, WMH, and KMV
all lie essentially on top of one another.

newsgroups dataset [43]. We represent each document as a vector
in which each entry represents a term or a combination of 2 terms
(bigrams), and is associated with a value that encodes term/bigram
importance using TF-IDF weights [46]. This setting is well-known
for generating sparse vectors of very high dimension. As a similarity
measure, we use the cosine, which is equal to an inner product when
the vectors have are normalized. We sampled 700 documents and
estimated the cosine similarity for over 200,000 pairs of documents.
The results in Fig. 5 show that, similar to previous experiments,
in the worst case, the accuracy of WMH is comparable to the other
methods, but it can sometimes be better by a large margin. In this
case, it performs better for documents containing more than 700
words. Note that linear projection sketches have poor performance
for small sketches even when the documents are small, whereas
our sampling-based methods are able to obtain significantly better
accuracy for the same storage budget. Finally, also note that the
Unweighted MinHash (MH) performs poorly for long documents
whereas the weighted version still performs well.
Acknowledgements. This work was supported by the DARPA
D3M program and NSF awards ISS-2106888 and CCF-2046235. Aline
Bessa was supported by a 2021 CRA/CCC CIFellows Award. Cameron
Musco was also supported by a Google Research Scholar Award.
Any opinions, findings, conclusions or recommendations expressed
in this material are those of the authors and do not necessarily
reflect the views of NSF, DARPA, or other funding organizations.

REFERENCES

[1] Dimitris Achlioptas. 2003. Database-friendly Random Projections: Johnson-
Lindenstrauss with Binary Coins. J. Comput. Syst. Sci. 66, 4 (2003), 671-687.
Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking
Join and Self-Join Sizes in Limited Storage. In Proceedings of the 18th Symposium
on Principles of Database Systems (PODS).

Noga Alon and Bo’az Klartag. 2017. Optimal Compression of Approximate
Inner Products and Dimension Reduction. In Proceedings of the 58th Annual IEEE
Symposium on Foundations of Computer Science (FOCS). 639-650.

Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of
Approximating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999).
Rosa I. Arriaga and Santosh Vempala. 2006. An algorithmic theory of learning:
Robust concepts and random projection. Machine Learning 63, 2 (2006), 161-182.
Kevin Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer
Gemulla. 2007. On Synopses for Distinct-Value Estimation under Multiset Op-
erations. In Proceedings of the 2007 ACM SIGMOD International Conference on
Management of Data. 199-210.

Avrim Blum, John Hopcroft, and Ravindran Kannan. 2020. Foundations of Data
Science. Cambridge University Press.

A.Z. Broder. 1997. On the resemblance and containment of documents. In Pro-
ceedings. Compression and Complexity of SEQUENCES 1997. 21-29.

Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.
1998. Min-Wise Independent Permutations (Extended Abstract). In Proceedings

(2]

(3]

(4]
(5]
6]

177

PODS 23, June 18-23, 2023, Seattle, WA, USA

of the 30th Annual ACM Symposium on Theory of Computing (STOC). 327-336.
[10] J- Lawrence Carter and Mark N. Wegman. 1979." Universal classes of hash func-

tions. J. Comput. System Sci. 18, 2 (1979), 143-154.

Moses Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-
rithms. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing
(STOC). 380-388.

Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent
Items in Data Streams. In Proceedings of the 29th International Colloquium on
Automata, Languages and Programming (ICALP). 693-703.

Lianhua Chi and Xingquan Zhu. 2017. Hashing Techniques: A Survey and
Taxonomy. ACM Comput. Surv. 50, 1 (2017).

Tobias Christiani. 2020. DartMinHash: Fast Sketching for Weighted Sets.
arXiv:2005.11547 (2020).

City of New York. 2022. Open Data NYC. https://opendata.cityofnewyork.us/.
16] Edith Cohen. 2016. Min-Hash Sketches. Springer New York, New York, NY,
1282-1287.

Edith Cohen and Haim Kaplan. 2007. Summarizing Data Using Bottom-k Sketches.
In Proceedings of the 2007 ACM Symposium on Principles of Distributed Computing
(PODC). 225-234.

Edith Cohen and Haim Kaplan. 2013. What You Can Do with Coordinated
Samples. In Proceedings of the 16th International Workshop on Approximation
Algorithms for Combinatorial Optimization Problems (APPROX). 452-467.
Graham Cormode, Minos Garofalakis, Peter Haas, and Chris Jermaine. 2011. Syn-
opses for Massive Data: Samples, Histograms, Wavelets, Sketches. NOW publishers.
Sanjoy Dasgupta and Anupam Gupta. 2003. An elementary proof of a theorem of
Johnson and Lindenstrauss. Random Structures & Algorithms 22, 1 (2003), 60-65.
Otmar Ertl. 2018. BagMinHash - Minwise Hashing Algorithm for Weighted Sets.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 1368-1377.

Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:
A cardinality-based method for coupled estimation of Jaccard similarity and
containment. In Proceedings of the 35th IEEE International Conference on Data
Engineering (ICDE). 1190-1201.

Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms
for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182-209.

Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in
High Dimensions via Hashing. In Proceedings of the 25th International Conference
on Very Large Data Bases. 518-529.

Sreenivas Gollapudi and Rina Panigrahy. 2006. Exploiting Asymmetry in Hierar-
chical Topic Extraction. In Proceedings of the 15th ACM International Conference
on Information and Knowledge Management (CIKM). 475-482.

Bernhard Haeupler, Mark Manasse, and Kunal Talwar. 2014. Consistent Weighted
Sampling Made Fast, Small, and Easy. arXiv:1410.4266 (2014).

Nevin Heintze. 1996. Scalable Document Fingerprinting. In USENIX Workshop on
Electronic Commerce.

Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1
Sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining
(ICDM). 246-255.

Laurent Jacques. 2015. A Quantized Johnson-Lindenstrauss Lemma: The Finding
of Buffon’s Needle. IEEE Trans. Inf. 61, 9 (2015), 5012-5027.

Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. An Optimal Algo-
rithm for the Distinct Elements Problem. In Proceedings of the 29th Symposium
on Principles of Database Systems (PODS). 41-52.

James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:
Towards automating data science endeavors. In 2015 IEEE international conference
on data science and advanced analytics (DSAA). IEEE, 1-10.

Kasper Green Larsen and Jelani Nelson. 2017. Optimality of the Johnson-
Lindenstrauss Lemma. In Proceedings of the 58th Annual IEEE Symposium on
Foundations of Computer Science (FOCS). 633-638.

Kasper Green Larsen, Rasmus Pagh, and Jakub Tétek. 2021. CountSketches,
Feature Hashing and the Median of Three. In Proceedings of the 38th International
Conference on Machine Learning (ICML). 6011-6020.

Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-
heim, and Christian Bizer. 2015. The Mannheim Search Join Engine. Journal of
Web Semantics 35 (2015), 159 — 166.

Ping Li. 2017. Linearized GMM Kernels and Normalized Random Fourier Features.
In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD). 315-324.

Ping Li, Kenneth Church, and Trevor Hastie. 2006. Conditional Random Sampling:
A Sketch-based Sampling Technique for Sparse Data. In Advances in Neural
Information Processing Systems 19 (NeurIPS), Vol. 19.

Ping Li and Arnd Christian K6nig. 2010. b-Bit Minwise Hashing. In Proceedings
of the 19th International World Wide Web Conference (WWW).

Ping Li, Michael Mitzenmacher, and Martin Slawski. 2016. Quantized Random
Projections and Non-Linear Estimation of Cosine Similarity. In Advances in Neural
Information Processing Systems 29 (NeurIPS), Vol. 29.

Ping Li, Art Owen, and Cun-hui Zhang. 2012. One Permutation Hashing. In
Advances in Neural Information Processing Systems 25 (NeurIPS).

[11

=
N

oy
&

[19

[20

[21

[22

[23

[24

&
i

@
=

&
&

(34

[35

http://arxiv.org/abs/2005.11547
https://opendata.cityofnewyork.us/
http://arxiv.org/abs/1410.4266

PODS ’23, June 18-23, 2023, Seattle, WA, USA

[40] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd Kénig. 2011. Hashing
algorithms for large-scale learning. Advances in Neural Information Processing
Systems 24 (NeurIPS) 24 (2011).

Mark Manasse, Frank McSherry, and Kunal Talwar. 2010. Consistent Weighted
Sampling. Technical Report MSR-TR-2010-73. https://www.microsoft.com/en-
us/research/publication/consistent-weighted-sampling/

Udi Manber. 1994. Finding Similar Files in a Large File System. In USENIX Winter
1994 Technical Conference.

Tom Mitchell. 1997. 20 Newsgroups Dataset. https://scikit-learn.org/stable/
modules/generated/sklearn.datasets.fetch_20newsgroups.html.

Rasmus Pagh, Morten Stockel, and David P. Woodruff. 2014. Is Min-Wise Hashing
Optimal for Summarizing Set Intersection?. In Proceedings of the 33rd Symposium
on Principles of Database Systems (PODS). 109-120.

Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM
Transactions on Database Systems (TODS) 33, 3 (2008), 1-46.

Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model
for automatic indexing. Commun. ACM 18, 11 (1975), 613-620.

Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana
Freire. 2021. Correlation Sketches for Approximate Join-Correlation Queries. In
Proceedings of the 2021 ACM SIGMOD International Conference on Management of
Data. 199-210.

Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A sketch-
based index for correlated dataset search. In Proceedings of the 38th IEEE Interna-
tional Conference on Data Engineering (ICDE). IEEE, 2928-2941.

Anshumali Shrivastava. 2016. Simple and Efficient Weighted Minwise Hashing.
In Advances in Neural Information Processing Systems 29 (NeurIPS). 1506-1514.
Anshumali Shrivastava and Ping Li. 2014. In Defense of Minhash over Simhash.
In Proceedings of the 17th International Conference on Artificial Intelligence and
Statistics (AISTATS).

World Bank. 2022. World Bank Group Finances. https:/finances.worldbank.org/
Wei Wu, Bin Li, Ling Chen, Junbin Gao, and Chenggi Zhang. 2020. A Review for
Weighted MinHash Algorithms. IEEE Trans. Knowl. Data Eng. (2020), 1-1.

Wei Wu, Bin Li, Ling Chen, Chenggqi Zhang, and Philip S. Yu. 2019. Improved
Consistent Weighted Sampling Revisited. IEEE Trans. Knowl. Data Eng. 31, 12
(2019), 2332-2345.

Yang Yang, Ying Zhang, Wenjie Zhang, and Zengfeng Huang. 2019. Gb-kmv:
An augmented kmv sketch for approximate containment similarity search. In
Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE).
IEEE, 458-469.

Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:
Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In
Proceedings of the 2019 ACM SIGMOD International Conference on Management of
Data. 847-864.

Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J. Miller. 2016. LSH
Ensemble: Internet-Scale Domain Search. Proceedings of the VLDB Endowment 9,
12 (2016).

[41]

[42]

[43

[44]

[45

[46

[47

[48]

[49

o
=

[51
[52]

[53]

[54]

[55

(56

A ADDITIONAL PROOFS
A.1 Unweighted MinHash Analysis

In this section, we give a full proof of Theorem 4.

PrOOF OF THEOREM 4. Let7_7(Ha, Hy,) denote the estimator from
Algorithm 2. Ultimately we will set ¥ in Theorem 4 to be F, but
repeated O(log(1/5) times to obtain failure probability 1 — §.

We focus on showing first that F (Ha, Hy) achieves error € - ¢% -
ymax (A, |B]) - |A N B| with probability > 2/3. To prove this, let
¥ *(Ha, Hp) be an alternative idealized estimator where we replace
U in line 1 of Algorithm 2 with the true union size U = [A U B|:

U m
T (HaoHy) = — > L [HEoh (1] = Hpesh i) | - 3ol [1] - 12!)
i=1
We will first analyze #*, before showing that F obtains essen-
tially as good of an estimate. As established in Section 3, using the
properties of Fact 3, we have that

E [F*(Ha Hy)| =U -(a,b) = (a,b).

1
AU B
So we turn to bounding the variance of the estimator. Define the
random variable Z; = 1 [H;’“Sh[i] = H{)’“Sh[i]] -H:al[i] -Hlf“l[i]

178

Aline Bessa et al.

and note that F* (H,, Hy,) = % >, Z;. From Fact 3 we have:

0 with probability 1 — I:;Sgi

a[j]b[j] with probability w forall j € AN B.

Zi =
Since each Z; is independent, we can bound:
U2 &
Var |7 (Ha, Hp)| = — ZVar (Zi].
i=1

Using our assumption that a[k],b[k] < ¢ for all k, we have

1 | AN B

Var [Z;] < E[Z?] = ——a[j1?p[j)P st =—,

ar(Z) <B|Z] =), ol <t o
JEANB

for all Z;. So we conclude that Var [F*(Ha, Hp)] < % AN

B||A U B|. We then plug our expectation and variance bounds

into Chebyhev’s inequality. If m = O(1/€?), we conclude that with
probability > 5/6,

|7 (Ha, Hp) — (a,b)| < € *A|[ANB|[A U B|. (1)

The proof is almost complete; we just need to extend this bound

to the non-idealized estimator ¥ = % .

F*. We do so by observing
that U is a good approximation to U. Specifically, by Lemma 1
applied with § = 1/6, we have that, when m = O(1/€?), (1-€)U <

U < (1 +€)U, with probability > 5/6. It follows that
(1~)" (Ha, Hy) < T (Ha, Hy) < (1+€)7 " (Ha, Hp). (2)

By a union bound, with probability at least 2/3, both (1) and (2)
hold simultaneously. Finally, by triangle inequality and the fact that

(a,b) < A|ANB| < 2J|A N B||A U B| it follows that:
|F (Ha, Hy) — (a,b)| < 3¢-c% - \|ANB[|AUB|.

Noting that |[A N B||A U B| < 2max(|A|, |B]) - |A N B and ad-
justing € by a constant factor, we thus have that when m = O(1/€?),
F (Ha, Hy) satisfies the guarantee of Theorem 4 with probability
at least 2/3. To boost success probability to 1 — §, we can use the
exact same median-trick used in the proof of Theorem 2: instead
of computing a single pair of sketches H,, Hy, for inputs a, b, we
concatenate O(log(1/9)) sketches, each constructed using an inde-
pendent random seed. If we apply F to each pair of independent
sketches and return the median estimate for (a, b), with probability
at least 1 — &, it will satisfy our desired guarantee. O

A.2 Weighted MinHash Analysis
In this section we complete the analysis of Algorithm 5 introduced
in Section 4, which yields our main result, Theorem 2. We start with
a formal proof of Fact 5, which is the weighted analog of Fact 3.
ProoF oF FacT 5. Let A = {i : a[i] # 0} and B = {i : b[i] # 0}.
Since a, b are each comprised of n blocks of L elements, with the
first i[i]2 - L entries and b[i]? - L entries in the i™ block set to be
nonzero, we have the following equalities:

|ANB| =L) min(a[;]°b[;1%)
j=1

®)

|AUB| =L) max(alj]%b[j]1*).
j=1

4)

https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://finances.worldbank.org/

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation

Since Wh“Sh [i] and W{”‘”h [i] are constructed exactly as unweighted

MinHash sketches of 4, b, by claim (1) of Fact 3, Wh‘“h [i] = W{:“Sh [i]
with probability :ﬁgg: = J. This gives claim (1).

To prove claim (2) we note that it is equivalent to claiming that,
unconditional on whether or not Wé"”h [i] = Wh‘”h[i], W”“l

a[j] and W”“l = b[j] for some shared j € A N B with proba-

M To prove this statement, we use that,
n max(a[j]2b[j12)

by Fact 3, forany £ € AN B, Wah“Sh[i] = th‘“h[i] = hi(p),
Wgal[i] = a[¢], and WP9![i] = b[¢] with probability m =

1
LY?_ max(a[k]2b[k]?)
a[¢] = a[j] and b[¢] = f)[j] whenever ¢ lies in the j& length L
block of entries in a. For a given j, the number of values of ¢ for
whichalf] = a[j],b[¢] = b[]] is exactly L-min(a[j]? b[]]). Thus,
summing over these entries, Wah“Sh[i] = Wh‘“h[i, W”al[i =a[j],
and Wgal [l] min(a[; ~]2 b[{]) .

Yk, max(a[k]2b[k]?)

Analysis for Discrete Vectors. Next, as a step towards proving
Theorem 2, we prove a restricted intermediate result, Lemma 2,
that only applies to vectors whose entries, after scaling to be unit
norm, are already integer multiplies of 1/L for a fixed discretization
parameter L. When this is the case, the RoUND procedure in Algo-
rithm 3 is no-op: it simply returns a/||a|| unmodified. Making this
assumption simplifies our analysis. Later we introduce a rounding
error analysis to obtain a result for arbitrary vectors.

bility

. Now, by construction (line 3 of Algorithm 3),

= f)[Jj] with probability

LEMMA 2. Consider any integer discretization parameter L, accu-

alil
> all?

2
and % are integer multiples of 1/L. When run with sample size

racy parameter € € (0,1), and a,b € R" such that for all i

m = O (1/€%) and discretization parameter L, Algorithm 3 returns
sketches Wy and Wy, such that, letting & denote the estimation proce-
dure of Algorithm 5, with probability at least 2/3,

|F (Wa, Wp) — (a,b)| < emax ([laz [[lIbIl, [[all[bz).

Here I = {i:a[i] # 0 andb[i] # 0} is the intersection of a’s and b’s
supports and ay,b denote a and b restricted to indices in I .

Note that Lemma 2 is also weaker than Theorem 2 in that it only
gives an accurate solution with constant probability, 2/3, instead
of 1 — § probability for any chosen §. This is again to simplify the
analysis and later we show how the standard “median-trick” can
be used to improve the success probability to 1 — § [19, 33].

PRrROOF. As stated, since a/||a|| and b/||b|| have squared entries
that are integer multiples of 1/L by assumption, in line 2 of Algo-
rithm 3, Rounp(a/||al|, L) simply sets 4 = a/||a||. Analogously it
sets b = b/|b||. Let A = {i : a[i] # 0} and B = {i : b[i] # 0}
denote the supports of a and b respectively. We have 7 = AN B.
Reduction to Unit Vectors. We first note that, to prove the theo-
rem, it suffices to only consider the inner product between the unit

179

PODS 23, June 18-23, 2023, Seattle, WA, USA

vectors 4 and b. Specifically, we will show that:
F (Wa, Wp) r

b &P ©
< eJ Z max(a[i] Z)Zmax(a 12 b[]).
iEANB

Using that ||a]|% + ||l~)||2 = 2 since 4, b are unit vectors, we have:

J

Z max(a[i]Z,B[i]Z)Zmax(a[i]Z,B[i]Z)

i€eANB i=1
< \/(nafuz +1Ib712) (a2 + 1BI12)
larl? | ||bf||2)

24 b
= 2 (larlz+ 1b712) \] |a||2 e

Thus, multiplying (5) on both sides by ||a||||b|| we have:

Ibr?
IIb]|?

llaz|®
llall?

= eV2yllazIPIBII? + [[b 7 [?lla]l
< 2 -max ([laz |[bll, bl -

| (Wa, W) = (a,b)| < eV2]lall[[b]] -

The last inequality follows from the fact that the sum is at most two
times the max. Adjusting € by a constant gives the desired bound
of Lemma 2. Thus, we turn our attention to proving (5).

Analysis for Unit Vectors. We start by analyzing an idealized ver-
sion of the estimator computed by Algorithm 5, where M is replaced
by the exact weighted union size M = YT max(a[i] 2, f)[i] 2.
Specifically, define:

F* = Z [Whash

where g; = min (Wa““l [i]2, Wl:’“l [i]z) as in line 1 of Algorithm 5.

We first show that E[F*] = (&, b) and then bound *’s variance.
For each i € {1,...,m} define the random variable Z; as

anl[il - anl[i]
qi ’

Whash[]] . Waval [i] - vaal [i] ,
qi

(6)

Zi=1 [Whash[] Whash[]]
n in(a12B1 12
M is the weighted Jaccard

27 max(a[j12b[j1?)

similarity between a and b, applying Fact 5 we have:

Recalling that J =

0 with probability 1 — J
o a[j1blj] : 0 min(a[j]1%b[j1?)
=) mmapray Vithprobability St bk

forall j e AN B.
(ab) < b)

* m
Thus,E[Z;] = S GRS .Since ¥ = Zi:l Z;
it follows from linearity of expectation that:
* M L ~ 1
1=— Y Elz]=@b). ()
=

PODS ’23, June 18-23, 2023, Seattle, WA, USA

We next bound the variance of #*. For each Z; we have that:
min(a[/1% bLj1*) a[j]%b[j1>
b[k12) mm(fs\[]]2 b[j12)2

Var[Z;] < Z

JEANB pa max(a[k]?,
-y max(a[j1% b[j]%)
jeAnG L max(a[k]% b[k]?)
_ Zjeans max(@[j]%b1%)
P % blk]?)
Since each Z; is independent it follows that:

=z ZVar

1 .
S; Z max(a[j]% b[j

JjeEANB

Y jeans max(a[j12,b[;]?)
M

max(alk]

Var[F

Z max(a[j]

Combining (7) and (8) with Chebyshev’s inequality, we can claim
that when m = O(1/€?), with probability at least 5/6:

1% ®

|7 - @b < EJ
JEANB

©)

We want to extend this bound from the idealized estimator ¥*

to our true estimator ¥, which equals ﬁ F*. To do so, we use that

Misa good approximation to M. As discussed in Section 4, this

is because M exactly equals i times a distinct elements estimator

applied to the support sets A and B of the extended vectors a, b.

From (4) and Lemma 1, we have that for m = O(1/€?),
(1-e)M <M< (1+€e)M,
with probability at least 5/6. It follows that:
Wa, Wi
llalllIbl
By a union bound, with probability at least 2/3, both (9) and (10)
hold simultaneously. Finally, by Cauchy-Schwarz inequality,

<a,6>sJ >, max(@[j]1%b[j1?)) max(a[j]?
JjeANB

j=

(1-e)F" < <(1+e)F".

b[j12).

Combining (9) and (10) with triangle inequality, it follows that

T(W&Wb) _/x T ‘
b~ &P

sseJ >, max(@[j1%B[j1?)) max(a[j]2.BLj12).
JjeANB Jj=1

Adjusting € by a 1/3 factor proves Lemma 2. O

Rounding for Continuous Vectors. With Lemma 2 in place, we
complete our proof of Theorem 2 by analyzing the impact of the
rounding step in Algorithm 5. In Lemma 3, we show that if L is set
on the order of n®/e?, then we can bound the impact of this step
on the accuracy of our inner product estimate. Formally, we have:

> max(alj12,b[j12) D max(a[j]% b[j]?).
j=1

180

Aline Bessa et al.

LEMMA 3 (ROUNDING). Consider any a,b € R" and discretization
parameter L. Let 3 = Rounp(a/||al|, L) andb = Rounp(b/|b|, L),
as in line 2 of Algorithm 3. Leta’ = ||a|| - 4 and b” = ||b]| -b, and let
B denote B = max (|laz|[[[bll. llalll[b£]) .

(1) a’,b’ satisfy the assumption of Lemma 2, that for all i, a,al 3

and 2l]|2 are integer multiples of 1/L.

bl
(2) For alrlly |dlscretlzatlon parameter L, sketch size m, and random
seed s, Algorithm 3 yields identical outputs on a,b anda’,b’.
Le, Wy = Wy and W, = Wy,
(3) ForL > 9n®/€?, |{(a,b) — (a’,b’)| < €B.

(4) ForL = n®, ma (Jla’, [1b']l, la’|1b) < 2B.

Proor. We prove the four claims of the lemma in order. For the
first two, we focus on a and a’. Identical claims hold for b and b’.

Claim 1: | ali

serve that & = Rounp(a/||a||, L) is a unit vector. This is ensured
by line 3 of Algorithm 4. Thus, ||a’|| = |la]| - ||a]] = |la]| and

rr:12 rr:12
% = % = a[i]?. So to prove the claim, it suffices to show

that 4[i]? is an integer multiple of 1/L for all i. This is guaranteed
by Algorithm 4. After line 1, we can see that z[i]? is an integer
multiple of 1/L for all i. Since L is an integer, 1 is also trivially an
integer multiple of 1/L. So § = 1 — ||Z||? as set in line 2 is an integer
multiple of 1/L. Finally, this ensures that z[i*]% = Z[i*]% + § as set
in line 3 is an integer multiple of 1/L, completing the claim.

J‘ > is an integer multiple of 1/L for all i. First ob-

Claim 2: W, = Wy . As shown above, ||a’|| = ||a||. So to prove the
claim, it suffices to show that RounD (— L) = RounD

llall” (H’II)

This ensures that Algorithm 3 proceeds identically on inputs a and
a’. By Claim (1), Rounp(a’/||a’||, L) = a’/||a’|| = a’/||a]| = 4. And
by definition, a = Rounp(a/||a||, L). This completes the claim.

Claim 3: For L > 9n%/€?, |(a,b) — (a’, b’)| < €B.Leta = a/|a||
and b = b/||b]|. So 4 = Rounp(4, L) and b= Rounp(b, L). We will

show that
- @b)| < e ylarl? + b1

Multiplying each side of (11) by ||al|||b]| then gives:

(11)

@by = (@b < e- lall bl Az I + 5717
larl? brl?
=€l (n:ﬂv e

= el(lazlI2IbI2 + b7 12 1 ?)
< Vze - max (|laz |2 IbI2 b7 |?llall?),

which completes the claim after adjusting € by a constant.

We proceed to prove (11). Observe that for any i ¢ 7, we have
at least one of 4[i] or 1tA)[i] equal to 0. In turn, at least one of a[i]
or b[i] is also 0 since in the rounding procedure of Algorithm 4
any entry of z that is 0 is set to 0 in Z. So we can conclude that
(a, B) = (é],f)]) and similarly, (&, f)) =(ay, f)I). This gives that:

@b - @b =|@r.br) - b)),

So, to prove (11), it suffices to bound the righthand side of the above
equation. We consider two cases:

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation

L and

VL

nA[i] sincedisa

Case 1: max (I|ﬁ]|| ||BI||)
L > n, then |a[i]| <

\f Fori e 7,if |a[i]| <

and so i # argmax;¢

‘/>

unit vector so has at least one entry with magnltude > 1/+/n. Thus,
a[i] is rounded in line 1 of Algorithm 4, and not in line 3. We have
la[i]? - L] = 0 and so |a[i] — a[i]| = |a[i]| < Alternatively, if

|afi]| = LL and i # argmax;c;

\/’

a[i] (so a[i] is rounded in line
1 but not line 3 of Algorithm 4) then:

jali] - alil| < — - [ValilZ - L - Valil? - L 1]

1 < L
Valilz - L++a[iz-L-1 VL
.n &[i] then 4[i] is rounded in line 3 and so
jaLi] ~ ali1] < |VAIZ + 6 - [alal| < Ifs[i]l,

where we use that 4/x is concave with derivative 57— FEaIl [Ty at a[i]%. In

A

&l g~

>

Ifi = argmax;e;

(12)

line 2 of Algorithm 4 we set § = 1 — ||i||?, where 4 is formed by
rounding down entries of 4 in line 1. Each squared entry is rounded
down by at most 1/L, so recalling that 4 is a unit vector, § < n/L.
Plugging into (12), and recalling that we assume a[i] > 1/VL,
. n/ L n
[a[i] —a[i]| < <=
2NL VL

Overall, we can conclude that [|a; — 47|l <

(13)

n

\/—Z.

Similarly, we

have |[b; —b7]leo < - Thus,
|@.B) - @b)| = |@r.bp) - Gr.bo)
no(. . |T|-n?
77 (larl bzl + =7

By Cauchy-Schwarz, we have ||ay|; < +/|Z|-|la7|l and ||BI||1 <
VIZ1 - IIb7|l. Overall, this gives:

[@b) - @b < "fg' (1azl+1b71) + %
< 3—; (Haz I+ 1B+ max lar . 1B71)).

where in the last line we use that | 7'| < n, along with the assumption
of Case 1 that max (||ﬁf||, ||BI||) > \/Lf

@)~ @) < e max Jarll b7l <
This proves (11) for Case 1.

Setting L > 9" , we have
e-llarl?+Ibrl?.

.Inthis case, foralli € 7, |a[i]| <

VL

Thus, for L > n,noi € 7 satisfiesi =

nf)[i]. So for all i € 7,
a[i] and b[i] are rounded to 0 in line 1 of Algorithm 4. Le., ay

Case 2:max |l b7 <
& and [blil] <

argmaXjeq n

1
VL
a[i] or i = argmax;¢;

and b 7 are both all zero vectors. So, to prove (11), we must show
that (éI,f)I)| <e-+/llarl?+ ||l;1—||2 This follows from Cauchy-

VL

Tmax(mu, Ib 1)

Schwarz and our assumption that |laz||, |[br|l <
[ar.bo)| < larlibsIl <

lazll>+brll?.

§I

181

PODS 23, June 18-23, 2023, Seattle, WA, USA

Setting L > = gives (11), completing Claim (3) of the lemma.

Claim 4: For L > n3, max (Ila}llllb’ll, ||a'||||b'I||) < 2B. Recall that
by construction ||a’|| = ||a]| and ||b’|| = ||b||. Thus, dividing each
side of the inequality by ||al|||b|| it suffices to show:

[zl b7 (nafu ||bf||)
max
lall” Tl lall”> Tl

Le., we must show that max(||ar]|, ||f)]||) <2 max~(||éI||, ||f){||).
It suffices to show that ||ar|| < 2||a7|| and that |[br|| < 2|[b7]l.
We focus on proving this for a. The bound for b follows the same
argument. We consider two cases. Let i* = argmax;¢; _, |a[i]].
Case 1: i* ¢ I.In this case, all entries in 47 are only rounded
in line 1 of Algorithm 4. They are thus all rounded down and so
llarll < |laz|l, giving the claim.

Case 2: i* € 7. In this case, since a is a unit vector, we have
llazll = |a[i*]] = 1/+n = 1/VL when L > n. Further, all entries in
iy are rounded down, except 4[i*]. But as shown via (13), |a[i*]| <

|a[i*]] + LL.Thus, lazll < llagll + LL < 2||az||, aslong as L > n3.

.....

This completes Claim (4) and thus the lemma. O

Putting everything together. Finally, we prove our main result
by combining Lemma 3 with Lemma 2.

Proor oF THEOREM 2. Given any a,b € R", let a’ and b’ be
defined as in Lemma 3. Consider applying Algorithm 3 to compute
sketches Wy, Wi, Wy, Wy of size m = O(1/ ez), using discretization
parameter L = O(n®/€?). Using the first claim of Lemma 3 , we can
apply Lemma 2 to a’, b’ to show that with probability > 2/3,

|7 (War, Why) = €@, b")] < emase (Jla 11D, b)

Combining triangle inequality with Claims (2) and (4) of Lemma 3,
we conclude that with probability > 2/3,
|7 (Wa, Wp) = (a,b)| < [(a,b) = (a’,b")|
+2emax ([laz[[[[bll, llalllb£ D) -
Finally, applying Claim (3) of Lemma 3 gives that
|9 (Wa, Wp) — (a,b)| < 3e max ([la |l[[bll. lalllibr)

After adjusting € by a factor of 1/3, this establishes the bound
of Theorem 2. The probability of success is 2/3. Using a stan-

dard trick, we can boost the success probability by computing ¢ =
O(log(1/6)) independent sketches of a, b using Algorithm 3 with

independent random seeds [19]. Call these sketches W(l) a(t)
and Wb(l), e, Wb(t), For any i, with probability > 2/3,

17 (W, W) — (a,b)| < emax (Jlaz [Ibll. flallbzIl) -

Via a standard Chernoff bound, with probability at least 1 — 6, this
bound holds for > ¢/2 of the independent sketches. Thus, if we
take the median estimate produced by the sketches, it will satisfy
the desired bound with probability > 1 — §. Concatenating our ¢
independent sketches into a single sketch, we can see that the total
sketch size is t - m = O(log(1/8)/€%), giving Theorem 2. O

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Motivating Application: Dataset Search
	1.3 Paper Roadmap

	2 Related Work
	3 Warmup: Unweighted MinHash
	4 Main Result: Weighted MinHash
	5 Experiments
	5.1 Synthetic Data
	5.2 Real-World Data

	References
	A Additional Proofs
	A.1 Unweighted MinHash Analysis
	A.2 Weighted MinHash Analysis

