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Abstract
Aim: Rarity and geographic aspects of species distributions mediate their vulnerabil-
ity to global change. We explore the relationships between species rarity and geogra-
phy and their exposure to climate and land use change in a biodiversity hotspot.
Location: California, USA.
Taxa: One hundred and six terrestrial plants.
Methods: We estimated four rarity traits: range size, niche breadth, number of habitat 
patches, and patch isolation; and three geographic traits: mean elevation, topographic 
heterogeneity, and distance to coast. We used species distribution models to measure 
species exposure—predicted change in continuous habitat suitability within currently 
occupied habitat—under climate and land use change scenarios. Using regression 
models, decision-tree models and variance partitioning, we assessed the relationships 
between species rarity, geography, and exposure to climate and land use change.
Results: Rarity, geography and greenhouse gas emissions scenario explained >35% of 
variance in climate change exposure and >61% for land use change exposure. While 
rarity traits (range size and number of habitat patches) were most important for ex-
plaining species exposure to climate change, geographic traits (elevation and topo-
graphic heterogeneity) were more strongly associated with species' exposure to land 
use change.
Main conclusions: Species with restricted range sizes and low topographic hetero-
geneity across their distributions were predicted to be the most exposed to climate 
change, while species at low elevations were the most exposed to habitat loss via land 
use change. However, even some broadly distributed species were projected to lose 
>70% of their currently suitable habitat due to climate and land use change if they 
are in geographically vulnerable areas, emphasizing the need to consider both species 
rarity traits and geography in vulnerability assessments.
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1  |  INTRODUC TION

Human activity is driving rapid biodiversity loss, with current extinc-
tion rates at least 100 times greater than background rates for some 
taxa (Ceballos et al.,  2015). While land use change is the primary 
human activity driving species loss (Newbold et al., 2015), anthro-
pogenic climate change impacts on species geographic distributions 
have been observed globally (Chen et al., 2011). Predictive frame-
works for identifying vulnerable species are urgently needed in the 
face of rapid climate and land use change to anticipate where, and 
for which taxa, the most pressing needs for management and miti-
gation arise.

Spatially rare species generally face a greater risk of extinc-
tion across taxa and geographic locations than their more com-
mon counterparts (Leão et al.,  2014; Ohlemüller et al.,  2008; 
Staude et al.,  2020). The ecological and evolutionary mechanisms 
that produce spatial rarity vary, and to capture these nuances, 
Rabinowitz  (1981) proposed a rarity framework based on three 
species characteristics: geographic range size, degree of habitat 
specificity (i.e., niche breadth), and local abundance. Although inter-
related, each of these characteristics describes distinct features of 
a species' spatial rarity and may uniquely influence a species' vul-
nerability to environmental change. Range size has frequently been 
identified as one of the most important predictors of extinction risk 
(Leão et al., 2014; Payne & Finnegan, 2007), with geographically re-
stricted species often being associated with the highest extinction 
risks. In terms of spatial rarity and extinction vulnerability, small-
ranged species with narrow niche breadths overwhelmingly face 
the highest vulnerability to environmental change (Johnson, 1998; 
Payne & Finnegan, 2007; Thuiller et al., 2005).

Species persistence under global change also depends on the 
spatial configuration of habitat, including patch size and degree of 
isolation from other patches. Habitat patchiness, measured by the 
number of patches or the distance between patches, can protect or 
insulate species from the negative impacts of environmental change 
due to “risk-spreading”, that is, the risk of habitat loss is spread, and 
therefore diluted, across the landscape (Blowes & Connolly, 2012). 
This is especially true when the effect of a system perturbation 
is spatially “patchy”, as is often the case with land use change and 
can be true for climate change in areas with complex terrain that 
modifies climate. However, habitat patchiness may reflect ongoing 
habitat loss due to changing climates (Petit et al., 2003) and the con-
version of natural land to urban or agriculture use, historical legacies 
that may make species more susceptible to continued habitat loss 
under future global change. Although not included in traditional rar-
ity frameworks, aspects of fragmentation help describe the spatial 
rarity of suitable habitat across species ranges and are considered 
rarity traits in this context.

Climate and land use change impacts are spatially structured, 
meaning that some species will be more vulnerable to their effects 
than others based on their geographic context. Distance to the 
coast, topography, and elevation are components of a species' phys-
ical environment that influence the magnitude of environmental 

change they will experience. However, the effect of a geographic 
factor on species vulnerability can vary. For example, while prox-
imity to coastlines may offer the benefits of relatively stable or 
even cooling climates (Lebassi et al., 2009), terrestrial species with 
suitable habitat projected to shift closer to the coast under climate 
change may be more vulnerable to range reductions than species 
projected to move inland (Broennimann et al., 2006). Additionally, 
urban development is concentrated and projected to increase along 
coastlines in our focal study area—California, USA—making coastal 
species especially vulnerable to habitat loss via land use change.

Topographically complex landscapes can provide climatically 
stable refugia, for example, north-facing slopes and cold air drain-
ages, which may offer species refuge under rising temperatures 
(Serra-Diaz et al.,  2015), as they have during past climate change 
(Dobrowski,  2011), while also reducing climate velocities (Loarie 
et al., 2009). Furthermore, topographically complex areas are gen-
erally less likely to face urban and agricultural development than 
flatter areas (Syphard et al., 2005), potentially reducing species vul-
nerability to land use change in these areas. Additionally, elevational 
position influences species vulnerability to environmental change. 
Interactions between declining water availability and rising tempera-
tures in mountainous areas may exacerbate drought conditions and 
reduce suitable habitat for high-elevation species in water-limited 
Mediterranean-type climates, such as those found in the Sierra 
Nevada, California (McCullough et al., 2016; Figure 1).

Exposure is a key component of species vulnerability to global 
change that quantifies the magnitude of suitability change expected 
to be experienced by a species (Dawson et al., 2011) and is often 
inferred from changes in a species' environmentally suitable space 
(Garcia, Araújo, et al., 2014). Disentangling the relative importance 
of rarity and spatial context for determining species exposure to 
global change is important for improving conservation decision-
making, particularly if the relative contributions of these traits vary 
depending on the environmental change driver. In our research, we 
asked the following questions for a set of 106 plant species in the 
California Floristic Province (CFP): (a) how do range-wide rarity and 
geographic traits relate to plant species exposure to future climate 
and land use change? and (b) how do species rarity and geographic 
traits interact to influence climate and land use change exposure? 
In this study, we measured climate and land use change exposure as 
the total proportional loss of suitable habitat across the study spe-
cies’ currently occupied ranges (Garcia, Cabeza, et al., 2014) because 
this metric does not rely on assumptions about dispersal capacity to 
reach new suitable areas outside the current range.

2  |  METHODS

2.1  |  Study area and species

With > 2000 endemic vascular plant species (Baldwin et al., 2012), 
the CFP, defined as the area of western North America with a 
Mediterranean-type ecosystem located almost entirely within 
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220  |    ROSE et al.

F I G U R E  1  California Floristic Province (CFP) within California. (a) Jepson Ecoregions and 76,266 survey locations for plant species 
presence–absence data. (b) Map of land use patterns in the CFP in the year 2000 and area trends for each land use class (natural, developed 
and exurban) between 2000–2100 under two emissions scenarios: representative concentration pathway (RCP) 4.5 and RCP 8.5. (c) Climatic 
water deficit (CWD; the difference between potential and actual evapotranspiration)—an important driver of vegetation distributions in 
water-limited, Mediterranean-type ecosystems—in the CFP for the historical period 1980–2010 and projected change for the period 2070–
2099 under two climate models (CNRM-CM5 and HadGEM2-ES) and two emissions scenarios (RCP 4.5 and 8.5).
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California, is a topographically diverse biodiversity hotspot (Myers 
et al., 2000). Stretching across 10 degrees of latitude and 4000 me-
tres of elevation, the California portion of the CFP (Figure 1) sup-
ports a wide variety of terrestrial vegetation systems. This region 
faces unique pressure from both climate and land use change, with 
temperatures projected to increase 2–7 °C and developed land area 
projected to more than double between the late 20th–early 21st 
centuries and the year 2100 (Pierce et al., 2018; Sleeter et al., 2017). 
Our assessment was based on 106 plant species that are endemic to 
the CFP and that represent different life-forms, range sizes (<200 
to >30,000 km2) and range locations (Serra-Diaz et al., 2014). While 
not a random sample, these species include about 5% of the endemic 
flora and were selected to encompass the broad range of life his-
tories and geographies found in the CFP (Supporting Information 
Appendix S1, Table S1.1).

2.2  |  Species and environmental data

For 84 of 106 species, we compiled species presence–absence re-
cords from vegetation surveys (Hannah et al.,  2008) and Calflora.
org between 1980–2020. For the 22 species with too few presence–
absence records from the vegetation surveys, we created a presence-
only database using the Consortium of California Herbaria, the Global 
Biodiversity Information Facility (DOI: 10.15468/dl.nrdmke), the 
Integrated Digitized Biocollections, and the Botanical Information 
and Ecology Network. The number of presences available for mod-
elling after filtering ranged from 12 to 4646 across the 106 species 
(see Supporting Information Appendix S2, Table S2.4 for data clean-
ing procedure; Table S2.1 for data sources). All occurrence data were 
restricted to the study extent (i.e., CFP).

We calibrated species distribution models (SDMs) using cli-
matic, hydrological, terrain and soil predictors associated with plant 
distributions, especially in water limited ecosystems like California 
(Stephenson,  1998). Climatic and hydrological predictors included 
climatic water deficit, actual evapotranspiration, minimum monthly 
temperature, and wet- and dry-season precipitation averaged 
from annual values for the years 1981–2010 at a 270-m spatial 
resolution. These variables are derived from the California Basin 
Characterization Model (BCM), which uses fine-scale temperature 
interpolations and soil characteristics to capture the hydroclimatic 
effects of topography (Flint et al., 2013; Hannah et al., 2014) and has 
been used in recent research to project the future distributions of 
plant species in California under climate change (Thorne et al., 2017) 
(Supporting Information Tables S2.2 and S2.3).

Including edaphic variables as predictors in SDMs produces 
more comprehensive models based on factors limiting terrestrial 
plant distributions, especially when projecting models under cli-
mate change (Kueppers et al., 2005; Velazco et al., 2017). We ob-
tained 10-m resolution soil pH, available water holding capacity, 
soil depth and percent clay from the gridded National Soil Survey 
Geographic Database (gNATSGO, Soil Survey Staff, 2020). For spe-
cies with >50 records, we included landform types (15) based on 

hillslope position and dominant soil formation processes (Theobald 
et al., 2015), while topographic heterogeneity [continuous variation 
in elevation, obtained from a 90-m digital elevation model (DEM)] 
was used instead for species with <50 records. We resampled the 
soil and terrain variables to match the spatial resolution of the cli-
mate data (270 m), using nearest neighbour resampling for the cat-
egorical landform data and a bilinear approach for the continuous 
variables (Supporting Information Table S2.2). We also assumed that 
soil and landform conditions will remain constant through time and 
used them to project models in space for both the current and future 
climatic conditions.

To assess climate change exposure for the period 2070–2099, we 
selected two global circulation models (GCMs), CNRM-CM5 (Centre 
National de Recherches Meteorologiques climate model version 
5)  and HadGEM2-ES (Hadley Centre Global Environmental Model 
version 2- Earth system configuration), and two emissions represen-
tative concentration pathways (RCPs), RCP 4.5 and 8.5 (IPCC, 2013). 
The GCMs are among the 10 recommended by California's Fourth 
Climate Change Assessment and encompass the variability in climate 
change projections for California (Pierce et al., 2018), ranging from 
warm and wet (CNRM-CM5) to hot and dry (HadGEM2-ES), with a 
reduction in greenhouse gas emissions under the RCP 4.5 scenarios, 
and increasing greenhouse gas emissions (“business as usual”) under 
the RCP 8.5 scenarios. All future climate data were produced by the 
BCM at a 270-m spatial resolution.

2.3  |  Land use data

To assess the impact of current and future land use, we used pro-
jections for the HadGEM2-ES RCP 4.5 and 8.5 scenarios from the 
Integrated Climate Land Use Scenario (ICLUS), which are based on 
a human demographic growth model and are consistent with the 
Intergovernmental Panel on Climate Change (IPCC) Special Report 
on Emission Scenarios (Bierwagen et al.,  2010; Theobald,  2005). 
These land use change scenarios predict increases in urban and ex-
urban development and decreases in agricultural and forest lands 
(Figure  1). To simplify each land use category's impact on habitat 
suitability produced by the SDMs, we estimated that cells with natu-
ral land uses would have no impact on habitat suitability, cells within 
the exurban category would experience a 50% reduction in habitat 
suitability (e.g., an exurban grid cell with an initial suitability value 
of .75 is assigned a new value of .375) and cells classified as devel-
oped would become unsuitable (suitability value of zero) (Supporting 
Information Table S2.5).

2.4  |  Species distribution models

We selected eight SDM algorithms for ensemble predictions: 
generalized linear models, generalized additive models, boosted 
regression trees, random forests, artificial neural networks, sup-
port vector machines, maximum entropy, and gaussian process 
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(Franklin,  2010). The last two algorithms were only used for 
presence-only models. Ensembles, in which predictions of individ-
ual algorithms are combined to produce a consensus distribution, 
can reduce model uncertainty and improve model transferability 
(Araújo & New,  2007). For each model, we applied the model-
specific suitability value that maximized the sum of sensitivity and 
specificity as a threshold, retaining continuous suitability values 
above the threshold and assigning 0 suitability values to those 
cells below the threshold. This method removes areas with low 
habitat suitability while retaining variation in suitability within re-
maining species' habitat (Muscatello et al., 2021), and allowed us 
to later define discrete species' ranges to calculate the number of 
patches and patch isolation. The resulting continuous suitability 
values were averaged across all models to produce a “mean above 
threshold” ensemble. We produced 786 models (84 of presence–
absence species × 7 algorithms/ensemble + 22 of presence-only 
species × 9 algorithms/ensemble) with 3144 projections (2 GCMs 
× 2 RCPs).

Our exposure analysis focused on the temporal dynamics of suit-
ability within each species' currently occupied ranges. When a model 
is projected outside the calibration area, patches with high suitabil-
ity may be predicted far from a species' current =distribution, lead-
ing to “overprediction” (Mendes et al., 2020; Velazco et al., 2020). 
Therefore, we constrained current and future model predictions by 
selecting only suitability patches (contiguous suitable pixels) that 
contained at least one occurrence (Mendes et al., 2020). All SDMs 
were calibrated and evaluated using the flexsdm package in R (R 
Core Team 2021; Velazco et al., 2022; see Supporting Information 
Appendix S2 and Table S2.4 for details on modelling).

2.5  |  Rarity and geographic traits

We calculated four species-level rarity traits based on species occur-
rence data and currently occupied suitable habitat maps produced 
by the ensemble SDM procedure outlined previously. Rarity traits 
included range size, niche breadth, number of patches and patch iso-
lation. Range size was calculated as the area in km2 encompassed 
by the minimum convex polygon that contained all species' occur-
rences used for modelling. We calculated niche breadth with the 
hydroclimatic and soil variables used to build SDMs, adapting meth-
ods developed by Vela Díaz et al.  (2020) (Supporting Information 
Appendix  S3). We standardized all environmental variables across 
the extent of the CFP to z-scores (mean =  0, SD =  1) to account 
for differences in units of measurement and variance in the environ-
mental variables. To reduce collinearity in the environmental data, 
we performed separate principal components analyses (PCAs) for (a) 
climate and (b) soil variables and selected the principal components 
that explained 95% of the variation in each (Supporting Information 
Figure S3.1). For each species, we calculated the sum of the squared 
difference between the environmental value of each occurrence re-
cord and the environmental mean value of all occurrence records for 
that species. The niche breadth of a species represents the sum of 

this value across all environmental variables divided by the number 
of occurrence records for that species. To calculate the number of 
habitat patches and average patch isolation for each species' range, 
we first binarized currently occupied suitable habitat maps using the 
threshold that maximized the sum of model sensitivity and speci-
ficity. We then used functions from the landscapemetrics R package 
to calculate the number of habitat patches and the coefficient of 
variation of the Euclidean nearest-neighbour distance between each 
patch (patch isolation) for each binarized habitat map (Hesselbarth 
et al., 2019). Geographic traits included distance to coast, elevation, 
and topographic heterogeneity. We used a 90-m DEM to calculate 
topographic heterogeneity as the range in elevation values from a 
centre cell and the three-cell neighbourhood immediately surround-
ing it. These values were then converted to a 0–1 scale using the 
standard deviation of the range of values across the study area. To 
summarize species-level geographic traits, we averaged the values 
for each of these variables across all occurrences for each species 
(see Supporting Information Table S2.2 for data sources). More in-
formation about the rarity and geographic traits and our predictions 
for the relationships between these traits and exposure are sum-
marized in Table 1.

2.6  |  Calculating exposure to climate and land 
use change

We defined exposure in a 270-m grid cell within a species' currently 
occupied range as habitat suitability change between the baseline 
(1980–2010) and future time period (2070–2099) based on SDM 
predictions and land use patterns:

In this framework, exposure varies continuously and is not depen-
dent on binary thresholds, that is, unsuitable versus suitable (Guillera-
Arroita et al., 2015). To summarize species-level range exposure, we 
calculated habitat suitability as the sum of grid cells (c) across the total 
number of grid cells (n) in the spatial projections of the species' occu-
pied area (Leão et al., 2021):

Range exposure represents the sum of change in suitability values 
from the baseline and future time periods proportional to the baseline 
suitability averaged across the two GCMs for each RCP:

We evaluated species exposure to climate change only (CC), land 
use change only (LUC), and climate and land use change combined 
(CC + LUC) (Figure 2). Using this framework, range exposure values >0 
correspond to a decrease in habitat suitability, while range exposure 
values <0 indicate an increase. A species projected to experience a 

(1)Exposurec = baseline habitat suitabilityc − future habitat suitabilityc

(2)

Habitat suitabilitysum =

∑n

c=1
environmental suitability within occupied rangec

(3)

Range exposure =

(

baseline habitat suitabilitysum − future habitat suitabilitysum

baseline habitat suitabilitysum

)
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    |  223ROSE et al.

complete loss of suitable habitat within its current range would have a 
range exposure value of 1.

2.7  |  Statistical analyses

Exploratory analyses revealed that our data demonstrated non-
homogeneity of variance and skewed distributions (Supporting 
Information Figure S4.2), so we selected generalized additive models 
for location, scale and shape (GAMLSS) as the regression framework 
to test our predictions about the relationships between individual 
species' spatial range traits and their exposure to climate and land 
use change (Table  1). GAMLSS is a flexible statistical modelling 
approach with a variety of distribution families and distribution 
parameters (location, scale, shape; Rigby & Stasinopoulos,  2005; 
Supporting Information Appendix S4 for modelling procedure).

Because of multicollinearity between two geographic traits, 
mean elevation and distance to coast, we first estimated the 
GAMLSS between exposure and each trait individually, includ-
ing RCP scenario as an interaction term in each model to evaluate 
different relationships between spatial range traits and exposure 
under the two emissions scenarios, and species as a random inter-
cept. While the GAMLSS approach allows us to assess the relation-
ship between each species' trait and exposure, we also wanted to 
quantify the unique and shared variance in exposure explained by 
rarity traits, geographic traits, and RCP. To do this, we performed 
variance partitioning via partial regression using the vegan R pack-
age (Oksanen et al., 2021). Species are phylogenetically related, vi-
olating the assumption of data independence, and this can lead to 

overestimating degrees of freedom in approaches like GAMLSS. We 
examined Moran's I phylogenetic correlograms for the residuals of 
each GAMLSS using a phylogenetic tree created for California plant 
species (Thornhill et al., 2017; Supporting Information Appendix S5).

To explore interactions between species' traits and exposure, 
we also implemented a decision tree approach, which has been 
used to interpret extinction risk factors (Leão et al., 2014). Decision 
trees iteratively partition data into subgroups based on values of 
predictor variables, with each resulting group being more homog-
enous in terms of the response variable, as measured by the Gini 
index (Breiman et al., 1984). They can also handle multiple correlated 
predictor variables and rely on fewer assumptions than more tra-
ditional regression approaches, that is, distribution of the response 
and predictor variables and data independence. Because the goal 
of our decision tree analysis is to understand how the interactions 
between multiple spatial range traits influence exposure, and not to 
make predictions, we did not apply any complexity costs to the final 
decision tree and present the “full grown trees” in our results. We 
evaluated how complexity influenced the error rate using 10-fold 
cross-validation (Supporting Information Figure S6.4).

3  |  RESULTS

We modelled the spatial distributions and exposure of 106 species, 
including 48 shrubs, 32 trees and 26 herbs. SDMs performed well 
across species and algorithm types [area under the curve (AUC): 
mean =  .88 ± .06 SD; true skill statistic (TSS): mean =  .68 ± .14 SD; 
Boyce index: mean =  .87 ± .12 SD; Sorensen: mean =  .58 ± .25 SD; 

TA B L E  1  Species traits that are related to climate and land use change exposure (based on Franklin et al., 2021; Pearson et al., 2014) and 
predictions about how each trait is related to plant vulnerability to climate and land use change in the California Floristic Province (CFP)

Attribute Metrics Predictions

Rarity traits Range size Area of minimum convex polygon around 
occurrences (km2)

Smaller range size—greater exposure to 
climate and land use change

Niche breadth Abiotic environmental tolerances based on 
climate, terrain and soil values (270-m 
resolution)  at species occurrences (Vela Díaz 
et al., 2020)

Narrow niche breadth—greater exposure to 
climate change

Range fragmentation Number of suitable habitat patches, average 
patch isolation—based on ensemble SDM 
of currently occupied habitat (Hesselbarth 
et al., 2019)

Higher range fragmentation—less exposure 
to land use change (risk spreading) and 
greater climate change exposure

Geographic 
traits

Distance to coast Average distance (km) between species 
occurrences and the coastline (NASA Earth 
Data)

Closer to the coast—less climate change 
exposure and greater land use change 
exposure

Range topography Average topographic heterogeneitya of species 
occurrences (0–1; 90 m)

Higher topographic complexity—less exposure 
to climate and land use change

Elevation Average elevation (m) of species occurrences 
(90 m)

Higher elevation—greater exposure to climate 
change and less exposure to land use 
change

Note: SDM = species distribution model.
aRange in elevation values from a centre cell and the three-cell radius immediately surrounding it, rescaled to 0–1 using the standard deviation of the 
range of values across the study area.
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224  |    ROSE et al.

F I G U R E  2  Workflow for modelling species' occupied suitable habitat under the baseline (1980–2010) conditions and estimated exposure 
for the future time period (2070–2099) under climate and land use change scenarios (a); and estimating species exposure to land use 
change, climate change [for each representative concentration pathway (RCP)], and climate plus land use change, shown overlaid on a digital 
elevation model (DEM)-derived hill shade for the study area (b). For our analysis, we averaged the exposure values from the two climate 
change global circulation models (GCMs; HadGEM2-ES and CNRM-CM5).
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F-measure on presence-background data (FPB): mean = .92 ± .50 SD] 
(Supporting Information Figure S2.1).

3.1  |  Exposure to climate and land use change

Across all species and the two emissions scenarios, mean exposure 
was lowest for land use change alone (.10), followed by climate 
change alone (.27) and highest for the combined effect of both (.34). 
As expected, species exposure was greater for the RCP 8.5 than the 
RCP 4.5 for climate change (mean .33 vs. .21), land use change (.12 
vs.  .07) and the combined effect of both (.41 vs. .26) (Figure 3).

3.2  |  GAMLSS results

The univariate GAMLSS showed strong evidence that patch isola-
tion, elevation, and distance to coast are each positively associated 
with exposure to climate change, while number of patches, and 
rarity trait niche breadth, are negatively associated with climate 
change exposure (Table 2). Range size showed evidence of quadratic 
relationships with exposure to climate change, where small-ranged 
and large-ranged species were the most exposed to climate change 
(Figure 4). There was no evidence of a relationship between mean 
topographic heterogeneity and climate change exposure in the 
overall model. However, we found a significant interaction between 
topographic heterogeneity and RCP emissions scenario, where top-
ographic heterogeneity had no relationship with climate change ex-
posure under RCP 4.5 but was negatively associated with exposure 
under RCP 8.5 (Figure 4). There was also evidence of an interaction 
between range size, number of habitat patches, topographic het-
erogeneity, and distance to coast and emissions scenario. R2 values 

indicate that range size, along with RCP, explained the most variation 
in climate change exposure, followed by number of patches (Table 2).

We found strong evidence that niche breadth, patch isolation, 
elevation, and average topographic heterogeneity were negatively 
associated with land use change exposure. There was moderate ev-
idence that average distance to coast is negatively associated with 
land use change exposure, as well (Table 2). Conversely, the number 
of habitat patches was positively associated with land use change 
exposure. In contrast to the results for climate change exposure, 
species with intermediate range sizes were the most exposed to land 
use change (Figure 3). Half of the model terms showed evidence of 
an interaction with RCP (Table  2). Generalized R2 values showed 
that elevation explained the most variation in land use change expo-
sure followed by number of patches and distance to coast (Table 2). 
The relationships between species' rarity and geographic traits and 
exposure to combined climate and land use change were similar to 
the patterns under climate change alone (Supporting Information 
Table  S4.1, Figure  S4.3). GAMLSS model residuals showed no ev-
idence of phylogenetic autocorrelation (Supporting Information 
Figure S5.2), suggesting that our results were not affected by phylo-
genetic relatedness between species.

3.3  |  Variance partitioning

Overall, rarity traits, geographic traits and RCP emissions scenario 
explained 35.2 and 61.9% of the variance in climate change and land 
use change exposure, respectively (Figure 5). While rarity traits ex-
plained the most variance in climate change exposure (14.1%), geo-
graphic traits were most important for explaining species' exposure 
to land use change (41.1%).

3.4  |  Decision tree analysis

Decision tree analysis revealed that range size was the most impor-
tant predictor of climate change exposure under the RCP 8.5 emis-
sions scenario, as indicated by the first tree split, with small-ranged 
species (<14,000 km2) being more exposed than species with larger 
ranges (Figure  6). Subsequent splits indicated that species with 
higher mean topographic heterogeneity were less exposed to cli-
mate change than species in topographically homogenous areas. We 
observed a similar pattern for the number of patches, where spe-
cies with more habitat patches were less exposed than species with 
fewer habitat patches across their ranges. Other splits indicated that 
species that were closer to the coast, had broader niches or were at 
lower elevations tended to be less exposed than species far from the 
coast, at higher elevations or that occupied narrow environmental 
niches. The least climate exposed groups of species (far left nodes, 
exposure = −.051 to .012), were those with large range sizes, many 
habitat patches and wide niche breadths, and that were located less 
than 46 km from the coast with high mean topographic heterogene-
ity across their ranges (n = 26). However, the most exposed group 

F I G U R E  3  Boxplots summarizing species-level exposure under 
climate change (CC), land use change (LUC) and the combined 
effect of climate and land use change (CC & LUC) for each 
emissions scenario. Positive exposure values indicate a decrease of 
suitability. The boxplots show the median value along with the first 
(lower) and third (upper) quartiles (the 25th and 75th percentiles, 
respectively).
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of species (exposure = .78, n = 17) had small ranges and low mean 
topographic heterogeneity.

For land use change exposure under RCP 8.5, the first split is 
determined by the mean elevation of species' ranges, where species 
at higher elevations were less exposed to land use change than those 
at lower elevations. Species with higher mean topographic hetero-
geneity were less exposed than species in locations with lower aver-
age heterogeneity. Splits based on range size indicated that species 
with small range sizes were more exposed than widespread species. 
The least exposed group of species (exposure = .017–.073, n = 35) 
were located at mean elevations greater than 771 m. However, 
the species that were predicted to be most vulnerable to land use 

change (exposure =  .24, n = 17) were located at low elevations, in 
topographically homogenous areas, and had range sizes smaller than 
71,000 km2.

4  |  DISCUSSION

In this study, we (a) measured exposure (change in habitat suitability 
within species' current geographic ranges) to climate and land use 
change for 106 plant species in the CFP, for two emissions scenarios 
for the time period 2070–2099, and (b) related rarity and geographic 
traits to species' range-wide exposure under future climate and land 

TA B L E  2  Results of generalized additive models for location, scale and shape (GAMLSS) for species rarity and geographic traits 
(predictors) and the response variables range-wide climate change and land use change exposure

Climate change exposure Land use change exposure

R2 Estimate SE p R2 Estimate SE p

Rarity Traits Range size .31 −0.78*** 0.009 <.001 .39 1.2 0.27 <.001

Range size2 0.92*** 0.12 <.001 −2.53 0.21 <.001

Niche breadth .12 −0.02*** 0.006 .001 .05 −0.19*** 0.01 <.001

Number of patches .29 −0.09*** 0.008 <.001 .57 0.36*** 0.02 <.001

Patch isolation .12 0.208 0.02 <.001 .25 −1.85*** 0.08 <.001

Geographic 
Traits

Elevation .17 0.0002 0.00001 <.001 .80 −0.002 0.00005 <.001

Topographic 
heterogeneity

.10 −0.01*** 0.04 .75 .32 −5.55 0.12 <.001

Distance to coast .13 0.001 0.0001 <.0001 .58 −0.02 0.0005 <.0001

Note: R2 indicates the proportion of variance in exposure explained by each rarity and geographic trait and RCP scenario. Exposure is based on the 
proportion of habitat suitability loss within species' currently occupied ranges, where 1 = 100% decrease. Estimates, standard errors and p-values are 
based on individual GAMLSS between spatial traits and species exposure. Asterisks denote the significance of the interaction between each spatial 
range trait and RCP: ***p < .001.

F I G U R E  4  Fitted response curves for the generalized additive models for location, scale and shape (GAMLSS) relating rarity and 
geographic traits to climate change (CC) and land use change (LUC) exposure under emissions scenarios representative concentration 
pathway (RCP) 4.5 and RCP 8.5. Upper and lower pointwise standard error curves are shown in each plot (shaded areas).
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use change. We found that exposure to future climate and land use 
change varies among plant species in the CFP, with habitat suitability 
losses up to 100% for some species and gains up to 36% for others 
by the end of the 21st century. The average projected suitability loss 
under both climate and land use change ranged from  26% under RCP 
4.5 to 41% under RCP 8.5. Rarity and geographic traits explained 
>35% of the variance in climate change exposure and >61% of vari-
ance in land use change exposure. Our results supported some but 
not all our predictions about the relationships between species traits 
and their exposure to climate and land use change (Table 1).

4.1  |  Rarity traits and exposure

Species with small ranges were the most exposed to both climate 
and land use change, especially under the “business-as-usual” (RCP 
8.5) higher emissions scenario (Figures 4 and 6). This finding is sup-
ported by past research that found species with small range sizes 
face the highest extinction risks (Chichorro et al.,  2019; Pearson 
et al., 2014), even when other aspects of rarity, that is, habitat type 
and abundance, are considered (Harnik et al.,  2012). Species with 
small geographic ranges often occupy rare and/or cooler, relict cli-
mates that may disappear rapidly under climate change (Ohlemüller 
et al.,  2008). The heightened vulnerability of small-ranged spe-
cies to both climate and land use change is particularly important 
in the CFP, where >60% of endemic plant species have range sizes 

<10,000 km2 (Thorne et al., 2009). However, we found that the re-
lationship between range size and exposure was not linear or even 
monotonic. Our results indicate that widespread species may be 
more exposed to climate change than species with intermediate-
sized ranges, a pattern that was also found for European plant spe-
cies (Thuiller et al., 2005) but remains poorly understood. A closer 
look at the most exposed yet widely distributed species in our study 
system provides some insight into this complex pattern. Widespread 
species in the CFP that may face high levels of habitat decline due to 
both climate and land use change (>70% exposure) include California 
buckeye (Aesculus californica) and blue oak (Quercus douglasii), two 
tree species whose distributions are concentrated in the foothills of 
the Coast Ranges and the western Sierra Nevada regions that are 
predicted to face rapid climate change as well as exurban develop-
ment during the next century (Figure 1). Furthermore, while species 
with large range sizes tend to have broader environmental niches, 
homogenous environmental conditions may be prevalent across a 
region and therefore contain widespread species with narrow en-
vironmental affinities (Meyer & Pie,  2018), as we found for both 
blue oak and California buckeye. This finding highlights that broad 
spatial distributions may not buffer species from the consequences 
of global change, especially if their ranges are in highly vulnerable 
areas.

Although niche breadth and range size were positively associated 
for our study species (r =  .44; Supporting Information Figure S4.1) 
and across taxa in previous research (Slatyer et al., 2013), they had 

F I G U R E  5  Proportion of variance in exposure to climate change (CC; a) and land use change (LUC; b) explained by rarity traits (range size, 
niche breadth, number of habitat patches and patch isolation), geographic traits (mean elevation, topographic heterogeneity and distance to 
coast), and representative concentration pathway (RCP) emissions scenario. Overlapping areas indicate shared variance between traits, while 
non-overlapping areas indicate no shared variance.
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228  |    ROSE et al.

F I G U R E  6  Decision tree showing exposure to (a) climate change and (b) land use change based on species rarity and geographic traits 
under the representative concentration pathway (RCP) 8.5 emissions scenario (see Supporting Information Figure S6.3 for RCP 4.5). In each 
node, the top number indicates the average exposure of the species in that group, that is, overall species had an average climate change 
exposure of .33 in RCP 8.5, and the second number (n = #) indicates the number of species in that group. The decision criteria are located 
below each node, where groups to the left meet that condition (“yes”) and groups to the right do not (“no”). For example, all species grouped 
to the left of the first node in the first decision tree (a) have range sizes greater than 14,000 km2, while those to the right have smaller range 
sizes. For each branch split, species to the right are more exposed than species to the left. Numbers at the top of each node correspond to 
the branch order, where gaps between numbers indicate branches that were pruned during model fitting.
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different relationships with species exposure, emphasizing the need 
to consider both when conducting vulnerability analyses based on 
species traits. Species with broad niches tended to be the least ex-
posed to both climate and land use change, though the relationships 
were highly variable (Figure  4). Anthropogenic change is already 
causing declines in habitat specialists globally (Clavel et al., 2011), 
and species with broad environmental tolerances may be more re-
silient to changing environmental conditions than specialist species 
(Broennimann et al., 2006). Interestingly, our decision tree indicated 
that niche breadth was only important for predicting climate change 
exposure in specific biogeographic contexts. For species with in-
termediate to large range sizes, an intermediate number of habi-
tat patches, near the coast, and in topographically heterogeneous 
areas, those with narrow niches were associated with higher climate 
change exposure (Figure 5). However, we found that some species 
with narrow niches defy this pattern and are predicted to face rel-
atively low climate change exposure, including big pod ceanothus 
(Ceanothus megacarpus), California brittlebush (Encelia californica), 
purple sage (Salvia leucophylla), California goldenbush (Ericameria er-
icoides), and alpine gooseberry (Ribes lasianthum). The first four spe-
cies have relatively large range sizes concentrated along the coast 
of California, while alpine gooseberry's distribution is characterized 
by high topographic heterogeneity—all factors that may reduce spe-
cies vulnerability to global change. These instances highlight species 
for which geography may mediate the relationship between niche 
breadth and species vulnerability to global change.

Regarding habitat configuration, species with fewer habitat 
patches and more dispersed ranges, that is, higher patch isolation, 
were associated with higher levels of climate change exposure. 
Fewer habitat patches may indicate that a species occupies only a 
few, restricted habitat types, magnifying its climate change risk. We 
found that the number of habitat patches was positively, though 
not perfectly, related to measures of range size (r = .39; Supporting 
Information Figure S4.1), and this metric complemented range size 
as a determinant of climate change exposure in our decision tree. 
Among our study species, those with large range sizes (≥14,000 km2) 
and many habitat patches (≥6213) were associated with the lowest 
levels of climate change exposure (5% average gain in habitat suit-
ability, n = 11). Habitat dispersion, that is, patch isolation, may reflect 
ongoing range disjunction due to past climate fluctuations (Petit 
et al.,  2003) and is predicted to increase as a result of anthropo-
genic climate change (Jackson et al., 2015). While scattered distribu-
tions may have once reflected refugia during past climate change in 
California (Millar, 2012), we found that several species with isolated 
distributions, such as giant sequoia (Sequoiadendron giganteum), 
Parry pinyon (Pinus quadrifolia) and foxtail pine (Pinus balfouriana), 
were predicted to be highly exposed to climate change (>86% av-
erage habitat suitability loss under RCP 8.5). These findings suggest 
that climate change vulnerability assessments should consider as-
pects of habitat configuration alongside more commonly included 
traits such as range size and niche breadth.

For land use change exposure, we found that species with many 
habitat patches and low patch isolation were more exposed to land 

use change. Land use change in California is predicted to be patchy 
and concentrated in areas surrounding existing urban and agricul-
tural centres as well as the foothills of the Central Valley (Sleeter 
et al., 2017). Patchy spatial distributions may reflect that a species' 
range already overlaps with developed land that will expand in the 
future, as was the case for the riparian California sycamore (Platanus 
racemosa), which is distributed in human-dominated areas and was 
projected to lose >20% habitat suitability due to land use change 
alone. Because land development is predicted to be concentrated 
in specific regions in the CFP, species with aggregated spatial distri-
butions will be at greater risk of habitat loss if their ranges overlap 
with centres of development, while species with dispersed ranges 
may benefit from “risk-spreading” if some of their habitat is far away.

4.2  |  Geographic traits and exposure

While some past research suggests that montane species are 
among the most vulnerable to climate change globally (Dobrowski 
& Parks,  2016), other work shows that lowland species will also 
face significant habitat loss due to rapidly warming temperatures 
in the next century (Hülber et al., 2020). Our findings support both 
paradigms in that high-elevation species were disproportionately 
exposed to climate change; however, many low-elevation species 
were also highly susceptible to the consequences of climate change 
(Figure 4). Complex topography is expected to provide suitable to-
poclimatic refugia that may facilitate species persistence under cli-
mate change (Ackerly et al., 2020), as it has during past periods of 
environmental change (Dobrowski, 2011). Although we found that 
the range-wide measure of topographic heterogeneity explains the 
least amount of variation in climate change exposure among the rar-
ity and geographic traits included in this analysis (Figure 4, Table 2), 
it was the most frequently included trait in the decision tree analysis, 
despite low importance (Supporting Information Figures  S6.1 and 
S6.2). In every instance, higher average topographic heterogeneity 
was associated with reduced climate change exposure (Figure  5), 
suggesting that while it may not represent a robust lone predictor 
of species vulnerability to climate change at the spatial scale of this 
analysis, it is important in certain contexts. Notably, low topographic 
heterogeneity magnifies habitat loss (54% for higher vs. 78% for 
lower) for species with small range sizes, highlighting how traits can 
interact to increase species exposure to global change.

Species' range wide elevation, topographic heterogeneity, and 
distance to coast explained >40% of the variance in land use change 
exposure among our study species, emphasizing the importance of a 
species' geographic context for predicting exposure to habitat con-
version. We found that species located at low elevations, in areas 
with low topographic heterogeneity, and near the coast were the 
most at-risk of habitat loss due to land use change. Projected land 
use patterns in the CFP support these findings, in that low-elevation, 
flat and coastal regions will likely experience the greatest increases 
in urban and agricultural development by the year 2085 (Figure 7). 
In our study system, elevation was the most important factor in 
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determining species' exposure to land use change, providing further 
evidence of the negative relationship between human impact and el-
evation that has been observed globally (Nogués-Bravo et al., 2008).

5  |  CONCLUSIONS

Rarity and geographic traits are important determinants of species 
exposure to climate and land use change for plant species in the CFP. 
Our research highlights how complex interactions between these 
traits influence their exposure to global change and demonstrates 
the importance of analysing the relationship between species traits 
and vulnerability in multiple ways. While range size was an important 
predictor of species' exposure to global change for our study spe-
cies, it interacted with other aspects of species' spatial distributions, 
including habitat configuration, elevation and topographic hetero-
geneity, to magnify or reduce species' vulnerability to habitat loss. 
Furthermore, we found that while species may be buffered from the 
consequences of one change driver, they may lose significant habitat 
under another, that is, species with many habitat patches are pre-
dicted to fare well under climate change but were among the most 
exposed to land use change. Overall, this research emphasizes the 
usefulness of traits derived from simple occurrence records and dis-
tribution models in predicting species exposure to future change and 
the importance of considering interactions between multiple traits 
in the context of climate and land use change.
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