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Abstract—A robust system should perform well under random
failures or targeted attacks, and networks have been widely
used to model the underlying structure of complex systems such
as communication, infrastructure, and transportation networks.
Hence, network robustness becomes critical to understanding
system robustness. In this paper, we propose a spectral measure
for network robustness: the second spectral moment m2 of
the network. Our results show that a smaller second spectral
moment m2 indicates a more robust network. We demonstrate
both theoretically and with extensive empirical studies that the
second spectral moment can help (1) capture various traditional
measures of network robustness; (2) assess the robustness of
networks; (3) design networks with controlled robustness; and
(4) study how complex networked systems (e.g., power systems)
behave under cascading failures.

Index Terms—Network Robustness, Graph Spectrum

I. INTRODUCTION

The study of network robustness in complex systems plays

an important role in various fields such as biology, economics,

and engineering. Network robustness is often defined as a
network’s ability to continue functioning when part of the
network is either naturally damaged or targeted for attack [1]–

[3]. In the study of network robustness, there are two funda-

mental research goals: (1) the assessment of the robustness

of a network, i.e., how to quantify the network robustness?

(2) the utility of network robustness, i.e., how to use the

robustness of a network? In this paper, we aim to have a

systematic study on network robustness, by answering the

following three questions: [Q1] how to assess the robustness

of networks?; [Q2] how to design networks with controlled

robustness?; [Q3] how to study the behavior of a complex

system by observing the evolution of its network robustness?

To answer the questions, we should seek an appropriate

measure. We consider using a powerful tool in graph analysis:

spectral graph theory, as spectral graph theory connects the

structure of a network to the eigenvalues and eigenvectors

of its associated matrices, e.g., the adjacency matrix or the

Laplacian. Previously, the extreme eigenvalues and associated

eigenvectors have been connected to the study of network

robustness. A well-known example is that the second-smallest

eigenvalue of a graph Laplacian is related to algebraic graph

connectivity, and the associated eigenvector is used for spectral

clustering [4]. Recently, instead of the extreme eigenvalues, the

overall distribution of eigenvalues, also known as the spectral
density of the graph has received more attention. Dong and

his colleagues utilize methods from condensed matter physics

to study spectral densities in networks, and they show that the

spectral density is a practical tool to analyze large real-world

networks [5], as different types of networks have different

patterns in their spectral density [5]. In this paper, we aim to

measure the network robustness through the spectral density.

The Present Work: Spectral Moments for Network Ro-
bustness Assessment. We propose utilizing spectral moments,

especially the second spectral moment m2 of the random

walk transition matrix of a network as a robustness measure,

justified by various reasons: (a) Capture network robust-
ness. We prove that spectral moments are tightly connected

to existing network robustness measures including average

distance, diameter, spectral radius, and the existence of a giant

component; (b) Interpretablity. Spectral moments have been

used to capture the shape of a spectral density, and they

have been proved to capture various network structures and

properties [6]. Specifically, m2 has a clear meaning, which

is the expected return probability of a 2-step random walk.

Intuitively, in a graph with a small expected return probability

for a random walk (a walk which travels far away from its

starting node) is more likely an indication of a well-connected

graph. This observation motivates the use of m2 as a measure

of network robustness. (c) Easy and fast to compute. For

large networks, m2 can be approximated accurately in seconds.

Overall, our contributions are mainly the following:

I. A Spectral Measure for Network Robustness. We propose

using the second spectral moment m2 of a network as a

network robustness measure. We show that m2 can capture

network robustness on both synthetic and real-world networks.

Specifically, when m2 is smaller, the network is more robust.
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The spectral moments can be used to assess the degree of

robustness of a network, or to compare the robustness of two

networks varying in size.

II. Connection to Existing Network Robustness Measures.
We prove that the second spectral moment m2 is closely

related to four well-known robustness measures (average dis-

tance, diameter, spectral radius, and the existence of a giant

component) for random graphs with given expected (or exact)

degrees sequences.

III. Designing Networks with Controllable Robustness.
We show that we can control the network robustness by

manipulating its m2 value, to design a network that is more

robust under failures. We conduct experiments on real-world

networks, and evaluate the method.

IV. Evolution of Network Robustness under Cascading
Failures. We demonstrate that with m2 as the robustness

measure, one can study how a complex networked system

behaves under cascading failures by looking at how network

robustness evolves. By studying cascading failures in a power

grid network, we show that after an initial failure making the

grid vulnerable, the grid stabilizes after the cascading failures.

The rest of the paper is organized as follows. We briefly

review spectral moments and propose the use of m2 as a

network robustness measure in Section II. In Section III, we

show the relationship between the second spectral moment

and other robustness measures. We use the second spectral

moment to assess robustness of real-world networks in Section

IV, and discuss ways to design networks with controllable

robustness in Section V. Section VI details our observations

on the evolution of robustness under cascading failures in a

power grid. After reviewing further related work in Section

VII, we conclude in Section VIII.

II. SPECTRAL MOMENTS AS A ROBUSTNESS MEASURE

As we have mentioned, we propose using the second

spectral moments m2 of random walk transition matrix as a

network robustness measure.

A. Spectral Moments

We firstly briefly review the spectral moments of the random

walk transition matrix. For an undirected graph G = (V,E)
with vertices V = {v1, v2, . . . , vn} and edges E ⊆ V × V ,

its adjacency matrix A ∈ R
n×n has Aij = 1 if (i, j) ∈ E

and otherwise, Aij = 0. The degree matrix D ∈ R
n×n is a

diagonal matrix with node degrees on its diagonal, i.e., Dii =∑n
j=1 Aij . The transition matrix of the random walk on G is

matrix P = AD−1. As P is a stochastic matrix, its spectrum

is also bounded: 1 = λ1 ≥ λ2 ≥ · · · ≥ λn−1 ≥ λn ≥ −1,

where λi’s are the eigenvalues of P . Here, we denote the �-th
spectral moment m� of a graph G using the spectrum of its

random walk transition matrix P , m� = E(λ�) = 1
n

∑n
i=1 λi

�.

Research has shown that spectral moments are connected to

basic subgraphs such as edges, triangles, and squares [6].

Moreover, spectral moments have been used for applications

such as network visualization, network identification [7], [8]

and capturing the relationship between subgraphs and the

whole network [9].

Here, we specifically focus on the second spectral moment

m2. In [6], the following theorem is proved, which will be

used to prove some of the results here.

Theorem II.1 (Second Spectral Moment m2). For graph G,
the second spectral moment m2 is

m2 = E(di)E(
1

didj
),

where E(di) is the average degree and E( 1
didj

) is the expected
value of 1

didj
over edges, where di and dj are the degrees of

nodes i and j linked by some edge (i, j).

B. Time Complexity

For large graphs, we can compute accurate estimates of

the low-order moments with the APPROXSPECTRALMOMENT

algorithm [10]. The algorithm estimates the moments by

simulating many random walks and computes the proportion

of closed walks. To compute the �-th spectral moment by

simulating r random walks, it takes O(r�) time. To compute

m2, we set � ≤ 2 and r = 10, 000 following the empirical

results of [10]. As the random walks can be taken in parallel,

it only takes less than a few seconds to compute the second

spectral moment even for large networks [6], [10].

C. Second spectral moment m2 and the Estrada Index

As mentioned above, m2 is the expected return probability

of a 2-step random walk. Naturally, one may have a valid

concern that it does not directly capture robustness in terms of

higher-order information, i.e., the return probability of longer

walks. Here, we show that, on the contrary, m2 actually

provides tight upper and lower bounds on the expected return

probability of a random walk of any length, discounting longer

walks. For that, we first introduce the normalized Estrada index

of the random-walk transition matrix EEP−norm(G).
The Estrada index of a graph G is defined as EE(G) =∑n
j=1 e

μj , where μj’s are the eigenvalues of the adjacency

matrix A [11]. The Estrada index counts the number of closed

walks, discounting longer walks, as EE(G) = trace(eA) =∑∞
k=0

trace(Ak)
k! . Therefore, Estrada index is sometimes used to

measure the global connectivity of a graph. In [6], a variation

of the Estrada index using the random walk transition matrix

P is denoted as EEP (G) =
∑n

j=1 e
λj =

∑n
j=1 trace(e

P ) =∑∞
k=0

trace(Pk)
k! = n

∑∞
k=0

mk

k! . Unlike the Estrada index,

EEP (G) computes the expected return probability of a ran-

dom walk of any length, discounting longer walks. Intuitively,

if a walk can travel far away from its starting node, it is

an indication that the graph is well-connected. Generally, the

smaller the EEP (G) value, the more well-connected the graph

G. Here, we normalize EEP (G) by the size of the graph and

get EEP−norm(G) = 1
nEEP (G) =

∑∞
k=0

mk

k! , to cancel the

effect of the size of the graph.

In Theorem II.2, we prove that the second moment m2 pro-

vides both tight upper and lower bounds on EEP−norm(G). In
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other words, the expected return probability of longer random

walks can be bounded by functions of m2.

Theorem II.2 (Bounds on EEP−norm(G) by m2). For an
undirected graph G without self-loops, its normalized Estrada
Index EEP−norm(G) is bounded by the second moment m2:

1 +
m2

2
≤ EEP−norm(G) ≤ 1 +m2

Proof. We first prove 1 + m2

2 ≤ EEP−norm(G). For an

undirected graph without self-loops, it is clear that m0 = 1
and m1 = 0. By definition, EEP−norm(G) =

∑∞
k=0

mk

k! ≥∑2
k=0

mk

k! = m0 +m1 +
m2

2 = 1 + m2

2 , as mk ≥ 0.

Next, we prove EEP−norm(G) ≤ 1 + m2. As ex ≤
1 + x + x2, EEP−norm(G) = 1

nEEP (G) = 1
n

∑n
j=1 e

λj ≤
1
n

∑n
j=1(1 + λj + λ2

j ) = 1 +m1 +m2 = 1 +m2.

The bounds are tight; consider an empty graph. Then, mk =
0 for k ≥ 1. Hence, m2 = 0 and EEP−norm(G) = 1.

III. CONNECTION TO EXISTING ROBUSTNESS MEASURES

Next, we connect m2 with four well-known robustness

measures: diameter, average distance, spectral radius, and

giant component. Particularly, we show that spectral moments

are connected to the robustness of graphs generated by two

network models: Chung-Lu and Configuration Model.

Consider a random graph with an expected degree sequence

(also known as the Chung-Lu model [12], [13]). Chung-Lu

model is a general model G(w) for random graphs with a

given expected degree sequence w = (w1, w2, . . . , wn). For a

random graph G ∈ G(w), the edge between nodes vi and vj
is chosen independently with probability pij =

wiwj∑
i wi

, which

is proportional to the product wiwj . Denote d̃ =
∑

w2
i∑

wi
as

the second-order average degree. Chung et al. have shown

that d̃ is closely related to various graph properties [12]–

[14]. In the rest of the paper, a random graph G with degree

sequence (d1, d2, . . . , dn) refers to one realization of those

generated by the Chung-Lu model, i.e., G ∈ G(w) where

w = (d1, d2, . . . , dn). We show that the spectral moments of

the graphs generated by the Chung-Lu model capture various

robustness measures in them.

Similarly, we consider random graphs generated by the

configuration model (Molloy-Reed model), where the graph

has a fixed degree sequence. We show that spectral moments

also capture robustness, in terms of the existence of the giant

component, in such graphs.

We start with the Chung-Lu model and in Lemma III.1,

we demonstrate that second-order average degree d̃ is lower

bounded by the inverse of second spectral moment m2 of a

Chung-Lu random graph.

Lemma III.1. For a random graph G with given expected
degrees, the second-order average degree d̃ satisfies

d̃ ≥
√

E(di)
m2

,

where m2 is the second spectral moment of G and E(di) is
the average node degree in G.

Proof. By definition, d̃ =
∑

w2
i∑

wi
=

∑
d2
i∑

di
=

E(d2
i )

E(di)
. From

Theorem 4.1 of [6], for any graph E( 1
didj

) ≥ E
2(di)

E2(d2
i )

, so

E( 1
didj

) ≥ 1
d̃2

, implying d̃2 ≥ 1
E( 1

didj
)

and d̃ ≥
√

1
E( 1

didj
)
.

By Thm. II.1, m2 = E(di)E(
1

didj
), so d̃ ≥

√
E(di)
m2

.

Next, we will show the connection between spectral mo-

ments with the following robustness measures: (1) average

distance, (2) diameter, and (3) spectral radius of a graph with

a given expected degree distribution.

I. Average Distance. In a graph G, denote distance d(u, v)
as the length of the shortest path between u and v. Average

distance of a graph G, denoted by duv , is the average distance

over all pairs of vertices (u, v) in G. A smaller duv shows

that nodes are closer to each other and the network is well-

connected and more robust [2].

Theorem III.2. For a random graph G with given expected
degree sequence, if w = (d1, d2, . . . , dn) is admissible, for the
average distance duv , we have

duv ≤ (1 + o(1))
2 logn

logE(di)− logm2
.

Proof. From [14], the average distance duv is almost surely

(1 + o(1)) logn

log d̃
, when the degree sequence is admissible (see

definition in [14]). Specifically, duv is upper bounded by (1+

o(1)) logn

log d̃
. By Lemma III.1, d̃ ≥

√
E(di)
m2

. Moreover, in our

settings, di’s are the degree of the nodes, so di ≥ 1 or di = 0,

and d̃ =
∑

d2
i∑

di
≥ 1, and

E(di)
m2

= 1
E( 1

didj
)
≥ 1. Therefore,

1
log d̃

≤ 1

log
√

E(di)

m2

. Hence, duv ≤ (1 + o(1)) logn

log
√

E(di)

m2

= (1 +

o(1)) 2 logn
log E(di)−logm2

.

From Theorem III.2, for a random graph with a given

expected degree distribution (naturally, n and E(di) is fixed),

the average distance of the graph is upper bounded by a

term that depends on m2. Specifically, when m2 is smaller,

the upper bound is smaller. Hence, in terms of the average

distance, a smaller m2 indicates a more robust network.

II. Diameter. The diameter of graph G, denoted by D(G),
is the maximum distance over all pairs of nodes in G. The

diameter is closely connected to robustness, as it is a tight

upper bound on the distance between any two nodes in the

network. Thus, a smaller diameter shows more robustness [2].

Theorem III.3. For a random graph G with given expected
degree sequence, if w = (d1, d2, . . . , dn) is specially admissi-
ble, the diameter D(G) is almost surely O( 2 logn

log E(di)−logm2
).

Proof. From [14], D(G) is almost surely Θ( logn

log d̃
), when

the degree sequence is specially admissible (see definition in

[14]). As 1
log d̃

is upper bounded by 1

log
√

E(di)

m2

, we have D(G)

is almost surely O( 2 logn
log E(di)−logm2

).

Similar to the average distance, Theorem III.3 shows

that the diameter of a random graph G with a given de-
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gree sequence is upper bounded by a term that depends

on m2. Specifically, when m2 is smaller, the upper bound

on the diameter is smaller. Hence, in terms of the diameter,

a smaller m2 indicates a more robust network.

III. Spectral Radius. The largest eigenvalue of the adjacency

matrix A is called its spectral radius ρ. The spectral radius

is closely related to the path capacity or loop capacity of the

graph. A larger ρ implies that the graph has many loops and

paths, so the graph is well-connected [15], [16]. In general, a

larger ρ indicates a more robust network.

Theorem III.4. For a random graph with given expected
degree sequence, if d̃ >

√
dmax(G) log n, then ρ ≥ (1 +

o(1))
√

E(di)
m2

, where dmax(G) is the maximum degree.

Proof. Chung et. al [13] proved that when d̃ >√
dmax(G) log n, ρ is roughly equal to the the second order

average degree d̃, i.e., ρ is almost surely (1 + o(1))d̃, and

especially ρ is lower bounded by (1 + o(1))d̃ [13], [17]. By

Lemma III.1, we get ρ ≥ (1 + o(1))
√

E(di)
m2

.

Theorem III.4 indicates that if m2 is smaller, then ρ has

a greater lower bound. Hence, in terms of the spectral radius,

a smaller m2 indicates a more robust network.

Finally, we show that even when in the random graph the

degree sequence is fixed, the spectral moments are related to

network robustness. For that, we consider the graphs generated

by the configuration model (Molloy-Reed model) and show

that spectral moments capture the existence of the giant

component.

IV. Giant Component. For a graph G = (V,E), a giant

component of G is a connected component having at least

O(|V |) nodes [18], [19]. A component is called c-giant if it

has at least c · |V | nodes (or c · |E| edges) [12]. In studies of

network robustness, c is often defined as the fraction of nodes

contained in the largest connected component, to measure

network availability i.e., what percentage of the nodes can

be reached [2]. Though the existence of a giant component

does not mean that the network is robust (as in some cases

the component can be split into small components by losing

a few edges due to bridges in the network), it shows that the

network keeps most nodes and maintains “functionality.” In

Theorem III.5, we show that m2 can capture the existence of

the giant component for Molloy-Reed random graphs.

Theorem III.5. For a random graph G with an exact degree
sequence generated by the Molloy-Reed model, when m2 <
1
4 E(di), a giant component exists.

Proof. Molloy-Reed Criterion states that for a random graph

G generated by the Molloy-Reed model, when κ =
E(d2

i )
E(di)

> 2,

a giant component exists [20], [21]. Similar to Lemma III.1,

we can show that κ ≥
√

1
E( 1

didj
)
. Thus, if E( 1

didj
) < 1

4 , we

can ensure κ > 2 and a giant component exists. Further, the

condition E( 1
didj

) < 1
4 is equivalent to m2 < 1

4 E(di), proving

the theorem.

For a random graph G with an exact degree sequence,

the average degree E(di) is fixed. Hence, from Theorem

III.5, we find that for such a graph when m2 is smaller,

it is more likely to have a giant component.

A. Experiments on Synthetic Networks

We have shown the theoretical connection between m2 and

existing robustness measures. Here, we explore this connec-

tion empirically as well. To that end, we generate synthetic

networks using the random graph model G(n, p). For random

graphs generated by G(n, p), the behaviour of the size of the

largest component is well-studied for p near 1
n . For p < 1

n ,

the size of the largest component is almost surely O(log n);
for p = 1

n , the size of the largest component is almost surely

Θ(n2/3); and for p > 1
n the size of the largest component is

almost surely Θ(n) [18], [19], [22]. For p > 1
n , this largest

component is commonly referred to as the giant component
of G(n, p), and the point p = 1

n is referred to as the critical
point (for the phase transition). Here, we study the behavior of

the second spectral moment m2 and other network robustness

measures near this critical point.

In our experiments, we set n = 1, 000 nodes and vary p
from 0.0001 to 0.01 with step size 0.0002. For each variation,

we generate 20 random graphs, and in Figure 1, we plot the

average value of m2, duv (the average distance), D(G) (the

diameter), ρ (the spectral radius) and c (the fraction of nodes

in the largest connected component). When the graph is not

connected, we use duv and D(G) of its largest connected

component. We find that (1) with the increase of p, m2 has a

similar changing pattern to duv and D(G): they all increase

first and then decrease; (2) all of the turning points are at

p = 0.0013, which is slightly greater than the critical point

p = 0.001. In essence, the average distance and diameter

increase with p when there is no giant component in the

graph. However, when the giant component emerges, they

keep increasing until a certain point and start to decrease.

Our results show that m2 captures this behavior well. Note

that the time complexity to compute the average distance and

diameter both requires O(n3/2Ω(logn)1/2) [23] which is not

feasible for large networks, but m2 can be computed in a few

seconds. Next, we look into using the second spectral moment

m2 to assess robustness in real-world networks.

IV. ASSESS ROBUSTNESS IN REAL-WORLD NETWORKS

In this section, we aim to investigate spectral moment m2

as a network robustness measure in real-world networks and

to answer the question: [Q1] how to assess the robustness

of networks with m2? Therefore, we need to understand the

connection between the robustness of a real-world network

and its second spectral moment m2. In other words, should

a robust network have a larger or smaller m2 value? Before

presenting experiments, we review experimental setup.

A. Experimental Setup

We study 20 real-world networks from four general net-

work categories: social networks, collaboration networks, road
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Figure 1: Robustness Measures v.s. p in G(n, p); n = 1, 000 and dashed line shows the turning point at p = 0.0013.

Table I: Dataset Statistics

Type Network |V | = n |E| = m
Average
Degree

Density
(×10−4)

m2

Social
Networks

Brightkite 58,228 214,078 7.353 1.263 0.1799
Flixster 2,523,386 7,918,801 6.276 0.025 0.0261
Gowalla 196,591 950,327 9.668 0.246 0.1403
Hyves 1,402,673 2,777,419 3.960 0.028 0.0610
Livejournal 3,017,286 85,654,976 56.78 0.188 0.0174
MySpace 854,498 5,635,296 13.19 0.154 0.0923
Orkut 3,072,441 117,185,083 76.28 0.248 0.0187
YouTube 1,134,890 2,987,624 5.265 0.046 0.1574

Collaboration
Networks

Astro-Ph 18,772 198,050 21.10 11.24 0.1007
Cond-Mat 23,133 93,439 8.078 3.492 0.1672
Gr-Qc 5,242 14,484 5.526 10.54 0.2831
Hep-Th 9,877 25,973 5.259 5.324 0.2488

Road
Networks

Road-BEL 1,441,295 1,549,970 2.143 0.014 0.4646
Road-CA 1,965,206 2,766,607 2.816 0.014 0.3545
Road-PA 1,088,092 1,541,898 2.834 0.026 0.3557
Road-TX 1,379,917 1,921,660 2.785 0.020 0.3577

Biological
Networks

Bio-Dmela 7,393 25,569 6.917 9.356 0.1278
Bio-Grid-Human 9,527 62,364 13.09 13.74 0.1787
Bio-Grid-Yeast 5,870 313,890 106.9 177.2 0.0198
Human-Brain 177,600 15,669,036 176.4 9.910 0.0236

networks, and biological networks. We include eight so-

cial networks: Brightkite [24], Flixster [25], Gowalla [24],

Hyves [25], Livejournal [26], MySpace [26], Orkut [24], and

YouTube [24]; four collaboration networks: Astro-Ph [24],

Cond-Mat [24], Gr-Qc [24], and Hep-Th [24]; four road

networks: Road-BEL [24], Road-CA [24], Road-PA [24], and

Road-TX [24]; four biological networks: Bio-Dmela [27],

Bio-Grid-Human [27], Bio-Grid-Yeast [27], and Human-
Brain [27]. The data statistics, including the m2 value for

each network, are in Table I.

B. Assess Network Robustness with Spectral Moments

To evaluate m2 as a network robustness measure, we first

define robustness of a real-world network. In its most abstract

form, robustness is the ability of a network to continue to
perform well under failures or attacks [1]. To quantify such

a definition in our experiments, we consider the robustness of

a network by looking at how c – the fraction of nodes in its

largest connected component – changes under random edge

failures. In other words, when losing the same number (or

proportion) of edges, a more robust network exhibits a smaller

drop in c value as most nodes within the “core” of the network

are kept intact. Hence, for each network, we randomly remove

x% of the edges of the graph by varying x% from 5% to

95% with step size 5%. For each x%, we run the experiments

20 times and report the average c and its standard deviation

in Figure 2. From the figure, we find that (1) road networks

are much more vulnerable under random failures. For each

road network, the size of its largest component drops sharply

when losing edges randomly. Especially, by losing 35% of the

edges, c becomes less than 10%. We notice that m2 values

of road networks are much larger than those of networks
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Figure 2: Networks under Random Edge Failures. x value: fraction
of edges removed; y value: fraction of nodes in the largest connected
component c.

from other categories. Among road networks, Road-BEL is

more vulnerable than others and has the largest m2; (2) for

networks from other three categories, c decreases smoothly

as more edges are removed. Furthermore, if a network has

a larger m2, the fraction of nodes in its largest component

shrinks faster. For networks with smaller m2 values, such as

Orkut and Human-Brain, they maintain more than 70% of the

nodes in their largest component even after losing 90% of

their edges. In general, these observations provide an answer

to Q1: a real-world network with a smaller second spectral

moment m2 is more robust under random failures. Hence, we

can compare the robustness of two networks by comparing

their m2 values, even if the networks vary in size.

V. DESIGN NETWORKS WITH CONTROLLABLE

ROBUSTNESS

Next, we want to answer the question: [Q2] how to design

networks with controlled robustness? In other words, can we

design strategies to control (increase or decrease) robustness

in a real-world network? From Section IV, we know that a

robust network has a smaller m2 value. Naturally, if we can

control the network robustness by manipulating its m2 value,

we can “design” a network that is more robust under failures;

or equivalently, develop more efficient attack models to harm

the robustness of a network. Thus, we will design various
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(d) Bio-Dmela

Figure 3: Second spectral moment m2 value with Batch Edge
Removal. x: proportion of edges removed; y: m2.
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Figure 4: Second Spectral Moment m2 with Sequential Edge Re-
moval. x: fraction of removed edges; y: m2.

edge removal strategies here and assess their impact on the

m2 value of a network.

Theorem II.1 shows that m2 = E(di)E(
1

didj
). Assume we

remove a fixed number of edges from some graph G to get a

new graph G′. The average degree of G′ will only rely on the

number of edges removed and is independent of which edges

were removed from graph G. Hence, when a fixed number of

edges are removed, what can make m2 different is how these

removed edges change the value of E( 1
didj

). Intuitively, by

removing edges (i, j) corresponding to higher didj values (di
and dj are the degress of i and j), we should get a larger value

of E( 1
didj

) in G′. Hence, we design edge removal strategies

that rely on the didj values of edges. Here, we detail the

developed edge removal strategies.

We define didj value as the edge score for an edge (i, j)
between nodes i and j with degrees di and dj . We propose two

strategies to remove edges based on the edge score: (1) High
Score Removal, removing the edges with the highest scores

Table II: Phase Transition of m2

Network Proportion of Edges
Removed (Turning Point)

Average Degree of
the Remaining Graph

Brightkite 0.85 7.353×0.15 = 1.10
Flixster 0.85 6.276×0.15 = 0.94
Gowalla 0.90 9.668×0.10 = 0.97
Hyves 0.85 3.960×0.15 = 0.59
YouTube 0.85 5.265×0.15 = 0.79
Astro-Ph 0.90 21.10×0.10 = 2.11
Cond-Mat 0.85 8.078×0.15 = 1.21
Gr-Qc 0.75 5.526×0.25 = 1.38
Hep-Th 0.70 5.259×0.30 = 1.66
Road-BEL 0.40 2.143×0.60 = 1.29
Road-CA 0.65 2.816×0.35 = 0.99
Road-PA 0.65 2.834×0.35 = 0.99
Road-TX 0.55 2.785×0.45 = 1.25
Bio-Dmela 0.85 6.917×0.15 = 1.04
Bio-Grid-Human 0.85 13.09 × 0.15 = 1.96

from the graph; and (2) Low Score Removal, which removes

the edges with the lowest scores. When an edge is removed

from the graph, the scores of edges incident to the endpoints of

the removed edge will change, which may impact the current

ranking of edges based on this edge score. Hence, for the

removal process, we propose two methods: (1) Batch Removal,
where we pick top x% of edges in the graph based on each

strategy (high score or low score removal) and remove them

in one batch; (2) Sequential Removal, where each time we

remove only the top-1 edge based on each strategy and after

each removal, we update the ranks. In total, we remove x% of

edges of the graph. For both methods, we vary x% from 5%
to 95% with the step size 5%, and we report the changes in

m2 for one network from each category in Figure 3 and 4. For

all other plots, please refer to the supplementary material.1

We observe that for both batch and sequential removal:

(1) for High Score Removal, with more edges removed, m2

of most networks increases first and after a certain point,

m2 drops sharply. Further, if we look at the turning point

of the curve, it always happens when the average degree of

the remaining graph is around 1.0 (see Table II), indicating

a phase transition for m2. However, if a network has a

very high average degree (such as Bio-Grid-Yeast or Orkut),

by removing 95% of its edges, the average degree of the

remaining graph can be much greater than 1.0. For such

networks, the phase transition will not appear in the figures;

(2) for Low Score Removal, m2 decreases monotonously as

more edges are removed. So, generally, in response to Q2,

removing edges (i, j) corresponding to highest didj values

decreases network robustness (increases m2), and removing

edges corresponding to lowest didj values increases network

robustness (decreases m2).

A. Evaluation

We evaluate whether the proposed manipulations on m2

can change network robustness. For a network G, we first

remove 10% of its edges with High Score Removal (and Low
Score Removal) in batch to get GHigh (and GLow); then we let

GHigh (and GLow) experience the same random edge failures

as detailed in Section IV-B. The results are shown in Figure 5.

From the figure, we find that (1) we initially observe in GLow

a smaller largest connected component, as low degree nodes

1Other plots are available at https://bit.ly/3SqDPSP
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Figure 5: Network Robustness after m2 Manipulation (Note: Due to the large size, Livejournal and Orkut are not included in this experiment.)

are removed from the component. However, this observation

does not mean that GLow is vulnerable as the remaining nodes

in the component can be well-connected; (2) In terms of the

robustness, GHigh is more vulnerable under random failures.

By looking at the slope of the curve, we observe that when

under the same random failures (randomly losing the same

number of edges), the size of the largest connected component

of GHigh shrinks faster than that of GLow. Hence, High Score
Removal increases m2 of a network, making it less robust.

VI. EVOLUTION OF NETWORK ROBUSTNESS UNDER

CASCADING FAILURES

Next, we are going to answer the question: [Q3] how to

study the behavior of a complex system by observing the

evolution of its network robustness? We specifically consider

the evolution of network robustness under cascading failures.

In reality, in a network-based system the activity of an edge

(or a node) often depends on the activity of its neighboring

edges (or nodes) [28]. Hence, the failure of an edge can

trigger the failure of the edges incident to it, and such se-

quences of failures are called cascading failures. For example,

a power grid network is composed of busses (nodes) and

transmission lines (edges). If one (or multiple) transmission

lines are disconnected (e.g., due to natural disasters or operator

mistakes), it can cause some other transmission lines to fail

by exceeding their power flow limit and trigger more failures.

Different from random failures or failures caused by attacks,

cascading failures are closely related to the governing laws of

the underlying networked system, e.g., power flow equations.

Hence, during cascading failures, how a network evolves in

terms of its robustness can indeed shed light on the governing

laws of the underlying system.

State 1
Input: G

{line 1 failure}

State 2
Input: G \ {line 1}
{lines 4, 5 failure}

State 3
Input: G \ {lines 1, 4, 5}

{line 2 failure}

State 4
Input: G \ {lines 1, 2, 4, 5}

{}

Initial Failure
No more Failure:

Cascade Stops

Unstable States Stable States

Figure 6: A cascade example

A. Data Collection

We study the cascading failures in a well-studied power

grid network (see [29] for details). We generate the cascading

failures with the methods provided by Ma et al. [30]. We sam-

ple 100,000 different initial loading conditions on this power

grid. For each initial loading condition, we choose all single-

line failures as the initial failures. Then, we use the AC-based

power flow to obtain the cascading failures. As this power grid

has 41 transmission lines, we have 41×100, 000 = 4, 100, 000
initial failure events in total. Among these initial failures,

1,644,135 of them trigger a cascading failure sequence. Figure

6 provides an example. In this example, we define state 4 as

the stable state of the cascade, and other states as unstable
states as they trigger subsequent failures of power lines.

B. Analysis
In a cascade, at each state, the system can be viewed as a

subgraph of the previous states as we are losing power lines

(edges). Thus, we can view each cascade as a sequence of

subgraphs. We represent each cascade using the m2 values

of its subgraphs, and we study the changing patterns of m2

m2 Number of Patterns Proportions

↗ 2,466,379 46.4%
↘ 2,836,207 53.4%
→ 10,583 0.2%

Table III: Changing Pattern of m2 in Cascading Failures. ↗: m2

increases; ↘: m2 decreases; →: m2 does not change.
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m2 Number of Cases Proportions

mInitial
2 > mFinal

2 1,261,201 76.7%

mInitial
2 < mFinal

2 382,934 23.2%

mInitial
2 = mFinal

2 0 0.0%

Table IV: Comparison of m2 of the initial failure state and the final
state. mInitial

2 : m2 of the initial state; mFinal
2 : m2 of the final state.

between consecutive states. For example, if a cascade has

four states and m2 values of the sequence of subgraphs are:

[0.3632, 0.3893, 0.3726, 0.3514], then the changing patterns

are ↗↘↘ which is composed of one increase and two

decrease of m2. Across all the cascades, we report the total

number of changing patterns in Table III. We find that in

general, decreasing patterns (53.4%) are slightly more than

the increasing patterns (46.4%). Next, for each cascade, we

compare the m2 of the initial failure state and that of the final

(stable) state. Table IV demonstrates that for 76.7% of the

cascades, the m2 value of the final state is smaller than that of

the initial state, compared to 23.2% on the other direction. The

difference is much more significant than that of the consecutive

changing patterns. Notice that a smaller m2 indicates the

network is more robust. Hence, in general, an initial failure

happens at a vulnerable state, and after the cascading failures

change system robustness, the system stabilizes (converges to

a more robust network).

VII. ADDITIONAL RELATED WORK

Additionally, our work has links to the following areas:

I. Edge Modification. Studies have shown that edge mod-

ification, such as adding, rewiring [3], or protecting some

edges, can enhance network robustness. Our work theoretically

connects edge removal with spectral moments.

II. Spectral Robustness. Wu and his colleagues propose

natural connectivity, which can be regarded as the “average

eigenvalue” of the adjacency matrix [31]. In our work, we look

at the eigenvalue distribution of the random walk transition

matrix via its spectral moments (equivalently, the spectral

moments of the normalized Laplacian matrix).

VIII. CONCLUSION

We propose a spectral measure for network robustness: the

second spectral moment m2 of the random walk transition

matrix. We theoretically and empirically demonstrate that m2

can capture network robustness: a graph with a smaller second
spectral moment m2 is more robust. We show the relationship

between m2 and edge properties so that one can control the

network robustness by manipulating its m2 value.
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