
Weighted Minwise Hashing Beats Linear Sketching
for Inner Product Estimation

Aline Bessa
∗

New York University

aline.bessa@nyu.edu

Majid Daliri

New York University

daliri.majid@nyu.edu

Juliana Freire

New York University

juliana.freire@nyu.edu

Cameron Musco

University of

Massachusetts Amherst

cmusco@cs.umass.edu

Christopher Musco

New York University

cmusco@nyu.edu

Aécio Santos

New York University

aecio.santos@nyu.edu

Haoxiang Zhang

New York University

haoxiang.zhang@nyu.edu

ABSTRACT
We present a new approach for independently computing compact

sketches that can be used to approximate the inner product be-

tween pairs of high-dimensional vectors. Based on the Weighted

MinHash algorithm, our approach admits strong accuracy guar-

antees that improve on the guarantees of popular linear sketching

approaches for inner product estimation, such as CountSketch and

Johnson-Lindenstrauss projection. Specifically, while our method

exactly matches linear sketching for dense vectors, it yields signifi-

cantly lower error for sparse vectors with limited overlap between

non-zero entries. Such vectors arise in many applications involving

sparse data, as well as in increasingly popular dataset search appli-

cations, where inner products are used to estimate data covariance,

conditional means, and other quantities involving columns in un-

joined tables. We complement our theoretical results by showing

that our approach empirically outperforms existing linear sketches

and unweighted hashing-based sketches for sparse vectors.

CCS CONCEPTS
• Information systems → Data management systems; Data
structures; Join algorithms; • Theory of computation → Sketch-
ing and sampling.

KEYWORDS
inner product estimation, vector sketching, join-size estimation

ACM Reference Format:
Aline Bessa, Majid Daliri, Juliana Freire, Cameron Musco, Christopher

Musco, Aécio Santos, and Haoxiang Zhang. 2023. Weighted Minwise Hash-

ing Beats Linear Sketching for Inner Product Estimation . In Proceedings of

the 42nd ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database

Systems (PODS ’23), June 18–23, 2023, Seattle, WA, USA. ACM, New York,

NY, USA, 13 pages. https://doi.org/10.1145/3584372.3588679

∗
Author names are listed in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

PODS ’23, June 18–23, 2023, Seattle, WA, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-0127-6/23/06. . . $15.00

https://doi.org/10.1145/3584372.3588679

1 INTRODUCTION
The inner product of two vectors a and b, ⟨a, b⟩ = ∑𝑛

𝑘=1
a[𝑘]b[𝑘], is

a ubiquitous operation. Amongmany other applications, inner prod-

ucts can be used to compute document similarities [46], to evaluate

learned classification models, and to estimate join sizes [1, 4, 45].

However, in modern applications involving very high-dimensional

vectors, computing exact inner products can be intractable. The

computational cost is 𝑂 (𝑛) and computing ⟨a, b⟩ requires loading
𝑂 (𝑛) numbers from memory, or communicating𝑂 (𝑛) numbers if a
and b are stored on different machines.

A common approach for resolving this issue is to pre-compute a

small space compression (a sketch) of each vector, which we will

denote by S(a) and S(b), respectively. An estimation function F
is then used to approximate the inner product as F (S(a),S(b)) ≈
⟨a, b⟩. The beauty of sketching is that it simultaneously reduces

storage, communication, and runtime complexity. Moreover, once

computed, sketches can be reused again and again to estimate inner

products with other vectors. For example, given another vector c
we can estimate ⟨a, c⟩ ≈ F (S(a),S(c)).

Sketching methods for approximating inner products are already

widely used throughout computer science. In machine learning,

they can be used to accelerate the training of large-scale linear

models like support vector machines or logistic regression [5, 40].

In relational databases, inner product sketches are used in query

optimizers to choose optimal query plans without having to execute

expensive queries that involve large joins [19]. More recently, inner

product sketches have found applications in dataset search and

discovery, where they are used to discover joinable tables [22]

and to estimate other column statistics, such as correlation [47],

without explicitly performing a join operation between two tables.

We discuss these applications and others in Section 1.2.

What was Previously Known? In all of the applications above, a

primary concern is optimizing the trade-off between the sketch size

(which governs storage, communication, and runtime efficiency)

and how accurately F (S(a),S(b)) approximates ⟨a, b⟩. A large

sketch size will in general lead to better approximation, but the

question is by exactly how much. Currently, the only methods with

strong theoretical guarantees on this tradeoff for general vectors (i.e.,

vectors without any assumed value distribution or magnitude) are

based on linear sketching algorithms. Such algorithms include the

famous “tug-of-war” sketch, a.k.a. the AMS sketch [2, 4], the CountS-

ketch algorithm [12], and methods based on Johnson-Lindenstrauss

(JL) random projection [1, 20].

169

https://doi.org/10.1145/3584372.3588679
https://doi.org/10.1145/3584372.3588679
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3584372.3588679&domain=pdf&date_stamp=2023-06-18

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

All of these approaches have a similar form. We choose a random

matrix Π ∈ R𝑚×𝑛
(Π might have i.i.d. random entries or more

complex structure) and setsS(a) = Πa andS(b) = Πb. Each sketch
is a length𝑚 vector and is considered a linear sketch since S is a

linear function. To estimate the inner product, the typical approach

is to simply return the sketch inner product ⟨S(a),S(b)⟩.1
A textbook theoretical accuracy guarantee for inner product

estimation based on linear sketching is:

Fact 1 (Linear Sketching for Inner Products [5]). Let 𝜖, 𝛿 ∈
(0, 1) be accuracy and failure probability parameters respectively

and let 𝑚 = 𝑂 (log(1/𝛿)/𝜖2). Let Π ∈ R𝑚×𝑛
be a random matrix

with each entry set independently to +
√
1/𝑚 or −

√
1/𝑚 with equal

probability. For length 𝑛 vectors a, b ∈ R𝑛 , let S(a) = Πa and S(b) =
Πb. With probability at least 1 − 𝛿 ,

|⟨S(a),S(b)⟩ − ⟨a, b⟩| ≤ 𝜖 ∥a∥∥b∥
where ∥x∥ denotes the standard Euclidean norm.

In addition to dense random matrices, analogous results to Fact 1

can be proven for sparse JL matrices, CountSketch matrices, and

other linear sketches [19]. The fact provides a powerful accuracy

guarantee that improves with the sketch size𝑚 and depends natu-

rally on the norms of a and b. To the best of our knowledge, linear

sketching methods were previously the only known algorithms to

obtain such a strong theoretical guarantee.

1.1 Our Contributions
In this paper we introduce a novel method for inner product sketch-

ing based on the Weighted MinHash sketch [25, 28, 41], which is

a variant of the classic MinHash method [8, 9]. We prove that our

method obtains a refined guarantee than Fact 1. In particular, it

matches the result for linear sketches in the worst case when a
and b are dense2, but always obtains a better bound when a and b
are sparse vectors with limited overlap between non-zero entries.

As discussed further in Section 1.2, such pairs of vectors are the

norm in many applications of inner product sketching to database

problems and modern dataset search applications.

Theorem 2 (Main Result). Let 𝜖, 𝛿 ∈ (0, 1) be accuracy and

failure probability parameters and let𝑚 = 𝑂 (log(1/𝛿)/𝜖2). There is
an algorithm S that produces size-𝑚 sketches (Algorithm 3), along

with an estimation procedure F (Algorithm 5), such that for any

a, b ∈ R𝑛 , with probability at least 1 − 𝛿 ,
|F (S(a),S(b)) − ⟨a, b⟩| ≤ 𝜖 max (∥aI ∥∥b∥, ∥a∥∥bI ∥)

Above, I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} is the intersection of a’s and
b’s supports. aI and bI denote a and b restricted to indices in I.

We always have ∥aI ∥ ≤ ∥a∥ and ∥bI ∥ ≤ ∥b∥, so we can bound

max (∥aI ∥∥b∥, ∥a∥∥bI ∥) ≤ ∥a∥∥b∥. That is, the guarantee of The-
orem 2 matches that of Fact 1 in the worse-case, but can be signifi-

cantly better. For example, consider a and b that have roughly the

same number of non-zero entries, but only a 𝛾 < 1 fraction of those

1
Other estimators involving e.g., the median of multiple approximate inner products,

are also used [33]. However, theoretical guarantees are similar, typically differing in

the dependence on the failure probability 𝛿
2
For dense vectors, Fact 1 is actually optimal up to constants: recent work implies that

no sketch of size𝑚 = 𝑜 (log(1/𝛿)/𝜖2) can achieve error 𝜖 ∥a∥ ∥b∥ with probability

1 − 𝛿 for all inputs [3, 32]. Our result also matches this lower bound.

entries are non-zero in both a and b. In this case, it is reasonable to

expect that ∥aI ∥2 ≈ 𝛾 ∥a∥2 and ∥bI ∥2 ≈ 𝛾 ∥b∥2 since aI and bI
contain just a 𝛾 fraction of entries from the original vectors. Our

course, the actually improvement is data dependent; for example,

we might have that ∥aI ∥2 is significantly smaller than 𝛾 ∥a∥2, or
that it is not much smaller than ∥a∥2.

Nevertheless, considering the “typical case” when a 𝛾 fraction of

non-zeros overlap, we might expect the bound from Theorem 2 to

be better than Fact 1 by a factor of

√
𝛾 . So, to obtain the same error

as a linear sketch, our method could set𝑚 smaller by a factor of 𝛾 .

In many applications, 𝛾 is very small. E.g., in Section 5 we consider

a document similarity problem where 𝛾 ≤ .05 for 95% of vector

pairs sketched. This could equate to roughly a 20𝑥 improvement in

sketch size required to achieve a specified level of error.

Thanks to their strong theoretical guarantees, linear sketching

algorithms have become the go-to approach for generic inner prod-

uct estimation [19]. Our results show for the first time that an

alternative method can provide stronger bounds. We hope that this

paper will serve as a starting point for further investigation into

hashing-based algorithms for inner product sketching.

1.2 Motivating Application: Dataset Search
Before presenting the technical details of our results and discussing

related work, we detail one application that could benefit from

our proposed sketches, and helps illustrate the importance of ob-

taining bounds for inner product estimation that are sensitive to

the number of overlapping non-zero entries in a and b. Specifi-
cally, we consider the problem of dataset search which has received

increasing attention in recent years [22, 34, 47, 48, 54–56].

Suppose that a data scientist wants to understand the reasons

for fluctuations in taxi ridership in New York City in 2022. The

analyst only has a table containing two columns: a date column

and the number of taxi rides taken on that day. In order to carry

out the analysis, she needs to find other tables, either in her orga-

nization’s data lake or in public repositories like NYC Open Data

(which contain thousands of datasets [15]), that would bring in

other relevant variables when joined with the original table. For

example, the analyst might hope to find weather data, which can

impact taxi ridership. Moreover, she would like to find relevant

factors that she might not think of on her own, in an automatic way.

To solve this problem, we would like methods to automatically

discover tables that are both 1) joinable with the target table (i.e.,

also contain columns with dates from 2022) and 2) meaningfully

related with the analyst’s data. For example, a table containing

precipitation data should be returned if taxi ridership is significantly

higher or lower on days with high precipitation. To find such tables,

brute force search is not infeasible – we typically cannot afford to

join the analyst’s table with all tables in the search set to look for

good candidates. Instead, we need to efficiently estimate statistics

between disparate tables without materializing their join [47].

Sketching has become the most popular approach for performing

this sort of estimation between unjoined data tables [22, 47, 48,

54, 56]. Specifically, a small-space sketch is precomputed for all

data tables in the search set. When the analyst issues a query to

find relevant data, a sketch of her table is compared against these

preexisting sketches using a fraction of the computational resources

in comparison to explicitly materializing table joins [47].

170

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

Method Error for sketches of size 𝑂 (1/𝜖2) Assumptions

JL [5], AMS [2, 4], CountSketch [12] 𝜖 · ∥a∥∥b∥ None

MinHash (MH) Sampling [6, 44] 𝜖 ·max (∥aI ∥∥b∥, ∥a∥∥bI ∥) a, b are binary, i.e. with {0, 1} entries.
Weighted MinHash (WMH) Sampling (our method) 𝜖 ·max (∥aI ∥∥b∥, ∥a∥∥bI ∥) None

Table 1: High-probability additive error guarantees for estimating ⟨a, b⟩ using various sketching methods. We let I = {𝑖 :

a[𝑖] ≠ 0 and b[𝑖] ≠ 0} denote the intersection of a’s and b’s supports. aI and bI are a and b restricted to indices in I. Since
max (∥aI ∥∥b∥, ∥a∥∥bI ∥) ≤ ∥a∥∥b∥, the bound for our Weighted MinHash method is better than the linear sketching methods.
Unweighted MinHash only matches our bound under the strong limiting assumption that a and b are binary.

T𝐴
𝐾𝐴 𝑉𝐴
1 6.0

3 2.0

4 6.0

5 1.0

6 4.0

7 2.0

8 2.0

9 8.0

11 3.0

T𝐵
𝐾𝐵 𝑉𝐵
2 1.0

4 5.0

5 1.0

8 2.0

10 4.0

11 2.5

12 6.0

15 6.0

16 3.7

T𝐴⊲⊳𝐵
𝐾𝐴⊲⊳𝐵 𝑉𝐴⊲⊳ 𝑉𝐵⊲⊳

4 6.0 5.0

5 1.0 1.0

8 2.0 2.0

11 3.0 2.5

SIZE(𝑉𝐴⊲⊳) = 4

SUM(𝑉𝐴⊲⊳) = 12.0

SUM(𝑉𝐵⊲⊳) = 10.5

MEAN(𝑉𝐴⊲⊳) = 12.0/4 = 3.0

Figure 1: The table T𝐴⊲⊳𝐵 is the output of a one-to-one join
between the tables T𝐴 with T𝐵 . We are interested in approx-
imating post-join statistics (e.g., join size, sums, means, and
covariances) of the table T𝐴⊲⊳𝐵 using only inner products.

Inner product sketching for dataset search. Interestingly, in
the framework discussed above, many problems of interest can

be formulated precisely as inner product sketching problems. To

see why this is the case, consider the example tables T𝐴 and T𝐵
shown in Figure 1: each contains a column of keys, 𝐾𝐴 and 𝐾𝐵 , and

a column of values, 𝑉𝐴 and 𝑉𝐵 . A join operation between the tables

on their keys generates the output table T𝐴⊲⊳𝐵 .3
We list in Figure 1 a number of statistics that we might hope to

estimate in T𝐴⊲⊳𝐵 when searching for relevant datasets. We claim

that all of these statistics can be estimated using inner products

between vector representations of the tables, which we denote

x1[𝐾𝐴] , x𝐾𝐴 and x1[𝐾𝐵] , x𝐾𝐵 respectively and show in Figure 2.

First, it is easy to see that the size of T𝐴⊲⊳𝐵 is equal to the inter-

section between the keys in 𝐾𝐴 and 𝐾𝐵 , i.e., |𝐾𝐴 ∩ 𝐾𝐵 | = 4. This is

in turn equal to the inner product between x1[𝐾𝐴] and x1[𝐾𝐵] . Simi-

larly, the SUM aggregate of the values in𝑉𝐴 after join (i.e., SUM(𝑉𝐴⊲⊳))

is equal to the inner product SUM(𝑉𝐴⊲⊳) = ⟨x𝑉𝐴 , x1[𝐾𝐵]⟩. To esti-

mate a post-join mean (i.e., MEAN(𝑉𝐴⊲⊳)), we can combine the join-

size estimate with the SUM estimate:

MEAN(𝑉𝐴⊲⊳) =
⟨x𝑉𝐴 , x1[𝐾𝐵]⟩

⟨x1[𝐾𝐴] , x1[𝐾𝐵]⟩
.

Finally, computing a post-join inner product, ⟨x𝑉𝐴 , x𝑉𝐵 ⟩ could be

useful. In the application above, for tables containing precipitation

data and taxi ridership, a high inner-product might signify that

high precipitation days align with high ridership days.

Comparison of different methods. Given the above reductions,

both linear sketching methods like JL projection and CountSketch,

and our Weighted MinHash method, can be directly applied to the

3
Note that, in the example described in Figure 1, we assume a one-to-one join. Dataset

search problems can involve many-to-many joins as well, although a typical approach

is to use a data aggregation function to reduce to the one-to-one setting [31, 47, 48].

index 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

x𝑉𝐴 6.0 0 2.0 6.0 1.0 4.0 2.0 2.0 8.0 0 3.0 0 0 0 0 0

x1[𝐾𝐴]
1 0 1 1 1 1 1 1 1 0 1 0 0 0 0 0

x𝑉𝐵 0 1.0 0 5.0 1.0 0 0 2.0 0 4.0 2.5 6.0 0 0 6.0 3.7

x1[𝐾𝐵]
0 1 0 1 1 0 0 1 0 1 1 1 0 0 1 1

Figure 2: Vector representation of tables T𝐴 with T𝐵 from Fig-
ure 1. The vector x1[𝐾𝐴] (resp. x1[𝐾𝐵]) is the vector represen-
tation for the join key 𝐾𝐴 (resp. 𝐾𝐵) and x𝑉𝐴 (resp. x𝑉𝐵) is
the vector representation for the column 𝑉𝐴 (resp. 𝑉𝐵). Bold
numbers are entries included in the join result T𝐴⊲⊳𝐵 .

dataset search problem. We simply need to precompute S(x1[𝐾𝐵])
and S(x𝑉𝐵) for all tables T𝐵 in our search set. Sketching other

vector transformations like S((x𝑉𝐵)2) opens up the possibility of

also estimating other quantities like post-join variance.

In search applications, we note that the vector length 𝑛 can be

very large. However, computing sketches does not require fully

materializing the vectors x1[𝐾𝐴] and x1[𝐾𝐵] : all sketching methods

discussed in this paper only need to process the vectors’ non-zero

entries. Furthermore, it is not necessary to know the 𝑛 beforehand:

we can simply set 𝑛 to be large enough to cover the whole domain

of the keys being sketched (e.g., 𝑛 = 2
32

or 𝑛 = 2
64).

To compare methods, Fact 1 and Theorem 2 suggest that any

asymptotic differences in performance between our WMH method

and linear sketching will depend on the overlap in non-zero entries

between the vectors being sketched. In dataset search, this exactly

corresponds to the Jaccard similarity of the key sets 𝐾𝐴 and 𝐾𝐵 .

Our method will perform better when the Jaccard similarity is small.

For example, in Figure 1, only 4 out of 14 unique keys are shared

in both tables, so the similarity is ≈ .29. In the scenario discussed

above, we could imagine a much smaller ratio: for example, our

data analyst might only have a table containing taxi data from 2022,

but compare it to a weather data table with dates from 1960 through

the present day. The Jaccard similarity would be 1/63 ≈ .016. In

Section 5 we consider a dataset search use case involving data from

the World Bank [51] where 42% percent of table pairs had Jaccard

similarity < .1, and 35% have Jaccard similarity < .05.

1.3 Paper Roadmap
In Section 2 we review related prior work. In Section 3 we outline

an analysis of the standard unweighted MinHash method for inner

product estimation. This analysis serves as a technical warm-up

for our main result (Theorem 2) on Weighted MinHash, which is

presented in Section 4. Finally, in Section 5 we support Theorem 2

with a detailed empirical evaluation of our method.

171

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

2 RELATED WORK
Inner Product Estimation for Binary Vectors. Beyond linear

sketching methods for estimating the inner product between gen-

eral real-valued vectors a and b, there has been a lot of prior work on
the special case of binary vectors with {0, 1} entries. For such vec-

tors, approximating the inner product amounts to approximating

the size of the intersection of two sets. Concretely, any a, b ∈ {0, 1}𝑛
can be associated with sets A and B that contain integers from

{1, . . . , 𝑛}. We defineA to contain all 𝑖 for which a[𝑖] = 1, and simi-

larlyB to contain all 𝑖 for which b[𝑖] = 1. Note that ⟨a, b⟩ = |A∩B|.
Applying Fact 1, we know that a linear sketch of size 𝑚 =

𝑂 (1/𝜖2) can estimate ⟨a, b⟩ up to additive error 𝜖 ∥a∥∥b∥ = 𝜖
√
|A||B|.

However, a better bound can be obtained using non-linear sketch-

ing methods based on the classic MinHash sketch [8, 9, 27, 42],

the 𝑘-minimum value (KMV) sketch [6], or related techniques

[37, 39]. With𝑚 = 𝑂 (1/𝜖2) space, such methods are achieve error

𝜖
√
max(|A|, |B|) · |A ∩ B|, which is always smaller than 𝜖

√
|A||B|

[6, 44]. For binary vectors, this bound was proven optimal in [44].

Our work was motivated by this pre-existing result for binary

vectors. In fact, our Theorem 2, is a strict generalization of the

bound to all real-valued vectors. When a and b are binary, we have

that ∥aI ∥2 = ∥bI ∥2 = |A ∩ B|. So it is not hard to see that

𝜖
√
max(|A|, |B|) · |A ∩ B| = 𝜖 ·max (∥aI ∥∥b∥, ∥a∥∥bI ∥), which

is exactly our bound from Theorem 2. We summarize how all prior

inner product sketching methods compare to our result in Table 1.

Beyond Binary Vectors. There has been less work on obtaining

better results for estimating inner products of vectors with non-

binary entries. One recent paper [33] proves refined bounds for

the CountSketch method that depend on the ℓ1 norm of a and b
(instead of the Euclidean norm). These bounds can be tighter than

Fact 1 for some vectors, especially when the sketch size𝑚 is large.

However, the results are not directly comparable to ours.

We take a different approach, moving beyond linear sketch-

ing entirely. Our main result is based on a class of sketches that

we collectively refer to as “Weighted MinHash” methods [13, 49].

These methods include weighted versions of coordinated random

sampling [17, 18], as well as the “Consistent Weighted Sampling”

algorithm [25, 41] and its descendants, which are essentially equiva-

lent, but computationally cheaper to apply [26, 28, 53]. As shown in

Section 4, Weighted MinHash sketches allows us to handle vectors

whose entries have highly varying magnitude (in contrast to binary

vectors, where all non-zero entries have the same magnitude of 1).

Weighted MinHash sketches have been used in a number of

applications, including for approximating weighted Jaccard sim-

ilarity [53], for near-duplicate detection with weighted features

[41], for approximating the distance between two vectors [28], and

for sketching image histograms [49]. In many of these applica-

tions, the weighted sketches empirically outperform unweighted

sketches. Weighted MinHash sketches have also been used to com-

pute general “sum aggregate” queries, for which the inner product

is a special case [18]. However, we are not aware of strong worst-

case error guarantees for the above applications, let alone for the

problem of general inner product estimation. Consistent Weighted

Sampling has also been used to approximate inner products in

[35], albeit using a different estimator than in our work. However,

non-asymptotic worst-case guarantees are not provided.

Locality Sensitive Hashing. Finally, our problem of estimating

inner products from sketches is closely related to cosine similarity

and maximum inner product search (MIPS), where the goal is to

retrieve vectors from a database with the highest cosine similar-

ity (respectively, inner product) with a given query vector. One

approach for solving these problems is locality sensitive hashing

[24], and there are methods based on both MinHash and random

projections, like SimHash [11]. It has been observed that MinHash

often outperforms SimHash for binary data, which parallels what

was previously known for binary inner product estimation [50].

3 WARMUP: UNWEIGHTED MINHASH
Notation.We use bold letters to denote vectors, and for a vector

a, a[𝑘] denotes the 𝑘th entry (indexing starts with 1). For two

length 𝑛 vectors, a, b, ⟨a, b⟩ =
∑𝑛
𝑘=1

a[𝑘]b[𝑘] denotes the inner

product. ∥a∥ =
√
⟨a, a⟩ denotes the Euclidean norm and ∥a∥∞ =

max𝑘∈{1,...,𝑛} |a[𝑘] | denotes the infinity norm. ∥a∥1 =
∑𝑛
𝑘=1

|a[𝑘] |
denotes the ℓ1 norm. As is standard in the literature [6], we assume

access to uniformly random hash functions that map to the real line.

I.e., we assume that we can construct a random function ℎ such

that for any input 𝑗 ∈ {1, . . . , 𝑛}, ℎ(𝑗) is distributed uniformly and

independently on the interval [0, 1]. In practice, ℎ can be replaced

with a low-randomness function that map to a sufficient large

discrete set {1/𝑈 , 2/𝑈 . . . , 1}. Typically 𝑈 is chosen to equal 𝑛𝑐 for

constant 𝑐 (e.g. 𝑐 = 3) [19]. We let Pr[𝐸] denote the probability that

a random event 𝐸 occurs, and 1[𝐸] is the indicator random variable

that evaluates to 1 if 𝐸 occurs and to 0 otherwise. E[𝑋] and Var[𝑋]
denote the expectation and variance of a random variable 𝑋 .

An unweighted method. Before introducing our Weighted Min-

Hash sketching method, we review the unweighted MinHash al-

gorithm and prove a inner product estimation bound that can be

obtained from this method. The bound closely follows prior work on

binary vectors [6, 44] and only holds under strong assumptions on

the sketched vectors a and b – specifically that their entries are uni-

formly bounded in magnitude. Nevertheless, it serves as a warmup

for our main result, which is proven using a similar strategy, but

eliminates the assumption by using weighted sampling.

Given a vector a, we obtain an entry in the standard MinHash

sketch (see e.g., [8]) by hashing the index of every non-zero entry in

a to the interval [0, 1]. We then store the smallest hash value. This

process is repeated𝑚 times with independently chosen random

hash functions. For binary vectors a and b with non-zero index

sets A = {𝑘 : a[𝑘] ≠ 0} and B = {𝑘 : b[𝑘] ≠ 0}, the minimum

hash value alone can be used to estimate the Jaccard similarity

|A ∩ B|/|A ∪ B| or the union size |A ∪ B| [6, 23, 30].
For non-binary vectors, is it common to augment the standard

MinHash sketch by also storing the value of the index with min-

imum hash value. This idea is used in “coordinated sampling” or

“conditional random sampling” sketches [16, 18, 36], and was re-

cently used to extend MinHash and the closely related 𝑘-minimum

values (KMV) sketch to estimate vector correlations [47]. The basic

augmented MinHash sketching method is shown in Algorithm 1,

which returns 𝐻ℎ𝑎𝑠ℎa and 𝐻 𝑣𝑎𝑙a as vectors of minimum hashes and

their corresponding vector values, respectively.

For any single vector a, the augmented MinHash sketch 𝐻a
contains a uniform subsample (collected with replacement) of the

172

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

Algorithm 1 Unweighted MinHash Sketch

Input: Length 𝑛 vector a, sample number𝑚, random seed 𝑠 .

Output: Sketch 𝐻a = {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙a }, where 𝐻ℎ𝑎𝑠ℎa and 𝐻 𝑣𝑎𝑙a have

length𝑚 and contain values in [0, 1] and from a, respectively
1: Initialize random number generator with seed 𝑠 .

2: for i = 1, . . . , m do
3: Select uniformly random hash func. ℎ𝑖 : {1, ..., 𝑛} → [0, 1].
4: Compute 𝑗∗ = argmin𝑗 ∈{1,...,𝑛}, a[𝑗]≠0 ℎ

𝑖 (𝑗).
5: Set 𝐻ℎ𝑎𝑠ℎa [𝑖] = ℎ𝑖 (𝑗∗) and 𝐻 𝑣𝑎𝑙a [𝑖] = a[𝑗∗]
6: end for
7: return {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙a }

Algorithm 2 Unweighted MinHash Estimate

Input: Sketches 𝐻a = {𝐻ℎ𝑎𝑠ℎa , 𝐻 𝑣𝑎𝑙a }, 𝐻b = {𝐻ℎ𝑎𝑠ℎb , 𝐻 𝑣𝑎𝑙b } con-

structed using Algorithm 1 with the same inputs𝑚, 𝑠 .

Output: Estimate of ⟨a, b⟩.
1: Set 𝑈̃ = 𝑚∑𝑚

𝑖=1 min

(
𝐻ℎ𝑎𝑠ℎa [𝑖],𝐻ℎ𝑎𝑠ℎb [𝑖]

) − 1

2: return 𝑈̃
𝑚

∑𝑚
𝑖=1 1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙a [𝑖] · 𝐻 𝑣𝑎𝑙b [𝑖]

non-zero values in a. This is because for all 𝑖 ∈ {1, . . . ,𝑚} the

minimum value of the 𝑖th hash is equally likely to come from any

of the indices with non-zero value. More importantly, sketch can be

used to obtain a uniform subsample from the intersection of a and b,
i.e., from entries where both vectors are non-zero. This subsample

can in turn be used to estimate the sum ⟨a, b⟩ =
∑𝑛
𝑘=1

a[𝑘]b[𝑘],
since a[𝑘]b[𝑘] only contributes to the sum if a[𝑘] and b[𝑘] are
both non-zero. Concretely, we have the following well-known fact:

Fact 3. Consider vectors a and b sketched using Algorithm 1 to

produce sketches 𝐻a and 𝐻b. Define the sets A = {𝑖 : a[𝑖] ≠ 0} and
B = {𝑖 : b[𝑖] ≠ 0}. Then for all 𝑖 ∈ {1, . . . ,𝑚} we have:

(1) 𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖] with probability
|A∩B |
|A∪B | .

(2) If 𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖], then 𝐻 𝑣𝑎𝑙a [𝑖] = a[𝑗] and 𝐻 𝑣𝑎𝑙b [𝑖] =
b[𝑗] for 𝑗 chosen uniformly at random from A ∩ B.

Fact 3 indicates that, to obtain a uniform subsample from the

intersection of a and b, we can simply take all entries in 𝐻 𝑣𝑎𝑙a and

𝐻 𝑣𝑎𝑙b where the corresponding entries in𝐻ℎ𝑎𝑠ℎa and𝐻ℎ𝑎𝑠ℎb are equal

– and, as per (1), they will be equal with good probability.

With Fact 3 in place, we describe an inner product estimator

based on MinHash (Algorithm 2). This estimator will serve as a

template for our weighted MinHash estimator in the next section.

Consider the summation in line 2 of Algorithm 2. Using linearity

of expectation and Fact 3, we can compute the expectation:

E

[
𝑚∑
𝑖=1

1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙a [𝑖] · 𝐻 𝑣𝑎𝑙b [𝑖]

]
=𝑚 · E

[
1

[
𝐻ℎ𝑎𝑠ℎa [1] = 𝐻ℎ𝑎𝑠ℎb [1]

]
· 𝐻 𝑣𝑎𝑙a [1] · 𝐻 𝑣𝑎𝑙b [1]

]
=𝑚 ·

∑
𝑗 ∈A∩B

1

|A ∪ B| a[𝑗]b[𝑗] =
𝑚

|A ∪ B| · ⟨a, b⟩.

It follows from the above that, if we multiplied the summation∑𝑚
𝑖=1 1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙a [𝑖] · 𝐻 𝑣𝑎𝑙b [𝑖] by |A∪B |

𝑚 , then

we would have an unbiased estimate for ⟨a, b⟩, as desired. The
only catch is that we do not know |A ∪ B|. This union size cannot

be computed exactly from our sketches 𝐻a and 𝐻b. However, it
can be estimated using the same information contained in our

MinHash sketches. In particular, since ℎ𝑖 hashes uniformly to [0, 1],
𝑚∑𝑚

𝑖=1 min

(
𝐻ℎ𝑎𝑠ℎa [𝑖],𝐻ℎ𝑎𝑠ℎb [𝑖]

) −1 provides a good estimate for |A∪B|.

This is actually a standard variant of the well-known Flajolet-Martin

distinct elements estimator [6, 23]. In Line 1 of Algorithm 2, we

set 𝑈̃ equal to this estimator and we multiply by
𝑈̃
𝑚 in Line 2 as a

surrogate for
|A∪B |
𝑚 . This gives our final estimator for ⟨a, b⟩.

Overall, we are able to prove the following concentration bound

for the estimator for computing the inner product between any pair

of bounded vectors. For binary vectors, the constant 𝑐 below equals

1 and we exactly recover the bounds from prior work [44].

Theorem 4 (Intermediate Result: Inner Product Sketching

with Unweighted MinHash). Let 𝜖, 𝛿 ∈ (0, 1) be accuracy and

failure probability parameters and let𝑚 = 𝑂 (log(1/𝛿)/𝜖2). There is
an algorithm S that produces size-𝑚 sketches (Algorithm 1), along

with an estimation procedure F , such that for any a, b ∈ R𝑛 with

entries bounded in [−𝑐, 𝑐], with probability at least 1 − 𝛿 ,

|F (S(a),S(b)) − ⟨a, b⟩| ≤ 𝜖 · 𝑐2 ·
√
max(|A|, |B|) · |A ∩ B|

for A = {𝑖 : a[𝑖] ≠ 0} and B = {𝑖 : b[𝑖] ≠ 0}.

The full proof of Theorem 4 is included in Appendix A.1. It re-

quires two technical ingredients. First, we must bound the variance

of an “ideal” estimator that uses the exact value of |A ∪ B|. This
can be done by using the fact that a and b have entries bounded

in [−𝑐, 𝑐]. Second, we can bound the error introduced by replacing

|A ∪ B| with an estimate for the union, as discussed above. To do

so, we rely on the following standard result, which shows that Min-

Hash sketches for a and b can be used to compute a (1± 𝜖) relative
error approximation to the true union |A ∪ B| when𝑚 = 𝑂 (1/𝜖2):

Lemma 1 (Union Size Estimator [7]). Let A and B be non-

empty subsets of {1, . . . , 𝑛} and let ℎ1, . . . , ℎ𝑚 : {1, . . . , 𝑛} → [0, 1]
be independent, uniform random hash functions. For any 𝜖, 𝛿 ∈ (0, 1),
if 𝑚 = 𝑂

(
1

𝛿𝜖2

)
, then with prob. at least 1 − 𝛿 , the estimator 𝑈̃ =

𝑚∑𝑚
𝑖=1 min𝑗∈A∪B ℎ𝑖 (𝑗) − 1 satisfies:

(1 − 𝜖) |A ∪ B| ≤ 𝑈̃ ≤ (1 + 𝜖) |A ∪ B|.

Note that, while it is written in a slightly different way, the 𝑈̃

in Lemma 1 is exactly equivalent to the 𝑈̃ in Algorithm 2 (when

A and B contain the non-zero indices of a and b). To see why this

is the case, note that 𝐻ℎ𝑎𝑠ℎa [𝑖] = min𝑗 ∈A ℎ𝑖 (𝑗) and 𝐻ℎ𝑎𝑠ℎb [𝑖] =

min𝑗 ∈B ℎ𝑖 (𝑗). So min

(
𝐻ℎ𝑎𝑠ℎa [𝑖], 𝐻ℎ𝑎𝑠ℎb [𝑖]

)
= min𝑗 ∈A∪B ℎ𝑖 (𝑗).

4 MAIN RESULT: WEIGHTED MINHASH
The main technical challenge in our work is extending the results

of the previous section (Theorem 4) to vectors whose entries have

highly varying magnitude. It is not hard to see that the simple

MinHash method fails for such vectors. For example, consider the

extreme case when a and b both contain a very large values at

some index 𝑖 , so large that the term a[𝑖]b[𝑖] dominates the inner

product ⟨a, b⟩ = ∑𝑛
𝑘=1

a[𝑘]b[𝑘]. To correctly approximate the inner

173

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

Algorithm 3 Weighted MinHash Sketch

Input: Length𝑛 vector a, sample number𝑚, random seed 𝑠 , integer

discretization parameter 𝐿.

Output: Sketch 𝑊a = {𝑊 ℎ𝑎𝑠ℎ
a ,𝑊 𝑣𝑎𝑙

a , ∥a∥}, where 𝑊 ℎ𝑎𝑠ℎ
a is a

length 𝑚 vector of values in [0, 1], 𝑊 𝑣𝑎𝑙
a is a length 𝑚 vec-

tor containing a subset of entries from a, and ∥a∥ is a scalar,
the Euclidean norm of a.

1: Initialize random number generator with seed 𝑠 .

2: Set ã = Round(a/∥a∥, L) using Algorithm 4.

3: For each 𝑖 ∈ {1, . . . , 𝑛}, let ā(𝑖) be a length 𝐿 vector whose first

ã[𝑖]2 · 𝐿 entries are set to ã[𝑖]. Set the remaining entries to 0.

4: Let ā = [ā(1) , . . . , ā(𝑛)] be a length 𝑛 · 𝐿 vector obtained by

concatenating the vectors defined above.

5: for i = 1, . . . , m do
6: Select uniform random hash func. ℎ𝑖 : {1, ..., 𝑛𝐿} → [0, 1].
7: Compute 𝑗∗ = argmin𝑗 ∈{1,...,𝑛 ·𝐿}, ā[𝑗]≠0 ℎ

𝑖 (𝑗).
8: Set𝑊 ℎ𝑎𝑠ℎ

a [𝑖] = ℎ𝑖 (𝑗∗) and𝑊 𝑣𝑎𝑙
a [𝑖] = ā[𝑗∗].

9: end for
10: return {𝑊 ℎ𝑎𝑠ℎ

a ,𝑊 𝑣𝑎𝑙
a , ∥a∥}.

Algorithm 4 Vector Rounding for Weighted MinHash

Input: Length 𝑛 unit vector z, integer discretization parameter 𝐿.

Output: Length 𝑛 unit vector z̃ with z̃[𝑖]2 an integer multiple of

1/𝐿 for all 𝑖 .

1: For all 𝑖 ∈ {1, . . . , 𝑛}, z̃[𝑖] = sign(z[𝑖]) ·
√

⌊z[𝑖]2 ·𝐿⌋
𝐿

.

2: Let 𝑖∗ = argmax𝑖∈1,...,𝑛 |z[𝑖] |.
3: Fix 𝛿 = 1 − ∥z̃∥2, then set z̃[𝑖∗] = sign(z[𝑖∗]) ·

√
z̃[𝑖∗]2 + 𝛿 .

4: return z̃.

product, we need to include a[𝑖] and b[𝑖] in our sketches for a
and b, respectively. A MinHash sketch will only do so with low

probability, since it uniformly samples entries from the intersection

of the vectors. Thus, it will obtain a poor estimate for ⟨a, b⟩.
To address the issue with heavy entries, we modify the approach

of Section 3 to incorporate non-uniform sampling weights using a

Weighted MinHash sketch [41]. This allows us to sample high mag-

nitude entries in the vectors with higher probability. Specifically,

our goal is to sample the 𝑖th entry of awith probability proportional
to the squared magnitude, a[𝑖]2. The Weighted MinHash sketch

achieves non-uniform sampling in a simple way: we construct an

extended vector ā which has the same entries as a, but entries are
repeated multiple times, with the exact number of repetitions pro-

portional to their magnitude. We then apply the standard MinHash

sketch to ā. This approach is detailed in Algorithm 3.

Rounding &Normalization.WhileWeightedMinHash allows us

to sample entries with non-uniform probability, another challenge

arises: since sketches for a and b are computed independently, we

no longer sample with the same probability from both vectors. For b,
Weighted MinHash samples indices with probability proportional

to b[𝑖]2 instead of a[𝑖]2. This mismatch can actually reduce the

probability that we select entries from a and b with the same index.

We are able to balance this issue with a normalization strategy.

In particular, line 2 in Algorithm 3 performs a simple but important

preprocessing step that scales and rounds a to a unit vector ã whose
squared entries are all integermultiples of 1/𝐿 for some large integer

Algorithm 5 Weighted MinHash Estimate

Input: Sketches 𝑊a = {𝑊 ℎ𝑎𝑠ℎ
a ,𝑊 𝑣𝑎𝑙

a , ∥a∥} and 𝑊b =

{𝑊 ℎ𝑎𝑠ℎ
b ,𝑊 𝑣𝑎𝑙

b , ∥b∥} constructed using Algorithm 3 with the

same inputs𝑚, 𝑠 , and 𝐿.

Output: Estimate of ⟨a, b⟩.

1: For 𝑖 ∈ {1, . . . ,𝑚}, set 𝑞𝑖 = min

(
𝑊 𝑣𝑎𝑙

a [𝑖]2,𝑊 𝑣𝑎𝑙
b [𝑖]2

)
.

2: Set 𝑀̃ = 1

𝐿
·
(

𝑚∑𝑚
𝑖=1 min

(
𝑊 ℎ𝑎𝑠ℎ

a [𝑖],𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

) − 1

)
.

3: Set 𝐼 = 𝑀̃
𝑚

∑𝑚
𝑖=1 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
· 𝑊

𝑣𝑎𝑙
a [𝑖] ·𝑊 𝑣𝑎𝑙

b [𝑖]
𝑞𝑖

.

4: return ∥a∥∥b∥ · 𝐼

𝐿 (to be chosen later). The rounding handles a minor issue: since

we control the frequency with which each entry a[𝑖] is sampled

by repetition, we need the squared value of all entries to be integer

multiples of the same fixed constant in order to sample precisely

with probability proportional to a[𝑖]2. As will be proven, 𝐿 can be

chosen so that the discretization has little impact on the accuracy

of our final inner product estimate, and the parameter also has no

impact on the size of the sketch returned by Algorithm 1.
4

The scaling is what deals with the bigger issue discussed above,

which is the mismatch in sampling probabilities between a and b.
Surprisingly, we can show that the impact of this mismatch can

be controlled when ∥a∥ = ∥b∥. So while it is possible to come up

with examples where the algorithm fails if we directly sketch a
and b, we can obtain a worst-case bound by sketching a/∥a∥ and
b/∥b∥, approximating ⟨a/∥a∥, b/∥b∥⟩, and then post-multiplying

the result by ∥a∥∥b∥ to get our final estimator.

Deriving the Inner Product Estimator. We next motivate Algo-

rithm 2, which is the algorithm used to estimate ⟨a, b⟩ from our

sketches. Note that Weighted MinHash Sketch (Algorithm 3) in fact

returns an Unweighted MinHash Sketch (Algorithm 1) for the ex-

panded vectors ā, b̄. So, we can apply Fact 3 to obtain the following:

Fact 5. Consider vectors a and b sketched using Algorithm 3

to produce𝑊a and𝑊b. Define A and B as in Fact 3. For all 𝑖 ∈
{1, . . . ,𝑚} we have:

(1) 𝑊 ℎ𝑎𝑠ℎ
a [𝑖] =𝑊 ℎ𝑎𝑠ℎ

b [𝑖] with probability equal to the weighted

Jaccard similarity, 𝐽 =

∑𝑛
𝑗=1 min(ã[𝑗]2, ˜b[𝐽]2)∑𝑛
𝑗=1 max(ã[𝑗]2, ˜b[𝑗]2)

.

(2) If𝑊 ℎ𝑎𝑠ℎ
a [𝑖] =𝑊 ℎ𝑎𝑠ℎ

b [𝑖], then we have that𝑊 𝑣𝑎𝑙
a = ã[𝑗] and

𝑊 𝑣𝑎𝑙
b = b̃[𝑗] for 𝑗 chosen from A ∩ B with probability equal

to min(ã[𝑗]2, ˜b[𝑗]2)/∑𝑛𝑖=1max(ã[𝑗]2, ˜b[𝑗]2).

A proof of Fact 5 is given in Appendix A.2. With the statement

in place, we present our procedure for estimating ⟨a, b⟩ based the

sketches computed by Algorithm 3. This procedure, shown in Al-

gorithm 5, is reminiscent of our estimator for unweighted sketches

from the previous section. The only difference is that, since we

are sampling with non-uniform probabilities, we need to inversely

weight samples in our sum to keep everything correct in expecta-

tion. In particular, consider the sum in line 3 of the algorithm.

4
Note that our rounding method (Algorithm 4) is non-standard: It rounds all entries of

the input vector down to smaller magnitude values, except for the largest magnitude

entry in the vector, which gets rounded up. This scheme allows us to achieve small

relative error when rounding and to avoid additive error depending on 1/𝐿.

174

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

By Fact 5 and linearity of expectation, we have that:

E

[
𝑚∑
𝑖=1

1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖

]
𝑚 · E

[
1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖

=𝑚 ·
∑

𝑗 ∈A∩B

𝑞 𝑗∑𝑛
𝑖=1max(ã[𝑖]2, ˜b[𝑖]2)

ã[𝑗] ˜b[𝑗]
𝑞 𝑗

=
𝑚∑𝑛

𝑖=1max(ã[𝑖]2, ˜b[𝑖]2)
· ⟨ã, ˜b⟩.

So, we have obtained an estimator that in expectation is equal

to ⟨ã, ˜b⟩, multiplied by𝑚 over a term𝑀 =
∑𝑛
𝑖=1max(ã[𝑗]2, ˜b[𝑗]2).

This term𝑀 is referred to as the weighted union size between the

vectors. We can multiply by
𝑀
𝑚 to obtain an unbiased estimator for

⟨ã, ˜b⟩. Since ã and ˜b were obtained by scaling a and b inversely by

their Euclidean norms (ignoring the effect of rounding for now),

our final estimator in Line 4 of Algorithm 5 multiplies by ∥a∥∥b∥.
The values of ∥a∥ and ∥b∥ are stored explicitly in the sketches for

a and b, respectively (as just one extra number per sketch).

The formal analysis of Algorithm 5, which yields Theorem 2, is

included in Appendix A.2. It contains three parts. First, when analyz-

ing the unweighted estimator, we do not know𝑀 exactly, somust es-

timate it.We can take advantage of the fact that𝑀 is exactly equal to

the unweighted union size | ¯A∪ ¯B| between the non-zero index sets

¯A and
¯B of the expanded vectors ā and ¯b constructed in Algorithm 3.

We can apply Lemma 1 directly to obtain an estimator, which is de-

noted as 𝑀̃ in Algorithm 5. Second, we need to analyze the variance

of the sum

∑𝑚
𝑖=1 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
· 𝑊

𝑣𝑎𝑙
a [𝑖] ·𝑊 𝑣𝑎𝑙

b [𝑖]
𝑞𝑖

. This

analysis uses the fact that ã and ˜b are unit vectors. Third, we need to
rigorously analyze the impact of the rounding procedure performed

in Line 2 of Algorithm 3 to establish that a good estimate for ⟨ã, ˜b⟩
actually yields a good estimate for ⟨a/∥a∥, b/∥b∥⟩ = 1

∥a∥ ∥b∥ ⟨a, b⟩.
We conclude by noting that our final analysis of Algorithm 5

requires setting 𝐿 to be on the order of 𝑛6/𝜖2 when sketching using

Algorithm 3. This may sound large, but note that the parameter has

no impact on the size of the sketches returned by Algorithm 3, or on

the runtime of our estimation procedure Algorithm 5. 𝐿 does impact

the runtime of Algorithm 3, but as discussed in Section 5, prior work

can be used to implement theWeighted MinHash sketching method

so that it has a logarithmic dependence on 𝐿 – i.e., on 𝑂 (log(𝑛/𝜖)).

5 EXPERIMENTS
To support the results presented in Section 4, we performed an ex-

perimental evaluation using synthetic data and real-world datasets.

Baselines. We compare our Weighted MinHash approach against

4 baseline methods, 2 linear and 2 sampling-based, with the goal

of evaluating the trade-off between sketch size and accuracy in

estimating inner products. Those methods are:

Johnson-Lindenstrauss Projection (JL): equivalent to the AMS

sketch [1, 4]. Uses a randommatrix𝚷with scaled±1 entries (Fact 1).
CountSketch (CS): classic linear sketch introduced in [12], and

corresponds to multiplication with a 𝚷 that has sparse random

entries. We follow the implementation in [33], using 5 repetitions

of the sketch and taking the median to improve performance.

MinHash Sampling (MH): method described in Algorithm 1; we

use a single sketch without any median estimate.

𝑘-Minimum Values Sampling (KMV): sampling-based sketch

closely related to MinHash, but it draws samples from the vector

being sketched without replacement. It can also be used to estimate

union size. We follow the implementations from [6] and [47].

Weighted MinHash Sampling (WMH): our method described in

Algorithm 3; we use a single sketch without any median estimate.

Storage Size. For linear sketches, we store the output of the matrix

multiplication 𝚷a as 64-bit doubles. We also store𝑊 𝑣𝑎𝑙
a and 𝐻 𝑣𝑎𝑙a

as 64-bit doubles. Since sampling-based sketches need to store hash

values (which in our case are 32-bit ints), a sampling-based sketch

with𝑚 samples takes 1.5𝑥 as much space as a JL sketch with𝑚 rows.

In our experiments, we plot storage size which denotes the total

number of bits in the sketch divided by 64, i.e., the total number of

64-bit doubles (or equivalent) used in the sketch. Standard quanti-

zation tricks could likely be used to reduce the size of numbers in

all sketches (linear and sampling), but we leave the development

of such methods to future work. As a starting point, we note that

there has already been interesting work on quantized JL projections

[29, 38], and the SimHash method for estimating cosine similarity

can be viewed as a “1-bit” quantization of a JL sketch [11].

Estimation Error. For all plots, we report the absolute difference
between ⟨a, b⟩ and the estimate, divided by ∥a∥∥b∥. This is the
term appearing on the right-hand side of the accuracy guarantee

for linear sketches Fact 1, so this scaling roughly ensures that errors

are between 0 and 1, making it easier to compare across different

datasets. We always report average error over 10 independent trials.

Choice of 𝐿. Note that the choice of 𝐿 in Algorithm 3 does not

impact the size of our final sketch, so in general, it should be set

as large as possible. Our bounds from Lemma 3 that suggest 𝐿

should be set ≥ 𝑛6 are likely loose (we did not attempt to optimize

polynomial factors), but we did find that it is necessary to at least

ensure that 𝐿 > 𝑛. Ideally it should be larger by a multiplicative

factor 100 or 1000. The reason for this is that, if a is dense and is

normalized to have unit norm, as in Algorithm 1,most of its entries

could have squared value < 1/𝑛 (as the average value of a squared

entry in a unit norm vector is always 1/𝑛). If we set 𝐿 < 1/𝑛, then
any entries with value < 1/𝑛 would get rounded to 0, which could

negatively impact the accuracy of an inner product estimate.

Efficient Weighted Hashing.When 𝐿 is large, a naive implemen-

tation of Algorithm 3 would be prohibitively slow. The “extended”

vector ā has length 𝑛 ·𝐿 and we must apply a hash function to every

non-zero entry in that vector. Let A = {𝑖 : a[𝑖] ≠ 0} as before, so
|A| is equal to the number of non-zero values in a. If each hash

computation is considered unit cost, this amounts to a runtime of

𝑂 (|A|𝑚 · 𝐿), which is too large, since 𝐿 is chosen larger than 𝑛.

Fortunately, it is possible to improve this cost to𝑂 (|A|𝑚·log𝐿) =
𝑂 (|A|𝑚 · log𝑛) using techniques for speeding up weighted Min-

Hash sketches. Such techniques have been heavily studied in recent

years [26, 28, 49, 53]. The savings are significant, reducing the com-

putation cost of sketching to nearly-linear in the size of the input

for each of our𝑚 samples. Among faster methods, we specifically

employ the simple “active index” technique, which was first in-

troduced in [25]. The rough idea is that, when hashing non-zero

entries in a particular length 𝐿 block of ā, there is no need to hash

175

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

(a) 1% overlap (b) 5% overlap

(c) 10% overlap (d) 50% overlap

Figure 3: Inner product estimation (synthetic data).

all non-zero indices in that block. We can skip over large sections of

indices by observing that if 𝑧 is the minimum hash value generated

so far, the next index where a lower hash value will be seen is a

distributed as a geometric random variable with parameter 𝑧. We

can sample from the geometric distribution efficiently (e.g. using a

built-in Python routine) and skip ahead to that index. It is possible

to prove that the expected cost of this approach is just𝑂 (log𝐿) per
block. See the exposition in [41] for further details.

Since initially releasing this paper, we became aware of even

faster implementations of weighted MinHash that reduce the run-

time to 𝑂 (|A| +𝑚 log𝑚), which is nearly linear in the number

of non-zeros in the vector being sketched [14, 21]. Such methods

should be able to be adapted for use in our inner product sketching

application, although we leave further exploration to future work.

Choice of Hash Function. In practice we cannot obtain a truly

uniform random hash function from {1, . . . , 𝑛} to the reals, so we

must use an approximation. In our experiments, we employ a stan-

dard 2-wise independent hash function (linear function with ran-

dom coefficients) that maps from {1, . . . , 𝑛} to {1, . . . , 𝑝} for a 31-bit
prime 𝑝 [10].

5
We then use as our hash value ℎ(𝑖)/𝑝 , which is a

number between 0 and 1. Since 𝑝 is chosen to have 31 bits, we can

store the value of ℎ(𝑖) in our sketch using a standard 32-bit int.

5.1 Synthetic Data
We begin with an evaluation of our approach using synthetic data.

We generate length 10000 vectors a and b, each with 2000 non-zero

entries. The ratio of non-zero entries that overlap, i.e., are non-zero

in both a and b, is adjusted to simulate different practical settings

with different levels of joinability between tables (see Section 1.2).

The non-zero entries in a and b are normal random variables with

values between −1 and 1, except 10% of entries are chosen randomly

as outliers and set to random values between 20 and 30.

5
Our choice to use a 2-wise independent hash function was based on prior implemen-

tations of the weighted MinHash method [52] that do so.

(a) WMH estimation error mi-
nus JL estimation error.

(b) WMH estimation error mi-
nus MH estimation error.

Figure 4: Inner product estimation (WorldBankdata). Differ-
ent shades of blue highlight combinations for which WMH
outperforms the other methods.

Results for varying amounts of overlap are reported in Figure 3.

They closely align with our theoretical findings: when the over-

lap is small, the bounds for Weighted MinHash are significantly

better than those of linear sketching methods. Accordingly, WMH

outperforms all other methods for overlap ratio ≤ 10%. Note that un-

weighted sampling based sketches also outperform linear sketches

for very low overlap (1%). But as the overlap increases, the advan-

tage brought about by Theorem 2 over Fact 1 decreases. We can

see this in Figure 3(d): at 50% overlap, the performance of linear

sketching is comparable to that of Weighted MinHash.

5.2 Real-World Data
Assessing the Effect of Overlap and Outliers. Using sketches
of size 400,

6
we estimate the inner product between 5000 pairs

of numerical columns from 56 datasets published by the World

Bank Group [51]. We normalize columns to have norm 1 so that

all inner products have magnitude less than 1. We visual results

using a winning table in Figure 4, filting vector pairs based on

different overlap ratios (column) and kurtosis values, a measure of

outliers (row). Each cell shows the average error difference (WMH

estimation error minus the error of other method) for vector pairs

with the specified overlap and kurtosis values.

The blue cells (negative difference) correspond to combinations

in which WMH outperforms the other methods, while the red cells

(positive difference) represent combinations in which the other

methods win. The darker the cells, the bigger the difference. A high

kurtosis often indicates the presence of outliers, which will, based

on our theoretical results, present a difficulty for unweighted sam-

pling methods like MH in comparison to JL or our WMH method.

This is supported by the experiments, which show that WMH has

a great improvement over MH when kurtosis is high (up to -.031 vs.

at most -.020 when kurtosis is low). As predicted by Theorem 2 and

shown in our synthetic experiments, WMH also has a great edge

over JL for low overlap values. For large overlaps (greater than .75),

JL leads to slightly smaller errors (from 0.003 to 0.006).

This suggests that WMH provides a good compromise for applica-

tions in which the distribution of data is unknown: it provides much

better estimates for many cases, and when it does not, its estimates

are comparable to the best results from existing sketching methods.

Document Similarity Estimation.We also evaluated the perfor-

mance of WMH sketches for text similarity estimation using the 20

6
The size was chosen empirically. Our goal here is to simulate the real-world situation

where a fixed parameter must be selected for a given application.

176

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

100 200 300 400
Storage Size

0.025

0.050

0.075

0.100

0.125

Av
er

ag
e

D
iff

er
en

ce

(a) All Documents

100 200 300 400
Storage Size

0.025

0.050

0.075

0.100

0.125

0.150

Av
er

ag
e

D
iff

er
en

ce
(b) Documents > 700 words

Figure 5: Text similarity estimation (20 Newsgroups dataset).
Note that in the left plot, the lines for MH, WMH, and KMV
all lie essentially on top of one another.

newsgroups dataset [43]. We represent each document as a vector

in which each entry represents a term or a combination of 2 terms

(bigrams), and is associated with a value that encodes term/bigram

importance using TF-IDF weights [46]. This setting is well-known

for generating sparse vectors of very high dimension. As a similarity

measure, we use the cosine, which is equal to an inner product when

the vectors have are normalized. We sampled 700 documents and

estimated the cosine similarity for over 200,000 pairs of documents.

The results in Fig. 5 show that, similar to previous experiments,

in the worst case, the accuracy of WMH is comparable to the other

methods, but it can sometimes be better by a large margin. In this

case, it performs better for documents containing more than 700

words. Note that linear projection sketches have poor performance

for small sketches even when the documents are small, whereas

our sampling-based methods are able to obtain significantly better

accuracy for the same storage budget. Finally, also note that the

Unweighted MinHash (MH) performs poorly for long documents

whereas the weighted version still performs well.

Acknowledgements. This work was supported by the DARPA

D3M program and NSF awards ISS-2106888 and CCF-2046235. Aline

Bessawas supported by a 2021 CRA/CCCCIFellowsAward. Cameron

Musco was also supported by a Google Research Scholar Award.

Any opinions, findings, conclusions or recommendations expressed

in this material are those of the authors and do not necessarily

reflect the views of NSF, DARPA, or other funding organizations.

REFERENCES
[1] Dimitris Achlioptas. 2003. Database-friendly Random Projections: Johnson-

Lindenstrauss with Binary Coins. J. Comput. Syst. Sci. 66, 4 (2003), 671–687.

[2] Noga Alon, Phillip B. Gibbons, Yossi Matias, and Mario Szegedy. 1999. Tracking

Join and Self-Join Sizes in Limited Storage. In Proceedings of the 18th Symposium

on Principles of Database Systems (PODS).

[3] Noga Alon and Bo’az Klartag. 2017. Optimal Compression of Approximate

Inner Products and Dimension Reduction. In Proceedings of the 58th Annual IEEE

Symposium on Foundations of Computer Science (FOCS). 639–650.

[4] Noga Alon, Yossi Matias, and Mario Szegedy. 1999. The Space Complexity of

Approximating the Frequency Moments. J. Comput. System Sci. 58, 1 (1999).

[5] Rosa I. Arriaga and Santosh Vempala. 2006. An algorithmic theory of learning:

Robust concepts and random projection. Machine Learning 63, 2 (2006), 161–182.

[6] Kevin Beyer, Peter J. Haas, Berthold Reinwald, Yannis Sismanis, and Rainer

Gemulla. 2007. On Synopses for Distinct-Value Estimation under Multiset Op-

erations. In Proceedings of the 2007 ACM SIGMOD International Conference on

Management of Data. 199–210.

[7] Avrim Blum, John Hopcroft, and Ravindran Kannan. 2020. Foundations of Data

Science. Cambridge University Press.

[8] A.Z. Broder. 1997. On the resemblance and containment of documents. In Pro-

ceedings. Compression and Complexity of SEQUENCES 1997. 21–29.

[9] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael Mitzenmacher.

1998. Min-Wise Independent Permutations (Extended Abstract). In Proceedings

of the 30th Annual ACM Symposium on Theory of Computing (STOC). 327–336.

[10] J. Lawrence Carter and Mark N. Wegman. 1979. Universal classes of hash func-

tions. J. Comput. System Sci. 18, 2 (1979), 143–154.

[11] Moses Charikar. 2002. Similarity Estimation Techniques from Rounding Algo-

rithms. In Proceedings of the 34th Annual ACM Symposium on Theory of Computing

(STOC). 380–388.

[12] Moses Charikar, Kevin Chen, and Martin Farach-Colton. 2002. Finding Frequent

Items in Data Streams. In Proceedings of the 29th International Colloquium on

Automata, Languages and Programming (ICALP). 693–703.

[13] Lianhua Chi and Xingquan Zhu. 2017. Hashing Techniques: A Survey and

Taxonomy. ACM Comput. Surv. 50, 1 (2017).

[14] Tobias Christiani. 2020. DartMinHash: Fast Sketching for Weighted Sets.

arXiv:2005.11547 (2020).

[15] City of New York. 2022. Open Data NYC. https://opendata.cityofnewyork.us/.

[16] Edith Cohen. 2016. Min-Hash Sketches. Springer New York, New York, NY,

1282–1287.

[17] Edith Cohen andHaimKaplan. 2007. Summarizing Data Using Bottom-k Sketches.

In Proceedings of the 2007 ACM Symposium on Principles of Distributed Computing

(PODC). 225–234.

[18] Edith Cohen and Haim Kaplan. 2013. What You Can Do with Coordinated

Samples. In Proceedings of the 16th International Workshop on Approximation

Algorithms for Combinatorial Optimization Problems (APPROX). 452–467.

[19] Graham Cormode, Minos Garofalakis, Peter Haas, and Chris Jermaine. 2011. Syn-

opses for Massive Data: Samples, Histograms, Wavelets, Sketches. NOW publishers.

[20] Sanjoy Dasgupta and Anupam Gupta. 2003. An elementary proof of a theorem of

Johnson and Lindenstrauss. Random Structures & Algorithms 22, 1 (2003), 60–65.

[21] Otmar Ertl. 2018. BagMinHash - Minwise Hashing Algorithm for Weighted Sets.

In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). 1368–1377.

[22] Raul Castro Fernandez, Jisoo Min, Demitri Nava, and Samuel Madden. 2019. Lazo:

A cardinality-based method for coupled estimation of Jaccard similarity and

containment. In Proceedings of the 35th IEEE International Conference on Data

Engineering (ICDE). 1190–1201.

[23] Philippe Flajolet and G. Nigel Martin. 1985. Probabilistic Counting Algorithms

for Data Base Applications. J. Comput. Syst. Sci. 31, 2 (1985), 182–209.

[24] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In Proceedings of the 25th International Conference

on Very Large Data Bases. 518–529.

[25] Sreenivas Gollapudi and Rina Panigrahy. 2006. Exploiting Asymmetry in Hierar-

chical Topic Extraction. In Proceedings of the 15th ACM International Conference

on Information and Knowledge Management (CIKM). 475–482.

[26] Bernhard Haeupler, Mark Manasse, and Kunal Talwar. 2014. Consistent Weighted

Sampling Made Fast, Small, and Easy. arXiv:1410.4266 (2014).

[27] Nevin Heintze. 1996. Scalable Document Fingerprinting. In USENIX Workshop on

Electronic Commerce.

[28] Sergey Ioffe. 2010. Improved Consistent Sampling, Weighted Minhash and L1

Sketching. In Proceedings of the 2010 IEEE International Conference on Data Mining

(ICDM). 246–255.

[29] Laurent Jacques. 2015. A Quantized Johnson–Lindenstrauss Lemma: The Finding

of Buffon’s Needle. IEEE Trans. Inf. 61, 9 (2015), 5012–5027.

[30] Daniel M. Kane, Jelani Nelson, and David P. Woodruff. 2010. An Optimal Algo-

rithm for the Distinct Elements Problem. In Proceedings of the 29th Symposium

on Principles of Database Systems (PODS). 41–52.

[31] James Max Kanter and Kalyan Veeramachaneni. 2015. Deep feature synthesis:

Towards automating data science endeavors. In 2015 IEEE international conference

on data science and advanced analytics (DSAA). IEEE, 1–10.

[32] Kasper Green Larsen and Jelani Nelson. 2017. Optimality of the Johnson-

Lindenstrauss Lemma. In Proceedings of the 58th Annual IEEE Symposium on

Foundations of Computer Science (FOCS). 633–638.

[33] Kasper Green Larsen, Rasmus Pagh, and Jakub Tětek. 2021. CountSketches,

Feature Hashing and the Median of Three. In Proceedings of the 38th International

Conference on Machine Learning (ICML). 6011–6020.

[34] Oliver Lehmberg, Dominique Ritze, Petar Ristoski, Robert Meusel, Heiko Paul-

heim, and Christian Bizer. 2015. The Mannheim Search Join Engine. Journal of

Web Semantics 35 (2015), 159 – 166.

[35] Ping Li. 2017. Linearized GMMKernels and Normalized Random Fourier Features.

In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining (KDD). 315–324.

[36] Ping Li, Kenneth Church, and Trevor Hastie. 2006. Conditional Random Sampling:

A Sketch-based Sampling Technique for Sparse Data. In Advances in Neural

Information Processing Systems 19 (NeurIPS), Vol. 19.

[37] Ping Li and Arnd Christian König. 2010. b-Bit Minwise Hashing. In Proceedings

of the 19th International World Wide Web Conference (WWW).

[38] Ping Li, Michael Mitzenmacher, and Martin Slawski. 2016. Quantized Random

Projections and Non-Linear Estimation of Cosine Similarity. InAdvances in Neural

Information Processing Systems 29 (NeurIPS), Vol. 29.

[39] Ping Li, Art Owen, and Cun-hui Zhang. 2012. One Permutation Hashing. In

Advances in Neural Information Processing Systems 25 (NeurIPS).

177

http://arxiv.org/abs/2005.11547
https://opendata.cityofnewyork.us/
http://arxiv.org/abs/1410.4266

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

[40] Ping Li, Anshumali Shrivastava, Joshua Moore, and Arnd König. 2011. Hashing

algorithms for large-scale learning. Advances in Neural Information Processing

Systems 24 (NeurIPS) 24 (2011).

[41] Mark Manasse, Frank McSherry, and Kunal Talwar. 2010. Consistent Weighted

Sampling. Technical Report MSR-TR-2010-73. https://www.microsoft.com/en-

us/research/publication/consistent-weighted-sampling/

[42] Udi Manber. 1994. Finding Similar Files in a Large File System. In USENIX Winter

1994 Technical Conference.

[43] Tom Mitchell. 1997. 20 Newsgroups Dataset. https://scikit-learn.org/stable/

modules/generated/sklearn.datasets.fetch_20newsgroups.html.

[44] Rasmus Pagh, Morten Stöckel, and David P. Woodruff. 2014. Is Min-Wise Hashing

Optimal for Summarizing Set Intersection?. In Proceedings of the 33rd Symposium

on Principles of Database Systems (PODS). 109–120.

[45] Florin Rusu and Alin Dobra. 2008. Sketches for size of join estimation. ACM

Transactions on Database Systems (TODS) 33, 3 (2008), 1–46.

[46] Gerard Salton, Anita Wong, and Chung-Shu Yang. 1975. A vector space model

for automatic indexing. Commun. ACM 18, 11 (1975), 613–620.

[47] Aécio Santos, Aline Bessa, Fernando Chirigati, Christopher Musco, and Juliana

Freire. 2021. Correlation Sketches for Approximate Join-Correlation Queries. In

Proceedings of the 2021 ACM SIGMOD International Conference on Management of

Data. 199–210.

[48] Aécio Santos, Aline Bessa, Christopher Musco, and Juliana Freire. 2022. A sketch-

based index for correlated dataset search. In Proceedings of the 38th IEEE Interna-

tional Conference on Data Engineering (ICDE). IEEE, 2928–2941.

[49] Anshumali Shrivastava. 2016. Simple and Efficient Weighted Minwise Hashing.

In Advances in Neural Information Processing Systems 29 (NeurIPS). 1506–1514.

[50] Anshumali Shrivastava and Ping Li. 2014. In Defense of Minhash over Simhash.

In Proceedings of the 17th International Conference on Artificial Intelligence and

Statistics (AISTATS).

[51] World Bank. 2022. World Bank Group Finances. https://finances.worldbank.org/

[52] Wei Wu, Bin Li, Ling Chen, Junbin Gao, and Chengqi Zhang. 2020. A Review for

Weighted MinHash Algorithms. IEEE Trans. Knowl. Data Eng. (2020), 1–1.

[53] Wei Wu, Bin Li, Ling Chen, Chengqi Zhang, and Philip S. Yu. 2019. Improved

Consistent Weighted Sampling Revisited. IEEE Trans. Knowl. Data Eng. 31, 12

(2019), 2332–2345.

[54] Yang Yang, Ying Zhang, Wenjie Zhang, and Zengfeng Huang. 2019. Gb-kmv:

An augmented kmv sketch for approximate containment similarity search. In

Proceedings of the 35th IEEE International Conference on Data Engineering (ICDE).

IEEE, 458–469.

[55] Erkang Zhu, Dong Deng, Fatemeh Nargesian, and Renée J. Miller. 2019. JOSIE:

Overlap Set Similarity Search for Finding Joinable Tables in Data Lakes. In

Proceedings of the 2019 ACM SIGMOD International Conference on Management of

Data. 847–864.

[56] Erkang Zhu, Fatemeh Nargesian, Ken Q Pu, and Renée J. Miller. 2016. LSH

Ensemble: Internet-Scale Domain Search. Proceedings of the VLDB Endowment 9,

12 (2016).

A ADDITIONAL PROOFS
A.1 Unweighted MinHash Analysis
In this section, we give a full proof of Theorem 4.

Proof of Theorem 4. Let F (𝐻a, 𝐻b) denote the estimator from

Algorithm 2. Ultimately we will set F in Theorem 4 to be F , but

repeated 𝑂 (log(1/𝛿) times to obtain failure probability 1 − 𝛿 .
We focus on showing first that F (𝐻a, 𝐻b) achieves error 𝜖 · 𝑐2 ·√
max(|A|, |B|) · |A ∩ B| with probability ≥ 2/3. To prove this, let

F ∗ (𝐻a, 𝐻b) be an alternative idealized estimator where we replace

𝑈̃ in line 1 of Algorithm 2 with the true union size 𝑈 = |A ∪ B|:

F ∗ (𝐻a, 𝐻b) =
𝑈

𝑚

𝑚∑
𝑖=1

1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙a [𝑖] · 𝐻 𝑣𝑎𝑙b [𝑖] .

We will first analyze F ∗
, before showing that F obtains essen-

tially as good of an estimate. As established in Section 3, using the

properties of Fact 3, we have that

E
[
F ∗ (𝐻a, 𝐻b)

]
= 𝑈 · 1

|A ∪ B| · ⟨a, b⟩ = ⟨a, b⟩.

So we turn to bounding the variance of the estimator. Define the

random variable 𝑍𝑖 = 1

[
𝐻ℎ𝑎𝑠ℎa [𝑖] = 𝐻ℎ𝑎𝑠ℎb [𝑖]

]
· 𝐻 𝑣𝑎𝑙a [𝑖] · 𝐻 𝑣𝑎𝑙b [𝑖]

and note that F ∗ (𝐻a, 𝐻b) = 𝑈
𝑚

∑𝑚
𝑖=1 𝑍𝑖 . From Fact 3 we have:

𝑍𝑖 =

{
0 with probability 1 − |A∩B |

|A∪B |
a[𝑗]b[𝑗] with probability

1

|A∪B | for all 𝑗 ∈ A ∩ B .

Since each 𝑍𝑖 is independent, we can bound:

Var

[
F ∗ (𝐻a, 𝐻b)

]
=
𝑈 2

𝑚2

𝑚∑
𝑖=1

Var [𝑍𝑖] .

Using our assumption that a[𝑘], b[𝑘] ≤ 𝑐 for all 𝑘 , we have

Var [𝑍𝑖] ≤ E
[
𝑍 2

𝑖

]
=

∑
𝑗 ∈A∩B

1

|A ∪ B| · a[𝑗]
2b[𝑗]2 ≤ 𝑐4 · |A ∩ B|

|A ∪ B| ,

for all 𝑍𝑖 . So we conclude that Var [F ∗ (𝐻a, 𝐻b)] ≤ 1

𝑚 · 𝑐4 · |A ∩
B||A ∪ B|. We then plug our expectation and variance bounds

into Chebyhev’s inequality. If𝑚 = 𝑂 (1/𝜖2), we conclude that with
probability ≥ 5/6,��F ∗ (𝐻a, 𝐻b) − ⟨a, b⟩

�� ≤ 𝜖 · 𝑐2√|A ∩ B||A ∪ B|. (1)

The proof is almost complete; we just need to extend this bound

to the non-idealized estimator F = 𝑈̃
𝑈

· F ∗
. We do so by observing

that 𝑈̃ is a good approximation to 𝑈 . Specifically, by Lemma 1

applied with 𝛿 = 1/6, we have that, when𝑚 = 𝑂 (1/𝜖2), (1− 𝜖)𝑈 ≤
𝑈̃ ≤ (1 + 𝜖)𝑈 , with probability ≥ 5/6. It follows that

(1 − 𝜖)F ∗ (𝐻a, 𝐻b) ≤ F (𝐻a, 𝐻b) ≤ (1 + 𝜖)F ∗ (𝐻a, 𝐻b) . (2)

By a union bound, with probability at least 2/3, both (1) and (2)

hold simultaneously. Finally, by triangle inequality and the fact that

⟨𝑎, 𝑏⟩ ≤ 𝑐2 |A ∩ B| ≤ 𝑐2
√
|A ∩ B||A ∪ B| it follows that:

|F (𝐻a, 𝐻b) − ⟨a, b⟩| ≤ 3𝜖 · 𝑐2 ·
√
|A ∩ B||A ∪ B|.

Noting that |A ∩ B||A ∪ B| ≤ 2max(|A|, |B|) · |A ∩ B| and ad-

justing 𝜖 by a constant factor, we thus have that when𝑚 = 𝑂 (1/𝜖2),
F (𝐻a, 𝐻b) satisfies the guarantee of Theorem 4 with probability

at least 2/3. To boost success probability to 1 − 𝛿 , we can use the

exact same median-trick used in the proof of Theorem 2: instead

of computing a single pair of sketches 𝐻a, 𝐻b for inputs a, b, we
concatenate 𝑂 (log(1/𝛿)) sketches, each constructed using an inde-

pendent random seed. If we apply F to each pair of independent

sketches and return the median estimate for ⟨a, b⟩, with probability

at least 1 − 𝛿 , it will satisfy our desired guarantee. □

A.2 Weighted MinHash Analysis
In this section we complete the analysis of Algorithm 5 introduced

in Section 4, which yields our main result, Theorem 2. We start with

a formal proof of Fact 5, which is the weighted analog of Fact 3.

Proof of Fact 5. Let
¯A = {𝑖 : ā[𝑖] ≠ 0} and ¯B = {𝑖 : b̄[𝑖] ≠ 0}.

Since ā, b̄ are each comprised of 𝑛 blocks of 𝐿 elements, with the

first ã[𝑖]2 · 𝐿 entries and b̃[𝑖]2 · 𝐿 entries in the 𝑖th block set to be

nonzero, we have the following equalities:

| ¯A ∩ ¯B| = 𝐿 ·
𝑛∑
𝑗=1

min(ã[𝑗]2, ˜b[𝑗]2) (3)

| ¯A ∪ ¯B| = 𝐿 ·
𝑛∑
𝑗=1

max(ã[𝑗]2, ˜b[𝑗]2). (4)

178

https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
https://www.microsoft.com/en-us/research/publication/consistent-weighted-sampling/
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://scikit-learn.org/stable/modules/generated/sklearn.datasets.fetch_20newsgroups.html
https://finances.worldbank.org/

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

SinceWℎ𝑎𝑠ℎ
a [𝑖] andWℎ𝑎𝑠ℎ

b [𝑖] are constructed exactly as unweighted
MinHash sketches of ā, b̄, by claim (1) of Fact 3,Wℎ𝑎𝑠ℎ

a [𝑖] = Wℎ𝑎𝑠ℎ
b [𝑖]

with probability
| ¯A∩ ¯B |
| ¯A∪ ¯B | = 𝐽 . This gives claim (1).

To prove claim (2) we note that it is equivalent to claiming that,

unconditional on whether or not Wℎ𝑎𝑠ℎ
a [𝑖] = Wℎ𝑎𝑠ℎ

b [𝑖],𝑊 𝑣𝑎𝑙
a =

ã[𝑗] and𝑊 𝑣𝑎𝑙
b = b̃[𝑗] for some shared 𝑗 ∈ A ∩ B with proba-

bility
min(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑖=1 max(ã[𝑗]2, ˜b[𝑗]2)

. To prove this statement, we use that,

by Fact 3, for any ℓ ∈ ¯A ∩ ¯B, 𝑊 ℎ𝑎𝑠ℎ
a [𝑖] = 𝑊 ℎ𝑎𝑠ℎ

b [𝑖] = ℎ𝑖 (ℓ),
W𝑣𝑎𝑙

a [𝑖] = ā[ℓ], and W𝑣𝑎𝑙
b [𝑖] = b̄[ℓ] with probability

1

| ¯A∪ ¯B | =

1

𝐿
∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
.Now, by construction (line 3 of Algorithm 3),

ā[ℓ] = ã[𝑗] and b̄[ℓ] = b̃[𝑗] whenever ℓ lies in the 𝑗 th length 𝐿

block of entries in ā. For a given 𝑗 , the number of values of ℓ for

which ā[ℓ] = ã[𝑗], b̄[ℓ] = b̃[𝑗] is exactly 𝐿 ·min(ã[𝑗]2, b̃[𝑗]2). Thus,
summing over these entries,𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖],W𝑣𝑎𝑙

a [𝑖] = ã[𝑗],

and W𝑣𝑎𝑙
b [𝑖] = b̃[𝑗] with probability

min(ã[𝑗]2,b̃[𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
. □

Analysis for Discrete Vectors. Next, as a step towards proving

Theorem 2, we prove a restricted intermediate result, Lemma 2,

that only applies to vectors whose entries, after scaling to be unit

norm, are already integer multiplies of 1/𝐿 for a fixed discretization

parameter 𝐿. When this is the case, the Round procedure in Algo-

rithm 3 is no-op: it simply returns a/∥a∥ unmodified. Making this

assumption simplifies our analysis. Later we introduce a rounding

error analysis to obtain a result for arbitrary vectors.

Lemma 2. Consider any integer discretization parameter 𝐿, accu-

racy parameter 𝜖 ∈ (0, 1), and a, b ∈ R𝑛 such that for all 𝑖 ,
a[𝑖]2
∥a∥2

and
b[𝑖]2
∥b∥2 are integer multiples of 1/𝐿. When run with sample size

𝑚 = 𝑂
(
1/𝜖2

)
and discretization parameter 𝐿, Algorithm 3 returns

sketches𝑊a and𝑊b such that, letting F denote the estimation proce-

dure of Algorithm 5, with probability at least 2/3,
|F (𝑊a,𝑊b) − ⟨a, b⟩| ≤ 𝜖 max (∥aI ∥∥b∥, ∥a∥∥bI ∥) .

Here I = {𝑖 : a[𝑖] ≠ 0 and b[𝑖] ≠ 0} is the intersection of a’s and b’s
supports and aI , bI denote a and b restricted to indices in I.

Note that Lemma 2 is also weaker than Theorem 2 in that it only

gives an accurate solution with constant probability, 2/3, instead
of 1 − 𝛿 probability for any chosen 𝛿 . This is again to simplify the

analysis and later we show how the standard “median-trick” can

be used to improve the success probability to 1 − 𝛿 [19, 33].

Proof. As stated, since a/∥a∥ and b/∥b∥ have squared entries

that are integer multiples of 1/𝐿 by assumption, in line 2 of Algo-

rithm 3, Round(a/∥a∥, 𝐿) simply sets ã = a/∥a∥. Analogously it

sets b̃ = b/∥b∥. Let A = {𝑖 : a[𝑖] ≠ 0} and B = {𝑖 : b[𝑖] ≠ 0}
denote the supports of a and b respectively. We have I = A ∩ B.

Reduction to Unit Vectors. We first note that, to prove the theo-

rem, it suffices to only consider the inner product between the unit

vectors ã and b̃. Specifically, we will show that:����F (𝑊a,𝑊b)
∥a∥∥b∥ − ⟨ã, b̃⟩

���� (5)

≤ 𝜖

√√√ ∑
𝑖∈A∩B

max(ã[𝑖]2, b̃[𝑖]2)
𝑛∑
𝑖=1

max(ã[𝑖]2, b̃[𝑖]2) .

Using that ∥ã∥2 + ∥b̃∥2 = 2 since ã, b̃ are unit vectors, we have:√√√ ∑
𝑖∈A∩B

max(ã[𝑖]2, b̃[𝑖]2)
𝑛∑
𝑖=1

max(ã[𝑖]2, b̃[𝑖]2)

≤
√(

∥ãI ∥2 + ∥b̃I ∥2
) (

∥ã∥2 + ∥b̃∥2
)

=

√
2

(
∥ãI ∥2 + ∥b̃I ∥2

)
=

√
2

(
∥aI ∥2
∥a∥2

+ ∥bI ∥2
∥b∥2

)
.

Thus, multiplying (5) on both sides by ∥a∥∥b∥ we have:

|F (𝑊a,𝑊b) − ⟨a, b⟩| ≤ 𝜖
√
2∥a∥∥b∥ ·

√
∥aI ∥2
∥a∥2

+ ∥bI ∥2
∥b∥2

= 𝜖
√
2

√
∥aI ∥2∥b∥2 + ∥bI ∥2∥a∥2

≤ 2𝜖 ·max (∥aI ∥∥b∥, ∥bI ∥∥a∥) .
The last inequality follows from the fact that the sum is at most two

times the max. Adjusting 𝜖 by a constant gives the desired bound

of Lemma 2. Thus, we turn our attention to proving (5).

Analysis for Unit Vectors.We start by analyzing an idealized ver-

sion of the estimator computed by Algorithm 5, where𝑀 is replaced

by the exact weighted union size 𝑀 =
∑𝑛
𝑖=1max(ã[𝑖]2, ˜b[𝑖]2) .

Specifically, define:

F ∗ =
𝑀

𝑚

𝑚∑
𝑖=1

1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖
, (6)

where 𝑞𝑖 = min

(
𝑊 𝑣𝑎𝑙

a [𝑖]2,𝑊 𝑣𝑎𝑙
b [𝑖]2

)
as in line 1 of Algorithm 5.

We first show that E[F ∗] = ⟨ã, ˜b⟩ and then bound F ∗
’s variance.

For each 𝑖 ∈ {1, . . . ,𝑚} define the random variable 𝑍𝑖 as

𝑍𝑖 = 1

[
𝑊 ℎ𝑎𝑠ℎ

a [𝑖] =𝑊 ℎ𝑎𝑠ℎ
b [𝑖]

]
·
𝑊 𝑣𝑎𝑙

a [𝑖] ·𝑊 𝑣𝑎𝑙
b [𝑖]

𝑞𝑖
.

Recalling that 𝐽 =

∑𝑛
𝑗=1 min(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑗=1 max(ã[𝑗]2, ˜b[𝑗]2)

is the weighted Jaccard

similarity between ã and b̃, applying Fact 5 we have:

𝑍𝑖 =


0 with probability 1 − 𝐽

ã[𝑗] ˜b[𝑗]
min(ã[𝑗]2, ˜b[𝑗]2)

with probability
min(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
for all 𝑗 ∈ A ∩ B .

Thus,E[𝑍𝑖] = ⟨ã, ˜b⟩∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
=

⟨ã, ˜b⟩
𝑀

. SinceF ∗ = 𝑀
𝑚

∑𝑚
𝑖=1 𝑍𝑖 ,

it follows from linearity of expectation that:

E[F ∗] = 𝑀

𝑚

𝑚∑
𝑖=1

E [𝑍𝑖] = ⟨ã, b̃⟩. (7)

179

PODS ’23, June 18–23, 2023, Seattle, WA, USA Aline Bessa et al.

We next bound the variance of F ∗
. For each 𝑍𝑖 we have that:

Var[𝑍𝑖] ≤
∑

𝑗 ∈A∩B

min(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
· ã[𝑗]2 ˜b[𝑗]2

min(ã[𝑗]2, ˜b[𝑗]2)2

=
∑

𝑗 ∈A∩B

max(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)

=

∑
𝑗 ∈A∩B max(ã[𝑗]2, ˜b[𝑗]2)∑𝑛
𝑘=1

max(ã[𝑘]2, ˜b[𝑘]2)
=

∑
𝑗 ∈A∩B max(ã[𝑗]2, ˜b[𝑗]2)

𝑀

Since each 𝑍𝑖 is independent, it follows that:

Var[F ∗] = 𝑀2

𝑚2

𝑚∑
𝑖=1

Var [𝑍𝑖]

≤ 1

𝑚

∑
𝑗 ∈A∩B

max(ã[𝑗]2, ˜b[𝑗]2) ·
𝑛∑
𝑗=1

max(ã[𝑗]2, ˜b[𝑗]2) . (8)

Combining (7) and (8) with Chebyshev’s inequality, we can claim

that when𝑚 = 𝑂 (1/𝜖2), with probability at least 5/6:���F ∗ − ⟨ã, ˜b⟩
��� ≤ 𝜖√√√ ∑

𝑗 ∈A∩B
max(ã[𝑗]2, ˜b[𝑗]2)

𝑛∑
𝑗=1

max(ã[𝑗]2, ˜b[𝑗]2).

(9)

We want to extend this bound from the idealized estimator F ∗

to our true estimator F , which equals
𝑀̃
𝑀

· F ∗
. To do so, we use that

𝑀̃ is a good approximation to 𝑀 . As discussed in Section 4, this

is because 𝑀̃ exactly equals
1

𝐿
times a distinct elements estimator

applied to the support sets
¯A and

¯B of the extended vectors ā, b̄.
From (4) and Lemma 1, we have that for𝑚 = 𝑂 (1/𝜖2),

(1 − 𝜖)𝑀 ≤ 𝑀̃ ≤ (1 + 𝜖)𝑀,
with probability at least 5/6. It follows that:

(1 − 𝜖)F ∗ ≤ F (𝑊a,𝑊b)
∥a∥∥b∥ ≤ (1 + 𝜖)F ∗ . (10)

By a union bound, with probability at least 2/3, both (9) and (10)

hold simultaneously. Finally, by Cauchy-Schwarz inequality,

⟨ã, ˜b⟩ ≤

√√√ ∑
𝑗 ∈A∩B

max(ã[𝑗]2, ˜b[𝑗]2)
𝑛∑
𝑗=1

max(ã[𝑗]2, ˜b[𝑗]2).

Combining (9) and (10) with triangle inequality, it follows that����F (𝑊a,𝑊b)
∥a∥∥b∥ − ⟨ã, ˜b⟩

����
≤ 3𝜖

√√√ ∑
𝑗 ∈A∩B

max(ã[𝑗]2, ˜b[𝑗]2)
𝑛∑
𝑗=1

max(ã[𝑗]2, ˜b[𝑗]2).

Adjusting 𝜖 by a 1/3 factor proves Lemma 2. □

Rounding for Continuous Vectors. With Lemma 2 in place, we

complete our proof of Theorem 2 by analyzing the impact of the

rounding step in Algorithm 5. In Lemma 3, we show that if 𝐿 is set

on the order of 𝑛6/𝜖2, then we can bound the impact of this step

on the accuracy of our inner product estimate. Formally, we have:

Lemma 3 (Rounding). Consider any a, b ∈ R𝑛 and discretization

parameter 𝐿. Let ã = Round(a/∥a∥, 𝐿) and b̃ = Round(b/∥b∥, 𝐿),
as in line 2 of Algorithm 3. Let a′ = ∥a∥ · ã and b′ = ∥b∥ · b̃, and let
𝐵 denote 𝐵 = max (∥aI ∥∥b∥, ∥a∥∥bI ∥) .

(1) a′, b′ satisfy the assumption of Lemma 2, that for all 𝑖 ,
a′ [𝑖]2
∥a′ ∥2

and
b′ [𝑖]2
∥b′ ∥2 are integer multiples of 1/𝐿.

(2) For any discretization parameter 𝐿, sketch size𝑚, and random

seed 𝑠 , Algorithm 3 yields identical outputs on a, b and a′, b′.
I.e.,𝑊a =𝑊a′ and𝑊b =𝑊b′ .

(3) For 𝐿 ≥ 9𝑛6/𝜖2, |⟨a, b⟩ − ⟨a′, b′⟩| ≤ 𝜖𝐵.
(4) For 𝐿 ≥ 𝑛3, max

(
∥a′I ∥∥b

′∥, ∥a′∥∥b′I ∥
)
≤ 2𝐵.

Proof. We prove the four claims of the lemma in order. For the

first two, we focus on a and a′. Identical claims hold for b and b′.

Claim 1: a′ [𝑖]2
∥a′ ∥2 is an integer multiple of 1/𝐿 for all 𝑖 . First ob-

serve that ã = Round(a/∥a∥, 𝐿) is a unit vector. This is ensured
by line 3 of Algorithm 4. Thus, ∥a′∥ = ∥a∥ · ∥ã∥ = ∥a∥ and

a′ [𝑖]2
∥a′ ∥2 =

a′ [𝑖]2
∥a∥2 = ã[𝑖]2. So to prove the claim, it suffices to show

that ã[𝑖]2 is an integer multiple of 1/𝐿 for all 𝑖 . This is guaranteed

by Algorithm 4. After line 1, we can see that z̃[𝑖]2 is an integer

multiple of 1/𝐿 for all 𝑖 . Since 𝐿 is an integer, 1 is also trivially an

integer multiple of 1/𝐿. So 𝛿 = 1− ∥z̃∥2 as set in line 2 is an integer

multiple of 1/𝐿. Finally, this ensures that z̃[𝑖∗]2 = z̃[𝑖∗]2 + 𝛿 as set

in line 3 is an integer multiple of 1/𝐿, completing the claim.

Claim 2:𝑊a =𝑊a′ . As shown above, ∥a′∥ = ∥a∥. So to prove the

claim, it suffices to show that Round

(
a
∥a∥ , 𝐿

)
= Round

(
a′
∥a′ ∥ , 𝐿

)
.

This ensures that Algorithm 3 proceeds identically on inputs a and
a′. By Claim (1), Round(a′/∥a′∥, 𝐿) = a′/∥a′∥ = a′/∥a∥ = ã. And
by definition, ã = Round(a/∥a∥, 𝐿). This completes the claim.

Claim 3: For 𝐿 ≥ 9𝑛6/𝜖2, |⟨a, b⟩ − ⟨a′, b′⟩| ≤ 𝜖𝐵. Let â = a/∥a∥
and b̂ = b/∥b∥. So ã = Round(â, 𝐿) and b̃ = Round(b̂, 𝐿). We will

show that ���⟨â, b̂⟩ − ⟨ã, b̃⟩
��� ≤ 𝜖 · √∥âI ∥2 + ∥b̂I ∥2 . (11)

Multiplying each side of (11) by ∥a∥∥b∥ then gives:��⟨a, b⟩ − ⟨a′, b′⟩
�� ≤ 𝜖 · ∥a∥∥b∥√∥âI ∥2 + ∥b̂I ∥2

= 𝜖 · ∥a∥∥b∥

√(
∥aI ∥2
∥a∥2

+ ∥bI ∥2
∥b∥2

)
= 𝜖

√(
∥aI ∥2∥b∥2 + ∥bI ∥2∥a∥2

)
≤
√
2𝜖 ·max

(
∥aI ∥2∥b∥2, ∥bI ∥2∥a∥2

)
,

which completes the claim after adjusting 𝜖 by a constant.

We proceed to prove (11). Observe that for any 𝑖 ∉ I, we have
at least one of â[𝑖] or b̂[𝑖] equal to 0. In turn, at least one of ã[𝑖]
or b̃[𝑖] is also 0 since in the rounding procedure of Algorithm 4

any entry of z that is 0 is set to 0 in z̃. So we can conclude that

⟨â, b̂⟩ = ⟨âI , b̂I⟩ and similarly, ⟨ã, b̃⟩ = ⟨ãI , b̃I⟩. This gives that:���⟨â, b̂⟩ − ⟨ã, b̃⟩
��� = ���⟨âI , b̂I⟩ − ⟨ãI , b̃I⟩

��� .
So, to prove (11), it suffices to bound the righthand side of the above

equation. We consider two cases:

180

Weighted Minwise Hashing Beats Linear Sketching for Inner Product Estimation PODS ’23, June 18–23, 2023, Seattle, WA, USA

Case 1: max

(
∥âI ∥, ∥b̂I ∥

)
≥ 1√

𝐿
. For 𝑖 ∈ I, if |â[𝑖] | < 1√

𝐿
and

𝐿 ≥ 𝑛, then |â[𝑖] | < 1√
𝑛
and so 𝑖 ≠ argmax𝑖∈1,...,𝑛 â[𝑖] since â is a

unit vector so has at least one entry with magnitude ≥ 1/
√
𝑛. Thus,

â[𝑖] is rounded in line 1 of Algorithm 4, and not in line 3. We have

⌊â[𝑖]2 · 𝐿⌋ = 0 and so |ã[𝑖] − â[𝑖] | = |â[𝑖] | < 1√
𝐿
. Alternatively, if

|â[𝑖] | ≥ 1√
𝐿
and 𝑖 ≠ argmax𝑖∈1,...,𝑛 â[𝑖] (so â[𝑖] is rounded in line

1 but not line 3 of Algorithm 4) then:

|ã[𝑖] − â[𝑖] | ≤ 1

√
𝐿
·
���√â[𝑖]2 · 𝐿 −

√
â[𝑖]2 · 𝐿 − 1

���
=

1

√
𝐿
· 1√

â[𝑖]2 · 𝐿 +
√
â[𝑖]2 · 𝐿 − 1

≤ 1

√
𝐿
.

If 𝑖 = argmax𝑖∈1,...,𝑛 â[𝑖] then â[𝑖] is rounded in line 3 and so

|ã[𝑖] − â[𝑖] | ≤
���√â[𝑖]2 + 𝛿 − |â[𝑖] |

��� ≤ 𝛿

2|â[𝑖] | , (12)

where we use that

√
𝑥 is concave with derivative

1

2 |â[𝑖] | at â[𝑖]
2
. In

line 2 of Algorithm 4 we set 𝛿 = 1 − ∥ã∥2, where ã is formed by

rounding down entries of â in line 1. Each squared entry is rounded

down by at most 1/𝐿, so recalling that â is a unit vector, 𝛿 ≤ 𝑛/𝐿.
Plugging into (12), and recalling that we assume â[𝑖] ≥ 1/

√
𝐿,

|ã[𝑖] − â[𝑖] | ≤ 𝑛/𝐿
2/
√
𝐿
≤ 𝑛

√
𝐿
. (13)

Overall, we can conclude that ∥ãI − âI ∥∞ ≤ 𝑛√
𝐿
. Similarly, we

have ∥b̃I − b̂I ∥∞ ≤ 𝑛√
𝐿
. Thus,���⟨ã, b̃⟩ − ⟨â, b̂⟩

��� = ���⟨ãI , b̃I⟩ − ⟨âI , b̂I⟩
���

≤ 𝑛
√
𝐿

(
∥âI ∥1 + ∥b̂I ∥1

)
+ |I| · 𝑛2

𝐿
.

By Cauchy-Schwarz, we have ∥âI ∥1 ≤
√
|I | · ∥âI ∥ and ∥b̂I ∥1 ≤√

|I | · ∥b̂I ∥. Overall, this gives:���⟨ã, b̃⟩ − ⟨â, b̂⟩
��� ≤ 𝑛

√
|I |

√
𝐿

(
∥âI ∥ + ∥b̂I ∥

)
+ |I| · 𝑛2

𝐿

≤ 𝑛3
√
𝐿
·
(
∥âI ∥ + ∥b̂I ∥ +max

(
∥âI ∥, ∥b̂I ∥

))
,

where in the last line we use that |I | ≤ 𝑛, alongwith the assumption

of Case 1 that max

(
∥âI ∥, ∥b̂I ∥

)
≥ 1√

𝐿
. Setting 𝐿 ≥ 9𝑛6

𝜖2
, we have���⟨ã, b̃⟩ − ⟨â, b̂⟩

��� ≤ 𝜖 ·max

(
∥âI ∥, ∥b̂I ∥

)
≤ 𝜖 ·

√
∥âI ∥2 + ∥b̂I ∥2 .

This proves (11) for Case 1.

Case 2:max

(
∥âI ∥, ∥b̂I ∥

)
< 1√

𝐿
. In this case, for all 𝑖 ∈ I, |â[𝑖] | <

1√
𝐿
and | ˆb[𝑖] | < 1√

𝐿
. Thus, for 𝐿 > 𝑛, no 𝑖 ∈ I satisfies 𝑖 =

argmax𝑖∈1,...,𝑛 â[𝑖] or 𝑖 = argmax𝑖∈1,...,𝑛 b̂[𝑖]. So for all 𝑖 ∈ I,
â[𝑖] and b̂[𝑖] are rounded to 0 in line 1 of Algorithm 4. I.e., ãI
and

˜bI are both all zero vectors. So, to prove (11), we must show

that

���⟨âI , b̂I⟩��� ≤ 𝜖 · √∥âI ∥2 + ∥b̂I ∥2 . This follows from Cauchy-

Schwarz and our assumption that ∥aI ∥, ∥bI ∥ < 1√
𝐿���⟨âI , b̂I⟩��� ≤ ∥âI ∥∥b̂I ∥ ≤ 1

√
𝐿
max

(
∥âI ∥, ∥b̂I ∥

)
≤ 1

√
𝐿

√
∥âI ∥2 + ∥b̂I ∥2 .

Setting 𝐿 ≥ 1

𝜖2
gives (11), completing Claim (3) of the lemma.

Claim 4: For 𝐿 ≥ 𝑛3,max

(
∥a′I ∥∥b

′∥, ∥a′∥∥b′I ∥
)
≤ 2𝐵. Recall that

by construction ∥a′∥ = ∥a∥ and ∥b′∥ = ∥b∥. Thus, dividing each

side of the inequality by ∥a∥∥b∥ it suffices to show:

max

(
∥a′I ∥
∥a∥ ,

∥b′I ∥
∥b∥

)
≤ 2max

(
∥aI ∥
∥a∥ ,

∥bI ∥
∥b∥

)
.

I.e., we must show that max(∥ãI ∥, ∥b̃I ∥) ≤ 2max(∥âI ∥, ∥b̂I ∥) .
It suffices to show that ∥ãI ∥ ≤ 2∥âI ∥ and that ∥b̃I ∥ ≤ 2∥b̂I ∥.
We focus on proving this for a. The bound for b follows the same

argument. We consider two cases. Let 𝑖∗ = argmax𝑖∈1,...,𝑛 |â[𝑖] |.
Case 1: 𝑖∗ ∉ I. In this case, all entries in âI are only rounded

in line 1 of Algorithm 4. They are thus all rounded down and so

∥ãI ∥ ≤ ∥âI ∥, giving the claim.

Case 2: 𝑖∗ ∈ I. In this case, since â is a unit vector, we have

∥âI ∥ ≥ |â[𝑖∗] | ≥ 1/
√
𝑛 ≥ 1/

√
𝐿 when 𝐿 > 𝑛. Further, all entries in

âI are rounded down, except â[𝑖∗]. But as shown via (13), |ã[𝑖∗] | ≤
|â[𝑖∗] | + 𝑛√

𝐿
. Thus, ∥ãI ∥ ≤ ∥âI ∥ + 𝑛√

𝐿
≤ 2∥âI ∥, as long as 𝐿 ≥ 𝑛3.

This completes Claim (4) and thus the lemma. □

Putting everything together. Finally, we prove our main result

by combining Lemma 3 with Lemma 2.

Proof of Theorem 2. Given any a, b ∈ R𝑛 , let a′ and b′ be
defined as in Lemma 3. Consider applying Algorithm 3 to compute

sketches𝑊a,𝑊b,𝑊a′,𝑊b′ of size𝑚 = 𝑂 (1/𝜖2), using discretization

parameter 𝐿 = 𝑂 (𝑛6/𝜖2). Using the first claim of Lemma 3 , we can

apply Lemma 2 to a′, b′ to show that with probability ≥ 2/3,

|F (𝑊a′,𝑊b′) − ⟨a′, b′⟩| ≤ 𝜖 max

(
∥a′I ∥∥b

′∥, ∥a′∥∥b′I ∥
)
.

Combining triangle inequality with Claims (2) and (4) of Lemma 3,

we conclude that with probability ≥ 2/3,
|F (𝑊a,𝑊b) − ⟨a, b⟩| ≤

��⟨a, b⟩ − ⟨a′, b′⟩
��

+ 2𝜖 max (∥aI ∥∥b∥, ∥a∥∥bI ∥) .
Finally, applying Claim (3) of Lemma 3 gives that

|F (𝑊a,𝑊b) − ⟨a, b⟩| ≤ 3𝜖 max (∥aI ∥∥b∥, ∥a∥∥bI ∥) .
After adjusting 𝜖 by a factor of 1/3, this establishes the bound

of Theorem 2. The probability of success is 2/3. Using a stan-

dard trick, we can boost the success probability by computing 𝑡 =

𝑂 (log(1/𝛿)) independent sketches of a, b using Algorithm 3 with

independent random seeds [19]. Call these sketches𝑊
(1)
a , . . . ,𝑊

(𝑡)
a

and𝑊
(1)
b , . . . ,𝑊

(𝑡)
b . For any 𝑖 , with probability ≥ 2/3,

|F (𝑊 (𝑖)
a ,𝑊

(𝑖)
b) − ⟨a, b⟩| ≤ 𝜖 max (∥aI ∥∥b∥, ∥a∥∥bI ∥) .

Via a standard Chernoff bound, with probability at least 1 − 𝛿 , this
bound holds for > 𝑡/2 of the independent sketches. Thus, if we

take the median estimate produced by the sketches, it will satisfy

the desired bound with probability ≥ 1 − 𝛿 . Concatenating our 𝑡

independent sketches into a single sketch, we can see that the total

sketch size is 𝑡 ·𝑚 = 𝑂 (log(1/𝛿)/𝜖2), giving Theorem 2. □

181

	Abstract
	1 Introduction
	1.1 Our Contributions
	1.2 Motivating Application: Dataset Search
	1.3 Paper Roadmap

	2 Related Work
	3 Warmup: Unweighted MinHash
	4 Main Result: Weighted MinHash
	5 Experiments
	5.1 Synthetic Data
	5.2 Real-World Data

	References
	A Additional Proofs
	A.1 Unweighted MinHash Analysis
	A.2 Weighted MinHash Analysis

