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Abstract—A robust system should perform well under random
failures or targeted attacks, and networks have been widely
used to model the underlying structure of complex systems such
as communication, infrastructure, and transportation networks.
Hence, network robustness becomes critical to understanding
system robustness. In this paper, we propose a spectral measure
for network robustness: the second spectral moment mo of
the network. Our results show that a smaller second spectral
moment my indicates a more robust network. We demonstrate
both theoretically and with extensive empirical studies that the
second spectral moment can help (1) capture various traditional
measures of network robustness; (2) assess the robustness of
networks; (3) design networks with controlled robustness; and
(4) study how complex networked systems (e.g., power systems)
behave under cascading failures.

Index Terms—Network Robustness, Graph Spectrum

I. INTRODUCTION

The study of network robustness in complex systems plays
an important role in various fields such as biology, economics,
and engineering. Network robustness is often defined as a
network’s ability to continue functioning when part of the
network is either naturally damaged or targeted for attack [1]-
[3]. In the study of network robustness, there are two funda-
mental research goals: (1) the assessment of the robustness
of a network, i.e., how to quantify the network robustness?
(2) the utility of network robustness, i.e., how to use the
robustness of a network? In this paper, we aim to have a
systematic study on network robustness, by answering the
following three questions: [Q1] how to assess the robustness
of networks?; [Q2] how to design networks with controlled
robustness?; [Q3] how to study the behavior of a complex
system by observing the evolution of its network robustness?

To answer the questions, we should seek an appropriate
measure. We consider using a powerful tool in graph analysis:
spectral graph theory, as spectral graph theory connects the
structure of a network to the eigenvalues and eigenvectors
of its associated matrices, e.g., the adjacency matrix or the
Laplacian. Previously, the extreme eigenvalues and associated
eigenvectors have been connected to the study of network
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robustness. A well-known example is that the second-smallest
eigenvalue of a graph Laplacian is related to algebraic graph
connectivity, and the associated eigenvector is used for spectral
clustering [4]. Recently, instead of the extreme eigenvalues, the
overall distribution of eigenvalues, also known as the spectral
density of the graph has received more attention. Dong and
his colleagues utilize methods from condensed matter physics
to study spectral densities in networks, and they show that the
spectral density is a practical tool to analyze large real-world
networks [5], as different types of networks have different
patterns in their spectral density [5]. In this paper, we aim to
measure the network robustness through the spectral density.

The Present Work: Spectral Moments for Network Ro-
bustness Assessment. We propose utilizing spectral moments,
especially the second spectral moment mgy of the random
walk transition matrix of a network as a robustness measure,
justified by various reasons: (a) Capture network robust-
ness. We prove that spectral moments are tightly connected
to existing network robustness measures including average
distance, diameter, spectral radius, and the existence of a giant
component; (b) Interpretablity. Spectral moments have been
used to capture the shape of a spectral density, and they
have been proved to capture various network structures and
properties [6]. Specifically, my has a clear meaning, which
is the expected return probability of a 2-step random walk.
Intuitively, in a graph with a small expected return probability
for a random walk (a walk which travels far away from its
starting node) is more likely an indication of a well-connected
graph. This observation motivates the use of mgy as a measure
of network robustness. (c) Easy and fast to compute. For
large networks, my can be approximated accurately in seconds.

Overall, our contributions are mainly the following:

I. A Spectral Measure for Network Robustness. We propose
using the second spectral moment mo of a network as a
network robustness measure. We show that mo can capture
network robustness on both synthetic and real-world networks.
Specifically, when my is smaller, the network is more robust.
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The spectral moments can be used to assess the degree of
robustness of a network, or to compare the robustness of two
networks varying in size.

II. Connection to Existing Network Robustness Measures.
We prove that the second spectral moment mq is closely
related to four well-known robustness measures (average dis-
tance, diameter, spectral radius, and the existence of a giant
component) for random graphs with given expected (or exact)
degrees sequences.

III. Designing Networks with Controllable Robustness.
We show that we can control the network robustness by
manipulating its mo value, to design a network that is more
robust under failures. We conduct experiments on real-world
networks, and evaluate the method.

IV. Evolution of Network Robustness under Cascading
Failures. We demonstrate that with ms as the robustness
measure, one can study how a complex networked system
behaves under cascading failures by looking at how network
robustness evolves. By studying cascading failures in a power
grid network, we show that after an initial failure making the
grid vulnerable, the grid stabilizes after the cascading failures.

The rest of the paper is organized as follows. We briefly
review spectral moments and propose the use of mq as a
network robustness measure in Section II. In Section III, we
show the relationship between the second spectral moment
and other robustness measures. We use the second spectral
moment to assess robustness of real-world networks in Section
IV, and discuss ways to design networks with controllable
robustness in Section V. Section VI details our observations
on the evolution of robustness under cascading failures in a
power grid. After reviewing further related work in Section
VII, we conclude in Section VIII.

II. SPECTRAL MOMENTS AS A ROBUSTNESS MEASURE

As we have mentioned, we propose using the second
spectral moments my of random walk transition matrix as a
network robustness measure.

A. Spectral Moments

We firstly briefly review the spectral moments of the random
walk transition matrix. For an undirected graph G = (V, E)
with vertices V' = {v1,v2,...,v,} and edges E C V x V,
its adjacency matrix A € R"*™ has A;; = 1 if (i,j) € E
and otherwise, A;; = 0. The degree matrix D € R"*" is a
diagonal matrix with node degrees on its diagonal, i.e., D;; =
Z?’:l A;j. The transition matrix of the random walk on G is
matrix P = AD~!. As P is a stochastic matrix, its spectrum
is also bounded: 1 = Ay > Xy > --- > N1 > A, > —1,
where )\;’s are the eigenvalues of P. Here, we denote the ¢-th
spectral moment my, of a graph G using the spectrum of its
random walk transition matrix P, m, = E(\) = 2 377 ;.
Research has shown that spectral moments are connected to
basic subgraphs such as edges, triangles, and squares [6].
Moreover, spectral moments have been used for applications
such as network visualization, network identification [7], [8]
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and capturing the relationship between subgraphs and the
whole network [9].

Here, we specifically focus on the second spectral moment
my. In [6], the following theorem is proved, which will be
used to prove some of the results here.

Theorem II.1 (Second Spectral Moment my). For graph G,
the second spectral moment mo is

= B E(z ).

ma

where E(d; ) is the average degree and B - T ) is the expected
value of T d over edges, where d; and d; are the degrees of
nodes i and Jj linked by some edge (i, 7).

B. Time Complexity

For large graphs, we can compute accurate estimates of
the low-order moments with the APPROXSPECTRALMOMENT
algorithm [10]. The algorithm estimates the moments by
simulating many random walks and computes the proportion
of closed walks. To compute the ¢-th spectral moment by
simulating r random walks, it takes O(r¢) time. To compute
ma, we set £ < 2 and r = 10,000 following the empirical
results of [10]. As the random walks can be taken in parallel,
it only takes less than a few seconds to compute the second
spectral moment even for large networks [6], [10].

C. Second spectral moment mo and the Estrada Index

As mentioned above, mo is the expected return probability
of a 2-step random walk. Naturally, one may have a valid
concern that it does not directly capture robustness in terms of
higher-order information, i.e., the return probability of longer
walks. Here, we show that, on the contrary, mo actually
provides tight upper and lower bounds on the expected return
probability of a random walk of any length, discounting longer
walks. For that, we first introduce the normalized Estrada index
of the random-walk transition matrix EEp_porm(G).

The Estrada index of a graph G is defined as EE(G) =
Z" 1 e", where p;’s are the eigenvalues of the adjacency
matrix A [11]. The Estrada index counts the number of closed
walks, discounting longer walks, as EE(G) = trace(e?) =

Yoo trace(,A ) Therefore, Estrada index is sometimes used to
measure the global connectivity of a graph. In [6], a variation
of the Estrada index using the random walk transition matrix
P is denoted as EEp(G) = Y7, et = 377 trace(e”)
Soreo tmce(,P ) o . Unlike the Estrada index,
EEp(G) computes the expected return probability of a ran-
dom walk of any length, discounting longer walks. Intuitively,
if a walk can travel far away from its starting node, it is
an indication that the graph is well-connected. Generally, the
smaller the EEp(G) value, the more well-connected the graph
G. Here, we normalize EEp(G) by the size of the graph and
get EEp_0rm(G) = %EEP(G) =Y heo T, to cancel the
effect of the size of the graph.

In Theorem II.2, we prove that the second moment my pro-
vides both tight upper and lower bounds on EEp_,rm (G). In
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other words, the expected return probability of longer random
walks can be bounded by functions of ms.

Theorem I1.2 (Bounds on EEp_,0rm(G) by ms). For an
undirected graph G without self-loops, its normalized Estrada
Index EEp_ 00 (G) is bounded by the second moment my:

1 + % S EEP—'(LOTWL(G) S 1 + ma

Proof. We first prove 1 + %2 < EEp_p0mm,(G). For an
undirected graph without self-loops, it is clear that my = 1
and m1 = 0. By definition, EEp_pnorm(G) = > 0y T >
Zk o B =mo+my + 72 =1+ %2, as my, > 0.

Next, we prove EEp_ norm(G) < 1+ mg. As €
11+ ;ﬂ—&— 22, EEp_n;rm(G) = tEEp(G) = £ 37 N
w2im (LA + A7) =14+ mi +me =1+mo.

The bounds are tight; consider an empty graph. Then, my
0 for k > 1. Hence, ma = 0 and EEp_pn0rm(G) = 1.

<
<

0

III. CONNECTION TO EXISTING ROBUSTNESS MEASURES

Next, we connect msy with four well-known robustness
measures: diameter, average distance, spectral radius, and
giant component. Particularly, we show that spectral moments
are connected to the robustness of graphs generated by two
network models: Chung-Lu and Configuration Model.

Consider a random graph with an expected degree sequence
(also known as the Chung-Lu model [12], [13]). Chung-Lu
model is a general model G(w) for random graphs with a
given expected degree sequence w = (wy, ws, ..., w,). For a
random graph G € G(w), the edge between nodes v; and v;
is chosen independently with probability p;; = %“ﬁu’ which
is proportional to the product w;w;. Denote d = %:’j}z as
the second-order average degree. Chung et al. have shown
that d is closely related to various graph properties [12]-
[14]. In the rest of the paper, a random graph G with degree
sequence (di,ds,...,dy) refers to one realization of those
generated by the Chung-Lu model, i.e., G € G(w) where
w = (dy,ds,...,d,). We show that the spectral moments of
the graphs generated by the Chung-Lu model capture various
robustness measures in them.

Similarly, we consider random graphs generated by the
configuration model (Molloy-Reed model), where the graph
has a fixed degree sequence. We show that spectral moments
also capture robustness, in terms of the existence of the giant
component, in such graphs.

We start with the Chung-Lu model and in Lemma III.1,
we demonstrate that second-order average degree d is lower
bounded by the inverse of second spectral moment mqy of a
Chung-Lu random graph.

Lemma IIl.1. For a random graph G with given expected
degrees, the second-order average degree d satisfies

E(ds)
mo

d>
where mqy is the second spectral moment of G and E(d;) is
the average node degree in G.
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Proof. By definition, d = =%

E( d7-,1dj> > d2’ implying d? >

By Thm. IL1, my =

E(d;) B(74-

Next, we will show the connection between spectral mo-
ments with the following robustness measures: (1) average
distance, (2) diameter, and (3) spectral radius of a graph with
a given expected degree distribution.

I. Average Distance. In a graph G, denote distance d(u,v)
as the length of the shortest path between u and v. Average
distance of a graph G, denoted by d,,,, is the average distance
over all pairs of vertices (u,v) in G. A smaller d,, shows
that nodes are closer to each other and the network is well-
connected and more robust [2].

Theorem IIL.2. For a random graph G with given expected
degree sequence, if w = (dy,ds, . ..,dy) is admissible, for the
average distance d..,, we have

duy < (1+0(1))

2logn
log E(d;)

—logmy’

Proof. From [14], the average distance d,, is almost surely
1+ 0(1))1°g” when the degree sequence is admissible (see
definition in [14]). Specifically, d.,, is upper bounded by (14

o(1)){22%. By Lemma IIL1, d > /). Moreover, in our
settlngs d;’s are the degree of the nodes, so d; > 1 or d; = 0,

and d = %Z% > 1, and E(dz) = & L__ > 1. Therefore,
K d; d
11 _logn
Togd < log\/@ Hence, dy, < (1+ 0(1)) g\/@ =1+
2logn
0(1)) log ]E(d,i)g—log mo* 0

From Theorem III.2, for a random graph with a given
expected degree distribution (naturally, n and E(d;) is fixed),
the average distance of the graph is upper bounded by a
term that depends on ms. Specifically, when ms is smaller,
the upper bound is smaller. Hence, in terms of the average
distance, a smaller msy indicates a more robust network.

II. Diameter. The diameter of graph G, denoted by D(G),
is the maximum distance over all pairs of nodes in GG. The
diameter is closely connected to robustness, as it is a tight
upper bound on the distance between any two nodes in the
network. Thus, a smaller diameter shows more robustness [2].

Theorem II1.3. For a random graph G with given expected
degree sequence, if w = (d1,ds,...,dy) is specially admissi-

ble, the diameter D(Q) is almost surely O(Mél_‘))ig_ﬁ)W).

D(G) is almost surely @(log@), when

Proof. From [14], loa d
the degree sequence is specially admzsszble (see definition in

[14)). As —— 1s upper bounded by %7\/@7 we have D(G)
2logn )

logE(d;)—logma /*

is almost surely O( O

Similar to the average distance, Theorem III.3 shows
that the diameter of a random graph G with a given de-
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gree sequence is upper bounded by a term that depends
on mg. Specifically, when ms is smaller, the upper bound
on the diameter is smaller. Hence, in terms of the diameter,
a smaller mo indicates a more robust network.

II1. Spectral Radius. The largest eigenvalue of the adjacency
matrix A is called its spectral radius p. The spectral radius
is closely related to the path capacity or loop capacity of the
graph. A larger p implies that the graph has many loops and
paths, so the graph is well-connected [15], [16]. In general, a
larger p indicates a more robust network.

Theorem IIL4. For a random graph with given expected
degree sequence, if d > \/dpax(G)logn, then p > (1 +
o(1)) Eg;), where dmax(G) is the maximum degree.

Proof. Chung et. al [13] proved that when d >
V/dmax(G)logn, p is roughly equal to the the second order
average degree d, i.e., p is almost surely (1 + o(1))d, and

especially p is lower bounded by (1 + o(1))d [13], [17]. By
Lemma III.1, we get p > (1 + o(1)) Edy) O

mo "

Theorem II1.4 indicates that if mgy is smaller, then p has
a greater lower bound. Hence, in terms of the spectral radius,
a smaller msy indicates a more robust network.

Finally, we show that even when in the random graph the
degree sequence is fixed, the spectral moments are related to
network robustness. For that, we consider the graphs generated
by the configuration model (Molloy-Reed model) and show
that spectral moments capture the existence of the giant
component.

IV. Giant Component. For a graph G = (V,E), a giant
component of G is a connected component having at least
O(|V]) nodes [18], [19]. A component is called c-giant if it
has at least ¢ - [V'| nodes (or ¢ - |E| edges) [12]. In studies of
network robustness, c is often defined as the fraction of nodes
contained in the largest connected component, to measure
network availability i.e., what percentage of the nodes can
be reached [2]. Though the existence of a giant component
does not mean that the network is robust (as in some cases
the component can be split into small components by losing
a few edges due to bridges in the network), it shows that the
network keeps most nodes and maintains “functionality.” In
Theorem II1.5, we show that mq can capture the existence of
the giant component for Molloy-Reed random graphs.

Theorem IIL.5. For a random graph G with an exact degree
sequence generated by the Molloy-Reed model, when mo <
1 E(d;), a giant component exists.

Proof. Molloy-Reed Criterion states that for a random2 graph
G generated by the Molloy-Reed model, when x = ]]E(Zi) > 2,

a giant component exists [20], [21]. Similar to Lemma IIL.1,

Thus, if E(74-) < 1,

we can show that x > we

1
)
can ensure x > 2 and a giant component exists. Further, the
condition E(ﬁ) < % is equivalent to my < 1 E(d;), proving
the theorem. O
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For a random graph G with an exact degree sequence,
the average degree E(d;) is fixed. Hence, from Theorem
IIL.5, we find that for such a graph when ms is smaller,
it is more likely to have a giant component.

A. Experiments on Synthetic Networks

We have shown the theoretical connection between ms and
existing robustness measures. Here, we explore this connec-
tion empirically as well. To that end, we generate synthetic
networks using the random graph model G(n, p). For random
graphs generated by G(n,p), the behaviour of the size of the
largest component is well-studied for p near % For p < %,
the size of the largest component is almost surely O(logn);
for p = %, the size of the largest component is almost surely
©(n?/3); and for p > %l the size of the largest component is
almost surely ©(n) [18], [19], [22]. For p > % this largest
component is commonly referred to as the giant component
of G(n,p), and the point p = % is referred to as the critical
point (for the phase transition). Here, we study the behavior of
the second spectral moment mo, and other network robustness
measures near this critical point.

In our experiments, we set n = 1,000 nodes and vary p
from 0.0001 to 0.01 with step size 0.0002. For each variation,
we generate 20 random graphs, and in Figure 1, we plot the
average value of ms, dyy (the average distance), D(G) (the
diameter), p (the spectral radius) and c (the fraction of nodes
in the largest connected component). When the graph is not
connected, we use d,, and D(G) of its largest connected
component. We find that (1) with the increase of p, mo has a
similar changing pattern to d, and D(G): they all increase
first and then decrease; (2) all of the turning points are at
p = 0.0013, which is slightly greater than the critical point
p = 0.001. In essence, the average distance and diameter
increase with p when there is no giant component in the
graph. However, when the giant component emerges, they
keep increasing until a certain point and start to decrease.
Our results show that mo captures this behavior well. Note
that the time complexity to compute the average distance and
diameter both requires O(n3/2%0°8™"*) [23] which is not
feasible for large networks, but mo can be computed in a few
seconds. Next, we look into using the second spectral moment
Mo to assess robustness in real-world networks.

IV. ASSESS ROBUSTNESS IN REAL-WORLD NETWORKS

In this section, we aim to investigate spectral moment my
as a network robustness measure in real-world networks and
to answer the question: [Q1] how to assess the robustness
of networks with mo? Therefore, we need to understand the
connection between the robustness of a real-world network
and its second spectral moment ms. In other words, should
a robust network have a larger or smaller mo value? Before
presenting experiments, we review experimental setup.

A. Experimental Setup

We study 20 real-world networks from four general net-
work categories: social networks, collaboration networks, road

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on August 22,2023 at 02:29:17 UTC from IEEE Xplore. Restrictions apply.



e

D(G)

e
/

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1

00102030105 0607 080
P 1072

(a) ma v.s. p

¢

0.1 0.2 0.30.40.5 0.6
2

6 0.7 0.8 0.0
1072

(b) Average Distance v.s. p

0 0.10.20.30.40.
P

506
)

(c) Diameter v.s. p

Type Network Vl=n |E|=m ADV:;;: (Eir(lfilz) ma
Brightkite 58,228 214,078 7.353 1.263 0.1799
Flixster 2,523,386 7,918,801 6.276 0.025 0.0261
Gowalla 196,591 950,327 9.668 0.246 0.1403
Social Hyves 1,402,673 2,777,419 3.960 0.028 0.0610
Networks Livejournal 3,017,286 85,654,976 56.78 0.188 0.0174
MySpace 854,498 5,635,296 13.19 0.154 0.0923
Orkut 3,072,441 117,185,083 76.28 0.248 0.0187
YouTube 1,134,890 2,987,624 5.265 0.046 0.1574
Astro-Ph 18,772 198,050 21.10 11.24 0.1007
Collaboration | Cond-Mat 23,133 93,439 8.078 3.492 0.1672
Networks Gr-Qc 5242 14,484 5.526 10.54 0.2831
Hep-Th 9,877 25973 5259 5324 0.2488
Road-BEL 1,441,295 1,549,970 2.143 0.014 0.4646
Road Road-CA 1,965,206 2,766,607 2.816 0.014 0.3545
Networks Road-PA 1,088,092 1,541,898 2.834 0.026 0.3557
Road-TX 1,379,917 1,921,660 2785 0.020 0.3577
Bio-Dmela 7,393 25,569 6.917 9.356 0.1278
Biological Bio-Grid-Human 9,527 62,364 13.09 13.74 0.1787
Networks Bio-Grid-Yeast 5,870 313,890 106.9 1772 0.0198
Human-Brain 177,600 15,669,036 176.4 9.910 0.0236

networks, and biological networks. We include eight so-
cial networks: Brightkite [24], Flixster [25], Gowalla [24],
Hyves [25], Livejournal [26], MySpace [26], Orkut [24], and
YouTube [24]; four collaboration networks: Astro-Ph [24],
Cond-Mat [24], Gr-Qc [24], and Hep-Th [24]; four road
networks: Road-BEL [24], Road-CA [24], Road-PA [24], and
Road-TX [24]; four biological networks: Bio-Dmela [27],
Bio-Grid-Human [27], Bio-Grid-Yeast [27], and Human-
Brain [27]. The data statistics, including the mgo value for
each network, are in Table I.

B. Assess Network Robustness with Spectral Moments

To evaluate ms as a network robustness measure, we first
define robustness of a real-world network. In its most abstract
form, robustness is the ability of a network to continue to
perform well under failures or attacks [1]. To quantify such
a definition in our experiments, we consider the robustness of
a network by looking at how ¢ — the fraction of nodes in its
largest connected component — changes under random edge
failures. In other words, when losing the same number (or
proportion) of edges, a more robust network exhibits a smaller
drop in c value as most nodes within the “core” of the network
are kept intact. Hence, for each network, we randomly remove
x% of the edges of the graph by varying z% from 5% to
95% with step size 5%. For each 2%, we run the experiments
20 times and report the average c¢ and its standard deviation
in Figure 2. From the figure, we find that (1) road networks
are much more vulnerable under random failures. For each
road network, the size of its largest component drops sharply
when losing edges randomly. Especially, by losing 35% of the
edges, ¢ becomes less than 10%. We notice that moy values
of road networks are much larger than those of networks
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Figure 1: Robustness Measures v.s. p in G(n,p); n = 1,000 and dashed line shows the turning point at p = 0.0013.
Table I: Dataset Statistics
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(c) Road Networks (d) Biological Networks
Figure 2: Networks under Random Edge Failures. = value: fraction
of edges removed; y value: fraction of nodes in the largest connected
component c.

from other categories. Among road networks, Road-BEL is
more vulnerable than others and has the largest mo; (2) for
networks from other three categories, ¢ decreases smoothly
as more edges are removed. Furthermore, if a network has
a larger my, the fraction of nodes in its largest component
shrinks faster. For networks with smaller mo values, such as
Orkut and Human-Brain, they maintain more than 70% of the
nodes in their largest component even after losing 90% of
their edges. In general, these observations provide an answer
to Q1: a real-world network with a smaller second spectral
moment mo is more robust under random failures. Hence, we

can compare the robustness of two networks by comparing
their mq values, even if the networks vary in size.

V. DESIGN NETWORKS WITH CONTROLLABLE
ROBUSTNESS

Next, we want to answer the question: [Q2] how to design
networks with controlled robustness? In other words, can we
design strategies to control (increase or decrease) robustness
in a real-world network? From Section IV, we know that a
robust network has a smaller my value. Naturally, if we can
control the network robustness by manipulating its mq value,
we can “design” a network that is more robust under failures;
or equivalently, develop more efficient attack models to harm
the robustness of a network. Thus, we will design various
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0.8 0.9
~|—High Score Removal A 0.8 —High Score Removal —~
0.7/ Low Score Removal "”|—Low Score Removal [\
0.6 0.7 /
05 :;E
LD /
0.4
0.4 //
0.3 5 _
P 03 P
02— 0ol
0.1 0.1
% 0T0203040506070500 1 010203040506 070809
(a) Gowalla (b) Cond-Mat
0.9 0.8
0.8 \ 07 —High Score Removal i
i -{|—Low Score Removal /
0.7 X \
\ 0.6 y
0.6 \ /
0.5 /
0.5 , /
7 0.4
0.4 ~
0.3 0.3 o
0.2 N \ 0.2 _—
0.1|—High Score Removal | \ 0.1f
0 —Low Score Removal 0 — -
0.10.20.3040.50.60.7080.9 0.10.20.3040.50.60.7080.9
(c) Road-PA (d) Bio-Dmela

Figure 4: Second Spectral Moment mo with Sequential Edge Re-
moval. x: fraction of removed edges; y: ma.

edge removal strategies here and assess their impact on the
me value of a network.

Theorem IL.1 shows that mq = E(d;) E(ﬁ) Assume we
remove a fixed number of edges from some graph G to get a
new graph G'. The average degree of G’ will only rely on the
number of edges removed and is independent of which edges
were removed from graph GG. Hence, when a fixed number of
edges are removed, what can make my different is how these
removed edges change the value of E(ﬁ) Intuitively, by
removing edges (i, j) corresponding to higher d;d; values (d;
and d; are the degress of ¢ and j), we should get a larger value
of E(Tldj) in G'. Hence, we design edge removal strategies
that rely on the d;d; values of edges. Here, we detail the
developed edge removal strategies.

We define d;d; value as the edge score for an edge (i, )
between nodes 7 and j with degrees d; and d;. We propose two
strategies to remove edges based on the edge score: (1) High
Score Removal, removing the edges with the highest scores
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Table II: Phase Transition of ms
Proportion of Edges Average Degree of

Network Removed (Turning Point) | the R Graph
Brightkite 0.85 7.353%x0.15 = 1.10
Flixster 0.85 6.276x0.15 = 0.94
Gowalla 0.90 9.668x0.10 = 0.97
Hyves 0.85 3.960x0.15 = 0.59
YouTube 0.85 5.265x0.15 = 0.79
Astro-Ph 0.90 21.10x0.10 = 2.11
Cond-Mat 0.85 8.078x0.15 = 1.21
Gr-Qc 0.75 5.526x0.25 = 1.38
Hep-Th 0.70 5.259x0.30 = 1.66
Road-BEL 0.40 2.143%0.60 = 1.29
Road-CA 0.65 2.816x0.35 = 0.99
Road-PA 0.65 2.834x0.35 = 0.99
Road-TX 0.55 2.785x0.45 = 1.25
Bio-Dmela 0.85 6.917x0.15 = 1.04
Bio-Grid-Human 0.85 13.09 x 0.15 =1.96

from the graph; and (2) Low Score Removal, which removes
the edges with the lowest scores. When an edge is removed
from the graph, the scores of edges incident to the endpoints of
the removed edge will change, which may impact the current
ranking of edges based on this edge score. Hence, for the
removal process, we propose two methods: (1) Batch Removal,
where we pick top z% of edges in the graph based on each
strategy (high score or low score removal) and remove them
in one batch; (2) Sequential Removal, where each time we
remove only the top-1 edge based on each strategy and after
each removal, we update the ranks. In total, we remove % of
edges of the graph. For both methods, we vary 2% from 5%
to 95% with the step size 5%, and we report the changes in
meg for one network from each category in Figure 3 and 4. For
all other plots, please refer to the supplementary material.!

We observe that for both batch and sequential removal:
(1) for High Score Removal, with more edges removed, mo
of most networks increases first and after a certain point,
my drops sharply. Further, if we look at the turning point
of the curve, it always happens when the average degree of
the remaining graph is around 1.0 (see Table II), indicating
a phase transition for msy. However, if a network has a
very high average degree (such as Bio-Grid-Yeast or Orkut),
by removing 95% of its edges, the average degree of the
remaining graph can be much greater than 1.0. For such
networks, the phase transition will not appear in the figures;
(2) for Low Score Removal, ms decreases monotonously as
more edges are removed. So, generally, in response to Q2,
removing edges (4,j) corresponding to highest d;d; values
decreases network robustness (increases ms), and removing
edges corresponding to lowest d;d; values increases network
robustness (decreases ms).

A. Evaluation

We evaluate whether the proposed manipulations on my
can change network robustness. For a network G, we first
remove 10% of its edges with High Score Removal (and Low
Score Removal) in batch to get Gign (and Grow); then we let
GHhign (and GLow) experience the same random edge failures
as detailed in Section IV-B. The results are shown in Figure 5.
From the figure, we find that (1) we initially observe in Gpoy
a smaller largest connected component, as low degree nodes

!Other plots are available at https:/bit.ly/3SqDPSP

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on August 22,2023 at 02:29:17 UTC from IEEE Xplore. Restrictions apply.



0.9F [IX S 0.9
0.8
0.7
0.6
0.5
04
0.3

0.5 O 0.5 o1 0.5 \ o
A : 04 N\ 0.3 04 AR IKE]
0.2] 0.3 0.3 \ 0.2 0.3 \ 0.2
0.1 High Score Removal 0.2[ High Score Removal 0.2[ High Score Removal \ 01| High Score Removal \. | 0.2] THigh Score Removal \ | (.1[THigh Score Removal
" [-Low Score Removal "] jl-Low Score Removal 1 [=Low Score Removal " | Low Score Removal \ | [ =Low Score Removal X Score Removal

0.9F 0.9 T 0.9 \\\
0.8} 03| ~ 0.8} N
0.7] Y| ——— 0.7} T
04 0.6 \ 06
0.5 \ 0.5

) 0.10.20.304050.6070809 0 UlU)UKlHUJle[M(l\(l‘) 0 0102030405060.7080.9

(a) Brightkite (b) Flixster (c) Gowalla

0 010203040506070809 ) 0.1020304050607080.9 0 0102030405060.7080.9

(d) Hyves (e) MySpace (f) YouTube

Score Removal
ore Removal

Score Removal
ore Removal

0.9} N
o8] %

0.51 0.6

0.6 ol 04
05 : , ) \\ s \ 02f| E:f
0.4/ =Tigh Score Removal \ 1 0.1 High Score Removal X 0.1[—High Score Removal 0.1 High Score Removal \ 0. 01 \
(.3=—Low Score Removal \ —Low Score Removal \ —Low Score Removal | —Low Score Removal ANN | ( LN
0.0 0.2 03 0.4 05 0.6 0.7 08 0.0 T 0T0203040506070500 70102030405 06070500 00102030405 06070300 0 010.20304050.60.7 03090 00102030405 06070300
(g) Astro-Ph (h) Cond-Mat (i) Gr-Qc (j) Hep-Th (k) Road-BEL (1) Road-CA
1 1 == 1 1
—High Score Removal —High Score Removal ~ L
':2 N\ —Low Score Removal - Low Score Removal ': 0 0.95 —
08 ¥ 08— 0.9
0.7 ™ 0.7 0.85 \L
0.6) 0.8 \’

0.5)
0.4]
0.3] \
0.2] \

0.6]

0.5 \

0.4] -
\ (.1|—High Score Removal \

\ % —Low Score Removal \

0.3 0.65
0.2 y 0.6

0.1 0.1|—High Score Removal 0.55/—High Score Removal T
0 ~ . ¢ —Low Score Removal \ 05 —Low Score Removal 0.55 Low Score Remor
) 0.10.20.3040.5060.7080.9 0 0.1020.304050.6070809 ) 0.10.20.3040.5060.7080.9 0 0.10.20.304050.6070809 0 010203040506 0.7080.9 ) 0.102030405060.7080.9
(m) Road-PA (n) Road-TX (0) Bio-Dmela (p) Bio-Grid-Human (q) Bio-Grid-Yeast (r) Human-Brain

Figure 5: Network Robustness after ms Manipulation (Note: Due to the large size, Livejournal and Orkut are not included in this experiment.)

are removed from the component. However, this observation
does not mean that G, is vulnerable as the remaining nodes
in the component can be well-connected; (2) In terms of the
robustness, GHign is more vulnerable under random failures.
By looking at the slope of the curve, we observe that when
under the same random failures (randomly losing the same
number of edges), the size of the largest connected component
of Ghign shrinks faster than that of G,y Hence, High Score
Removal increases mo of a network, making it less robust.

VI. EVOLUTION OF NETWORK ROBUSTNESS UNDER
CASCADING FAILURES

Next, we are going to answer the question: [Q3] how to
study the behavior of a complex system by observing the
evolution of its network robustness? We specifically consider
the evolution of network robustness under cascading failures.
In reality, in a network-based system the activity of an edge
(or a node) often depends on the activity of its neighboring
edges (or nodes) [28]. Hence, the failure of an edge can
trigger the failure of the edges incident to it, and such se-
quences of failures are called cascading failures. For example,
a power grid network is composed of busses (nodes) and
transmission lines (edges). If one (or multiple) transmission
lines are disconnected (e.g., due to natural disasters or operator
mistakes), it can cause some other transmission lines to fail
by exceeding their power flow limit and trigger more failures.
Different from random failures or failures caused by attacks,
cascading failures are closely related to the governing laws of
the underlying networked system, e.g., power flow equations.
Hence, during cascading failures, how a network evolves in
terms of its robustness can indeed shed light on the governing
laws of the underlying system.
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Figure 6: A cascade example
A. Data Collection

We study the cascading failures in a well-studied power
grid network (see [29] for details). We generate the cascading
failures with the methods provided by Ma et al. [30]. We sam-
ple 100,000 different initial loading conditions on this power
grid. For each initial loading condition, we choose all single-
line failures as the initial failures. Then, we use the AC-based
power flow to obtain the cascading failures. As this power grid
has 41 transmission lines, we have 41 x 100, 000 = 4, 100, 000
initial failure events in total. Among these initial failures,
1,644,135 of them trigger a cascading failure sequence. Figure
6 provides an example. In this example, we define state 4 as
the stable state of the cascade, and other states as unstable
states as they trigger subsequent failures of power lines.

B. Analysis

In a cascade, at each state, the system can be viewed as a
subgraph of the previous states as we are losing power lines
(edges). Thus, we can view each cascade as a sequence of
subgraphs. We represent each cascade using the mo values
of its subgraphs, and we study the changing patterns of ms

mgz | Number of Patterns | Proportions

N 2,466,379 46.4%
N 2,836,207 53.4%
— 10,583 0.2%

Table III: Changing Pattern of mo in Cascading Failures. 7 mg
increases; \: mo decreases; —: my does not change.

Authorized licensed use limited to: Syracuse University Libraries. Downloaded on August 22,2023 at 02:29:17 UTC from IEEE Xplore. Restrictions apply.



mo | Number of Cases | Proportions

mital > gy binal 1,261,201 76.7%

R 382,934 23.2%

mIQnilial — ml;'mal 0 0.0%
Table IV: Comparison of ma of the initial failure state and the final
state. miital: 1, of the initial state; m5™: my of the final state.

between consecutive states. For example, if a cascade has
four states and my values of the sequence of subgraphs are:
[0.3632,0.3893,0.3726,0.3514], then the changing patterns
are /\\, which is composed of one increase and two
decrease of mso. Across all the cascades, we report the total
number of changing patterns in Table III. We find that in
general, decreasing patterns (53.4%) are slightly more than
the increasing patterns (46.4%). Next, for each cascade, we
compare the my of the initial failure state and that of the final
(stable) state. Table IV demonstrates that for 76.7% of the
cascades, the msq value of the final state is smaller than that of
the initial state, compared to 23.2% on the other direction. The
difference is much more significant than that of the consecutive
changing patterns. Notice that a smaller mo indicates the
network is more robust. Hence, in general, an initial failure
happens at a vulnerable state, and after the cascading failures
change system robustness, the system stabilizes (converges to
a more robust network).

VII. ADDITIONAL RELATED WORK
Additionally, our work has links to the following areas:

I. Edge Modification. Studies have shown that edge mod-
ification, such as adding, rewiring [3], or protecting some
edges, can enhance network robustness. Our work theoretically
connects edge removal with spectral moments.

II. Spectral Robustness. Wu and his colleagues propose
natural connectivity, which can be regarded as the “average
eigenvalue” of the adjacency matrix [31]. In our work, we look
at the eigenvalue distribution of the random walk transition
matrix via its spectral moments (equivalently, the spectral
moments of the normalized Laplacian matrix).

VIII. CONCLUSION

We propose a spectral measure for network robustness: the
second spectral moment ms of the random walk transition
matrix. We theoretically and empirically demonstrate that mso
can capture network robustness: a graph with a smaller second
spectral moment my is more robust. We show the relationship
between my and edge properties so that one can control the
network robustness by manipulating its mo value.
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