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1 | INTRODUCTION

Human activity is driving rapid biodiversity loss, with current extinc-
tion rates at least 100 times greater than background rates for some
taxa (Ceballos et al., 2015). While land use change is the primary
human activity driving species loss (Newbold et al., 2015), anthro-
pogenic climate change impacts on species geographic distributions
have been observed globally (Chen et al., 2011). Predictive frame-
works for identifying vulnerable species are urgently needed in the
face of rapid climate and land use change to anticipate where, and
for which taxa, the most pressing needs for management and miti-
gation arise.

Spatially rare species generally face a greater risk of extinc-
tion across taxa and geographic locations than their more com-
mon counterparts (Ledo et al., 2014; Ohlemdller et al., 2008;
Staude et al., 2020). The ecological and evolutionary mechanisms
that produce spatial rarity vary, and to capture these nuances,
Rabinowitz (1981) proposed a rarity framework based on three
species characteristics: geographic range size, degree of habitat
specificity (i.e., niche breadth), and local abundance. Although inter-
related, each of these characteristics describes distinct features of
a species' spatial rarity and may uniquely influence a species' vul-
nerability to environmental change. Range size has frequently been
identified as one of the most important predictors of extinction risk
(Ledo et al., 2014; Payne & Finnegan, 2007), with geographically re-
stricted species often being associated with the highest extinction
risks. In terms of spatial rarity and extinction vulnerability, small-
ranged species with narrow niche breadths overwhelmingly face
the highest vulnerability to environmental change (Johnson, 1998;
Payne & Finnegan, 2007; Thuiller et al., 2005).

Species persistence under global change also depends on the
spatial configuration of habitat, including patch size and degree of
isolation from other patches. Habitat patchiness, measured by the
number of patches or the distance between patches, can protect or
insulate species from the negative impacts of environmental change
due to “risk-spreading”, that is, the risk of habitat loss is spread, and
therefore diluted, across the landscape (Blowes & Connolly, 2012).
This is especially true when the effect of a system perturbation
is spatially “patchy”, as is often the case with land use change and
can be true for climate change in areas with complex terrain that
modifies climate. However, habitat patchiness may reflect ongoing
habitat loss due to changing climates (Petit et al., 2003) and the con-
version of natural land to urban or agriculture use, historical legacies
that may make species more susceptible to continued habitat loss
under future global change. Although not included in traditional rar-
ity frameworks, aspects of fragmentation help describe the spatial
rarity of suitable habitat across species ranges and are considered
rarity traits in this context.

Climate and land use change impacts are spatially structured,
meaning that some species will be more vulnerable to their effects
than others based on their geographic context. Distance to the
coast, topography, and elevation are components of a species' phys-
ical environment that influence the magnitude of environmental
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change they will experience. However, the effect of a geographic
factor on species vulnerability can vary. For example, while prox-
imity to coastlines may offer the benefits of relatively stable or
even cooling climates (Lebassi et al., 2009), terrestrial species with
suitable habitat projected to shift closer to the coast under climate
change may be more vulnerable to range reductions than species
projected to move inland (Broennimann et al., 2006). Additionally,
urban development is concentrated and projected to increase along
coastlines in our focal study area—California, USA—making coastal
species especially vulnerable to habitat loss via land use change.

Topographically complex landscapes can provide climatically
stable refugia, for example, north-facing slopes and cold air drain-
ages, which may offer species refuge under rising temperatures
(Serra-Diaz et al., 2015), as they have during past climate change
(Dobrowski, 2011), while also reducing climate velocities (Loarie
et al., 2009). Furthermore, topographically complex areas are gen-
erally less likely to face urban and agricultural development than
flatter areas (Syphard et al., 2005), potentially reducing species vul-
nerability to land use change in these areas. Additionally, elevational
position influences species vulnerability to environmental change.
Interactions between declining water availability and rising tempera-
tures in mountainous areas may exacerbate drought conditions and
reduce suitable habitat for high-elevation species in water-limited
Mediterranean-type climates, such as those found in the Sierra
Nevada, California (McCullough et al., 2016; Figure 1).

Exposure is a key component of species vulnerability to global
change that quantifies the magnitude of suitability change expected
to be experienced by a species (Dawson et al., 2011) and is often
inferred from changes in a species' environmentally suitable space
(Garcia, Aradjo, et al., 2014). Disentangling the relative importance
of rarity and spatial context for determining species exposure to
global change is important for improving conservation decision-
making, particularly if the relative contributions of these traits vary
depending on the environmental change driver. In our research, we
asked the following questions for a set of 106 plant species in the
California Floristic Province (CFP): (a) how do range-wide rarity and
geographic traits relate to plant species exposure to future climate
and land use change? and (b) how do species rarity and geographic
traits interact to influence climate and land use change exposure?
In this study, we measured climate and land use change exposure as
the total proportional loss of suitable habitat across the study spe-
cies’ currently occupied ranges (Garcia, Cabeza, et al., 2014) because
this metric does not rely on assumptions about dispersal capacity to

reach new suitable areas outside the current range.

2 | METHODS
2.1 | Study areaand species
With>2000 endemic vascular plant species (Baldwin et al., 2012),

the CFP, defined as the area of western North America with a
Mediterranean-type ecosystem located almost entirely within
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FIGURE 1 California Floristic Province (CFP) within California. (a) Jepson Ecoregions and 76,266 survey locations for plant species
presence-absence data. (b) Map of land use patterns in the CFP in the year 2000 and area trends for each land use class (natural, developed
and exurban) between 2000-2100 under two emissions scenarios: representative concentration pathway (RCP) 4.5 and RCP 8.5. (c) Climatic
water deficit (CWD; the difference between potential and actual evapotranspiration)—an important driver of vegetation distributions in
water-limited, Mediterranean-type ecosystems—in the CFP for the historical period 1980-2010 and projected change for the period 2070-
2099 under two climate models (CNRM-CM5 and HadGEM2-ES) and two emissions scenarios (RCP 4.5 and 8.5).
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California, is a topographically diverse biodiversity hotspot (Myers
et al., 2000). Stretching across 10 degrees of latitude and 4000 me-
tres of elevation, the California portion of the CFP (Figure 1) sup-
ports a wide variety of terrestrial vegetation systems. This region
faces unique pressure from both climate and land use change, with
temperatures projected to increase 2-7°C and developed land area
projected to more than double between the late 20th-early 21st
centuries and the year 2100 (Pierce et al., 2018; Sleeter et al., 2017).
Our assessment was based on 106 plant species that are endemic to
the CFP and that represent different life-forms, range sizes (<200
to >30,000 km?) and range locations (Serra-Diaz et al., 2014). While
not arandom sample, these species include about 5% of the endemic
flora and were selected to encompass the broad range of life his-
tories and geographies found in the CFP (Supporting Information
Appendix S1, Table S1.1).

2.2 | Species and environmental data

For 84 of 106 species, we compiled species presence-absence re-
cords from vegetation surveys (Hannah et al., 2008) and Calflora.
org between 1980-2020. For the 22 species with too few presence-
absence records from the vegetation surveys, we created a presence-
only database using the Consortium of California Herbaria, the Global
Biodiversity Information Facility (DOI: 10.15468/dl.nrdmke), the
Integrated Digitized Biocollections, and the Botanical Information
and Ecology Network. The number of presences available for mod-
elling after filtering ranged from 12 to 4646 across the 106 species
(see Supporting Information Appendix S2, Table S2.4 for data clean-
ing procedure; Table S2.1 for data sources). All occurrence data were
restricted to the study extent (i.e., CFP).

We calibrated species distribution models (SDMs) using cli-
matic, hydrological, terrain and soil predictors associated with plant
distributions, especially in water limited ecosystems like California
(Stephenson, 1998). Climatic and hydrological predictors included
climatic water deficit, actual evapotranspiration, minimum monthly
temperature, and wet- and dry-season precipitation averaged
from annual values for the years 1981-2010 at a 270-m spatial
resolution. These variables are derived from the California Basin
Characterization Model (BCM), which uses fine-scale temperature
interpolations and soil characteristics to capture the hydroclimatic
effects of topography (Flint et al., 2013; Hannah et al., 2014) and has
been used in recent research to project the future distributions of
plant species in California under climate change (Thorne et al., 2017)
(Supporting Information Tables $2.2 and 52.3).

Including edaphic variables as predictors in SDMs produces
more comprehensive models based on factors limiting terrestrial
plant distributions, especially when projecting models under cli-
mate change (Kueppers et al., 2005; Velazco et al., 2017). We ob-
tained 10-m resolution soil pH, available water holding capacity,
soil depth and percent clay from the gridded National Soil Survey
Geographic Database (gNATSGO, Soil Survey Staff, 2020). For spe-
cies with >50 records, we included landform types (15) based on
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hillslope position and dominant soil formation processes (Theobald
et al., 2015), while topographic heterogeneity [continuous variation
in elevation, obtained from a 90-m digital elevation model (DEM)]
was used instead for species with <50 records. We resampled the
soil and terrain variables to match the spatial resolution of the cli-
mate data (270m), using nearest neighbour resampling for the cat-
egorical landform data and a bilinear approach for the continuous
variables (Supporting Information Table $2.2). We also assumed that
soil and landform conditions will remain constant through time and
used them to project models in space for both the current and future
climatic conditions.

To assess climate change exposure for the period 2070-2099, we
selected two global circulation models (GCMs), CNRM-CM5 (Centre
National de Recherches Meteorologiques climate model version
5) and HadGEM2-ES (Hadley Centre Global Environmental Model
version 2- Earth system configuration), and two emissions represen-
tative concentration pathways (RCPs), RCP 4.5 and 8.5 (IPCC, 2013).
The GCMs are among the 10 recommended by California's Fourth
Climate Change Assessment and encompass the variability in climate
change projections for California (Pierce et al., 2018), ranging from
warm and wet (CNRM-CM5) to hot and dry (HadGEM2-ES), with a
reduction in greenhouse gas emissions under the RCP 4.5 scenarios,
and increasing greenhouse gas emissions (“business as usual”) under
the RCP 8.5 scenarios. All future climate data were produced by the
BCM at a 270-m spatial resolution.

2.3 | Landusedata

To assess the impact of current and future land use, we used pro-
jections for the HadGEM2-ES RCP 4.5 and 8.5 scenarios from the
Integrated Climate Land Use Scenario (ICLUS), which are based on
a human demographic growth model and are consistent with the
Intergovernmental Panel on Climate Change (IPCC) Special Report
on Emission Scenarios (Bierwagen et al., 2010; Theobald, 2005).
These land use change scenarios predict increases in urban and ex-
urban development and decreases in agricultural and forest lands
(Figure 1). To simplify each land use category's impact on habitat
suitability produced by the SDMs, we estimated that cells with natu-
ral land uses would have no impact on habitat suitability, cells within
the exurban category would experience a 50% reduction in habitat
suitability (e.g., an exurban grid cell with an initial suitability value
of .75 is assigned a new value of .375) and cells classified as devel-
oped would become unsuitable (suitability value of zero) (Supporting
Information Table S2.5).

2.4 | Species distribution models

We selected eight SDM algorithms for ensemble predictions:
generalized linear models, generalized additive models, boosted
regression trees, random forests, artificial neural networks, sup-

port vector machines, maximum entropy, and gaussian process
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(Franklin, 2010). The last two algorithms were only used for
presence-only models. Ensembles, in which predictions of individ-
ual algorithms are combined to produce a consensus distribution,
can reduce model uncertainty and improve model transferability
(Aratjo & New, 2007). For each model, we applied the model-
specific suitability value that maximized the sum of sensitivity and
specificity as a threshold, retaining continuous suitability values
above the threshold and assigning O suitability values to those
cells below the threshold. This method removes areas with low
habitat suitability while retaining variation in suitability within re-
maining species' habitat (Muscatello et al., 2021), and allowed us
to later define discrete species' ranges to calculate the number of
patches and patch isolation. The resulting continuous suitability
values were averaged across all models to produce a “mean above
threshold” ensemble. We produced 786 models (84 of presence-
absence species x 7 algorithms/ensemble + 22 of presence-only
species x 9 algorithms/ensemble) with 3144 projections (2 GCMs
x 2 RCPs).

Our exposure analysis focused on the temporal dynamics of suit-
ability within each species' currently occupied ranges. When a model
is projected outside the calibration area, patches with high suitabil-
ity may be predicted far from a species' current =distribution, lead-
ing to “overprediction” (Mendes et al., 2020; Velazco et al., 2020).
Therefore, we constrained current and future model predictions by
selecting only suitability patches (contiguous suitable pixels) that
contained at least one occurrence (Mendes et al., 2020). All SDMs
were calibrated and evaluated using the flexsdm package in R (R
Core Team 2021; Velazco et al., 2022; see Supporting Information
Appendix S2 and Table S2.4 for details on modelling).

2.5 | Rarity and geographic traits

We calculated four species-level rarity traits based on species occur-
rence data and currently occupied suitable habitat maps produced
by the ensemble SDM procedure outlined previously. Rarity traits
included range size, niche breadth, number of patches and patch iso-
lation. Range size was calculated as the area in km? encompassed
by the minimum convex polygon that contained all species' occur-
rences used for modelling. We calculated niche breadth with the
hydroclimatic and soil variables used to build SDMs, adapting meth-
ods developed by Vela Diaz et al. (2020) (Supporting Information
Appendix S3). We standardized all environmental variables across
the extent of the CFP to z-scores (mean = 0, SD = 1) to account
for differences in units of measurement and variance in the environ-
mental variables. To reduce collinearity in the environmental data,
we performed separate principal components analyses (PCAs) for (a)
climate and (b) soil variables and selected the principal components
that explained 95% of the variation in each (Supporting Information
Figure S3.1). For each species, we calculated the sum of the squared
difference between the environmental value of each occurrence re-
cord and the environmental mean value of all occurrence records for
that species. The niche breadth of a species represents the sum of

this value across all environmental variables divided by the number
of occurrence records for that species. To calculate the number of
habitat patches and average patch isolation for each species' range,
we first binarized currently occupied suitable habitat maps using the
threshold that maximized the sum of model sensitivity and speci-
ficity. We then used functions from the landscapemetrics R package
to calculate the number of habitat patches and the coefficient of
variation of the Euclidean nearest-neighbour distance between each
patch (patch isolation) for each binarized habitat map (Hesselbarth
et al., 2019). Geographic traits included distance to coast, elevation,
and topographic heterogeneity. We used a 90-m DEM to calculate
topographic heterogeneity as the range in elevation values from a
centre cell and the three-cell neighbourhood immediately surround-
ing it. These values were then converted to a 0-1 scale using the
standard deviation of the range of values across the study area. To
summarize species-level geographic traits, we averaged the values
for each of these variables across all occurrences for each species
(see Supporting Information Table S2.2 for data sources). More in-
formation about the rarity and geographic traits and our predictions
for the relationships between these traits and exposure are sum-

marized in Table 1.

2.6 | Calculating exposure to climate and land
use change

We defined exposure in a 270-m grid cell within a species' currently
occupied range as habitat suitability change between the baseline
(1980-2010) and future time period (2070-2099) based on SDM
predictions and land use patterns:

Exposure, = baseline habitat suitability, — future habitat suitability])

In this framework, exposure varies continuously and is not depen-
dent on binary thresholds, that is, unsuitable versus suitable (Guillera-
Arroita et al., 2015). To summarize species-level range exposure, we
calculated habitat suitability as the sum of grid cells (c) across the total
number of grid cells (n) in the spatial projections of the species' occu-
pied area (Ledo et al., 2021):

Habitat suitabilityg,, = Z::i environmental suitability within occupied range,

(2)
Range exposure represents the sum of change in suitability values
from the baseline and future time periods proportional to the baseline

suitability averaged across the two GCMs for each RCP:

baseline habitat suitability,,, — future habitat suitability,,, )

Range exposure = - - ——
e exp ( baseline habitat suitability,,

(3)
We evaluated species exposure to climate change only (CC), land
use change only (LUC), and climate and land use change combined
(CC+LUC) (Figure 2). Using this framework, range exposure values >0
correspond to a decrease in habitat suitability, while range exposure
values <0 indicate an increase. A species projected to experience a
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TABLE 1 Species traits that are related to climate and land use change exposure (based on Franklin et al., 2021; Pearson et al., 2014) and
predictions about how each trait is related to plant vulnerability to climate and land use change in the California Floristic Province (CFP)

Attribute

Rarity traits Range size

Niche breadth

Range fragmentation

Metrics

Area of minimum convex polygon around
occurrences (km?)

Abiotic environmental tolerances based on
climate, terrain and soil values (270-m
resolution) at species occurrences (Vela Diaz
et al., 2020)

Number of suitable habitat patches, average
patch isolation—based on ensemble SDM
of currently occupied habitat (Hesselbarth

Predictions

Smaller range size—greater exposure to
climate and land use change

Narrow niche breadth—greater exposure to
climate change

Higher range fragmentation—less exposure
to land use change (risk spreading) and
greater climate change exposure

et al., 2019)
Geographic Distance to coast Average distance (km) between species Closer to the coast—less climate change
traits occurrences and the coastline (NASA Earth exposure and greater land use change

Data)

Range topography
occurrences (0-1; 90m)

Elevation
(90m)

Note: SDM = species distribution model.

Average topographic heterogeneity® of species

Average elevation (m) of species occurrences

exposure

Higher topographic complexity—less exposure
to climate and land use change
Higher elevation—greater exposure to climate

change and less exposure to land use
change

?Range in elevation values from a centre cell and the three-cell radius immediately surrounding it, rescaled to 0-1 using the standard deviation of the

range of values across the study area.

complete loss of suitable habitat within its current range would have a

range exposure value of 1.

2.7 | Statistical analyses
Exploratory analyses revealed that our data demonstrated non-
homogeneity of variance and skewed distributions (Supporting
Information Figure S4.2), so we selected generalized additive models
for location, scale and shape (GAMLSS,) as the regression framework
to test our predictions about the relationships between individual
species' spatial range traits and their exposure to climate and land
use change (Table 1). GAMLSS is a flexible statistical modelling
approach with a variety of distribution families and distribution
parameters (location, scale, shape; Rigby & Stasinopoulos, 2005;
Supporting Information Appendix S4 for modelling procedure).
Because of multicollinearity between two geographic traits,
mean elevation and distance to coast, we first estimated the
GAMLSS between exposure and each trait individually, includ-
ing RCP scenario as an interaction term in each model to evaluate
different relationships between spatial range traits and exposure
under the two emissions scenarios, and species as a random inter-
cept. While the GAMLSS approach allows us to assess the relation-
ship between each species' trait and exposure, we also wanted to
quantify the unique and shared variance in exposure explained by
rarity traits, geographic traits, and RCP. To do this, we performed
variance partitioning via partial regression using the vegan R pack-
age (Oksanen et al., 2021). Species are phylogenetically related, vi-
olating the assumption of data independence, and this can lead to

overestimating degrees of freedom in approaches like GAMLSS. We
examined Moran's | phylogenetic correlograms for the residuals of
each GAMLSS using a phylogenetic tree created for California plant
species (Thornhill et al., 2017; Supporting Information Appendix S5).

To explore interactions between species' traits and exposure,
we also implemented a decision tree approach, which has been
used to interpret extinction risk factors (Ledo et al., 2014). Decision
trees iteratively partition data into subgroups based on values of
predictor variables, with each resulting group being more homog-
enous in terms of the response variable, as measured by the Gini
index (Breiman et al., 1984). They can also handle multiple correlated
predictor variables and rely on fewer assumptions than more tra-
ditional regression approaches, that is, distribution of the response
and predictor variables and data independence. Because the goal
of our decision tree analysis is to understand how the interactions
between multiple spatial range traits influence exposure, and not to
make predictions, we did not apply any complexity costs to the final
decision tree and present the “full grown trees” in our results. We
evaluated how complexity influenced the error rate using 10-fold

cross-validation (Supporting Information Figure 56.4).

3 | RESULTS

We modelled the spatial distributions and exposure of 106 species,
including 48 shrubs, 32 trees and 26 herbs. SDMs performed well
across species and algorithm types [area under the curve (AUC):
mean = .88+.06 SD; true skill statistic (TSS): mean = .68+.14 SD;
Boyce index: mean = .87+.12 SD; Sorensen: mean = .58+.25 SD;
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FIGURE 2 Workflow for modelling species' occupied suitable habitat under the baseline (1980-2010) conditions and estimated exposure
for the future time period (2070-2099) under climate and land use change scenarios (a); and estimating species exposure to land use
change, climate change [for each representative concentration pathway (RCP)], and climate plus land use change, shown overlaid on a digital
elevation model (DEM)-derived hill shade for the study area (b). For our analysis, we averaged the exposure values from the two climate
change global circulation models (GCMs; HadGEM2-ES and CNRM-CM5).
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F-measure on presence-background data (FPB): mean =.92+.50 SD]

(Supporting Information Figure S2.1).

3.1 | Exposure to climate and land use change

Across all species and the two emissions scenarios, mean exposure
was lowest for land use change alone (.10), followed by climate
change alone (.27) and highest for the combined effect of both (.34).
As expected, species exposure was greater for the RCP 8.5 than the
RCP 4.5 for climate change (mean .33 vs. .21), land use change (.12
vs. .07) and the combined effect of both (.41 vs. .26) (Figure 3).

3.2 | GAMLSS results

The univariate GAMLSS showed strong evidence that patch isola-
tion, elevation, and distance to coast are each positively associated
with exposure to climate change, while number of patches, and
rarity trait niche breadth, are negatively associated with climate
change exposure (Table 2). Range size showed evidence of quadratic
relationships with exposure to climate change, where small-ranged
and large-ranged species were the most exposed to climate change
(Figure 4). There was no evidence of a relationship between mean
topographic heterogeneity and climate change exposure in the
overall model. However, we found a significant interaction between
topographic heterogeneity and RCP emissions scenario, where top-
ographic heterogeneity had no relationship with climate change ex-
posure under RCP 4.5 but was negatively associated with exposure
under RCP 8.5 (Figure 4). There was also evidence of an interaction
between range size, number of habitat patches, topographic het-

erogeneity, and distance to coast and emissions scenario. R? values

1.0

51 Fﬁq‘cc

| 7L

LUC

=
. CC & LUC

Exposure

RCP4.5 RCPS8.S5
Emissions scenario

FIGURE 3 Boxplots summarizing species-level exposure under
climate change (CC), land use change (LUC) and the combined
effect of climate and land use change (CC & LUC) for each
emissions scenario. Positive exposure values indicate a decrease of
suitability. The boxplots show the median value along with the first
(lower) and third (upper) quartiles (the 25th and 75th percentiles,
respectively).
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indicate that range size, along with RCP, explained the most variation
in climate change exposure, followed by number of patches (Table 2).

We found strong evidence that niche breadth, patch isolation,
elevation, and average topographic heterogeneity were negatively
associated with land use change exposure. There was moderate ev-
idence that average distance to coast is negatively associated with
land use change exposure, as well (Table 2). Conversely, the number
of habitat patches was positively associated with land use change
exposure. In contrast to the results for climate change exposure,
species with intermediate range sizes were the most exposed to land
use change (Figure 3). Half of the model terms showed evidence of
an interaction with RCP (Table 2). Generalized R? values showed
that elevation explained the most variation in land use change expo-
sure followed by number of patches and distance to coast (Table 2).
The relationships between species' rarity and geographic traits and
exposure to combined climate and land use change were similar to
the patterns under climate change alone (Supporting Information
Table S4.1, Figure S4.3). GAMLSS model residuals showed no ev-
idence of phylogenetic autocorrelation (Supporting Information
Figure S5.2), suggesting that our results were not affected by phylo-

genetic relatedness between species.

3.3 | Variance partitioning

Overall, rarity traits, geographic traits and RCP emissions scenario
explained 35.2 and 61.9% of the variance in climate change and land
use change exposure, respectively (Figure 5). While rarity traits ex-
plained the most variance in climate change exposure (14.1%), geo-
graphic traits were most important for explaining species' exposure
to land use change (41.1%).

3.4 | Decision tree analysis

Decision tree analysis revealed that range size was the most impor-
tant predictor of climate change exposure under the RCP 8.5 emis-
sions scenario, as indicated by the first tree split, with small-ranged
species (<14,000 km?) being more exposed than species with larger
ranges (Figure 6). Subsequent splits indicated that species with
higher mean topographic heterogeneity were less exposed to cli-
mate change than species in topographically homogenous areas. We
observed a similar pattern for the number of patches, where spe-
cies with more habitat patches were less exposed than species with
fewer habitat patches across their ranges. Other splits indicated that
species that were closer to the coast, had broader niches or were at
lower elevations tended to be less exposed than species far from the
coast, at higher elevations or that occupied narrow environmental
niches. The least climate exposed groups of species (far left nodes,
exposure = -.051 to .012), were those with large range sizes, many
habitat patches and wide niche breadths, and that were located less
than 46 km from the coast with high mean topographic heterogene-
ity across their ranges (n = 26). However, the most exposed group
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TABLE 2 Results of generalized additive models for location, scale and shape (GAMLSS) for species rarity and geographic traits
(predictors) and the response variables range-wide climate change and land use change exposure
Climate change exposure Land use change exposure
R? Estimate SE p R? Estimate SE p
Rarity Traits Range size .31 -0.78*** 0.009 <.001 .39 1.2 0.27 <.001
Range size? 0.92*** 0.12 <.001 -2.53 0.21 <.001
Niche breadth 12 -0.02*** 0.006 .001 .05 -0.19*** 0.01 <.001
Number of patches .29 -0.09*** 0.008 <.001 .57 0.36*** 0.02 <.001
Patch isolation 12 0.208 0.02 <.001 .25 -1.85*** 0.08 <.001
Geographic Elevation 17 0.0002 0.00001 <.001 .80 -0.002 0.00005 <.001
Traits Topographic 10 -0.01*** 0.04 75 .32 -5.55 0.12 <.001
heterogeneity
Distance to coast 13 0.001 0.0001 <.0001 .58 -0.02 0.0005 <.0001

Note: R? indicates the proportion of variance in exposure explained by each rarity and geographic trait and RCP scenario. Exposure is based on the
proportion of habitat suitability loss within species' currently occupied ranges, where 1 = 100% decrease. Estimates, standard errors and p-values are
based on individual GAMLSS between spatial traits and species exposure. Asterisks denote the significance of the interaction between each spatial

range trait and RCP: ***p <.001.

CC exposure

AS-(’) 75K 175K 275K - 25 50 75 - 2 3 2 i 30 35 40 45 e 2 4 6 8 -'5-(') 1,000 2,000 3.000 '5-(') 50 150 250
5 5 5 5 5 5 5
4 4 4 4 4
3 34 3 3 3

LUC exposure

0 75K 175K 275K 25 50 15 2 3 4 30 35 40 45 02 04 06 08 0 1000 2000 3,600 0 50 150 250
Number of patches Patch isolation Topographic Distance to
Range size (km?) Niche breadth (log10) (log10) heterogeneity Elevation (m) coast (km)
RCP 4.5 ——| RCP 8.5

FIGURE 4 Fitted response curves for the generalized additive models

for location, scale and shape (GAMLSS) relating rarity and

geographic traits to climate change (CC) and land use change (LUC) exposure under emissions scenarios representative concentration
pathway (RCP) 4.5 and RCP 8.5. Upper and lower pointwise standard error curves are shown in each plot (shaded areas).

of species (exposure = .78, n = 17) had small ranges and low mean
topographic heterogeneity.

For land use change exposure under RCP 8.5, the first split is
determined by the mean elevation of species' ranges, where species
at higher elevations were less exposed to land use change than those
at lower elevations. Species with higher mean topographic hetero-
geneity were less exposed than species in locations with lower aver-
age heterogeneity. Splits based on range size indicated that species
with small range sizes were more exposed than widespread species.
The least exposed group of species (exposure = .017-.073, n = 35)
were located at mean elevations greater than 771 m. However,
the species that were predicted to be most vulnerable to land use

change (exposure = .24, n = 17) were located at low elevations, in
topographically homogenous areas, and had range sizes smaller than
71,000km?.

4 | DISCUSSION

In this study, we (a) measured exposure (change in habitat suitability
within species' current geographic ranges) to climate and land use
change for 106 plant species in the CFP, for two emissions scenarios
for the time period 2070-2099, and (b) related rarity and geographic
traits to species' range-wide exposure under future climate and land
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FIGURE 5 Proportion of variance in exposure to climate change (CC; a) and land use change (LUC; b) explained by rarity traits (range size,
niche breadth, number of habitat patches and patch isolation), geographic traits (mean elevation, topographic heterogeneity and distance to
coast), and representative concentration pathway (RCP) emissions scenario. Overlapping areas indicate shared variance between traits, while

non-overlapping areas indicate no shared variance.

use change. We found that exposure to future climate and land use
change varies among plant species in the CFP, with habitat suitability
losses up to 100% for some species and gains up to 36% for others
by the end of the 21st century. The average projected suitability loss
under both climate and land use change ranged from 26% under RCP
4.5 to 41% under RCP 8.5. Rarity and geographic traits explained
>35% of the variance in climate change exposure and >61% of vari-
ance in land use change exposure. Our results supported some but
not all our predictions about the relationships between species traits

and their exposure to climate and land use change (Table 1).

4.1 | Rarity traits and exposure

Species with small ranges were the most exposed to both climate
and land use change, especially under the “business-as-usual” (RCP
8.5) higher emissions scenario (Figures 4 and 6). This finding is sup-
ported by past research that found species with small range sizes
face the highest extinction risks (Chichorro et al., 2019; Pearson
et al,, 2014), even when other aspects of rarity, that is, habitat type
and abundance, are considered (Harnik et al., 2012). Species with
small geographic ranges often occupy rare and/or cooler, relict cli-
mates that may disappear rapidly under climate change (Ohlemdiller
et al., 2008). The heightened vulnerability of small-ranged spe-
cies to both climate and land use change is particularly important
in the CFP, where >60% of endemic plant species have range sizes

<10,000km? (Thorne et al., 2009). However, we found that the re-
lationship between range size and exposure was not linear or even
monotonic. Our results indicate that widespread species may be
more exposed to climate change than species with intermediate-
sized ranges, a pattern that was also found for European plant spe-
cies (Thuiller et al., 2005) but remains poorly understood. A closer
look at the most exposed yet widely distributed species in our study
system provides some insight into this complex pattern. Widespread
species in the CFP that may face high levels of habitat decline due to
both climate and land use change (>70% exposure) include California
buckeye (Aesculus californica) and blue oak (Quercus douglasii), two
tree species whose distributions are concentrated in the foothills of
the Coast Ranges and the western Sierra Nevada regions that are
predicted to face rapid climate change as well as exurban develop-
ment during the next century (Figure 1). Furthermore, while species
with large range sizes tend to have broader environmental niches,
homogenous environmental conditions may be prevalent across a
region and therefore contain widespread species with narrow en-
vironmental affinities (Meyer & Pie, 2018), as we found for both
blue oak and California buckeye. This finding highlights that broad
spatial distributions may not buffer species from the consequences
of global change, especially if their ranges are in highly vulnerable
areas.

Although niche breadth and range size were positively associated
for our study species (r = .44; Supporting Information Figure S4.1)
and across taxa in previous research (Slatyer et al., 2013), they had
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FIGURE 6 Decision tree showing exposure to (a) climate change and (b) land use change based on species rarity and geographic traits
under the representative concentration pathway (RCP) 8.5 emissions scenario (see Supporting Information Figure $6.3 for RCP 4.5). In each
node, the top number indicates the average exposure of the species in that group, that is, overall species had an average climate change
exposure of .33 in RCP 8.5, and the second number (n =#) indicates the number of species in that group. The decision criteria are located
below each node, where groups to the left meet that condition (“yes”) and groups to the right do not (“no”). For example, all species grouped
to the left of the first node in the first decision tree (a) have range sizes greater than 14,000 km?, while those to the right have smaller range
sizes. For each branch split, species to the right are more exposed than species to the left. Numbers at the top of each node correspond to
the branch order, where gaps between numbers indicate branches that were pruned during model fitting.
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different relationships with species exposure, emphasizing the need
to consider both when conducting vulnerability analyses based on
species traits. Species with broad niches tended to be the least ex-
posed to both climate and land use change, though the relationships
were highly variable (Figure 4). Anthropogenic change is already
causing declines in habitat specialists globally (Clavel et al., 2011),
and species with broad environmental tolerances may be more re-
silient to changing environmental conditions than specialist species
(Broennimann et al., 2006). Interestingly, our decision tree indicated
that niche breadth was only important for predicting climate change
exposure in specific biogeographic contexts. For species with in-
termediate to large range sizes, an intermediate number of habi-
tat patches, near the coast, and in topographically heterogeneous
areas, those with narrow niches were associated with higher climate
change exposure (Figure 5). However, we found that some species
with narrow niches defy this pattern and are predicted to face rel-
atively low climate change exposure, including big pod ceanothus
(Ceanothus megacarpus), California brittlebush (Encelia californica),
purple sage (Salvia leucophylla), California goldenbush (Ericameria er-
icoides), and alpine gooseberry (Ribes lasianthum). The first four spe-
cies have relatively large range sizes concentrated along the coast
of California, while alpine gooseberry's distribution is characterized
by high topographic heterogeneity—all factors that may reduce spe-
cies vulnerability to global change. These instances highlight species
for which geography may mediate the relationship between niche
breadth and species vulnerability to global change.

Regarding habitat configuration, species with fewer habitat
patches and more dispersed ranges, that is, higher patch isolation,
were associated with higher levels of climate change exposure.
Fewer habitat patches may indicate that a species occupies only a
few, restricted habitat types, magnifying its climate change risk. We
found that the number of habitat patches was positively, though
not perfectly, related to measures of range size (r = .39; Supporting
Information Figure S4.1), and this metric complemented range size
as a determinant of climate change exposure in our decision tree.
Among our study species, those with large range sizes (214,000 km?)
and many habitat patches (26213) were associated with the lowest
levels of climate change exposure (5% average gain in habitat suit-
ability, n = 11). Habitat dispersion, that is, patch isolation, may reflect
ongoing range disjunction due to past climate fluctuations (Petit
et al., 2003) and is predicted to increase as a result of anthropo-
genic climate change (Jackson et al., 2015). While scattered distribu-
tions may have once reflected refugia during past climate change in
California (Millar, 2012), we found that several species with isolated
distributions, such as giant sequoia (Sequoiadendron giganteum),
Parry pinyon (Pinus quadrifolia) and foxtail pine (Pinus balfouriana),
were predicted to be highly exposed to climate change (>86% av-
erage habitat suitability loss under RCP 8.5). These findings suggest
that climate change vulnerability assessments should consider as-
pects of habitat configuration alongside more commonly included
traits such as range size and niche breadth.

For land use change exposure, we found that species with many
habitat patches and low patch isolation were more exposed to land

and Biogeography Macoechogy

use change. Land use change in California is predicted to be patchy
and concentrated in areas surrounding existing urban and agricul-
tural centres as well as the foothills of the Central Valley (Sleeter
et al., 2017). Patchy spatial distributions may reflect that a species'
range already overlaps with developed land that will expand in the
future, as was the case for the riparian California sycamore (Platanus
racemosa), which is distributed in human-dominated areas and was
projected to lose >20% habitat suitability due to land use change
alone. Because land development is predicted to be concentrated
in specific regions in the CFP, species with aggregated spatial distri-
butions will be at greater risk of habitat loss if their ranges overlap
with centres of development, while species with dispersed ranges

may benefit from “risk-spreading” if some of their habitat is far away.

4.2 | Geographic traits and exposure

While some past research suggests that montane species are
among the most vulnerable to climate change globally (Dobrowski
& Parks, 2016), other work shows that lowland species will also
face significant habitat loss due to rapidly warming temperatures
in the next century (Hulber et al., 2020). Our findings support both
paradigms in that high-elevation species were disproportionately
exposed to climate change; however, many low-elevation species
were also highly susceptible to the consequences of climate change
(Figure 4). Complex topography is expected to provide suitable to-
poclimatic refugia that may facilitate species persistence under cli-
mate change (Ackerly et al., 2020), as it has during past periods of
environmental change (Dobrowski, 2011). Although we found that
the range-wide measure of topographic heterogeneity explains the
least amount of variation in climate change exposure among the rar-
ity and geographic traits included in this analysis (Figure 4, Table 2),
it was the most frequently included trait in the decision tree analysis,
despite low importance (Supporting Information Figures S6.1 and
S6.2). In every instance, higher average topographic heterogeneity
was associated with reduced climate change exposure (Figure 5),
suggesting that while it may not represent a robust lone predictor
of species vulnerability to climate change at the spatial scale of this
analysis, it is important in certain contexts. Notably, low topographic
heterogeneity magnifies habitat loss (54% for higher vs. 78% for
lower) for species with small range sizes, highlighting how traits can
interact to increase species exposure to global change.

Species' range wide elevation, topographic heterogeneity, and
distance to coast explained >40% of the variance in land use change
exposure among our study species, emphasizing the importance of a
species' geographic context for predicting exposure to habitat con-
version. We found that species located at low elevations, in areas
with low topographic heterogeneity, and near the coast were the
most at-risk of habitat loss due to land use change. Projected land
use patterns in the CFP support these findings, in that low-elevation,
flat and coastal regions will likely experience the greatest increases
in urban and agricultural development by the year 2085 (Figure 7).
In our study system, elevation was the most important factor in
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FIGURE 7 Frequency distribution of raster cells projected to become increasingly developed (natural to exurban/urban/agriculture or
exurban to urban/agriculture) between 1995-2085 by elevation (m) (a), topographic heterogeneity (b) and distance to coast (km) (c) for
emissions scenarios representative concentration pathway (RCP) 4.5 and RCP 8.5.

determining species' exposure to land use change, providing further
evidence of the negative relationship between human impact and el-
evation that has been observed globally (Nogués-Bravo et al., 2008).

5 | CONCLUSIONS

Rarity and geographic traits are important determinants of species
exposure to climate and land use change for plant species in the CFP.
Our research highlights how complex interactions between these
traits influence their exposure to global change and demonstrates
the importance of analysing the relationship between species traits
and vulnerability in multiple ways. While range size was an important
predictor of species' exposure to global change for our study spe-
cies, it interacted with other aspects of species' spatial distributions,
including habitat configuration, elevation and topographic hetero-
geneity, to magnify or reduce species' vulnerability to habitat loss.
Furthermore, we found that while species may be buffered from the
consequences of one change driver, they may lose significant habitat
under another, that is, species with many habitat patches are pre-
dicted to fare well under climate change but were among the most
exposed to land use change. Overall, this research emphasizes the
usefulness of traits derived from simple occurrence records and dis-
tribution models in predicting species exposure to future change and
the importance of considering interactions between multiple traits

in the context of climate and land use change.
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