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INTRODUCTION 

Nanostructures of metals1 and degenerately doped semiconductors2 host large numbers of 
free charge carriers in a nanoscale volume. At such high densities, Coulomb repulsion dominates,3 
as a result of which the free carrier gas exhibits density oscillations when perturbed by 
electromagnetic radiation resonant with the natural frequency of oscillation. This collective mode 
of excitation, known as a localized surface plasmon resonance (LSPR) or plasmon, constitutes a 
strong light–matter interaction. For decades, this resonant interaction has been used for confining 
and manipulating light on the nanoscale.4 The intense electromagnetic fields achieved by extreme 
light confinement have been employed to amplify spectroscopic processes, such as linear 
absorption and surface-enhanced Raman scattering (SERS).5,6  

In recent years, however, there has been growing appreciation that photonic energy 
confined in the form of an LSPR can be converted into other forms, including heat, chemical 
energy, and mechanical motion7 when the plasmonic antenna is electronically coupled with a 
transduction element, e.g., a reactive molecule. Interest in these phenomena has surged hand-in-
hand with the resurgence in the search for alternative forms of energy storage and generation that 
are clean and renewable. Plasmonic nanostructures—especially those comprised of Au, Ag, and 
Cu—have naturally found a central role in energy research due to their ability to strongly absorb 
and harvest solar radiation, an abundant source of clean energy. Some prime examples of plasmon-
driven energy conversion include the use of Ag nanoparticles to enhance the light absorption of 
photovoltaic cells,8 visible-light sensitization of solar cells and titania (TiO2) photocatalysts by 
plasmonic nanoparticles,9 and the generation of hot electrons in a plasmon-excited nanostructure 
followed by their transfer to a semiconductor or a charge collection device.10,11 However, the most 
pivotal has been the discovery that the photoexcitation of a plasmonic nanostructure induces 
adsorbates on the nanostructure surface to undergo chemical reactions. Seminal examples of such 
plasmon-driven chemistry include bond scission,12,13 but this domain has rapidly expanded to 
include multielectron redox reactions,14 nanoparticle growth,15,16 electrochemical 
transformations,17,18 and thermodynamically uphill fuel synthesis reactions,19 thereby providing a 
large repertoire for the conversion of light energy to chemical energy and solar-powered chemical 
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manufacturing. Plasmon-driven chemistry is being leveraged to catalyze reactions that otherwise 
proceed at a low thermal rate and to induce excited-state reactions that otherwise are unfavorable 
in the dark.  

These exciting advances pave the way for achieving the central aspiration of chemical 
physics: using plasmonic excitations for controllably depositing energy in a specific electronic or 
vibrational mode of a molecule so that a desired chemical step can be directed with scalpel-like 
precision. To achieve such control, which would naturally lead to high conversion efficiency and 
selectivity, we must first develop a comprehensive picture of the full cascade of processes starting 
from the point of photon absorption and encompassing multiple timescales, ranging from 
femtoseconds to seconds, and spatial scales, ranging from nanometers to micrometers. Many of 
the elementary processes remain shrouded in mystery. Uncovering them will require the creative 
application of state-of-the-art, time- and state-resolved spectroscopic probing complemented by 
multi-physics models that integrate electrodynamics, quantum mechanics, and molecular 
dynamics. Another challenge in this area is that plasmon-driven energy conversion is invariably 
accompanied by the thermal dissipation of the deposited energy due to the fast carrier relaxation.20 
The effect of photothermal heating can obscure21,22 the role of photoexcited carriers and local 
electric fields and must therefore be carefully parsed out and controlled. Alongside these efforts, 
we must continue to discover new implementations of plasmon-driven energy conversion and 
chemistry and advance the atomically precise synthesis of hybrids of plasmonic nanostructures 
with other functional elements.23 This will ensure that we continue to expand the paradigm and fill 
existing gaps in our physical intuition and models. In addition to being an important frontier in 
chemical physics, the investigation of plasmon-driven energy conversion presents a ripe 
opportunity for the chemical physics community to partner with researchers in materials science, 
photonics, chemical engineering, and condensed matter theory.  

This special issue highlights recent theoretical and experimental efforts that are providing 
new physical insights or capabilities and ultimately paving the way for plasmon-driven renewable 
power generation and green manufacturing.  

SUMMARY OF AREAS COVERED 

To aid readers in exploring the issue, we have summarized the contributions by dividing 
them into four categories that also represent exciting thrusts in the area of plasmon-driven energy 
conversion: 

The first category is the development of hybrid nanostructures that improve hot carrier 
generation and enable plasmon-induced photochemistry and optoelectronic devices over a wider 
spectral window. Manoukian et al.24 report that Cu–Pd alloy films exhibit composition-tunable 
generation of hot carriers under near-infrared (NIR) illumination. Karaballi et al.25 find that Cr2N 
nanoparticles synthesized by a solid-state nitridation reaction support pronounced ultraviolet 
(UV)-region LSPRs that would be of use for photocatalytic biodegradation and water disinfection. 
Yalavarthi et al.26 used Ni–Au nanopillars modified by a Pd co-catalyst for photo-enhancing the 
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electrooxidation of formic acid. Comparing faceted polyhedral and spherical Pd nanoparticles, the 
authors find a drastic difference in activity, which is attributed to differences in electromagnetic 
field confinement and hot-carrier generation for the two shapes. Kim et al.27 report that a MnO2 
co-catalyst influences plasmon-enhanced photocatalytic oxidation of ethane; in particular, the 
location of the MnO2 nanoparticle influences the photocatalytic activity. Yoshiiri et al.28 find that 
the photocatalytic activities of commercial TiO2 are altered and enhanced by the loading of Ag 
nanoparticles. The Ag nanoparticles function as sensitizers in the visible region and as electron 
traps in the UV region. 

The second category is the enhancement of electrochemical redox transformations on 
plasmon-excited nanoparticle-based electrodes. Qiu et al.29 report the electrochemical oxidation of 
4-(hydroxymethyl)benzoic acid on a Au nanoparticle-decorated electrode promoted by plasmonic 
excitation. Joshi and Wilson30 report that electrochemical water reduction reaction in acetonitrile 
has a drastically boosted rate on a plasmon-excited electrode comprised of Au nanoparticles; the 
authors also find that solvent polarity plays an important role in plasmonic modulation of 
electrochemical activity. Ramasamy and Ha31 report that the removal of organic surfactant ligands 
from the surfaces of gold nanorods by oxygen plasma treatment promotes electrical contact 
between the gold nanorods and an underlying electrode and activates the Au nanorods for plasmon-
assisted electrochemistry. 

In the third category, we have mechanistic studies of plasmon-assisted light-to-chemical 
energy conversion. Schürmann et al.32 investigate plasmon-induced carbon–halogen bond 
cleavage in halogenated benzenes. The authors find similar reaction rates for different halogen 
substituents (F, Cl, and Br), which points to a two-step charge generation and transfer mechanism. 
Chen and Wang33 investigate the plasmon-induced dimerization of aniline molecules tethered to 
the surfaces of plasmonic nanostructures via thiolates and ethynyl groups. The authors demonstrate 
that the conformational flexibility of the metal–adsorbate linkage is conducive to a fast coupling 
reaction. This shows that apart from plasmonic characteristics of the nanoparticles, metal–
adsorbate interactions constitute an important factor governing the kinetics of plasmon-induced 
chemistry. Kim et al.34 employ a Pt–Ag–TiO2 antenna–reactor structure to study plasmon-assisted 
photoelectrochemical water splitting and find that hot electrons and holes generated by plasmonic 
excitation of the Ag nanoislands are responsible for enhancing both oxygen evolution and 
hydrogen evolution half-reactions. 

The fourth category involves the nanophotonic modulation of plasmon-enhanced processes. 
Lee and Yu35 employ a dielectric photonic crystal structure to strongly confine light to Ag 
nanoparticles and find dramatically boosted hot-carrier extraction efficiencies. Sun et al.36 
investigate the photoluminescence emission decay of single quantum dots located near plasmonic 
Au nanoparticles and find faster decay when the excitation wavelength is spectrally overlapped 
with the LSPR. The authors attribute this effect to the excitation-wavelength dependence of the 
plasmonic near-field enhancement. Imada et al.,37 using scanning tunneling microscopy, find that 
the luminescence of a single molecule placed in a plasmonic nanocavity does not follow Kasha’s 
rule. Such an anomaly is attributed to Purcell enhancement of emission from the vibrationally 
excited states in the first singlet and second singlet excited states. Ma et al.,38 employing time-
dependent density-functional theory, find that plasmon-induced transfer of charge carriers from a 
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Ag nanocluster to a TiO2 slab is influenced by the orientation of incident light polarization with 
respect to the Ag–TiO2 interface. 

These contributions present state-of-the-art research that strengthens the foundation of 
plasmon-driven energy conversion and motivates new ideas in this exciting field. 

CONCLUSIONS 

Plasmon-driven energy conversion has drawn immense attention from laboratories around 
the world due to its promise to enable the conversion of electromagnetic radiation, particularly in 
the solar range, into desired forms of chemical energy. The excellent contributions in this special 
issue articles collectively constitute an advance in the fundamental understanding and control of 
energy conversion processes induced by plasmon excitation.   
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