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Abstract
We develop a compactness theory for super Ricci flows, which lays the foundations
for the partial regularity theory in Bamler (Structure Theory of Non-collapsed Lim-
its of Ricci Flows, arXiv:2009.03243, 2020). Our results imply that any sequence of
super Ricci flows of the same dimension that is pointed in an appropriate sense subse-
quentially converges to a certain type of synthetic flow, called a metric flow. We will
study the geometric and analytic properties of this limiting flow, as well as the con-
vergence in detail. We will also see that, under appropriate local curvature bounds, a
limit of Ricci flows can be decomposed into a regular and singular part. The regular
part can be endowed with a canonical structure of a Ricci flow spacetime and we have
smooth convergence on a certain subset of the regular part.
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1 Introduction

1.1 Introduction

A super Ricci flow is given by a smooth family of Riemannian metrics (gt )t∈I on a
manifold M that satisfies the inequality

∂tgt ≥−2 Ricgt ,

meaning that ∂tgt + 2 Ricgt is non-negative definite. Super Ricci flows were initially
studied by McCann and Topping [46] and are natural generalizations of Ricci flows.
We will show that the space of super Ricci flows, pointed in an appropriate sense, is
compact in a certain topology. While the main motivation of our theory is to obtain a
compactness theory of Ricci flows, most of our results also apply to other geometric
settings, such as metrics with lower Ricci curvature bounds in the Bakry-Émery sense
or Ricci solitons.

In this paper we will introduce and study several new notions, guided by some re-
sults in [7]. We will see that super Ricci flows possess similar compactness properties
as spaces with lower Ricci curvature bounds. More specifically, we will:

1. Introduce a notion of synthetic flows, called (H -concentrated) metric flows,
of which super Ricci flows are a subset. A metric flow can be regarded as a
parabolic analogue of a metric (measure) space.

2. Analyze the geometric properties that follow from the axioms of the definition
of a metric flow.

3. Define a distance function on the space metric flow pairs (a.k.a. “pointed metric
flows”), which can be viewed as a parabolic analogue of the Gromov-Hausdorff
distance.

4. Show that certain subsets of metric flow pairs, which contain the class of super
Ricci flows, are compact with respect to this new distance function. So any se-
quence of pointed metric flow pairs taken out of these subsets subsequentially
converges to another metric flow pair.

5. Analyze the convergence behavior of metric flow pairs with respect to this dis-
tance function and show that certain important properties survive the limit.

6. Devise a notion of smooth convergence (akin to smooth Cheeger-Gromov con-
vergence) in the case in which the original metric flow pairs are locally given by
smooth Ricci flows with bounded curvature.

In subsequent work [8], we will further analyze limits of Ricci flows under a non-
collapsing condition and derive several structural results.

1.2 History

Before describing the new notions and results of this paper in more detail, let us make
some historical remarks. Besides Ricci flows, the class of super Ricci flows also con-
tains other flows, which arise from certain interesting classes of metrics via standard
constructions. The most important of these are probably the classes of Riemannian
metrics with lower Ricci curvature bounds (Ricg ≥ λg) and Einstein metrics (Ricg =
λg). More generally, we can also consider the class of metrics whose Ricci curvature
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is bounded from below in the Bakry-Émery sense (Ricf
g = Ricg +∇2f ≥ λg) and the

class of gradient Ricci solitons (Ricf
g = Ricg +∇2f = λg).1 The theory developed in

this paper will imply a compactness theory for all these classes of metrics.
We will now give an overview over existing compactness theories for these and

other specific classes of super Ricci flows.
Let us first consider metrics with lower Ricci curvature bounds and Einstein met-

rics. By the work of Gromov [30], any sequence of manifolds with a uniform lower
bound on the Ricci curvature and an upper bound on the dimension converges sub-
sequentially to a metric (measure) space in the Gromov-Hausdorff sense. In fact, the
space of isometry classes of metric spaces that satisfy certain weak regularity condi-
tions can be equipped with a distance function — the Gromov-Hausdorff distance —
and the subset of spaces corresponding to metrics with lower Ricci curvature bounds
is precompact with respect to this distance function. In the non-collapsed case, the
Gromov-Hausdorff limits of sequences of spaces with lower Ricci curvature bound
can be characterized further by the work of Anderson, Cheeger, Colding, Tian, Naber
[1, 2, 16–19, 21–23]. In this case the limiting space is regular (in a certain sense)
on the complement of a singular set of codimension 2 (for spaces with lower Ricci
curvature bounds) or codimension 4 (for Einstein metrics). Another avenue of an-
alyzing the limiting space, which also works in the collapsed case, is due to Lott,
Villani and Sturm [45, 50–52], who introduced a synthetic lower Ricci curvature
bound, using optimal transport. This synthetic bound is preserved under measured
Gromov-Hausdorff convergence and can therefore be used to characterize the limit-
ing space. This has led to the notion of RCD(K,N)-spaces, which have been subject
of intensive research.

In the setting of lower Ricci curvature bounds in the Bakry-Émery sense, a com-
pactness theory under an additional bound on the potential function f , follows from
the work of Wei-Wylie [60]. By an observation of Lott [43], such metrics arise as
collapsed limits of metrics with lower Ricci curvature bounds, which reduces the
compactness theory to that of spaces with lower Ricci curvature bounds. See also
[58] for a further structure theory under additional geometric assumptions.

The case of gradient Ricci solitons was analyzed by Cao-Sesum, X. Zhang,
Z. Zhang, Weber, Haslhofer, Müller, Y. Zhang, H. Li, Y. Li, B. Wang and S. Huang,
Y. Li, B. Wang [15, 32, 33, 36, 42, 59, 61–63]. This work essentially shows that any
sequence of gradient (shrinking) solitons, pointed at the minimum of the potential,
converges to a metric space that is smooth on the complement of a subset of codi-
mension ≥ 4 — thus mirroring the results for Einstein metrics mentioned before.

In the setting of Ricci flows, or general super Ricci flows, compactness theo-
rems are only known under very restrictive conditions. Hamilton’s original com-
pactness theorem for Ricci flows [31] holds under global curvature and injectivity
radius bounds, which guarantee that the limit is another Ricci flow. In dimension
3, Perelman’s work [48, 49] implies a satisfactory compactness theory in the non-
collapsed case; limits are again smooth Ricci flows. In [5, 6, 10, 11, 24–26], Zhang,
the author, Chen and Wang devised a compactness theory for the space of Ricci

1In fact, any metric satisfying Ricg +LXg ≥ λg for some vector field X can be turned into a super Ricci
flow. In the case of equality, these metrics are called Ricci solitons.
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flows and Kähler-Ricci flows under a pointwise bound on the scalar curvature. In
this theory limits are regular away from a singular set of codimension at least 4;
therefore their behavior is similar to that of Einstein metrics. In [53] Sturm intro-
duced a new notion of super Ricci flows for time-dependent metric measure spaces
and proved a compactness theorem for these flows assuming a pointwise lower bound
on the Ricci curvature. This theory resembles the approach of Lott-Villani-Sturm in
the stationary case. Unfortunately, the lower Ricci curvature bound is very restric-
tive; for example it precludes isolated degenerate or non-degenerate neckpinches,
which are quite common in dimension 3 [3]. Further related work can be found in
[14, 34, 37, 39, 41, 44, 47, 54–56].

1.3 Overview

We will now provide an overview of the theory developed in this paper. We will
state our main results in a rather vague way, but refer to the corresponding precise
statements in the body of the paper.

We will first introduce the notion of a metric flow X over an interval I ⊂ R in
Sect. 3 (see Definition 3.1). Roughly speaking, a metric flow consists of a collec-
tion of metric spaces (Xt , dt ), which are viewed as time-slices and a collection of
probability measures νx;t on each time-slice (Xt , dt ), where x ∈ Xt ′ , t < t ′. These
measures should be thought of as conjugate heat kernels based at x (at time t ′) on a
super Ricci flow background. The metrics and the probability measures are required
to satisfy certain compatibility conditions, which always hold on a super Ricci flow
and are independent of its dimension. Among other things, these compatibility con-
ditions are the standard reproduction formula and a gradient bound for induced heat
flows, which is established in [7, Theorem 4.1]. The collection of conjugate heat
kernels νx;s that make up a metric flow X allow us to define solutions to the (for-
ward) heat equation and (backward) conjugate heat equation on X . In addition, we
will often require a metric flow to be H -concentrated for some H < ∞ (see Defini-
tion 3.21), which means that the conjugate heat kernels satisfy a certain L2-bound.
This bound was established for super Ricci flows in [7] and is the only bound in this
paper that depends on the dimension.

Given a super Ricci flow (gt )t∈I on a manifold M we can construct the asso-
ciated metric flow as follows. Set X := M × I , where the time-slices are of the
form Xt := M × {t}, let dt := dgt be the length metric at any time t and denote by
dν(x,t);s := K(x, t; ·, s)dgs the measure corresponding to the conjugate heat kernel
based at (x, t). Then we have:

Theorem 1.1 (Theorem 3.36) X is an Hn := (
(n−1)π2

2 + 4)-concentrated metric flow.

Note that, while a Ricci flow is given by a family of metrics on a fixed manifold,
the topology of time-slices Xt of a metric flow may be non-constant in t . In addition,
when passing from a super Ricci flow to a metric flow, we have dispensed of one
essential piece of structure, namely the concept of world lines. So for example, the
fact that (x, s), (x, t) ∈ M × I correspond to the same point at two different times
s, t gets lost when we consider the associated metric flow. However, any metric flow
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has a natural topology (see Sect. 3.6), which agrees with the topology on M × I if
I is left-open (see Theorem 3.36). In addition, the H -concentration property allows
us to relate points between two time-slices Xs ,Xt , s ≤ t , of a metric flow up to an
error of ∼√|t − s|. More specifically, we can view y ∈ Xs to be “close” to x ∈ Xt

if it lies “near the concentration center” of the conjugate heat kernel νx;s . A lack of
world lines may seem nonintuitive at first; it is however natural in the study of most
Ricci flow problems.

In Sect. 4 we will analyze the dependence of the time-slices Xt of an H -
concentrated metric flow X on time. Among other things, we will see that, away from
a countable set of times, this dependence is continuous in the Gromov-W1-topology
(see Theorem 4.9 and Corollary 4.11). We will call X future continuous (see Defi-
nition 4.7) if this convergence Xt → Xt0 holds whenever t ↘ t0. It will turn out that
a future continuous flow is uniquely determined by its behavior over a dense set of
times (see Theorems 4.16, 4.17); the entire flow can be recovered by passing to the
so-called future completion, which is similar to a completion of metric spaces.

Our goal in Sect. 5 is to study the space of metric flows and define what it means
that a sequence of metric flows converges to another metric flow. In order to do this,
we need to consider metric flow pairs (X , (μt )t∈I ) (see Definition 5.1), which are
metric flows equipped with a conjugate heat flow (μt )t∈I . Here, the conjugate heat
flow (μt )t∈I serves as some kind of basepoint that indicates the “center” of the flow;
this is similar to choosing basepoints when defining Gromov-Hausdorff convergence
for unbounded metric spaces. The conjugate heat flow (μt )t∈I will often be taken to
be a conjugate heat kernel based at some point in the final time-slice of X , however,
our theory is not limited to this case. We consider two metric flow pairs to be the same
if they agree at almost every time and denote the space of such equivalence classes by
FI (see Definition 5.2). By passing to the future completion, we can represent each
such equivalence class by a unique flow pair whose metric flow is future continuous.
We will then define a metric dF on FI and show that (FI , dF) is a complete metric
space. A sequence of metric flow pairs is then said to F-converge to another metric
flow pair if it converges in (FI , dF). Roughly speaking, F-convergence implies con-
vergence of almost every time-slice2 in the Gromov-W1-topology along with almost
every conjugate heat kernel measure.

In Sect. 6 we analyze the notion of F-convergence further and we relate objects on
the sequence of metric flow pairs with objects on the limit. To do this, we first embed
an F-convergent sequence of metric flow pair into a common “correspondence” and
then study the convergence behavior of points and conjugate heat flows within this
correspondence.

In Sect. 7 we will show that certain subsets of FI are in fact compact. These subsets
include metric flow pairs corresponding to super Ricci flows that are equipped with a
conjugate heat kernel. So as a result, we will obtain:

Theorem 1.2 (Corollary 7.5) Consider a sequence of pointed super Ricci flows
(Mi, (gi,t )t∈(−T ,0], xi) of the same dimension. Then, after passing to a subsequence,

2in most cases even all, but a countable set of time-slices
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the corresponding sequence of metric flows X i equipped with the conjugate heat ker-
nels (μi

t )t∈(−T ,0) := (ν(xi ,0);t )t∈(−T ,0), based at (xi,0), F-converge to a metric flow
pair of the form (X∞, (μ∞

t )t∈(−T ,0)).

In the case in which these super Ricci flows smoothly converge to some limiting
super Ricci flow (such as in [31] in the case of Ricci flows), the limiting metric
flow X∞ is simply the flow associated to the limiting super Ricci flow. So smooth
convergence implies F-convergence. The following example shows, however, that, in
general, the limit X∞ may be different from the Gromov-Hausdorff limit if smooth
convergence does not hold.

Example 1.3 Consider the Bryant soliton (Mn, (gt )t∈R), n ≥ 3, which is a rotationally
symmetric steady gradient soliton on R

n with one end [13]. Denote by x ∈ M its
center of rotation. If we consider the parabolic blow-downs (M, (gλ

t := λ2gλ−2t )t∈R),
which are Ricci flows, then the Gromov-Hausdorff limit

(M,gλ
0 , x)

GH−−−−−−→
λ→0

([0,∞),0) (1.1)

is a Euclidean ray, while we have the following convergence on compact time-
intervals:

(
Mn, (gλ

t )t<0, (ν(x,0);t )t<0
)

dF−−−−−→
λ→0

(
Sn−1 ×R, (gt =−2(n− 1)tgSn−1 + gR)t<0, (μ

∞
t )t<0

)
. (1.2)

Here the limit is a round shrinking cylinder, which is the asymptotic shrinking soliton
of the Bryant soliton in the sense of Perelman [48]. So while the limit in (1.2) does
not agree with (1.1), it still captures an important asymptotic behavior of the Bryant
soliton. We remark that a similar behavior can be observed for the bowl soliton, which
can be viewed the analogous soliton in mean curvature flow. In this case the cylindri-
cal limit can be obtained by rescaling the ambient space with fixed basepoint, which
is a natural choice in this setting.

In Sect. 8 we show that the condition that almost all time-slices of a metric flow
are intrinsic (i.e. length spaces) survives F-limits. Moreover, if we choose the limit to
be future continuous, which we can always do, then all time-slices are intrinsic.

Lastly, in Sect. 9 we analyze the case in which a certain subset of a metric flow is
locally isometric to a smooth Ricci flow on some regular subset R⊂X . The regular
subset will carry the canonical structure of a Ricci flow spacetime. If X is constructed
from a smooth Ricci flow, then we have R=X . Next, we consider a sequence of met-
ric flow pairs (X i , (μi

t )t∈I i ) that F-converges to a metric flow pair (X∞, (μ∞
t )t∈I∞).

We will show that, under local uniform curvature bounds on the regular parts Ri of
X i , the F-convergence can be upgraded to smooth convergence over a certain subset
R∗ ⊂R∞.
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2 Preliminaries

2.1 Probability measures on metric spaces and the Wasserstein distance

Let (X,d) be a complete, separable metric space and denote by B(X) the Borel alge-
bra generated by the open subsets of X. A probability measure on X is a measure
μ on B(X) of total mass μ(X) = 1. The set of probability measures on X is denoted
by P(X). For any x ∈ X we denote by δx ∈P(X) the point mass at x.

We recall:

Lemma 2.1 Let (X,d) be complete and separable and let μ ∈ P(X). Then the fol-
lowing holds:
(a) μ is regular, i.e. for any A ∈ B(X), ε > 0 there are compact and open subsets

K ⊂ A⊂ O ⊂ X such that μ(O \K) ≤ ε.
(b) The set of bounded Lipschitz functions X → R is dense in Lp(X,μ) for all

p < ∞.
(c) The support

suppμ = {x ∈ X : μ(B(x, r)) > 0 for all r > 0},
is closed and satisfies μ(X \ suppμ)= 0.

(d) For any tight sequence μi ∈ P(X) (i.e. for any ε > 0 there is a compact subset
Kε such that μi(X \ Kε) ≤ ε for all i) there is a subsequence such that we
have weak convergence μi → μ∞ ∈ P(X) (i.e.

´
X

f dμi →
´
X

f dμ∞ for all
bounded, continuous functions f : X → R, or equivalently, for all bounded,
Lipschitz functions f :X →R).

(e) A sequence μi ∈ P(X) is tight if and only if for any ε > 0 there is a compact sub-
set K ′

ε ⊂ X such that μi(X \ B(K ′
ε, ε)) ≤ ε for large i. Here B(K ′

ε, ε) denotes
the ε-neighborhood of K ′

ε .

Proof For Assertion (a) see [12, Theorem 1.3]. For any subsets K ⊂ A ⊂ O as
in Assertion (a) the function fK,L := min{Ld(·,X \ O),1} is Lipschitz and sat-
isfies fK,L ≡ 1 on K for large L. This shows that χA can be approximated by
Lipschitz functions in Lp(X,μ). Since characteristic functions span a dense sub-
space in Lp(X,μ), this shows Assertion (b). For Assertion (c) suppose by contra-
diction that μ(X \ suppμ) > 0 and choose a compact subset K ⊂ X \ suppμ with
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μ(K) > 0. However, K can be covered by finitely many balls of mass zero. For As-
sertion (d) see [12, Theorem 5.1]. For the equivalence statement concerning weak
convergence, consider a bounded, uniformly continuous function f : X → R and
let fL(x) := infy∈X{Ld(x, y) + f (y)}. Then fL is bounded, Lipschitz and we have
fL → f uniformly as L → ∞. The equivalence statement now follows from [12,
Theorem 2.1]. Lastly, suppose that the sequence μi has the property described in As-
sertion (e). By Assertion (a) it follows that for any ε > 0 there is a compact subset
K ′

ε ⊂ X such that μi(X \B(K ′
ε, ε)) ≤ ε for all i. Now fix some ε > 0 and let

Kε :=
∞⋂

j=1

B(K ′
ε2−j , ε2−j ).

Then Kε is compact and we have for any i

μi(X \Kε) ≤
∞∑

j=1

μi(X \B(K ′
ε2−j , ε2−j )) ≤ ε. �

If (Xi, di), i = 1,2, are two complete, separable metric spaces and μi ∈ P(Xi),
then a coupling between μ1,μ2 is a probability measure q ∈ P(X1 × X2) with
marginals μ1,μ2, i.e. μ1(S) = q(S × X2) and μ2(S) = q(X1 × S) for all S ∈
B(X1),B(X2), respectively. Note that q = μ1 ⊗ μ2 is a coupling between μ1,μ2.
The following lemma allows us to combine two couplings.

Lemma 2.2 Consider three complete, separable metric spaces (Xi, di), i = 1,2,3,
and probability measures μi ∈ P(Xi). Let q12 and q23 be couplings between μ1,μ2
and μ2,μ3, respectively. Then there is a probability measure q123 ∈P(X1×X2×X3)

whose marginals onto the first and last two factors equal q12 and q23, respectively.
In particular, the marginal of q123 onto the first and last factor is a coupling between
μ1,μ3.

Proof See [57, Lemma 7.6] or [27, Lemma 3.3]. �

Fix some complete, separable metric space (X,d). We recall the definition of the
Wp-Wasserstein distance for p ≥ 1 between two probability measures μ1,μ2 ∈
P(X):

dWp(μ1,μ2) := inf
q

(ˆ

X×X

dp(x1, x2)dq(x1, x2)

)1/p

,

where the infimum is taken over all couplings q ∈ P(X × X) between μ1,μ2. We
have

Proposition 2.3 dWp defines a complete metric on P(X) if we allow it to attain the
value ∞.

Proof See [57, Theorem 7.3]. If (X,d) is unbounded, then apply this theorem to the
metric dA := min{d,A} and let A →∞. �
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Let Pp(X) ⊂ P(X) be the set of probability measures μ ∈ P(X) such that
dWp(μ, δx) = (

´
X

dp(x, ·) dμ)1/p < ∞ for one (and thus for any) x ∈ X. Then
(Pp(X), dWp |Pp(X)) is a complete metric space and we have:

Lemma 2.4 (Pp(X), dWp |Pp(X)) is separable. Moreover, for any dense subset S ⊂ X

the set of measures μ ∈ Pp(X) of finite support and with the property that suppμ ⊂
X and that μ({x}) ∈Q for all x ∈X is dense in (Pp(X), dWp |Pp(X)).

Proof The first part of the lemma follows from the second part. For the second
part observe that if suppμ is compact, then it can be approximated by the de-
sired measures. So it remains to show that any μ ∈ Pp(X) is the limit of μ ∈
Pp(X) with compact support. For this purpose, fix some x ∈ X and observe that
by Lemma 2.1(a) there is an increasing sequence of compact subsets Ki ⊂ X with⋃∞

i=1 Ki = suppμ. Let μi := μ|Ki
+ μ(X \ Ki)δx . Then suppμi is compact and

qi := μ|Ki
⊗ μ|Ki

+ μ|X\Ki
⊗ δx is a coupling between μ,μi . Therefore, by domi-

nated convergence

d
p
Wp

(μ,μi)=
ˆ

X\Ki

dp(·, x)dμ =
ˆ

X

dp(·, x)χX\Ki
dμ→ 0,

which finishes the proof. �

We will mainly be concerned with the W1-Wasserstein distance and we will fre-
quently use the following equivalent characterization of dW1 (due to the Kantorovich-
Rubinstein Theorem [57, Theorem 1.14]):

Proposition 2.5 We have

dW1(μ1,μ2) = sup
f

ˆ

X

f d(μ1 −μ2),

where the supremum is taken over all bounded 1-Lipschitz functions f :X →R.

2.2 Variances of measures

We recall the notion of variance from [7, Definition 3.1], which can be generalized
easily to the setting of metric measure spaces.

Definition 2.6 (Variance) The variance between two probability measures μ1,μ2 ∈
P(X) on a metric space (X,d) is defined as

Var(μ1,μ2) :=
ˆ

X

ˆ

X

d2(x1, x2)dμ1(x1)dμ2(x2).

In the case μ1 = μ2 = μ, we also write

Var(μ)= Var(μ,μ).
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Remark 2.7 This notion is similar, but slightly different from [51, (3.1)]. If we write
VarSturm for the notion in [51, (3.1)], then

VarSturm(μ) = inf
x∈X

Var(δx,μ).

It follows from Lemma 2.8 below that both notions are comparable:

VarSturm(μ)≤ Var(μ) ≤ 4VarSturm(μ).

We record the following linearity properties. If μi,μ
′
j ∈ P(X), i = 1, . . . , n, j =

1, . . . , n′, are probability measures and ai, a
′
j ≥ 0 with

∑n
i=1 ai = ∑n′

j=1 a′j = 1, then

Var
( n∑

i=1

aiμi,

n′∑

j=1

a′jμ′
j

)
=

n∑

i=1

n′∑

j=1

aia
′
j Var(μi,μ

′
j ).

Moreover, if (Y, ν), (Y ′, ν′) are probability spaces and (μs ∈ P(X))s∈Y , (μ′
s′ ∈

P(X′))s′∈Y ′ are integrable families of probability measures, then

Var

(ˆ

Y

μsdν(s),

ˆ

Y ′
μ′

s′dν′(s′)
)
=
ˆ

Y

ˆ

Y ′
Var(μs,μ

′
s′)dν(s)dν′(s′).

We also mention that for any x ∈X we have

Var(δx,μ)=
ˆ

X

d2(x, y)dμ(y)

and for any x, y ∈X we have

Var(δx, δy) = d2(x, y).

We will frequently use the following triangle inequality and bound relating
Var(μ1,μ2) with dW1(μ1,μ2):

Lemma 2.8 If μ1,μ2,μ3 ∈ P(X), then
√

Var(μ1,μ3)≤
√

Var(μ1,μ2)+
√

Var(μ2,μ3),

dW1(μ1,μ2) ≤
√

Var(μ1,μ2) ≤ dW1(μ1,μ2)+
√

Var(μ1)+
√

Var(μ2). (2.1)

Proof The lemma follows along the lines of [7, Lemma 3.2]. We give another proof of
(2.1) using couplings. For the first bound, observe that μ1 ⊗μ2 is a coupling between
μ1,μ2, so

dW1(μ1,μ2) ≤
ˆ

X

ˆ

X

d(x1, x2) dμ1(x1)dμ2(x2)≤
√

Var(μ1,μ2).

For the second bound, we use the first bound to deduce for any x1, x2 ∈X

d(x1, x2) =
√

Var(δx1 , δx2)≥
√

Var(μ1,μ2)−
√

Var(δx1 ,μ1)−
√

Var(δx2 ,μ2).



Compactness theory of the space of Super Ricci flows 1131

So for any coupling q between μ1,μ2 we have
ˆ

X×X

d(x1, x2) dq(x1, x2)

≥ √
Var(μ1,μ2)−

ˆ

X

√
Var(δx1 ,μ1) dμ1(x1)−

ˆ

X

√
Var(δx2 ,μ2) dμ2(x2)

≥ √
Var(μ1,μ2)−

(ˆ

X

Var(δx1 ,μ1) dμ1(x1)

)1/2

−
(ˆ

X

Var(δx2 ,μ2) dμ2(x2)

)1/2

= √
Var(μ1,μ2)−

√
Var(μ1)−

√
Var(μ2).

This finishes the proof. �

We will also need:

Lemma 2.9 Suppose that (X,d) is complete and separable and consider a sequence
μi ∈ P(X) that weakly converges to some μ∞ ∈ P(X) and satisfies Var(μi) ≤ C <

∞. Then μi → μ∞ in dW1 and Var(μ∞) ≤ lim infi→∞ Var(μi).

Proof See [57, Theorem 7.12]. �

2.3 Metric measure spaces

A triple (X,d,μ), consisting of a complete and separable metric space (X,d) and a
probability measure μ ∈ P(X), is called a (normalized) metric measure space. If
suppμ = X, then (X,d,μ) is said to have full support. If μ is only a measure on X,
then (X,d,μ) is often called an (un-normalized) metric measure space. In this paper
we will only be interested in normalized metric measure spaces, and we will often
drop the adjective “normalized”.

A map φ : X1 → X2 between two metric measure spaces (Xi, di,μi), i = 1,2,
is called an isometry (between metric measure spaces) if it is a metric isome-
try between (X1, d1) and (X2, d2) and φ∗μ1 = μ2. If such an isometry exists, then
(Xi, di,μi), i = 1,2, are called isometric. We say that (Xi, di,μi), i = 1,2, have
isometric support, if the spaces restricted to suppμi , i = 1,2 are isometric to each
other as metric measure spaces.

2.4 Distances between metric measure spaces

We will frequently use the following distance notion between metric measure spaces.

Definition 2.10 Consider two metric measure spaces (X1, d1,μ1), (X2, d2,μ2). We
define the Gromov-Wp-Wasserstein distance for any p ≥ 1 as

dGWp

(
(X1, d1,μ1), (X2, d2,μ2)

) := infdZ
Wp

((ϕ1)∗μ1, (ϕ2)∗μ2),
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where the infimum is taken over all isometric embeddings ϕi : (Xi, di) → (Z,dZ)

into some common metric space (Z,dZ).

This is a natural generalization the D-distance from [51], to all exponents p. See
also [28, 29] for similar constructions. In this paper we will mainly work with the
Gromov-W1-Wasserstein distance, as it is best suited for Ricci flows.

Proposition 2.11 dGWp satisfies all properties of a pseudometric that is allowed to
attain the value ∞. Moreover, dGWp((X1, d1,μ1), (X2, d2,μ2)) = 0 if and only if
(X1, d1,μ1), (X2, d2,μ2) have isometric support.

For the proof of Proposition 2.11, we will need the following lemma, which will
also be useful throughout this paper.

Lemma 2.12 (Combining isometric embeddings) Let 2 ≤ N ≤ ∞ and consider
(possibly finite) sequences of metric spaces (Xi, di) for 0<i<N , and (Zi,i+1, di,i+1)

for 0 ≤ i < N , as well as isometric embeddings ϕi,− : Xi → Zi,i+1 and ϕi,+ : Xi →
Zi−1,i for 0 < i < N . Then there is a complete metric space (Z,dZ) and sequences of
isometric embeddings ϕ̃i :Xi →Z for 0 < i < N , ψi,i+1 : Zi,i+1 → Z for 0 ≤ i < N ,
such that ϕ̃i = ψi,i+1 ◦ ϕi+1,− and ϕ̃i+1 = ψi,i+1 ◦ ϕi+1,+ for all 0 ≤ i < N .

Proof Suppose first that the lemma is true for N = 2. Then by successive application
of the lemma for N = 2, we can construct metric spaces and isometric embeddings
Z2 → Z3 → ·· · such that for any 2 ≤ N ′ < N + 1 the space ZN ′ allows isometric
embeddings of the spaces (X1, d1), . . . , (XN ′−1, dN ′−1) as described in the assertion
of the lemma. So the lemma holds for 2 ≤ N < ∞ and by taking a direct limit of the
spaces ZN ′ it also holds for N =∞.

It remains to verify the lemma for N = 2. Let

Z′ := (Z0,1 �Z1,2)/ ∼,

where we identify ϕ1,+(x) ∼ ϕ1,−(x) for all x ∈ X1. Let ψ ′
0,1 : Z0,1 → Z′, ψ ′

1,2 :
Z1,2 → Z′ be the natural embeddings, which are injective, and set

ϕ̃′
1 := ψ ′

0,1 ◦ ϕ1,+ = ψ ′
1,2 ◦ ϕ1,−, .

Define dZ′ : Z′ × Z′ → [0,∞) such ψ ′
0,1,ψ

′
1,2 are isometric embeddings and such

that for any z0,1 ∈Z0,1, z1,2 ∈Z1,2 we have

dZ′
(
ψ ′

0,1(z0,1),ψ
′
1,2(z1,2)

) := dZ′
(
ψ ′

1,2(z1,2),ψ
′
0,1(z0,1)

)

:= inf
x∈X1

(
d0,1(z0,1, ϕ1,+(x))+ d1,2(z1,2, ϕ1,−(x))

)
.

It can be checked easily that this definition is consistent and that dZ′ is a pseudo-
metric. Let (Z,dZ) be the completion of the metric space that arises by identifying
points of distance zero and let π : Z′ → Z be the map induced by the natural pro-
jection. Then ϕ̃1 := π ◦ ϕ̃′

1, ψ0,1 := π ◦ ψ ′
0,1, ψ1,2 := π ◦ ψ ′

1,2 satisfy the desired
properties. �
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Proof of Proposition 2.11 The proof is similar to [51, Lemma 3.3, Theorem 3.6].
In order to verify the triangle inequality, consider three metric measure spaces
(Xi, di,μi), i = 1,2,3, and let ε > 0. Choose isometric embeddings ϕ1 : X1 →Z1,2,
ϕ2,+ : X2 → Z1,2 into a metric space (Z1,2, d1,2), as well as isometric embeddings
ϕ2,− :X2 → Z2,3, ϕ3 :X3 → Z2,3 into a metric space (Z2,3, d1,2) such that

dGWp

(
(X1, d1,μ1), (X2, d2,μ2)

) ≥ d
Z1,2
Wp

((ϕ1)∗μ1, (ϕ2,+)∗μ2)− ε,

dGWp

(
(X2, d2,μ2), (X3, d3,μ3)

) ≥ d
Z2,3
Wp

((ϕ2,−)∗μ2, (ϕ3)∗μ3)− ε,

By Lemma 2.12 we may assume that Z1,2 = Z2,3 =: Z and ϕ2,+ = ϕ2,− =: ϕ2. Then

dGWp

(
(X1, d1,μ1), (X3, d3,μ3)

)

≤ dZ
Wp

((ϕ1)∗μ1, (ϕ3)∗μ3)

≤ dZ
Wp

((ϕ1)∗μ1, (ϕ2)∗μ2)+ dZ
Wp

((ϕ2)∗μ2, (ϕ3)∗μ3)

≤ dGWp

(
(X1, d1,μ1), (X2, d2,μ2)

)

+ dGWp

(
(X2, d2,μ2), (X3, d3,μ3)

)+ 2ε.

This shows that dGWp is a pseudometric.
For the second statement, consider first a metric measure space (X,d,μ) and let

X′ := suppμ. Taking Z := X and considering the natural injections X,X′ → Z al-
lows us to conclude that

dGWp

(
(X,d,μ), (suppμ,d|suppμ,μ|suppμ)

) = 0.

This proves one direction of the second statement. The other direction is a conse-
quence of the following lemma. �

Lemma 2.13 Let (Xi, di,μi), i = 1,2, be two metric measure spaces of full sup-
port and consider sequences of embeddings ϕk

i : (Xi, di) → (Zk, dZk
), i = 1,2,

k = 1,2, . . ., into metric spaces (Zk, dZk
) and couplings qk between μ1,μ2 such

that
ˆ

X1×X2

d
p
Zk

(ϕk
1(x1), ϕ

k
2(x2)) dqk(x1, x2) → 0.

Then, after passing to a subsequence, the couplings qk weakly converge to a cou-
pling q∞ between μ1,μ2 of the form q∞ = (idX1, φ)∗μ1, where φ : (X1, d1,μ1) →
(X2, d2,μ2) is an isometry. Moreover, for any x∈X1 we have dZk

(ϕk
1(x),ϕk

2(φ(x)))→
0.

Proof We first show that the sequence qk is tight. Let ε > 0 and choose compact
subsets Ki,ε ⊂ Xi such that μi(Xi \Ki,ε) ≤ ε/2, see Lemma 2.1(a). Then
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qk

(
(X1 ×X2) \ (K1,ε ×K2,ε)

) ≤ qk

(
(X1 \K1,ε)×X2

)+ qk

(
X1 × (X2 \K2,ε)

)

= μ1(X1 \K1,ε)+μ2(X2 \K2,ε) ≤ ε.

So by Lemma 2.1(d) we may pass to a subsequence such that qk → q∞ ∈P(X1×X2)

weakly, where q∞ is also a coupling between μ1,μ2.
Next, consider the sequence of functions

fk : X1 ×X2 →[0,∞), fk(x1, x2) := dZk
(ϕk

1(x1), ϕ
k
2(x2)).

It follows from the assumption of the lemma, using Hölder’s inequality, that´
X1×X2

fk dqk → 0. Since the functions fk are 2-Lipschitz and since qk → q∞
weakly, we may apply Arzelà-Ascoli, and conclude that, after passing to a subse-
quence, we have fk → f∞ pointwise, where f∞ : X1 × X2 → [0,∞) is still 2-
Lipschitz. Moreover, it follows that

ˆ

X1×X2

f∞ dq∞ = 0,

which implies that suppq∞ ⊂ {f∞ = 0}. By the triangle inequality and the definition
of the functions fk , we have for any xi, x

′
i ∈Xi , i = 1,2,

|d1(x1, x
′
1)− d2(x2, x

′
2)| ≤ f∞(x1, x2)+ f∞(x′

1, x
′
2). (2.2)

It follows from (2.2) that for any x1 ∈ X1 there is at most one x2 ∈ X2 with
f∞(x1, x2) = 0. Let S ⊂ X1 be the set of points x1 ∈ X1 for which there is such
an x2 and define φ′ : S → X2 such that f∞(x1, φ

′(x1)) = 0. Since suppμ1 = X1 and
μ1 is the marginal of q∞, the set S must be dense in X1. Due to (2.2) φ′ is an isomet-
ric embedding and therefore it admits a unique extension φ : X1 → X2, which is an
isometric embedding. For any x1 ∈ S we have

dZk
(ϕk

1(x1), ϕ
k
2(φ(x1))) = fk(x1, x2) → 0,

and since φ is an isometry, the same holds for all x1 ∈X1.
It remains to show q∞ = (idX1, φ)∗μ1, which will also imply that φ∗μ1 = μ2

and that φ is surjective. For this purpose choose a bounded L-Lipschitz function
h :X1 ×X2 →R, |h| ≤ A, and observe that by (2.2)

L−1
∣∣h(x1, x2)− h(x1, φ(x1))

∣∣ ≤ d2(x2, φ(x1)) ≤ fk(x1, x2)+ fk(x1, φ(x1)).

Therefore,

lim sup
k→∞

ˆ

X1×X2

∣∣h(x1, x2)− h(x1, φ(x1))
∣∣dqk(x1, x2)

≤ L lim sup
k→∞

ˆ

X1×X2

min
{
fk(x1, x2)+ fk(x1, φ(x1)),2A

}
dqk(x1, x2)

≤ L lim sup
k→∞

ˆ

X1

min{fk(x1, φ(x1)),2A}dμ1(x1) = 0.



Compactness theory of the space of Super Ricci flows 1135

It follows that
ˆ

X1×X2

hdq∞ = lim
k→∞

ˆ

X1×X2

h(x1, x2)dqk(x1, x2)

= lim
k→∞

ˆ

X1×X2

h(x1, φ(x1))dqk(x1, x2)

=
ˆ

X1

h(x1, φ(x1))dμ1(x1)=
ˆ

X1×X2

hd((idX1, φ)∗μ1).

Due to Lemma 2.1(b), this implies q∞ = (idX1, φ)∗μ1, which finishes the proof. �

The property of having isometric support induces an equivalence relation on the
space of all normalized metric measure spaces. Denote by M the set of equivalence
classes. Equivalently, we could also define M to be the set of isometry classes of
normalized metric measure spaces of full support. We have

Theorem 2.14 (M, dGWp) is a complete metric space if we allow the distance to at-
tain ∞.

Proof The proof is similar to that of [29, Proposition 5.6], [51, Theorem 3.6].
The fact that (M, dGWp) is a metric space follows from Proposition 2.11. To prove

completeness, consider a Cauchy sequence in M, represented by a sequence of metric
measure spaces (Xi, di,μi) of full support. After passing to a subsequence, we may
assume that

dGWp

(
(Xi, di,μi), (Xi+1, di+1,μi+1)

) ≤ 2−i .

Choose isometric embeddings ϕi,− : Xi → Zi,i+1, ϕi+1,+ : Xi+1 → Zi,i+1 into met-
ric spaces (Zi,i+1, di,i+1) such that

d
Zi,i+1
Wp

((ϕi,−)∗μi, (ϕi+1,+)∗μi+1) ≤ 2−i+1.

By Lemma 2.12, we may assume that Z1,2 = Z2,3 = · · · =: Z and ϕi,− = ϕi,+ =: ϕi .
By passing to the completion of

⋃∞
i=1 ϕi(Xi), we may moreover assume that (Z,dZ)

is complete and separable. We have

dZ
Wp

((ϕi)∗μi, (ϕi+1)∗μi+1)≤ 2−i+1,

so (ϕi)∗μi → μ′∞ ∈ P(Z) in Wp . Let X∞ := suppμ′∞, d∞ := dZ|X∞ and μ∞ :=
μ′∞|X∞ . Then

dGWp

(
(Xi, di,μi), (X∞, d∞,μ∞)

)≤ dZ
Wp

((ϕi)∗μi,μ∞)≤ 2−i+1,

which implies that (Xi, di,μi) converges to (X∞, d∞,μ∞) in GWp . �

Since the Prokhorov distance is bounded by the W1-Wasserstein distance, GW1-
convergence implies convergence in the Gromov-Prokhorov sense or the pointed
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measured Gromov sense [28, Theorem 3.15]. Note however, that, in general, GWp-
convergence does not imply Gromov-Hausdorff convergence, even if we assume that
all spaces in question have full support. Consider for example the sequence

(
Xn := B(0,1) ⊂R

n, dn := dRn |Xn,μn := (1 − n−1)δ0 + n−1ω−1
n μRn |Xn

)
,

where dRn and μRn denote the standard Euclidean distance and volume measure
and ωn := μRn(B(0,1)). As n → ∞ this sequence converges to a single point in
the GWp-sense, but the corresponding metric spaces (Xn, dn) don’t converge in the
Gromov-Hausdorff sense.

2.5 Compactness

In this subsection, we define useful compact subsets of (M, dGW1). For this purpose,
we make the following definition, which is similar to [29, (6.4)]

Definition 2.15 We define the mass distribution function at scale r > 0, b
(X,d,μ)
r :

(0,1]→ (0,1], of a metric measure space (X,d,μ) by

b(X,d,μ)
r (ε) := sup

{
δ > 0 : μ({x ∈ X : μ(D(x, εr)) < δ}) ≤ ε

}
. (2.3)

Here D(x, εr) := {d(x, ·)≤ εr} denotes the closed ball around x.

In other words, b
(X,d,μ)
r (ε) is roughly the mass that is contained in a (1 − ε)-

fraction of all closed balls of radius εr . In the following, we will often assume a lower
bound of the form b

(X,d,μ)
r (ε) ≥ b for some function b : (0,1] → (0,1]. This will

guarantee that mass is “not too evenly” distributed in a potentially large space. For
example, it prevents the case in which (X,d,μ) equals the product [0,1]n, equipped
with the standard Euclidean distance function and measure, for n → ∞, as in this
case the measure of any 1

2 -ball converges to 0.

Note that b
(X,d,μ)
r (ε) ∈ (0,1], because by Lemma 2.1(c)

lim
δ→0

μ({x ∈X : μ(D(x, εr)) < δ}) ≤ μ(X \ suppμ)= 0.

Moreover, we have:

Lemma 2.16 b
(X,d,μ)
r (ε) is non-decreasing and right semi-continuous. The supre-

mum in (2.3) is attained and for any function b : (0,1] → (0,1] the condition
b

(X,d,μ)
r ≥ b is equivalent to

μ({x ∈X : μ(D(x, εr)) < b(ε)}) ≤ ε for all ε ∈ (0,1]

Proof For the monotonicity statement, note that for any ε1 ≤ ε2 and any δ > 0 with
μ({x ∈ X : μ(D(x, ε1r)) < δ}) ≤ ε1 we have

μ({x ∈ X : μ(D(x, ε2r)) < δ}) ≤ μ({x ∈X : μ(D(x, ε1r)) < δ}) ≤ ε1.
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For the right semi-continuity, observe that by the continuity of measures for any δ > 0
with the property that μ({x ∈X : μ(D(x, ε′r)) < δ}) ≤ ε for all ε′ > ε we have

μ({x ∈ X : μ(D(x, εr)) < δ}) = μ({x ∈X : lim
ε′↘ε

μ(D(x, ε′r)) < δ})

= lim
ε′↘ε

μ({x ∈ X : μ(D(x, ε′r)) < δ}) ≤ ε.

Similarly, for b0 := b
(X,d,μ)
r (ε)

μ({x ∈ X : μ(D(x, εr)) < b0})= lim
δ↗b0

μ({x ∈ X : μ(D(x, εr)) < δ}) ≤ ε,

which implies that the supremum in (2.3) is attained and that if b
(X,d,μ)
r (ε) ≥ b(ε),

then

μ({x ∈X : μ(D(x, εr)) < b(ε)}) ≤ μ({x ∈ X : μ(D(x, εr)) < b0})≤ ε. �

We can now define a class of metric measure spaces, which will turn out to be
compact.

Definition 2.17 For any r,V > 0 and any function b : (0,1]→ (0,1], let Mr (V , b) ⊂
M be the set of isometry classes of metric measure spaces (X,d,μ) of full support
that satisfy the following properties:
(1) Var(μ) ≤ V r2.
(2) b

(X,d,μ)
r ≥ b.

Property (1) is a generalization of a diameter bound and Property (2) will turn out
to be necessary since we don’t impose any doubling condition.

Lemma 2.18 Mr (V , b) is closed in (M, dGW1).

Proof Consider a sequence of metric measure spaces of full support (Xi, di,μi)

representing classes in Mr (V , b) for some fixed r,V > 0, b : (0,1] → (0,1] and
suppose that (Xi, di,μi) → (X∞, d∞,μ∞) in GW1. Our goal is to show that the
limit (X∞, d∞,μ∞) also represents a class in Mr (V , b). As in the proof of Theo-
rem 2.14, we may pass to a subsequence and find isometric embeddings ϕi : Xi → Z,
i = 1,2, . . . ,∞, into a complete and separable metric space (Z,dZ) such that
(ϕi)∗μi → (ϕ∞)∗μ∞ in W1. This reduces the lemma to the following lemma. �

Lemma 2.19 Consider a complete and separable metric space (X,d) and consider
probability measures μi ∈ P(X), i = 1,2, . . . ,∞, with μi → μ∞ in W1. Then the
following holds:
(a) Var(μ∞) ≤ lim infi→∞ Var(μi).
(b) For any ε ∈ (0,1], r > 0, we have b

(X,d,μ∞)
r (ε) ≥ lim supi→∞ b

(X,d,μi)
r (ε).
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Proof Assertion (a) is clear. For Assertion (b) fix some ε ∈ (0,1], r > 0 and suppose
that the assertion was false. Then we can find a b > 0 such that after passing to a
subsequence we have for all i

μi({x ∈ X : μi(D(x, εr)) < b}) ≤ ε, (2.4)

but

μ∞({x ∈ X : μ∞(D(x, εr)) < b}) > ε. (2.5)

Since

lim
r ′↘εr

μ∞({x ∈X : μ∞(D(x, r ′)) < b})

= μ∞({x ∈ X : lim
r ′↘εr

μ∞(D(x, r ′)) < b})

= μ∞({x ∈ X : μ∞(D(x, εr)) < b}) > ε,

we can choose r ′ > εr such that

μ∞({x ∈ X : μ∞(D(x, r ′)) < b}) > ε.

Similarly, since

lim
b′↗b

μ∞({x ∈X : μ∞(D(x, r ′)) < b′}) = μ∞({x ∈ X : μ∞(D(x, r ′)) < b}) > ε,

we can choose b′ < b such that

μ∞({x ∈X : μ∞(D(x, r ′)) < b′}) > ε. (2.6)

Next, we claim that for large i

{x ∈X : μ∞(D(x, r ′)) < b′} ⊂ {x ∈ X : μi(D(x, εr)) < b}. (2.7)

To see this, let α > 0 be some small constant whose value we will determine later and
choose i large enough such that we can find a coupling qi between μi,μ∞ with

ˆ

X×X

d(x, y) dqi(x, y) ≤ α.

Suppose that for some x ∈ X we have μ∞(D(x, r ′)) < b′, but μi(D(x, εr)) ≥ b.
Then

qi

(
D(x, εr)× (X \D(x, r ′))

)

≥ qi

(
D(x, εr)× (X \D(x, r ′))

)− qi

(
(X \D(x, εr))×D(x, r ′)

)

= qi(D(x, εr)×X)− qi(X ×D(x, r ′))

= μi(D(x, εr))−μ∞(D(x, r ′)) > b − b′
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and therefore

0 < (r ′ − εr)(b − b′) ≤
ˆ

D(x,εr)×(X\D(x,r ′))
d(x, y) dqi(x, y) ≤ α.

So if α < (r ′ − εr)(b − b′), then we obtain the desired contradiction, which proves
(2.7).

Next note that S := {x ∈X : μ∞(D(x, r ′)) < b′} is open. So for any A < ∞ the
function fA : X → R defined by fA(x) := min{Ad(x,X \ S),1} is A-Lipschitz and
{fA > 0} = S. It follows that

lim inf
i→∞ μi(S) ≥ lim inf

i→∞

ˆ

X

fA dμi =
ˆ

X

fA dμ∞.

Letting A→∞ implies

lim inf
i→∞ μi(S) ≥ μ∞(S).

Combining this with (2.4), (2.7), (2.6) implies that

ε ≥ lim inf
i→∞ μi({x ∈X : μi(D(x, εr)) < b}) ≥ lim inf

i→∞ μi(S) ≥ μ∞(S) > ε,

which produces the desired contradiction. �

The following theorem will be important throughout this paper. Compare also with
[29, Proposition 7.1], [51, Theorem 3.16]

Theorem 2.20 (Mr (V , b), dGW1) is compact.

Proof Due to Theorem 2.14 and Lemma 2.18, we only need to establish total bound-
edness. This is a consequence of the following lemma. �

Lemma 2.21 For any r,V ,α > 0, b : (0,1] → (0,1] there is an N(r,V, b,α) < ∞
such that for any metric measure space (X,d,μ) representing an isometry class
in Mr (V , b) there is a finite subset X′ ⊂ suppX and a measure μ′ ∈ P(X) with
suppμ′ ⊂ X′ such that

dGW1

(
(X,d,μ), (X′, d|X′,μ′)

) ≤ dW1(μ,μ′) ≤ αr

and such that (X′, d|X′) has diameter ≤ Nr , #X′ ≤ N and μ′({x′}) is a multiple of
N−1 for all x′ ∈ X′.

Proof After rescaling, we may assume without loss of generality that r = 1. Fix
α,V > 0, b : (0,1]→ (0,1] and let ε > 0, N < ∞ be constants whose values we will
determine later. Consider a metric measure space (X,d,μ) representing an isome-
try class in M1(V , b). Choose a maximal set of points {x1, . . . , xm} ⊂ X with the
property that the closed balls D(xi, ε) are pairwise disjoint and

μ(D(xi, ε)) ≥ b(ε).
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Then m ≤ (b(ε))−1. Choose moreover x0 ∈ X such that Var(δx0 ,μ) ≤ Var(μ) ≤ V .
Set X′ := {x0, x1, . . . , xm}.

Consider the subset

Y :=
m⋃

i=1

D(xi,3ε).

Then for any x ∈X \ Y we have μ(D(x, ε)) < b(ε). It follows that

μ(X \ Y) ≤ ε.

For any i, j = 1, . . . ,m, i �= j , we have

d(xi, xj )− 2ε ≤ b(ε)−2
ˆ

D(xi ,ε)×D(xj ,ε)

d(yi, yj ) dμ(yi)dμ(yj ) ≤ b(ε)−2V 1/2,

d(x0, xi)− ε ≤ b(ε)−1
ˆ

D(xi ,ε)

d(x0, yi)dμ(yi) ≤ b(ε)−1V 1/2,

which implies that X′ has diameter ≤ (b(ε))−2V 1/2 + 2ε.
Next, define

Yi := D(xi,3ε) \
i−1⋃

j=1

D(xj ,3ε).

Note that

Y = Y1 ∪̇ . . . ∪̇ Ym.

Set

ai :=
{

μ(X \ Y) if i = 0

μ(Yi) if 1 ≤ i ≤ m
.

Then a0 + · · · + am = 1. Choose numbers b0, . . . , bm ∈ [0,1] that are multiples of
N−1 and satisfy |ai − bi | ≤ N−1 and b0 + · · · + bm = 1. We now define

μ′ := b0δx0 + · · · + bmδxm

and

μ′′ := a0δx0 + · · · + amδxm.

We have

dGW1((X,d,μ), (X′, d|X′,μ′)) ≤ dW1(μ,μ′) ≤ dW1(μ,μ′′)+ dW1(μ
′′,μ′)

≤ dW1(μ,μ′′)+ ((b(ε))−2V + 2ε)N−1.
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The last term can be made ≤ α/2 if N ≥ N(V,b, ε,α).
It remains to derive a bound dW1(μ,μ′′). For this purpose, consider the following

coupling q between μ,μ′′:

q := μ|X\Y ⊗ δx0 +
m∑

i=1

μ|Yi
⊗ δxi

.

Then

ˆ

X×X

d(y, z) dq(y, z) =
ˆ

X\Y
d(y, x0) dμ(y)+

m∑

i=1

ˆ

Yi

d(y, xi) dμ(y)

≤ μ1/2(X \ Y)

(ˆ

X\Y
d2(y, x0) dμ(y)

)1/2

+ 3ε ≤ ε1/2V 1/2 + 3ε.

So if ε ≤ ε(V,α), then dW1(μ,μ′′)≤ α/2, which finishes the proof. �

3 Metric flows

In this section we introduce the notion of a metric flow, which is a synthetic version
of a (super) Ricci flow, as well as associated terminology. We will discuss some basic
properties of metric flows and present some examples and basic constructions. We
will also explain how to convert super Ricci flows and singular Ricci flows into metric
flows.

For the remainder of this paper, we will denote by � : R→ (0,1) the antideriva-
tive with the following properties:

�′(x) = (4π)−1/2e−x2/4, lim
x→−∞�(x) = 0 lim

x→∞�(x) = 1. (3.1)

We recall that (x, t) �→ �(t−1/2x) is a solution to the 1-dimensional heat equation
with initial condition χ[0,∞).

3.1 Definition of a metric flow

Let us first state the definition of a metric flow. To motivate the following defini-
tion, note that a metric flow can be thought of as a synthetic version of a Ricci flow,
in the same way as metric space can be thought of as a synthetic version of a Rie-
mannian manifold. Roughly speaking, a metric flow consists of a time-dependent
family of metric spaces, corresponding to the length spaces of time-slices of a Ricci
flow. It also consists of a family of probability measures (called conjugate heat ker-
nel measures), corresponding to kernels of the conjugate heat equation on the Ricci
flow. Most importantly, a metric flow does not contain any information that can be
used to explicitly relate points in different time-slices; in other words, the concept of
worldlines is not available in a metric flow. Instead, we will often use the conjugate
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heat kernel measures to establish a relationship between different time-slices. The
following definition, lists relatively basic compatibility properties between the metric
spaces and the conjugate heat kernel measures, such as a reproduction formula, for
example. Probably the least intuitive property among these is Property (6), which is
motivated by [7, Theorem 4.1] and will often be used to establish a quantitative form
of absolute continuity between different conjugate heat kernel measures.

Definition 3.1 (Metric flow) Let I ⊂R be a subset. A metric flow (over I ) is a tuple
of the form

(X , t, (dt )t∈I , (νx;s)x∈X ,s∈I,s≤t(x)) (3.2)

with the following properties:
(1) X is a set consisting of points.
(2) t : X → I is a map called time-function. Its level sets Xt := t−1(t) are called

time-slices and the preimages XI ′ := t−1(I ′), I ′ ⊂ I , are called time-slabs.
(3) (Xt , dt ) is a complete and separable metric space for all t ∈ I .
(4) νx;s ∈ P(Xs) for all x ∈ X , s ∈ I , s ≤ t(x). For any x ∈ X the family

(νx;s)s∈I,s≤t(x) is called the conjugate heat kernel at x.
(5) νx;t(x) = δx for all x ∈X .
(6) For all s, t ∈ I , s < t , T ≥ 0 and any measurable function us : Xs →[0,1] with

the property that if T > 0, then us = � ◦ fs for some T −1/2-Lipschitz func-
tion fs : Xs → R (if T = 0, then there is no additional assumption on us ), the
following is true. The function

ut :Xt −→R, x �−→
ˆ

Xs

us dνx;s (3.3)

is either constant or of the form ut = � ◦ ft , where ft : Xt → R is (t − s +
T )−1/2-Lipschitz.

(7) For any t1, t2, t3 ∈ I , t1 ≤ t2 ≤ t3, x ∈Xt3 we have the reproduction formula

νx;t1 =
ˆ

Xt2

ν·;t1dνx;t2 ,

meaning that for any Borel set S ⊂Xt1

νx;t1(S) =
ˆ

Xt2

νy;t1(S)dνx;t2(y).

Note that by Properties (5), (6) the integrand is continuous if t1 < t2 and mea-
surable if t1 = t2.

We will often write X instead of (3.2). We will also frequently be dealing with
a number of different metric flows at once, which will be denoted by X i ,X ′,X ∗
etc. In this case the objects dt , νx;s will inherit the decorations. So, for example,
di
t , ν

i
x;s will denote the objects associated with a metric flow denoted by X i . We will

often omit decorations on the time-function t, as there is no chance of confusion.
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We will frequently also use the following shorthand notations for time slabs: X<t :=
XI∩(−∞,t), X≤t :=XI∩(−∞,t], etc.

Remark 3.2 We don’t require that the time-slices (Xt , dt ) are length spaces. For more
details see Sect. 8.

We don’t require that I is an interval, although this case will be of most interest
to us. We have kept Definition 3.1 more general, as it gives us some more flexibility
later. For example, it allows us to restrict metric flows defined over intervals I ⊂ R

to smaller subsets I ′ ⊂ I . It will also be helpful to construct certain metric flows first
over a countable dense subset I ′ ⊂ I ⊂ R and then pass to the future completion,
which is defined over I ; see Sect. 4.4.

In Sect. 3.7 we will see that every super Ricci flow (gt )t∈I on a compact man-
ifold M and over some time-interval I gives rise to a metric flow of the form
X = M × I . The metric dt equals the length metric of gt and the conjugate heat
kernels (νx,t;s)s∈I,s≤t(x) equal the measures K(x, t; ·, s)dgs associated to the conju-
gate heat kernel at (x, t).

Due to Lemma 2.1(b) the case T = 0 in Definition 3.1(6) follows from T > 0 by
a limit argument.

Lemma 3.3 In Definition 3.1(6), we may assume that T > 0 and that u takes values
in (0,1). In this case, we may omit the option that ut is constant.

The next lemma states that Definition 3.1 is invariant under parabolic rescaling
by some λ > 0 and a time-shift by some t0 ∈R.

Lemma 3.4 Let λ > 0, t0 ∈R. If (3.2) is a metric flow, then so is

(X , λ2
t+ t0, (dλ2t+t0

)t∈I , (νx;λ2s+t0
)x∈X ,s∈I,s≤t(x)).

Next, we define what we mean by a restriction of a metric flow to a subset of times
I ′ ⊂ I .

Definition 3.5 (Restriction of a metric flow) If X is a metric flow over I ⊂ R and
I ′ ⊂ I , then the restriction of X to I ′ is given by

(
XI ′ , t|XI ′ , (dt )t∈I ′ , (νx;s)x∈XI ′ ,s∈I ′,s≤t(x)

)
. (3.4)

We will often write XI ′ instead of (3.4).

Lastly, we consider maps between metric flows. We introduce the following con-
vention. If X is a metric flow, U ⊂ X and φ : U → Y is some map, then we define
φt := φ|U∩Xt

: Ut := U ∩Xt → Y . Let X i be two metric flows over I i ⊂R, i = 1,2,
U ⊂X 1 and consider a map φ :U →X 2.

Definition 3.6 We say that φ is:
(1) time-preserving if t(φ(x)) = t(x) for all x ∈ U ,
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(2) a-time-equivariant if there is some t0 ∈ R such that t(φ(x)) = at(x) + t0 for
all x ∈U ,

(3) time-slice-preserving if for every t1 ∈ I 1 there is some t2 ∈ I 2 such that for any
x ∈ U ∩X 1

t1
we have t(φ(x)) ∈X 2

t2
.

If φ is time-preserving, then we will often express it as a family of maps (φt :
Ut := U ∩X 1

t → X 2
t )t∈I 1 . We now define the notion of an isometry between metric

flows.

Definition 3.7 (Isometry between metric flows) Consider two metric flows X i over
I ⊂R, i = 1,2. A map φ :X 1 →X 2 given by a family of maps (φt := φ|X 1

t
:X 1

t →
X 2

t )t∈I is called a flow isometry over I if:
(1) φt : (X 1

t , d1
t ) → (X 2

t , d2
t ) is a metric isometry for all t ∈ I .

(2) (φs)∗ν1
x;s = ν2

φ(x);s for all x ∈X 1, s ∈ I , s ≤ t(x).

If X i are metric flows over I i ⊂R and I ′ ⊂ I 1 ∩ I 2, then a flow isometry φ :X 1
I ′ →

X 2
I ′ is called a flow isometry between X 1,X 2 over I ′. Moreover, if I 1 \ I ′ and

I 2 \ I ′ are sets of measure zero, then a flow isometry between X 1,X 2 over I ′ is
called an almost everywhere flow isometry between X 1,X 2. If I 1 ⊂ I 2 and φ is a
flow isometry between X 1,X 2

I 1 , then we also call φ a flow isometric embedding.

3.2 (Conjugate) Heat flows on a metric flow

We will now define the analog of solutions to the (forward) heat equation and the
(backward) conjugate heat equation on a super Ricci flow background. For this pur-
pose let X be a metric flow defined over some I ⊂R and let I ′ ⊂ I be some subset.

Definition 3.8 (Heat flow) A function u : XI ′ → R, often expressed as a family of
functions (ut :Xt →R)t∈I ′ , is called a heat flow if for all x ∈X , s ∈ I ′, s ≤ t(x) the
function us is integrable with respect to dνx;s and

ut (x) =
ˆ

Xs

us dνx;s . (3.5)

Remark 3.9 If us is bounded for some s ∈ I ′, then by Definition 3.1(6), the func-
tions us′ for s′ > s are automatically bounded and continuous. So the function us′ is
automatically integrable with respect to dνx;s′ if s′ > s.

We have the following forward existence and uniqueness result:

Proposition 3.10 Assume that t0 := inf I ′ ∈ I ′ and consider a bounded measurable
function ũ :Xt0 →R. Then there is a unique heat flow (ut )t∈I ′ with ut0 = ũ.

Proof Define

ut (x) :=
ˆ

Xt0

ũ dνx;t0 .

Then (3.5) follows using the reproduction formula, Definition 3.1(7). �
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The next result summarizes basic properties of heat flows.

Proposition 3.11 If (ut )t∈I ′ is a heat flow on X and s < t , s, t ∈ I ′, then the following
holds:
(a) Any linear combination of finitely many heat flows is again a heat flow.
(b) If us ≤ a for some a ∈R, then ut ≤ a with equality at some point x ∈ Xt if and

only if us ≡ a on suppνx;s .
(c) If us ≥ a for some a ∈R, then ut ≥ a with equality at some point x ∈ Xt if and

only if us ≡ a on suppνx;s .

Proof Assertions (a)–(c) are direct consequences of Definitions 3.1, 3.8. �

We also have the following gradient-type estimates:

Proposition 3.12 If (ut )t∈I ′ is a heat flow on X and s < t , s, t ∈ I ′, T ≥ 0, then the
following holds:
(a) Assume that T > 0 and that us = a(� ◦ fs) for some a ∈ R and some T −1/2-

Lipschitz function fs :Xs →R, or that T = 0 and 0 ≤ us ≤ a. Then ut = a(� ◦
ft ) for some (t − s + T )−1/2-Lipschitz function ft :Xt →R.

(b) If us is L-Lipschitz for some L ≥ 0, then so is ut .

Proof Assertion (a) follows from Definitions 3.1(6). For Assertion (b), note first that
we can express us as the limit of bounded L-Lipschitz functions. So assume from now
on that |us | ≤ C < ∞. So for sufficiently small ε > 0 we can write 1

2 +εus = �◦fε,s ,
where fε,s → 1

2 uniformly for ε → 0. Moreover, since �′(0) = (4π)−1/2, for any
fixed δ > 0 the function fε,s : Xs → R is εL((4π)1/2 + δ)-Lipschitz for sufficiently
small ε. Therefore, by Assertion (a) for any t > s, t ∈ I ′, we have 1

2 + εut = � ◦ fε,t

for some εL((4π)1/2 + δ)-Lipschitz function fε,t : Xt → R. Since �′ ≤ (4π)−1/2,
this implies that ut is L(1 + (4π)−1/2δ)-Lipschitz for any δ > 0. Letting δ → 0 im-
plies the desired result. �

Next we define the equivalent notion of a solution to the conjugate heat equation,
which will concern probability measures:

Definition 3.13 (Conjugate heat flow) A family of probability measures (μt ∈
P(Xt ))t∈I ′ is called a conjugate heat flow if for all s, t ∈ I ′, s ≤ t we have

μs =
ˆ

Xt

νx;s dμt (x). (3.6)

Similarly as before we obtain the following backwards existence and uniqueness
result.

Proposition 3.14 Assume that t0 := sup I ′ ∈ I ′ and consider a probability measure
μ̃ ∈ P(Xt0). Then there is a unique conjugate heat flow (μt )t∈I ′ with μt0 = μ̃.
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Proof Define

μt :=
ˆ

Xt0

νx;t dμ̃(x).

Then (3.6) follows using the reproduction formula, Definition 3.1(7). �

We summarize basic properties of conjugate heat flows:

Proposition 3.15 The following is true:
(a) Every finite convex combination of conjugate heat flows is again a conjugate

heat flow.
(b) The conjugate heat kernel (νx;s)s∈I,s≤t(x) based at any x ∈ X is a conjugate

heat flow.
(c) If (μ1

t )t∈I ′ , (μ2
t )t∈I ′ are conjugate heat flows and μ1

t0
≤ Aμ2

t0
for some t0 ∈ I ′,

A > 0, then μ1
t ≤ Aμ2

t for all t ≤ t0, t ∈ I ′.
(d) Consider a heat flow (ut )t∈I ′ and a conjugate heat flow (μt )t∈I ′ over the same

I ′ ⊂ I . If ut is integrable with respect to dμt for some t ∈ I ′, then the same is
true for all t ∈ I ′ and the integral

´
Xt

ut dμt is constant in t ∈ I ′.

Proof Assertions (a)–(c) are clear. For Assertion (d) let t1, t2 ∈ I ′, t1 < t2. If uti is
integrable with respect to dμti for some i = 1,2, then

ˆ

Xt1

ut1dμt1 =
ˆ

Xt2

ˆ

Xt1

ut1dνx;t1dμt2(x) =
ˆ

Xt2

ut2dμt2,

which implies integrability of uti with respect to dμti for both i = 1,2. �

The following proposition allows us to compare two conjugate heat flows.

Proposition 3.16 Consider two conjugate heat flows (μi
t )t∈I ′ , i = 1,2, defined over

the same subset I ′ ⊂ I . Then the following is true:
(a) For any t ∈ I ′ with t �= sup I ′, the measures μ1

t ,μ
2
t are absolutely continuous

with respect to each other.
(b) The quantity d

Xt

W1
(μ1

t ,μ
2
t ) is non-decreasing in t .

(c) For any x1, x2 ∈Xt the quantity d
Xs

W1
(νx1;s , νx2;s) is non-decreasing in s and we

have

d
Xs

W1
(νx1;s , νx2;s)≤ dt (x1, x2).

Remark 3.17 By [46] we have monotonicity of the W2-Wasserstein distance between
two conjugate heat flows on a super Ricci flow. It is an interesting question whether
the same holds on a metric flow as well.

Proof For Assertion (a) consider some t ∈ I ′ with t �= sup I ′ and choose t ′ ∈ I ′ with
t ′ > t . Consider a measurable S ⊂Xt with μ1

t (S) = 0. Recall that

μi
t (S) =

ˆ

Xt ′
νx;t (S) dμi

t ′(x). (3.7)
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If νx;t (S) > 0 for some x ∈Xt ′ , then by Definition 3.1(6) we have νx;t (S) > 0 for all
x ∈Xt ′ , which contradicts (3.7) for i = 1. So νx;t (S) = 0 for all x ∈Xt ′ and therefore
μ2

t (S) = 0.
Assertion (b) follows by combining Propositions 2.5, 3.12(b), 3.15(d) as in the

proof3 of [7, Lemma 2.7]. More specifically, let t1, t2 ∈ I ′, t1 ≤ t2 and consider a
bounded 1-Lipschitz function ũ : Xt1 → R. Let u : X≥t1 → R be the heat flow with
ut1 = ũ. Then ut2 is also 1-Lipschitz and we have

ˆ

Xt1

ũ dμ1
t1
−
ˆ

Xt1

ũ dμ2
t1
=
ˆ

Xt1

ut1 dμ1
t1
−
ˆ

Xt1

ut1 dμ2
t1

=
ˆ

Xt2

ut2 dμ1
t2
−
ˆ

Xt2

ut2 dμ2
t2
≤ d

Xt2
W1

(μ1
t2
,μ2

t2
).

Taking the supremum over all such ũ implies Assertion (b).
Assertion (c) is a direct consequence of Assertion (b). �

3.3 Sets of measure zero and the support of a metric flow

Let X be a metric flow over some I ⊂ R. The following is a direct consequence of
Proposition 3.16(a):

Proposition 3.18 Consider two conjugate heat flows (μi
t )t∈I ′ , i = 1,2, defined over

the same subset I ′ ⊂ I and let t ∈ I ′, t < sup I ′.
(a) For any subset S ⊂Xt we have μ1

t (S) = 0 if and only if μ2
t (S) = 0.

(b) For any subset S ⊂Xt we have μ1
t (S) = 1 if and only if μ2

t (S) = 1.
(c) suppμ1

t = suppμ2
t .

We can therefore make the following definitions:

Definition 3.19 Suppose that t < sup I . We say that S ⊂ Xt is a subset of measure
zero if μt(S) = 0 for one (and therefore any) conjugate heat flow (μt ′)t ′∈I ′ , I ′ ⊂ I

on X with t < sup I ′. We say that S ⊂ Xt is a subset of full measure if Xt \ S is a
subset of measure zero.

Definition 3.20 The support suppXt ⊂ Xt of X at some time t ∈ I is defined as
follows. If t < sup I , then suppXt is defined as the subset S ⊂ Xt with the property
that S = suppμt for any conjugate heat flow (μt ′)t ′∈I ′ , I ′ ⊂ I on X with t < sup I ′.
If t = sup I , then suppXt := Xt . We write suppX := ⋃

t∈I suppXt . If suppX = X ,
then X is said to have full support and if suppXt =Xt for some t ∈ I , then X is said
to have full support at time t .

Proposition 3.18 also implies that for any metric flow X
(

suppX , t|suppX , (dt |suppXt
)t∈I , (νx;s |suppXs

)x∈suppX ,s∈I,s≤t(x)

)

3We remark that the proof in the smooth case is folklore, so other references could be used as well.
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is a metric flow of full support, which we will abbreviate by suppX . For any x ∈X \
suppX the restricted conjugate heat kernel (νx;s |suppXs

)s∈I,s<t(x) is still a conjugate
heat flow on suppX .

3.4 H -concentration

We now introduce a property called H -concentration, which will be central to anal-
ysis of metric flows, as it ensures reasonable compactness properties of the space
metric flows. It has been shown in [7] that it is satisfied by super Ricci flows for

H = Hn := (n−1)2π2

2 + 4. It will be the only property in this paper that is sensitive to
the dimension.

In the following let X be a metric flow over I ⊂R and recall the definition of the
variance Var from Definition 2.6.

Definition 3.21 (H -Concentration) X is called H -concentrated if for any s ≤ t ,
s, t ∈ I , x1, x2 ∈Xt

Var(νx1;s , νx2;s) ≤ d2
t (x1, x2)+H(t − s). (3.8)

Remark 3.22 If s = t , then we have equality in (3.8), as Var(δx1 , δx2) = d2
t (x1, x2).

Moreover, (3.8) is invariant under parabolic rescaling and time-shifts. So if X is H -
concentrated, then so is any other metric flow obtained from X by parabolic rescaling
and time-shifts.

We record that H -concentration implies the following monotonicity property;
compare with [7, Corollary 3.7].

Proposition 3.23 If X is H -concentrated, then for any two conjugate heat flows
(μ1

t )t∈I ′ , (μ2
t )t∈I ′ , I ′ ⊂ I , the function

t �−→ Var(μ1
t ,μ

2
t )+Ht, t ∈ I ′

is non-decreasing. In particular, if Var(μ1
t0
,μ2

t0
) < ∞ for some t0 ∈ I ′, then

Var(μ1
t ,μ

2
t ) < ∞ for all t ≤ t0, t ∈ I ′. Moreover, for fixed t ∈ I , x1, x2 ∈ Xt the

following function is non-decreasing

s �−→ Var(νx1;s , νx2;s)+H(t − s), s ≤ t, s ∈ I ′.

Proof Let s′ ≤ s′′ ≤ t , s′, s′′ ∈ I ′. By Definition 3.13 we have

Var(μs′ ,μs′) =
ˆ

Xs′′

ˆ

Xs′′
Var(νy1;s′ , νy2;s′)dμs′′(y1)dμs′′(y2)

≤
ˆ

Xs′′

ˆ

Xs′′

(
d2
s′′(y1, y2)+H(s′′ − s′)

)
dμs′′(y1)dμs′′(y2)

= Var(μs′′ ,μs′′)+H(s′′ − s′).

�
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As in [7, Definition 3.10] we define:

Definition 3.24 (H -center) A point z ∈ Xs is called an H -center of some point x ∈
Xt if s ≤ t and

Var(δz, νx;s) ≤ H(t − s).

We recall that by Lemma 2.8 for any H -center z ∈Xs of a point x ∈Xt , we have

d
Xs

W1
(δz, νx;s)≤

√
Var(δz, νx;s) ≤

√
H(t − s).

The next proposition shows that H -centers always exist in an H -concentrated flow;
compare with [7, Proposition 3.12].

Proposition 3.25 Suppose that X is H -concentrated. Then for every x ∈ Xt and s ∈
I , s ≤ t , there is an H -center z ∈ Xs of x. Furthermore, for any two such H -centers
z1, z2 ∈Xs we have ds(z1, z2) ≤ 2

√
H(t − s).

Proof We have
ˆ

Xs

Var(δz, νx;s)dνx;s(z) = Var(νx;s) ≤ H(t − s),

which implies the first assertion. For the second assertion observe that by Lemma 2.8

ds(z1, z2) =
√

Var(δz1 , δz2)≤
√

Var(δz1 , νx;s)+
√

Var(νx;s , δz2) ≤ 2
√

H(t − s). �

We will also use the following bound (compare with [7, Proposition 3.13]):

Lemma 3.26 If z ∈Xs is an H -center of x ∈Xt , then for all A > 0

νx;s
(
B(z,

√
AH(t − s))

)≥ 1 − 1

A
.

3.5 P ∗-parabolic neighborhoods

We now generalize the concept of P ∗-parabolic neighborhoods to metric flows; see
[7, Sect. 9]. To motivate the following definition, recall that in a conventional Ricci
flow (M, (gt )t∈I ), it is common to work with the concept of parabolic neighborhoods
of the form

P(x0, t0;A,−T −, T +) := B(x0, t0,A)× ([t0 − T −, t0 + T +] ∩ I
) ⊂ M × I.

However, this definition relies on the product structure of the spacetime M × I , or,
in other words, the concept of worldlines. As these concepts are not available for
metric flows, we need to define parabolic neighborhoods in a different way. Instead
of relating different time-slices by worldlines, we use the W1-Wasserstein distance
between conjugate heat kernel measures to decide whether a point is contained in a
parabolic neighborhood or not.

In the following let X be a metric flow over some subset I ⊂R.
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Definition 3.27 (P ∗-parabolic neighborhood) Consider a point x ∈ X and suppose
that A,T −, T + ≥ 0 such that t(x) − T − ∈ I . The P ∗-parabolic neighborhood
P ∗(x,A;−T −, T +) ⊂ X is defined as the set of points x′ ∈ X with the property
that

t(x′) ∈ [t(x)− T −, t(x)+ T +], d
Xt(x)−T−
W1

(νx;t(x)−T − , νx′;t(x)−T −) < A.

If T − = 0 or T + = 0, then we will often write P ∗(x;A,T +) or P ∗(x;A,−T −)

instead of P ∗(x;A,−T −, T +).

The following simplified definition will often suffice for our purposes.

Definition 3.28 (P ∗-parabolic ball) Consider a point x ∈ X and suppose that r > 0
such that t(x)− r2 ∈ I . The P ∗-parabolic ball at x of radius r is defined as

P ∗(x; r) := P ∗(x; r,−r2, r2).

Similarly, we define the backward (−) and forward (+) P ∗-parabolic balls

P ∗−(x; r) := P ∗(x; r,−r2), P ∗+(x; r) := P ∗(x; r, r2).

The following proposition generalizes [7, Proposition 9.4] to metric flows; its
proof carries over to the setting of metric flows.

Proposition 3.29 The following holds for any x1 ∈Xt1, x2 ∈Xt2 as long as the corre-
sponding P ∗-parabolic neighborhoods or balls are defined:
(a) For any A ≥ 0 we have

P ∗(x1;A,0,0)= B(x1,A).

(b) If 0 ≤ A1 ≤ A2, 0 ≤ T ±
1 ≤ T ±

2 , then

P ∗(x1;A1,−T −
1 , T +

1 )⊂ P ∗(x1;A2,−T −
2 , T +

2 ).

(c) If A,T ± ≥ 0, and x1 ∈ P ∗(x2;A,−T −, T +), then

x2 ∈ P ∗(x1;A,−(T − + T +), T −)

and

P ∗(x2;A,−T −, T +) ⊂ P ∗(x1;2A,−(T − + T +), T − + T +).

Likewise, if r > 0 and x1 ∈ P ∗(x2; r), then

x2 ∈ P ∗(x1;
√

2r) and P ∗(x2; r) ⊂ P ∗(x1;2r).

(d) If A1,A2, T
±
1 , T ±

2 ≥ 0 and x1 ∈ P ∗(x2;A2,−T −
2 , T +

2 ), then

P ∗(x1;A1,−T −
1 , T +

1 ) ⊂ P ∗(x2;A1 +A2,−(T −
1 + T −

2 ), T +
1 + T +

2 ).
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Likewise, if r1, r2 > 0 and x1 ∈ P ∗(x2; r2), then

P ∗(x1; r1)⊂ P ∗(x2; r1 + r2).

The same containment relationship also holds for the forward or backward
parabolic balls, if t1 ≥ t2 or t1 ≤ t2, respectively.

(e) If r1, r2 > 0 and P ∗(x1; r1) ∩ P ∗(x2; r2) �= ∅, then P ∗(x1; r1) ⊂ P ∗(x2;2r1 +
r2). Again, the same containment relationship also holds for the forward or
backward parabolic balls, if t1 ≥ t2 or t1 ≤ t2, respectively.

Using P ∗-parabolic balls, we can define the Hausdorff measure and dimension as
usual. Suppose in the following that I ⊂R is an interval.

Definition 3.30 (Hausdorff measure and dimension) For any S ⊂ X and d ≥ 0 we
define its d-dimensional ∗-Hausdorff measure by

H∗d(S) := lim inf
r→∞

{ ∞∑

i=1

rd
i : there are xi ∈X , 0 < ri ≤ r

such that S ⊂
∞⋃

i=1

P ∗(xi, ri)

}
.

The ∗-Hausdorff dimension of any subset S ⊂X is defined as

dimH∗ S := inf
{
d ≥ 0 : H∗d(S) < ∞}

.

Similarly, we can define the Minkowski dimension:

Definition 3.31 (Minkowski dimension) For any subset S ⊂X set

Ncovering(S, r) := min

{
N ≥ 0 : there are x1, . . . , xN ∈X with S ⊂

N⋃

i=1

P ∗(xi, r)

}
.

Then the ∗-Minkowski dimension of S is defined as

dimM∗ S := sup
x0,A,T ±

lim sup
r→0

logNcovering(S ∩ P ∗(x0;A,T −, T +), r)

log(1/r)
,

where the first supremum is taken over all x0,A,T ± with the property that
P ∗(x0;A,T −, T +)⊂X is defined.

As usual, it follows that

dimH∗ S ≤ dimM∗ S.
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3.6 The natural topology on a metric flow

Let X be a metric flow over some subset I ⊂R. We will define the following topology
on X , which we will call the natural topology:

Definition 3.32 A subset U ⊂ X is called open if for any x ∈ U there is an r > 0
such that for all r ′ ∈ (0, r] the following is true: If t(x)− (r ′)2 ∈ I (so P ∗(x, r ′) can
be defined), then P ∗(x, r ′) ⊂ U .

Remark 3.33 If x has the property that there is a sequence of times ti ∈ I with ti ↗
t(x), then we may simplify Definition 3.32 and only require that P ∗(x, r ′) ⊂ U for
small enough r ′. On the other hand, if t ∈ I and there is no sequence ti ∈ I with ti ↗
t , i.e. sup(I ∩ (−∞, t)) < t , then the time-slice Xt consists of isolated points. So, for
example, this is the case if I is a left-closed interval I ⊂R and t = tmin := min I . This
is somewhat nonintuitive and could be fixed by modifying Definition 3.32. However,
we will mainly be interested in the case in which I is left-open and in particularly in
which I = (−∞,0].
Proposition 3.34 Definition 3.32 defines a topology on X with the following proper-
ties:
(a) t :X →R is continuous.
(b) If t ∈ I and sup(I ∩(−∞, t)) = t , then the inclusion map Xt →X is continuous,

where we equip Xt with the topology induced by the metric dt and X with the
natural topology.

(c) Suppose that x∞ ∈ Xt∞ and sup(I ∩ (−∞, t∞)) = t∞. Then for any sequence
xi ∈Xti we have xi → x∞ ∈Xt∞ with respect to the natural topology if and only
if ti → t∞ and for any t ′ < t∞ we have

d
Xt ′
W1

(νxi ;t ′ , νx∞;t ′)−→ 0.

(d) The P ∗-parabolic neighborhoods P ∗(x, r) are neighborhoods of x if they ex-
ist. Moreover, {P ∗(x, r)}x∈X ,r>0 together with the one-point subsets {x} for all
points x ∈X with the property that sup(I ∩ (−∞, t(x))) < t(x) form a basis of
the natural topology.

(e) Consider two points x1, x2 ∈X . The following are equivalent:
(e1) There are neighborhoods xi ∈Ui ⊂X , i = 1,2, such that U1 ∩U2 = ∅.
(e2) There is a neighborhood x1 ∈U1 ⊂X such that x2 /∈ U1.
(e3) The conjugate heat kernels (νxi ;t )t<t(xi ) restricted to I ∩ (−∞, t(xi)), i =

1,2, are not the same.
(f) If I is an interval, then any uniformly bounded heat flow (ut )t∈I ′ over a left-open

subinterval I ′ ⊂ I , viewed as a function u :XI ′ →R is continuous.
Moreover, if X is H -concentrated for some H < ∞, then the following holds:
(g) Suppose that x∞ ∈ Xt∞ and ti ↗ t∞, ti ∈ I . Then for any sequence xi ∈ Xti of

H -centers of x∞ we have xi → x∞ and d
Xti

W1
(νx∞;ti , δxi

) → 0.
(h) Suppose that x∞ ∈ suppXt∞ and ti ↘ t∞, ti ∈ I . Then there are points xi ∈Xti

such that d
Xt∞
W1

(δx∞ , νxi ;t∞) → 0. In particular, if sup(I ∩(−∞, t∞)) = t∞, then
xi → x∞ with respect to the natural topology.
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(i) If I is a left-open interval, then X is separable, i.e. there is a countable subset
S ⊂X that is dense with respect to the natural topology.

Remark 3.35 In general, X may not be Hausdorff and the map Xt → X may not be
open. See Example 3.49 in Sect. 3.9.

Proof of Proposition 3.34 To see that Definition 3.32 defines a topology on X , note
that P ∗(x, r1) ⊂ P ∗(x, r2) if r1 ≤ r2. To see Assertion (d), we claim that if
P ∗(x, r) is defined, then P ∗(x, r)∩X(t(x)−r2,t(x)+r2) is open. Let x′ ∈ P ∗(x, r) with
|t(x′) − t(x)| < r2. Choose r ′ > 0 small enough such that |t(x′) − t(x)| + r ′2 < r2

and d
X

t(x)−r2

W1
(νx;t(x)−r2 , νx′;t(x)−r2) + r ′ < r . We claim that P ∗(x′, r ′) ⊂ P ∗(x, r).

To see this, note that for any x′′ ∈ P ∗(x′, r ′) ∩ X(t(x)−r2,t(x)+r2) we have t(x′′) ∈
(t(x)− r2, t(x)− r2) and by Proposition 3.16(b)

d
X

t(x)−r2

W1
(νx;t(x)−r2 , νx′′;t(x)−r2)

≤ d
X

t(x)−r2

W1
(νx;t(x)−r2 , νx′;t(x)−r2)+ d

X
t(x)−r2

W1
(νx′;t(x)−r2, νx′′;t(x)−r2)

≤ d
X

t(x)−r2

W1
(νx;t(x)−r2 , νx′;t(x)−r2)+ d

X
t(x)−r′2

W1
(νx′;t(x)−r ′2, νx′′;t(x)−r ′2)

≤ d
X

t(x)−r2

W1
(νx;t(x)−r2 , νx′;t(x)−r2)+ r ′ < r.

So x′′ ∈ P ∗(x, r)∩X(t(x)−r2,t(x)+r2).
Assertion (a) is clear. For Assertion (b) note that for any t ∈ I we have B(x, r) ⊂

P ∗(x, r) ∩ Xt(x). Assertions (c), (e) follow using Proposition 3.16(b) and Asser-
tion (d). For Assertion (f) observe that after restricting u to a smaller time-interval,
we may assume that ut is L-Lipschitz for all t ∈ I ′, where L < ∞ is uniform. So if
P ∗(x, r) ⊂XI ′ exists, then for any y ∈ P ∗(x, r) we have for t ′ := t(x)− r2

|u(x)− u(y)| =
∣∣∣∣

ˆ

Xt ′
ut ′ dνx;t ′ −

ˆ

Xt ′
ut ′ dνy;t ′

∣∣∣∣ ≤ Lr.

Next, assume that X is H -concentrated. For Assertion (g) note that if t ′ ≤ ti ,
t ′ ∈ I , then

d
Xt ′
W1

(νxi ;t ′ , νx∞;t ′)≤ d
Xti

W1
(δxi

, νx∞;ti ) ≤
√

H(t∞ − ti ) → 0.

So xi → x∞ by Assertion (c).
For Assertion (h), suppose that x∞ ∈ suppXt∞ , ti ↘ t∞ and fix a conjugate heat

flow (μt )t∈I ′ with [t∞, t1] ∩ I ⊂ I ′, for example μt = νy;t for some y ∈Xt1 . Let r >

0. It suffices to show that for large i there is a point xi ∈Xti with d
Xt∞
W1

(νxi ;t∞ , δx∞)≤
r . To see this, observe that since

ˆ

Xti

νx;t∞(B(x∞, r/2))dμti (x) = μt∞(B(x∞, r/2)) =: c > 0,
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we can find points xi ∈ Xti with νxi ;t∞(B(x∞, r/2)) ≥ c > 0. For any i let zi ∈ Xt∞
be an H -center of xi . Then we have dt∞(zi , x∞) < r/2 or

c(dt∞(zi , x∞)− r/2)2 ≤
ˆ

B(x∞,r/2)

d2(zi , ·)dνxi ;t∞ ≤ Var(δzi
, νxi ;t∞)

≤ H(ti − t∞) → 0.

Therefore,

lim sup
i→∞

d
Xt∞
W1

(νxi ;t∞ , δx∞)≤ lim sup
i→∞

(
d
Xt∞
W1

(νxi ;t∞, δzi
)+ dt∞(zi, x∞)

)

≤ lim sup
i→∞

√
Var(νxi ;t∞, δzi

)+ r/2 ≤ lim sup
i→∞

√
H(ti − t∞)+ r/2 = r/2.

For Assertion (i), let Q ⊂ I be a countable and dense subset. For any t ∈ Q choose
a countable and dense subset St ⊂Xt . Let S := ⋃

t∈Q St ⊂X . To see that S is dense,
consider some point x ∈ X and choose times ti ∈ Q with ti ↗ t(x). Let zi ∈ Xti be
H -centers of x and choose xi ∈ Xti with dti (xi, zi) → 0. Then for any fixed t ′ ∈ I ,
t ′ < t(x) we have if ti ≥ t ′,

d
Xt ′
W1

(νxi ;t ′ , νx;t ′) ≤ d
Xti

W1
(δxi

, νx;ti ) ≤ dti (xi, zi)+ d
Xti

W1
(δzi

, νx;ti )

≤ dti (xi, zi)+
√

H(t(x)− ti )→ 0.

So xi → x∞ by Assertion (c). �

3.7 Super Ricci flows and singular Ricci flows as metric flows

As mentioned before, the most important class of metric flows are Ricci flows, super
Ricci flows and — in dimension 3 — singular Ricci flows [9, 38]. These metric flows
are Hn-concentrated, where Hn only depends on the dimension. We will explain in
the following how these flows can be turned into metric flows.

Let M be an n-dimensional compact manifold and consider a super Ricci flow
(gt )t∈I over some interval I ⊂R. Recall that this means that

∂tgt ≥−2 Ricgt .

For any (y, s) ∈ M × I consider the heat kernel K(·, ·;y, s) of the standard heat
equation using (gt ) as a background, i.e. for fixed (y, s) ∈M × I

∂tK(·, t;y, s) =�gt K(·, t;y, s), K(·, t, y, s) −−→
t↘s

δy . (3.9)

Then K(x, t;y, s) is defined and smooth whenever s < t and if we fix (x, t) ∈ M× I ,
then K(x, t; ·, ·) satisfies the conjugate heat equation:

−∂sK(x, t; ·, s) =�gs K(x, t; ·, s)+ 1
2 (trgs ∂sgs)K(x, t; ·, s), K(x, t, ·, s) −−→

s↗t
δy

(3.10)
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and we have
ˆ

M

K(x, t; ·, s)dgs = 1.

For more details see [7, Sect. 2.3].
For any (x, t) ∈ M × I and s ≤ t consider the following probability measure on

M × {s} (compare also with [7, Definition 2.4]):

dνx,t;s :=
{

K(x, t; ·, s)dμgs if s < t

δ(x,s) if s = t

Set Xt := M × {t} and let dt := dgt be the length metric induced by gt . Consider
(
X := M × I, t := projI , (dt )t∈I , (νx,t;s)(x,t)∈M×I,s∈I,s≤t

)
. (3.11)

We have:

Theorem 3.36 (3.11) is an Hn := (
(n−1)π2

2 + 4)-concentrated metric flow. Heat flows
on X correspond to solutions to the heat equation on M × I and conjugate heat flows
on X correspond to measures of the form v dgt , where v is a solution to the conjugate
heat equation.

If I is left-open, then the natural topology on X agrees with the product topology
on M × I .

Proof Properties (1)–(5) of Definition 3.1 are clear by definition. Property (6) is a
consequence of [7, Theorem 4.1] and Property (7) follows from the reproduction
formula:

K(x, t3; z, t1) =
ˆ

M

K(x, t3;y, t2)K(y, t2; z, t1)dgt2(y).

The (
(n−1)π2

2 + 4)-concentration is a consequence of [7, Corollary 3.8]. The last
statement follows from standard parabolic estimates, see for example [7, Proposi-
tion 9.5]. �

Next, consider a 3-dimensional singular Ricci flow M= (M, t, ∂t, g) over some
interval I = [0, T ); see [9, 38] and Sect. 9.1. We recall that a singular Ricci flow
is a Ricci flow spacetime M as in [9, Definition 5.1] whose initial time-slice M0 is
compact, that is 0-complete in the sense of [9, Definition 5.4] and that has the property
that for every ε,T > 0 there is an rε,T > 0 such that M[0,T ) satisfies the ε-canonical
neighborhood assumption below scale rε,T in the sense of [9, Definition 5.7]. We
recall that by [9] the flow M is uniquely determined by its initial time-slice (M0, g0),
so the theorems of [38] also apply.

We will sketch how to convert M into a metric flow. Let I ′ = [0, T ′) or [0, T ′] ⊂ I

be a subinterval and consider an open subset M′ ⊂MI ′ with the property that for any
t ∈ I ′ the time-slice M′

t is equal to a connected component of Mt . If I ′ = [0, T ′],
then such subsets are uniquely determined by the component M′

T ′ . More specifically,
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given the component M′
T ′ ⊂MT , we can choose the unique component M′

t ⊂Mt

for any t ∈ [0, T ′) with the property that there is a continuous curve γ : [t, T ′] →M
such that t(γ (t ′)) = t ′ and γ (t) ∈M′

t , γ (T ′) ∈M′
T ′ . The subset M′ ⊂MI ′ can be

viewed as one “branch” of the singular flow M — it roughly corresponds to choosing
a component after every neckpinch.

We will now convert M′ into a metric space X over I ′. For any t ∈ I ′ let (Xt , dt )

be the completion of the length metric of the time-slice (M′
t , gt ) and suppose that

Xt ⊃M′
t . It can be shown that there is a heat kernel K ∈ C∞(U) on M, for U :=

{(x, y) ∈M×M : t(y) < t(x)}, that satisfies (3.9), (3.10) if we replace the time-
derivative by a Lie-derivative of the ∂t-vector field. K still satisfies the reproduction
formula and for any u ∈ C0

c (Ms) the function u :M[s,∞) →R given by

u(x) :=
{

u(x) if t(x) = s
´
Ms

K(x; ·)dgs if t(x) > s

is a solution to the heat equation with initial condition u. By the choice of M′ we
have for any x ∈M′

t , s < t ,

K(x; ·) = 0 on Ms \M′
s .

So we may still define the conjugate heat kernel measures νx;s as the probability
measure on Xs with

νx;s(Xs \M′
s)= 0, dνx;s

∣∣
M′

s
=

{
K(x; ·)dgs if s < t

δx if s = t
.

It can be shown that for fixed 0 ≤ s ≤ t the map (M′
t , dt )→ (P(Xs), d

Xs

W1
), x �→ νx;s

can be extended uniquely to a continuous map of the form Xt → P(Xs). Using this
extension, we will now define the metric flow X over I ′ by

(
X :=

⋃

t∈I ′
Xt, t, (dt )t∈I ′, (νx;s)x∈Xt ,s≤t

)
,

where t :X → I ′ is the obvious map with t(Xt ) = t . It can be shown that:

Theorem 3.37 X is an H3-concentrated metric flow. If we view M′ as a subset of X ,
then the natural topology of X restricted to M′

I\{0} agrees with the standard topology
given by the spacetime manifold. Moreover, X is future continuous (see Sect. 4.3 for
further details).

3.8 Special cases and constructions

In the following we define certain classes and constructions for metric flows, which
are the analogs of common constructions of (super) Ricci flows. These constructions
will be needed in [8].

We first define the Cartesian product of two metric flows.
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Definition 3.38 (Cartesian product) The Cartesian product of two metric flows
X 1,X 2 that are defined over the same subset I ⊂R is given by the tuple

(
X 12 :=

⊔

t∈I

X 1
t ×X 2

t , d12
t , (ν12

(x1,x2);s := ν1
x1;s ⊗ ν2

x2;s)(x1,x2)∈X 1
t ×X 2

t ,s≤t

)
,

where

(
d12
t ((x1, x2), (y1, y2))

)2 = (
d1
t (x1, y1)

)2 + (
d2
t (x2, y2)

)2
.

The following can be checked easily:

Proposition 3.39 X 12 is a metric flow over I ⊂R and the following is true:
(a) If (ui

t )t∈I ′ is a heat flow on X i , i = 1,2, then (u1
t u

2
t )t∈I ′ is a heat flow on X 12.

(b) If (μi
t )t∈I ′ is a conjugate heat flow on X i , i = 1,2, then (μ1

t ⊗ μ2
t )t∈I ′ is a

conjugate heat flow on X 12.
(c) If X i is Hi -concentrated for i = 1,2, then on X 12 is (H1 +H2)-concentrated.

Next, we define the analog of a steady gradient soliton.

Definition 3.40 (Static metric flows) A metric flow X over some interval I ⊂ R is
called static if there is a tuple

(
X,d, (ν′x;t )x∈X;I∩(t+I )�=∅

)
(3.12)

and a map φ :X →X such that the following holds:
(1) (X,d) is a metric space and for any t ∈ I the map φt : (Xt , dt ) → (X,d) is an

isometry.
(2) (ν′

x;t )x∈X;I∩(t+I )�=∅ is a family of probability measures on X and for any x ∈Xt ,
s ∈ I , s ≤ t we have (φs)∗νx;s = ν′

φt (x);t−s
∈ P(X).

The tuple (3.12) is called a static model for X .

Remark 3.41 The static model and the map φ may not be uniquely determined by
Properties (1), (2). For example, if we consider the constant flow (gt )t∈R on R

n, then
we could choose X =R

n ×R→R
n =: X to be the standard projection, or a map of

the form (�x, t) �→ �x+ t �a for some �a ∈R
n. Then d is the Euclidean metric on R

n, and
(ν′

x;t ) corresponds to the kernels of the heat equation ∂tv =�v − �a · ∇v.

Next, we define the analog of a shrinking soliton.

Definition 3.42 (Metric soliton) A pair (X , (μt )t∈I ), consisting of metric flow X over
some interval I ⊂R with sup I = 0, 0 /∈ I and a conjugate heat flow (μt )t∈I is called
a metric soliton if there is a tuple

(
X,d,μ, (ν′x;t )x∈X;t≤0

)

and a map φ :X →X such that the following holds:
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(1) For any t ∈ I , the map φt : (Xt , dt ,μt )→ (X,
√|t |d,μ) is an isometry between

metric measure spaces.
(2) For any x ∈Xt , s ∈ I with s ≤ t , we have (φs)∗νx;s = ν′

φt (x);log(s/t)
.

The conjugate heat flow (μt )t∈I is called the potential flow of the metric soliton
(X , (μt )t∈I ).

If X is defined over an interval I of the form (−T ,0] or [−T ,0], then we will
often say that a pair of the form (X , (μt )t∈I ) or (X , (μt )t∈I\{0}) is a metric soliton if
Definition 3.42 holds for the restricted pair (Xt∈I\{0}, (μt )t∈I\{0}).

The following proposition shows that metric solitons are selfsimilar. Moreover, it
shows that given a selfsimilar metric flow X , there is a potential flow (μt )t∈I such
that (X , (μt )t∈I ) is a metric soliton and this potential flow only depends on X and
the family of selfsimilar maps.

Proposition 3.43 Consider a metric soliton (X , (μt )t∈I ) and the map φ : X → X

from Definition 3.42. For any λ ∈ (0,1] consider the map ψλ : X → X that maps
every x ∈Xt to ψλ(x) ∈Xλ2t with φ(ψλ(x)) = φ(x). Then
(a) For any λ ∈ (0,1] the map ψλ is a flow isometry between X and Xλ2I if we

parabolically rescale the domain by λ.
(b) For any λ1, λ2 ∈ (0,1] we have ψλ1 ◦ψλ2 = ψλ1λ2

(c) For any λ ∈ (0,1] we have (ψλ)∗μt = μλ2t .
Vice versa, suppose that X is a metric flow over some interval I ⊂R with sup I = 0,
0 /∈ I and consider a family of maps (ψλ :X →X )λ∈(0,1] that satisfies Properties (a),
(b). If X is H -concentrated for some H < ∞, then there is a unique conjugate heat
flow (μt )t∈I such that (X , (μt )t∈I ) is a metric soliton, such that Property (c) holds
and such that μt ∈ P1(Xt ) for all t ∈ I , where the latter is space of probability
measures that have finite dW1 -distance to point masses.

Lastly, if (X , (μt )t∈I ) is a metric soliton and X is H -concentrated, then Var(μt )≤
H |t | for all t ∈ I .

Example 3.44 Let (M,g,f ) be a gradient shrinking soliton, i.e. we assume that
Ric+∇2f − 1

2g = 0. Suppose that f is chosen such that
´
M

(4π)−n/2e−f dg = 1. Let
gt := |t |φ∗

t g and ft := f ◦φt , t < 0, be the associated Ricci flow and time-dependent
potential, where φt is the flow of the time-dependent vector field |t |−1∇gf . Then the
Ricci flow (M, (gt )t<0) is invariant under parabolic rescaling via diffeomorphisms
of the form ψλ(x, t) = (φλ−1(x), t) and (4π |t |)−n/2e−ft is a solution to the conju-
gate heat equation, which obeys the same symmetry. So the associated metric flow
and conjugate heat flow satisfy Properties (a)–(c) of Proposition 3.43, which implies
that it is a metric soliton. The metric measure space (X,d) from Definition 3.42
is the length metric of (M,g), the measure μ has density dμ = (4π)−n/2e−f dg

and the measures (ν′
x;t )x∈X;t≤0 correspond to the conjugate heat kernel measures

on (M, (gt )t<0) via Property (2) of Definition 3.42.

Proof of Proposition 3.43 The first direction can be verified easily. For the reverse
direction, consider an H -concentrated metric flow X and a family of maps (ψλ :
X → X )λ∈(0,1] satisfying Properties (a), (b). Fix some t0 ∈ I and consider the map
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φ : X → Xt0 =: X mapping each x ∈ Xt to ψt0/t (x) or ψ−1
t/t0

(x), depending on
whether t ≤ t0 or t > t0. Let d := dt0 and ν′

x;t := νψ
e−2t (x);t0e−2t . It remains to con-

struct a conjugate heat flow (μt )t∈I such that Property (c) holds and to show that this
flow is unique. The fact that φ satisfies Properties (1), (2) from Definition 3.42 for
μ := μt0 then follows easily.

Recall that (P1(Xt0), d
Xt0
W1

) is a complete metric space and consider the map

F : P1(Xt0) →P(Xt0), μ′ �→
ˆ

Xt0/4

νx;t0 d((ψ1/2)∗μ′)(x).

By Proposition 3.16(b) we have for any two μ′,μ′′ ∈P ′(Xt0)

d
Xt0
W1

(
F(μ′),F (μ′′)

) ≤ d
Xt0/4

W1

(
(ψ1/2)∗μ′, (ψ1/2)∗μ′′)= 1

2d
Xt0
W1

(
μ′,μ′′).

Due to the H -concentration property we have F(δx) = νψ1/2(x);t0 ∈ P1(Xt0) for any

x ∈ Xt0 , so the image of F lies in P1(Xt0) and thus F is a 1
2 -contraction. Let μ′ ∈

P1(Xt0) be its unique fixed point. Then the conjugate heat flows with initial condition
(ψ2−i )∗μ′ agree. Letting i →∞ shows the existence of (μt )t∈I . The uniqueness of
(μt )t∈I follows from the uniqueness of the fixed point of F . For the last statement of
the proof observe that F (i)(δx) = νψ2−i (x);t0 → μt0 for i →∞. �

We also have:

Proposition 3.45 Consider two metric solitons (X i , (μi
t )t∈I ), i = 1,2, and let X 12 be

the Cartesian product of X 1,X 2. Then (X 12, (μ1
t ⊗μ2

t )t∈I ) is also a metric soliton.

Lastly, we consider the case in which the static model of a static flow is a cone. In
this case the flow is also a metric soliton for an appropriate potential flow.

Definition 3.46 (Static cone) A metric flow X over some interval I ⊂R with sup I =
0, 0 /∈ I is called a static cone if it is static with static model (3.12) and if (X,d)

is a metric cone over some metric space (X′, dX′) with vertex x0 such that the fol-
lowing holds for any λ ∈ (0,1]. Denote by ψλ : X → X the radial dilation by λ with
ψλ(x0)= x0. Then for any x ∈ X we have

(ψλ)∗ν′x;t = ν′
ψλ(x);λ2t

. (3.13)

The point x0 is called a vertex of the static model.

Note that if I =R−, then (3.13) also holds if λ > 1, because ψλ = ψ−1
λ−1 .

The following is a consequence of Proposition 3.43:

Proposition 3.47 Consider a static cone X over I ⊂R, with static model (3.12) and
vertex x0 ∈ X. Let (μt )t∈I be the conjugate heat flow corresponding to (ν′

x0;t )t∈I ′ on
X. Then (X , (μt )t∈I ) is a metric soliton.
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3.9 Further examples

In the last subsection, we discuss further examples of metric flows.

Example 3.48 Consider the metric flow corresponding to the constant Ricci flow on
R

n. Then

ν�x,t;s = (4π(t − s))−n/2 exp
(
− |�x − ·|2

4(t − s)

)
d vol

is the standard heat kernel and we can compute that for any �x, �x ′ ∈R
n

Var(ν�x,t;s , ν�x′,t;s)

=
ˆ

Rn

ˆ

Rn

|�y − �y ′|2(4π(t − s))−n exp
(
− |�x − �y|2 + |�x ′ − �y ′|2

4(t − s)

)
d �yd �y ′

=
n∑

i=1

ˆ

R

ˆ

R

(yi − y′
i )

2(4π(t − s))−1 exp
(
− (xi − yi)

2 + (x′
i − y′

i )
2

4(t − s)

)
dyidy′

i

=
n∑

i=1

ˆ

R

ˆ

R

(xi − x′
i + zi − z′i )2(4π(t − s))−1 exp

(
− z2

i + z′2i
4(t − s)

)
dzidz′i

= |�x − �x ′|2 +
n∑

i=1

ˆ

R

ˆ

R

(z2
i + z′2i )(4π(t − s))−1 exp

(
− z2

i + z′2i
4(t − s)

)
dzidz′i

= |�x − �x ′|2 + 2n

ˆ

R

z2(4π(t − s))−1/2 exp
(
− z2

4(t − s)

)
dz

= |�x − �x ′|2 + 2n(t − s)

ˆ

R

z2(4π)−1/2 exp
(
− z2

4

)
dz

= |�x − �x ′|2 + 4n(t − s).

Therefore X is H -concentrated if and only if H ≥ 4n. The example shows that H -
concentration is dimension dependent and therefore does not follow from the proper-
ties of a metric flow.

Example 3.49 Consider an arbitrary metric space (X∗, d∗) and x∗ ∈ X∗ a point. Let
X := X∗ × {0} ∪ {x∗} ×R− and let t : X → (−∞,0] be the projection onto the last
factor. Define d0 := d∗ and νx;t := δ(x∗,t) for t < 0, νx;0 := δx . Then X is a metric
flow over (−∞,0] whose natural topology is not Hausdorff if #X∗ > 1.

Example 3.50 The following example shows that Gaussian concentration of conjugate
heat kernel measures does not follow from the axioms of an H -concentrated metric
flow. Fix some constants C > 0 such that for all A ≥ 0

16A2 ≤ C exp
(A2

16

)
(3.14)
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Let D > 0 be an arbitrary constant and consider the metric flow X = XC,D :=
{− 1

2D,+ 1
2D} ×R over R with dt (− 1

2D, 1
2D) = D for all t ∈R and

ν± 1
2 ,t;s({(± 1

2D,s)}) = 1

2
+ 1

2
e−C(t−s)/D2

,

ν± 1
2 ,t;s({(∓ 1

2D,s)}) = 1

2
− 1

2
e−C(t−s)/D2

.

We verify the properties of a metric flow. Properties (1)–(5) of Definition 3.1 are
clear.

For Property (6), it suffices to show that if (ut = �(t−1/2ht ))t≥s is a heat flow
for some s > 0, where h : {± 1

2D} × [s,∞) → R, then the condition h( 1
2D, t) −

h(− 1
2D, t)≤ D is preserved. To see this, we compute that

∂tu(± 1
2D, t)=− C

2D2
u(± 1

2D, t)+ C

2D2
u(∓ 1

2D, t)

and

∂tu= (− 1
2 t−3/2ht + t−1/2∂tht

)
�′(t−1/2ht ),

which implies

∂th( 1
2D, t)− ∂th(− 1

2D, t)

= 1

2t
h( 1

2D, t)− 1

2t
h(− 1

2D, t)

− C

2D2

(
u( 1

2D, t)− u(− 1
2D, t)

)

×
( 1

t−1/2�′(t−1/2h( 1
2D, t))

+ 1

t−1/2�′(t−1/2h(− 1
2D, t))

)
. (3.15)

So it suffices to show that if h( 1
2D, t) − h(− 1

2D, t) = D, then the right-hand side

of (3.15) is non-positive. If we set u := h( 1
2 D,t)+h(− 1

2 D,t)

2t1/2 and A := D
2t1/2 , then this is

equivalent to

(
e(u−A)2/4 + e(u+A)2/4

)ˆ u+A

u−A

e−x2/4dx ≥ 8

C
A3.

To see that this inequality holds, we may assume without loss of generality that u≥ 0
and estimate, using (3.14),

e(u+A)2/4
ˆ u+A

u−A

e−x2/4dx ≥
ˆ u+ 1

2 A

u

exp
(1

4

(
(u+A)2 − x2)

)
dx

≥ 1

2
A exp

(1

4

(
(u+A)2 − (u− 1

2A)2)
)
≥ 1

2
A exp

(A2

16

)
≥ 8

C
A3.
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To verify the reproduction formula, Property (7), we compute that for t1, t2 > 0

(1

2
+ 1

2
e−Ct1/D

2)(1

2
+ 1

2
e−Ct2/D

2
)
+

(1

2
− 1

2
e−Ct1/D

2)(1

2
− 1

2
e−Ct2/D

2
)

= 1

2
+ 1

2
e−C(t1+t2)/D

2
.

So XC,D is a metric flow. Any two flows XC,D1,XC,D2 are parabolic rescalings of
one another.

We can compute that for any p > 0 and s ≤ t

ˆ

Xs

ˆ

Xs

d
p
s (y1, y2)dν± 1

2 D,t;s(y1)dν± 1
2 D,t;s(y2) = Dp

2
(1 − e−C(t−s)/D2

).

So if p = 2, then

Var(ν± 1
2 D,t;s)=

D2

2
(1 − e−C(t−s)/D2

) ≤ 1

2
C(t − s),

which shows that XC,D is 1
2C-concentrated. However, if p > 2, then the following

bound is false for any C′ < ∞
ˆ

Xs

ˆ

Xs

d
p
s (y1, y2)dν± 1

2 D,t;s(y1)dν± 1
2 D,t;s(y2) ≤ C′(t − s)p.

This bound holds on a super Ricci flow due to Gaussian concentration; see [35], [7,
Theorem 3.14]. So Gaussian concentration does not follow from the axioms of a
metric flow.

4 Geometry and continuity of time-slices of metric flows

Our goal in this section is to study how the geometry of time-slices (Xt , dt ) of an
H -concentrated metric flow X changes in time. We recall that a metric flow does
not specify any worldlines, i.e. it does not record whether two points xi ∈ Xti from
different time-slices correspond “to the same point at different times”. Instead, given
a point x ∈ Xt and an earlier time s < t , we will consider the conjugate heat kernel
νx;s and we will regard νx;s as the “probability distribution of the points correspond-
ing to x at an earlier time s ≤ t”. We may also think of the H -centers z ∈ Xs of x

at time s to be the points corresponding to x. By Proposition 3.25, these H -centers
are determined up to an “error” of 2

√
H(t − s). Note that this viewpoint is slightly

different from the conventional concept of worldlines. If X corresponds to a conven-
tional (super) Ricci flow, then x and any H -center z may not correspond to the same
points; moreover the point x′ ∈ Xs that lies on the same worldline of x ∈ Xt may be
far from H -centers of x and may therefore not — or to a lesser degree — correspond
to x in the above sense.

Observe that by Proposition 3.16(c), for any two points x1, x2 ∈Xt we have

d
Xs

W1
(νx1;s , νx2;s)≤ dt (x1, x2),
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which can be regarded as form of distance distortion estimate, i.e. distances only
expand in time in this sense. More specifically, if x′

1, x
′
2 ∈ Xs denote H -centers of

x1, x2, then we have the following distance shrinking estimate by Lemma 2.8

ds(x
′
1, x

′
2) ≤ d

Xs

W1
(δx′1 , νx1;s)+ d

Xs

W1
(νx1;s , νx2;s)+ d

Xs

W1
(νx1;s , δx′2)

≤
√

Var(δx′1 , νx1;s)+ dt (x1, x2)+
√

Var(δx′1 , νx1;s)

≤ dt (x1, x2)+ 2
√

H(t − s).

A reverse bound, on the expansion of the distance, is in general harder to come by.
This will be one of the main issues addressed in this section.

4.1 Mass distribution on time-slices

Recall the mass distribution function b
(X,d,μ)
r for a metric measure space (X,d,μ) at

scale r from Sect. 2.5. The following proposition gives a lower bound on this function
on time-slices Xt of a metric flow X equipped with a conjugate heat flow (μt )t∈I ′
of bounded variance. So we obtain that these time-slices represent classes in certain
spaces of the form Mr (V , b), which are compact by Theorem 2.20.

Proposition 4.1 Let X be an H -concentrated metric flow over some subset I ⊂ R,
r > 0 and let (μt )t∈I ′ , I ′ ⊂ I , be a conjugate heat flow on X with supt∈I ′ Var(μt ) ≤
V r2. Suppose that t, t + τr2 ∈ I ′ for τ > 0. Then

b(Xt ,dt ,μt )
r (ε) ≥ 1

2
�

(
−

√
8V

ετ

)
if ε ∈ [

2(τH)1/3,1
]
.

In particular, if there is a sequence τi ↘ 0 with t + τir
2 ∈ I ′, then there is a func-

tion bH,V,(τi ) : (0,1) → (0,1), depending only on H,V, (τi), such that b
(Xt ,dt ,μt )
r ≥

bH,V,(τi ) and therefore (Xt , dt ,μt ) ∈Mr (V , bH,V,(τi )).

Note that if μt = νx;t0 for some x ∈ Xt0 , t0 > t , then we can choose V = H(t0 −
t)r−2.

Proof After parabolic rescaling, we may assume that r=1. Fix some ε∈[2(τH)1/3,1]
and set

D :=
√

2V

ε
, δ := 1

2
�

(
−

√
8V

ετ

)
= 1

2
�(−2τ−1/2D).

Let

t ′ := t + τ, Qε,δ := {x ∈Xt : μt(D(x, ε)) ≥ δ}.
Our goal will be to show that

μt(Xt \Qε,δ) ≤ ε. (4.1)
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For this purpose choose p ∈Xt ′ such that
ˆ

Xt ′
d2
t ′(p, ·) dμt ′ = Var(δp,μt ′) ≤ Var(μt ′) ≤ V.

So

μt ′(Xt ′ \B(p,D)) ≤ V D−2 = ε/2 ≤ 1
2 . (4.2)

We also note that for any H -center z ∈Xt of a point x ∈Xt ′ we have

νx;t (Xt \B(z, ε/2)) ≤ (ε/2)−2Var(νx;t )≤ (ε/2)−2τH ≤ ε/2 ≤ 1
2 . (4.3)

Let Z ⊂ Xt be the set of points that are H -centers at time t of some point in
B(p,D) and denote by Zε/2 := B(Z, ε/2) ⊂ Xt its ε/2-neighborhood. We claim
that

Zε/2 ⊂ Qε,δ. (4.4)

To see this, let z′ ∈ Zε/2 and choose an H -center z ∈ Z of some x ∈ B(p,D) with
dt (z, z

′) < ε/2. By (4.3) we have

νx;t (B(z′, ε)) ≥ νx;t (B(z, ε/2)) ≥ 1
2 .

So by Definition 3.1(6) applied to the characteristic function χB(z′,ε) we have for any
y ∈ B(p,D)

�−1(νy;t (B(z′, ε))
) = �−1

(ˆ

Xt

χB(z′,ε)dνy;t
)

≥ �−1
(ˆ

Xt

χB(z′,ε)dνx;t
)
− 2τ−1/2D

= �−1(νx;t (B(z′, ε))
)− 2τ−1/2D ≥−2τ−1/2D.

So we have ν·;t (B(z′, ε)) ≥ �(−2τ−1/2D) = 2δ on B(p,D), which implies by Def-
inition 3.13 and (4.2)

μt(B(z′, ε)) =
ˆ

Xt ′
νx,t (B(z′, ε))μt ′(x) ≥ 2δμt ′(B(p,D)) ≥ δ,

and therefore that z′ ∈ Qε,δ , as desired.
By (4.4), it suffices to show that μt(Xt \Zε/2) ≤ ε in order to prove (4.1). To see

this, observe that for every x ∈ B(p,D) and every H -center z ∈ Xt of x we have by
(4.3)

νx;t (Xt \Zε/2) ≤ νx;t (Xt \B(z, ε/2)) ≤ ε/2.

So by Definition 3.13 and (4.2) we have

μt(Xt \Zε/2) =
ˆ

Xt ′
νx;t (Xt \Zε/2)dμt ′(x)



Compactness theory of the space of Super Ricci flows 1165

≤
ˆ

B(p,D)

(ε/2) dμt ′ +
ˆ

Xt ′ \B(p,D)

1dμt ′ ≤ ε.

This finishes the proof. �

4.2 Geometric closeness of nearby time-slices

The goal of this subsection will be to establish geometric closeness of nearby time-
slices of an H -concentrated metric flow X . For this purpose, we will consider a
conjugate heat flow (μt )t∈I ′ and compare the metric measure spaces (Xt ,μt ) for
t ∈ I . We will show that for nearby times s, t ∈ I ′, s ≤ t , the distance dGW1((Xs ,μs),

(Xt ,μt )) between these spaces is small if and only the following difference is small:

ˆ

Xt

ˆ

Xt

dt dμtdμt −
ˆ

Xs

ˆ

Xs

ds dμsdμs. (4.5)

We will also show that this closeness is described by the following coupling between
μs,μt

q :=
ˆ

Xt

(νy;s ⊗ δy) dμt (y).

So, essentially, a map that assigns to any point y ∈Xt one of its H -centers in Xs can
be regarded as some sort of almost isometry between (Xs ,μs), (Xt ,μt ).

The following lemma, which will be needed later, illustrates the relevance of the
difference (4.5). Namely, it states that (4.5) is small if t − s and Var(μt ) − Var(μs)

are small. So, due to the monotonicity of Var(μt ) + Ht , this will imply smallness
of (4.5) for most s ≤ t with t − s � 1. We also obtain almost monotonicity of t �→´
Xt

´
Xt

dt dμtdμt .

Lemma 4.2 Let X be an H -concentrated metric flow over I , (μt )t∈I ′ , I ′ ⊂ I , a con-
jugate heat flow on X and let s, t ∈ I ′, s ≤ t , be two times. Then for any y1, y2 ∈Xt

0 ≤ f (y1, y2) := dt (y1, y2)− d
Xs

W1
(νy1;s , νy2;s)

≤ dt (y1, y2)−
ˆ

Xs

ˆ

Xs

ds dνy1;sdνy2;s +
√

H(t − s) (4.6)

and we have the integral bound

−√
H(t − s) ≤

ˆ

Xt

ˆ

Xt

f dμtdμt −
√

H(t − s)

≤
ˆ

Xt

ˆ

Xt

dt dμtdμt −
ˆ

Xs

ˆ

Xs

ds dμsdμs

≤ √
Var(μt )− Var(μs)+H(t − s)+ 2

√
H(t − s). (4.7)
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Proof Let y1, y2 ∈Xt . For any coupling q between νy1;s , νy2;s we have

ˆ

Xs×Xs

ds(x1, x2) dq(x1, x2) =
ˆ

Xs

ˆ

Xs×Xs

ds(x1, x2) dq(x1, x2)dνy2;s(x′
2)

≥
ˆ

Xs

ˆ

Xs×Xs

(
ds(x1, x

′
2)− ds(x

′
2, x2)

)
dq(x1, x2)dνy2;s(x′

2)

≥
ˆ

Xs

ˆ

Xs

ds(x1, x
′
2) dνy1;s(x1)dνy2;s(x′

2)

−
ˆ

Xs

ˆ

Xs

ds(x
′
2, x2) dνy2;s(x2)dνy2;s(x′

2)

≥
ˆ

Xs

ˆ

Xs

ds dνy1;sdνy2;s −
√

Var(νy2;s)

≥
ˆ

Xs

ˆ

Xs

ds dνy1;sdνy2;s −
√

H(t − s).

Together with Proposition 3.16(c), this implies (4.6).
For (4.7), observe that for any x1, x2 ∈Xs

∣∣∣ds(x1, x2)−
√

Var(νy1;s , νy2;s)
∣∣
∣ =

∣∣
∣
√

Var(δx1 , δx2)−
√

Var(νy1;s , νy2;s)
∣∣
∣

≤
√

Var(δx1 , νy1;s)+
√

Var(δx2 , νy2;s).

Integration over x1, x2 implies

∣∣∣∣

ˆ

Xs

ˆ

Xs

ds dνy1;sdνy2;s −
√

Var(νy1;s , νy2;s)
∣∣∣∣

≤
ˆ

Xs

√
Var(δx1 , νy1;s)dνy1;s(x1)+

ˆ

Xs

√
Var(δx2 , νy2;s)dνy2;s(x2)

≤
(ˆ

Xs

Var(δx1 , νy1;s)dνy1;s(x1)

)1/2

+
(ˆ

Xs

Var(δx2 , νy2;s)dνy2;s(x2)

)1/2

≤
√

Var(νy1;s)+
√

Var(νy2;s) ≤ 2
√

H(t − s). (4.8)

Since

d2
t (y1, y2)− Var(νy1;s , νy2;s)+H(t − s) ≥ 0,

we have

dt (y1, y2)−
√

Var(νy1;s , νy2;s) ≤
√

d2
t (y1, y2)− Var(νy1;t , νy2;t )+H(t − s).
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Combining this with (4.8) implies that

dt (y1, y2)−
ˆ

Xs

ˆ

Xs

ds dνy1;sdνy2;s

≤
√

d2
t (y1, y2)− Var(νy1;s , νy2;s)+H(t − s)+ 2

√
H(t − s).

Now (4.7) follows by integrating this bound over y1, y2, using (4.6) and the bound
ˆ

Xt

ˆ

Xt

√
d2
t (y1, y2)− Var(νy1;s , νy2;s)+H(t − s)dμt (y1)dμt (y2)

≤
(ˆ

Xt

ˆ

Xt

(
d2
t (y1, y2)− Var(νy1;s , νy2;s)+H(t − s)

)
dμt(y1)dμt (y2)

)1/2

= √
Var(μt )− Var(μs)+H(t − s) �

The next lemma shows the reverse direction of our goal. It states that closeness of
two metric measure spaces in the GW1-sense implies smallness of (4.5).

Lemma 4.3 Let (Xi, di,μi), i = 1,2, be two metric measure spaces. Then
∣∣∣∣

ˆ

X1

ˆ

X1

d1 dμ1dμ1 −
ˆ

X2

ˆ

X2

d2 dμ2dμ2

∣∣∣∣ ≤ 2dGW1

(
(X1, d1,μ1), (X2, d2,μ2)

)
.

Proof Let ε > 0 and consider isometric embeddings ϕi : (Xi, di) → (Z,d), i = 1,2,
and a coupling q between μ1,μ2 such that

ˆ

X1×X2

dZ(ϕ1(x1), ϕ2(x2))dq(x1, x2) ≤ dGW1

(
(X1, d1,μ1), (X2, d2,μ2)

)+ ε.

Then
∣∣∣∣

ˆ

X1

ˆ

X1

d1 dμ1dμ1 −
ˆ

X2

ˆ

X2

d2 dμ2dμ2

∣∣∣∣

=
∣∣∣∣

ˆ

X1×X2

ˆ

X1×X2

(
d1(x1, y1)− d2(x2, y2)

)
dq(y1, y2)dq(x1, x2)

∣∣∣∣

≤
ˆ

X1×X2

ˆ

X1×X2

∣∣d1(x1, y1)− d2(x2, y2)
∣∣dq(y1, y2)dq(x1, x2)

≤
ˆ

X1×X2

ˆ

X1×X2

(
dZ(ϕ1(x1), ϕ2(x2))+ dZ(ϕ1(y1), ϕ2(y2))

)
dq(y1, y2)dq(x1, x2)

≤ 2dGW1

(
(X1, d1,μ1), (X2, d2,μ2)

)+ 2ε.

Letting ε → 0 finishes the proof. �

Next, we will show that smallness of (4.5) and t − s implies smallness of
dGW1((Xs ,μs), (Xt ,μt )). The following lemma will equip us with the necessary dis-
tance distortion estimate.
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Lemma 4.4 Let X be an H -concentrated metric flow over I and (μt )t∈I ′ , I ′ ⊂ I a
conjugate heat flow. Suppose that for two times s, t ∈ I ′, s ≤ t we have for α,β, γ, r >

0

t − s ≤ αr2,

ˆ

Xt

ˆ

Xt

dt dμtdμt −
ˆ

Xs

ˆ

Xs

ds dμsdμs ≤ βr.

Then for any y1, y2 ∈Xt for which

μt(B(y1, r))μt (B(y2, r)) ≥ γ > 0

we have

0 ≤ dt (y1, y2)− d
Xs

W1
(νy1;s , νy2;s) ≤

(β +√
Hα

γ
+ 4

)
r. (4.9)

Proof Define f : Xt ×Xt → R as in (4.6) and observe that by Proposition 3.16 f is
2-Lipschitz in each variable. Moreover, by Lemma 4.2

f ≥ 0,

ˆ

Xt

ˆ

Xt

f dμtdμt ≤ βr +√
Hα r.

Then there are y′
i ∈ B(yi, r) with

f (y′
1, y

′
2)≤

β +√
Hα

γ
r.

The upper bound in (4.9) follows by combining this with

f (y1, y2) ≤ f (y′
1, y2)+ 2r ≤ f (y′

1, y
′
2)+ 4r.

The lower bound in (4.9) is clear. �

The following proposition characterizes the closeness of two nearby time-slices
under certain conditions.

Proposition 4.5 For any ε > 0, H,V < ∞ and any function b : (0,1) → (0,1) there
is a δ(H,V,b, ε) > 0 such that the following holds.

Let X be an H -concentrated metric flow over I and (μt )t∈I ′ , I ′ ⊂ I , a conjugate
heat flow on X . Suppose that for two times s, t ∈ I ′, s ≤ t and r > 0 we have

b(Xt ,dt ,μt )
r ≥ b on [δ,1]

and

t − s ≤ δr2, Var(μt )≤ V r2,

ˆ

Xt×Xt

dt dμtdμt −
ˆ

Xs×Xs

ds dμsdμs ≤ δr.

Then there is a closed subset W ⊂Xt such that:
(a) μt(Xt \W) ≤ ε.
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(b) For any y1, y2 ∈ W we have

0 ≤ dt (y1, y2)− d
Xs

W1
(νy1;s , νy2;s) ≤ εr. (4.10)

Moreover, there is a metric space (Z,dZ) and isometric embeddings ϕs : Xs → Z,
ϕt :Xt → Z such that:
(c) For every x ∈Xs and y ∈ W we have

dZ(ϕs(x),ϕt (y)) ≤ d
Xs

W1
(δx, νy;s)+ εr ≤

√
Var(δx, νy;s)+ εr. (4.11)

(d) The probability measure

q :=
ˆ

Xt

(νy;s ⊗ δy) dμt (y)

is a coupling between μs,μt and
ˆ

Xs×Xt

dZ(ϕs(x),ϕt (y))dq(x, y)

=
ˆ

Xt

ˆ

Xs

dZ(ϕs(x),ϕt (y))dνy;s(x)dμt (y)

≤ εr. (4.12)

(e) We have

dGW1

(
(Xs , ds,μs), (Xt , dt ,μt )

)≤ dZ
W1

((ϕs)∗μs, (ϕt )∗μt) ≤ εr.

Proof After parabolic rescaling we may assume that r = 1. Fix V,H,b, ε. We will
determine δ in the course of the proof. Let ζ ∈ (0,1) be a constant whose value we
will determine later and choose

W := {
y ∈Xt : μt(D(y, ζ )) ≥ b(ζ )

}
.

Then

μt(Xt \W) ≤ ζ,

which implies Assertion (a) for ζ ≤ ε. Applying Lemma 4.4 with r4.4 = ζ implies
that if δ ≤ δ(H, ζ, b), then

0 ≤ dt (y1, y2)− d
Xs

W1
(νy1;s , νy2;s) ≤

(δ +√
Hδ

b2(ζ )
+ 4

)
ζ ≤ 5ζ.

This proves Assertion (b) if ζ ≤ ε/5.
The fact that q in Assertion (d) is a coupling between μs,μt and the equality in

(4.12) are clear. Assertion (c) and the inequality in (4.12) follow from Lemma 4.6
below. Assertion (e) is a direct consequence of Assertion (d). �
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Lemma 4.6 Let 0 < δ ≤ ε and V,H < ∞. Let X be a metric flow over I and consider
two times s ≤ t , s, t ∈ I . Suppose that there is a non-empty, measurable subset W ⊂
Xt such that for any y1, y2 ∈ W we have

0 ≤ dt (y1, y2)− d
Xs

W1
(νy1;s , νy2;s)≤ δ. (4.13)

Then there is a metric space (Z,dZ) and isometric embeddings ϕs : Xs → Z, ϕt :
Xt →Z such that (4.11) in Proposition 4.5 holds for r = 1.

Moreover, suppose that X is H -concentrated and consider a conjugate heat flow
(μt )t∈I ′ on X with s, t ∈ I ′. If δ ≤ δ(H,V, ε) and

t − s ≤ δ, Var(μt ) ≤ V, μt (Xt \Wδ) ≤ δ, (4.14)

where Wδ := B(W,δ), then (4.12) in Proposition 4.5 holds for r = 1.

We will apply Lemma 4.6 again in the proof of Theorem 4.9, where we will also
make use of the δ-neighborhood Wδ .

Proof Let Z := Xs �Xt and denote by ϕs,ϕt the standard immersions. Define dZ to
be equal to ds, dt on Xs ,Xt , respectively, and for x ∈Xs , y ∈Xt let

dZ(ϕs(x),ϕt (y)) = dZ(ϕt (y),ϕs(x)) := inf
w∈W

(
dt (y,w)+d

Xs

W1
(δx, νw;s)

)+δ. (4.15)

We need to verify that dZ satisfies the triangle inequality. For this purpose choose
x1, x2 ∈Xs , y1, y2 ∈Xt . Then

dZ(ϕs(x1), ϕt (y1)) ≤ dZ(ϕs(x1), ϕt (y2))+ dZ(ϕt (y2), ϕt (y1))

is a direct consequence of (4.15) and the triangle inequality on Xt . The bound

dZ(ϕs(x1), ϕt (y1)) ≤ dZ(ϕs(x1), ϕs(x2))+ dZ(ϕs(x2), ϕt (y1))

follows using

d
Xs

W1
(δx1 , νw;s)≤ d

Xs

W1
(δx1 , δx2)+ d

Xs

W1
(δx2 , νw;s) = ds(x1, x2)+ d

Xs

W1
(δx2 , νw;s).

Next, we have

dZ(ϕt (y1), ϕt (y2)) ≤ inf
w1,w2∈W

(
dt (y1,w1)+ dt (y2,w2)+ dt (w1,w2)

)

≤ inf
w1,w2∈W

(
dt (y1,w1)+ dt (y2,w2)+ d

Xs

W1
(νw1;s , νw2;s)+ δ

)

≤ inf
w1,w2∈W

(
dt (y1,w1)+ dt (y2,w2)+ d

Xs

W1
(δx1 , νw1;s)

+ d
Xs

W1
(νw2;s , δx1)

)+ 2δ

= dZ(ϕt (y1), ϕs(x1))+ dZ(ϕs(x1), ϕt (y2))
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and

dZ(ϕs(x1), ϕs(x2)) = d
Xs

W1
(δx1 , δx2)

≤ inf
w1,w2∈W

(
d
Xs

W1
(δx1 , νw1;s)+ d

Xs

W1
(νw1;s , νw2;s)+ d

Xs

W1
(νw2;s , δx2)

)

≤ inf
w1,w2∈W

(
d
Xs

W1
(δx1 , νw1;s)+ dt (w1,w2)+ d

Xs

W1
(νw2;s , δx2)

)

≤ inf
w1,w2∈W

(
d
Xs

W1
(δx1 , νw1;s)+ dt (w1, y1)+ dt (y1,w2)

+ d
Xs

W1
(δx2 , νw2;s)

)+ 2δ

= dZ(ϕs(x1), ϕt (y1))+ dZ(ϕt (y1), ϕs(x2)).

This shows that (Z,dZ) is a metric space and (4.11) in Proposition 4.5 holds if δ ≤ ε,
because

d
Xs

W1
(δx, νy;s) ≤

√
Var(δx, νy;s).

Before continuing, we observe that for any x ∈ Xs and y ∈ Wδ there is a y′ ∈ W

with dt (y, y′) < δ and therefore, using Proposition 3.16(c),

dZ(ϕs(x),ϕt (y)) ≤ dZ(ϕs(x),ϕt (y
′))+ δ ≤ d

Xs

W1
(δx, νy′;s)+ 2δ

≤ d
Xs

W1
(δx, νy;s)+ d

Xs

W1
(νy;s , νy′;s)+ 2δ ≤ d

Xs

W1
(δx, νy;s)+ 3δ ≤

√
Var(δx, νy;s)+ 3δ.

(4.16)

Next, assume that (4.14) holds. Then, using (4.16),

ˆ

Wδ

ˆ

Xs

dZ(ϕs(x),ϕt (y)) dνy;s(x)dμt (y)

≤
ˆ

Wδ

ˆ

Xs

√
Var(δx, νy;s)dνy;s(x)dμt (y)+ 3δ

≤ μ
1/2
t (Wδ)

(ˆ

Wδ

ˆ

Xs

Var(δx, νy;s)dνy;s(x)dμt (y)

)1/2

+ 3δ

≤
(ˆ

Xt

Var(νy;s , νy;s)dμt (y)

)1/2

+ 3δ ≤ √
H(t − s)+ 3δ ≤√

Hδ + 3δ.

(4.17)

Assuming δ ≤ 1
2 , we moreover have μt(W

δ) ≥ 1
2 , which allows us to bound

1

2

ˆ

Xt\Wδ

ˆ

Xs

dZ(ϕs(x),ϕt (y))dνy;s(x)dμt (y)
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≤
ˆ

Wδ

ˆ

Xt\Wδ

ˆ

Xs

dZ(ϕs(x),ϕt (y))dνy;s(x)dμt (y)dμt (w)

≤
ˆ

Wδ

ˆ

Xt\Wδ

ˆ

Xs

(
dZ(ϕs(x),ϕt (w))

+ dZ(ϕt (w),ϕt (y))
)
dνy;s(x)dμt (y)dμt (w)

≤
ˆ

Wδ

ˆ

Xt\Wδ

ˆ

Xs

√
Var(δx, νw;s)dνy;s(x)dμt (y)dμt (w)+ 3δ

+
ˆ

Wδ

ˆ

Xt\Wδ

dt (w,y)dμt (y)dμt (w)

≤ (
μt(W

δ)μt (Xt \Wδ)
)1/2

×
(ˆ

Wδ

ˆ

Xt\Wδ

ˆ

Xs

Var(δx, νw;s)dνy;s(x)dμt (y)dμt (w)

)1/2

+ (
μt(W

δ)μt (Xt \Wδ)
)1/2

×
(ˆ

Wδ

ˆ

Xt\Wδ

d2
t (w, y)dμt (y)dμt (w)

)1/2

+ 3δ

≤ μ
1/2
t (Xt \Wδ)

(ˆ

Wδ

ˆ

Xt\Wδ

Var(νy;s , νw;s)dμt (y)dμt (w)

)1/2

+μ
1/2
t (Xt \Wδ)

√
Var(μt )+ 3δ

≤ μ
1/2
t (Xt \Wδ)

(√
Var(μs)+

√
Var(μt )

)+ 3δ

≤ μ
1/2
t (Xt \Wδ)

(√
Var(μt )+H(t − s)+√

Var(μt )
)+ 3δ

≤ 2
√

δ
√

V +Hδ + 3δ (4.18)

Combining (4.17), (4.18) implies (4.12) in Proposition 4.5 if δ ≤ δ(H,V, ε). �

4.3 Future and past continuity

In this subsection we define a continuity notion for metric flows. This notion will
imply continuity of time-slices in the GW1-sense if we equip the flow with a con-
jugate heat flow. It will turn out that an H -concentrated flow is continuous on the
complement of a countable set of times.

Let X be a metric flow over some subset I ⊂R.

Definition 4.7 We say that X is continuous at time t0 ∈ I if for all conjugate heat
flows (μt )t∈I ′ that satisfy t0 ∈ I ′ ⊂ I , Var(μt ) < ∞ for all t ∈ I ′, the function

t �−→
ˆ

Xt

ˆ

Xt

dt dμtdμt (4.19)



Compactness theory of the space of Super Ricci flows 1173

is continuous at t0. We say that X is past continuous at time t0 if X≤t0 is continuous
at time t0 and future continuous at time t0 if X≥t0 is continuous at time t0. The
metric flow X is called (past/future) continuous if the same is true at all times
t0 ∈ I .

Remark 4.8 Past/future continuity are equivalent to left/right semi-continuity of the
function (4.19) for any (μt )t∈I ′ with the properties specified in Definition 4.7.

It follows from the definition that a flow is continuous at time t0 if and only if it is
both past and future continuous.

By Lemma 4.2 we have

lim sup
t↗t0

ˆ

Xt

ˆ

Xt

dt dμtdμt ≤
ˆ

Xt0

ˆ

Xt0

dt0 dμt0dμt0 ≤ lim inf
t↘t0

ˆ

Xt

ˆ

Xt

dt dμtdμt ,

so in order to verify continuity at time t0 it suffices to show that

lim
i→∞

ˆ

Xti

ˆ

Xti

dti dμti dμti =
ˆ

Xt0

ˆ

Xt0

dt0 dμt0dμt0 (4.20)

for two sequences of the form ti ↗ t0, ti ↘ t0, if they exist. Similarly, for past/future
continuity, we only need to verify (4.20) for one sequence of the appropriate form.

In Examples 4.12, 4.13 below we will discuss some examples of flows that satisfy
or violate Definition 4.7.

The following theorem states that we only need to require (left/right) semi-
continuity of (4.19) for one conjugate heat flow (μt ). Moreover, we obtain that
(past/future) continuity implies continuity of the time-slices in the GW1-sense if we
equip X with a conjugate heat flow. We also obtain that (left/right) semi-continuity
of t �→ Var(μt ) is a necessary condition for (past/future) continuity.

Theorem 4.9 Let X be an H -concentrated metric flow over some subset I ⊂R, where
H < ∞, and let t0 ∈ I . Suppose that suppXt0 = Xt0 . Let Ct0 be the set of conjugate
heat flows (μt )t∈I ′ on X with t0 ∈ I ′, Var(μt ) < ∞ for all t ∈ I ′. Let C∗t0 ⊂ Ct0 be the
subset of conjugate heat flows (μt )t∈I ′ with (t0 − ε, t0 + ε) ∩ I ⊂ I ′ for some ε > 0
and suppμt0 =Xt0 .

Then the following conditions are equivalent:
(a) X is continuous at time t0.
(b) There is a conjugate heat flow (μt )t∈I ′ ∈ C∗t0 such that

t �−→
ˆ

Xt

ˆ

Xt

dt dμtdμt (4.21)

is continuous at time t0.
(c) For any conjugate heat flow (μt )t∈I ′ ∈ Ct0 we have

(Xt , dt ,μt )
GW1−−−−−−→
t→t0

(Xt0 , dt0,μt0).
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(d) There is a conjugate heat flow (μt )t∈I ′ ∈ C∗t0 such that

(Xti , dti ,μti )
GW1−−−−−−→
i→∞ (Xt0 , dt0,μt0)

for two sequences ti ↗ t0 (if inf I ′ < t0) and ti ↘ t0, (if sup I ′ > t0).
(e) There is a neighborhood t0 ∈ I0 ⊂ I of t0 and for any t ∈ I0 \ {t0} there are

isometric embeddings ϕt : (Xt , dt ) → (Zt , d
Z
t ), ϕ0

t : (Xt0 , dt0) → (Zt , d
Z
t ) into

a metric space (Zt , d
Z
t ) such that the following holds. For any conjugate heat

flow (μt )t∈I ′ ∈ Ct0 the probability measures

qt :=
{´

Xt
(νy;t0 ⊗ δy) dμt (y) if t > t0´

Xt0
(δx ⊗ νx;t ) dμt0(x) if t < t0

are couplings between μt0,μt and

lim
t→t0

ˆ

Xt0×Xt

dZ
t (ϕ0

t (x), ϕt (y))dqt (x, y) = 0.

In particular,

lim
t→t0

d
Zt

W1
((ϕ0

t )∗μt0, (ϕt )∗μt) = 0.

Moreover, Conditions (a)–(e) are implied by:
(f) There is a conjugate heat flow (μt )t∈I ′ ∈ C∗t0 such that t �→ Var(μt ) is continuous

at time t0.
The corresponding equivalences for past/future continuity follow by applying this

theorem to the restricted flows X≤t0 and X≥t0 . In the case of future continuity, we
can drop the assumption suppXt0 =Xt0 of the theorem and the condition suppμt0 =
suppXt0 from the definition of C∗t0 . In the case of past continuity, the assumption
suppXt0 =Xt0 from the theorem may also be dropped.

Lastly, X is past continuous at time t0, if and only if for any x1, x2 ∈ suppXt0 we
have

lim
t↗t0

d
Xt

W1
(νx1;t , νx2,t ) = dt0(x1, x2). (4.22)

Remark 4.10 If (μt )t∈I ′ satisfies a stronger concentration bound (for example, an
integral Gaussian bound), then Condition (f) is equivalent to Conditions (a)–(e).

Since t �→ Var(μt ) + Ht is non-decreasing (see Proposition 3.23), we obtain the
following important consequence.

Corollary 4.11 An H -concentrated metric flow is continuous everywhere except, pos-
sibly, at a countable set of times.

Example 4.12 The metric flow from Example 3.49 is not past continuous at time 0 if
#X∗ > 1.
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Example 4.13 Consider a (possibly rotationally symmetric) singular Ricci flow M on
S2×S1 that develops a non-degenerate neckpinch of finite diameter at some time t0 >

0. Such a flow can be constructed using the techniques from [3, 4]. By Theorem 3.37,
M corresponds to a metric flow X , whose time-slices equal the metric completions
of the time-slices of M. Note that the time-slice (Xt0 , dt0) is homeomorphic to S3.
X is future continuous, which can be verified using Condition (b) in Theorem 4.9.
However, X is not past continuous. To see this, consider two points x1, x2 ∈Xt0 near
the neckpinch, but on opposite sides. These points violate (4.22).

We may also construct another metric flow X ′ based on M, which is not future
continuous, but past continuous, as follows. Let X ′

t :=Xt for all t �= t0 and define

d ′
t0
(x1, x2) := lim

t↗t0
d
Xt

W1
(νx1;t , νx2,t )= lim

t↗t0
dgt (x1(t), x2(t)),

where x1(t), x2(t) ∈Mt denote the points relating to x1, x2 ∈Mt0 via the flow of the
time vector field ∂t (see Definition 9.3). It can be shown that the time-slices (X ′

t , d
′
t )

can be equipped with the structure of a metric flow such that X �=t0 and X ′�=t0
are flow

isometric. Note that the time-slice (X ′
t0
, d ′

t0
) is homeomorphic to S2 × S1 with one

collapsed cross-sectional sphere. This flow will be less interesting to us, because the
metric of d ′

t0
restricted to Mt0 ⊂X ′

t0
does not agree with the length metric of gt0 .

Proof of Theorem 4.9 The implication (f) ⇒ (b) holds due to Lemma 4.2.
So it remains to show the equivalence of (a)–(e) and the statement involving (4.22).

The implications (a) ⇒ (b), (c) ⇒ (d) and (e) ⇒ (c) are obvious. The implications
(c) ⇒ (a) and (d) ⇒ (b) are consequences of Lemmas 4.3, 4.2. The implication (a)
⇒ (c) follows from Propositions 4.1, 4.5; note that in the case in which there is no
sequence ti ↘ t0, ti ∈ I ′, we don’t need to apply Proposition 4.1 and can instead just

set b := b
(Xt0 ,dt0 ,μt0 )

1 in Proposition 4.5. So to see the equivalence of (a)–(e) it remains
to establish the implication (b) ⇒ (e).

Suppose now that Condition (b) holds and let (μ̃t )t∈Ĩ ′ ∈ C∗t0 be the conjugate heat
flow for which (4.21) is continuous at time t0. By Proposition 4.5, for any t ∈ I0 \
{t0} there are closed subsets Wt ⊂ Xt (if t > t0) or Wt ⊂ Xt0 (if t < t0), as well
as isometric embeddings ϕt : (Xt , dt ) → (Zt , d

Z
t ), ϕ0

t : (Xt0, dt0) → (Zt , d
Z
t ) into a

common metric space (Zt , d
Z
t ) and numbers εt > 0 such that for all t ∈ I0 \ {t0} we

have for any y1, y2 ∈ Wt :

{
0 ≤ dt (y1, y2)− d

Zt

W1
(νy1;t0, νy2;t0) ≤ εt if t > t0

0 ≤ dt0(y1, y2)− d
Zt

W1
(νy1;t , νy2;t ) ≤ εt if t < t0

and such that

lim
t→t0

{
μ̃t (Xt \Wt) if t > t0

μ̃t0(Xt0 \Wt) if t < t0

}

= 0. (4.23)
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Consider some possibly different conjugate heat flow (μt )t∈I ′ ∈ Ct0 . We claim that
there are numbers δt > 0, t ∈ I0 \ {t0} such that limt→t0 δt = 0 and

{
μt(Xt \Wt) ≤ δt if t > t0

μt0(Xt0 \B(Wt , δt )) ≤ δt if t < t0
(4.24)

This will then imply Condition (e) using Lemma 4.6. To see the second bound in
(4.24), note that it suffices to show that for all δ > 0

lim
t↗t0

μt0(Xt0 \B(Wt , δ)) = 0.

This follows from the fact that suppμt0 ⊂ Xt0 = supp μ̃t0 . Let us now show the first
bound in (4.24). Fix some t∗ ∈ I0 ∩ I ′, t∗ > t0 and observe that for any t ∈ I0 ∩ I ′
with t0 < t < t∗ we have

μ̃t (Xt \Wt) =
ˆ

Xt∗
νx;t (Xt \Wt)dμ̃t∗(x),

μt (Xt \Wt) =
ˆ

Xt∗
νx;t (Xt \Wt)dμt∗(x).

Since the first integral goes to 0 as t ↘ t0, we obtain using Definition 3.1(6) that
νx;t (Xt \Wt) → 0 uniformly on bounded subsets. Therefore, the second integral goes
to 0 as well.

Lastly, we prove the statement involving (4.22). Suppose first that X is past con-
tinuous at time t0 and let x1, x2 ∈ Xt0 . Then by applying Condition (e) to μt = νxj ;t ,
j = 1,2, we obtain that for t < t0 close to t0

lim
t↗t0

d
Zt

W1
((ϕ0

t )∗δxj
, (ϕt )∗νxj ;t )= 0.

It follows that

lim
t↗t0

d
Xt

W1
(νx1;t , νx2;t ) = lim

t↗t0
d

Zt

W1
((ϕt )∗νx1;t , (ϕt )∗νx2;t )

≤ lim
t↗t0

(
d

Zt

W1
((ϕt )∗νx1;t , (ϕ0

t )∗δx1)+ d
Zt

W1
((ϕ0

t )∗δx1 , (ϕ
0
t )∗δx2)

+ d
Zt

W1
((ϕ0

t )∗δx2, (ϕt )∗νx2;t )
)

= dt0(x1, x2).

Conversely, suppose that (4.22) holds for all x1, x2 ∈Xt0 and consider some conjugate
heat flow (μt )t∈I ′ with (t0 − ε, t0] ∩ I ⊂ I ′ for some ε > 0, Var(μt0) < ∞. For t ∈ I ′
define ft :Xt0 ×Xt0 →R by

ft (x1, x2) := dt0(x1, x2)− d
Xt

W1
(νx1;t , νx2;t ) ≥ 0.
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Since ft ≤ dt0(x1, x2) and

ˆ

Xt0

ˆ

Xt0

dt0 dμt0dμt0 ≤
√

Var(μt0) < ∞,

we obtain by dominated convergence that

lim
t↗t0

ˆ

Xt0

ˆ

Xt0

ft dμt0dμt0 = 0.

Since

ft (x1, x2) ≥ dt0(x1, x2)−
ˆ

Xt

ˆ

Xt

dt dνx1;t dνx2;t ,

we obtain that

lim sup
t↗t0

(ˆ

Xt0

ˆ

Xt0

dt0 dμt0dμt0 −
ˆ

Xt

ˆ

Xt

dt dμtdμt

)
≤ 0.

Combining this with Lemma 4.2 implies that (4.21) is left semi-continuous at t0,
which implies past continuity. �

We will also need the following result:

Proposition 4.14 Let X be an H -concentrated metric flow over some subset I ⊂ R,
where H < ∞. Suppose that X is future continuous at time t0 ∈ I and suppose that
there is a sequence of times ti ∈ I , ti ↘ t0. Then for any two points x1, x2 ∈ suppXt0 ,
we can find points xj,i ∈Xti , j = 1,2, i = 1,2, . . . such that xj,i → xj and

lim
i→∞d

Xt0
W1

(δxj
, νxj,i ;t0) = 0, lim

i→∞dti (x1,i , x2,i )= dt0(x1, x2).

Proof Consider the metric spaces (Zt , d
Z
t ) and isometric embeddings ϕt : (Xt , dt )→

(Zt , d
Z
t ), ϕ0

t : (Xt0, dt0) → (Zt , d
Z
t ) from Theorem 4.9(e). The proposition now fol-

lows from the following claim.

Claim 4.14.1 For any x ∈ suppXt0 there are xi ∈Xti such that

lim
i→∞d

Xt0
W1

(δx, νxi ;t0) = lim
i→∞dZ

t (ϕti (xi), ϕ
0
ti
(x)) = 0.

Proof Let δ > 0. Fix some conjugate heat flow (μt )t∈I ′ with t0 ∈ I ′ and ti ∈ I ′ for
large i. If we denote by qt the couplings from Theorem 4.9(e), then we can find some
sequence yi ∈Xti with dZ

t (ϕti (yi), ϕ
0
ti
(x)) → 0. Next note that

lim inf
i→∞ qti (B(x,2δ)×B(yi, δ))
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= lim inf
i→∞

(
qti (B(x,2δ)×Xti )− qti (B(x,2δ)× (Xti \B(yi, δ)))

)

= lim inf
i→∞ qti (B(x,2δ)×Xti ) = μt0(B(x,2δ)) > 0.

So by the definition of qti , we obtain that there are points xi ∈ B(yi, δ) such that

lim inf
i→∞ νxi ;t0(B(x,2δ)) > 0.

Thus by Lemma 3.26, for large i any H -center zi ∈ Xt0 of xi must be contained in
B(x,3δ). Therefore, for large i

d
Xt0
W1

(δx, νxi ;t0)≤ 3δ + d
Xt0
W1

(δzi
, νxi ;t0) ≤ 3δ +√

H(ti − t0) ≤ 4δ.

Letting δ → 0 implies the claim. �

�

4.4 The future completion

Consider some subset I ⊂ R. We denote by I
− ⊂ R the set of t∞ ∈ R with the

property that ti ↘ t∞ for some sequence {ti} ⊂ I with ti ≥ t∞. So, for example,
if a < b, then (a, b)

− = [a, b).
Our goal will be to extend a metric flow X over I to a metric flow X ∗ over I

−
.

This metric flow will be called the future completion, because its time slices at any
time t∞ ∈ I

− \ I will be obtained by a limit of time slices at times ti ∈ I with ti ↘ t∞
and the flow will therefore be future continuous at all times t∞ ∈ I

− \ I . We will also
show that, under appropriate conditions, the future completion of a metric flow is
unique up to flow isometry.

We first make the following definition:

Definition 4.15 Let X be a metric flow over some subset I ⊂ R. A pair (X ∗, φ),
consisting of a metric flow X ∗ over I

−
and a flow isometric embedding φ :X →X ∗

is called a future completion of X if the following holds:
(1) X ∗ is future continuous at all times t ∈ I

− \ I .
(2) X ∗ is H -concentrated for some H < ∞.
(3) suppX ∗

t =X ∗
t for all t ∈ I

− \ I .

We will often view X ∗ ⊃ X as an extension of X and call X ∗ the future comple-
tion of X .

Theorem 4.16 (Existence of future completion) Let X be an H -concentrated metric
flow over some I ⊂ R, where H < ∞. Then X has a future completion (X ∗, φ) and
X ∗ is H -concentrated.

The following two results address the uniqueness of the future completion. The
first result concerns the extension of an isometry between two metric flows at a future
continuous time.
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Theorem 4.17 (Extension of isometries of metric flows) Let X j , j = 1,2, bet two
H -concentrated metric flows over some I ⊂ R, where H < ∞. Assume that there is
a flow isometry φ :X 1

I ′ →X 2
I ′ over some subset I ′ ⊂ I . Let I0 be the union of I ′ with

the set of all times t ∈ I ′− ∩ I at which X 1 and X 2 are both future continuous and
satisfy suppX j

t =X j
t , j = 1,2.

Then φ can be extended uniquely to a flow isometry between X 1,X 2 over I0.

As a corollary, we obtain the uniqueness result of the future completion up to flow
isometry.

Corollary 4.18 (Uniqueness of future completion) Let X be an H -concentrated
metric flow over some I ⊂ R, where H < ∞. Consider two future completions
(X ∗,j , φj : X → X ∗,j ) of X . Then there is a unique flow-isometry ψ :X ∗,1 →X ∗,2
such that ψ ◦ φ1 = φ2.

Proof of Theorem 4.16 The strategy of the proof is the following. We first use Propo-
sitions 4.1, 4.5 to show that if s∞ ∈ I

− \ I , then for any sequence si ↘ s∞, si ∈ I ,
the time-slices (Xsi , dsi ,μsi ), equipped with an arbitrary conjugate heat flow mea-
sure, converges in the GW1-distance to a metric measure space (Xs∞ , ds∞,μs∞).

Repeating this procedure for all s∞ ∈ I
− \ I produces a family of metric spaces

(Xs∞, ds∞)
s∞∈I

−\I , which will be used to extend the flow X to I
−

. Next, we show
that even after substituting the conjugate heat flow (μs)s∈I ′ , which was used in the
previous GW1-convergence, with another (suitable) conjugate heat flow (μ̃s)s∈I ′ , we
obtain the same type of GW1-convergence (Xs∞, ds∞, μ̃s∞), with the same limit-
ing metric space (Xs∞, ds∞). This fact is proven in Claim 4.16.2 and is based on
Definition 3.1(6), which is used in Claim 4.16.1. So, in particular, setting μ̃s = νx;s
for any x ∈ Xt , t ∈ I , produces an extension of the conjugate heat kernel measure
(νx;s)s∈I,s≤t(x) to a conjugate heat kernel measure (νx;s)s∈I

−
,s≤t(x)

of the extended
flow. It remains to construct the conjugate heat kernel measures (νx;s)s∈I,s≤t(x) for

x ∈ Xt , where t ∈ I
− \ I . To do this, we first verify that the previously constructed

metric spaces and conjugate heat kernel measures satisfy the axioms of a metric flow
(as far as they are defined) in Claim 4.16.3. Then we construct the missing conjugate
heat kernel measures (νx;s)s∈I,s≤t(x) as a W1-Wasserstein limit of appropriately cho-
sen conjugate heat kernel measures (νxi ;s)s∈I,s≤t(xi ), where xi ∈Xsi with si ↘ t and
si ∈ I .

Let us now carry out the formal proof. In the following we will construct X ∗ by
extending X . So we will have X ∗ ⊃ X and φt = idXt

for t ∈ I and ν∗
x;s = νx;s for

any s, t ∈ I , s ≤ t , x ∈Xt .
We first explain how to construct the time-slices (Xs , ds) and the measures νx;s

for any t ∈ I , x ∈ Xt and s ∈ I
− \ I , s < t . For this purpose, fix some s∞ ∈ I

− \ I

and a sequence si ↘ s∞, si ∈ I . Next, fix a conjugate heat flow (μs)s∈I ′ , I ′ ⊂ I , with
Var(μs) < ∞ for all s ∈ I ′ and with the property that μsi is defined for large i, for
example a conjugate heat kernel. By Proposition 3.23 the map s �→ Var(μs) + Hs

is non-decreasing and thus the limit limi→∞ Var(μsi ) exists. Therefore, by Proposi-
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tions 4.1, 4.5 we have

lim
i,j→∞dGW1

(
(Xsi , dsi ,μsi ), (Xsj , dsj ,μsj )

) = 0.

This implies convergence of the sequence (Xsi , dsi ,μsi ) in the dGW1 -metric. For fu-
ture purposes, we will recover its limit in a particular way.

By Proposition 4.5 there is a sequence δi → 0 such that for any i < j there is a
closed subset Wi,j ⊂Xsi such that:

(1) μsi (Xsi \Wi,j ) ≤ δi .
(2) For any y1, y2 ∈Wi,j we have

∣∣dsi (y1, y2)− d
Xsj

W1
(νy1;sj , νy2;sj )

∣∣ ≤ δi .

For any i < j let (Zi,j , d
Zi,j ) and ϕ

i,j
i : Xsi → Zi,j , ϕ

i,j
j : Xsj → Zi,j be the metric

space and isometric embeddings from Lemma 4.6. Then Lemma 4.6 implies that for
any conjugate heat flow (μ̃s)s∈I ′ , Ĩ ′ ⊂ I that is defined at time si for large i and
satisfies Var(μ̃si ) ≤ V < ∞ for large i, we have

d
Zi,j

W1

(
(ϕ

i,j
i )∗μ̃si , (ϕ

i,j
j )∗μ̃sj

)≤ ε(V, δi + μ̃si (Xsi \Wi,j )+ si − s∞), (4.25)

where ε :R+ ×R+ → (0,∞] is a function that is non-decreasing in both parameters
and satisfies lima→0 ε(V, a) = 0 for any fixed V > 0.

Claim 4.16.1 After passing to a subsequence, we may assume that for any conjugate
heat flow (μ̃s)s∈Ĩ ′ , Ĩ

′ ⊂ I that is defined at time si for large i and satisfies Var(μ̃si )≤
V < ∞ we have for large i0

∞∑

i=i0

ε(V, δi + μ̃si (Xsi \Wi,j )+ si − s∞) < ∞.

Proof Fix some large k ≥ 1 and observe that for k < i < j

μsi (Xsi \Wi,j ) =
ˆ

Xsk

νx;si (Xsi \Wi,j )dμsk (x) ≤ δi,

μ̃si (Xsi \Wi,j ) =
ˆ

Xsk

νx;si (Xsi \Wi,j )dμ̃sk (x). (4.26)

Fix some z ∈ Xsk such that Var(δz, μ̃sk ) ≤ V and choose D < ∞ such that
μsk (B(z,D)) ≥ 1

2 . It follows that

inf
x∈B(z,D)

νx;si (Xsi \Wi,j )≤ 2δi .

Therefore, by Definition 3.1(6) for any D′ < ∞ and for τ := sk − sk+1 ≤ sk − si

sup
x∈B(z,D′)

νx;si (Xsi \Wi,j )≤ �
(
�−1(2δi)+ τ−1/2(D′ +D)

)
. (4.27)
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It follows using (4.26), (4.27) that

μ̃si (Xsi \Wi,j ) ≤ �
(
�−1(2δi)+ τ−1/2(D′ +D)

)+ μ̃sk (Xk \B(z,D′))

≤ �
(
�−1(2δi)+ τ−1/2(D′ +D)

)+ V

D′2 .

So there is a function f :R+ ×R+ ×R+ →R+ that is non-decreasing in each argu-
ment and satisfies limδ→0 f (V,D, δ) = 0 for fixed V,D > 0 such that

μ̃si (Xsi \Wi,j ) ≤ f (V,D, δi).

This reduces the claim to showing that after passing to a subsequence, for any
V,D < ∞ there we have for large i0:

∞∑

i=i0

ε(V, δi + f (V,D, δi)+ si − s∞) < ∞.

To accomplish this, observe that for fixed V,D < ∞ we have limi→∞ ε(V, δi +
f (V,D, δi)+ si − s∞) = 0. So we may choose sequences Vi,Di →∞

lim
i→∞ ε(Vi, δi + f (Vi,Di, δi)+ si − s∞)= 0.

So after passing to a subsequence, we can ensure that

ε(Vi, δi + f (Vi,Di, δi)+ si − s∞) ≤ 2−i .

Then for any fixed V,D we have for large i

ε(V , δi + f (V,D, δi)+ si − s∞) ≤ ε(Vi, δi + f (Vi,Di, δi)+ si − s∞) ≤ 2−i ,

which proves the summability. �

Consider again the metric spaces (Zi,j , dZi,j
) and isometric embeddings ϕ

i,j
i :

Xsi → Zi,j , ϕ
i,j
j : Xsj → Zi,j . By Lemma 2.12, we may assume that Z := Z1,2 =

Z2,3 = · · · and ϕi := ϕ
i−1,i
i = ϕ

i,i+1
i . We may furthermore assume that (Z,dZ) is

complete. Then (4.25) and Claim 4.16.1 imply the following:

Claim 4.16.2 For any conjugate heat flow (μ̃s)s∈I ′ , Ĩ ′ ⊂ I that is defined at time si
for large i and satisfies Var(μ̃si ) ≤ V < ∞ we have

(ϕi)∗μ̃si

W1−−−−−→
i→∞ μ̃s∞ ∈ P(Z).

In particular, for any t ∈ I , t > s∞ and x ∈Xt we have

(ϕi)∗νx;si
W1−−−−−→

i→∞ νx;s∞ ∈ P(Z).
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In the following we will write μ̃s∞, νx;s∞ ∈P(Z) for any limit obtained according
to Claim 4.16.2. Set Xs∞ := suppμs∞ ⊂ Z and ds∞ := dZ|Xs∞ . The following claim
will allow us to forget the space Z.

Claim 4.16.3 The following is true:
(a) For any t ∈ I , t > s∞, x ∈Xt we have suppνx;s∞ = suppμs∞ =Xs∞ .
(b) Property (6) of Definition 3.1 holds between time s∞ and all t ∈ I , t > s∞. In

other words, for all T ≥ 0 and any T −1/2-Lipschitz function f : Xs∞ → R, the
function

Xt −→R, x �−→�−1
(ˆ

Xs∞
�(f )dνx;s∞

)
(4.28)

is (t−s∞+T )−1/2-Lipschitz. If T = 0, then we only require f to be measurable.
(c) Property (7) of Definition 3.1 holds between time s∞ and all t1, t2 ∈ I with

s∞ < t1 < t2. In other words, for all x ∈Xt2

νx;s∞ =
ˆ

Xt1

ν·,s∞dνx;t1 .

(d) There is a sequence si ↘ s∞, si ∈ I , such that for any x∞, x′∞ ∈ Xs∞ there are
sequences xi, x

′
i ∈Xsi such that we have

lim
i→∞d

Xs∞
W1

(δx∞ , νxi ;s∞) = lim
i→∞d

Xs∞
W1

(δx′∞ , νx′i ;s∞)= 0,

lim
i→∞dsi (xi, x

′
i )= ds∞(x∞, x′∞).

(e) There is a sequence si ↘ s∞, si ∈ I such that for any t1, t2 ∈ I with t1, t2 > s∞
and x1 ∈Xt1 , x2 ∈Xt2 we have

lim
i→∞

ˆ

Xsi

ˆ

Xsi

dsi (y1, y2)dνx1;si (y1)dνx2;si (y2)

=
ˆ

Xs∞

ˆ

Xs∞
ds∞(y1, y2)dνx1;s∞(y1)dνx2;s∞(y2).

(f) For any t ∈ I with t > s∞ and x1, x2 ∈Xt we have

Var(νx1;s∞ , νx2;s∞) ≤ d2
t (x1, x2)+H(t − s∞).

(g) For any s±, t1, t2 ∈ I with s− < s∞ < s+ and t1, t2 ≥ s∞ and xj ∈Xtj , j = 1,2,
we have

d
Xs−
W1

(νx1;s− , νx2;s−)≤ d
Xs∞
W1

(νx1;s∞, νx2;s∞) ≤ d
Xs+
W1

(νx1;s+ , νx2;s+).

Proof For Assertion (a) choose some time s′ ∈ I , s∞ < s′ < t . If i is large enough
such that si < s′, then

μsi =
ˆ

Xs′
ν·;si dμs′, νx;si =

ˆ

Xs′
ν·;si dνx;s′ .
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Assume that z ∈ suppνx;s∞ \ suppμs∞ . Then there is some small r > 0 such that for
large i

lim
i→∞((ϕi)∗μsi )(B(z, r)) = 0, lim inf

i→∞ ((ϕi)∗νx;si )(B(z, r)) > 0,

Let ui(y) := νy;si ((ϕi)
−1(B(z, r))). Then

lim
i→∞

ˆ

Xs′
ui dμs′ = 0, lim inf

i→∞

ˆ

Xs′
ui dνx;s′ > 0. (4.29)

By Definition 3.1(6) we know that the functions �−1(ui) are uniformly Lipschitz. So
by the first identity in (4.29) we must have ui → 0 pointwise, which contradicts the
second identity. This shows suppνx;s∞ ⊂ suppμs∞ ; the reverse inclusion follows by
reversing the roles of (νx;t ) and (μt ).

For Assertion (b) consider a T −1-Lipschitz function f : Xs∞ → R for some T >

0. We can extend f to a T −1-Lipschitz function f̃ :Z →R by setting

f̃ (z) := inf
x∞∈Xt∞

(T −1dZ(z, x∞)+ f (x∞)).

Now the functions

Xt −→R, x �−→ �−1
(ˆ

Xsi

�(f̃ ◦ϕi)dνx;si
)
= �−1

(ˆ

Z

�(f̃ )d((ϕi)∗νx;si )
)

are (T + t − si)
−1-Lipschitz and converge pointwise to (4.28). This proves Asser-

tion (b) if T > 0. The case T = 0 follows since the space of bounded Lipschitz func-
tions on Xs∞ is dense in L1(νx;s∞) for any x ∈Xt ; see also Lemmas 2.1, 3.3.

Assertion (c) is a consequence of Claim 4.16.2 and the reproduction formula of
X .

For Assertion (d) it suffices to show that for every x∞ ∈ Xs∞ ⊂ Z there is a se-
quence xi ∈ Xsi with ϕi(xi) → x∞ in Z and νxi ;s∞ → δx∞ in the W1-sense. For this
purpose, note that the proof of Proposition 3.34(g) applies in this case and allows us
to choose a sequence yi ∈ Xsi with νyi ;s∞ → δx∞ in W1. We will use this sequence
to choose another sequence xi with the desired properties. For this purpose, fix some
small r > 0 and choose j ≥ 1 large enough such that

r−2H(sj − s∞) ≤ 1
2 , dZ

W1
(δx∞ , νyj ;s∞) < 1

2 r. (4.30)

Fix j for the moment. For any i > j let zi,j ∈ Xsi be an H -center of yj at time si .
Then by Lemma 3.26

νyj ;si (B(zi,j , r)) ≥ 1 − r−2H(sj − si) ≥ 1
2 . (4.31)

We claim that

lim sup
i→∞

dZ(ϕi(zi,j ), x∞) < 3r. (4.32)
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If not, then we had

((ϕi)∗νyj ;si )(Z \B(x∞, r)) ≥ ((ϕi)∗νyj ;si )(B(ϕi(zi,j ), r)) ≥ 1
2

for infinitely many i, which would imply by Claim 4.16.2 that

νyj ;s∞(Z \B(x∞, r)) ≥ 1
2 ,

and thus

dZ
W1

(δx∞ , νyj ;s∞) ≥ 1
2 r,

contrary to our choice of j . So (4.32) holds and we may choose i > j to be large
enough that dZ(ϕj (zi,j ), x∞) < 3r . Now, using Assertion (c) and (4.30), we find

ˆ

B(zi,j ,r)

dZ
W1

(δx∞ , νx;s∞)dνyj ;si (x) ≤
ˆ

Xsi

ˆ

Z

dZ(x∞, x′)dνx;s∞(x′)dνyj ;si (x)

= dZ
W1

(δx∞ , νyj ;s∞) < 1
2 r.

Combining this with (4.31), implies that there is a point xi ∈ B(zi,j , r) ⊂Xsi with

dZ
W1

(δx∞ , νxi ;s∞) < r, dZ(ϕi(xi), x∞) < 4r.

Repeating this procedure for smaller and smaller r yields the desired sequence xi ,
which finishes the proof of Assertion (d).

Assertions (e)–(g) are a direct consequence of Claim 4.16.2. �

Our previous construction can be performed for all s∞ ∈ I
− \I . So we may extend

the flow X by time-slices (Xs , ds) for s ∈ I
− \ I and the conjugate heat kernels νx;s ,

based at x ∈Xt with t ∈ I , to s ∈ I
−

such that Claim 4.16.3 holds for any s∞ ∈ I
−\I .

Then we have:

Claim 4.16.4 For any two points xj ∈ Xtj with t1, t2 ∈ I and s1, s2 ∈ I
−

with s1 ≤
s2 ≤ min{t1, t2} we have

d
Xs1
W1

(νx1;s1, νx2;s1) ≤ d
Xs2
W1

(νx1;s2, νx2;s2).

Proof If s1 ∈ I or s2 ∈ I , then the claim follows from Claim 4.16.3(g). So suppose
that s1, s2 /∈ I and s1 < s2. Then we can find some s′ ∈ [s1, s2] ∩ I and conclude,
again using Claim 4.16.3(g), that

d
Xs1
W1

(νx1;s1 , νx2;s1) ≤ d
Xs′
W1

(νx1;s′ , νx2;s′)≤ d
Xs2
W1

(νx1;s2, νx2;s2). �

Next we construct the conjugate heat kernels νx;s based at points x ∈ Xt with

t ∈ I
− \ I . Fix for a moment times s < s∞ with s ∈ I

−
and s∞ ∈ I

− \ I and a point
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x∞ ∈ Xs∞ . By Claim 4.16.3(d) there is a sequence of times si ↘ s∞ and points xi ∈
Xsi such that d

Xs∞
W1

(δx∞ , νxi ;s∞) → 0. It follows that for any i ≤ j , using Claim 4.16.4

d
Xs

W1
(νxi ;s , νxj ;s) ≤ d

Xs∞
W1

(νxi ;s∞, νxj ;s∞)

≤ d
Xs∞
W1

(νxi ;s∞, δx∞)+ d
Xs∞
W1

(δx∞ , νxj ;s∞) −−−→
i→∞ 0.

Therefore, we have

νxi ;s
W1−−−−−→

i→∞ νx∞;s ∈ P(Xs)

and νx∞;s is independent of the choice of the sequence xi . Moreover, we have for any
t ′ > s∞ with t ′ ∈ I and x′ ∈Xt ′

d
Xs

W1
(νx′;s , νx∞;s)≤ d

Xs∞
W1

(δx∞ , νx′;s∞). (4.33)

Repeating this procedure for all s∞ ∈ I
− \ I , s ∈ I

−
and x∞ ∈ Xs∞ allows us to

define νx;s for all x ∈ Xt , s, t ∈ I
−

, s ≤ t . It remains to verify that the new objects
constructed so far define an H -concentrated metric flow X ∗ ⊃ X that is a future
completion of X . Due to a limit argument, the statement of Claim 4.16.4 can be
generalized to the case in which t1, t2 ∈ I

−
.

Properties (1)–(5) of Definition 3.1 are clear by construction. Property (6) holds
by Claim 4.16.3(b) if t ∈ I . Suppose now that t ∈ I

− \ I and choose T ≥ 0 and
f : Xs → R according to Definition 3.1(6). By Lemma 3.3 it suffices to assume that
T > 0, so f is Lipschitz. Let x∞, x′∞ ∈ Xt∞ . By Claim 4.16.3(d) we can find times
ti ↘ t∞, ti ∈ I and points xi, x

′
i ∈Xti with

lim
i→∞d

Xt∞
W1

(δx∞ , νxi ;t∞) = lim
i→∞d

Xt∞
W1

(δx′∞ , νx′i ;t∞)= 0 (4.34)

and

lim
i→∞dti (xi, x

′
i ) = dt∞(x∞, x′∞). (4.35)

By (4.33), (4.34) we have

lim
i→∞�−1

(ˆ

Xs

�(f )dνxi ;s
)
= �−1

(ˆ

Xs

�(f )dνx∞;s
)

,

lim
i→∞�−1

(ˆ

Xs

�(f )dνx′i ;s
)
= �−1

(ˆ

Xs

�(f )dνx′∞;s
)

.

It follows, using (4.35), that
∣∣∣∣�

−1
(ˆ

Xs

�(f )dνx∞;s
)
−�−1

(ˆ

Xs

�(f )dνx′∞;s
)∣∣∣∣
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≤ lim
i→∞(ti − s + T )−1/2dti (xi, x

′
i )

= (t∞ − s + T )−1/2dt∞(x∞, x′∞).

By Claim 4.16.3(c), Property (7) of Definition 3.1 holds whenever t1 ∈ I
−

, t2, t3 ∈
I . Assume next that t1 ∈ I

−
, t2 ∈ I

− \ I , t3 ∈ I and x3 ∈ Xt3 . Let ft1 : Xt1 → R be
a bounded 1-Lipschitz function and consider the corresponding heat flow for t ≥ t1,
t ∈ I

−
:

ft :Xt −→R, x �−→
ˆ

Xt1

ft1 dνx;t1 .

Fix a time t2 < t ′2 < t3, t ′2 ∈ I . Then
ˆ

Xt1

ft1 dνx3;t1 =
ˆ

Xt ′2

ˆ

Xt1

ft1 dνy;t1dνx3;t ′2(y) =
ˆ

Xt ′2

ft ′2 dνx3;t ′2 . (4.36)

Our goal is to pass this identity to the limit t ′2 ↘ t2. For this purpose, observe that by
(4.33) we have for any y ∈Xt ′2 , z ∈Xt2

|ft ′2(y)− ft2(z)| ≤ d
Xt1
W1

(νy;t1 , νz;t1) ≤ d
Xt2
W1

(νy;t2 , δz)≤
√

Var(νy;t2 , δz).

Integration against dνy;t2(z)dνx3;t ′2(y) yields, using the fact that Property (7) of Def-
inition 3.1 holds for t1, t2, t3 replaced by t2, t

′
2, t3,

∣∣∣∣

ˆ

Xt ′2

ft ′2(y)dνx3;t ′2(y)−
ˆ

Xt2

ft2(z)dνx3;t2(z)
∣∣∣∣

=
∣∣∣∣

ˆ

Xt ′2

ft ′2(y)dνx3;t ′2(y)−
ˆ

Xt2

ˆ

Xt ′2

ft2(z)dνy;t2(z)dνx3;t ′2(y)

∣∣∣∣

≤
ˆ

Xt2

ˆ

Xt ′2

|ft ′2(y)− ft2(z)|dνy;t2(z)dνx3;t ′2(y)

≤
ˆ

Xt2

ˆ

Xt ′2

√
Var(νy;t2 , δz)dνy;t2(z)dνx3;t ′2(y)

≤
ˆ

Xt2

(ˆ

Xt ′2

Var(νy;t2 , δz)dνy;t2(z)
)1/2

dνx3;t ′2(y)

=
ˆ

Xt2

√
Var(νy;t2)dνx3;t ′2(y) ≤

√
H(t ′2 − t2) −−−→

t ′2↘t2

0.

Combining this with (4.36) implies that
ˆ

Xt2

ft2 dνx3;t2 =
ˆ

Xt1

ft1 dνx3;t1 =
ˆ

Xt2

ˆ

Xt1

ft1 dνy;t1dνx3;t2(y),
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as desired, which proves the reproduction identity if t1, t2 ∈ I
−

and t3 ∈ I . The case
t1, t2, t3 ∈ I

−
follows from the previous case via a simple limit argument, using

(4.33).
We have shown that X is a metric flow. Next we show that X is H -concentrated.

By Claim 4.16.3(f) it suffices to show that for any s < t∞, s ∈ I
−

, t∞ ∈ I
− \ I and

x∞, x′∞ ∈Xt∞ we have

Var(νx∞;s , νx′∞;s) ≤ d2
t∞(x∞, x′∞)+H(t∞ − s). (4.37)

By Claim 4.16.3(d) there are sequences xi, x
′
i ∈Xti , ti ↘ t∞, with

lim
i→∞d

Xt∞
W1

(δx∞ , νxi ;t∞)= lim
i→∞d

Xt∞
W1

(δx′∞ , νx′i ;t∞)= 0,

lim
i→∞dti (xi, x

′
i ) = dt∞(x∞, x′∞).

Passing Claim 4.16.3(f) to the limit and using

Var(νx∞;s , νx′∞;s) ≤ lim inf
i→∞ Var(νxi ;s , νx′i ;s),

which holds due to (4.33), implies (4.37).
Lastly note that X ∗ is future complete at any time t ∈ I

−\I due to Claim 4.16.3(e)
and Theorem 4.9. Moreover, for any such t we have suppXt = Xt due to Claim
4.16.3(a). This shows that X ∗ is a future completion of X . �

Proof of Theorem 4.17 Let t∞ ∈ I0 \ I ′ and choose times ti ∈ I ′ with ti ↘ t∞. By
Proposition 4.9(e) and Lemma 2.12, and after passing to a subsequence, we can find
sequences of metric spaces (Zi, dZi

) and isometric embeddings ϕ
i,j
t∞ : X j

t∞ → Zi ,

ϕ
i,j
ti

: X j
ti
→ Zi , j = 1,2, that satisfy ϕ

i,1
ti

= ϕ
i,2
ti

◦ φti and such that the following

holds. Consider two conjugate heat flows (μ
j
t )t∈I ′′ on X j , j = 1,2, with (φti )∗μ1

ti
=

μ2
ti

, Var(μj
t ) < ∞ for all t ∈ I ′′ and ti , t∞ ∈ I ′′ for large i. Then

d
Zi

W1
((ϕ

i,j
t∞ )∗μj

t∞, (ϕ
i,j
ti

)∗μj
ti
) → 0.

It follows that

d
Zi

W1

(
(ϕ

i,1
t∞ )∗μ1

t∞, (ϕ
i,2
t∞ )∗μ2

t∞
)

≤ d
Zi

W1

(
(ϕ

i,1
t∞ )∗μ1

t∞, (ϕ
i,1
ti

)∗μ1
ti

)+ d
Zi

W1

(
(ϕ

i,2
ti

)∗μ2
ti
, (ϕ

i,2
t∞ )∗μ2

t∞
) → 0.

Choose couplings qi between μ1
t∞,μ2

t∞ such that
ˆ

X 1
t∞×X 2

t∞
dZi

(ϕ
i,1
t∞ (x1), ϕ

i,2
t∞ (x2))dqi(x1, x2) → 0.

By Lemma 2.13, after passing to a subsequence, we can find an isometry φt∞ :
(X 1

t∞ , d1
t∞) → (X 2

t∞ , d2
t∞) with the property that

dZi
(ϕ

i,1
t∞ (x),ϕ

i,2
t∞ (φt∞(x))) → 0 for all x ∈X 1

t∞ (4.38)
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and such that qi weakly converges to a coupling of the form q∞ = (idX 1
t∞

, φt∞)∗μ1
t∞

between μ1
t∞,μ2

t∞ , which implies that

(φt∞)∗μ1
t∞ = μ2

t∞ . (4.39)

Since (4.38) characterizes φt∞ uniquely, the same argument implies that (4.39) holds
for any two conjugate heat flows (μ

j
t )t∈I ′′ , j = 1,2 with the same properties. In the

special case of conjugate heat kernels we obtain that for any t ∈ I ′, t ≥ t∞, x ∈ X 1
t

we have

(φt∞)∗ν1
x;t∞ = ν2

φt (x);t∞ . (4.40)

Let x∞ ∈ X 1
t∞ . By Proposition 3.34(g) there is a sequence of points xi ∈ X 1

ti
with

ν1
xi ;t∞ → δx∞ . Then by (4.40) we also have ν2

φti
(xi );t∞ = (φti )∗ν1

xi ;t∞ → (φti )∗δx∞ =
δφt∞ (x∞), which shows that (4.40) characterizes φt∞ uniquely.

Next, fix some s ∈ I ′, s < t∞ and x∞ ∈X 1
t∞ . We claim that

(φs)∗ν1
x∞;s = ν2

φt∞ (x∞);s .

To see this, consider the sequence xi → x∞ from the last paragraph and observe that
by Proposition 3.34(c) we have

(φs)∗ν1
x∞;s

W1←−−−−−
i→∞ (φs)∗ν1

xi ;s = ν2
φti

(xi );s
W1−−−−−→

i→∞ ν2
φt∞ (x∞);s .

By repeating the construction above we can extend (φt )t∈I ′ to (φt )t∈I0 such that
(φt )t∈I ′∪{t∞} is a flow isometry for any t∞ ∈ I . It remains to show that (φt )t∈I0 is
flow isometry. To see this, let t1 < t3, t1, t3 ∈ I0. Then we can find some t2 ∈ I ′ with
t1 < t2 < t3. By the reproduction formula we have for any x ∈X 1

t3

(φt1)∗ν1
x;t1 = (φt1)∗

ˆ

X 1
t2

ν1
y;t1dν1

x;t2(y) =
ˆ

X 1
t2

((φt1)∗ν1
y;t1) dν1

x;t2(y)

=
ˆ

X 1
t2

ν2
φt2 (y);t1 dν1

x;t2(y) =
ˆ

X 2
t2

ν2
y;t1 dν2

φt3 (x);t2(y) = ν2
φt3 (x);t1 .

This finishes the proof. �

5 The space of metric flow pairs

In the following we will consider metric flows X equipped with a conjugate heat flow
(μt ), called metric flow pairs. We will define a distance function dJ

F
on the space of

metric flow pairs, which will turn out to be complete. Convergence with respect to dJ
F

will roughly be equivalent to convergence in the Gromov-W1-Wasserstein distance at
almost every time. In Sect. 7 we will see that many important families of metric flow
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pairs, such as those arising from super Ricci flows, are in fact precompact with respect
to the dJ

F
distance.

The conjugate heat flow (μt ) on X will serve as a way of specifying a rough center
of each time-slice. This will be particularly important in the case in which time-slices
are not compact. So (μt ) serves as some kind of “basepoint” and convergence with
respect to dJ

F
may be compared to pointed Gromov-Hausdorff convergence. In most

cases we may choose (μt ) to be a conjugate heat kernel of the form (νx;t ), where x

is a point in the final time-slice of X .

5.1 The F-distance

For the remainder of this subsection suppose that I ⊂R is an interval.

Definition 5.1 (Metric flow pairs and isometries) A pair (X , (μt )t∈I ′) is called a met-
ric flow pair over I ⊂R if:
(1) I ′ ⊂ I with |I \ I ′| = 0.
(2) X is a metric flow over I ′.
(3) (μt )t∈I ′ is a conjugate heat flow on X with suppμt =Xt for all t ∈ I ′.

If J ⊂ I ′, then we say that (X , (μt )t∈I ) is fully defined over J .
If Ĩ ⊂ I is some subinterval, then the pair (XĨ∩I ′ , (μt )t∈Ĩ∩I ′) is called the restric-

tion of (X , (μt )t∈I ) to Ĩ . If (X i , (μi
t )t∈I ′,i ), i = 1,2, are two metric flow pairs and

I ′ ⊂ I ′,1 ∩ I ′,2, then an isometry φ :X 1
I ′ → X 2

I ′ between X 1,X 2 over I ′ is called an
almost always isometry between the metric flow pairs if |I ′,1 \ I ′| = |I ′,2 \ I ′| = 0
and if (φt )∗μ1

t = μ2
t for all t ∈ I ′. If J ⊂ I ′, then we say that φ is fully defined

over J .

Next, let J ⊂ I ⊂R. We remark that we will later mainly be interested in the cases
J = ∅ and J = {tmax} if tmax := max I exists.

Definition 5.2 (Spaces of metric flow pairs,FJ
I ,F∗

I ) We denote by F
J
I the set of equiv-

alence classes of metric flow pairs over I that are fully defined over J , where we call
two metric flow pairs equivalent if there is an almost always isometry between them
that is fully defined over J .

If J = ∅, then we also write FI := F
J
I and if J = {t0}, then we also write F

t0
I :=

F
{t0}
I . If tmax := max I exists and tmax ∈ J , then we denote by F

J,∗
I ⊂ F

J
I the subset of

equivalence classes of all metric flow pairs (X , (μt )t∈I ) with the property that Xtmax

consists of a single point. We also write F
∗
I := F

{tmax},∗
I .

Remark 5.3 For any representative (X , (μt )t∈I ′) of an element of FJ,∗
I the measure

μtmax must be a point mass. Therefore, if Xtmax = {xmax}, then μt = νxmax;t .

If there is no chance of confusion, then we will often conflate isometry classes of
metric flow pairs with their representatives. So we will often write (X , (μt )t∈I ′) ∈ F

J
I

instead of [(X , (μt )t∈I ′)] ∈ F
J
I .

The following definition allows us to compare two or more different metric flow
pairs and also characterize their convergence.
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Definition 5.4 (Correspondence) Let X i be metric flows over I ′,i ⊂ R, indexed by
some i ∈ I . A correspondence between these metric flows over some subset I ′′ ⊂R

is a pair of the form

C := (
(Zt , d

Z
t )t∈I ′′, (ϕ

i
t )t∈I ′′,i ,i∈I

)
, (5.1)

where:
(1) (Zt , d

Z
t ) is a metric space for any t ∈ I ′′.

(2) I ′′,i ⊂ I ′,i ∩ I ′′ for any i ∈ I .
(3) ϕi

t : (X i
t , d

i
t ) → (Zt , d

Z
t ) is an isometric embedding for any i ∈ I and t ∈ I ′′,i .

If J ⊂ I ′′,i for all i ∈ I , then we say that C is fully defined over J . If Ĩ ′′ ⊂ I ′′ is
some subset, then the pair

C|Ĩ ′′ :=
(
(Zt , d

Z
t )t∈Ĩ ′′, (ϕ

i
t )t∈I ′′,i∩Ĩ ′′,i∈I

)

is called the restriction of C to Ĩ ′′. If Ĩ ⊂ I , then the pair ((Zt , d
Z
t )t∈I ′′ ,

(ϕi
t )t∈I ′′,i∩I ′′,i∈Ĩ) is called the restriction of C to the index set Ĩ .

The idea behind the subsets I ′′,i is that we want to allow the possibility that the
embeddings ϕi

t are undefined at certain times. For example if I = N ∪ {∞}, then C

may describe the convergence behavior of metric flows X 1,X 2, . . . to some metric
flow X∞; we will provide more details in Sect. 6. In the case in which I = (−∞,0],
we may want to allow this convergence to occur on compact time-intervals of the
form [−T ,0]. So we may only require ϕi

t to be defined on a time-interval of the form
[−Ti,0] for some Ti →∞.

In the following, we will use correspondences to define a notion of distance be-
tween metric flow pairs. Let first (X i , (μi

t )t∈I ′,i ), i = 1,2, be two metric flow pairs
defined over some intervals I i ⊂ R that are fully defined over some common J ⊂ R

and consider a correspondence C = ((Zt , d
Z
t )t∈I ′′ , (ϕi

t )t∈I ′′,i ,i=1,2) between X 1,X 2

over I ′′ that is also fully defined over J . We will first define an extrinsic notion,
measuring the closeness of the metric flow pairs (X i , (μi

t )t∈I ′,i ), i = 1,2, within C.

Definition 5.5 (F-distance within correspondence) We define the F-distance be-
tween two metric flow pairs within C (uniform over J ),

d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)
,

to be the infimum over all r > 0 with the property that there is a measurable subset
E ⊂ I ′′ with

J ⊂ I ′′ \E ⊂ I ′′,1 ∩ I ′′,2

and a family of couplings (qt )t∈I ′′\E between μ1
t ,μ

2
t such that:

(1) |E| ≤ r2.
(2) For all s, t ∈ I ′′ \E, s ≤ t , we have

ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dqt (x
1, x2) ≤ r.
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If J = ∅, then we also write d C
F
:= d

C,J
F

and if J = {t0}, then we also write d
C,t0
F

:=
d
C,J
F

.

Remark 5.6 By setting s = t in Property (2), we obtain the following bound for all
t ∈ I ′′ \E:

dGW1

(
(X 1

t , d1
t ,μ1

t ), (X 2
t , d2

t ,μ2
t )

) ≤ d
Zt

W1
((ϕ1

t )∗μ1
t , (ϕ

2
t )∗μ2

t )

≤
ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dqt (x

1, x2) ≤ r.

Note that the definition of d
C,J
F

depends on the subset I ′′ over which C is defined.

So d
C,J
F

measures the closeness of two metric flow pairs restricted to I ′′. Note also

that we allow d
C,J
F

to attain the value ∞.
Next, suppose that (X i , (μi

t )t∈I ′,i ), i = 1,2, are metric flow pairs over a common
interval I ⊂R that are both fully defined over some J ⊂ I . We define the F-distance
between these metric flow pairs by taking the infimum of the F-distances within all
possible correspondences.

Definition 5.7 (F-distance) The F-distance between two metric flow pairs (uniform
over J ),

dJ
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)
,

is defined as the infimum of

d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)
,

over all correspondences C between X 1,X 2 over I that are fully defined over J . If
J = ∅, then we also write dF := dJ

F
and if J = {t0}, then we also write d

t0
F
:= dJ

F
.

Lemma 5.8 If tmax := max I exists, then we have dJ
F
= d

J∪{tmax}
F

between any two

metric flow pairs representing classes in F
∗,J∪{tmax}
I . In particular, dF = d

tmax
F

between
any two metric flow pairs representing classes in F

∗. Moreover, if (X i , (μi
t )t∈I ′,i ),

i = 1,2, represent classes in F
∗
I , then

d
tmax
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)

= dF
(
(X 1

I\{tmax}, (μ
1
t )t∈I ′,1\{tmax}), (X

2
I\{tmax}, (μ

2
t )t∈I ′,2\{tmax})

)
.

Proof If C is a correspondence between X 1,X 2 over I that is fully defined over
J and d

C,J
F

≤ r and J ⊂ I ′′ is as in Definition 5.5, then by Remark 5.6 we have

d
Zs

W1
((ϕ1

s )∗ν1
x1

max;s , (ϕ
2
s )∗ν2

x2
max;s) = d

Zs

W1
((ϕ1

s )∗μ1
s , (ϕ

2
s )∗μ2

s ) ≤ r for all s ∈ I ′′ \ E. So

we may replace C by a correspondence C′ in which ϕ1
tmax

, ϕ2
tmax

map to the same point

and we still have d
C,J
F

≤ r . �
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Remark 5.9 Suppose that tmax := max I exists. If (X , (μt )t∈I ′) is a metric flow pair
representing a class in F

∗
I , then its restriction to I \ {tmax} is a metric flow pair with

lim
t↗tmax,t∈I ′

Var(μt ) = 0. (5.2)

Vice versa, any metric flow pair over I \ {tmax} satisfying (5.2) can be extended to a
metric flow pair over I that represents a class in F

∗
I . By Lemma 5.8 the F-distance

does not change if we restrict metric flow pairs to I \ {tmax}. This is why we may
sometime conflate the representatives of F∗

I with the representatives of FI\{tmax} sat-
isfying (5.2).

The following is a direct consequence of Definitions 5.5, 5.7.

Lemma 5.10 dJ
F

is invariant under almost always isometries between metric flow
pairs that are fully defined over J . So it descends to a symmetric function

dJ
F
: FJ

I × F
J
I −→ [0,∞].

5.2 (FJ
I , dJ

F
) is a metric space

Let I ⊂R be an interval and J ⊂ I be a subset. The main result of this subsection is:

Theorem 5.11 (FJ
I , dJ

F
) is a metric space if we allow infinite distances.

We also obtain the analogous statement for the d
C,J
F

-distance.

Proposition 5.12 Let (X i , (μi
t )t∈I ′,i ), i = 1,2,3, be three metric flow pairs over I

that are each fully defined over J . Consider a correspondence C = ((Zt , d
Z
t )t∈I ′′ ,

(ϕi
t )t∈I ′′,i ,i=1,2,3) between X 1,X 2,X 3 over I ′′ ⊂R that is fully defined over J . Then

d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 3, (μ3
t )t∈I ′,3)

)

≤ d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)+d
C,J
F

(
(X 2, (μ2

t )t∈I ′,2), (X 3, (μ3
t )t∈I ′,3)

)
.

Proof of Proposition 5.12 Choose r12, r23 > 0 such that there are subsets E12,E23 ⊂
I with

J ⊂ I ′′ \E12 ⊂ I ′′,1 ∩ I ′′,2, J ⊂ I ′′ \E23 ⊂ I ′′,2 ∩ I ′′,3,

and families of couplings (q12
t )t∈I\E12 , (q23

t )t∈I\E23 between μ1
t ,μ

2
t and μ2

t ,μ
3
t ,

respectively, such that Properties (1), (2) of Definition 5.5 hold for the flow pairs
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2) and (X 2, (μ2

t )t∈I ′,2), (X 3, (μ3
t )t∈I ′,3), respectively.

Let r13 := r12 + r23 and E13 := E12 ∪ E23. By Lemma 2.2, for any t ∈ I ′′ \ E13

there is a probability measure q123
t on X 1

t × X 2
t × X 3

t whose marginals onto the
first and last two factors equal q12

t , q23
t , respectively. Let q13

t be the marginal of q123
t
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onto the first and third factor. We now verify Properties (1), (2) of Definition 5.5.
Property (1) holds since

|E13| ≤ |E12| + |E23| ≤ (r12)2 + (r23)2 ≤ (r13)2.

For Property (2) we have for any s, t ∈ I ′′ \E13, s ≤ t ,
ˆ

X 1
t ×X 3

t

d
Zs

W1
((ϕ1

s )∗νx1;s , (ϕ3
s )∗νx3;s)dq13

t (x1, x3)

=
ˆ

X 1
t ×X 2

t ×X3
t

d
Zs

W1
((ϕ1

s )∗νx1;s , (ϕ3
s )∗νx3;s)dq123

t (x1, x2, x3)

≤
ˆ

X 1
t ×X 2

t ×X3
t

(
d

Zs

W1
((ϕ1

s )∗νx1;s , (ϕ2
s )∗νx2;s)

+ d
Zs

W1
((ϕ2

s )∗νx2;s , (ϕ3
s )∗νx3;s)

)
dq123

t (x1, x2, x3)

=
ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗νx1;s , (ϕ2
s )∗νx2;s)dq12

t (x1, x2)

+
ˆ

X 2
t ×X 3

t

d
Zs

W1
((ϕ2

s )∗νx2;s , (ϕ3
s )∗νx3;s)dq23

t (x2, x3) ≤ r12 + r23 = r13.

This finishes the proof. �

For the proof of Theorem 5.11, we will need the following lemma, which states
that we can combine correspondences between two pairs of metric flows of the form
X 1,X 2 and X 2,X 3.

Lemma 5.13 Let X i , i = 1,2,3, be three metric flows and consider correspondences

C
12 := (

(Z12
t , dZ12

t )t∈I ′′,12, (ϕ
12,i
t )t∈I ′′,12,i ,i=1,2

)
,

C
23 := (

(Z23
t , dZ23

t )t∈I ′′,23, (ϕ
23,i
t )t∈I ′′,23,i ,i=2,3

)

between X 1,X 2 and X 2,X 3 over I ′′,12 and I ′′,23, respectively. Set

I ′′,123 := I ′′,12 ∪ I ′′,23, I ′′,123,1 := I ′′,12,1,

I ′′,123,2 := I ′′,12,2 ∪ I ′′,23,2, I ′′,123,3 := I ′′,23,3.

Then there is a correspondence of the form

C
123 := (

(Z123
t , dZ123

t )t∈I ′′,123, (ϕ
123,i
t )t∈I ′′,123,i ,i=1,2,3

)

between X 1,X 2,X 3 over I ′′,123 and families of isometric embeddings

(
ι12
t : (Z12

t , dZ12

t )−→ (Z123
t , dZ123

t )
)
t∈I ′′,12,

(
ι23
t : (Z23

t , dZ23

t )−→ (Z123
t , dZ123

t )
)
t∈I ′′,23,
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such that the following identities hold for all t for which they are defined

ι12
t ◦ ϕ

12,1
t = ϕ

123,1
t , ι12

t ◦ ϕ
12,2
t = ι23

t ◦ ϕ
23,2
t = ϕ

123,2
t , ι23

t ◦ ϕ
23,3
t = ϕ

123,3
t .

(5.3)

Proof If t ∈ I ′′,12,2 ∩ I ′′,23,2, then we may define (Z123
t , dZ123

t ), ι12
t , ι23

t using
Lemma 2.12 and choose ϕ

123,i
t such that (5.3) holds. If t ∈ (I ′′,12 ∪ I ′′,23) \ (I ′′,12,2 ∩

I ′′,23,2), then we may set (Z123
t , dZ123

t ) := (Z12
t , dZ12

t ) × (Z23
t , dZ23

t ), (Z12
t , dZ12

t ) or

(Z23
t , dZ23

t ), depending on whether t ∈ I ′′,12 ∩ I ′′,23, I ′′,12 \ I ′′,23 or I ′′,23 \ I ′′,12,
let ι12

t , ι23
t be embeddings of each factor and again choose ϕ

123,i
t such that (5.3)

holds. �

Proof of Theorem 5.11 The triangle inequality follows by combining Proposition 5.12
and Lemma 5.13. It remains to show definiteness. For this purpose, assume that rep-
resentatives of two classes in F

J
I satisfy

dJ
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

) = 0.

So there is a sequence of correspondences Cj over I that are fully defined over J

such that

d
Cj ,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)→ 0.

For each j choose Ej ⊂ I and (q
j
t )t∈I\Ej such that the properties of Definition 5.5

hold for C= Cj and r = rj . Since |Ej | → 0, the set

E :=
∞⋂

j=1

∞⋃

k=j

Ek

has measure zero and J ⊂ I \ E ⊂ I ′,1 ∩ I ′,2. By Remark 5.6 we have
dGW1((X 1

t , d1
t ,μ1

t ), (X 2
t , d2

t ,μ2
t )) = 0 and therefore

(X 1
t , d1

t ,μ1
t )

∼= (X 2
t , d2

t ,μ2
t ) for all t ∈ I \E.

It remains to specify an appropriate family of isometries for each t ∈ I \E.

Claim 5.11.1 Consider an arbitrary subsequence of the sequence (q
j
t )t∈I\Ej and

let s, t ∈ I \ E, s ≤ t . Then we can pass to a further subsequence such that
q

j
s , q

j
t converge in the weak topology to couplings of the form q∞

s = (idX 1
s
, φs)∗μ1

s ,

q∞
t = (idX 1

t
, φt )∗μ1

t , where φs : (X 1
s , d1

s ,μ1
s ) → (X 2

s , d2
s ,μ2

s ), φt : (X 1
t , d1

t ,μ1
t ) →

(X 2
t , d2

t ,μ2
t ) are isometries and (φs)∗ν1

x;s = ν2
φt (x);s for all x ∈X 1

t .

Proof Apply Property (2) of Definition 5.5 for s, t replaced with s, s and then with
t, t and apply Lemma 2.13. This produces the maps φs,φt . Next, apply Property (2)
of Definition 5.5 for s, t and observe that the integrand in this property is 2-Lipschitz
to obtain the last statement. �
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Choose a countable, dense subset Q ⊂ I \E. Due to the Claim and after passing to
a diagonal subsequence, we may assume that there is a flow isometry φ : X 1

Q → X 2
Q

over Q such that for all t ∈Q we have q
j
t → q∞

t = (idX 1
t
, φt )∗μ1

t in the weak sense.
Let us now extend φ to a flow isometry over I \ E. For this purpose, consider a
time t ∈ I \ E with t /∈ Q. Again, using the Claim and after passing to a diagonal
subsequence, we can find an isometry φt : (X 1

t , d1
t ,μ1

t ) → (X 2
t , d2

t ,μ2
t ) such that the

following holds for any s ∈ Q:
(1) If s < t , then (φs)∗ν1

x;s = ν2
φt (x);s for all x ∈X 1

t .

(2) If s > t , then (φt )∗ν1
x;t = ν2

φs(x);t for all x ∈X 1
s .

Repeating this procedure for any t ∈ I \ E, t /∈ Q, produces family of isometries
(φt )t∈I\E such that for any t ∈ I \ E and s ∈ Q Properties (1), (2) hold. (Note that
for every single t , we can use the initial subsequence. So we don’t have to pass to
successive subsequences.)

We claim that (φt )t∈I\E is a flow isometry between X 1,X 2 over I \ E, which
shows the equivalence of the metric flow pairs (X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2). For

this purpose, we need to show that for any s, t ∈ I \E, s < t and x ∈X 1
t we have

(φs)∗ν1
x;s = ν2

φt (x);s .

Choose some time t ′ ∈ (s, t) ∩ Q. Then by Properties (1), (2) above and the repro-
duction formula, Definition 3.1(7),

(φs)∗ν1
x;s = (φs)∗

ˆ

X 1
t ′

ν1
y;s dν1

x;t ′(y) =
ˆ

X 1
t ′
(φs)∗ν1

y;s dν1
x;t ′(y)

=
ˆ

X 1
t ′

ν2
φt ′ (y);s dν1

x;t ′(y) =
ˆ

X 2
t ′

ν2
y;s d(φt ′)∗ν1

x;t ′(y)

=
ˆ

X 2
t ′

ν2
y;s dν2

φt (x);t ′(y) = ν2
φt (x);s . (5.4)

This finishes the proof. �

5.3 Useful lemmas

Before discussing further details, we first establish some useful lemmas addressing
the definition d

C,J
F

.
The first lemma concerns the case in which two metric flow pairs have isometric

metric flows.

Lemma 5.14 Let X be a metric flow over some subset I ′ ⊂ R and consider two
conjugate heat flows (μi

t )t∈I ′,i on X , I ′,i ⊂ I ′, i = 1,2, such that (XI ′,i , (μ
i
t )t∈I ′,i )

are metric flow pairs over some interval I that are fully defined over some sub-
set J ⊂ I . Consider a correspondence C = ((Zt , d

Z
t )t∈I ′′ , (ϕi

t )t∈I ′′,i ,i=1,2) over
I ′′ ⊂ R between X and itself with ϕ1

t = ϕ2
t that is fully defined over J . Then

d
C,J
F

(
(X 1

I ′,1 , (μ
1
t )t∈I ′,1), (X 2

I ′,2 , (μ
2
t )t∈I ′,2)

)
equals the infimum over all r > 0 with
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the property that there is a measurable subset E ⊂ I ′′ with J ⊂ I ′′ \E ⊂ I ′′,1 ∩ I ′′,2
such that

|E| ≤ r2 and d
Xt

W1
(μ1

t ,μ
2
t ) ≤ r for all t ∈ I ′′ \E.

Proof This is a direct consequence of Proposition 3.16(c). �

In the next lemma we derive a bound on the W1-distance between conjugate heat
kernels based at nearby points with respect to a correspondence.

Lemma 5.15 Let (X i , (μi
t )t∈I ′,i ), i = 1,2, be a metric flow pairs over an interval I ⊂

R that are fully defined over some J ⊂ I and let C= ((Zt , d
Z
t )t∈I ′′ , (ϕi

t )t∈I ′′,i ,i=1,2)

be a correspondence between X 1,X 2 over I ′′ that is also fully defined over J . Let
δ, r > 0. Suppose that

d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

) ≤ δr (5.5)

Consider times s, t ∈ J , s ≤ t and points xi ∈X i
t with

dZ
t (ϕ1

t (x1), ϕ2
t (x2)) ≤ r, |B(x1, r)| ≥ 2δ. (5.6)

Then

d := d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)) ≤ 7r. (5.7)

Proof Due to a limit argument, we may assume that we have strict inequality in (5.5).
Choose E and (qt )t∈I\E so that Properties (1), (2) of Definition 5.5 hold for r re-
placed with δr . By Proposition 3.16(c) we have for k = 1,2

d
Zs

W1

(
(ϕk

s )∗νk
xk;s , (ϕ

k
s )∗νk

y;s
)= d

X k
s

W1

(
νk
xk;s , ν

k
y;s

) ≤ 3r for all y ∈ B(xk,3r).

Therefore, by Definition 5.5(2)

d = 1

qt (B(x1,3r)×B(x2,3r))

ˆ

B(x1,3r)×B(x2,3r)

d dqt

≤ 1

qt (B(x1,3r)×B(x2,3r))

×
ˆ

B(x1,3r)×B(x2,3r)

(
d

Zs

W1

(
(ϕ1

s )∗ν1
y1;s , (ϕ

2
s )∗ν2

y2;s
)+ 6r

)
dqt (y

1, y2)

≤ δr

qt (B(x1,3r)×B(x2,3r))
+ 6r. (5.8)

For any y1 ∈ B(x1, r) and y2 ∈X 2
t \B(x2,3r) we have, using the first bound in (5.6),

dZ
t (ϕ1

t (y1), ϕ2
t (y2))
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≥ dZ
t (ϕ2

t (x2), ϕ2
t (y2))− dZ

t (ϕ2
t (x2), ϕ1

t (x1))− dZ
t (ϕ1

t (x1), ϕ1
t (y1))

≥ 3r − r − r = r.

So by Definition 5.5(2) for s = t we have

qt

(
B(x1, r)× (X 2

t \B(x2,3r))
)

≤ 1

r

ˆ

B(x1,r)×(X 2
t \B(x2,3r))

dZ
t (ϕ1

t (y1), ϕ2
t (y2))dqt (y

1, y2)≤ δ

which implies, using the second bound in (5.6),

qt

(
B(x1,3r)×B(x2,3r)) ≥ μ1

t

(
B(x1, r)

)− qt

(
B(x1, r)× (X 2

t \B(x2,3r))
)

≥ 2δ − δ = δ.

Combining this with (5.8) implies (5.7). �

Next, we prove a lemma that allows us to compare two different couplings between
probability measures in two metric flows.

Lemma 5.16 Let C = ((Zt , d
Z
t )t∈I ′′, (ϕi

t )t∈I ′′,i ,i=1,2) be a correspondence between
two metric flows X 1,X 2 and consider times s, t ∈ I ′′,1 ∩ I ′′,2, s ≤ t . Let μ1,μ

′
1 ∈

P(X 1
t ), μ2 ∈ P(X 2

t ) and consider couplings q, q ′ between μ1,μ2 and μ′
1,μ2, re-

spectively. Then
ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq ′(x1, x2)

≤
ˆ

X 1
t ×X 2

t

(
dZ
t (ϕ1

t (x1), ϕ2
t (x2))+ d

Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)
)
dq(x1, x2)

+
ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dq ′(x1, x2).

Proof By Lemma 2.2 we can find a probability measure q ∈ P(X 1
t × X 1

t × X 2
t )

whose marginals onto the first and last two factors equal q, q ′, respectively. Then,
using Proposition 3.16(c),

ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq ′(x1, x2)

=
ˆ

X 1
t ×X 1

t ×X 2
t

d
Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

2
s )∗ν2

x2;s)dq(x1, y1, x2)

≤
ˆ

X 1
t ×X 1

t ×X 2
t

(
d

Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

1
s )∗ν1

x1;s)

+ d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)
)
dq(x1, y1, x2)
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≤
ˆ

X 1
t ×X 1

t ×X 2
t

dZ
t (ϕ1

t (y1), ϕ1
t (x1))dq(x1, y1, x2)

+
ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq(x1, x2)

≤
ˆ

X 1
t ×X 1

t ×X 2
t

(
dZ
t (ϕ1

t (y1), ϕ2
t (x2))+ dZ

t (ϕ2
t (x2), ϕ1

t (x1))
)
dq(x1, y1, x2)

+
ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq(x1, x2)

=
ˆ

X 1
t ×X 2

t

(
dZ
t (ϕ1

t (x1), ϕ2
t (x2))+ d

Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)
)
dq(x1, x2)

+
ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dq ′(x1, x2). �

The following lemma shows that we are quite flexible in the choice of the cou-
plings (qt )t∈I ′′\E in Definition 5.5. In fact, we can replace these couplings by other
couplings (q ′

t )t∈I ′′\E as long as we can ensure bounds on
´
X 1

t ×X 2
t
dZ
t (ϕ1

t (x1), ϕ2
t (x2))

dq ′
t (x

1, x2).

Lemma 5.17 Let (X i , (μi
t )t∈I ′,i ), i = 1,2, be two metric flow pairs and consider a

correspondence C = ((Zt , d
Z
t )t∈I ′′, (ϕi

t )t∈I ′′,i ,i=1,2) between X 1,X 2 over I ′′ that is
fully defined over two times {s, t}, s ≤ t . Then for any coupling q ′ between μ1

t ,μ
2
t we

have
ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq ′(x1, x2)

≤
ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dq ′(x1, x2)

+2d
C,{s,t}
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)
.

Proof This is a direct consequence of Lemma 5.16. �

5.4 Completeness

For the remainder of this subsection fix again some J ⊂ I ⊂R, where I is an interval.
The main result of this subsection is:

Theorem 5.18 (FJ
I , dJ

F
) is complete.

Theorem 5.18 will be a consequence of the following lemma, which establishes
the existence of a limit within a given correspondence.
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Lemma 5.19 Let (X i , (μi
t )t∈I ′,i ), i ∈N, be a sequence of metric flows over I that are

fully defined over J . Consider a correspondence C := ((Zt , d
Z
t )t∈I , (ϕ

i
t )t∈I ′′,i ,i∈N)

between the metric flows X i over I that is also fully defined over J and suppose
that the metric spaces (Zt , d

Z
t )t∈I are complete. Suppose that the metric flow pairs

(X i , (μi
t )t∈I ′,i ) form a Cauchy sequence within C that is uniform over J , in the sense

that for any ε > 0 there is an i ≥ 1 such that for all i, j ≥ i

d
C,J
F

(
(X i , (μi

t )t∈I ′,i ), (X j , (μ
j
t )t∈I ′,j )

) ≤ ε.

Then there is a metric flow pair (X∞, (μ∞
t )t∈I ′,∞) over I that is fully defined over J

and a family of isometric embeddings (ϕ∞
t :X∞

t → Zt)t∈I ′′,∞ , I ′′,∞ ⊂ I such that

C
′ := ((Zt , d

Z
t )t∈I , (ϕ

i
t )t∈I ′′,i ,i∈N∪{∞}

)
(5.9)

is a correspondence between all metric flows X i , i ∈N∪{∞}, and such that we have
convergence

d
C′,J
F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

) → 0. (5.10)

Proof After replacing each I ′,i with
⋂∞

i=1 I ′,i , we may assume that I ′,i = I ′ for all
i. As we are allowed to pass to a subsequence, we may further assume that

d
C,J
F

(
(X i , (μi

t )t∈I ′), (X i+1, (μi+1
t )t∈I ′)

)≤ 2−i−2.

For each i choose Ei,i+1 ⊂ I with J ⊂ I \Ei,i+1 ⊂ I ′′,i∩I ′′,i+1 and (q
i,i+1
t )t∈I\Ei,i+1

such that Properties (1), (2) of Definition 5.5 hold for r = 2−i−1. Set

Ei :=
∞⋃

j=1

Ei,i+j .

Then

|Ei | ≤ 4−i , E1 ⊃ E2 ⊃ . . . .

So E∞ := ⋂∞
i=1 Ei is a set of measure zero. For any t ∈ I \ E∞, the probability

measures (ϕi
t )∗μi

t ∈ P(Zt ) are defined for large i and form a Cauchy sequence in
(P(Zt ), d

Zt

W1
) (see Remark 5.6). So they converge to a probability measure μ∞

t ∈
P(Zt ) and

d
Zt

W1
((ϕi

t )∗μi
t ,μ

∞
t ) ≤ 2−i .

Let X∞
t := suppμ∞

t and d∞
t := dZ

t |X∞
t

. Then (X∞
t , d∞

t ,μ∞
t ) is a complete, separa-

ble metric measure space of full support.
Let us now analyze the conjugate heat kernels (νi

x;s).
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Claim 5.19.1 For every s, t ∈ I \ E∞, s ≤ t and x∞ ∈ X∞
t and every sequence xi ∈

X i
t with ϕi

t (x
i) → x∞ we have

(ϕi
t )∗νi

xi ;s
W1−−−−−→ ν∞x∞;s ,

for some probability measure ν∞
x∞;s ∈ P(Zs) with suppν∞

x∞;s ⊂ X∞
s . Moreover, the

limit does not depend on the choice of the sequence xi .

Proof Consider a sequence xi ∈X i
t with ϕi

t (x
i) → x∞ and let r > 0. Since for large i

μi
t (B(xi, r)) = ((ϕi

t )∗μi
t )(B

Zt (ϕi
t (x

i), r)) ≥ ((ϕi
t )∗μi

t )(B
Zt (x∞, r/2)),

we have lim infi→∞ μi
t (B(xi, r)) > 0. So the claim, except for the statement con-

cerning the support of ν∞
x∞;s , follows from Lemma 5.15.

If the statement concerning the support were false, then there would be a ball
B(y∞,3r) ∩ suppμ∞

s = ∅ with y∞ ∈ suppν∞
x∞;s . Choose a sequence yi ∈ X i

s with

ϕi
s(y

i) → y∞. Consider the function f := (r − dZ
s (y∞, ·))+ : Zs → R. We obtain

that

lim inf
i→∞

ˆ

X i
s

(f ◦ ϕi
s)dνi

xi ;s > 2α > 0, lim
i→∞

ˆ

X i
s

(f ◦ ϕi
s)dμi

s = 0.

By Proposition 3.16(c), since fi := f ◦ ϕi
s is 1-Lipschitz, so is z �→ ´

X i
s
fi dνi

z;s .
Therefore, for large i

ˆ

X i
s

fi dμi
s =

ˆ

X i
t

ˆ

X i
s

fi dνi
y;sdμi

t (y)

≥
ˆ

B(xi ,α)

ˆ

X i
s

fi dνi
y;sdμi

t (y) ≥ αμi
t (B(xi, α)),

which contradicts the fact that ϕi
t (x

i) → x∞ ∈ suppμ∞
t . This shows that ν∞

x∞;s ∈
P(X∞

s ). �

Applying Claim 5.19.1 for any s, t ∈ I \ E∞, s ≤ t and x∞ ∈ X∞
t produces

families of probability measures ν∞
x∞;s ∈ P(X∞

s ), which we will fix henceforth. Set
I ′,∞ := I ′′,∞ := I \E∞. By abuse of notation, we will denote the tuple

(
X∞ :=

⊔

t∈I\E∞
X∞

t , t∞, (d∞
t )t∈I\E∞, (ν∞x;s)x∈X∞

t ,s,t∈I\E∞,s≤t

)
,

where t∞ :X∞ →R is the natural map, by X∞. Let moreover (ϕ∞
t :X∞

t = X∞
t →

Zt)t∈I\E∞ be the family of inclusion maps.

Claim 5.19.2 (X∞, (μ∞
t )t∈I\E∞) is a metric flow pair and C′ in (5.9) is a correspon-

dence.
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Proof Properties (1)–(5) of Definition 3.1 hold trivially.
To see Property (6) let s, t ∈ I \ E∞, s < t , T > 0 and consider a T −1-Lipschitz

function f :X∞
s →R. Then the function f̂ :Zs →R, defined by

f̂ (x) := inf
z∈X∞

s

(
f (z)+ T −1d(x, z)

)

is also T −1-Lipschitz. It follows that the functions

hi :X i
t →R, x �→ �−1

(ˆ

X i
s

(� ◦ f̂ ◦ ϕi
s)dνi

x;s
)

are (t − s + T )−1-Lipschitz. By Claim 5.19.1 for any xi ∈ X i
t with ϕi

t (x
i) → x∞ ∈

X∞
t we have hi(xi) → �−1(

´
X∞

s
�(f )dνx∞;s). This shows that X∞

t → R, x �→
�−1(

´
X∞

s
�(f )dν∞

x∞;s) is (t − s+T )−1-Lipschitz, and therefore Property (6) if T >

0. By Lemma 3.3 this implies the case T = 0.
For Property (7) fix t1, t2, t3 ∈ I \E∞, t1 < t2 < t3, x∞ ∈ X∞

t3
. It suffices to show

that for every bounded Lipschitz function f :X∞
t3

→R

ˆ

X∞
t1

f dν∞x∞;t1 =
ˆ

X∞
t2

ˆ

X∞
t1

f dν∞y;t1dν∞x∞;t2(y).

As explained in the last paragraph, we may extend f to a bounded Lipschitz function
f̂ : Zt1 →R. Fix a sequence xi ∈X i

t3
such that ϕi

t3
(xi)→ x∞. Then by Claim 5.19.1

ˆ

X i
t1

f̂ ◦ ϕi
t1

dνi
xi ;t1 −→

ˆ

X∞
t1

f dν∞x∞;t1 .

Similarly, the functions

hi :X i
t2
→R, y �→

ˆ

X i
t1

f̂ ◦ ϕi
t1
dνi

y;t1

are uniformly Lipschitz and for any sequence yi ∈X i
t2

with ϕi
t2
(yi) → y∞ ∈ X∞

t2
we

have hi(yi) → ´
X∞

t1
f dν∞

y∞;t1 . It follows, again using Claim 5.19.1, that

ˆ

X∞
t1

f dν∞x∞;t1 ←−
ˆ

X i
t1

f̂ ◦ ϕi
t1

dνi
xi ;t1 =

ˆ

X i
t2

hi dνi
xi ;t2

−→
ˆ

X∞
t2

ˆ

X∞
t1

f dν∞y;t1dν∞x∞;t2(y).

The proof that (μ∞
t )t∈I\E∞ is a conjugate heat flow on X∞ is almost the same. �

It remains to show (5.10), i.e. that we have convergence within C′. For this pur-
pose, choose for any i ≥ 1 and t ∈ I \ Ei a coupling q

i,∞
t between μi

t ,μ
∞
t with the
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property that

ˆ

X i
t ×X∞

t

dZ
t (ϕi

t (x
i), ϕ∞

t (x∞))dq
i,∞
t (xi, x∞)≤ 2−i+1.

For any i ≤ j and t ∈ I \Ei , use Lemma 2.2 to find a probability measure qi,j,∞ on
X i

t ×X j
t ×X∞

t whose projection onto the first and last two factors equals q
i,∞
t , q

j,∞
t ,

respectively. Its projection q̃i,j onto the first two factors is a coupling between μi
t ,μ

j
t

and as in the proof of Proposition 5.12 we find

ˆ

X i
t ×X j

t

dZ
t (ϕi

t (x
i), ϕ

j
t (xj ))dq̃

i,j
t (xi, xj )

=
ˆ

X i
t ×X j

t ×X∞
t

dZ
t (ϕi

t (x
i), ϕ

j
t (xj ))dq

i,j,∞
t (xi, xj , x∞)

≤
ˆ

X i
t ×X j

t ×X∞
t

(
dZ
t (ϕi

t (x
i), ϕ∞

t (x∞))

+ dZ
t (ϕ∞

t (x∞), ϕ
j
t (xj ))

)
dq

i,j,∞
t (xi, xj , x∞)

≤
ˆ

X i
t ×X∞

t

dZ
t (ϕi

t (x
i), ϕ∞

t (x∞))dq
i,∞
t (xi, x∞)

+
ˆ

X j
t ×X∞

t

dZ
t (ϕ∞

t (x∞), ϕ
j
t (xj ))dq

j,∞
t (xj , x∞)

≤ 2−i+1 + 2−j+1 ≤ 2−i+2.

So by Lemma 5.17

ˆ

X i
t ×X j

t

d
Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

j
s )∗νj

xj ;s)dq̃
i,j
t (xi, xj )

≤ 2−i+2 + 2d
C,J
F

(
(X i , (μi

t )t∈I ′,i ), (X j , (μ
j
t )t∈I ′,j )

)

≤ 2−i+3.

It follows that for any measurable subset Y ⊂X∞
t

ˆ

X i
t ×Y

d
Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

∞
s )∗ν∞x∞;s)dq

i,∞
t (xi, x∞)

=
ˆ

X i
t ×X j

t ×Y

d
Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

∞
s )∗ν∞x∞;s)dq

i,j,∞
t (xi, xj , x∞)

≤
ˆ

X i
t ×X j

t ×Y

(
d

Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

j
s )∗νj

xj ;s)

+ d
Zs

W1
((ϕ

j
s )∗νj

xj ;s , (ϕ
∞
s )∗ν∞x∞;s)

)
dq

i,j,∞
t (xi, xj , x∞)
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≤ 2−i+3 +
ˆ

X j
t ×Y

d
Zs

W1
((ϕ

j
s )∗νj

xj ;s , (ϕ
∞
s )∗ν∞x∞;s)dq

j,∞
t (xj , x∞). (5.11)

Next, suppose that Y is compact and fix some ε > 0. We claim that for large j we
have for any xj ∈X j

t , x∞ ∈ Y

d
Zs

W1
((ϕ

j
s )∗νj

xj ;s , (ϕ
∞
s )∗ν∞x∞;s) ≤ dZ

t (ϕ
j
t (xj ), ϕ∞

t (x∞))+ ε. (5.12)

Suppose not, so, after passing to a subsequence, we can find sequences of points
xj ∈X j

t , x∞,j ∈ Y that violate (5.12). After passing to another subsequence, we may
assume that x∞,j → x′,∞ ∈ Y . Fix a sequence x′,j ∈X j

t with ϕ
j
t (x′,j ) → ϕ∞

t (x′,∞).
Then

d
Zs

W1
((ϕ

j
s )∗νj

xj ;s , (ϕ
∞
s )∗ν∞x∞,j ;s)

≤ d
Zs

W1
((ϕ

j
s )∗νj

xj ;s , (ϕ
j
s )∗νj

x′,j ;s)+ d
Zs

W1
((ϕ

j
s )∗νj

x′,j ;s , (ϕ
∞
s )∗ν∞x′,∞;s)

+ d
Zs

W1
((ϕ∞

s )∗ν∞x′,∞;s , (ϕ
∞
s )∗ν∞x∞,j ;s)

≤ d
j
t (xj , x′,j )+ d

Zs

W1
((ϕ

j
s )∗νj

x′,j ;s , (ϕ
∞
s )∗ν∞x′,∞;s)+ d∞

t (x′,∞, x∞,j )

≤ dZ
t (ϕ

j
t (xj ), ϕ∞

t (x∞,j ))+ dZ
t (ϕ∞

t (x′,∞), ϕ
j
t (x′,j ))

+ d
Zs

W1
((ϕ

j
s )∗νj

x′,j ;s , (ϕ
∞
s )∗ν∞x′,∞;s)+ 2d∞

t (x′,∞, x∞,j ).

By Claim 5.19.1 the last three terms converge to 0 as j → ∞, which yields the
desired contradiction.

Combining (5.11), (5.12) implies that for large j

ˆ

X i
t ×Y

d
Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

∞
s )∗ν∞x∞;s)dq

i,∞
t (xi, x∞)

≤ 2−i+3 +
ˆ

X j
t ×Y

dZ
t (ϕ

j
t (xj ), ϕ∞

t (x∞))dq
j,∞
t (xj , x∞)+ ε.

So letting j →∞ and then ε → 0 and finally Y →X∞
t (see Lemma 2.1) yields

ˆ

X i
t ×X∞

t

d
Zs

W1
((ϕi

s)∗νi
xi ;s , (ϕ

∞
s )∗ν∞x∞;s)dq

i,∞
t (xi, x∞)≤ 2−i+3.

This concludes the proof of (5.10). �

Proof of Theorem 5.18 Consider a sequence of metric flow pairs (X i , (μi
t )t∈I ′,i ) rep-

resenting elements in F
J
I that form a Cauchy sequence in (FJ

I , dJ
F
). After passing to

a subsequence, we may assume that

dJ
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)
< 2−i .
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So we can find correspondences Ci,i+1 between X i ,X i+1 over I that are fully defined
over J such that

d
Ci,i+1,J
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)
< 2−i .

By an iterative application of Lemma 5.13, we can construct sequences of correspon-
dences C1...k between X 1, . . . ,X k such that for any 1 ≤ i < k

d
C1...k ,J
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)

= d
Ci,i+1,J
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)

and such that for all t ∈ I we have sequence of isometric embeddings of the form

(
Z12

t , dZ12
t

) ι12
t−−→ (

Z123
t , dZ123

t
) ι123

t−−→ (
Z1234

t , dZ1234
t

) ι1234
t−−−→ . . .

By a direct limit construction, we may assume without loss of generality that there is
a metric space (Z,dZ

t ) such that Z1...k
t ⊂ Zt , such that the inclusion maps

(
Z1...k

t , dZ1...k
t

) −→ (Zt , d
Z
t )

are isometric embeddings and such that the maps ι1...k
t are inclusion maps. Repeating

this construction for all t ∈ I produces a correspondence C between X 1,X 2, . . . such
that for any i ∈N

d
C,J
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)

= d
Ci,i+1,J
F

(
(X i , (μi

t )t∈I ′,i ), (X i+1, (μi+1
t )t∈I ′,i+1)

)
< 2−i .

After passing to a their completions, we may assume that the metric spaces (Z,dZ
t )

of the correspondence C are complete. By Lemma 5.19 there is a metric flow pair
(X∞, (μ∞

t )t∈I ′,∞) over I that is fully defined over J such that for an enlargement C′
of C

dJ
F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)

≤ d
C′,J
F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

) → 0.

This finishes the proof. �

6 Convergence within a correspondence

In this section we will study the convergence behavior of metric flow pairs in more de-
tail. To do this, we will embed an F-convergent sequence (X i , (μi

t )t∈I ′,i ) and its limit
(X∞, (μ∞

t )t∈I ′,∞) into a common correspondence. This will allow us to define the
notion of convergence on compact time-intervals and to relate objects and geometric
properties of the sequence with its limit. For example, we will define what it means
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that a sequence of conjugate heat flows or points on X i converges to a conjugate heat
flow or point on X∞.

One of the main goals of this section will be to show a “change-of-basepoint”
theorem, which allows us to replace the conjugate heat flows (μi

t )t∈I ′,i by another
convergent sequence of conjugate heat flows and maintain convergence of the metric
flow pairs. This will allow us to show that tangent flows of the limit X∞ occur as F-
limits of parabolic rescalings of certain metric flow pairs involving the metric flows
X i .

A number of results presented in this section will be required in Sect. 9 and in
subsequent work [8], but are not required for the compactness theory, as presented in
Sect. 7. The reader may decide to skim or skip this section upon first reading.

6.1 Convergence of metric flow pairs within a correspondence

In this subsection we define what it means that a sequence of metric flow pairs F-
converges within a correspondence.

Let (X i , (μi
t )t∈I ′,i ), i ∈N∪ {∞}, be metric flow pairs over intervals I i ⊂R. Sup-

pose that

C := (
(Zt , d

Z
t )t∈I ′′ , (ϕ

i
t )t∈I ′′,i ,i∈N∪{∞}

)
, (6.1)

is a correspondence between the metric flows X i , i ∈ N ∪ {∞}, over some subset
I ′′ ⊂R. Let J ⊂R be another subset.

Definition 6.1 (Convergence of metric flow pairs within correspondence) Suppose
that I∞ \ I ′′ has measure zero, that the metric flow pairs (X i , (μi

t )t∈I ′,i ) for large i

and the correspondence C restricted to some index set of the form {i ≥ i} are fully
defined over J and that

d
C,J
F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

) → 0. (6.2)

Then we say that the metric flow pairs (X i ,(μi
t )t∈I ′,i ) F-converge to (X∞,(μ∞

t )t∈I ′,∞)

within C and that the convergence is uniform over J . We write4

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞). (6.3)

If J = I∞, then we say that the F-convergence is uniform. If (6.2) holds after re-
placing J with J ∪ {t} for any or some t ∈ I∞, then we say that the F-convergence
is time-wise or time-wise at time t .

Next, suppose that for any compact subinterval I0 ⊂ I∞ we have

(X i
I0

, (μi
t )t∈I ′,i∩I0

)
F,C|I ′′∩I0

,J∩I0−−−−−−−−−−−−→
i→∞ (X∞

I0
, (μ∞

t )t∈I ′,∞∩I0). (6.4)

Then we say that the metric flow pairs (X i ,(μi
t )t∈I ′,i ) F-converge to (X∞,(μ∞

t )t∈I ′,∞)

within C on compact time-intervals and that the convergence is uniform over

4We may sometimes omit C, J above the arrow if there is no chance of confusion.
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J on compact time-intervals. If J = I∞, then we say that the F-convergence is
uniform on compact time-intervals. Similarly as before, if (6.4) holds on compact
time-intervals after replacing J with J ∪ {t} for any/some t ∈ I∞, then we say that
the F-convergence is time-wise (at time t).

Remark 6.2 We may always extend C such that I ′′ = I∞ and I ′′,i = I ′,i for all i ∈
N∪{∞}; for example choose (Zt , d

Z
t ) to be the wedge sum of all non-empty (X i

t , d
i
t )

and let ϕi
t be the natural embeddings. This does not change the convergence behavior

in (6.3), so it can be done to simplify the setting.

The following lemma shows that in the setting of Definition 6.1 we can always
pass to a subsequence such that we have time-wise convergence for almost every
time.

Lemma 6.3 Suppose that (6.3) holds (on compact time-intervals). Then, after pass-
ing to a subsequence, there is a subset of measure zero E∞ ⊂ I∞ such that the
convergence (6.3) is time-wise at any t ∈ I∞ \ E∞ (while converging on compact
time-intervals everywhere else). Moreover, there is a decreasing sequence of subsets
E1 ⊃ E2 ⊃ . . ., Ei ⊂ I∞, with

⋂∞
i=1 Ei = 0 and J ⊂ I∞ \Ei such that for any j the

convergence (6.3) is even uniform on I∞ \Ej (on compact time-intervals).

Proof We will consider the case in which (6.3) holds on I∞. The corresponding state-
ment involving convergence on compact time-intervals follows similarly. By Defini-
tion 5.5 there are measurable subsets Ei ⊂ I∞ such that J ⊂ I ′′ \ Ei ⊂ I ′′,i ∩ I ′′,∞
and

|Ei | → 0, d
C,I ′′\Ei

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)→ 0.

After passing to a subsequence, we may assume that |Ei | ≤ 2−i and after replacing
Ei with Ei ∪ Ei+1 ∪ . . ., we may assume that E1 ⊃ E2 ⊃ . . . and |Ei | ≤ 2−i+1.
Moreover, after replacing Ei with Ei ∪ (I∞\ I ′′), we may assume that I∞\ I ′′ ⊂ Ei .
Set E∞ := ⋂∞

i=1 Ei . Then for any t ∈ I∞ \E∞ we have J ∪ {t} ⊂ I ′′ \Ei for large
i. �

The next lemma shows that the limit of an F-convergent sequence of metric flow
pairs is unique if the convergence only holds on compact time-intervals.

Lemma 6.4 Suppose that (6.3) holds on compact time-intervals for two limiting met-
ric flow pairs (X∞, (μ∞

t )t∈I ′,∞), (X ∗,∞, (μ
∗,∞
t )t∈I ′,∗,∞) over the same interval I∞.

Then there is an almost everywhere isometry between them.

Proof By Theorem 5.11 for any compact subinterval I0 ⊂ I∞ there is a set EI0 ⊂ I0
of measure zero such that I0 \EI0 ⊂ I ′,∞∩I ′,∗,∞ and an almost everywhere isometry

φI0 : (X∞
I0\EI0

, (μ∞
t )t∈I0\EI0

) → (X ∗,∞
I0\EI0

, (μ
∗,∞
t )t∈I0\EI0

).

Consider an increasing sequence I1 ⊂ I2 ⊂ · · · ⊂ I∞ of compact subintervals with⋃∞
k=1 Ik = I∞ and let Ek ⊂ Ik , φk be the corresponding sets of measure zero
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and almost everywhere isometries. Let E := ⋃∞
k=1 Ek and for any t ∈ Ik \ E let

qk,t := (idX∞
t

, φk,t )∗μ∞
t be the coupling between μ∞

t ,μ
∗,∞
t . Now the proof of The-

orem 5.11 carries over to our setting. �

6.2 F-convergence implies F-convergence within a correspondence

The following theorem states that given an F- convergent sequence of metric flow
pairs, we can construct correspondence within which this sequence of metric flow
pairs converges.

Theorem 6.5 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over an interval

I ⊂R that are fully defined over some J ⊂ I . Suppose that

dJ
F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

) → 0. (6.5)

Then there is a correspondence C between the metric flows X i , i ∈ N ∪ {∞}, over I

that is fully defined over J such that

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞). (6.6)

Moreover, given an increasing sequence of subsets J1 ⊂ J2 ⊂ · · · ⊂ I with the prop-
erty that (6.5) continues to hold after replacing J with Jk for any k ≥ 1, we can
choose C such that the F-convergence in (6.6) is uniform over any Jk .

We also have the corresponding statement for convergence on compact time-
intervals.

Theorem 6.6 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over intervals

I i ⊂ R and J ⊂ I∞ such that (X∞, (μ∞
t )t∈I ′,∞) is fully defined over J . Suppose

that for any compact subinterval I0 ⊂ I∞ and for large i we have I0 ⊂ I i and the
metric flow pairs (X i , (μi

t )t∈I ′,i ) are fully defined over J ∩ I0 and their restrictions
to I0 satisfy

d
J∩I0
F

(
(X i |I0, (μ

i
t )t∈I ′,i∩I0

), (X∞|I0 , (μ
∞
t )t∈I ′,∞∩I0)

) → 0.

Then there is a correspondence C between the metric flows X i , i ∈N∪{∞}, over I∞
such that

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞) (6.7)

on compact time-intervals. Moreover, given an increasing sequence of subsets J1 ⊂
J2 ⊂ · · · ⊂ I∞ with the property that the assumption continues to hold after replacing
J with Jk for any k ≥ 1, then we can choose C such that the F-convergence in (6.6)
is uniform on compact time-intervals over any Jk .
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Proof of Theorem 6.5 We will prove the last statement, for the first statement set Jk :=
J . Due to (6.5) we can find k1 ≤ k2 ≤ . . . with ki → ∞ and correspondences Ci∞
between X i ,X∞ over I that are fully defined over Jki

for large i such that

d
Ci∞,Jki

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

) → 0.

By an iterative application of Lemma 5.13, we can construct sequences of correspon-
dences C1...m∞ between X 1, . . . ,Xm,X∞ such that for large i and m ≥ i

d
C1...m∞,Jki

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)

= d
Ci∞,Jki

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)
.

Using a direct limit construction on the sequence of metric spaces (Z1...m∞
t , dZ1...m∞

t ),
we find a correspondence C between X 1, . . . ,X∞ such that for large i ∈N

d
C,Jki

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)

= d
Ci∞,Jki

F

(
(X i , (μi

t )t∈I ′,i ), (X∞, (μ∞
t )t∈I ′,∞)

)
.

By Remark 6.2, we can extend C to a correspondence over I . �

Proof of Theorem 6.6 We may choose an increasing sequence of (possibly empty)
subintervals I i

0 ⊂ I∞ and k1 ≤ k2 ≤ . . . with ki →∞ such that
⋃∞

i=1 I i
0 = I∞ and

such that for large i we have I i
0 ⊂ I i , the metric flow pairs (X i , (μi

t )t∈I ′,i ) are fully
defined over Jki

∩ I i
0 and their restrictions to I i

0 satisfy

d
Jki

∩I i
0

F

(
(X i

I i
0
, (μi

t )t∈I ′,i∩I i
0
), (X∞

I i
0
, (μ∞

t )t∈I ′,∞∩I i
0
)
) → 0.

We can now carry out the same construction as in the previous proof. �

6.3 Convergence of conjugate heat flows within a correspondence

Next, we define convergence of conjugate heat flows within a correspondence. In the
following, let X i be metric flows over subsets I ′,i ⊂ R, i ∈ N ∪ {∞}, and consider
a correspondence C as in (6.1) between X i over I ′′ and a, possibly empty, subset
J ⊂ R. Let (μi

t )t∈I i∗ , i ∈ N ∪ {∞}, be conjugate heat flows on X i , where I i∗ = I ′,i ∩
(−∞, Ti) or I ′,i ∩ (−∞, Ti] for some Ti ∈ (−∞,∞].

Definition 6.7 We say that the conjugate heat flows (μi
t )t∈I i∗ converge to (μ∞

t )t∈I∞∗
within C and that the convergence is uniform over J and we write

(μi
t )t∈I i∗

C,J−−−−−−→
i→∞ (μ∞

t )t∈I∞∗ (6.8)

if J ⊂ I i∗ for large i ≤∞ and there are measurable subsets Ei ⊂ I ′′, i ∈N, such that:
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(1) J ∩ I∞∗ ⊂ (I i∗ ∩ I ′′) \Ei = (I∞∗ ∩ I ′′) \Ei ⊂ I ′′,i ∩ I ′′,∞ for large i.
(2) |Ei |→ 0.
(3) supt∈(I∞∗ ∩I ′′)\Ei

d
Zt

W1
((ϕi

t )∗μi
t , (ϕ

∞
t )∗μ∞

t ) → 0.
We say that (6.8) holds on compact time-intervals and is uniform over J if for any
compact subinterval I0 ⊂ I∞∗ we have (6.8) after replacing C, J with C|I ′′∩I0, J ∩ I0.
We say that the convergence (6.8) is time-wise at time t ∈ I ′′ if (6.8) holds after
replacing J with J ∪ {t}, that is if

(ϕi
t )∗μi

t

W1−−−−−→
i→∞ (ϕ∞

t )∗μ∞
t .

Remark 6.8 Note that (6.8) implies Ti → T∞.

The following lemma is a direct consequence of Definition 5.5, see also Re-
mark 5.6.

Lemma 6.9 Let (X i , (μi
t )t∈I ′,i ), i ∈N∪{∞}, be metric flow pairs over intervals I i ⊂

R and consider a correspondence between the metric flows X i , i ∈ N ∪ {∞}. If for
some J ⊂R the following convergence holds (on compact time-intervals)

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞),

then the following convergence holds (on compact time-intervals)

(μi
t )t∈I ′,i

C,J−−−−−−→
i→∞ (μ∞

t )t∈I ′,∞ .

6.4 Convergence of points and probability measures within a correspondence

Next, we characterize convergence of points and probability measures within a cor-
respondence. We will see that there are two different approaches: We may simply
characterize this convergence as convergence within the metric spaces (Zt , d

Z
t ) of

the correspondence. Alternatively, we may equate convergence of points or probabil-
ity measures with convergence of the corresponding conjugate heat kernels or con-
jugate heat flows. The latter approach, while weaker and less intuitive, will be more
useful in the sequel, as it does not require the entire sequence to live in time-slices
corresponding to a fixed time.

Let again X i be metric flows over subsets I ′,i ⊂ R, i ∈ N ∪ {∞}, and consider
a correspondence C as in (6.1) between X i over I ′′ and a, possibly empty, subset
J ⊂R.

We first define the more useful convergence notion:

Definition 6.10 Let Ti ∈ I ′,i and consider a sequence of probability measures μi ∈
P(X i

Ti
), i ∈N∪ {∞}. We say that μi converge to μ∞ within C (and uniform over

J ), and write

μi C,J−−−−−−→
i→∞ μ∞, (6.9)
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if Ti → T∞ and if for the conjugate heat flows (μ̃i
t )t∈I ′,i∩(−∞,Ti ], i ∈ N ∪ {∞},

with initial condition μ̃i
Ti
= μi we have the following convergence on compact time-

intervals

(μ̃i
t )t∈I ′,i∩(−∞,Ti )

C,J−−−−−−→
i→∞ (μ̃∞

t )t∈I ′,∞∩(−∞,T∞).

For any sequence of points xi ∈ X i
Ti

, i ∈ N ∪ {∞}, we say that xi converge to x∞
within C (and uniform over J ) and write

xi C,J−−−−−−→
i→∞ x∞ (6.10)

if δxi
C,J−−−−−−→

i→∞ δx∞ . This is equivalent to Ti → T∞ and the following convergence

on compact time-intervals

(νi
xi ;t )t∈I ′,i∩(−∞,Ti )

C,J−−−−−−→
i→∞ (ν∞x∞;t )t∈I ′,∞∩(−∞,T∞).

Remark 6.11 In general, the limits in (6.9), (6.10) may not be unique. This is the case
if the conjugate heat flows or the conjugate heat kernels of the limiting probability
measure or points agree at all times except for the final time; see also the example
discussed in Remark 6.14 below. Moreover, if T∞ = inf I ′,i , then (6.9), (6.10) are
vacuous.

Next, we define the more restrictive notion:

Definition 6.12 Fix some T ∈ I ′′ and consider a sequence of probability measures
μi ∈P(X i

T ), i ∈N∪ {∞}. We say that μi strictly converge to μ∞ within C if

(ϕi
T )∗μi W1−−−−−→

i→∞ (ϕ∞
T )∗μ∞.

For any sequence of points xi ∈ X i
T , i ∈ N ∪ {∞}, we say that xi strictly converge

to x∞ within C if δxi strictly converge to δx∞ within C or, equivalently, if

ϕi
T (xi)−−−→

i→∞ ϕ∞
T (x∞).

We emphasize that Definitions 6.10, 6.12 describe two different notions of charac-
terizing the convergence of measures or points within a correspondence. The notion
strict convergence is usually stronger, as we will soon see, but it only works if all
points xi live in the same time-slices X i

T for some uniform time T . In addition, if
the metric flows X i belong to metric flow pairs that F-converges within C then strict
convergence only useful if this F-convergence is time-wise at time t .

The next theorem states that strict convergence (in the sense of Definition 6.12)
implies convergence (in the sense of Definition 6.10) if the metric flows X i belong
to a convergent sequence of metric flow pairs.
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Theorem 6.13 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over intervals

I i ⊂R and consider a correspondence C between the metric flows X i , i ∈N∪ {∞}.
Let J ⊂ R be some subset and T ∈ J . Suppose that we have the following conver-
gence (possibly on compact time-intervals)

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞),

(a) Consider probability measures μ̃i ∈ P(X i
T ), i ∈ N ∪ {∞}, such that μ̃i strictly

converges to μ̃∞ and assume that μ̃∞ ∈ P1(X∞
T ) (i.e. its W1-Wasserstein dis-

tance to point masses is finite). Then (possibly on compact time-intervals)

μ̃i C,J−−−−−−→
i→∞ μ̃∞.

Moreover, we have the following stronger result: If we consider the conjugate
heat flows (μ̃i

t )t∈I
′,i
T

on X i with I
′,i
T := I ′,i ∩ (−∞, T ] and initial condition

μ̃i
T = μ̃i , i ∈N∪ {∞}, then

(μ̃i
t )t∈I

′,i
T

C,J−−−−−−→
i→∞ (μ̃∞

t )t∈I
′,∞
T

.

(b) Consider points xi ∈ X i
T , i ∈ N ∪ {∞}, such that xi strictly converge to x∞.

Then

xi C,J−−−−−−→
i→∞ x∞

and moreover for I
′,i
T := I ′,i ∩ (−∞, T ]

(νi
xi ;t )t∈I

′,i
T

C,J−−−−−−→
i→∞ (ν∞x∞;t )t∈I

′,∞
T

.

Remark 6.14 The reverse direction is in general false. To see this, consider a metric
flow X as in Example 3.49, which is defined over (−∞,0] and has the property that
#X0 > 1 and #Xt = 1 for all t < 0. This flow is not past continuous. Let X i :=X for
i ∈N∪{∞} and let C be the trivial correspondence between the flows X i . Obviously,
the metric flows belong to metric flow pairs that converge within C. However, for any

sequence xi ∈ X i
0 , i ∈ N ∪ {∞}, we have xi C,(−∞,0)−−−−−−−−−→

i→∞ x∞, but we only have

strict convergence if xi = x∞ for large i. This also shows that limits in the sense of
Definition 6.10 may not be unique.

The next theorem shows that convergence of conjugate heat flow (in the sense of
Definition 6.7) implies strict convergence (in the sense of Definition 6.12) at almost
every time. Moreover, if the metric flows X i belong to a convergent sequence of
metric flow pairs, then strict convergence holds at every time at which we have time-
wise convergence of the metric flow pairs, except possibly at the final time of the
limiting conjugate heat flow.
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Theorem 6.15 Let X i be metric flows over subsets I ′,i ⊂ R, i ∈ N ∪ {∞}, and con-
sider a correspondence C between X i . Let (μ̃i

t )t∈I i∗ , i ∈N ∪ {∞}, be conjugate heat

flows on X i , where I i∗ = I ′,i ∩ (−∞, Ti) or I ′,i ∩ (−∞, Ti] for some Ti ∈ (−∞,∞]
and suppose that we have the following convergence (possibly on compact time-
intervals):

(μ̃i
t )t∈I i∗

C−−−−→
i→∞ (μ̃∞

t )t∈I∞∗ . (6.11)

Then the following is true:
(a) After passing to a subsequence, (6.11) is time-wise at almost every time in I∞∗ .

This implies that we have strict convergence of μ̃i
t to μ̃∞

t for almost every t ∈
I∞∗ .

(b) Suppose that there are conjugate heat flows (μi
t )t∈I ′,i such that (X i , (μi

t )t∈I ′,i )
are metric flow pairs, i ∈ N ∪ {∞}, and such that we have for some J ⊂ R

(possibly on compact time-intervals)

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞). (6.12)

Then we have weak convergence (ϕi
t )∗μ̃i

t → (ϕ∞
t )∗μ̃∞

t for all t ∈ I∞∗ \ {T∞} at
which (6.12) is time-wise.
If in addition μ̃∞

t ∈ P1(X∞
t ) for all t ∈ I ′,∞, then (6.11) is uniform over J ∩

(−∞, T ′] (possibly on compact time-intervals) for any T ′ < T∞ and time-wise
at every time at which (6.12) is time-wise, except for possibly at time T∞. This
is equivalent to strict convergence at these times.

The remainder of this subsection is occupied with the proofs of Theorems 6.13,
6.15. Lemma 6.17 below will also be used in the proof of Theorem 6.18 in Sect. 6.5.

The following lemma shows that if two metric flow pairs are close within a cor-
respondence, then the same is true after replacing the conjugate heat flows with two
other conjugate heat flows whose initial conditions are close within the same corre-
spondence. Note that the following bound only depends on the closeness of μ̃1

T , μ̃2
T at

time T and that the lemma implies a closeness bound of the flows (μ̃1
t )t∈I ′,1 , (μ̃2

t )t∈I ′,2
at earlier times.

Lemma 6.16 Let (X i , (μi
t )t∈I ′,i ), i = 1,2, be two metric flow pairs and consider a

correspondence C = ((Zt , d
Z
t )t∈I ′′, (ϕi

t )t∈I ′′,i ,i=1,2) between X 1,X 2 over I ′′ that is

fully defined at some time T . Consider conjugate heat flows (μ̃i
t )t∈I

′,i
T

, where I
′,i
T :=

I ′,i ∩ (−∞, T ], and assume that μ̃1
T ≤ Aμ1

T for some A < ∞. Then for I ′′T := I ′′ ∩
(−∞, T ] and JT := J ∩ (−∞, T ] we have

d
C|I ′′

T
,JT

F

(
(X 1

I
′,1
T

, (μ̃1
t )t∈I

′,1
T

), (X 2
I
′,2
T

, (μ̃2
t )t∈I

′,2
T

)
)

≤ 4Ad
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)+ d
ZT

W1
((ϕ1

T )∗μ̃1
T , (ϕ2

T )∗μ̃2
T ).
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Proof After performing a time-shift, we may assume that T = 0 and after restricting
the flows X i to I

′,i
T and the correspondence C to I ′′T , we may assume that I i

T = I ′,i
and I ′′T = I ′′. Let

r > d
C,J
F

(
(X 1, (μ1

t )t∈I ′,1), (X 2, (μ2
t )t∈I ′,2)

)
, r̃ > d

Z0
W1

((ϕ1
0)∗μ̃1

0, (ϕ
2
0)∗μ̃2

0)

and choose E ⊂ I ′′, (qt )t∈I ′′\E with J ⊂ I ′′ \E ⊂ I ′′,1∩I ′′,2 such that Properties (1),
(2) of Definition 5.5 hold for r . Choose a coupling q̃0 between μ̃1

0, μ̃
2
0 such that

ˆ

X 1
0 ×X 2

0

dZ
0 (ϕ1

0(x1), ϕ2
0(x2)) dq̃0 < r̃. (6.13)

By Proposition 3.15(c) we have μ̃1
t ≤ Aμ1

t for all t ∈ I ′,1. Therefore, we can find
measurable functions (ht :X 1

t →R)t∈I ′,1 such that

dμ̃1
t = ht dμ1

t , 0 ≤ ht ≤A.

For any t ∈ I ′′ \ E define q ′
t by dq ′

t (x
1, x2) := ht (x

1)dqt (x
1, x2) and let μ

′,2
t be the

marginal of q ′
t onto the second factor. Then q ′

t is a coupling between μ̃1
t ,μ

′,2
t and we

have for all s, t ∈ I ′′ \E, s ≤ t

ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dq ′

t (x
1, x2) ≤ Ar, (6.14)

ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq ′
t (x

1, x2) ≤ Ar. (6.15)

Applying Lemma 5.16 to t = 0, q ′
0, q̃0 and using (6.13), (6.14), (6.15) implies that

for any s ∈ I ′′ \E

ˆ

X 1
0 ×X 2

0

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq̃0(x
1, x2) < 2Ar + r̃ .

Claim 6.16.1 For any t ∈ I ′′ \E

d
Zt

W1
((ϕ1

t )∗μ̃1
t , (ϕ

2
t )∗μ̃2

t ) < 2Ar + r̃ (6.16)

and there is a family of couplings (̃qt )t∈I ′′\E between μ̃1
t , μ̃

2
t such that

ˆ

X 1
t ×X 2

t

dZ
t (ϕ1

t (x1), ϕ2
t (x2))dq̃t (x

1, x2) ≤ 2Ar + r̃ . (6.17)

Proof We will verify (6.16) using Proposition 2.5. So let f : Zt → R be a bounded
1-Lipschitz function. Then
ˆ

Zt

f d((ϕ1
t )∗μ̃1

t − (ϕ2
t )∗μ̃2

t ) =
ˆ

X 1
t

f (ϕ1
t (x1)) dμ̃1

t (x
1)−

ˆ

X 2
t

f (ϕ2
t (x2)) dμ̃2

t (x
2)
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=
ˆ

X 1
0

ˆ

X 1
t

f (ϕ1
t (x1)) dν1

y1;t (x
1)dμ̃1

0(y
1)

−
ˆ

X 2
0

ˆ

X 2
t

f (ϕ2
t (x2)) dν2

y2;t (x
2)dμ̃2

0(y
2)

=
ˆ

X 1
0 ×X 2

0

ˆ

X 1
t

ˆ

X 2
t

(
f (ϕ1

t (x1))− f (ϕ2
t (x2))

)
dν2

y2;t (x
2)dν1

y1;t (x
1)dq̃0(y

1, y2)

≤
ˆ

X 1
0 ×X 2

0

d
Zt

W1
((ϕ1

t )∗ν1
x1;t , (ϕ

2
t )∗ν2

x2;t )dq̃0(x
1, x2) < 2Ar + r̃ − δ

for some small δ > 0 that is independent of f . Lastly, note that q̃0 has already been
chosen and satisfies (6.17) due to (6.13). �

Applying Lemma 5.16 to q ′
t , q̃t and using (6.17), (6.14), (6.15) implies that for

any s, t ∈ I ′′ \E, s ≤ t

ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
x1;s , (ϕ

2
s )∗ν2

x2;s)dq̃t (x
1, x2) ≤ 4Ar + r̃ ,

which proves the lemma after letting r, r̃ converge to their respective lower bounds.
�

Theorem 6.13 will be a consequence of the following lemma:

Lemma 6.17 Suppose we are in the setting of Theorem 6.13(a) and that C is of the
form (6.1). Then

(X i

I
′,i
T

, (μ̃i
t )t∈I

′,i
T

)
F,C|I ′′∩(−∞,T ],J∩(−∞,T ]−−−−−−−−−−−−−−−−−−−→

i→∞ (X∞
I
′,∞
T

, (μ̃∞
t )t∈I

′,∞
T

).

Proof After performing a time-shift, we may assume that T = 0 and after restricting
the flows X i to I

′,i
T , the correspondence C to I ′′ ∩ (−∞, T ] and replacing J with

J ∩ (−∞, T ], we may assume that I
′,i
T = I ′,i and J ⊂ I ′′ ⊂ (−∞,0]. We need to

show that

d
C,J
F

(
(X∞, (μ̃∞

t )t∈I ′,∞), (X i , (μ̃i
t )t∈I ′,i )

) → 0.

Fix some ε > 0.

Claim 6.17.1 There is a probability measure μ̃
∞,ε
0 ∈P(X∞

0 ) and a number Aε < ∞,
which may depend on μ̃∞

0 , such that

μ̃
∞,ε
0 ≤Aεμ

∞
0 , d

X∞
0

W1
(μ̃∞

0 , μ̃
∞,ε
0 ) ≤ 2ε.

Proof By Lemma 2.4, we can find a probability measure μ̃
′,∞
0 ∈P(X∞

0 ) whose sup-
port is finite and contained in suppμ∞

0 such that

d
X∞

0
W1

(μ̃∞
0 , μ̃

′,∞
0 ) ≤ ε.
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Choose 0 < r < ε such that the r-balls around every point in supp μ̃′,∞ are pairwise
disjoint. For any x ∈ supp μ̃

′,∞
0 ⊂ suppμ∞

0 set

ax := μ∞
0 (B(x, r)) > 0, bx := μ̃′,∞({x})

and let

μ̃
∞,ε
0 :=

∑

x∈supp μ̃
′,∞
0

bx

ax

μ∞
0 |B(x,r).

Then

d
X∞

0
W1

(μ̃∞
0 , μ̃

∞,ε
0 ) ≤ d

X∞
0

W1
(μ̃∞

0 , μ̃
′,∞
0 )+ d

X∞
0

W1
(μ̃

′,∞
0 , μ̃

∞,ε
0 ) ≤ 2ε. �

Let (μ̃
∞,ε
t )t∈I ′,∞ be the conjugate heat flow with initial condition μ̃

∞,ε
0 . Using

Proposition 3.16(b) and Lemma 5.14 we find that

d
C,J
F

(
(X∞, (μ̃∞

t )t∈I ′,∞), (X∞, (μ̃
∞,ε
t )t∈I ′,∞)

) ≤ 2ε. (6.18)

By Lemma 6.16 we have

lim sup
i→∞

d
C,J
F

(
(X∞, (μ̃

∞,ε
t )t∈I ′,∞), (X i , (μ̃i

t )t∈I ′,i )
)

≤ lim sup
i→∞

d
Z0
W1

((ϕ∞
0 )∗μ̃∞,ε

0 , (ϕi
0)∗μ̃

i
0)

≤ d
X∞

0
W1

(μ̃
∞,ε
0 , μ̃∞

0 )+ lim sup
i→∞

d
Z0
W1

((ϕ∞
0 )∗μ̃∞

0 , (ϕi
0)∗μ̃

i
0) ≤ 2ε. (6.19)

Combining (6.18), (6.19) shows that

d
C,J
F

(
(X∞, (μ̃∞

t )t∈I ′,∞), (X i , (μ̃i
t )t∈I ′,i )

)≤ 4ε

for large i, which finishes the proof. �

Proof of Theorem 6.13 Assertion (a) is a direct consequence of Lemmas 6.17, 6.9.
Assertion (b) follows from Assertion (a) by setting μ̃i := δxi . �

Proof of Theorem 6.15 Assertion (a) follows from Definition 6.7; see also the proof of
Lemma 6.3.

To see Assertion (b) under the assumption that μ∞
t ∈ P1(X∞

t ) for all t ∈ I ′,∞,
it suffices to show uniform convergence over J ∩ (−∞, T ′] for any T ′ < T∞. By
replacing J with J ∩ (−∞, T ′], we may assume that supJ < T∞. Suppose that the
convergence (6.11) was not uniform over J . Then we may pass to a subsequence such
that uniform convergence over J is violated for any further subsequence. By Asser-
tion (a) and Lemma 6.3, we can pass to a subsequence and choose T ∈ (supJ,T∞]
arbitrarily close to T∞ such that (6.11) and (6.12) are time-wise at T . Now Theo-
rem 6.13(a) produces the desired contradiction.
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Lastly, we show the statement involving weak convergence in Assertion (b). Fix
some t0 ∈ I∞∗ \ {T∞} at which the convergence (6.12) is time-wise and suppose by
contradiction that we don’t have weak convergence (ϕi

t0
)∗μ̃i

t0
→ (ϕ∞

t0
)∗μ̃∞

t0
. Then we

can pass to a subsequence and find a bounded, continuous function f : Zt0 → [0,1]
such that

lim
i→∞

ˆ

X i
t0

f ◦ ϕi
t0

dμ̃i
t0
= lim

i→∞

ˆ

Zt0

f d(ϕi
t0
)∗μ̃i

t0
�=
ˆ

Zt0

f d(ϕ∞
t0

)∗μ̃∞
t0

=
ˆ

X∞
t0

f ◦ ϕ∞
t0

dμ̃∞
t0

. (6.20)

By Assertion (a) and Lemma 6.3, we can pass to a further subsequence and find some
T ∈ (t0, T∞] such that (6.11) is time-wise at T and (6.12) is uniform over J ∪{t0, T }.
Let α,R > 0 be small/large constants whose values we will determine later. Choose
a basepoint p ∈ ZT and continuous function w : ZT →[0,1] with w ≡ 1 on B(p,R)

and w ≡ 0 outside of B(p,2R). Set

ai :=
ˆ

ZT

w d(ϕi
T )∗μ̃i

T =
ˆ

X i
T

w ◦ ϕi
T dμ̃i

T .

Note that limi→∞ ai = a∞ and that by choosing R sufficiently large, we can achieve
that a∞ > 1 − α. Let (μ̃

′,i
t )t∈I ′,i ,t≤T , i ∈ N ∪ {∞}, be the conjugate heat flows with

initial condition dμ̃
′,i
T = a−1

i (w ◦ ϕi
T ) dμ̃i

T . Then we have strict convergence μ̃
′,i
T →

μ̃
′,∞
T and μ̃

′,∞
T ∈ P1(X∞

T ). So by Theorem 6.13(a) we have strict convergence μ̃
′,i
t0
→

μ̃
′,∞
t0

. On the other hand, Proposition 3.15(d) implies that for large i ≤∞

(1 − α)μ̃
′,i
t0
≤ μ̃i

t0
.

This implies that

(1 − α)

ˆ

X i
t0

f ◦ ϕi
t0

dμ̃
′,i
t0
≤
ˆ

X i
t0

f ◦ ϕi
t0

dμ̃i
t0
= 1 −

ˆ

X i
t0

(1 − (f ◦ ϕi
t0
)) dμ̃i

t0

≤ 1 − (1 − α)

ˆ

X i
t0

(1 − (f ◦ ϕi
t0
)) dμ̃

′,i
t0
= α + (1 − α)

ˆ

X i
t0

f ◦ ϕi
t0

dμ̃
′,i
t0

.

Since both sides of this inequality converge and α can be chosen arbitrarily, we obtain
a contradiction to (6.20). �

6.5 Change of basepoint theorem

The following theorem, which is the main result of this subsection, shows that we
can exchange the sequence of conjugate heat flows in any convergent sequence of
metric flow pairs by any other convergent sequence of conjugate heat flows under a
technical assumption. The statement can be seen as a change of basepoint theorem. It
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is analogous to the following statement: If we have pointed Gromov-Hausdorff con-
vergence (Xi, di, xi) → (X∞, d∞, x∞) and x̃i → x̃∞ for some points x̃i ∈ Xi , then
we also have pointed Gromov-Hausdorff convergence (Xi, di, x̃i) → (X∞, d∞, x̃∞).

Theorem 6.18 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over intervals

I i ⊂ R and consider a correspondence C between the metric flows X i , i ∈ N ∪ {∞}
over I ′′. Suppose that for some subset J ⊂ R we have the following convergence
(possibly on compact time-intervals)

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞), (6.21)

Consider conjugate heat flows (μ̃i
t )t∈I i∗ , i ∈N∪ {∞}, where I i∗ = I ′,i ∩ (−∞, Ti) or

I ′,i ∩ (−∞, Ti] for some Ti ∈ I i , such that

(μ̃i
t )t∈I i∗

C−−−−→
i→∞ (μ̃∞

t )t∈I∞∗ . (6.22)

Assume that one of the following is true:
(i) T∞ = sup I∞∗ ∈ J , the convergence (6.22) is time-wise at time T∞ and μ̃∞

T∞ ∈
P1(X∞

T∞). (Here P1(X∞
T∞) denotes again the set of probability measures that

have finite W1-Wasserstein distance to point masses.)
(ii) sup(J ∩ I∞∗ ) < sup I∞∗ = T∞ and μ̃∞

t ∈ P1(X∞
t ) for t ∈ I∞∗ near T∞.

Then we have the following convergence (possibly on compact time-intervals)

(X i

I i∗
, (μ̃i

t )t∈I i∗)
F,C|I∞∗ ∩I ′′ ,J∩I∞∗−−−−−−−−−−−−−−→

i→∞ (X∞
I∞∗ , (μ̃∞

t )t∈I∞∗ ). (6.23)

Moreover, (6.23) is time-wise at any time t ∈ I∞∗ , t < sup I∞∗ , at which the conver-
gence (6.21) is time-wise.

Proof It suffices to show (6.23); the statement about time-wise convergence follows
after replacing J with J ∪ {t}. We will carry out the proof in the case in which (6.21)
holds on I∞; the case in which the convergence holds on compact time-intervals is
similar.

If Condition (i) holds, then we have strict convergence of μ̃i
T∞ to μ̃∞

T∞ , so the
theorem follows from Lemma 6.17.

Suppose now that Condition (ii) holds. Consider an arbitrary ε > 0 and arbitrary
subsequences of the given sequences. It suffices to show that for infinitely many i we
have

d
C|I∞∗ ∩I ′′ ,J∩I∞∗
F

(
(X i

I i∗
, (μ̃i

t )t∈I i∗), (X
∞
I∞∗ , (μ̃∞

t )t∈I∞∗ )
) ≤ ε. (6.24)

By Lemma 6.3 and Theorem 6.15 and after passing to a subsequence, we can find
some T ∈ (T∞ − 1

2ε2, T∞) such that both convergences (6.21), (6.22) are time-wise
at time T . So by Lemma 6.17 we have for large i

d
C|I∞∗ ∩I ′′∩(−∞,T ],J∩I∞∗
F

(
(X i

I i∗∩(−∞,T ], (μ̃
i
t )t∈I i∗∩(−∞,T ]), (X

∞
I∞∗ ∩(−∞,T ], (μ̃

∞
t )t∈I∞∗ ∩(−∞,T ])

)
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≤ 1
2ε.

Since |(I∞∗ ∩ I ′′) \ (−∞, T ]| ≤ 1
2ε2, this implies (6.24). �

6.6 Representing points as limits of sequences

The following theorem states that points in the limit of an F-convergent sequence of
metric flow pairs can be represented as limits of points in the sequence.

Theorem 6.19 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over intervals

I i ⊂R and consider a correspondence C between the metric flows X i , i ∈N∪ {∞}.
Suppose that for some J ⊂R we have on compact time-intervals

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞) (6.25)

and that all X i , i ∈ N ∪ {∞}, are H -concentrated for some uniform H < ∞. Con-
sider some point x∞ ∈ X∞

t∞ with t∞ > inf I∞ and a sequence of times ti ∈ I ′,i with
ti → t∞. Then there are points xi ∈X i

ti
such that

xi
C,J−−−−−−→

i→∞ x∞.

Note that if t∞ ∈ I ′,i for all i ∈ N, then we can apply the theorem to the constant
sequence ti = t∞ and obtain a sequence of points xi ∈ X i

t∞ at the same time. It is,
however, not guaranteed that this sequence of points also converges strictly within C.

Proof Let r, ε > 0 be two constants whose values we will determine later. Consider
an arbitrary subsequence of the given sequence. It suffices to show the theorem after
passing to a further subsequence.

By Theorem 6.15 we may pass to a subsequence and assume that the convergence
(6.25) is time-wise at almost every time. Choose an H -center y∞ ∈ X∞

t ′ , t ′ ∈ (t∞ −
ε, t∞), of x∞ such that (6.25) is time-wise at time t ′. Then we can find points yi ∈X i

t ′
that strictly converge to y∞ within C. It follows that

lim inf
i→∞ μi

t ′(B(yi,2r)) ≥ μ∞
t ′ (B(y∞,2r)). (6.26)

For every H -center y′ ∈X∞
t ′ of any point x′ ∈ B(x∞, r) we have

d∞
t ′ (y′, y∞) ≤ d

X∞
t ′

W1
(δy′ , ν

∞
x′;t ′)+ d

X∞
t ′

W1
(ν∞x′;t ′ , ν

∞
x∞;t ′)+ d

X∞
t ′

W1
(ν∞x∞;t ′ , δy∞)

≤ r + 2
√

Hε.

So, assuming ε ≤ ε(r,H) is chosen small enough such that r+2
√

Hε+√
2Hε ≤ 2r ,

we obtain, using Lemma 3.26,

μ∞
t ′ (B(y∞,2r)) ≥

ˆ

B(x∞,r)

ν∞x′;t ′(B(y∞,2r))dμ∞
t∞(x′)≥ 1

2μ∞
t∞(B(x∞, r)). (6.27)
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By combining (6.26), (6.27) and using the reproduction formula, we find points
xi ∈X i

ti
such that for large i

νi
xi ;t ′(B(yi,2r)) ≥ 1

4μ∞
t∞(B(x∞, r)).

Let zi ∈X i
t ′ be H -centers of xi for large i. By Lemma 3.26 we have for large i

di
t ′(zi , yi) ≤ 4r +

(
H(ti − t ′)

1
4μ∞

t∞(B(x∞, r))

)1/2

≤ 4r +
(

8Hε

μ∞
t∞(B(x∞, r))

)1/2

.

So for large i we have for any t ∈ I ′,i , t ≤ t ′,

d
X i

t

W1
(νi

xi ;t , ν
i
yi ;t )≤ d

X i
t ′

W1
(νi

xi ;t ′ , δzi
)+ d

X i
t ′

W1
(δzi

, δyi
)

≤ √
H(ti − t ′)+ 4r +

(
8Hε

μ∞
t∞(B(x∞, r))

)1/2

≤√
2Hε + 4r +

(
8Hε

μ∞
t∞(B(x∞, r))

)1/2

.

On the other hand,

d
X∞

t

W1
(ν∞y∞;t , ν

∞
x∞;t ) ≤ d

X∞
t ′

W1
(δy∞ , ν∞x∞;t ′)≤

√
Hε.

Assume that C is as in (6.1). By Theorem 6.13 for any compact I0 ⊂ I∞ ∩
(−∞, t ′) we can find measurable subsets Ei ⊂ Ii such that for large i we have
J ∩ I0 ⊂ (I0 ∩ I ′′) \Ei ⊂ I ′′,i ∩ I ′′,∞ and

|Ei |→ 0, sup
t∈(I0∩I ′′)\Ei

d
Zt

W1
((ϕi

t )∗νi
yi ;t , (ϕ

∞
t )∗ν∞y∞;t ) → 0.

So for large i we have |Ei | ≤ ε and for all t ∈ (I0 ∩ I ′′) \Ei

d
Zt

W1
((ϕi

t )∗νi
xi ;t , (ϕ

∞
t )∗ν∞x∞;t )

≤ d
X i

t

W1
(νi

xi ;t , ν
i
yi ;t )+ d

Zt

W1
((ϕi

t )∗νi
yi ;t , (ϕ

∞
t )∗ν∞y∞;t )+ d

X∞
t

W1
(ν∞y∞;t , ν

∞
x∞;t )

≤√
Hε + ε +√

2Hε + 4r +
(

8Hε

μ∞
t∞(B(x∞, r))

)1/2

.

Letting first ε → 0 and then r → 0 implies the desired convergence statement. �

6.7 Compactness of sequences of points

The following theorem shows that given an F-convergent sequence of metric flow
pairs (X i , (μi

t )t∈I ′,i ) and points xi ∈ X i
ti

, ti → t∞, that remain within bounded dis-
tance from the “center of the flow”, we can pass to a subsequence such that the con-
jugate heat kernels based at xi converge to a conjugate heat flow on X∞ that has
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similar concentration properties as a conjugate heat kernel. In general, this limit may
not be a conjugate heat kernel of some point x∞ ∈ X∞

t∞ , but if it is, then we have
convergence of xi to x∞ within C.

Theorem 6.20 Let (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, be metric flow pairs over intervals

I i ⊂R and consider a correspondence C between the metric flows X i , i ∈N∪ {∞}.
Suppose that for some J ⊂R we have on compact time-intervals

(X i , (μi
t )t∈I ′,i )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞), (6.28)

and that all X i , i ∈ N ∪ {∞}, are H -concentrated for some uniform H < ∞. Con-
sider a sequence of points xi ∈ X i

ti
with ti → t∞ ∈ I∞, t∞ > inf I∞. Suppose that

d
X i

ti

W1
(δxi

,μi
ti
) ≤ D for all i ∈N, where D < ∞ is some uniform constant. Then, after

passing to a subsequence, we can find a conjugate heat flow (μ∞
t )t∈I ′,∞∩(−∞,t∞) on

X∞, with

lim
t↗t∞,t∈I ′,∞

Var(μ∞
t ) = 0, (6.29)

such that on compact time-intervals

(νi
xi ;t )t∈I ′,i∩(−∞,ti )

C,J−−−−−−→
i→∞ (μ∞

t )t∈I ′,∞∩(−∞,t∞). (6.30)

Remark 6.21 In general, (μ∞
t )t∈I ′,∞∩(−∞,t∞) may not need to be a conjugate heat

kernel itself. Consider for example a singular Ricci flow M starting from S3 that
develops a non-degenerate, 3-dimensional neckpinch at time T > 0 and let M′ ⊂M
correspond to the choice of one component after the neckpinch; see the discussion
preceding Theorem 3.36 for more details. Let X be the metric flow corresponding to
M′. Choose a point x∞ ∈MT \M′

T within the other component of the neckpinch
and let (μt )t∈[0,T ) be the conjugate heat flow corresponding to the conjugate heat
kernel based at x∞. Then (μt )t∈[0,T ) is not a conjugate heat kernel on X , but it may
arise as a limit as in (6.30): Consider for example the constant sequence X i := X
and the trivial correspondence C and let xi := x∞(−τi) ∈ XT−τi

for some sequence
τi → 0.

Proof By Theorem 6.15 we may pass to a subsequence and assume that the conver-
gence (6.28) is time-wise at almost every time.

Claim 6.20.1 Let t ∈ I∞, t < t∞ be some time at which (6.28) is time-wise. Then,
after passing to a subsequence, we have strict convergence of νi

xi ;t to some probability
measure μ̃t ∈ P(X∞

t ).

Proof Suppose that C is as in (6.1). Let ε > 0 be some small constant and use
Lemma 2.1 to choose a compact subset Kε ⊂ X∞

t such that μ∞
t (Kε) > 1 − ε. Then

for large i we have for Ki,ε := (ϕi
t )
−1(B(ϕ∞

t (Kε), ε)) ⊂X i
t

μi
t (Ki,ε) = ((ϕi

t )∗μi
t )

(
B(ϕ∞

t (Kε), ε)
) ≥ 1 − 2ε.
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Since μi
ti
(B(xi,2D)) ≥ 1

2 , we obtain from Definition 3.1(6) that for large i

1 − 2ε ≤ μi
t (Ki,ε) ≤

ˆ

X i
ti

νi
x′;t (Ki,ε)dμi

ti
(x′)

≤ μi
ti
(X i

ti
\B(xi,2D))+μi

ti
(B(xi,2D))

×�
(
�−1(νi

xi ;t (Ki,ε))+ 2(ti − t)−1/2D
)

≤ 1
2 + 1

2�
(
�−1(νi

xi ;t (Ki,ε))+ 2(ti − t)−1/2D
)
.

It follows that

�
(
�−1(νi

xi ;t (Ki,ε))+ 2(ti − t)−1/2D
) ≥ 1 − 4ε.

This implies that for large i

νi
xi ;t (Ki,ε) ≥ 1 −�(ε|t∞ − t,D),

where �(ε|t∞ − t,D) denotes a function that goes to zero as ε → 0, while the other
arguments, t∞ − t,D, are kept fixed. So by Lemma 2.1 the sequence (ϕi

t )∗νi
xi ;t is

tight and therefore for some subsequence we have weak convergence to some μ′∞ ∈
P(Zt ). Moreover, suppμ′∞ ⊂ ϕ∞

t (X∞
t ). By Lemma 2.9 this convergence implies

convergence in the W1-Wasserstein distance. �

Consider times t ′k ∈ I∞, t ′k ↗ t∞. Apply the Claim successively to each t ′k and
pass to a diagonal subsequence. Denote by μ̃t ′k ∈ P(X∞

t ′k
) the probability measures

obtained this way and let (μ∞
k,t )t∈I ′,∞∩(−∞,t ′k] be the conjugate heat flows on X∞ with

initial condition μ∞
k,t ′k

= μ̃t ′k . By Theorem 6.13 we have the following convergence on

compact time-intervals

(νi
xi ;t )t∈I ′,i∩(−∞,t ′k]

C,J−−−−−−→
i→∞ (μ∞

k,t )t∈I ′,∞∩(−∞,t ′k].

It follows that for any k1 ≤ k2 we have (μ∞
k1,t

)t∈I ′,∞∩(−∞,t ′k1
) = (μ∞

k2,t
)t∈I ′,∞∩(−∞,t ′k1

).

So there is a conjugate heat flow (μ∞
t )t∈I ′,∞∩(−∞,t∞) with (μ∞

t )t∈I ′,∞∩(−∞,t ′k) =
(μ∞

k,t )t∈I ′,∞∩(−∞,t ′k) for all k. This shows (6.30). For the bound (6.29) note that for
any k we have

Var(μ̃t ′k ) = Var((ϕ∞
t ′k

)∗μ̃t ′k )≤ lim inf
i→∞ Var((ϕi

t ′k
)∗νi

xi ;t ′k ) = lim inf
i→∞ Var(νi

xi ;t ′k )

≤ lim inf
i→∞ H(ti − t ′k)≤ H(t∞ − t ′k).

So for any t < I ′,∞ ∩ (−∞, t ′k) we have by Proposition 3.23

Var(μ∞
t ) ≤ Var(μ̃t ′k )+H(t ′k − t)≤ H(t∞ − t).

Since t ′k ↗ t∞, this bound holds for all t ∈ I ′,∞ ∩ (−∞, t∞). �
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6.8 Tangent flows of the limit

Next, we show that tangent flows of the limit of an F-convergent sequence of metric
flow pairs can be represented as limits of rescalings of the original sequence.

Let first X be a metric flow over some I ′ ⊂ R. For any �T ∈ R and λ > 0 we
will denote by X−�T,λ the result of applying a time-shift of −�T to X and then a
parabolic rescaling by λ. So any point x ∈ Xt corresponds to a point in X−�T,λ

λ2(t−�T )
.

Similarly, if (μt )t∈I∗ , I ∗ ⊂ I ′, is a conjugate heat flow on X , then we denote by
(μ

−�T,λ

λ2(t−�T )
:= μt)t∈I∗ the corresponding conjugate heat flow on X−�T,λ.

Definition 6.22 (Tangent flow) Let X be a metric flow over some I ′ ⊂R and x0 ∈Xt0

a point. We say that a metric flow pair (X∞, (ν∞
xmax;t )t∈I ′,∞) ∈ F

∗
(−∞,0] is a tangent

flow of X at x0 if there is a sequence of scales λ1, λ2, . . . > 0 with λk →∞ such that
for any T > 0 the parabolic rescalings

(
X−t0,λk

[−T ,0] , (ν
−t0,λk

x0;t )
λ−2

k t+t0∈I ′,t∈[−T ,0]
)

F-converge to (X∞[−T ,0], (ν∞xmax;t )t∈I ′,∞∩[−T ,0]). If λk → 0 instead of λk → ∞, then
we call (X∞, (ν∞

xmax;t )t∈I ′,∞) ∈ F
∗
(−∞,0] a tangent flow of X at infinity.

Remark 6.23 By Theorem 6.6 the F-convergence condition in Definition 6.22 im-
plies F-convergence on compact time-intervals within some correspondence. Also,
the tangent flow (at infinity) may depend on the sequence of scales λk , so it may not
be unique. Lastly, note Definition 6.22 does not require that I ′ = (−∞,0]; it is only
necessary that the local density of the rescalings λ−2

k ((−∞,0] \ I ) converges to zero.

Consider now a sequence of metric flow pairs (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}, over

intervals I i ⊂ R and consider a correspondence C between the metric flows X i , i ∈
N∪ {∞}, such that

(X i , (μi
t )t∈I ′,i )

F,C−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞).

Consider a tangent flow (at infinity) (X ∗,∞, (ν
∗,∞
x∗max;t )t∈I ′,∗,∞) ∈ F

∗
(−∞,0] at some point

x∞ ∈ X∞
t∞ corresponding to a sequence λk →∞ (or λk → 0, respectively). Suppose

that t∞ ∈ I ′,i for all i ∈N and that all metric flows X i are H -concentrated for some
uniform H < ∞. Then Theorem 6.19 allows us to choose points xi ∈X i

t∞ at the same
time t∞ such that

xi
C−−−−→

i→∞ x∞.

So by Theorem 6.18 we have

(X i≤t∞, (νi
xi ;t )t∈I ′,i∩(−∞,t∞])

F,C−−−−−→
i→∞ (X∞≤t∞ , (ν∞x∞;t )t∈I ′,∞∩(−∞,t∞]).
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For any ε,T > 0 we can choose k large such that

dF
(
(X∞,−t∞,λk[−T ,0] , (ν

∞,−t∞,λk
x∞;t )

λ−2
k

t+t∞∈I ′,∞,t∈[−T ,0]), (X
∗,∞
[−T ,0], (ν

∗,∞
x∗max;t )t∈I ′,∗,∞∩[−T ,0])

)

≤ ε/2.

Given k, we can choose i large such that

dF
(
(X i

[t∞−λ−2
k

T ,t∞], (ν
i
xi ;t )t∈I ′,i∩[t∞−λ−2

k
T ,t∞]), (X

∞,−t∞,λk

[t∞−λ−2
k

T ,t∞], (ν
∞
x∞;t )t∈I ′,∞∩[t∞−λ−2

k
T ,t∞])

)

≤ λ2
kε/2.

This implies that for the parabolic rescalings

dF
(
(X i,−t∞,λk

[−T ,0] , (ν
i,−t∞,λk

xi ;t )
λ−2

k t+t∞∈I ′,i ,t∈[−T ,0]), (X
∗,∞
[−T ,0], (ν

∗,∞
x∗max;t )t∈I ′,∗,∞∩[−T ,0])

)

≤ ε

Letting ε → 0, T → ∞, passing to a diagonal subsequence and applying Theo-
rem 6.6 implies:

Theorem 6.24 There is a sequence ki → ∞ and correspondence C̃ between the
parabolic rescalings X i,−t∞,λki and X ∗,∞ such that on compact time-intervals

(X i,−t∞,λki , (ν
i,−t∞,λk

xi ;t )
λ−2

k t+t∞∈I ′,i ,t≤0)
F,C̃−−−−−→

i→∞ (X ∗,∞, (ν
∗,∞
x∗max;t )t∈I ′,∗,∞).

7 Compact subsets of (FJ
I , dJ

F
)

7.1 Statement of the main results

In this section let I ⊂R be an interval with tmax := sup I < ∞ and J ⊂ I a subset. In
the following we will define certain subsets of the form F

J
I (H,V,b, r) ⊂ F

J
I , which

will turn out to be compact if I is a finite interval and J is finite. These subsets contain
all metric flows corresponding to super Ricci flows over I , so we obtain that the set
of super Ricci flows is precompact in F

J
I .

Let us now define the subsets FJ
I (H,V,b, r). For this purpose let H,V ≥ 0, r > 0

and let b : (0,1]→ (0,1] be a function.

Definition 7.1 We define F
J
I (H,V,b, r) ⊂ F

J
I to be the set of equivalence classes

that are represented by (at least one) metric flow pair (X , (μt )t∈I ′) over I that is fully
defined over J and satisfies the following properties:
(1) X is H -concentrated,

(2a) If tmax ∈ J , then we assume (Xtmax , dtmax ,μtmax) ∈Mr (V , b).
(2b) If tmax /∈ J , then we assume that lim supt↗tmax

Var(μt ) ≤ V r2.
In Case (2b) we may omit the function b and write F

J
I (H,V, r) instead of

F
J
I (H,V,b, r). In both cases, if V = 0, then we will also write F

∗
I (H) :=

FI (H,0, b, r) ⊂ F
∗
I ; in this case the function b and the scale r are inessential.
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Remark 7.2 By passing to the future completion (see Theorem 4.16) every representa-
tive (X , (μt )t∈I ′) of an element in F

J
I (H,V,b, r) is equivalent to an H -concentrated

metric flow pair of the form (X ∗, (μ∗
t )t∈I ′), where X ∗ is a metric flow over I ′ where

I ′ = I if tmax ∈ J or I ′ = I \ {tmax} if tmax /∈ J .

The following is a direct consequence of Theorem 3.36:

Lemma 7.3 Suppose that X corresponds to a super Ricci flow (M, (gt )t∈I ) on
an n-dimensional compact manifold and (μt )t∈I corresponds to the flow of the
form v dgt , where v is a solution to the conjugate heat equation. Assume that
(M,dgtmax

, v dgtmax) ∈Mr (V , b) for some V ≥ 0, r > 0, b : (0,1] → (0,1] if tmax ∈
J . Then (X , (μt )t∈I ) ∈ F

J
I (Hn,V, b, r), where Hn is as in Theorem 3.36.

In particular, if (μt )t∈I corresponds to a conjugate heat kernel measure νx0;s =
K(x0, tmax; ·, s)dgs , then (X , (μt )t∈I ) ∈ F

∗,J
I (Hn).

Our main result will be:

Theorem 7.4 Assume that I ⊂R is a finite interval and suppose that J ⊂ I is a finite
subset. Let H,V ≥ 0, r > 0 and b : (0,1]→ (0,1] be a function. Then F

J
I (H,V,b, r)

is a compact subset of (FJ
I , dJ

F
).

Using Lemma 7.3, this implies subsequential convergence of super Ricci flows:

Corollary 7.5 Consider a sequence of super Ricci flows (Mi, (gi
t )t∈I ) on compact n-

dimensional manifolds together with a sequence of solutions to the conjugate heat
equation (vi

t )t∈I on Mi . If tmax ∈ J , then we assume that (Mi, dgi
tmax

, vi
tmax

dgi
tmax

) ∈
Mr (V , b) for some uniform V ≥ 0, r > 0, b : (0,1] → (0,1]. If I is a finite inter-
val and J is finite, then there is a subsequence, such that the corresponding se-
quence (X i , (μi

t )t∈I ) of metric flow pairs converges to a class of metric flows in
F

J
I (Hn,V, b, r) in the dJ

F
-sense.

Note that due to the definition of the dJ
F

-distance, the limit of any sequence of
metric flow pairs is only well defined wherever the limiting metric flow is continuous,
so on the complement of a countable subset. The next two theorems will address this
issue. Under additional assumptions, we will obtain compactness results, in which the
limit is uniquely defined at every time. We will also obtain convergence on compact
time-intervals if the metric flow pairs are not defined over a common finite time-
interval.

Fix in the following H,V ≥ 0, r > 0 and b : (0,1] → (0,1]. Let I∞ ⊂ R be
some interval and assume that tmax := sup I∞ < ∞. Consider a sequence of intervals
I i ⊂R with sup I i ≤ tmax and I i → I∞ in the sense that t ∈ I∞ if and only if t ∈ I i

for large i. In both of the following theorems consider a sequence of metric flow pairs
(X i , (μi

t )t∈I i ) that are fully defined over I i ⊂ R and represent classes in FI i (H) if
tmax /∈ I∞ or Ftmax

I i (H,V,b, r) if tmax ∈ I∞.
The first theorem, which will be the most useful, concerns the case in which we

require the limiting flow pair to be future continuous.
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Theorem 7.6 Under the assumptions described above, the following is true. After
passing to a subsequence, there is, up to isometry, a unique flow pair (X∞, (μ∞

t )t∈I∞)

representing a class in FI∞(H,V,b, r) for which X∞ is future continuous such
that the following holds. There is a correspondence C between the metric flows X i ,
i ∈N∪ {∞}, such that on compact time-intervals

(X i , (μi
t )t∈I i )

F,C−−−−−→
i→∞ (X∞, (μ∞

t )t∈I∞). (7.1)

If I∞ is a finite interval, then we even have normal F-convergence within C.
The convergence (7.1) is time-wise at any time at which X∞ is continuous and

it is uniform over any compact J ⊂ I∞ that only contains times at which X∞ is
continuous.

In the next theorem we require that the F-convergence is time-wise.

Theorem 7.7 Under the assumptions described above, the following is true. After
passing to a subsequence, there is, up to isometry, a unique flow pair (X∞, (μ∞

t )t∈I∞)

representing a class in FI∞(H,V,b, r) such that the following holds. There is a cor-
respondence C between the metric flows X i , i ∈N∪ {∞}, such that

(X i , (μi
t )t∈I i )

F,C−−−−−→
i→∞ (X∞, (μ∞

t )t∈I∞) (7.2)

within C on finite time-intervals and the convergence is time-wise at any time of I∞.
If I∞ is a finite interval, then we even have normal F-convergence within C and the
convergence is time-wise at any time of I∞.

The convergence (7.2) is uniform over any compact J ⊂ I∞ with the property that
X∞

J is continuous. In particular, this is the case if X∞ is continuous at all times of
J .

So if X∞ is continuous, then the limits in Theorems 7.6, 7.7 agree and the F-
convergence is uniform over every compact time-interval.

Remark 7.8 The technical issue underlying Theorems 7.4, 7.6, 7.7 can be illustrated
by the following analogy. Consider the space F of all non-decreasing functions
f : I → [0,1] over some finite interval I . Write f1 ∼ f2 if f1 = f2 almost every-
where. Then (F/ ∼,‖ · ‖L1) is compact (this is comparable to Theorem 7.4). More
specifically, given any sequence of equivalence classes [f1], [f2], . . . ∈ F , we may
pass to a subsequence such that [fi] → [f∞] ∈ F in L1. The representative f∞ is
continuous on the complement of a countable subset Q ⊂ I and for every t ∈ I \ Q

the value f∞(t) is uniquely determined as a pointwise limit of the values fi(t). For
any t ∈ Q, we may choose f∞(t) to be the right-limit, in which case f∞ is right
semi-continuous (this is comparable to Theorem 7.6). Alternatively, we may pass to
a further subsequence such that we also have pointwise convergence fi(t) → f∞(t)

for every t ∈ Q (this is comparable to Theorem 7.7). In fact, this analogy is quite
fitting since the proofs of Theorems 7.4, 7.6, 7.7 are based on the same compactness
behavior of monotone functions.
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7.2 Extending F-distance estimates to larger time domains

The following lemma allows us to extend closeness of two metric flow pairs within
a correspondence over some given set of times to closeness within a correspondence
over a larger set of times.

Lemma 7.9 For every H,V ≥ 0 and every function b : (0,1]→ (0,1] there is a func-
tion δH,V,b :R+ →R+ such that the following holds.

Let r > 0 be a scale and consider a subset I0 ⊂ I of an interval I ⊂ R. Consider
two metric flow pairs (X i , (μi

t )t∈I ), i = 1,2, representing classes in F
I
I (H,V,b, r)

and a correspondence C0 between X 1,X 2 over I0. Then there is a correspondence C
between X 1,X 2 over I such that C0 = C|I0 and such that the following is true:

Assume that ε > 0 and that for δ = δH,V,b(ε) the following holds

d
C0,I0
F

(
(X 1, (μ1

t )t∈I ), (X 2, (μ2
t )t∈I )

)
< δr. (7.3)

(Note that since C0 is defined over I0, the properties of Definition 5.5 are required
to hold for I ′′ = I0.) Consider a subset I0 ⊂ I1 ⊂ I with sup I1 \ I0 < sup I − εr2.
Suppose that for any t ∈ I1 \ I0 there is a minimal t ′ ∈ (t, t + δr2] ∩ I0 and this t ′
satisfies

ˆ

X i
t ′

ˆ

X i
t ′

di
t ′ dμi

t ′dμi
t ′ −

ˆ

X i
t

ˆ

X i
t

di
t dμi

tdμi
t ≤ δr for i = 1,2.

Then over I1

d
C|I1 ,I1

F

(
(X 1, (μ1

t )t∈I ), (X 2, (μ2
t )t∈I )

) ≤ εr.

Proof Fix H,V < ∞ and b : (0,1] → (0,1]. After parabolic rescaling, we may as-
sume that r = 1. In the following we denote by �(δ) a generic function with the
property that �(δ)→ 0 as δ → 0, which may depend on the choices of H,V,b.

Write

C0 =
(
(Zt , d

Z
t )t∈I0, (ϕ

i
t )t∈I0,i=1,2

)
.

In the sequel it suffices to construct C over some fixed I1 — we will call the result
C1 — and to observe that the construction over two possibly different such subsets
agrees over their intersection. For any t ∈ I that does not lie in any I1 satisfying the
assumptions of the lemma (for some function δH,V,b, which we will need to deter-
mine), we may simply not fully define C over t , i.e. we will have t /∈ I ′′,i . So assume
that I1 is given such that the assumptions of the lemma hold for some δ, whose value
we will determine later.

Choose (qt )t∈I0 such that Property (2) in Definition 5.5 holds for all s, t ∈ I0, s ≤ t

and for r replaced with δ; note that we have to choose E = ∅. We will first construct
objects (Zt , d

Z
t ), (ϕi

t )i=1,2, qt for t ∈ I1 \ I0 that will allow us to extend C0 to C1. For
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this purpose, fix a t ∈ I1 \ I0 for now and choose t ′ ∈ (t, t + δ]∩ I0 as in the statement
of the lemma. We define

qt :=
ˆ

X 1
t ′

ˆ

X 2
t ′
(ν1

x1;t ⊗ ν2
x2;t )dqt ′(x

1, x2). (7.4)

Then qt is a coupling between μ1
t ,μ

2
t . Next note that by Propositions 4.1, 4.5 for

i = 1,2 there are metric spaces (Z̃i , dZ̃i
) and isometric embeddings ϕ̃i

t : X i
t → Z̃i ,

ϕ̃i
t ′ :X i

t ′ → Z̃i such that

ˆ

X i
t ′

ˆ

X i
t

dZ̃i

(ϕ̃i
t (x), ϕ̃i

t ′(x
′))dνi

x′;t (x)dμi
t ′(x

′) ≤ �(δ).

Using Lemma 2.12, we can combine the spaces Z̃1, Zt ′ , Z̃2 and assume that the
isometric embeddings ϕ̃1

t , ϕ̃1
t ′ = ϕ1

t ′, ϕ
2
t ′ = ϕ̃2

t ′ , ϕ
2
t map into a single space Zt ⊃ Zt ′ ;

we will write ϕi
t := ϕ̃i

t . We obtain therefore that

ˆ

X i
t ′

ˆ

X i
t

dZ
t (ϕi

t (x), ϕi
t ′(x

′))dνi
x′;t (x)dμi

t ′(x
′) ≤ �(δ). (7.5)

After repeating the construction above for all t ∈ I1 \ I0, we can construct objects
(Zt , d

Z
t ), (ϕi

t )i=1,2, qt , which allow us to extend C0 to a correspondence C1 between
X 1,X 2 that is defined over I1. Moreover, for any t ∈ I1 \ I0 and any minimal t ′ ∈
(t, t + δ] ∩ I0, we may assume that Zt ⊃ Zt ′ and that (7.4), (7.5) hold. It remains to
show that Property (2) of Definition 5.5 holds for the family of couplings (qt )t∈I1 . Let
s, t ∈ I1, s ≤ t . If s /∈ I0, then choose s′ ∈ (s, s + δ] ∩ I0 minimal, otherwise choose
s′ := s. Similarly, if t /∈ I0, then choose t ′ ∈ (t, t + δ] ∩ I0 minimal, otherwise choose
t ′ := t . Note that s′ ≤ t ′.

Let i = 1,2. For any y′ ∈X i
t ′ , we obtain by Proposition 3.16(b)

ˆ

X i
t

d
X i

s

W1
(νi

y;s , ν
i
y′;s)dνi

y′;t (y) ≤
ˆ

X i
t

d
X i

t

W1
(δy, ν

i
y′;t )dνi

y′;t (y)

=
ˆ

X i
t

ˆ

X i
t

di
t (y, y∗)dνi

y′;t (y
∗)dνi

y′;t (y) ≤
√

Var(νi
y′;t ) ≤�(δ). (7.6)

Next, since for any y′ ∈X i
t ′

q∗ :=
ˆ

X i
s′
(νi

x′;s ⊗ δx′)dνi
y′;s′(x

′)

is a coupling between νi
y′;s , ν

i
y′;s′ , we have

d
Zs

W1
((ϕi

s)∗νi
y′;s , (ϕ

i
s′)∗ν

i
y′;s′) ≤

ˆ

X i
s′

ˆ

X i
s

dZ
s (ϕi

s(x),ϕi
s′(x

′))dνi
x′;s(x)dνi

y′;s′(x
′).
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Integrating this over y′ against dμi
t ′ implies, using (7.5),

ˆ

X i
t ′

d
Zs

W1
((ϕi

s)∗νi
y′;s , (ϕ

i
s′)∗ν

i
y′;s′)dμi

t ′(y
′)

≤
ˆ

X i
t ′

ˆ

X i
s′

ˆ

X i
s

dZ
s (ϕi

s(x),ϕi
s′(x

′))dνi
x′;s(x)dνi

y′;s′(x
′)dμi

t ′(y
′)

=
ˆ

X i
s′

ˆ

X i
s

dZ
s (ϕi

s(x),ϕi
s′(x

′))dνi
x′;s(x)dμi

s′(x
′)≤ �(δ). (7.7)

Using (7.4), (7.6), (7.7), we obtain

ˆ

X 1
t ×X 2

t

d
Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

2
s )∗ν2

y2;s)dqt (y
1, y2)

=
ˆ

X 1
t ′×X 2

t ′

ˆ

X 1
t

ˆ

X 2
t

d
Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

2
s )∗ν2

y2;s )dν2
y′,2;t (y

2)dν1
y′,1;t (y

1)dqt ′(y
′,1, y′,2)

≤
ˆ

X 1
t ′×X 2

t ′

ˆ

X 1
t

ˆ

X 2
t

(
d

Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

1
s )∗ν1

y′,1;s)

+ d
Zs

W1
((ϕ1

s )∗ν1
y′,1;s , (ϕ

2
s )∗ν2

y′,2;s)

+ d
Zs

W1
((ϕ2

s )∗ν2
y′,2;s , (ϕ

2
s )∗ν2

y2;s)
)
dν2

y′,2;t (y
2)dν1

y′,1;t (y
1)dqt ′(y

′,1, y′,2)

≤�(δ)+
ˆ

X 1
t ′×X 2

t ′
d

Zs

W1
((ϕ1

s )∗ν1
y′,1;s , (ϕ

2
s )∗ν2

y′,2;s)dqt ′(y
′,1, y′,2)

≤�(δ)+
ˆ

X 1
t ′×X 2

t ′

(
d

Zs

W1
((ϕ1

s )∗ν1
y1;s , (ϕ

1
s′)∗ν

1
y1;s′)+ d

Zs

W1
((ϕ1

s′)∗ν
1
y1;s′ , (ϕ

2
s′)∗ν

2
y2;s′)

+ d
Zs

W1
((ϕ2

s′)∗ν
2
y2;s′ , (ϕ

2
s )∗ν2

y2;s)
)
dqt ′(y

1, y2)

≤�(δ)+
ˆ

X 1
t ′×X 2

t ′
d

Zs′
W1

((ϕ1
s′)∗ν

1
y1;s′ , (ϕ

2
s′)∗ν

2
y2;s′)dqt ′(y

1, y2) ≤�(δ).

This finishes the proof. �

7.3 Proofs of the main theorems

We will need the following lemmas.

Lemma 7.10 Fix some H,V ≥ 0, r > 0, a function b : (0,1] → (0,1] and a finite
subset I0 ⊂ I ⊂ R of an interval. Consider a sequence of metric flow pairs (X i ,

(μi
t )t∈I ) representing classes in F

I
I (H,V,b, r), i = 1,2, . . .. Then, after passing to a

subsequence, we can find a correspondence C0 between the metric flows X i over I0

that is also fully defined over I0 such that the metric flow pairs (X i , (μi
t )t∈I ) form a
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Cauchy sequence within C0 uniformly over I0, i.e. for any ε > 0 we have

d
C0,I0
F

(
(X i , (μi

t )t∈I ), (X j , (μ
j
t )t∈I )

) ≤ ε for large i, j.

Proof Write I0 =: {t1 < · · · < tN }. By Proposition 4.1 and Theorem 2.20 we may
pass to a subsequence such that for all k = 1, . . . ,N

(X i
tk
, di

tk
,μi

tk
)

GW1−−−−−−→
i→∞ (X∞

tk
, d∞

tk
,μ∞

tk
),

where we may assume the limiting spaces to be separable, complete and of full sup-
port. By [29, Lemma 5.7] (see also Lemma 2.12), after passing to another subse-
quence, we can find complete and separable metric spaces (Ztk , d

Z
tk

) and isometric
embeddings ϕi

tk
:X i

tk
→ Ztk , ϕ∞

tk
:X∞

tk
→Ztk with the property that

(ϕi
tk
)∗μi

tk

W1−−−−−→
i→∞ (ϕ∞

tk
)∗μ∞

tk
. (7.8)

Choose couplings qi
tk

, k = 1, . . . ,N , between μi
tk
,μ∞

tk
with

ˆ

X i
tk
×X∞

tk

dZ
tk

(ϕi
tk
(xi), ϕ∞

tk
(x∞))dqi

tk
(xi, x∞) → 0. (7.9)

Claim 7.10.1 Let 1 ≤ l ≤ k ≤ N and x∞ ∈X∞
tk

. Then, after passing to a subsequence,
there is a probability measure ν∞

x∞;tl ∈ P(X∞
tl

) such that for any sequence xi ∈ X i
tk

with ϕi
tk
(xi) → ϕ∞

tk
(x∞) we have

(ϕi
tl
)∗νi

xi ;tl
W1−−−−−→

i→∞ (ϕ∞
tl

)∗ν∞x∞;tl . (7.10)

Proof We may assume that l < k, because the claim is trivial in the case l = k. We first
show that we may pass to a subsequence such that the sequence (ϕi

tl
)∗νi

xi ;tl converges

to some probability measure ν′ ∈ P(Ztl ). Due to Lemmas 2.1(d), 2.9 it suffices to
show that the sequence of probability measures (ϕi

tl
)∗νi

xi ;tl on Ztl is tight. So fix some
ε > 0. By Lemma 2.1(e) it suffices to show that there is a compact subset Kε ⊂ Ztl

such that for large i

νi
xi ;tl

(
X i

tl
\ (ϕi

tl
)−1(B(Kε, ε))

) = (
(ϕi

tl
)∗νi

xi ;tl
)
(Ztl \B(Kε, ε)) ≤ ε.

Let α > 0 be a constant whose value we will determine later. By Lemma 2.1(a) we
can choose a compact subset K ′

ε ⊂ X∞
tl

such that

μ∞
tl

(X∞
tl

\K ′
ε) < α.

Let Kε := ϕ∞
tl

(K ′
ε) and Ki,ε := (ϕi

tl
)−1(B(Kε, ε)). Then for large i we have by (7.8)

μi
tl
(X i

tl
\Ki,ε) < α. (7.11)
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Again by (7.8) we can find a D < ∞ such that for large i

μi
tk
(B(xi,D)) ≥ 1

2 .

So if for some large i we had

νi
xi ;tl (X

i
tl
\Ki,ε) > ε,

then by Definition 3.1(6), we would have νi
·;tl (X

i
tl
\ Ki,ε) ≥ �−1(�(ε) − D(tk −

tl)
−1/2) on B(xi,D), which would imply

μi
tl
(X i

tl
\Ki,ε) =

ˆ

X i
tk

νi
y;tl (X

i
tl
\Ki,ε)dμi

tk
(y) ≥ 1

2�−1(�(ε)−D(tk − tl)
−1/2).

This contradicts (7.11) for small enough α.
So it follows that, after passing to some subsequence we have

(ϕi
tl
)∗νi

xi ;tl
W1−−−−−→

i→∞ ν′ ∈P(Ztl ).

Since we had Kε ⊂ supp(ϕ∞
tl

)∗μ∞
tl

in the previous argument, we also get suppν′ ⊂
supp(ϕ∞

tl
)∗μ∞

tl
, which implies that ν′ = (ϕ∞

tl
)∗ν∞x∞;tl for some ν∞

x∞;tl ∈P(X∞
tl

). �

Since the spaces X∞
tk

are separable and the maps

(X i
tk
, di

tk
) −→ (P(Ztl ), d

Ztl

W1
), y �−→ (ϕi

tl
)∗νi

y;tl

are 1-Lipschitz, we may pass to a subsequence and assume that (7.10) holds for all
1 ≤ k ≤ l ≤N , x∞ ∈ X∞

tk
and any sequence xi ∈X i

tk
with ϕi

tk
(xi)→ ϕ∞

tk
(x∞).

Claim 7.10.2 For any ε > 0 and any compact subset K ⊂ X∞
tk

for large i the following
bound holds for any yi ∈X i

tk
, y∞ ∈X∞

tk
:

d
Ztl

W1
((ϕi

tl
)∗νi

yi ;tl , (ϕ
∞
tl

)∗ν∞y∞;tl ) ≤ dZ
tk

(ϕi
tk
(yi), ϕ∞

tk
(y∞))+ 2d∞

tk
(y∞,K)+ ε.

Proof Fix some ε > 0 and K ⊂ X∞
tk

. Let {x∞
1 , . . . , x∞

N } ⊂ X∞
tk

be an ε/4-net for K .
For any m = 1, . . . ,N choose a sequence xi

m ∈ X i
tk

such that ϕi
tk
(xi

m) → ϕ∞
tk

(x∞
m ).

Now suppose that i is large enough such that we have

dZ
tk

(ϕi
tk
(xi

m),ϕ∞
tk

(x∞
m )), d

Ztl

W1
((ϕi

tl
)∗νi

xi
m;tl , (ϕ

∞
tl

)∗ν∞x∞m ;tl )≤ ε/4

for all m= 1, . . . ,N.

For any yi ∈X i
tk

, y∞ ∈X∞
tk

choose m ∈ {1, . . . ,N} such that

dZ
tk

(ϕ∞
tk

(y∞), ϕ∞
tk

(x∞
m )) = d∞

tk
(y∞, x∞

m ) ≤ d∞
tk

(y∞,K)+ ε/4.
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Then, using Proposition 3.16(c),

d
Ztl

W1
((ϕi

tl
)∗νi

yi ;tl , (ϕ
∞
tl

)∗ν∞y∞;tl )

≤ d
Ztl

W1
((ϕi

tl
)∗νi

yi ;tl , (ϕ
i
tl
)∗νi

xi
m;tl )+ d

Ztl

W1
((ϕi

tl
)∗νi

xi
m;tl , (ϕ

∞
tl

)∗ν∞x∞m ;tl )

+ d
Ztl

W1
((ϕ∞

tl
)∗ν∞x∞m ;tl , (ϕ

∞
tl

)∗ν∞y∞;tl )

≤ dZ
tk

(ϕi
tk
(yi), ϕi

tk
(xi

m))+ ε/4 + dZ
tk

(ϕ∞
tk

(x∞
m ),ϕ∞

tk
(y∞))

≤ dZ
tk

(ϕi
tk
(yi), ϕ∞

tk
(y∞))+ 2dZ

tk
(ϕ∞

tk
(y∞), ϕ∞

tk
(x∞

m ))

+ dZ
tk

(ϕ∞
tk

(x∞
m ),ϕi

tk
(xi

m))+ ε/4

≤ dZ
tk

(ϕi
tk
(yi), ϕ∞

tk
(y∞))+ 2d∞

tk
(y∞,K)+ ε. �

So by (7.9) the following holds for any ε > 0, compact K ⊂ X∞
tk

and large i

ˆ

X i
tk
×X∞

tk

d
Ztl

W1
((ϕi

tl
)∗νi

yi ;tl , (ϕ
∞
tl

)∗ν∞y∞;tl )dqi
tk
(yi, y∞)

≤ 2ε + 2
ˆ

X∞
tk

d∞
tk

(y∞,K)dμ∞
tk

(y∞)

≤ 2ε + 2μ
1/2
tk

(X∞
tk

\K)

(ˆ

X∞
tk

(
d∞
tk

(y∞,K)
)2

dμ∞
tk

(y∞)

)1/2

.

Since K can be chosen such that the last integral is bounded by Var(μ∞
tk

) and
μtk (X

∞
tk

\K) is arbitrarily small, we find that

ˆ

X i
tk
×X∞

tk

d
Ztl

W1
((ϕi

tl
)∗νi

yi ;tl , (ϕ
∞
tl

)∗ν∞y∞;tl )dqi
tk
(xi, x∞)→ 0.

As in the proof of Proposition 5.12, for any k = 1, . . . ,N , 1 ≤ i ≤ j we can con-
struct a coupling q

i,j
tk

between μi
tk
,μ

j
tk

such that for some εi → 0 and any 1 ≤ l ≤ k

ˆ

X i
tk
×X j

tk

d
Ztl

W1
((ϕi

tl
)∗νi

xi ;tl , (ϕ
j
tl
)∗νj

xj ;tl )dq
i,j
t (xi, xj )≤ εi .

This finishes the proof of the lemma. �
Combining Lemmas 7.9, 7.10 yields:

Lemma 7.11 For every ε > 0, H,V ≥ 0 and every function b : (0,1] → (0,1] there
is a δ(ε,H,V,b) > 0 such that the following holds.

Consider a sequence of metric flow pairs (X i , (μi
t )t∈I ) representing classes in

F
I
I (H,V,b, r) for some r > 0 over an interval I ⊂R that are also fully defined over

I . Let I0 ⊂ I1 ⊂ I be subsets such that the following holds:
(i) I0 is finite.
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(ii) For any t ∈ I1 there is a minimal t ′ ∈ I0 ∩ [t, t + δr2] and for this t ′ we have
ˆ

X i
t ′

ˆ

X i
t ′

di
t ′ dμi

t ′dμi
t ′ −

ˆ

X i
t

ˆ

X i
t

di
t dμi

tdμi
t ≤ δr for all i.

(iii) |I \ I1| ≤ (εr)2.
Then, after passing to a subsequence, we have

d
I1
F

(
(X i , (μi

t )t∈I ), (X j , (μ
j
t )t∈I )

)≤ εr for all i, j.

The following will be a consequence of Lemma 7.11.

Lemma 7.12 For every H,V ≥ 0, r > 0, and every function b : (0,1] → (0,1] the
following holds.

Consider a sequence of metric flow pairs (X i , (μi
t )t∈I ) representing classes in

F
I
I (H,V,b, r) over an interval I ⊂R that are also fully defined over I . Then there is

a subsequence such that for any t ∈ I the following limit exists

D(t) := lim
i→∞

ˆ

X i
t

ˆ

X i
t

di
t dμi

tdμi
t < ∞. (7.12)

Moreover, whenever we are in the situation that the limit (7.12) exists for all t ∈ I ,
then D(t) is continuous on the complement of a countable subset and the following
holds. Let J ⊂ I be a compact subset such that the restriction D|J is continuous and
ε > 0. Then there is a subsequence such that

dJ
F

(
(X i , (μi

t )t∈I ), (X j , (μ
j
t )t∈I )

) ≤ |I \ J |1/2 + ε for all i, j.

Proof After parabolic rescaling, we may assume that r = 1.
Denote by Di(t) the value of the integral in (7.12). By Lemma 4.2 we have Di(t)−

Di(s) ≥ −√
H(t − s) for any s, t ∈ I , s ≤ t . Moreover, by Hölder’s inequality we

have Di(t) ≤√
Var(μt ) ≤

√
V +H(sup I − t). After passing to a subsequence, we

may assume that the limit in (7.12) exists for any t ∈ I ∩ Q. Then we still have
D(t)−D(s) ≥−√

H(t − s) for any s, t ∈ I ∩Q, s ≤ t . So there is a countable subset
∂I ⊂ S ⊂ I such that limt ′→t,t ′∈I∩Q D(t ′) exists for all t ∈ I \ S and for any such t

this limit agrees with the limit in (7.12). We can now pass to another subsequence
such that (7.12) exists for all t ∈ S. This proves the first part of the lemma.

For the second part of the lemma, observe again that D(t)−D(s) ≥−√
H(t − s)

for any s, t ∈ I , s ≤ t , which implies that D(t) is continuous on the complement of a
countable subset. Suppose now that D|J is continuous for some compact J ⊂ I and
fix ε > 0 and some δ > 0, whose value we will choose later. For any t ∈ J there is
compact interval t ∈ It ⊂ I that is a neighborhood of t in I and that satisfies

|It | ≤ δ, osc
It∩J

D := max
It∩J

D − min
It∩J

D ≤ δ.

By compactness, J is covered by a finite number of these intervals. So there is a finite
subset I0 ⊂ I such that for any t ∈ J there are t ′1, t ′2 ∈ I0 such that

t ′1 ≤ t ≤ t ′2, t ′2 − t ′1 ≤ δ, D(t ′2)−D(t ′1)≤ δ. (7.13)
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After passing to a subsequence, we may assume that |Di(t
′) − D(t ′)| ≤ δ for all

t ′ ∈ I0. So for any t ∈ J there are t ′1, t ′2 ∈ I0 such that the first two inequalities in
(7.13) hold and instead of the third inequality we have

Di(t
′
2)−Di(t) ≤Di(t

′
2)−Di(t

′
1)+

√
Hδ ≤D(t ′2)−D(t ′1)+

√
Hδ+2δ ≤√

Hδ+3δ.

Let now t ′ ∈ I0 minimal with the property that t ′ ≥ t . Then 0 ≤ t ′2 − t ′ ≤ t ′2 − t ′1 ≤ δ

and therefore

Di(t
′)−Di(t) ≤Di(t

′
2)−Di(t)+

√
Hδ ≤ 2

√
Hδ + 3δ.

The lemma now follows using Lemma 7.11 for small enough δ. �

Lemma 7.13 Suppose that I ⊂R is an interval with sup I < ∞, J ⊂ I is a subset and
consider H,V ≥ 0, r > 0, b : (0,1]→ (0,1]. Then F

J
I (H,V,b, r) ⊂ F

J
I is closed.

Proof Consider a sequence of H -concentrated metric flow pairs (X i , (μi
t )t∈I ) ∈

F
J
I (H,V,b, r) converging to a metric flow pair (X∞, (μ∞

t )t∈I ) ∈ F
J
I . If tmax :=

sup I /∈ J , then we may replace I with I \ {tmax}, since this does not change the dJ
F

-
distance. Due to Remark 7.2, we may assume that the metric flow pairs (X i , (μi

t )t∈I )

are fully defined over I .
By Theorem 6.5 we may choose a correspondence C = ((Zt , d

Z
t )t∈I ,

(ϕi
t )t∈I ′′,i ,i∈N∪{∞}) between the metric flows X i , i ∈N∪ {∞}, over I such that

(X i , (μi
t )t∈I )

F,C,J−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ). (7.14)

Let Ei ⊂ I and (qi
t )t∈I\Ei

be the objects from Definition 5.5. After passing to a
subsequence and replacing each Ei with Ei ∪Ei+1 ∪ . . ., we may assume that Ei is
decreasing and that E∞ := ⋂∞

i=1 Ei has measure zero. Then (7.14) also holds after
replacing J with J ∪ I \ Ej for any fixed j ≥ 1. By Lemma 2.18 we know that
(X∞

tmax
, d∞

tmax
,μtmax) ∈Mr (V , b) if tmax ∈ J . We also obtain that for any t ∈ I \E∞

Var(μ∞
t )≤ lim inf

i→∞ Var(μi
t ) ≤ V +H(t∞ − t).

It remains to show that X∞
I\E∞ is H -concentrated. To see this, let x∞, y∞ ∈ X∞

t

for some t ∈ I \ E∞. Choose sequences xi, yi ∈ X i
t such that ϕi

t (x
i) → ϕ∞

t (x∞),
ϕi

t (y
i) → ϕ∞

t (y∞) in Zt . For any s ∈ I \E∞, s ≤ t we have using, Lemma 5.15,

(ϕi
s)∗νi

xi ;s
W1−−−−−→

i→∞ (ϕ∞
s )∗ν∞x∞;s , (ϕi

s)∗νi
yi ;s

W1−−−−−→
i→∞ (ϕ∞

s )∗ν∞y∞;s .

It follows that

Var(ν∞x∞;s , ν
∞
y∞;s) = Var((ϕ∞

s )∗ν∞x∞;s , (ϕ
∞
s )∗ν∞y∞;s)

≤ lim sup
i→∞

Var((ϕi
s)∗νi

xi ;s , (ϕ
i
s)∗νi

yi ;s)
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≤ (
d∞
t (x∞, y∞)

)2 +H(t − s).

This finishes the proof. �

Proof of Theorem 7.4 As in the proof of Lemma 7.13, we may in the following only
work with H -concentrated metric flow pairs that are fully defined over I .

By Lemma 7.13 the subset FJ
I (H,V,b, r) ⊂ F

J
I is closed, so by Theorem 5.18 it is

complete. To see total boundedness, suppose by contradiction that there is a sequence
(X i , (μi

t )t∈I ) ∈ F
J
I (H,V,b, r) with the property that for some ε > 0

dF
(
(X i , (μi

t )t∈I ), (X j , (μ
j
t )t∈I )

)
> εr for all i �= j. (7.15)

By Lemma 7.12 we may pass to a subsequence such that the limit (7.12) exists for all
t ∈ I and it remains to show that there is a compact subset J ′ ⊂ I with the property
that D|J∪J ′ is continuous and |I \ (J ∪ J ′)| < (εr)2. Since D is continuous almost
everywhere, we can use Lemma 2.1(a) to find a compact subset J ′ ⊂ I consisting
only of points where D is continuous that satisfies |I \ J ′| < (εr)2. Since J is finite,
this implies that D|J∪J ′ is continuous and |I \ (J ∪ J ′)| < ε2. �

Next we establish Theorem 7.7. Theorem 7.6 will be a direct consequence of The-
orem 7.7.

Proof of Theorem 7.7 By Lemma 7.12, we may pass to a subsequence such that the
limit (7.12) exists for all t ∈ I∞. The function D is continuous on I \ Q, where
Q = {t∗1 , t∗2 , . . .} ⊂ I is a countable subset. Choose an increasing sequence of com-
pact subintervals I0,k ⊂ I∞ with

⋃∞
k=1 I0,k = I∞. As in the proof of Theorem 7.4,

we can choose an increasing sequence of compact subsets Kk ⊂ I0,k \ Q such that⋃∞
k=1 Kk = I \Q and |I0,k \Kk| → 0. Set Jk := (Kk ∪ {t∗1 , . . . , t∗k })∩ I0,k . Then Jk

is still compact, D|Jk
is continuous for all k and

⋃∞
k=1 Jk = I∞. By the second part

of Lemma 7.12 and after passing to a diagonal sequence, the sequence of metric flow
pairs forms a Cauchy sequence with respect to d

Jk

F
over I0,k for any k. So after pass-

ing to another subsequence, we can find correspondences Ci,i+1 between X i ,X i+1

over I0,i that are fully defined over Ji such that

d
Ci,i+1,Ji

F

(
(X i , (μi

t )t∈I i ), (X i+1, (μi+1
t )t∈I i+1)

)≤ 2−i .

As in the proof of Theorem 5.18 we may find a correspondence C∗ between all
X i such that Ci,i+1 = C|I0,i ,{i,i+1}. By Lemma 5.19 we may find a metric flow pair
(X∞, (μ∞

t )t∈I∞) and an extension C∗∗ of C∗ such that for any k

(X i , (μi
t )t∈I i )

F,C∗∗|I0,k
,Jk−−−−−−−−−−−→

i→∞ (X∞, (μ∞
t )t∈I∞).

This shows that on compact time-intervals

(X i , (μi
t )t∈I i )

F,C∗∗−−−−−−−→
i→∞ (X∞, (μ∞

t )t∈I∞),
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which is time-wise at any time of I∞.
In order to ensure that we have the full desired uniform convergence properties,

we have to carry out a more subtle construction of the correspondence C. For this
purpose, note first that due to the time-wise convergence we have

D(t) =
ˆ

X∞
t

ˆ

X∞
t

d∞
t dμ∞

t dμ∞
t .

So if J ⊂ I∞ is compact with the property that X∞
J is continuous, then D|J is con-

tinuous.
As before, we set

Di(t) :=
ˆ

X i
t

ˆ

X i
t

di
t dμi

tdμi
t .

Choose a dense set of times {t1, t2, . . .} ⊂ I∞ containing Q∪(I∞∩∂I∞). Then there
is a sequence ki → ∞ such that for the correspondence C∗∗

i := C∗∗|{t1,...,tki },{i,∞}
between X i ,X∞ we have as i →∞

d
C∗∗

i ,{t1,...,tki }
F

(
(X i , (μi

t )t∈I i ), (X∞, (μ∞
t )t∈I∞)

)→ 0,

max
1≤l≤ki

|Di(tl)−D(tl)| → 0.

Apply Lemma 7.9 to each correspondence C∗∗
i for I0 = {t1, . . . , tki

} and denote the
resulting correspondence between X i ,X∞ over I i ∩ I∞ by C∗∗∗

i .

Claim 7.7.1 If J ⊂ I∞ is compact and D|J is continuous, then C∗∗∗
i is fully defined

over J for large i and

d
C∗∗∗

i |J ,J

F

(
(X i , (μi

t )t∈I i ), (X∞, (μ∞
t )t∈I∞)

) → 0.

Proof By Lemma 7.9 it suffices to show that there is a sequence δi → 0 such that the
following holds for large i. For any t ∈ J there is an l ∈ {1, . . . , ki} such that tl − t is
minimal and D(tl) − D(t) ≤ δi . This can be achieved by a covering argument as in
the proof of Lemma 7.12. �

By successive application of Lemma 5.13 and a direct limit argument, we can
combine the correspondences C∗∗∗

i to a single correspondence C between X i , i ∈
N∪ {∞} over I∞; see also the proof of Theorem 6.6. So we obtain:

Claim 7.7.2 If J ⊂ I∞ is compact and D|J is continuous, then C is fully defined over
J for large i and

d
C|J ,J

F

(
(X i , (μi

t )t∈I i ), (X∞, (μ∞
t )t∈I∞)

) → 0.
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Note for any compact subinterval I0 ⊂ I∞ and any ε > 0 there is a compact J ⊂
I0 \Q with |I0 \ J | ≤ ε. So Claim 7.7.2 implies (7.2), the time-wise convergence and
the statement concerning the uniform convergence.

It remains to prove the uniqueness statement. So suppose that within some other
correspondence C′ we have a time-wise limit (X ′,∞, (μ

′,∞
t )t∈I∞). So all time-slices

(X∞
t , d∞

t ,μ∞
t ), (X ′,∞

t , d
′,∞
t ,μ

′,∞
t ), t ∈ I∞, are isometric as metric measure spaces.

This implies that X∞,X ′,∞ are continuous at the same times. By the same argu-
ment as in the proof of Proposition 5.12 we can find sequences of correspondences
Ci = ((Zi

t , d
Zi

t )t∈I∞ , (ϕ
i,j
t )t∈I ′′,i,j ,j=1,2) between X∞,X ′,∞ such that for any com-

pact subinterval I0 ⊂ I∞ and any t0 ∈ I0 we have

d
Ci |I0 ,{t0}
F

(
(X∞

I0
, (μ∞

t )t∈I0), (X
′,∞
I0

, (μ
′,∞
t )t∈I0)

) → 0.

Consider an arbitrary subsequence of the sequence of metric flows. By the proof of
Theorem 5.11 we obtain a set of measure zero EI0,t0 ⊂ I0 with t0 /∈ EI0,t0 and an
almost always isometry φI0,t0 :X∞

I0\EI0,t0
→X ′,∞

I0\EI0,t0
between both metric flow pairs

that is fully defined over t0 such that after passing to a subsequence we have

dZi

t (ϕ
i,1
t (x), ϕ

i,2
t (φI0,t0(x)) → 0 for any x ∈X∞

t , t ∈ I0 \EI0,t0 . (7.16)

Let Q = {t1, t2, . . .} ⊂ I∞ be a dense subset containing the set of times where both
flows X∞,X ′,∞ are not continuous and ∂I∞ ∩ I∞. Fix an increasing sequence of
compact subintervals I0 ⊂ I1 ⊂ · · · ⊂ I∞ with

⋃∞
k=1 Ik = I∞ and such that tk ∈ Ik .

We now apply the argument from the previous paragraph successively for Ik, tk while
passing to a subsequence in each step. Due to the characterization (7.16), the maps
φIk,tk agree on their overlap. So after passing to a subsequence, we can find a set of
measure zero E ⊂ I∞ \ Q and a map φ : X∞

I∞\E → X ′,∞
I∞\E such that for any k ≥ 1

there is a set of measure zero Ek ⊂ Ik with tk /∈Ek such that φ restricted to Ik \Ek is
an isometry between both metric flow pairs (X∞, (μ∞

t )t∈I∞), (X ′,∞, (μ
′,∞
t )t∈I∞).

Let now k2 ≥ k1 ≥ 1 and choose two different times s1 ∈ Ik1 \ Ek1 , s2 ∈ Ik1 \ Ek2 .
Then there is a time s′ ∈ Ik1 \ (Ek1 ∪ Ek2) between s1, s2. It follows that φ is an
isometry over {s1, s

′} and {s2, s
′}. So by the reproduction formula (see also (5.4)), φ

is also an isometry over {s1, s2}. Since for any k ≥ 1 we have tk /∈ Ek′ for large k′,
we obtain that φ is an isometry over I∞ \E ⊃ Q and since X∞,X ′∞ are continuous
over I \Q, we can use Theorem 4.17, to extend φ to an isometry between the metric
flow pairs (X∞, (μ∞

t )t∈I∞), (X ′,∞, (μ
′,∞
t )t∈I∞) over I∞. �

Proof of Theorem 7.6 Theorem 7.6 follows from Theorem 7.7 by replacing X∞ with
the future completion of X∞

I∞\Q, where Q ⊂ I∞ denotes the set of times at which
X∞ is not continuous; compare with Theorem 4.16. The uniqueness statement fol-
lows using Theorem 4.17. �

8 Intrinsic flows

In this section we analyze under which conditions time-slices of a metric flow are
length spaces. We define:
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Definition 8.1 We call a metric flow X over some I ⊂R intrinsic at time t if (Xt , dt )

is a length space. We call X intrinsic if it is intrinsic for all t ∈ I and almost always
intrinsic if it is intrinsic for almost all t ∈ I .

We have the following result:

Theorem 8.2 Suppose that X is an H -concentrated metric flow of full support over
an interval I ⊂ R, where H < ∞. Suppose that there is a dense subset S ⊂ I such
that X is intrinsic at every t ∈ S. Then X is almost always intrinsic. Moreover, X
is intrinsic for all t ∈ I \ sup I at which X is future continuous, which is the case
at all but a countable set of times. In particular, if X is future continuous, then X is
intrinsic at all times of I \ sup I .

Proof Suppose that X is future continuous at time t ∈ I \ sup I . Let x1, x2 ∈ Xt and
ε > 0. Since X is complete, it suffices to construct an approximate midpoint, i.e. a
point z ∈Xt with

max
{
dt (x1, z), dt (x2, z)

} ≤ 1
2d(x1, x2)+ ε. (8.1)

For this purpose, fix a sequence of times ti ∈ I such that ti ↘ t and such that (Xti , dti )

is a length space. By Proposition 4.14 there are points x1,i , x2,i ∈ Xti such that for
j = 1,2

lim
i→∞d

Xt

W1
(δxj

, νxj,i ;t ) = 0, lim
i→∞dti (x1,i , x2,i ) = dt (x1, x2).

Since (Xti , dti ) are length spaces, we can find points yi ∈Xti with

lim
i→∞dti (x1,i , yi)= lim

i→∞dti (x2,i , yi)= 1
2dt (x1, x2).

Let zi ∈Xt be H -centers of yi . Then for j = 1,2

lim sup
i→∞

dti (xj , zi) ≤ lim sup
i→∞

(
d
Xt

W1
(δxj

, νxj,i ;t )+ d
Xt

W1
(νxj,i ;t , νyi ;t )+ d

Xt

W1
(νyi ;t , δzi

)
)

≤ lim sup
i→∞

dti (xj,i , yi) = 1
2dt (x1, x2),

which implies (8.1) for large i. �

The next theorem shows that the almost always intrinsic property is closed under
F-limits.

Theorem 8.3 Consider a sequence of metric flow pairs (X i , (μi
t )t∈I ′,i ), i ∈ N ∪ {∞}

over intervals I i ⊂R such that within some correspondence C

(X i , (μi
t )t∈I ′,i )

F,C−−−−−→
i→∞ (X∞, (μ∞

t )t∈I ′,∞) (8.2)

on compact time-intervals. Suppose that the flows X i are H -concentrated for some
uniform H < ∞. If the flows X i are almost always intrinsic for all i ∈ N, then so is
X∞.
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Remark 8.4 The property of being intrinsic at a fixed time does, in general, not pass
to the limit, even if the F-convergence is uniform at that time. Consider for example
a (possibly rotationally symmetric) singular Ricci flow M on S2 × S1 that develops
two nearby non-degenerate neckpinches of bounded distance distortion at the same
time t0 > 0. Such a flow can be constructed using the techniques from [3, 4]. Let
M′ ⊂ M be the subset corresponding to the larger remaining component after the
neckpinch and let X ′ be the past continuous metric flow corresponding to M′, which
is constructed in a similar fashion as X ′ in Example 4.13. Then X ′

t0
is homeomorphic

to two 3-spheres that are attached to each other at their poles and suppX ′
t0
⊂ X ′

t0
corresponds to one of these 3-spheres. So if the two neckpinches in M are located
closely enough to one another, then (suppX ′

t0
, d ′

t0
|suppX ′

t0
) is not a length space, so

the metric flow suppX ′ is not intrinsic at time t0. However, suppX ′ may arise as
a limit of intrinsic metric flows that are uniform at time t0; consider for example a
sequence of time-shifts of the future continuous metric flow X corresponding to M′
via Theorem 3.37.

Proof We can find a subset E1 ⊂ I∞ of measure zero such that for all i ∈N the flow
X i is intrinsic at every t ∈ I i \E1 and such that I ′,i ⊂ I i \E1. By Corollary 4.11 X∞
is future continuous at every time t ∈ I∞ \E2, for some subset E2 ⊂ I∞ of measure
zero with I ′,∞ ⊂ I∞ \E2. Lastly, by Lemma 6.3 we may pass to a subsequence and
assume that the convergence (6.3) is time-wise at any time of I∞ \ E3 for some set
of measure zero E3 ⊂ I∞. Set E := E1 ∪E2 ∪E3 ∪ {sup I∞}.

Fix a time t ∈ I∞ \E. We will show that X∞ is intrinsic at time t by constructing
an almost midpoint z between two given points x1, x2 ∈ X∞

t and for some ε > 0 as
in (8.1). Let δ > 0 be a constant whose value we will determine later and choose
t ′ ∈ I∞ \E with t < t ′ < t + δ. Since X∞ is future continuous at time t , we can use
Proposition 4.14 to find points x′

1, x
′
2 ∈ X∞

t ′ such that, assuming δ is small enough,
we have for j = 1,2

d
X∞

t

W1
(δxj

, ν∞
x′j ;t ) ≤

ε

2
, d∞

t ′ (x′
1, x

′
2) ≤ d∞

t (x1, x2)+ ε

2
.

Next, choose points x′
j,i ∈ X i

t ′ , i ∈ N, j = 1,2, that strictly converge to x′
j within

C. Then

lim
i→∞di

t ′(x
′
1,i , x

′
2,i ) = d∞

t ′ (x′
1, x

′
2)≤ d∞

t (x1, x2)+ ε

2
.

Moreover, by Theorem 6.13 (see also Theorem 6.15) we have strict convergence of
νi
x′j,i ;t to ν∞

x′j ;t within C for j = 1,2. Since all X i are intrinsic at time t ′, we can find

points yi ∈X i
t ′ such that for j = 1,2

lim
i→∞di

t ′(x
′
j,i , yi) = 1

2d∞
t ′ (x′

1, x
′
2)≤ 1

2d∞
t (x1, x2)+ ε

4
.

By Theorem 6.20 we may pass to a subsequence and find a conjugate heat flow
(μ̃t ′′)t ′′∈I ′,∞∩(−∞,t ′) on X∞ such that

(νi
yi ;t ′′)t ′′∈I ′,i∩(−∞,t ′)

F,C,{t}−−−−−−−→
i→∞ (μ̃t ′′)t ′′∈I ′,∞∩(−∞,t ′)
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and

lim
t ′′↗t ′,t ′′∈I ′,∞

Var(μ̃t ′′) = 0.

This implies that we have strict convergence of νi
yi ;t to μ̃t within C and

Var(μ̃t ) ≤H(t ′ − t) ≤ Hδ.

It follows that for j = 1,2

d
X∞

t

W1
(ν∞

x′j ;t , μ̃t ) = lim
i→∞d

X i
t

W1
(νi

x′j,i ;t , ν
i
yi ;t )≤ lim inf

i→∞ di
t ′(x

′
j,i , yi) ≤ 1

2d∞
t (x1, x2)+ ε

4
.

Choose z ∈ X∞ such that Var(μ̃t , δz) ≤ Hδ. Then for small enough δ we have for
j = 1,2

d∞
t (xj , z) ≤ d

X∞
t

W1
(δxj

, ν∞
x′j ;t )+ d

X∞
t

W1
(ν∞

x′j ;t , μ̃t )+ d
X∞

t

W1
(μ̃t , δz)

≤ ε

2
+ 1

2d∞
t (x1, x2)+ ε

4
+√

Hδ ≤ 1
2d∞

t (x1, x2)+ ε,

proving (8.1). �

9 Regular points and smooth convergence

In this section we analyze the case in which a metric flow X can be locally described
by a smooth Ricci flow on some open subset R⊂ X , which we will call its regular
part. The subset R can be equipped with a unique structure of a Ricci flow spacetime,
as introduced by Kleiner and Lott [38]. In the special case in which X is given by
a classical, smooth Ricci flow (M, (gt )t∈I ) over a left-open time-interval I , we have
R=X and R corresponds to the Ricci flow spacetime induced by (M, (gt )t∈I ).

This section is structured as follows. We will first review the basic notions involv-
ing Ricci flow spacetimes in Sect. 9.1. Then we will introduce the regular part R and
prove the existence of a Ricci flow spacetime structure on R in Sect. 9.2. In Sect. 9.3,
we will discuss further properties of the regular part. In Sect. 9.4 we will consider a
sequence of F-convergent metric flows. We will see that the F-convergence can be
upgraded to smooth convergence in certain regions of the regular part of the limit.
This notion is similar to smooth Cheeger-Gromov convergence. In Sect. 9.5 we dis-
cuss how parabolic neighborhoods on which the curvature is bounded pass to the
limit and discuss one peculiar behavior.

In the following, we will mainly be interested in metric flows that are H -
concentrated for some H < ∞ and almost always intrinsic. Note that since metric
flows corresponding to smooth Ricci flows fall into this category, this case will be of
most interest for us. We will moreover often restrict to metric flows that are defined
on left-open time-intervals I , because in this case the natural topology of a metric
flow X ∼= M × I corresponding to a Ricci flow (M, (gt )t∈I ) agrees with the topology
on M × I .
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9.1 Ricci flow spacetimes

In this subsection we recall the notion of a Ricci flow spacetime and associated ter-
minology. The following definitions are mainly taken out of [9, 38], with minor mod-
ifications; the familiar reader may skip this subsection.

We first define the notion of a Ricci flow spacetime.

Definition 9.1 (Ricci flow spacetime) A Ricci flow spacetime over an interval I ⊂
R is a tuple (M, t, ∂t, g) with the following properties:
(1) M is a disjoint union of smooth manifolds (of possibly different dimensions)

with (smooth) boundary ∂M
(2) t :M→ I is a smooth function without critical points (called time function).

For any t ∈ I we denote by Mt := t−1(t) ⊂M the time-t-slice of M.
(3) t(∂M) ⊂ ∂I .
(4) ∂t is a smooth vector field (the time vector field) on M that satisfies ∂tt≡ 1.
(5) g is a smooth inner product on the spatial subbundle ker(dt) ⊂ TM. For any

t ∈ I we denote by gt the restriction of g to the time-t-slice Mt (note that gt is
a Riemannian metric on Mt ).

(6) g satisfies the Ricci flow equation: L∂tg =−2 Ric(g). Here Ric(g) denotes the
symmetric (0,2)-tensor on ker(dt) that restricts to the Ricci tensor of (Mt , gt )

for all t ∈ I .
For any subset I ′ ⊂ I the preimage MI ′ = t−1(I ′) is called a time-slab of M and we
sometimes write M<t :=MI∩(−∞,t), M≤t :=MI∩(−∞,t] etc. Curvature quantities
on M, such as the Riemannian curvature tensor Rm, the Ricci curvature Ric, or
the scalar curvature R will refer to the corresponding quantities with respect to the
metric gt on each time-slice. Tensorial quantities will be imbedded using the splitting
TM= ker(dt)⊕ 〈∂t〉.

When there is no chance of confusion, we will often abbreviate the tuple
(M, t, ∂t, g) by M. The objects ∂t, g and sometimes also t will inherit the deco-
rations of M, similarly as explained in Definition 3.1.

Any (conventional) Ricci flow of the form (M, (gt )t∈I ) can be converted into a
Ricci flow spacetime over I by setting M = M × I , letting t be the projection to
the second factor and letting ∂t correspond to the unit vector field on I . Vice versa,
if (M, t, ∂t, g) is a Ricci flow spacetime over I and the property that every trajec-
tory of ∂t is defined on the entire time-interval I (i.e. M is a product domain, see
Definition 9.5), then M comes from such a conventional Ricci flow.

If (M, t, ∂t, g) is a Ricci flow spacetime and U ⊂ M is an open subset, then
(U, t|U , ∂t|U ,g|U) is again a Ricci flow spacetime.

We now define some basic geometric notions for Ricci flow spacetimes. Let in the
following (M, t, ∂t, g) be a Ricci flow spacetime over some interval I .

Definition 9.2 (Length, distance and metric balls in Ricci flow spacetimes) For any
t ∈ I and x, y ∈ Mt , r ≥ 0 we define the metric distance dgt (x, y) and distance
ball Bgt (x, r) ⊂ Mt with respect to the Riemannian manifold (Mt , gt ). Note that
dgt (x, y) could be infinite if x, y lie in different components of Mt . The distance
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between points in different time-slices is not defined. Similarly, we define the length
length(γ ) or lengtht (γ ) of a path γ : [0,1]→Mt whose image lies in a single time-
slice to be the length of this path when viewed as a path inside the Riemannian man-
ifold (Mt , gt ).

Definition 9.3 (Points in Ricci flow spacetimes) Let x ∈M be a point and set t :=
t(x). Consider the maximal trajectory γx : I ′ →M, I ′ ⊂ I of the time-vector field
∂t such that γx(t) = x. Note that then t(γx(t

′)) = t ′ for all t ′ ∈ I ′. For any t ′ ∈ I ′ we
say that x survives until time t ′ and we write

x(t ′) := γx(t
′).

Similarly, if S ⊂Mt is a subset in the time-t time-slice, then we say that S survives
until time t ′ if this is true for every x ∈ S and we set S(t ′) := {x(t ′) : x ∈ S}.

Definition 9.4 (Time-slices/slabs of a subset) If S ⊂M is a subset and t ∈ I , then
we set St := S ∩Mt . For any subset I ′ ⊂ I we write SI ′ := S ∩MI ′ .

Definition 9.5 (Product domain) We call a subset S ⊂M a product domain over
an interval I ′ ⊂ I if for any t ∈ I ′ any point x ∈ S survives until time t and x(t) ∈ S.

Note that a product domain S over I ′ can be identified with the product St0 ×I ′ for
an arbitrary t0 ∈ I ′. If St0 is sufficiently regular (e.g. open or a domain with smooth
boundary in Mt0 ), then the metric g induces a classical Ricci flow (gt )t∈I ′ on St0 .
We will often use the metric g and the Ricci flow (gt )t∈I ′ synonymously when our
analysis is restricted to a product domain.

Definition 9.6 (Parabolic neighborhood) For any point y ∈ M let I ′y ⊂ I be the
set of all times until which y survives. Now consider a point x ∈ M and num-
bers A,T −, T + ≥ 0. Set t := t(x). Then we define the parabolic neighborhood
P(x;A,−T −, T +)⊂M as follows:

P(x;A,−T −, T +) :=
⋃

y∈Bgt (x,A)

⋃

t ′∈[t−T −,t+T +]∩I ′y

y(t ′).

We call P(x;A,−T −, T +) unscathed if Bgt (x,A) is relatively compact in Mt and
if Iy ⊃ [t − T −, t + T +] ∩ I for all y ∈ Bgt (x,A). If T − = 0 or T + = 0, then we
will often write P(x;A,T +) or P(x;A,−T −) instead of P(x;A,−T −, T +). For
any r ≥ 0 we define the parabolic ball

P(x; r) := P(x; r,−r2, r2)

and the backward (−) and forward (+) parabolic balls

P−(x; r) := P(x; r,−r2), P+(x; r) := P(x; r, r2).
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Note that if P(x;A,−T −, T +) is unscathed, then it is a product domain of the
form Bgt (x,A)×([t(x)−T −, t(x)+T +]∩I ). We emphasize that P(x;A,−T −, T +)

can be unscathed even if [t(x)−T −, t(x)+T +] �⊂ I , that is when it hits the initial/fi-
nal time-slice earlier than expected.

Next, we consider maps φ : U →M′ between a subset U ⊂M of a Ricci flow
spacetime (M, t, ∂t, g) over an interval I and a Ricci flow spacetime (M′, t′, ∂t′ , g′)
over an interval I ′.

Definition 9.7 (Time-preserving and time-equivariant maps) We say that φ is time-
preserving if t′(φ(x)) = t(x) for all x ∈ U .

Definition 9.8 (Time-slices of a map) If φ : M ⊃ U → M′ is time-preserving and
t ∈ I , then we denote by

φt := φ|Ut : Ut −→M′
t ⊂M′

the time-t-slice of φ.

Definition 9.9 (∂t-preserving maps) Suppose that φ : U → M′ is a differentiable
map defined on a sufficiently regular domain U ⊂M. If φ∗∂t = ∂ ′t, then we say that
φ is ∂t-preserving.

Lastly, consider a function u ∈ C2(MI ′) on a time-slab of a Ricci flow spacetime
(M, t, ∂t, g), where I ′ ⊂ I is a non-trivial interval.

Definition 9.10 ((Conjugate) Heat operator) We define �u,�∗u ∈ C0(MI ′) by

�ut := (∂t −�gt )ut , �∗ut := (−∂t −�gt +Rgt )ut .

If �u = 0 or �∗u = 0 then u is said to satisfy the heat equation or conjugate heat
equation (with background metric g), respectively.

9.2 The regular part of a metric flow

Let X be a metric flow over some left-open interval I ⊂ R. We will now introduce
the notion of regular points.

Definition 9.11 (Regular points) A point x ∈X is called regular if there is a manifold
M ′, a subinterval I ′ ⊂ I that is a neighborhood of t(x) in I , a Ricci flow (M ′, (g′

t )t∈I ′)
and map φ : M ′ × I ′ →X such that the following holds:
(1) x ∈ φ(M ′ × I ′).
(2) φ is a homeomorphism onto its image and the image φ(M ′ × I ′) is open in X .

Here we consider the natural topology on X (see Sect. 3.6).
(3) For any t ∈ I ′ we have φt (M

′) := φ(M ′ × {t}) ⊂ Xt and φt : (M ′, dg′t ) →
(Xt , dt ) is a local isometry.

(4) For any uniformly bounded heat flow (ut )t∈Ĩ on X over a left-open subinterval
Ĩ ⊂ I ′, the family of functions (u′t := ut ◦φt )t∈Ĩ is a smooth solution to the heat
equation �u′ = 0 on M ′ with background metric g′

t .
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(5) For any conjugate heat flow (μt )t∈Ĩ on X over a right-open subinterval Ĩ ⊂ I ′,
we have φ∗

t μt = v′t dg′
t for all t ∈ Ĩ , where v′ ∈ C∞(M ′× Ĩ ) is a smooth solution

to the conjugate heat equation �∗v′ = 0 with background metric g′
t .

We define the local dimension at x as follows: dimx := dimM ′. Note that due to
Property (3), dimx is well defined.

The following is the main result of this subsection. In short, it states that the set of
regular points R is a Ricci flow spacetime and it establishes some basic properties of
R.

Theorem 9.12 Let R ⊂ X be the set of regular points of X . Then R is open with
respect to the natural topology on X and there is a smooth structure on R that is
compatible with the subspace topology and with respect to which t|R is smooth.
Moreover, there is a smooth vector field ∂t on R and a smooth metric g on kerdt|R
such that:
(a) (R, t, ∂t, g) is a smooth Ricci flow spacetime over I .
(b) For any t ∈ I the length metric dgt of gt is locally equal to the restriction of dt

to Rt = Xt ∩R. I.e. for any x ∈Rt there is a neighborhood x ∈ U ⊂Rt such
that dgt |U×U = dt |U×U .

(c) For any uniformly bounded heat flow u : XI ′ → R on X over any left-open
subinterval I ′ ⊂ I the following is true: u|RI ′ is smooth and we have �u =
(∂t −�)u= 0 on RI ′ .

(d) For any conjugate heat flow (μt )t∈I ′ on X over any right-open subinterval I ′ ⊂
I the following is true: We have dμt = vt dg on Rt for all t ∈ I ′, where v ∈
C∞(RI ′) satisfies the conjugate heat equation �∗v = (−∂t −�+R)v = 0 on
RI ′ .

(e) Subsets of R that are compact with respect to the subspace topology on R are
closed in X .

(f) There is a continuous function

K : {(x;y) ∈X ×R : t(x) > t(y)} −→R+

such that for any s, t ∈ I , s < t , x ∈ Xt we have dνx;s = K(x; ·)dgs on Rs .
Moreover, for any x ∈ Xt , the function K(x; ·) :R<t → R+ is smooth and the
map x �→ K(x; ·) is continuous in the C∞

loc-topology. K restricted to {(x;y) ∈
R×R : t(x) > t(y)} is smooth. For any y ∈Rs the function K(·;y) is a heat
flow on X>s and satisfies �K(·;y) = 0 on R>s .

Assertions (a)–(c) uniquely determine the smooth structure on R, as well as the ob-
jects ∂t, g.

We can therefore define:

Definition 9.13 (Regular part of a metric flow) If X is a metric flow, then the set of
regular points R⊂X is called the regular part of X . Moreover, we denote by ∂t, g

the vector field and metric on R that satisfy Assertions (a)–(f) of Theorem 9.12. We
denote by S :=X \R the singular part of X .
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Definition 9.14 (Heat kernel on a metric flow) If X is a metric flow, then the function
K from Assertion (f) in Theorem 9.12 is called the heat kernel on X .

As before, the objects R, ∂t, g,K will inherit the decorations of X . So, for ex-
ample, the regular part of a metric flow X ′,i will be denoted by R′,i , which is be
equipped with ∂

′,i
t , g′,i and a heat kernel K ′,i .

We will need the following lemma for the proof of Theorem 9.12 and for the
remainder of this section. We will often refer to this lemma as “standard parabolic
estimates”.

Lemma 9.15 For any n,m ∈ N, α > 0 there is constant Cm(n,α) < ∞ such that the
following holds. Let M be a Ricci flow spacetime whose time-slices have dimension
n, x ∈Mt be a point and r > 0 a scale such that the ball B(x, r) ⊂Mt is relatively
compact and has volume |B(x, r)|gt ≥ αrn. Let moreover τ ∈ (0, r2] and m1,m2 ≥ 0.
(a) Suppose that the forward parabolic neighborhood P+ := P(x; r, τ ) ⊂M is un-

scathed and that |Rm| ≤ r−2 on P+. Consider a smooth function v ∈ C∞(P+)

satisfying the conjugate heat equation �∗v = 0 and the bound
´
P+

t ′
|vt ′ |dgt ′ ≤ 1

for all t ′ ∈ [t, t + r2]. Then on P(x; r/2, r2/4) we have

|∇m1∂
m2
t v|≤Cm1+2m2r

−n−m1−2m2 +Cm1+2m2

m1+2m2∑

m=0

sup
P−

t+τ

rm−m1−2m2 |∇mvt+τ |.

If τ = r2, then the last term can be omitted.
(b) Suppose that the backward parabolic neighborhood P− := P(x; r,−τ) ⊂ M

is unscathed and that |Rm| ≤ r−2 on P−. Consider a smooth function u ∈
C∞(P−) satisfying the heat equation �u = 0 and the bound |u| ≤ A < ∞.
Then on P(x; r/2,−r2/4) we have

|∇m1∂
m2
t u|≤Cm1+2m2Ar−m1−2m2 +Cm1+2m2

m1+2m2∑

m=0

sup
P+

t−τ

rm−m1−2m2 |∇mut−τ |.

If τ = r2, then the last term can be omitted.

Proof Suppose first that in Assertion (a) we have |v| ≤ A on P+ ∩P+(x; .9r). Then
both Assertion (b) follows using standard parabolic regularity theory (see for example
[40]) and in Assertion (a) we get

|∇m1∂
m2
t v| ≤ Cm1+2m2Ar−m1−2m2 +Cm1+2m2

m1+2m2∑

m=0

sup
P+

t+τ

rm−m1−2m2 |∇mvt+τ |,

where the last term can be omitted if τ = r2.
It remains to establish a C0-bound on v over P+ ∩ P+(x; .9r) in Assertion (a).

For this purpose, suppose that M= P+ = M × [t, t + τ ] and define b : P+ → [0,1]
by

b(x′, t ′) := (
.9 − r−1dt (x, x′)

)
+r−2(t + r2 − t ′).
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We claim that there is a constant C∗(n,α) < ∞ such that we have on P+ ∩
P+(x, t; .9r)

|v| ≤ C∗ max
{
b−n, sup

M

|v|(·, t + τ)
}
,

where the supremum can be omitted if τ = r2. To see this, consider a point (x′, t ′) ∈
M × [t, t + τ), where |v|/max

{
b−n, supM |v|(·, t + τ)

}
attains its maximum Z and

set

r ′ := b(x′, t ′), r ′′ := min
{
r ′,

√
t + τ − t ′

}
.

Then |v| ≤ 10|v|(x′, t ′) on P+(x′, t ′;2cr ′) ∩ P+ for some universal constant c >

0. By our previously established derivative estimates, this implies that |∇v| ≤
C′(n,α)r ′′−1|v|(x′, t ′) on P+(x′, t ′; cr ′′). It follows that for some c′(n,α) > 0
we have |v| ≥ 1

2 |v|(x′, t ′) on B(x′, c′r ′′). On the other hand, we obtain for some
c′′(n,α) > 0

1 ≥
ˆ

M

|v|(·, t ′)dgt ′ ≥ 1
2 |v|(x′, t ′)|B(x′, c′r ′′)|g′

t ′
≥ c′′|v|(x′, t ′)(r ′′)n.

Now let 0 < β < 1 be a constant whose value we will determine later. If r ′′ ≥ βr ′ =
βb(x′, t ′), then this implies that 1 ≥ c′′βn(|v|bn)(x′, t ′) ≥ c′′βnZ, which implies an
upper bound on Z in terms of n,α. Next, assume that r ′′ < βr ′, which implies r ′′ =√

t + τ − t ′. Let ṽ := v/v(x′, t ′). Then

ṽ(x′, t ′) = 1, |̃v| ≤ 1 on P(x′, t ′;β−1r ′′, (r ′′)2),

|̃v|(·, t ′ + (r ′′)2) ≤ supM |v|(·, t + τ)

v(x′, t ′)
≤ Z−1

By a standard limit argument (after parabolic rescaling by (r ′′)−2), we obtain that if
β ≤ β , then Z ≤ Z(n,α). �

Proof of Theorem 9.12 The proof relies on the following claim:

Claim 9.12.1 Consider two manifolds M ′
i , subintervals I ′i ⊂ I , Ricci flows

(M ′
i , (g

′
i,t )t∈I ′i ) and maps φi : M ′

i × I ′i → X , i = 1,2, that each satisfy Prop-
erties (2)–(4) of Definition 9.11 and whose images intersect in a subset U :=
φ1(M

′
1 × I ′1) ∩ φ2(M

′
2 × I ′2) ⊂ X . Then χ := φ−1

2 ◦ φ1|φ−1
1 (U)

: φ−1
1 (U) → φ−1

2 (U)

is smooth and ∂t-preserving when viewed as a map between Ricci flow spacetimes.

Proof Due to Property (2) of Definition 9.11, the map χ is a homeomorphism
and by Property (3), for any (x0, t0) ∈ M ′

1 × I ′1 there is a product neighborhood
(x0, t0) ∈ M ′′

1 × I ′′1 ⊂ φ−1
1 (U) such that χ ′′ := χ |M ′′

1 ×I ′′1 can be expressed as a fam-
ily of isometries onto their images (χ ′′

t : (M ′′
1 , g′′

1,t |M ′′
1
) → (M ′

2, g
′
2,t ))t∈I ′′1 . So χ ′′

t is
smooth for all t ∈ I ′′1 . It remains to show that χ ′′

t is constant in t . To do this, we may
assume in the following that (M ′

1, (g
′
1,t )t∈I ′1) = (M ′′

1 , (g′′
1,t )t∈I ′′1 ) and χ = χ ′′.
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Let t̃ ∈ I ′1 and consider a compactly supported, smooth function ũ ∈ C∞
c (M ′

2). Let
u : X≥̃t → R be the heat flow with initial condition ũt = ũ ◦ φ−1

2,̃t
on φ2,̃t (M

′
2) ⊂ Xt̃

and 0 on Xt̃ \φ2,̃t (M
′
2). By Property (4) of Definition 9.11 the functions ui := u◦φi :

M ′
i × (I ′i ∩ [̃t,∞)) → R, i = 1,2, are smooth solutions to the heat equation when

restricted to the interior of their domains. By Proposition 3.34(f) and Property (2)
they are also continuous on their entire domain. Moreover, since χ̃t is smooth, we
also know that u1,̃t = ũ= u2,̃t ◦ χ̃t is smooth. So by local parabolic regularity theory
(see also Lemma 9.15), u1, u2 are smooth solutions to the heat equation on their entire
domains. Therefore, in summary, for any t̃ ∈ I ′1 and ũ ∈ C∞

c (M ′
2) there are smooth

solutions to the heat equation ui ∈ C∞(M ′
i × (I ′i ∩ [̃t,∞))) such that u2 = ũ on

M ′
2 ×{̃t} and u1 = u2 ◦χ on M ′

1 × (I ′1 ∩ [̃t,∞)). It follows that on M ′
1 × (I ′1 ∩ [̃t,∞))

∂t (u2,t ◦ χt ) = ∂tu1,t =�g1,t
u1,t = (�g2,t

u2,t ) ◦ χt = (∂tu2,t ) ◦ χt .

Applying this identity to the heat flows corresponding to n := dimM ′
1 = dimM ′

2
functions ũ1, . . . , ũn ∈ C∞

c (M ′′
1 ) that form a coordinate system near a given point

implies that for any (̃x, t̃) ∈ M ′
1 × I ′1 there is a t̃ ′ > t̃ such that [̃t, t̃ ′) → M ′

2, t �→
χt (̃x, t) is constant. By continuity, this implies that χt is constant in t , which finishes
the proof of the claim. �

Due to the Claim, the inverses of the maps φ from Definition 9.11 form a smooth
atlas on R such that t|R is smooth. Moreover, the push-forwards via φ of the vector
fields corresponding to the unit vector fields on the intervals I ′ define a smooth vector
field ∂t on R. Similarly, the push-forwards of the flows (g′

t ) via the maps φ define a
smooth metric g on kerdt|R. To see that R is Hausdorff, note first that any two points
in different time-slices can be separated by open subsets since t is continuous. On the
other hand, for any t ∈ I , Property (3) of Definition 9.11 implies that the subspace
topology on Rt =R∩Xt ⊂X agrees with the topology induced by dt |Rt

. So points
in the same time-slice can be separated as well. To see that R is second countable, fix
a countable dense subset S ⊂X using Proposition 3.34(i) and consider the collection
of all maps φ : M ′ × I ′ →R from Definition 9.11 with the additional property that
the endpoints of I ′ are rational or lie in ∂I and for some t ∈ I ′ the image φt (M

′) ⊂Rt

is a distance ball of rational radius around a point in S. Note that any two such maps
φi : M ′

i × I ′i →R with I ′1 = I ′2 and with the property that φt (M
′
1) = φt (M

′
2) for some

t ∈ I ′1 we have φ1(M
′
1 × I ′1) = φ2(M

′
2 × I ′2) by the Claim. So the collection of images

of these maps is countable and it can be seen using the Claim that they cover R. This
finishes the proof of Assertion (a).

Assertions (b)–(d) are direct consequences of Definition 9.11. Assertion (e) fol-
lows from the openness of images in Definition 9.11(2) via a covering argument.
The existence of the function K and the smoothness of K(x; ·) for any x ∈ X in
Assertion (f) is a consequence of Assertion (d). By Proposition 3.34(c), for any se-
quence xi → x∞ ∈ X and t < t(x∞) we have K(xi; ·)dgt → K(x∞; ·)dgt in the
W1-sense. Since by standard local derivative estimates, the functions K(xi; ·) are lo-
cally uniformly bounded in any Cm-norm on R (see also Lemma 9.15), this implies
that K(xi; ·) → K(x∞; ·) in C∞

loc and that K is continuous. Next, fix some y ∈Rs .
Then for any small r > 0 and any two times t1, t2 ∈ I , s < t1 < t2, and x ∈ Xt2 we
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have
ˆ

B(y,r)⊂Rs

K(x;y′)dgs(y
′) = νx;s(B(y, r)) =

ˆ

Xt1

νx′;s(B(y, r)) dνx;t1(x′)

=
ˆ

Xt1

ˆ

B(y,r)⊂Rs

K(x′;y′) dgs(y
′)dνx;t1(x′)

=
ˆ

B(y,r)⊂Rs

ˆ

Xt1

K(x′;y′) dνx;t1(x′)dgs(y
′).

Letting r → 0 implies that for almost all y ∈Rs

K(x;y) =
ˆ

Xt1

K(x′;y)dνx;t1(x′).

Since both sides are smooth in y by local derivative estimates, this implies that we
have equality everywhere and therefore K(·;y) is a heat flow. Next, fix some y ∈ X
and t∗ > t(y). By Lemma 9.15 applied to the conjugate heat kernels (νx;t ) near y we
have K(·;y) ≤ C(y, t∗) on X≥t∗ . So by Assertion (c), K(·;y) is smooth on R>t(y)

for all y ∈ X and solves the heat equation. Lastly, consider the restriction K ′ of K

to {(x, y) ∈ R ×R : t(x) > t(y)}. We have already shown that K ′ is smooth in
the first and second variable each. By local derivative estimates we obtain that differ-
ence quotients in one variable converge locally uniformly in the other variable. Since
difference quotients in one variable still satisfy the heat equation or conjugate heat
equation in the other variable, this local uniform convergence implies local smooth
convergence. This shows that K ′ is smooth.

For the uniqueness statement, note that any inclusion map of a product domain on
R satisfies the properties of Definition 9.11. So if we could find two different smooth
structures or Ricci flow spacetime structures on R, then we could apply the Claim to
two such inclusion maps coming from each structure. �

9.3 Properties of the regular part

In this subsection, we establish some properties of the regular parts of H -concentrated,
almost always intrinsic metric flows, which will become useful later. We first state all
results; the proofs can be found towards the end of this subsection.

The first result concerns the behavior of the conjugate heat kernel near regular
points. It shows that conjugate heat kernels cannot move too fast in regions where the
curvature is bounded.

Proposition 9.16 Consider an H -concentrated and almost always intrinsic metric
flow X over a left-open interval I with regular part R ⊂ X . Let r > 0, t1, t2 ∈ I ,
t1 ≤ t2, x ∈Xt2 and assume that the parabolic neighborhood P := P(x; r,−(t2− t1))

is unscathed and |Rm| ≤ r−2 on P . Then:
(a) If t2 − t1 ≤ Ar2, then we have

d
Xt1
W1

(δx(t1), νx;t1) ≤ C(H,A)
√

t2 − t1.
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(b) Suppose that t2− t1 ≤ c(H)r2, and that x(t1) ∈Xt1 is an H -center of some point
y ∈Xt2 . Then y ∈ P ⊂R and

dt2(x, y) ≤ C(H)
√

t2 − t1.

In the next proposition we study the relation between the length metric dgt induced
by the Riemannian metric gt on each time-slice Rt and the restriction of the metric
dt to Rt ⊂Xt . If X is intrinsic at time t , then the following properties are trivial. The
key point of the proposition is that these properties even hold if X is not intrinsic at
time t .

Proposition 9.17 Let X be an H -concentrated and almost always intrinsic metric
flow over a left-open interval I and consider its regular part R⊂ X . For any t ∈ I ,
x, x1, x2 ∈Rt and r > 0 the following is true:
(a) dt ≤ dgt .
(b) If there is a compact subset K ⊂ Rt with the property that any path in Rt

of (Riemannian) length ≤ dt (x1, x2) between x1, x2 is contained in K and if
limt ′↗t dgt ′ (x1(t

′), x2(t
′)) = dgt (x1, x2), then dgt (x1, x2) = dt (x1, x2).

(c) If the ball Bgt (x, r) ⊂ Rt around x of radius r with respect to the Rieman-
nian metric gt is relatively compact in Rt , then Bgt (x, r) = B(x, r), where
the latter ball is taken with respect to dt . Moreover dgt (x, y) = dt (x, y) for all
y ∈ B(x, r).

We also obtain:

Proposition 9.18 If X is an H -concentrated metric flow with regular part R ⊂ X ,
then dimx ≤ H/4 for all x ∈R.

Let us now present the proofs. The logical dependence of the following proofs is
somewhat convoluted. We first show:

Lemma 9.19 Proposition 9.16 holds if C is also allowed to depend on dimx and if
for Assertion (b) we assume that X is intrinsic at time t1 or Proposition 9.17(c) holds.

Proof Let n := dimx. To prove Assertion (a), we may shrink r and assume that with-
out loss of generality t2 − t1 ≥ r2. After parabolic rescaling and application of a time-
shift, we may assume that r = 1, t1 = 0, t2 := T , where 1 ≤ T ≤ A for Assertion (a).
Write (μt )t∈[0,T ) := (νx;t )t∈[0,T ) for Assertion (a) or (μt )t∈[0,T ) := (νy;t )t∈[0,T ) for
Assertion (b). Then dμt = vt dgt on Rt for some v ∈ C∞(R[0,T )) with �∗v = 0.

Claim 9.19.1 There is a constant 0 < c1(n,A) ≤ c0(n,A) < .1 such that for any x′ ∈
BgT

(x, .5) and t ∈ [0, T )

μ0
(
Bg0(x

′(0), c0)
)≥ c1μt

(
Bgt (x

′(t), c1)
)
, Bgt (x

′(t), c0) ⊂ P(x′; .1,−T ).

Proof Fix x′ ∈ BgT
(x, .5) and let P ′ := P(x′; .1,−T ). By [7, Lemma 9.13] there is a

compactly supported function u ∈ C0
c (P ′) and constants 0 < c1(n,A) ≤ c0(n,A) <

.1 with the following properties:
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(1) �u≤ 0 in the barrier sense.
(2) 0 ≤ u ≤ 1.
(3) For all t ∈ [0, T ] we have supput ⊂ Bgt (x

′(t), c0) ⊂ P(x′; .1,−T ) and u ≥ c1
on B(x′(t), c1).

We can view u as a function on X[0,T ] by extending it by 0 outside of P ′. Then in the
barrier sense

d

dt

ˆ

Xt

ut dμt = d

dt

ˆ

Rt

ut vt dgt =
ˆ

Rt

(
(�ut )vt − ut (�∗vt )

)
dgt ≤ 0.

It follows that for any t ∈ [0, T )

μ0
(
Bg0(x

′(0), c0)
)≥

ˆ

X0

u0 dμ0 ≥
ˆ

Xt

ut dμt ≥ c1μt

(
Bgt (x

′(t), c1)
)
. �

Using Theorem 8.2, we can pick a sequence of times t∗i ↗ T at which X is intrin-
sic.

Let us now show Assertion (a). Choose a sequence of H -centers x∗
i ∈ Xt∗i of x.

By Proposition 3.34(g) we have x∗
i → x, which implies that for large i

x∗
i ∈ Bgt∗

i
(x(t∗i ), c1/2) = B(x(t∗i ), c1/2). (9.1)

So by Lemma 3.26, the Claim and the fact that d0 ≤ dg0 on R0 we have

μ0
(
B(x(0), c0)

) ≥ μ0
(
Bg0(x(0), c0)

) ≥ c1μt∗i
(
Bgt∗

i
(x(t∗i ), c1)

)

= c1μt∗i
(
B(x(t∗i ), c1)

) ≥ c1μt∗i
(
B(x∗

i , c1/2)
)−−−→

i→∞ c1.

So if x∗
0 ∈X0 is an H -center of x, then we obtain, again using Lemma 3.26

d
X0
W1

(δx(0), νx;0) ≤ d0(x(0), x∗
0 )+ d

X0
W1

(δx∗0 , νx;0)

≤ C(H,A,n)+
√

Var(δx∗0 , νx;0) ≤ C(H,A,n).

Next, let us now show Assertion (b). Since Bg0(x(0), c0) ⊂ P(x; .1,−T ) ∩X0 ⊂
R0 is relatively compact in R0, the extra assumption in the lemma allows us to con-
clude that

B(x(0), c0) = Bg0(x(0), c0), (9.2)

because this is true if X0 is intrinsic or it follows from Proposition 9.17(c).
Our first goal is to show that y ∈ BgT

(x, .99). Suppose by contradiction that
dgT

(x, y) ≥ .99. Choose H -centers y∗
i ∈ Xt∗i of y. By Proposition 3.34(g) we have

y∗
i → y. So by Theorem 9.12(e) we have y∗

i /∈ P(x; .98,−T ) for large i. Therefore,
by Lemma 3.26 we have for large i

μt∗i
(
Bgt∗

i
(x(t∗i ), .96)

) = μt∗i
(
B(x(t∗i ), .96)

) ≤ 1 −μt∗i
(
B(y∗

i , .01)
) −−−→

i→∞ 0. (9.3)
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Next, let τ > 0 be some small constant whose value we will determine later and
suppose that T ≤ τ . Then

μ0
(
X0 \B(x(0), c0)

)≤ c−2
0 Var(μ0) ≤ c−2

0 Hτ ≤ C(H,n)τ.

Using the Claim and (9.2), this implies that for any x′ ∈RT with dgT
(x, x′) = .49

and t ∈ [0, T )

μt

(
Bgt (x

′(t), c1)
) ≤ c−1

1 μ0
(
Bg0(x

′(0), c0)
)≤ c−1

1 μ0
(
(BgT

(x′, .1))(0)
)

≤ c−1
1 μ0

(
X0 \ (BgT

(x, .1))(0)
) ≤ c−1

1 μ0
(
X0 \Bg0(x(0), c0)

)

= c−1
1 μ0

(
X0 \B(x(0), c0)

) ≤ C(H,n)τ. (9.4)

Using standard volume comparison and distance distortion estimates, we can find
points x′

1, . . . , x
′
N ∈RT with dgT

(x, x′
j ) = .49 such that for some constants c2(n) >

0, C2(n) < ∞ we have N ≤ C2 and

U := P(x; .49 + c2,−T ) \ P(x; .49,−T ) ⊂
N⋃

j=1

⋃

t∈[0,T ]
Bgt (x

′
j (t), c1).

Together with (9.4), this implies that for some C3(H,n) < ∞ we have for all t ∈
[0, T )

μt (Ut ) ≤ C3τ. (9.5)

Using [20, Lemma 5.3] and standard distance distortion estimates, we can con-
struct a function w ∈ C∞

c (P (x;1,−T )) such that:
(1) 0 ≤w ≤ 1.
(2) w = 1 on P(x; .1,−T ).
(3) ∂tw = 0.
(4) |∇w|, |∇2w| ≤ C(n).
(5) supp |∇w|, supp |∇2w| ⊂ U

(6) suppwt ⊂ B(x(t), .96) for t close to T .
We may view w as a function on X[0,T ] by continuing it by 0 outside of P(x;1,−T ).
Then, using (9.5),

d

dt

ˆ

Xt

wt dμt = d

dt

ˆ

Rt

wtvt dgt =
ˆ

Rt

(
(�wt)vt −wt(�∗vt )

)
dgt

=−
ˆ

Rt

�wt vt dgt ≥−C(H,n)τ.

So by (9.2) and (9.3)

μ0(B(x(0), c0)) = μ0(Bg0(x(0), c0)) ≤
ˆ

X0

w0 dμ0
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≤ C(H,n)τ 2 +
ˆ

Xt∗
i

wt∗i dμt∗i −−−→
i→∞ C(H,n)τ 2.

However, this implies that

c2
0(1 −C(H,n)τ 2) ≤ Var(μ0) ≤Hτ,

which gives us a contradiction for τ ≤ τ(H,n).
So y ∈ BgT

(x, .99) ⊂RT if T ≤ τ(H,n). We can now apply Assertion (a) to y,
which gives

d0(x(0), y(0)) ≤ d
X0
W1

(δx(0), νy;0)+ d
X0
W1

(νy;0, δy(0))

≤
√

Var(δx(0), νy;0)+C(H,n)
√

T ≤ C(H,n)
√

T .

Assuming T ≤ c(H,n), this implies that d0(x(0), y(0)) < .5, so

dT (x, y) ≤ dgT
(x, y) ≤ C(n)dg0(x(0), y(0)) = C(n)d0(x(0), y(0)) ≤ C(H,n)

√
T .

Note that the equality holds due to the extra assumption in the lemma. This finishes
the proof. �

Proof of Proposition 9.17 To see Assertion (a), note that by Theorem 9.12(b), the met-
rics dt and dgt are locally equal on Rt . Since dgt is a length metric, we obtain dt ≤ dgt .

Next, consider two points x1, x2 ∈ Rt as in Assertion (b). Using Theorem 8.2,
we can find a sequence of times t∗i ↗ t at which X is intrinsic. Choose H -centers
x∗

1,i , x
∗
2,i ∈ Xt∗i of x1, x2. Then by Proposition 3.34(g), x∗

1,i → x1,i and x∗
2,i → x2.

Moreover,

dt∗i (x∗
1,i , x

∗
2,i ) ≤ d

Xt∗
i

W1
(δx∗1,i

, νx1;t∗i )+ d
Xt∗

i

W1
(νx1;t∗i , νx2;t∗i )+ d

Xt∗
i

W1
( νx2;t∗i , δx∗2,i

)

≤
√

Var(δx∗1,i
, νx1;t∗i )+ dt (x1, x2)+

√
Var(νx2;t∗i , δx∗2,i

)

≤ dt (x1, x2)+ 2
√

H(t − t∗i )−−−→
i→∞ dt (x1, x2). (9.6)

By our assumption and an openness argument, there is a small ε > 0 such that for
large i there is a compact subset Ki ⊂Rt∗i with the property that any path in Rt∗i of
length ≤ dt (x1, x2) + ε between x∗

1,i , x
∗
2,i lies in Ki . Since X is intrinsic at time t∗i ,

we obtain using (9.6) that for large i

dgt∗
i
(x∗

1,i , x
∗
2,i ) = dt∗i (x∗

1,i , x
∗
2,i ).

On the other hand, by assumption dgt∗
i
(x∗

1,i , x
∗
2,i ) → dgt (x1, x2), which implies

dgt (x1, x2) ≤ dt (x1, x2). So by Assertion (a) we have dgt (x1, x2) = dt (x1, x2).
Lastly, we prove Assertion (c). Assertion (a) implies that Bgt (x, r) ⊂ B(x, r), so

we need to show the reverse inclusion. Let y ∈ B(x, r). Choose again a sequence of
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times t∗i ↗ t at which X is intrinsic and pick H -centers x∗
i , y∗

i ∈ Xt∗i of x, y. As in
(9.6), we obtain that

lim sup
i→∞

dt∗i (x∗
i , y∗

i ) ≤ dt (x, y) < r.

Since x∗
i → x we obtain that y∗

i ∈R for large i and that there is some r ′ > 0 such
that for large i the parabolic neighborhood Pi := P(y∗

i (t); r ′,−(t − t∗i )) ⊂R exists,
is unscathed and |Rm| ≤ (r ′)−2 on Pi . So by Proposition 9.16(b) via Lemma 9.19
we have y ∈ Rt . Note here that the extra assumption in Lemma 9.19 is satisfied
since X is intrinsic at time t∗i . As in the proof of Assertion (b) this implies that
dgt∗

i
(x∗

i , y∗
i ) = dt∗i (x∗

i , y∗
i ) < r for large i and

dgt (x, y) = lim
i→∞dgt∗

i
(x∗

i , y∗
i ) ≤ dt (x, y).

So, again by Assertion (a) we have dgt (x, y) = dt (x, y). �

Proof of Proposition 9.18 Fix some x ∈Rt0 and set n := dimx. After application of a
time-shift, we may assume without loss of generality that t0 = 0. Denote by X λ the
flow that arises by parabolic rescaling X by a factor of λ > 0. Write dνλ

x;t := vλ
t dgλ

t

for some vλ ∈ C∞(Rλ
<0) with �∗vλ = 0. Take a local blow-up limit for λ →∞ near

x. Then the metrics gλ near x converge to the constant Ricci flow on R
n and, after

passing to a subsequence, vλ converge to a smooth solution v∞ ∈ C∞(Rn ×R−) to
the backwards heat equation (−∂t −�)v∞ = 0 due to the bounds in Lemma 9.15.
Using Proposition 9.16(a) via Lemma 9.19 and Lemma 3.26 and passing to the limit
we have

´
Rn v∞t dgeucl = 1 for all t < 0. Due to the H -concentration condition, we

also have for all t < 0

Var(v∞t dgeucl)≤ H |t |.
It follows that v∞ is the standard Gaussian backwards heat kernel and by the compu-
tation in Example 3.48 we have for all t < 0

4n|t | = Var(v∞t dgeucl) ≤ H |t |.
This finishes the proof. �

Proof of Proposition 9.16 By Proposition 9.18 we have dimx ≤ H/4. Moreover,
Proposition 9.17(c) holds. So Proposition 9.16 follows from Lemma 9.19. �

9.4 Smooth convergence on the regular part

We will now analyze the convergence of the regular part in an F-convergent se-
quence of metric flow pairs. For this subsection, we fix a sequence of metric flow
pairs (X i , (μi

t )t∈I i ), i ∈ N ∪ {∞}, that are fully defined over intervals I i ⊂ R. We
will assume that X i is almost always intrinsic for all i ∈ N and H -concentrated for
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all i ∈N ∪ {∞} for some uniform H < ∞. We will also assume that all intervals I i ,
i ∈N∪ {∞}, are left-open. Suppose that there is a correspondence

C := (
(Zt , d

Z
t )t∈I∞, (ϕi

t )t∈I ′′,i ,i∈N∪{∞}
)

between the flows X i , i ∈N∪ {∞}, over I∞ such that

(X i , (μi
t )t∈I i )

F,C−−−−−→
i→∞ (X∞, (μ∞

t )t∈I∞) (9.7)

on compact time-intervals. We also assume that if tmax := max I∞ exists, then all
flows X i , i ∈ N ∪ {∞}, are intrinsic at time tmax and the convergence (9.7) is time-
wise at time tmax. The most interesting case will be the case in which the flows X i ,
i ∈ N, are given by smooth Ricci flows of the same dimension, which implies Ri =
X i .

By Theorem 8.3, the limit X∞ is also almost always intrinsic. Let Ri ⊂ X i be
the regular part of X i , i ∈ N ∪ {∞}, and write dμi = vi dgi on Ri

I\{tmax}, where

vi ∈ C∞(Ri
I\{tmax}).

Definition 9.20 We say that the convergence (9.7) is smooth at some point x∞ ∈X∞
if the following is true. There is a scale r > 0 and points xi ∈ X i such that xi → x∞
within C (in the sense of Definition 6.105) and such that for large i we have xi ∈Ri ,
the two-sided parabolic ball P(xi; r) ⊂Ri is unscathed and we have

sup
P(xi ;r)

|Rm| ≤ r−2, lim inf
i→∞ |B(xi, r)| > 0.

If t(x∞)= tmax = max I∞, then we require in addition that for large i the function vi

can be smoothly extended onto the entire parabolic neighborhood P(xi; r) such that
we still have dμi = vi dgi and for all m ≥ 1 we have lim supi→∞ supB(xi ,r)

|∇mvi | <
∞ and there is no r ′ ∈ (0, r) and sequence of points x′

i ∈ B(xi, r) such that
B(x′

i , r
′) ⊂ B(xi, r) and lim infi→∞ μt(xi )(B(x′

i , r
′)) = 0.

Denote by R∗ ⊂ X∞ the set of points at which the convergence (9.7) is smooth.
The following is our main result of this subsection. It states that R∗ is an open subset
of the regular part R∞ ⊂X∞ and that the convergence (9.7) can be understood via a
sequence of diffeomorphisms between an exhaustion of R∗ and a sequence of open
subsets of Ri . This is similar to the characterization of smooth Cheeger-Gromov
convergence.

We remark that, a priori, we may have R∗
�R∞, i.e. smooth convergence may, a

priori, not hold at all points where the limiting flow is smooth. An analogous example

5We will often write “xi → x∞ within C” instead of

xi
C,J−−−−−−→

i→∞ x∞.

Recall that this notion of convergence means that we have convergence of the conjugate heat kernels
(νxi ;t )→ (νx∞;t ) within C; it is weaker than strict convergence in the sense of Definition 6.12.
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illustrating this potential phenomenon, would be given by a sequence of rescalings of
an asymptotically flat Riemannian manifolds, which Gromov-Hausdorff converges to
Euclidean space. In this case, the entire limit is smooth, while smooth convergence
only holds on the complement of the origin. We will see, however, in [8] that under
relatively mild non-collapsing conditions (which, for example, are implied by R∗ �=
∅) we do have R∗ =R∞.

Theorem 9.21 R∗ is open and we have R∗ ⊂R∞. Moreover, we can find an increas-
ing sequence U1 ⊂ U2 ⊂ · · · ⊂R∗ of open subsets with

⋃∞
i=1 Ui =R∗, open subsets

Vi ⊂Ri , time-preserving diffeomorphisms ψi :Ui → Vi and a sequence εi → 0 such
that the following holds:
(a) We have

‖ψ∗
i gi − g∞‖

C
[ε−1

i
]
(Ui)

≤ εi,

‖ψ∗
i ∂i

t − ∂∞t ‖
C
[ε−1

i
]
(Ui)

≤ εi,

‖vi ◦ψi − v∞‖
C
[ε−1

i
]
(Ui)

≤ εi .

(b) For U
(2)
i := {(x;y) ∈ Ui ×Ui : t(x) > t(y)− εi}, V

(2)
i := {(x;y) ∈ Vi × Vi :

t(x) > t(y) − εi} and ψ
(2)
i := (ψi,ψi) : U(2)

i → V
(2)
i , we have convergence of

the heat kernels

‖(ψ(2)
i )∗Ki −K∞‖

C
[ε−1

i
]
(U

(2)
i )

≤ εi,

(c) Let x∞ ∈R∗ and xi ∈ X i . Then we have xi → x∞ within C if and only if xi ∈
Vi ⊂Ri for large i and ψ−1

i (xi) → x∞ in R∗.
(d) If the convergence (9.7) is time-wise at some time t ∈ I∞ for some subsequence,

then for any compact subset K ⊂R∞
t and for the same subsequence

sup
x∈K∩Ui

dZ
t (ϕi

t (ψi(x)), ϕ∞
t (x)) −→ 0.

(e) Consider a sequence of points xi ∈X i such that xi → x∞ ∈X∞ within C. Then
on R∗

ψ∗
i Ki(xi; ·)

C∞
loc−−−−−−→

i→∞ K∞(x∞; ·).

(f) Consider a sequence of conjugate heat flows (μ′
i,t )t∈I i ,t<t0

on X i , i ∈N∪ {∞},
for t0 ∈ I∞ such that

(μ′
i,t )t∈I i ,t<t0

C−−−−→
i→∞ (μ′∞,t )t∈I∞,t<t0 .

Write dμ′
i,t = v′i dgi on Ri for i ∈N∪ {∞}. Then on R∗

v′i ◦ψi

C∞
loc−−−−−−→

i→∞ v′∞.
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Remark 9.22 If R∗ = X∞, then Theorem 9.21 combined with the compactness the-
ory from Sect. 7 essentially recovers Hamilton’s compactness theory for Ricci flows
with bounded curvature [31].

The proof of Theorem 9.21 relies on the following lemma, which can be viewed
as a local version. The last statement of the following lemma will be a byproduct of
the proof and will be needed in the next subsection.

Lemma 9.23 Let x∞ ∈R∗ and consider a scale r > 0 and a sequence xi ∈ X i as in
Definition 9.20. Then x∞ ∈R∞ and there is an open product domain x∞ ∈U ⊂R∞
with U ⊂ R∗. For large i there are time-preserving and ∂t-preserving diffeomor-
phisms ψi : U → Vi ⊂Ri and a sequence εi → 0 such that Assertions (a), (c), (e),
(f) of Theorem 9.21 hold for Ui := U and for large i. Here, the sequence of points in
Assertions (c), (e) can be different from the sequence xi in this lemma, but we require
that the limiting point in Assertion (c), which is called x∞, lies in U .

Moreover, consider some constant α > 0 such that lim infi→∞ vi(xi) ≥ α if
t(x∞) �= sup I∞ and such that r∈[α,α−1], H≤α−1 and lim infi→∞ |B(xi, r)|gt(xi )

≥
α. Then there is a universal constant r∗ = r∗(α) > 0, which depends continuously on
α such that the two-sided parabolic ball P(x∞; r∗) ⊂R∞ is unscathed and we have
P(x∞; r∗) ⊂ U .

Proof Fix r,α > 0. Let r∗ ∈ (0, r) be a constant whose value we will choose in the
course of the proof by imposing conditions of the form r∗ ≤ r∗(α), where the latter
will always denote a generic constant depending only on α. By Proposition 9.18 we
have ni := dimxi ≤ H/4 for large i. Set M ′

i := B(�0, r∗) ⊂R
ni and x′

i := �0 ∈ M ′
i and

use the exponential map to choose diffeomorphisms φi : M ′
i → B(xi, r∗) ⊂Ri

t(xi )
⊂

Xt(xi ) with φi(x
′
i ) = xi for large i. Using the flow of the vector field ∂t on Ri , we

can extend φi to time-preserving and ∂i
t -preserving embeddings φi : M ′

i × I ′ →Ri ,
where I ′ := (t(xi) − r2∗ , t(xi) + r2∗ ) ∩ I∞, such that φi(·, t(xi)) = φi , implying
φi(x

′
i , t(xi)) = xi .

Before continuing with the proof, let us first explain that, without loss of gener-
ality, we may in the following always pass to a subsequence of the given sequence
of metric flow pairs. To see this, note first that the statements of the lemma charac-
terizing the limiting flow, i.e. that x∞ ∈ U ⊂ R∞, are not affected by such a step.
Moreover, n := dim(x∞) is uniquely determined by the metric flow X∞. Assume for
a moment that x∞ ∈R∞. To see that the other statements of the lemma still follow
even if we only prove them after passing to a subsequence, note that we can apply
our proof to an arbitrary subsequence of the given sequence of metric flow pairs. So
if one of the convergence statements in Assertions (a), (c), (e), (f) was violated, then
we could apply our proof to a subsequence with the property that any further sub-
sequence still violates this convergence statement and obtain a contradiction. To be
more precise about this, we will now provide a brief overview of the following proof
and discuss the effects of passing to a subsequence in the middle of our arguments.

In the course of the proof, we will construct a smooth time-preserving and
∂t-preserving diffeomorphism onto its image φ∞ : M ′ × I ′ → R∞, where M ′ =
B(�0, r∗) ⊂ R

n, I ′ := (t(x∞) − r2∗ , t(x∞) + r2∗ ) ∩ I∞, φ∞(x′∞, t(x∞)) = x∞ and
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r∗ = r∗(α) > 0. The map φ∞ will arise as a limit of a subsequence of the maps
φi : M ′

i × I ′ →Ri ⊂X i , and it will follow that ni = n = dim(x∞) for large i. Since
we could have started our proof with an arbitrary subsequence of the given sequence
of metric flow pairs and since n is independent of this subsequence, we must have
ni = n for large i for the original sequence. Next, we will set U := φ∞(M ′ × I ′) and
define ψi := φi ◦φ−1∞ |U . We will show that the maps ψi : Ui := U → Vi := ψi(U) ⊂
Ri satisfy Assertions (a), (c), (e), (f) of Theorem 9.21 for some εi → 0 after passing
to a subsequence. More specifically, our proof will imply that given any subsequence
of these maps, we can pass to a further subsequence such that Assertions (a), (c),
(e), (f) of Theorem 9.21 hold for some εi → 0. Suppose now that the maps ψi don’t
satisfy Assertions (a), (c), (e), (f) of Theorem 9.21 for any εi → 0 if we don’t pass
to a subsequence of the given sequence. For each i ∈ N choose εi ∈ (0,∞] minimal
such that Assertion (a) holds. If we didn’t have εi → 0, then we could choose a sub-
sequence such that εi > c′′ > 0, which would contradict the fact that Assertion (a)
holds for some εi → 0. Similarly, if Assertions (c), (e), (f) were violated for a se-
quence of points or a conjugate heat flow, then we could pass to a subsequence with
the property that this violation persists for any further subsequence, in contradiction
to what we will show. Lastly, the fact that U ⊂R∗ follows from Assertion (c). So in
summary, in the following we are free to pass to a subsequence of metric flow pairs,
as long as we choose r∗ only depending on α.

Let us now begin with the actual proof. By F-convergence and Lemma 6.3 we
can pass to a subsequence, such that for some set of measure zero E∞ ⊂ I∞ the
convergence (9.7) restricted to the subsequence is time-wise at any t ∈ I∞ \ E∞.
Then by Lemma 6.9

(ϕi
t )∗μi,t

W1−−−−−→
i→∞ (ϕ∞

t )∗μ∞,t for all t ∈ I∞ \E∞.

Moreover, we have:

Claim 9.23.1 Consider conjugate heat flows (μ̃i,t )t∈Ĩ on X i , i ∈ N ∪ {∞}, over a
right-open subinterval Ĩ such that

(μ̃i,t )t∈Ĩ

C−−−−→
i→∞ (μ̃∞,t )t∈Ĩ .

Then we have weak convergence

(ϕi
t )∗μ̃i,t −−−→

i→∞ (ϕ∞
t )∗μ̃∞,t for all t ∈ Ĩ \E∞.

Moreover, if μ̃∞,t ∈ P1(X∞
t ) for all t ∈ Ĩ (i.e. μ̃∞,t has finite dW1 -distance to point

masses), then the convergence holds in W1.

Proof This is a direct consequence of Theorem 6.15(b). �

For any i ∈N∪{∞} let E′
i ⊂ I i be the set of times at which X i is not intrinsic and

set E′ := ⋃∞
i=1 E′

i ∪ E′∞. Recall that E′∞ is countable (see Theorem 8.2) and there-
fore has measure zero. Note that if tmax = max I∞ exists, then by our assumptions
tmax ∈ I ′ \ (E∞ ∪E′).
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Since ni ≤ H/4, we may pass to a subsequence, and assume in the following that
n := dim(xi) is constant; we will write M ′ := M ′

i and x′ := x′
i from now on. After

passing to another subsequence, we can use [31] to find a Ricci flow (M ′, (g′
t )t∈I ′)

on M ′ × I ′ such that we have local smooth convergence

φ∗
i gi

C∞
loc−−−−−−→

i→∞ g′.

Write dμi
t =: vi

t dgi
t for some vi ∈ C∞(Ri

I i\{sup I i }), vi ≥ 0. By standard parabolic

estimates, we may also pass to a subsequence such that for some v′ ∈ C∞
loc(M

′ × I ′)
with �∗v′ = 0 such that

vi ◦ φi

C∞
loc−−−−−−→

i→∞ v′. (9.8)

Claim 9.23.2 If r∗ ≤ r∗(α), then v′t is nowhere locally vanishing on M ′ for all t ∈ I ′.

Proof Suppose by contradiction that v′
t ′′ locally vanished somewhere on M ′ for some

t ′′ ∈ I ′. Then by Definition 9.20 we must have t ′′ < sup I and thus t ′′ < sup I ′. So by
the strong maximum principle we have v′ ≡ 0 on M ′ × (I ′ ∩ [t ′′,∞)).

Next, consider some time t∗ ∈ I ′ \ (E∞ ∪ E′), t∗ ≤ t(x∞). Let x∗ ∈ X∞
t∗ be an

H -center of x∞. For t∗ sufficiently close to t(x∞) for any H -center y∗ ∈X∞
t∗ of any

point y ∈ B(x∞, 1
8 r∗) we have

d∞
t∗ (x∗, y∗)≤ d

X∞
t∗

W1
(δx∗ , ν

∞
x∞;t∗)+ d

X∞
t∗

W1
(ν∞x∞;t∗ , ν

∞
y;t∗)+ d

X∞
t∗

W1
(ν∞y;t∗ , δy∗)

≤
√

Var(δx∗ , ν∞x∞;t∗)+d∞
t(x∞)(x∞, y)+

√
Var(ν∞

y;t∗ , δy∗) ≤ 2
√

H(t(x∞)− t∗)+ 1
8 r∗.

So for t∗ sufficiently close to t(x∞) we have by Lemma 3.26

μ∞
t∗ (B(x∗, 1

4 r∗)) ≥
ˆ

B(x∞, 1
8 r∗)

ν∞y;t∗(B(x∗, 1
4 r∗)) dμ∞

t(x∞)(y) ≥ 1
2μ∞

t(x∞)(B(x∞, 1
8 r∗)).

(9.9)
By Proposition 9.16(a) and Claim 9.23.1 we have

lim sup
i→∞

dZ
t∗(ϕ

i
t∗(xi(t

∗)), ϕ∞
t∗ (x∗))

≤ lim sup
i→∞

(
d
X i

t∗
W1

(δxi (t
∗), ν

i
xi ;t∗)+d

Zt∗
W1

((ϕi
t∗)∗νi

xi ;t∗ , (ϕ
∞
t∗ )∗ν∞x∞;t∗)+d

X∞
t∗

W1
(ν∞x∞;t∗ , δx∗)

)

≤ C
√
t(x∞)− t∗ + lim sup

i→∞

√
Var(ν∞

x∞;t∗ , δx∗) ≤ (C +H 1/2)
√
t(x∞)− t∗.

So for t∗ sufficiently close to t(x∞) we have, again by Claim 9.23.1, and (9.9)

lim inf
i→∞

ˆ

B
φ∗
i,t

gi
t∗

(x′, 1
2 r∗)

(vi
t∗ ◦ φi,t∗) d(φ∗

i,t g
i
t∗) = lim inf

i→∞ μi
t∗(B(xi(t

∗), 1
2 r∗))
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= lim inf
i→∞ ((ϕi

t∗)∗μi
t∗)(B(ϕi

t∗(xi(t
∗)), 1

2 r∗)) ≥ ((ϕ∞
t∗ )∗μ∞

t∗ )(B(ϕ∞
t∗ (x∗), 1

4 r∗))

= μ∞
t∗ (B(x∗, 1

4 r∗)) ≥ 1
2μ∞

t(x∞)(B(x∞, 1
8 r∗)).

Letting t∗ ↗ t(x∞) implies that
ˆ

Bg′
t(x∞)

(x′, 1
2 r∗)

v′t(x∞) dg′
t(x∞) ≥ 1

2μ∞
t(x∞)(B(x∞, 1

8 r∗)).

By standard parabolic derivative estimates (see Lemma 9.15), this implies that t ′′ >
t(x∞)+ c(α)r2∗ . So the claim follows after shrinking r∗ appropriately. �

Claim 9.23.3 If r∗ ≤ r∗(α), then the following is true. For any t ∈ I ′ \ (E∞∪E′) and
after passing to any subsequence of the current subsequence of metric flow pairs, we
can pass to a further subsequence such that the maps ϕi

t ◦ φi,t : M ′ → Zt uniformly
converge to some map of the form ϕ∞

t ◦ φ∞,t : M ′ → Zt , where φ∞,t : (M ′, dg′t ) →
(X∞

t , d∞
t ) is a local isometry and a homeomorphism onto its image.

Proof Fix t and fix some y ∈ M ′ for a moment. We claim that the sequence
ϕi

t (φi,t (y)) ∈ Zt subsequentially converges to some point in the completion (Z,dZ
t )

of (Z,dZ
t ). Suppose not. Then we can pass to a subsequence such that for some r ′ > 0

the balls B(ϕi
t (φi,t (y)), r ′) ⊂ Zt are pairwise disjoint. Suppose that r ′ > 0 is chosen

small enough such that Bg′t (y,2r ′) ⊂ M ′. By Claim 9.23.2 we have

lim inf
i→∞ ((ϕi

t )∗μi
t )(B(ϕi

t (φi,t (y)), r ′)) = lim inf
i→∞ μi

t (B(φi,t (y), r ′))

=
ˆ

Bg′t (y,r ′)
v′ dg′

t > 0.

This, however, contradicts the fact that (ϕi
t )∗μi

t → (ϕ∞
t )∗μ∞

t in W1, see Claim 9.23.1.
So after passing to a subsequence, we have convergence ϕi

t (φi,t (y)) → z ∈ Zt

and ((ϕ∞
t )∗μ∞

t )(B(z, r ′)) > 0 for all r ′ ∈ (0,1). Thus z ∈ supp((ϕ∞
t )∗μ∞

t ) =
ϕ∞

t (X∞
t ) ⊂ Z.

Fix some countable, dense subset S ⊂ M ′′. By the previous paragraph and after
passing to a diagonal subsequence, we may assume that there is a map φ∞,t : S →
X∞

t such that for all y ∈ S

ϕi
t (φi,t (y)) → ϕ∞

t (φ∞,t (y)) in Zt (9.10)

Since the maps ϕi
t ◦ φi,t are uniformly locally Lipschitz, φ∞,t can be extended to M ′

and (9.10) holds for all y ∈ M ′. The claim follows after shrinking r∗. �

Choose a countable, dense subset Q ⊂ I ′ \ (E∞∪E′) such that tmax = max I ′ ∈Q

if it exists, apply Claim 9.23.3 for each t ∈ Q and pass to a diagonal subsequence.
In doing so, we can construct a family of local isometries and homeomorphisms
onto their images (φ∞,t : (M ′, dg′t ) → (X∞

t , d∞
t ))t∈Q such that we have uniform

convergence ϕi
t ◦ φi,t → ϕ∞

t ◦ φ∞,t in Zt for all t ∈Q.
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Claim 9.23.4 If r∗ ≤ r∗(α), then the following holds for some C∗ < ∞:
(a) Suppose that Ĩ ⊂ I ′ is a right-open subinterval and (μ̃i,t )t∈Ĩ are conjugate heat

flows on X i , i ∈N∪ {∞}, such that

(μ̃i,t )t∈Ĩ

C−−−−→
i→∞ (μ̃∞,t )t∈Ĩ .

Suppose that μ̃∞,t ∈ P1(X∞
t ) and write dμ̃i,t = ṽi dgi on Ri for i ∈ N. Then

ṽi ◦ φi → ṽ′ ∈ C∞(M ′ × Ĩ ) in C∞
loc, where �∗ṽ′ = 0 and d((φ∞,t )

∗μ̃∞,t ) =
ṽ′ dg′

t for all t ∈ Q∩ Ĩ .
(b) Suppose that Ĩ ⊂ I ′ is a left-open subinterval and (ui,t )t∈Ĩ are heat flows on

X i with |ui | ≤ C < ∞ that converge to some heat flow (u∞,t )t∈Ĩ on X∞ in the
sense that for any sequence yi ∈ X i

Ĩ
with yi → y∞ ∈ X ∞̃

I
we have ui(yi) →

u∞(y∞). Then ui ◦ φi → u′ ∈ C∞(M ′ × Ĩ ) in C∞
loc, where �u′ = 0 and u∞,t ◦

φ∞,t = u′t for all t ∈Q∩ Ĩ .
(c) For any conjugate heat flow (μ̃t )t∈Ĩ on X∞ over a right-open subinterval

Ĩ ⊂ I ′ there is a smooth function ṽ′ ∈ C∞(M ′ × Ĩ ) with �∗ṽ′ = 0 such that
d((φ∞,t )

∗μ̃t ) = ṽ′dg′
t for all t ∈ Q∩ Ĩ .

(d) For any uniformly bounded heat flow (ut )t∈Ĩ on X∞ over a left-open subinterval
Ĩ ⊂ I ′ there is a smooth function u′ ∈ C∞(M ′ × Ĩ ) with �u′ = 0 such that
ut ◦ φ∞,t = u′t for all t ∈Q∩ Ĩ .

(e) For any y ∈M ′ and any t1, t2 ∈Q with t1 ≤ t2 we have

d
X∞

t1
W1

(δφ∞,t1 (y), ν
∞
φ∞,t2 (y);t1)≤ C∗√t2 − t1.

(f) For any t ∈ Q, t < t(x∞) we have

d
X∞

t

W1
(δφ∞,t (x′), ν

∞
x∞;t )≤ C∗√

t(x∞)− t .

(g) For any t1, t2 ∈ Q with t1 ≤ t2 the following is true. If y∗
1 ∈ X∞

t1
is an H -center

of some point y2 ∈ X∞
t2

and y∗
1 = φ∞,t1(y

′
1) for y′

1 ∈ M ′ with the property that
Bg′t1

(y′
1,C

∗√t2 − t1) ⊂ M ′ is relatively compact, then y2 ∈ φ∞,t2(M
′) and if

y2 = φ∞,t2(y
′
2), then dg′t2

(y′
1, y

′
2) ≤ C∗√t2 − t1.

Proof In Assertions (a), (b) observe that due to standard local parabolic estimates, the
functions ṽi ◦φi and ui ◦φi are locally uniformly bounded in any Cm-norm. Moreover
for any t ∈ Q we have (̃vi,t ◦ φi,t )d((φi,t )

∗gi
t ) = d((φi,t )

∗μ̃i,t ) → d((φ∞,t )
∗μ̃∞,t )

weakly (see Claims 9.23.1, 9.23.3) and ui
t ◦ φi,t → u∞t ◦ φ∞,t pointwise (see

Claim 9.23.3 and Theorem 6.13). Therefore, both limits are smooth and since Q

is dense, we have ṽi ◦ φi → ṽ′∞ ∈ C∞(M ′ × Ĩ ) and ui ◦ φi → u′∞ ∈ C∞(M ′ × Ĩ ) in
C∞

loc. By comparing the limits for any t ∈ Q we obtain the last statements of Asser-
tions (a), (b).

Assertion (c) follows from Assertion (a), using Theorem 6.13(a) if μ̃t ∈ P1(X∞
t )

for all t ∈Q. For the general case, we can either argue as in the proof of Theorem 6.15
or establish Assertion (c) first for conjugate heat kernel and then use the reproduction
formula combined with standard parabolic estimates.
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To see Assertion (d), fix some t∗ ∈ Ĩ ∩ Q. Then u∞,t∗ is L-Lipschitz for some
L < ∞. Define u∗ : Zt∗ →R, i ∈N, by

u∗(z) := inf
z∞∈X∞

t∗

(
LdZ

t∗(z,ϕ∞
t∗ (z∞))+ u∞,t∗(z

∞)
)
.

Note that u∗ is L-Lipschitz and u∗ ◦ ϕ∞
t∗ = u∞,t∗ . Let (ui,t )t∈I ′∩I i ,t≥t∗ be the

heat flows on X i with initial condition ui,t∗ = u∗ ◦ ϕi
t∗, i ∈ N. We claim that

(ui,t )t∈I ′∩I i ,t≥t∗ → (u∞,t )t∈I ′,t≥t∗ in the sense of Assertion (b). To see this, con-
sider some points yi ∈ X i with yi → y∞ ∈ X∞, t(y∞) > t∗. Then by Claim 9.23.1
we have (ϕi

t∗)∗νi
yi ;t∗ → (ϕ∞

t∗ )∗ν∞y∞;t∗ in the W1-sense and therefore

ui(yi) =
ˆ

X i
t∗

(u∗ ◦ ϕi
t∗) dνi

yi ;t∗ =
ˆ

Zt∗
u∗ d((ϕi

t∗)∗νi
yi ;t∗)

−→
ˆ

Zt∗
u∗ d((ϕ∞

t∗ )∗ν∞y∞;t∗) =
ˆ

X∞
t∗

u∞,t∗ dν∞y∞;t∗ = u∞(y∞).

So by Assertion (b), the function u∞ ◦ φ∞ restricted to M ′ × (Q ∩ (t∗,∞)) can
be extended to a smooth function solving the heat equation. Since t∗ ∈ Ĩ ∩ Q was
arbitrary, this proves Assertion (d).

Assertions (e), (f) follow by passing Proposition 9.16(a) to the limit for an appro-
priate constant C∗ and after possibly shrinking r∗.

To see Assertion (g) choose y∗
1,i ∈ X i

t1
, y2,i ∈ X i

t2
with ϕi

t1
(y∗

1,i ) → ϕ∞
t1

(y∗
1 ),

ϕi
t2
(y2,i ) → ϕ∞

t2
(y2) in Zt1 and Zt2 , respectively. Then for large i we have

B(y∗
1,i ,

1
2C∗√t2 − t1) ⊂ φ∞,t1(M

′) and

d
X i

t1
W1

(δy∗1,i
, νi

y2,i ;t1) −−−→i→∞ d
X∞

t1
W1

(δy∗1 , ν∞y2;t1) ≤
√

Var(δy∗1 , ν∞
y2;t1)≤

√
H(t2 − t1).

Choose H -centers y∗∗
i ∈X i

t1
of y2. Then for large i we have

di
t1
(y∗

1,i , y
∗∗
i ) ≤ d

X i
t1

W1
(δy∗1,i

, νi
y2,i ;t1)+ d

X i
t1

W1
(νi

y2,i ;t1 , δy∗∗i
)

≤ 2
√

H(t2 − t1)+
√

Var(νi
y2,i ;t1, δy∗∗i

) ≤ 3
√

H(t2 − t1)

and thus B(y∗∗
i , ( 1

2C∗ − 3H 1/2)
√

t2 − t1) ⊂ φ∞,t1(M
′). So for sufficiently large C∗,

we obtain from Proposition 9.16(b) that y2,i ∈ φi,t2(M
′) for large i. Write y∗

1,i =
φi,t1(y

′
1,i ), y2,i = φi,t2(y

′
2,i ) for y′

1,i , y
′
2,i ∈M ′. The second part of Proposition 9.16(b)

implies that for large i and sufficiently large C∗ we have

dgi
t2
(y′

1,i , y
′
2,i )≤ C(H)

√
t2 − t1. (9.11)

So, assuming C∗ to be large, we know that B(y′
2,i ,

√
t2 − t1) ⊂ φi,t2(M

′) for large
i. So both y′

1,i , y
′
2,i ∈ M ′ remain in a compact subset of M ′ and therefore by con-

struction of φ∞ we have y′
1,i → y′

1, y′
2,i → y′

2 with y∗
1 = φ∞,t1(y

′
1), y2 = φ∞,t2(y

′
2).
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Passing (9.11) to the limit implies that dg′t2
(y′

1, y
′
2) ≤ C(H)

√
t2 − t1. This proves As-

sertion (g) for sufficiently large C∗. �

Claim 9.23.5 If r∗ ≤ r∗(α), then we can extend (φ∞,t )t∈Q by a unique family of maps
(φ∞,t : M ′ → X∞

t )t∈I ′\Q to a family (φ∞,t )t∈I ′ such that the following is true, after
possibly adjusting C∗:
(a) For any y ∈M ′ and any t1, t2 ∈ I ′ with t1 ≤ t2 we have

d
X∞

t1
W1

(δφ∞,t1 (y), ν
∞
φ∞,t2 (y);t1)≤ C∗√t2 − t1. (9.12)

(b) For any t1, t2 ∈ I ′ with t1 ≤ t2 the following is true. If y∗
1 ∈ X∞

t1
is an H -center

of some point y2 ∈ X∞
t2

and y∗
1 = φ∞,t1(y

′
1) for y′

1 ∈ M ′ with the property that
Bg′t1

(y′
1,C

∗√t2 − t1) ⊂ M ′ is relatively compact, then y2 ∈ φ∞,t2(M
′) and if

y2 = φ∞,t2(y
′
2), then dg′t2

(y′
1, y

′
2) ≤ C∗√t2 − t1.

(c) x∞ = φ∞,t(x∞)(x
′).

Proof Fix y ∈ M ′ and t ∈ I ′ \ Q for a moment and let us define φ∞
t (y). Note that

t �= sup I ′, so there are times t ′ ∈ Q with t ′ > t such that t ′ − t is arbitrarily small.
For any two times t ′1, t ′2 ∈Q with t < t ′1 < t ′2 we have by Claim 9.23.4(e)

d
X∞

t

W1
(ν∞φ∞,t ′1

(y);t , ν
∞
φ∞,t ′2

(y);t )≤ d
X∞

t ′1
W1

(δφ∞,t ′1
(y), ν

∞
φ∞,t ′2

(y);t ′1)

≤ C∗
√

t ′2 − t ′1 ≤ C∗
√

t ′2 − t .

So since for any t ′ ∈Q with t ′ > t we have Var(ν∞
φ∞,t ′ (y);t ) ≤H(t ′ − t), we obtain

ν∞φ∞,t ′ (y);t
W1−−−−−−→

t ′↘t,t ′∈Q
δy′

for some unique y′ ∈ X∞
t . Set φ∞,t (y) := y′. By repeating this construction for all

y ∈ M and t ∈ I ′ \Q, we can construct a family (φ∞,t : M ′ → X∞
t )t∈I ′\Q such that

for any t ∈ I ′ \Q, t ′ ∈Q with t ′ > t and any y ∈M ′ we have

d
X∞

t

W1
(δφ∞,t (y), ν

∞
φ∞,t ′ (y);t )≤ C∗√t ′ − t .

Combined with Claim 9.23.4(e), this shows (9.12) if t2 ∈ Q. Assume now that t2 ∈
I ′ \ Q. As before, we have t2 �= sup I , so there are times t ′′ ∈ Q with t ′′ > t2 such
that t ′′ − t2 is arbitrarily small. For any such t ′′ we have

d
X∞

t1
W1

(ν∞φ∞,t2 (y);t1 , δφ∞,t1 (y)) ≤ d
X∞

t1
W1

(ν∞φ∞,t2 (y);t1 , ν
∞
φ∞,t ′′ (y);t1)

+ d
X∞

t1
W1

(ν∞φ∞,t ′′ (y);t1 , δφ∞,t1 (y))

≤ d
X∞

t2
W1

(δφ∞,t2 (y), ν
∞
φ∞,t ′′ (y);t2)+C∗√t ′′ − t1
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≤ C∗√t ′′ − t2 +C∗√t ′′ − t1.

Letting t ′′ ↘ t2 implies (9.12).
Next, we prove Assertion (b). Denote by C∗ the maximum of the corresponding

constants from Claim 9.23.4(g) and Assertion (a) of this claim. We will show As-
sertion (b) for C∗ replaced with some constant C∗∗ ≥ C∗, which we will determine
in the course of this proof. Fix t1, t2 ∈ I ′ with t1 ≤ t2 and choose y∗

1 , y′
1, y2 as in

Assertion (b). So Bg′t1
(y′

1,C
∗∗√t2 − t1) ⊂ M ′ is relatively compact.

The case t1, t2 ∈ Q is clear by Claim 9.23.4(g). Suppose next that t1 ∈ Q and
t2 ∈ I ′ \Q. Fix some sequence t∗j ∈ Q with t∗j ↘ t2. By Proposition 3.34(h), we can
choose points y∗

2,j ∈X∞
t∗j

such that

d
X∞

t2
W1

(ν∞y∗2,j ;t2 , δy2)→ 0. (9.13)

Then

d
X∞

t1
W1

(ν∞y∗2,j ;t1 , ν
∞
y2;t1)≤ d

X∞
t2

W1
(ν∞y∗2,j ;t2 , δy2)→ 0.

Choose H -centers y∗
1,j ∈X∞

t1
of y∗

2,j . Then for large j we have

d∞
t1

(y∗
1 , y∗

1,j ) ≤ d
X∞

t1
W1

(δy∗1 , ν∞y2;t1)+ d
X∞

t1
W1

(ν∞y2;t1 , ν
∞
y∗2,j ;t1)+ d

X∞
t1

W1
(ν∞y∗2,j ;t1, δy∗1,j

)

≤ 2
√

Var(δy∗1 , ν∞
y2;t1)+

√
Var(ν∞

y∗2,j ;t1 , δy∗1,j
) ≤ 4

√
H(t2 − t1).

So if C∗∗ ≥ C∗∗(C∗,H) then by Claim 9.23.4(g), for large j we have y∗
2,j =

φ∞,t∗j (y′
2,j ) for some y′

2,j ∈M ′ with dg′
t∗
j

(y′
1, y

′
2,j ) ≤ C∗√t∗j − t1. If C∗∗ ≥ C∗∗(C∗),

then this implies that the sequence y′
2,j remains in a compact subset of M ′. So after

passing to a subsequence, we may assume that y′
2,j → y′

2 ∈ M ′ and dg′t2
(y′

1, y
′
2) ≤

C∗√t2 − t1. Then using (9.13) and Assertion (a) we find that

d∞
t2

(y2, φ∞,t2(y
′
2)) ≤ d

X∞
t2

W1
(δy2 , ν

∞
φ∞,t∗

j
(y′2,j );t2)+ d

X∞
t2

W1
(ν∞

φ∞,t∗
j
(y′2,j );t2, ν

∞
φ∞,t∗

j
(y′2);t2)

+ d
X∞

t2
W1

(ν∞
φ∞,t∗

j
(y′2);t2 , δφ∞,t2 (y′2))

≤ d
X∞

t2
W1

(δy2 , ν
∞
y∗2,j ;t2)+ d∞

t∗j
(φ∞,t∗j (y′

2,j ), φ∞,t∗j (y′
2))+C∗√t∗j − t2

= d
X∞

t2
W1

(δy2 , ν
∞
y∗2,j ;t2)+ dg′

t∗
j

(y′
2,j , y

′
2)+C∗√t∗j − t2 −→ 0.

So y2 = φ∞,t2(y
′
2), which is what we wanted to show.

Lastly, consider the case t1 ∈ I ′ \ Q. After adjusting C∗, we may assume that
Assertion (b) holds for C∗ if t1 ∈Q. Suppose again that Bg′t1

(y′
1,C

∗∗√t2 − t1)⊂ M ′
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is relatively compact for some C∗∗ ≥ C∗, which we will determine in the course
of the proof. Note that since I ′ is left-open, we can choose times t ′ ∈ Q, t ′ < t1
with t1 − t ′ arbitrarily small. If C∗∗ ≥ C∗ + 20

√
H , then for t ′ close to t1 the ball

Bg′
t ′
(y′

1, (C
∗ + 10

√
H)

√
t2 − t ′) ⊂ M ′ is relatively compact. So for t ′ close to t1 we

have, using Assertion (a),

d
X∞

t ′
W1

(δφ∞,t ′ (y′1), ν
∞
y2;t ′) ≤ d

X∞
t ′

W1
(δφ∞,t ′ (y′1), ν

∞
φ∞,t1 (y′1);t ′)+ d

X∞
t ′

W1
(ν∞

φ∞,t1 (y′1);t ′ , ν
∞
y2;t ′)

≤ C∗√t1 − t ′ + d
X∞

t1
W1

(δy∗1 , ν∞y2;t ′)

≤ C∗√t1 − t ′ +
√

Var(δy∗1 , ν∞
y2;t ′)

≤ C∗√t1 − t ′ +√
H(t2 − t1)≤ 2

√
H(t2 − t1).

So for any H -center y∗∗
1 ∈X∞

t ′ of y2 we have for t ′ close to t1

d∞
t ′ (φ∞,t ′(y

′
1), y

∗∗
1 ) ≤ d

X∞
t ′

W1
(δφ∞,t ′ (y′1), ν

∞
y2;t ′)+ d

X∞
t ′

W1
(ν∞y2;t ′ , δy∗∗1

)

≤ 2
√

H(t2 − t1)+
√

Var(ν∞
y2;t ′ , δy∗∗1

) ≤ 2
√

H(t2 − t1)+
√

H(t2 − t ′) ≤ 10
√

H(t2 − t1).

So if t ′ is sufficiently close to t∗1 , then y∗∗
1 = φ∞,t ′(y′′) for some y′′ ∈ M ′ with

Bg′
t ′
(y′′,C∗√t2 − t ′) ⊂ Bg′

t ′
(y′

1, (C
∗ + 9

√
H)

√
t2 − t ′) ⊂ M ′,

which shows that Bg′
t ′
(y′′,C∗√t2 − t ′) ⊂ M ′ is relatively compact and therefore y2 ∈

φ∞,t2(M
′). Moreover, if y2 = φ∞,t2(y

′
2), then for t ′ close to t1

dg′t2
(y′

1, y
′
2) ≤ dg′t2

(y′
1, y

′′)+ dg′t2
(y′′, y′

2)≤ Cdg′
t ′
(y′

1, y
′′)+C∗√t2 − t ′

= Cd∞
t ′ (φ∞,t ′(y

′
1), y

∗∗
1 )+C∗√t2 − t ′ ≤ (C

√
H + 2C∗)

√
t2 − t1.

This proves Assertion (b) for C∗∗ ≥ C∗∗(C∗).
For Assertion (c), fix some t ∈ Q, t < t(x∞) and let z ∈ X∞

t be an H -center of
x∞. Using Claim 9.23.4(f), we have

d∞
t (φ∞,t (x

′), z) ≤ d
X∞

t

W1
(δφ∞,t (x′), ν

∞
x∞;t )+ d

X∞
t

W1
(ν∞x∞;t , δz)

≤ C∗√
t(x∞)− t +

√
Var(ν∞

x∞;t , δz) ≤ (C∗ +H 1/2)
√
t(x∞)− t .

So for t sufficiently close to t(x∞) we have z = φ∞,t (z
′) for some z′ ∈ M ′ close to

x′ and thus by Assertion (b) we have x∞ = φ∞,t(x∞)(x
′′) for some x′′ ∈ M ′ with

dg′
t(x∞)

(z′, x′′) ≤ C∗√t(x∞)− t . It follows that
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dg′
t(x∞)

(x′, x′′) ≤ dg′
t(x∞)

(x′, z′)+ dg′
t(x∞)

(z′, x′′)≤ Cdg′t (x
′, z′)+C∗√

t(x∞)− t

= Cd∞
t (φ∞,t (x

′), z)+C∗√
t(x∞)− t ≤ C(C∗ +H 1/2)

√
t(x∞)− t .

Letting t ↗ t(x∞) implies x′ = x′′. �

Claim 9.23.6 For all t ∈ I ′ the map φ∞,t : (M ′, dg′t ) → (X∞
t , d∞

t ) is a local isometric
embedding. Moreover, for any two y′

1, y
′
2 ∈ M ′ with the property that any curve be-

tween both points of time-t-length ≤ d∞
t (φ∞,t (y

′
1),φ∞,t (y

′
2)) remains in a compact

subset of M ′ we have d∞
t (φ∞,t (y

′
1),φ∞,t (y

′
2)) = dg′t (y

′
1, y

′
2).

Proof If t ∈ Q, then there is nothing to prove; note that in this case X∞ is intrinsic at
time t . So assume that t ∈ I ′ \ Q. It suffices to show the last statement of the claim.
Then there are times t ′ ∈ Q with t ′ > t such that t ′ − t is arbitrarily small. So, using
Claim 9.23.5(a),

d∞
t (φ∞,t (y

′
1),φ∞,t (y

′
2))

≤ lim inf
t ′↘t,t ′∈Q

(
d
X∞

t

W1
(δφ∞,t (y

′
1)

, ν∞
φ∞,t ′ (y′1);t )+ d

X∞
t

W1
(ν∞

φ∞,t ′ (y′1);t , ν
∞
φ∞,t ′ (y′2);t )

+ d
X∞

t

W1
(ν∞

φ∞,t ′ (y′2);t , δφ∞,t (y
′
2)

)
)

≤ lim inf
t ′↘t,t ′∈Q

d∞
t ′ (φ∞,t ′(y

′
1),φ∞,t ′(y

′
2)) ≤ lim inf

t ′↘t,t ′∈Q
dg′

t ′
(y′

1, y
′
2) = dg′t (y

′
1, y

′
2).

Similarly, we obtain

d∞
t (φ∞,t (y

′
1),φ∞,t (y

′
2)) ≥ lim sup

t ′↗t,t ′∈Q

d
X∞

t ′
W1

(ν∞
φ∞,t (y

′
1);t ′ , ν

∞
φ∞,t (y

′
2);t ′)

≥ lim sup
t ′↗t,t ′∈Q

(
d∞
t ′ (φ∞,t ′(y

′
1),φ∞,t ′(y

′
2))− d

X∞
t ′

W1
(δφ∞,t ′ (y′1), ν

∞
φ∞,t (y

′
1);t ′)

−d
X∞

t ′
W1

(δφ∞,t ′ (y′2), ν
∞
φ∞,t (y

′
2);t ′)

)

= lim sup
t ′↗t,t ′∈Q

d∞
t ′ (φ∞,t ′(y

′
1),φ∞,t ′(y

′
2)) = lim sup

t ′↗t,t ′∈Q

dg′
t ′
(y′

1, y
′
2) = dg′t (y

′
1, y

′
2).

The second last equality holds due to an openness argument as in the proof of Propo-
sition 9.17. This finishes the proof of the claim. �

Claim 9.23.7 (a) The family (φ∞,t )t∈I ′ , when viewed as a map φ∞ : M ′ × I ′ →
X∞, is a homeomorphism onto its image and φ∞(M ′ × I ′) is open.

(b) For all for all t ∈ I ′ the map φ∞,t : (M ′, dg′t ) → (X∞
t , d∞

t ) is a local isometry.

Proof Fix some (y′, t) ∈ M ′ × I ′. We first show that for small r ′ > 0 we have
P ∗(φ∞(y′, t); r ′) ⊂ φ∞(M ′ × I ′). To see this, assume without loss of generality that
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X∞ is intrinsic at time t − r ′2, consider some point y2 ∈ P ∗(φ∞(y′, t); r ′) and let
y∗

1 ∈X∞
t−r ′2 be an H -center of y2. Then, using Claim 9.23.5(a),

d∞
t−r ′2(φ∞(y′, t − r ′2), y∗

1 )

≤ d
X∞

t−r′2
W1

(δφ∞(y′,t−r ′2), ν
∞
φ∞(y′,t);t−r ′2)+ d

X∞
t−r′2

W1
(ν∞

φ∞(y′,t);t−r ′2, ν
∞
y2;t−r ′2)

+d
X∞

t−r′2
W1

(ν∞
y2;t−r ′2, δy∗1 )

≤ C∗r ′ + r ′ +
√

Var(ν∞
y2;t−r ′2, δy∗1 ) ≤ C∗r ′ + r ′ + (2H)1/2r ′.

So for small enough r ′ we have y∗
1 = φ∞(y′

1, t − r ′2), where y′
1 is close enough to y′

such that we can use Claim 9.23.5(b) to conclude that y2 ∈ φ∞(M ′ × I ′). Moreover,
if y2 = φ∞(y′

2, t
′), then dg′

t ′
(y′, y′

2) ≤
√

2C∗r ′. This shows that φ∞ is open.

On the other hand, set Pr ′ := φ−1∞ (P ∗(φ∞(y′, t); r ′)). Let (y′
1, t1) ∈ M ′ × I ′ and

set t ′′ := min{t, t1}. If r ′ > 0 is fixed and if (y′
1, t1) is close enough to (y′, t), then we

have, using Claim 9.23.5(a),

d
X∞

t−r′2
W1

(ν∞
φ∞(y′,t);t−r ′2, ν

∞
φ∞(y′1,t1);t−r ′2) ≤ d

X∞
t ′′

W1
(ν∞φ∞(y′,t);t ′′, ν

∞
φ∞(y′1,t1);t ′′)

≤ d
X∞

t ′′
W1

(ν∞φ∞(y′,t);t ′′ , δφ∞(y′,t ′′))+ d∞
t ′′ (φ∞(y′, t ′′),φ∞(y′

1, t
′′))

+d
X∞

t ′′
W1

(δφ∞(y′1,t ′′), ν
∞
y′1;t ′′)

≤ C∗√|t − t1| + dg′
t ′′

(y′, y′
1) < r ′,

and thus (y′
1, t1) ∈ Pr ′ . This proves Assertion (a).

Assertion (b) follows from Assertion (a) and Claim 9.23.6, because the inclusion
map X∞

t →X∞ is continuous (see Proposition 3.34(b)). �

Claim 9.23.8 (a) For any conjugate heat flow (μ̃t )t∈Ĩ on X∞ over a right-open
subinterval Ĩ ⊂ I ′, there is a smooth function ṽ′ ∈ C∞(M ′ × Ĩ ) with �∗ṽ′ = 0
such that d((φ∞,t )

∗μ̃t ) = ṽ′t dg′
t for all t ∈ Ĩ .

(b) For any uniformly bounded heat flow (ut )t∈Ĩ on X∞ over a left-open subinterval
Ĩ ⊂ I ′, the function u′ := u ◦ φ∞, which is defined on M ′ × Ĩ , is smooth and
satisfies the heat equation �u′ = 0.

Proof Assertion (b) follows from Claim 9.23.4(d), Claim 9.23.7(a) and the fact that
u is continuous by Proposition 3.34(f).

Suppose now we are in the setting of Assertion (a) and let ṽ′ be the function from
Claim 9.23.4(c). So d((φ∞,t )

∗μ̃t ) = ṽ′t dg′
t for all t ∈ Q∩ Ĩ . We claim that the same

holds for all t ∈ Ĩ . For this purpose fix t0 ∈ Ĩ \Q and let u′ ∈ C∞
c (M ′), u′ ≥ 0, be an

arbitrary smooth function of compact support with the property that u= u′ ◦φ∞,t0 for
some 1-Lipschitz function u : X∞

t0
→ R with u ≡ 0 on X∞

t0
\ φ∞,t0(M

′). It suffices
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to show that
ˆ

M ′
u′ ṽ′t0 dg′

t0
=
ˆ

X∞
t0

udμ̃t0 . (9.14)

To see this, consider the heat flow (̃ut )t∈I ′∩[t0,∞) with initial condition u. We first
claim that

sup
X∞

t \φ∞,t (M ′)
ũt −−→

t↘t0
0. (9.15)

Suppose not. Then there is a sequence xj ∈X∞
tj

\ φ∞,tj (M
′) with tj ↘ t0 such that

ũtj (xj ) =
ˆ

X∞
t0

udν∞xj ;t0 ≥ c > 0.

Let zj ∈X∞
t0

be H -centers of xj . Since u is bounded, we must have d∞
t0

(zj , suppu)≤
C(tj − t0)

1/2 for some C < ∞ by Lemma 3.26. Since suppu is compact, we may pass
to a subsequence such that zj → z∞ ∈ suppu within X∞

t0
. So for any r ′ > 0 we have

d
X∞

t0−r′2
W1

(ν∞
z∞;t0−r ′2, ν

∞
xj ;t0−r ′2) ≤ d

X∞
t0

W1
(δz∞ , ν∞xj ;t0) ≤ d∞

t0
(z∞, zj )+ d

X∞
t0

W1
(δzj

, ν∞xj ;t0)

≤ d∞
t0

(z∞, zj )+
√

Var(δzj
, ν∞

xj ;t0) ≤ d∞
t0

(z∞, zj )+
√

H(tj − t0) → 0,

which implies that xj ∈ P ∗(z∞; r ′) for large j . This, however contradicts xj /∈
φ∞,tj (M

′) via Claim 9.23.7(a) for large j . So (9.15) holds.
We can now verify (9.14) as follows:

ˆ

X∞
t0

udμ̃t0 = lim
t↘t0,t∈Q

ˆ

X∞
t

ũt dμ̃t = lim
t↘t0,t∈Q

ˆ

φ∞,t (M ′)
ũt dμ̃t

= lim
t↘t0,t∈Q

ˆ

M ′
(̃u ◦ φ∞,t ) ṽ′t dg′

t =
ˆ

M ′
u′ ṽ′t0 dg′

t0
.

This finishes the proof. �

It follows that x∞ ∈U := φ∞(M ′ × I ′) ⊂R∞. Define ψi := φi ◦ φ−1∞ : U →X i .
Let us now verify Assertions (a), (c), (e), (f) of Theorem 9.21. The convergence of
the metric in Assertion (a) is true by construction and the time vector fields converge
trivially since the maps ψi are ∂t-preserving. The last part of Assertion (a) and Asser-
tions (e), (f) of Theorem 9.21 follow from Claims 9.23.4(a), 9.23.8(a) and the local
derivative estimates on the functions v′i after shrinking r∗ slightly.

Next, we verify Assertion (c). So fix some sequence x̃i ∈X i , and a point x̃∞ ∈U .
Suppose first that x̃i → x̃∞ within C. Fix some t ∈Q, t < t(̃x∞) close to t(̃x∞). Then
(ϕi

t )∗νi
x̃i ;t → (ϕ∞

t )∗ν∞x̃∞;t in W1. Choose H -centers x̃∗
i ∈ X i

t of x̃i for large i ≤∞.
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For t sufficiently close to t(̃x∞) we have x̃∗∞ ∈ U . So by the construction of φ∞ we
have

lim sup
i→∞

di
t (̃x

∗
i ,ψi (̃x

∗∞)) ≤ lim sup
i→∞

(
d
X i

t

W1
(δx̃∗i , ν

i
x̃i ;t )+ d

Zt

W1
((ϕi

t )∗νi
x̃i ;t , (ϕ

∞
t )∗ν∞x̃∞;t )

+ d
X∞

t

W1
(ν∞x̃∞;t , δx̃∗∞)+ dZ

t (ϕ∞
t (̃x∗∞), ϕi

t (ψi (̃x
∗∞)))

)

≤ lim sup
i→∞

(√
Var(δx̃∗i , ν

i
x̃i ;t )+

√
Var(ν∞

x̃∞;t , δx̃∗∞)
)

≤ 2
√

H(t(̃x∞)− t). (9.16)

So by (9.16) and Assertion (a), which we have already established, and Proposi-
tion 9.16(b) we have x̃i ∈Ri for large i and, di

t(̃xi )
(̃xi , x̃

∗
i (t(̃xi))) ≤ C

√
t(̃xi)− t . It

follows that x̃i ∈ ψi(U) for large i and by letting t ↗ t(̃x∞) we obtain ψ−1
i (̃xi) →

x̃∞.
Vice versa, assume that we have ψ−1

i (̃xi) → x̃∞ and fix some times t1, t2 ∈ Q,
t1 ≤ t2 < t(̃x∞). For t2 sufficiently close to t(̃x∞) the points x̃∗

i := x̃i (t2) exist
for large i ≤ ∞ and x̃∗∞ ∈ U . Since the maps ψi are ∂t-preserving, we also have
ψ−1

i (̃x∗
i ) → x̃∗∞. So by Claim 9.23.3 and Theorem 6.13 we have (νi

x̃∗i ;t )t∈I i ,t<t2
→

(ν∞
x̃∗∞;t )t∈I∞,t<t2 within C on compact time-intervals. So, using Proposition 9.16(a),

lim sup
i→∞

d
Zt1
W1

((ϕi
t1
)∗νi

x̃i ;t1 , (ϕ
∞
t1

)∗ν∞x̃∞;t1)

≤ lim sup
i→∞

(
d
X i

t1
W1

(νi
x̃i ;t1 , ν

i
x̃∗i ;t1)+ d

Zt1
W1

((ϕi
t1
)∗νi

x̃∗i ;t1), (ϕ
∞
t1

)∗ν∞x̃∗∞;t1)

+d
X∞

t1
W1

(ν∞x̃∗∞;t1, ν
∞
x̃∞;t1)

)

≤ lim sup
i→∞

(
d
X i

t2
W1

(νi
x̃i ;t2 , δx∗i )+ d

X∞
t2

W1
(δx̃∗∞ , νi

x̃∞;t2)
) ≤ 2C

√
t(̃x∞)− t2.

Letting t2 ↗ t(̃x∞) implies that for any t1 ∈ Q, t1 < t(̃x∞) we have

lim sup
i→∞

d
Zt1
W1

((ϕi
t1
)∗νi

x̃i ;t1 , (ϕ
∞
t1

)∗ν∞x̃∞;t1) = 0.

This implies that (νi
x̃i ;t ) → (ν∞

x̃∞;t ) within C on compact time-intervals by Theo-
rem 6.13, as desired.

Lastly, observe that due to Assertions (a), (c) and Claim 9.23.2, we even have
U ⊂R∗. �

Proof of Theorem 9.21 For any x ∈ R∗ pick a neighborhood x ∈ Ux ⊂ R∞ and a
sequence of diffeomorphisms ψx

i : Ux → V x
i ⊂Ri according to Lemma 9.23.

Claim 9.21.1 For any two points x1, x2 ∈R∗ the sequence of maps

(ψ
x2
i )−1 ◦ψ

x1
i : (ψx1

i )−1(V
x1
i ∩ V

x2
i ) −→ (ψ

x2
i )−1(V

x1
i ∩ V

x2
i )

converges to the identity map on Ux1 ∩Ux2 in C∞
loc.
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Proof Let x ∈ Ux1 ∩ Ux2 . Then by Assertion (c), which is ensured by Lemma 9.23,
we have ψ

x1
i (x) → x within C and therefore, again by Assertion (c), ψ

x1
i (x) ∈ V

x2
i

for large i and (ψ
x2
i )−1(ψ

x1
i (x)) → x. This shows pointwise convergence of the maps

in question. On the other hand, due to Assertion (a), which is ensured by Lemma 9.23,
the maps (ψ

x2
i )−1◦ψ

x1
i are locally uniformly bounded in every Cm-norm. This shows

local smooth convergence. �

After possibly shrinking Ux,V x
i , we can find a sequence of points xj ∈R∗ such

that if we set U ′
j := Uxj , V ′

j,i := V
xj

i , ψ ′
j,i := ψ

xj ,

i , then the collection of subsets
{U ′

j }∞j=1 forms a locally finite cover of R∗ consisting of relatively compact subsets.
Using a center of mass construction, we can find an open neighborhood {(x, x) ∈

(R∗)2} ⊂ �2 ⊂ (R∗)2 and a smooth map

�2 : [0,1]2 ×�2 −→R∗

with the following properties for all s1, s2 ∈ [0,1], x, x1, x2 ∈R∗:
(1) �2(1,0, x1, x2) = x1, �2(0,1, x1, x2)= x2.
(2) �2(s1, s2, x, x) = x.
(3) If t = t(x1) = t(x2), then t(�2(s1, s2, x1, x2)) = t .

Based on �2,�2, we can inductively construct open neighborhoods

{(x, . . . , x) ∈ (R∗)N } ⊂ �N ⊂ (R∗)N

and smooth maps

�N : [0,1]N ×�N −→R∗

such that for all (x1, . . . , xN) ∈ �N , s1, . . . , sN ∈ [0,1] we have (x1, . . . , xN−1) ∈
�N−1 and (�N−1(s1, . . . , sN−1, x1, . . . , xN−1), xN) ∈�2 by setting

�N(s1, . . . , sN , x1, . . . , xN)

:= �2
(
1 − sN , sN ,�N−1(s1, . . . , sN−1, x1, . . . , xN−1), xN

)
.

Then �N has the following properties for s1, . . . , sN ∈ [0,1], x, x1, . . . , xN ∈R∗:
(1) If for some fixed j ∈ {1, . . . ,N} we have sj ′ = δjj ′ for all j ′ = 1, . . . ,N , then

�N(s1, . . . , sN , x1, . . . , xN) = xj .
(2) �N(s1, . . . , sN , x, . . . , x) = x.
(3) If t = t(x1) = · · · = t(xN), then t(�N(s1, . . . , sN , x1, . . . , xN)) = t .
(4) If sN ′+1 = · · · = sN = 0 for some 1 ≤N ′ ≤ N , then �N(s1, . . . , sN , x1, . . . , xN)

= �N ′(s1, . . . , sN ′ , x1, . . . , xN ′).
Choose a partition of unity {ηj ∈ C∞

c (U ′
j )}∞j=1 subordinate to the open cover

{U ′
j }∞j=1 over R∗ and set χ ′

j,i := (ψ ′
j,i )

−1 : V ′
j,i →U ′

j . For any N we define

χN,i :WN,i −→R∞,

y �−→ �N

(
η1(χ

′
1,i (y)), . . . , ηN(χ ′

N,i(y)),χ ′
1,i (y), . . . , χ ′

N,i(y)
)
,

where WN,i ⊂Ri is the maximal subset on which χN,i is defined.
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Claim 9.21.2 For any 1 ≤ j ≤N the sequence of maps

χN,i ◦ψ ′
j,i : (ψ ′

j,i )
−1(WN,i)∩U ′

j −→ χN,i(WN,i ∩ V ′
j,i )

converges to the identity map on U ′
j in C∞

loc.

Proof This is a direct consequence of Claim 9.21.1 and the definition of χN,i . �

Set

U ′′
N :=

N⋃

j=1

U ′
j ⊂R∗, V ′′

N,i :=
N⋃

j=1

ψ ′
j,i({ηj > 0}).

Claim 9.21.3 There is a sequence 1 ≤ i∗1 < i∗2 < · · · such that the following is true:
(a) If i ≥ i∗N , then V ′′

N,i ⊂ χ−1
N,i(U

′′
N) and the map

χN,i |V ′′
N,i

: V ′′
N,i −→U ′′

N

is a diffeomorphism onto its image.
(b) For any j ≥ 1 the following is true for some large N∗

j ≥ j . If N∗
j ≤ N1 ≤ N2

and i ≥ i∗j , then

χN1,i ◦ψ ′
j,i |{ηj >0} = χN2,i ◦ψ ′

j,i |{ηj >0}.

Proof For Assertion (a) fix N . If i is large enough, then for all j = 1, . . . ,N the
map χN,i ◦ ψ ′

j,i restricted to {ηj > 0} ⊂ U ′
j is a diffeomorphism onto its image and

(χN,i ◦ψ ′
j,i )({ηj > 0})⊂ U ′

j . So χN,i |V ′′
N,i

is a local diffeomorphism and

χN,i(V
′′
N,i) =

N⋃

j=1

(χN,i ◦ψ ′
j,i)({ηj > 0})⊂ U ′′

N.

To see that χN,i is injective for large i, suppose that χN,i(x1,i ) = χN,i(x2,i ) for
x1,i , x2,i ∈ V ′′

N,i . So there are x′
1,i ∈ {ηj1,i

> 0}, x′
2,i ∈ {ηj2,i

> 0}, for j1,i , j2,i ∈
{1, . . . ,N}, such that x1,i = ψ ′

j1,i ,i
(x′

1,i ), x2,i = ψ ′
j2,i ,i

(x′
2,i ). So

(χN,i ◦ψ ′
j1,i ,i

)(x′
1,i ) = (χN,i ◦ψ ′

j2,i ,i
)(x′

2,i ).

Using Claim 9.21.2, it follows that for large i the points x′
1,i , x

′
2,i are close enough

such that we can use Claim 9.21.1 to find a point x′′
2,i ∈U ′

j1,i
near suppηj1,i

such that

x2,i = ψ ′
j2,i ,i

(x′
2,i ) = ψ ′

j1,i ,i
(x′′

2,i ). Therefore,

(χN,i ◦ψ ′
j1,i ,i

)(x′
1,i ) = (χN,i ◦ψ ′

j2,i ,i
)(x′

2,i ) = (χN,i ◦ψ ′
j1,i ,i

)(x′′
2,i ),

which implies x′
1,i = x′′

2,i by Claim 9.21.2 for large i. Thus x1,i = ψ ′
j1,i ,i

(x′
1,i ) =

ψ ′
j1,i ,i

(x′′
2,i ) = x2,i , proving Assertion (a).
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To see Assertion (b), fix j and choose N∗
j ≥ j large enough such that U ′

j is disjoint
from U ′

j ′ for j ′ ≥ N∗
j . This can be achieved since we assumed that the subset U ′

j are
relatively compact and form a locally finite cover of R∗. Let N∗

j ≤ N1 ≤ N2. If i is
sufficiently large, then by Claim 9.21.1 we have χ ′

j ′,i (ψ
′
j,i ({ηj > 0}))∩ suppηj ′ = ∅

for j ′ ≥N∗
j . Then χN1,j |ψ ′

j,i ({ηj >0}) = χN2,j |ψ ′
j,i ({ηj >0}) by Property (4) of �N2 . �

Choose N1 ≤ N2 ≤ · · · →∞ such that i ≥ max{i∗1 , . . . , i∗Ni
} if Ni > 1. Set Ui =

Vi := ∅ if Ni = 1 and otherwise set

Vi := V ′′
Ni,i

, χi := χNi,i |Vi
: Vi →Ui := χi(Vi).

Note that Claim 9.21.3 implies that χi is a diffeomorphism and that for any j ≥ 1 and
N ≥ N∗

j the following is true for large i

χi ◦ψ ′
j,i |{ηj >0} = χN,i ◦ψ ′

j,i |{ηj >0}. (9.17)

Set ψi := χ−1
i : Ui → Vi . Then U1 ⊂ U2 ⊂ · · · ⊂R∗ and R∗ ⊂ ⋃∞

i=1 Ui ⊂R∞.

Claim 9.21.4 For any j ≥ 1 we have {ηj > 0} ⊂ Ui for large i and the sequence of
maps

χi ◦ψ ′
j,i |{ηj >0} : {ηj > 0} −→ (χi ◦ψ ′

j,i)({ηj > 0})
converge to the identity map on {ηj > 0} in C∞

loc.

Proof This is a direct consequence of Claim 9.21.2 and (9.17). �

It follows that R∗ ⊂ ⋃∞
i=1 Ui ⊂ R∞ and after possibly restricting the maps ψi

to slightly smaller subsets, we can achieve that U1 ⊂ U2 ⊂ . . . without changing the
statement Claim 9.21.4.

It now follows, using Lemma 9.23 and Claim 9.21.4, that we have local smooth
convergence

ψ∗
i gi → g∞, ψ∗

i ∂i
t → ∂∞t , vi ◦ψi → v∞. (9.18)

By the same reason, Assertions (f), (e) hold. After possibly shrinking Ui,Vi , the local
convergences (9.18) can be turned into global convergences, as stated in Assertion (a).

Next, we show Assertion (c). Consider a sequence xi ∈X i and a point x∞ ∈X∞.
Choose j ≥ 1 such that x∞ ∈ {ηj > 0}. If xi → x∞ within C, then by Lemma 9.23
we have xi ∈ V ′

j,i for large i and ψ ′−1
j,i (xi) → x∞. So by Claim 9.21.4, for large i we

have xi ∈ Vi and

ψ−1
i (xi) = (χi ◦ψ ′

j,i)(ψ
′−1
j,i (xi)) → x∞.

On the other hand, if ψ−1
i (xi) → x∞, then for large i

(ψ ′−1
j,i )(xi) = (χi ◦ψ ′

j,i)
−1(ψ−1

i (xi)) → x∞,
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which implies that xi → x∞ within C by Lemma 9.23.
To see Assertion (b), note that Assertion (c) guarantees pointwise convergence

of the pullbacks of Ki to K∞. Together with Assertion (a) and local derivative esti-
mates, this convergence can be upgraded to local smooth convergence. After possibly
shrinking, Ui,Vi , we obtain the convergence statement in Assertion (b).

Lastly, we will deduce Assertion (d) from the other assertions. Suppose that af-
ter passing to a subsequence, the convergence (9.7) is time-wise t ∈ I∞. Since the
maps ϕi

t , ϕ
∞
t are isometric embeddings and the ψi are locally uniformly Lipschitz, it

suffices to show that for any x ∈R∗
t we have

dZ
t (ϕi

t (ψi(x)), ϕ∞
t (x)) −→ 0. (9.19)

To see this, fix x ∈ R∗
t and choose t∗ > t such that x∗ := x(t∗) ∈ R∗ exists. Then

x∗
i := ψi(x

∗) → x∗ within C, by Assertion (c). So by Theorem 6.15(b)

(ϕi
t )∗νi

x∗i ;t
W1−−−−−→

i→∞ (ϕ∞
t )∗ν∞x∗;t .

Let x′
i := x∗

i (t) ∈ X i
t . By Assertion (a) we have di

t (x
′
i ,ψi(x)) → 0. Therefore, using

Proposition 9.16(a) for t∗ close to t

lim sup
i→∞

dZ
t (ϕi

t (ψi(x)), ϕ∞
t (x)) = lim sup

i→∞
dZ
t (ϕi

t (x
′
i ), ϕ

∞
t (x))

≤ lim sup
i→∞

(
d
X i

t

W1
(δx′i , ν

i
x∗i ;t )+ d

Zt

W1
((ϕi

t )∗νi
x∗i ;t , (ϕ

∞
t )∗νi

x∗;t )+ d
X∞

t

W1
(νi

x∗;t , δx)
)

≤ 2C
√

t∗ − t .

Letting t∗ ↘ t implies (9.19). �

9.5 Convergence of parabolic neighborhoods with bounded curvature

Suppose that we are still in the same setting as in Sect. 9.4. In the following, we
consider a sequence of points xi ∈ X i that converges to a point x∞ ∈ X∞ within
C. We will assume that parabolic neighborhoods Pi of uniform size around xi are
unscathed and that |Rm| ≤ C on Pi for some uniform C < ∞. We will see that under
these conditions we obtain the existence of an unscathed parabolic neighborhood P∞
around x∞ on which the same curvature bound holds. The radius and the backward
time of this parabolic neighborhood is the same as that of the parabolic neighborhoods
Pi , however, the forward time may be smaller. In this case, the density functions
of any conjugate heat flow — in particular those of the conjugate heat kernels —
converge to zero near the forward end of P∞.

In order to state the following theorem we define for any point x ∈M in a Ricci
flow spacetime M over I and any D,T −, T + > 0 the open parabolic neighborhood
as follows:

P ◦(x;D,−T −, T +) := P(x;D,−T −, T +)∩M(t(x)−T −,t(x)+T +).
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We say that P ◦(x;D,−T −, T +) is unscathed if for any D′ ∈ (0,D) the ball
B(x,D′) is relatively compact and any point y ∈ B(x,D) survives until any time
in the time-interval (t(x) − T −, t(x) + T +) ∩ I . This is equivalent to the fact that
P(x;D,−T ′,−,−T ′,+) is unscathed for any T ′,− ∈ (0, T −), T ′,+ ∈ (0, T +).

Theorem 9.24 Consider the setting of Sect. 9.4 and consider points xi ∈ X i

with xi → x∞ ∈ X∞ within C. Suppose that there are numbers D,T −, T + >

0, C < ∞ such that for large i, xi ∈ Ri , the open parabolic neighborhood
Pi := P ◦(xi;D,−T −, T +) ⊂ Ri is unscathed, that |Rm| ≤ C < ∞ on Pi and
|B(xi,D)| ≥ c > 0. Then x∞ ∈ R∗ ⊂ R∞ and there is a 0 < T ∗ ≤ T + such that
the open parabolic neighborhood P∞ := P ◦(x∞;D,−T −, T ∗) ⊂R∗ ⊂R∞ is un-
scathed and |Rm| ≤ C on P∞. Moreover, if T ∗ < T + and t(x∞) + T ∗ < sup I∞,
then the following is true:
(a) No point in P∞ survives until or past time t(x∞)+ T ∗.
(b) For any x̃ ∈X∞

>T ∗ , any conjugate heat flow (μ̃t = ṽt dg∞
t )t∈I∞∩(−∞,t∗) on X∞,

where t∗ > T ∗, and any D′ ∈ (0,D) we have

lim
t↗t(x∞)+T ∗ sup

(B(x∞,D′))(t)
K(̃x, ·) = lim

t↗t(x∞)+T ∗ sup
(B(x∞,D′))(t)

v∞

= lim
t↗t(x∞)+T ∗ sup

(B(x∞,D′))(t)
ṽ = 0.

See Definition 9.3 for the notation (B(x∞,D′))(t).

Example 9.25 Consider a sequence of singular Ricci flows Mi on S2 × S1 that
develop a non-degenerate neckpinch at some uniform time T (see also Exam-
ple 4.13). Suppose that the amount by which distances expand within Mi is uni-
formly bounded. Assume moreover that the time-0-slices Mi

0 contain open sub-
sets Ui ⊂ Mi

0 such that the metric on Ui is isometric to a standard cylinder
S2(1) × (0,Li) of length Li → ∞ and such that the metric on the complements
Mi

0 \ Ui has uniformly bounded diameter and the shape of a neckpinch. Denote
by X i the metric flows associated to M′,i := Mi and fix points xi ∈ X i

T ′ for
some uniform T ′ > T (see Theorem 3.37). If the points xi are chosen sufficiently
close to the neckpinch, then the metric flow pairs (X i , (νxi ;t )) subsequentially F-
converge to a metric flow pair (X∞, (νx∞;t )), where X∞ corresponds to one branch
M′,∞ ⊂M∞ of a singular flow starting from a metric on S2 ×R that is isometric to
S2(1)× ((−∞,−1)∪ (1,∞)) on the complement of a compact subset and develops
a non-degenerate neckpinch at time T . In this example we can find a sequence of
points yi ∈Ri ⊂X i that converges to some point y∞ ∈R∞ ⊂X∞ with t(y∞) < T

close to T , such that we have a uniform curvature bound on the two-sided, unscathed
parabolic balls P(yi; r) for some r > 0 with t(y∞) + r2 > T , but P(y∞; r) is not
unscathed, because it corresponds to a parabolic neighborhood in M∞ that is not
fully contained in M′,∞. In this example, any conjugate heat kernel based at a point
in X∞

>T converges to zero on P(y∞; r) near T , as asserted in Theorem 9.24.

Proof After possibly replacing T + with sup I∞ − t(x∞) we may assume in the fol-
lowing that t(x∞) + T + ≤ sup I∞. Then the property t(x∞) + T ∗ < sup I∞ holds
whenever T ∗ ≤ T +.
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Consider an arbitrary subsequence of the given sequence of metric flow pairs. Note
that R∗ may become larger for such a subsequence. We will first show parts of the
theorem, which don’t involve R∗, and then return to the original sequence of metric
flow pairs to show the remaining parts of the theorem. In the following, R∗ will
always denote the set of points at which the convergence of the current subsequence
is smooth.

By [31], we may pass to a further subsequence such that the Ricci flows gi

restricted to Pi and pointed at xi converge smoothly to a Ricci flow, which we
will represent by a pointed Ricci flow spacetime (P ′, x′) with t(x′) = t(x∞) such
that P ◦(x′;D,−T −, T +) = P ′. We can find an increasing sequence of open sub-
sets U ′

1 ⊂ U ′
2 ⊂ · · · ⊂ P ′,

⋃∞
i=1 U ′

i = P ′ and a sequence of diffeomorphisms onto
their images ψ ′

i : U ′
i →Ri that are time-preserving and ∂t-preserving and such that

(ψ ′
i )
∗gi → g′ in C∞

loc. After passing to another sequence, we may also assume that
vi ◦ψ ′

i → v′ ∈ C∞(P ′) with v′ ≥ 0, �∗v′ = 0.

Claim 9.24.1 If for some D1 ∈ (0,D], T −
1 ∈ (0, T −], T +

1 ∈ (0, T +] we have
P ◦(x∞;D1,−T −

1 , T +
1 )⊂R∗ ⊂R∞ and this open parabolic neighborhood is un-

scathed, then there is an isometry of Ricci flow spacetimes χ :P ◦(x′;D1,−T −
1 ,T +

1 ) →
P ◦(x∞;D1,−T −

1 , T +
1 ) with χ(x′) = x∞ such that the following holds:

(a) v′ = v∞ ◦ χ on P ◦(x′;D1,−T −
1 , T +

1 ).
(b) For any y′ ∈ P ◦(x′;D1,−T −

1 , T +
1 ) we have ψ ′

i (y
′) → χ(y′) within C.

(c) For any conjugate heat flow (μ̃t )t∈I∞,t<t∗ on X∞ with t∗>t(x∞)−T −
1 there is a

smooth function ṽ′∈C∞(P ′
<t∗) such that ṽ′=ṽ◦χ on (P ◦(x′;D1,−T −

1 ,T +
1 ))<t∗ .

Proof By Theorem 9.21(a) the flow g∞ restricted to P ◦(x∞;D1,−T −
1 , T +

1 ) and
equipped with v∞ is a geometric limit of the same sequence of flows as P ◦(x′;D1,

−T −
1 , T +

1 ) ⊂ P ′. Therefore, both flows may be identified. Assertions (a), (b) now
follow from Theorem 9.21. To see Assertion (c), suppose first that (μ̃t )t∈I∞,t<t∗ is
a conjugate heat kernel based at some point in X∞

t∗ . Then by Theorem 6.19 the con-
jugate heat flow (μ̃t )t∈I∞,t<t∗ can be represented as a limit of conjugate heat flows
(μ̃i,t )t∈I∞,t<t∗i on X i within C. Write dμ̃i,t = ṽi dgi on Ri

<t∗i
. By Theorem 9.21(f)

and Assertion (b) of this claim we obtain smooth convergence of ṽi ◦ ψ ′
i → ṽ ◦ χ

on (P ◦(x′;D1,−T −
1 , T +

1 ))<t∗ and by local derivative estimates, we obtain subse-
quential convergence of the functions ṽi ◦ψ ′

i to some ṽ′ ∈ C∞(P ′
<t∗) on all of P ′

<t∗ .
Finally, if (μ̃t )t∈I∞,t<t∗ is a finite convex combination of conjugate heat kernels,
then Assertion (c) follows by linearity and the general case follows via a limit argu-
ment. �

Consider the conjugate flow v′ on P ′. By the strong maximum principle there is
some time T ∗ ∈ (−T −, T +] such that v′ ≡ 0 on P ′

[t(x∞)+T ∗,t(x∞)+T +)
and v′ > 0

on P ′
(t(x∞)−T −,t(x∞)+T ∗) (in the case T ∗ = T + we have v′ > 0 on all of P ′). By

iterating Claim 9.24.1 and the uniformity statement of Lemma 9.23, we obtain that
P ◦(x∞;D,−T −, T ∗) ⊂R∗ ⊂R∞ is unscathed and if T ∗ < T +, then for any D′ ∈
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(0,D)

lim
t↗t(x∞)+T ∗ sup

(B(x∞,D′))(t)
v∞ = 0,

which also implies Assertion (a). Since the inclusion P ◦(x∞;D,−T −, T ∗) ⊂ R∞
is independent of the subsequence of the original sequence of metric flow pairs, we
obtain from Assertions (a), (b) in the Claim that for any subsequence of the origi-
nal sequence of metric flow pairs we obtain the same time T ∗ and the restrictions
P ′

<T ∗ , v′|P ′
<T ∗ are always the same. So by the same argument as above, we have

P ◦(x∞;D,−T −, T ∗) ⊂R∗, where R∗ now refers to the set of points at which the
convergence of the original sequence of metric flow pairs is smooth.

It remains to verify Assertion (b). So let (μ̃t = ṽt dg∞
t )t∈I∞∩(−∞,t∗) be a conju-

gate heat flow on X∞, where t∗ > T ∗. By Assertion (c) of the Claim we know that
ṽ ◦χ can be extended to a smooth conjugate heat flow on P ′

<t∗ . So it suffices to show
that for any D′ ∈ (0,D) we have

lim
t↗t(x∞)+T ∗

ˆ

((B(x∞,D′))(t)
ṽt dμ̃t = lim

t↗t(x∞)+T ∗ μ̃t

(
(B(x∞,D′))(t)

) = 0.

To see this, choose some t∗∗ ∈ (t(x∞)+T ∗, t∗) and observe that for any t < t(x∞)+
T ∗

μ̃t

(
(B(x∞,D′))(t)

) =
ˆ

X∞
t∗∗

ν∞x∗∗;t
(
(B(x∞,D′))(t)

)
dμ̃t∗∗(x

∗∗),

μ∞
t

(
(B(x∞,D′))(t)

) =
ˆ

X∞
t∗

ν∞x∗∗;t
(
(B(x∞,D′))(t)

)
dμ∞

t∗∗(x
∗∗).

Since the second integral goes to 0 as t ↗ t(x∞) + T ∗, we obtain, using Defini-
tion 3.1(6), that the first one has to go to 0 as well. �

Funding This work was supported by NSF grant DMS-1906500.
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