
Peking Mathematical Journal (2023) 6:353–364
https://doi.org/10.1007/s42543-023-00060-w

ORIG INAL ART ICLE

An Optimal Volume Growth Estimate for Noncollapsed
Steady Gradient Ricci Solitons

Richard H. Bamler1 · Pak-Yeung Chan2 · Zilu Ma3 · Yongjia Zhang4

Received: 7 December 2021 / Revised: 7 December 2022 / Accepted: 2 January 2023 /
Published online: 15 February 2023
© Peking University 2023

Abstract
In this paper,we prove a volume growth estimate for steady gradient Ricci solitonswith
bounded Nash entropy. We show that such a steady gradient Ricci soliton has volume

growth rate no smaller than r
n+1
2 . This result not only improves the estimate in (Chan

et al., arXiv:2107.01419, 2021, Theorem 1.3), but also is optimal since the Bryant
soliton and Appleton’s solitons (Appleton, arXiv:1708.00161, 2017) have exactly this
growth rate.
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1 Introduction

The Ricci flow has been a powerful tool in settling various longstanding problems in
geometry and topology, among which the most well-known ones are the geometriza-
tion and the Poincaré conjectures. The success of the Hamilton–Perelman program
[24, 33–35] in dimension 3 suggests that the analysis of singularity formation plays a
central role in the study of the Ricci flow. In the Hamilton–Perelman program, a sin-
gularity model is understood to be an ancient solution arising as the smooth limit of a
scaled sequence of a Ricci flow forming a finite-time singularity (see below for more
details). Among all singularity models, the most important ones are the shrinking and
steady gradient Ricci solitons. Perelman’s canonical neighborhood theorem shows that
a 3-dimensional Ricci flow becomes locally close to a singularity model wherever the
curvature is large. However, due to the lack of the Hamilton–Ivey pinching estimate,
this canonical neighborhood theorem is generally not true in higher dimensions.

Recently, the first-named author [2–4] established a new theory about weak limits
of Ricci flows on closed manifolds. This theory sheds more light on the formation
of singularities in dimension 4 and higher. Indeed, the three last-named authors have
already employed these methods in the study of ancient solutions and singularities of
the Ricci flow; see, for instance, [14–16, 29]. Very recently, the first-named author [5]
proved that the fundamental group of a noncollapsed ancient Ricci flow is finite. In
this paper, we shall study the volume growth of steady gradient Ricci solitons using
these techniques.

Let us recall the definition of gradient Ricci soliton. A triple (Mn, g, f ) is a called
a gradient Ricci soliton if

Ric+∇2 f = κ

2
g, (1.1)

for some constant κ ∈ R. The soliton is called shrinking if κ > 0, steady if κ = 0, and
expanding if κ < 0.Any soliton canonically induces a Ricci flow, called the canonical
form. Precisely, if we define �t and gt by

∂

∂t
�t = 1

1 − κt
∇ f ◦ �t ,

�0 = id,

gt = (1 − κt)�∗
t g, (1.2)

then gt moves by the Ricci flow. In the shrinking (κ > 0) and steady (κ = 0) case, the
canonical form not only is a self-similar ancient solution moving by diffeomorphism,
but also often arises as a singularity model. For instance, the blow-up limit at every
Type I singularity is (the canonical formof) a shrinking gradientRicci soliton (cf. [22]),
and a degenerate neck-pinch (cf. [23]) is modeled on a Bryant soliton. We remark that
by the recent work of Choi–Haslhofer [17], if we consider the more general singular
Ricci flow (cf. [6, 26]) instead of Ricci flow, then there could possibly be non-solitonic
blow-up limits.

The study of steady gradient Ricci solitons is important not only for the understand-
ing of the formation of Type-II singularities in particular, but also for the understanding
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Volume Growth for Steady Solitons 355

of ancient Ricci flows in general. For instance, a steady solitonmay arise as a sequential
limit from a shrinking soliton with exactly quadratic curvature growth (cf. [18]); the
only positively curved ancient, noncompact and noncollapsed Ricci flow in dimension
3 is the Bryant soliton (cf. [7]).

Unlike shrinking solitons, though, the geometric characterizations of steady solitons
are less complete. This, to some extent, is reflected by the newer examples constructed
by Appleton [1] and Lai [27]. Some previous constructions of steady solitons using
ODE method also include [8–10, 20, 21, 25, 36, 38]. Furthermore, shrinking solitons
are automatically strongly noncollapsed (cf. [13, 28]), but this is obviously not true
for steady solitons. In fact, the cigar soliton of Hamilton—the first steady soliton ever
found—and the 3-dimensional flying wings of Lai [27], conjectured by Hamilton, are
collapsed. Up to this point, the volume growth estimates of steady solitons are also less
sharp than that of shrinking solitons.Munteanu andWang [32] showed that the volume
of the geodesic ball of a noncompact gradient shrinker grows at least linearly in the
radius, i.e., |B(p, r)| ≥ Cr ,whereC = C(n)ec(n)μ depends on the dimension and the
shrinker entropy μ, and c(n) > 1. Using their Sobolev inequality, Li and Wang [28,
Proposition 6] provided a better constant C = c(n)eμ. This estimate is optimal since
it is satisfied by cylinders. However, the same technique does not yield an equally nice
volume growth estimate for steady solitons. Indeed, the three last named authors [15]
proved that a Sobolev inequality on a steady soliton implies that the volume growth
rate is at least r

n
2 , but this is not optimal since the Bryant soliton has volume growth

rate r
n+1
2 .

In this paper, we prove an optimal volume growth estimate for steady gradient Ricci
solitons with bounded Nash entropy. First of all, we recall some known results on the
volume growth rate for steady solitons. Besides the r

n
2 volume growth rate lower bound

mentioned above (cf. [15]), Munteanu–Šešum [31] showed that a steady soliton has at
least linear volume growth, Cui [19] proved a volume growth lower bound for steady
Kähler Ricci solitons with positive Ricci curvature. The optimal volume growth lower
bound proved in this paper says that a steady gradient Ricci soliton with bounded

Nash entropy has volume growth rate no smaller than r
n+1
2 . Since the Bryant soliton

(cf. [11]) as well as Appleton’s solitons ([1], they are asymptotic to quotients of the
Bryant soliton) have exactly this volume growth rate, our result is optimal indeed. As a
consequence, a steady gradient Ricci soliton with volume growth strictly slower than

r
n+1
2 cannot arise as a singularity model (see below).
Throughout the paper,we shall assume that (Mn, g, f ) is a complete steady gradient

Ricci soliton normalized in the way that

Ric = ∇2 f , R + |∇ f |2 = 1. (1.3)

Here, for the notational simplicity, we have reversed the sign of f in (1.1). Then
the 1-parameter family of diffeomorphisms �t defined in (1.2) is now the group of
diffeomorphisms generated by −∇ f with �0 = id. We shall still use gt = �∗

t g to
denote the canonical form of the steady soliton.
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Let us fix a point o ∈ M, and we shall impose one more condition on the steady
soliton in question, namely, a uniformly bounded Nash entropy:

No,0(τ ) ≥ −Y for all τ > 0, (1.4)

where Y ∈ (0,∞) is a constant and N should be regarded as the Nash entropy of
the canonical form. We refer the readers to [2] for the definitions. We shall denote by
|�|g the volume of a measurable subset � ⊂ M relative to the metric g and by Br (x)
or B(x, r) the geodesic ball centered at x with radius r . With these preparation, our
main theorem is stated as follows.

Theorem 1.1 Suppose that (Mn, g, f ) is a complete steady gradient Ricci soliton
normalized as in (1.3) and the canonical form (Mn, gt )t∈R satisfies (1.4). Additionally,
assume that either one of the following conditions is true:
(1) (Mn, gt )t∈R arises as a singularity model; or
(2) (Mn, g) has bounded curvature.

Then

c(n, μ∞)r
n+1
2 ≤ |Br (o)| ≤ C(n, μ∞)rn for all r > r̄(n, μ∞),

where μ∞ := infτ>0 No,0(τ ) = limτ→∞ No,0(τ ) > −∞ and c(n, μ∞) and
C(n, μ∞) are positive constants of the form

c(n, μ∞) = c(n)√
1 − μ∞

eμ∞ , C(n, μ∞) = C(n)eμ∞ .

Furthermore, the upper bound is also true for all r > 0 (instead of r ≥ r̄(n, μ∞)).

A singularity model is an ancient solution (Mn, gt )t∈(−∞,0] arising as a blow-up
limit of a compact Ricci flow (M

n
, gt )t∈[0,T ) around its singular time. A singularity

model in the sense of Hamilton [24] is a smooth Cheeger–Gromov–Hamilton limit,
whereas a singularity model in the sense of [4] is an F-limit (cf. [3]). In fact, by [4,
Theorem 2.5], a smooth singularitymodel in the sense of [4] is also a singularitymodel
in the sense of Hamilton (but the reverse is not true). In the assumption of Theorem 1.1
(1), the singularity model can be either in the sense of Hamilton or in the sense of [4].

Remarks

1. The bounded Nash entropy assumption (1.4) implies strong noncollapsing, and it is
obvious that (1.4) holds on every singularity model. Yet it is an interesting question
to ask whether (1.4) is equivalent to the (either strong or weak) noncollapsing
condition on every steady soliton.

2. μ∞ in the statement of Theorem 1.1 is the shrinker entropy of any tangent flow
at infinity of the ancient solution (Mn, gt )t∈(−∞] given by [4, Theorem 2.40].
Moreover, the value of μ∞ is independent of the choice of the point o. This can be
seen from [29, Proposition 4.6].
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3. The volume growth upper bound is a direct consequence of [2, Theorem 8.1] and
we will leave the detailed proof to the reader; in this paper we shall only prove the
volume growth lower bound.

4. The volume growth upper bound is also sharp since it is satisfied by the steady
Gaussian soliton. This conclusion is in the spirit of a similar result in the shrinking
case (cf. [12, 30]). Previous works on the volume growth upper bound for steady
Ricci solitons include [31, 37].

5. It is proved in [18] that a 4-dimensional steady gradient Ricci soliton which arises
as a singularity model must have bounded curvature. As a consequence, if n = 4,
then case (2) in the statement of Theorem 1.1 is redundant.

6. The reverse of the theorem is false, i.e., if the volume growth rate of a steady
soliton is at least r (n+1)/2, it may still be collapsed. For example, the cross product
of Hamilton’s cigar soliton and R

k (k ≥ 1) has volume growth rate rk+1 but the
total dimension is k + 2 and it is collapsed.

2 Proofs

Roughly speaking, we prove the main theorem by packing balls centered at �-centers,
namely, the points at which Perelman’s [33] reduced distance function almost attains
its minimum (see below for the definition). Since, as it is shown by the three last-
named authors [14, Proposition 5.6], �-centers are always close to Hn-centers (cf.
[2, Definition 3.10]), a ball centered at an �-center must have a volume lower bound
estimate as given by [2, Theorem 6.2]. This is the argument which proves the optimal
volume growth lower bound.

Since the canonical form of the steady soliton (Mn, g, f ) moves only by diffeo-
morphism, we may work with Perelman’s L-geometry [33, §7] on the background of
the static manifold (Mn, g).

2.1 Perelman’sL-Geometry on Steady Solitons

As mentioned before, we will use gt to represent the canonical form of the steady
soliton (Mn, g, f ) satisfying the conditions of Theorem 1.1. Recall that Perelman
defined the L-length in [33, §7]. For any τ > 0, and any piecewise smooth curve
� : [0, τ ] → M with �(0) = o,

L(�) :=
∫ τ

0

√
s(Rg−s + |�̇|2g−s

)(�(s)) ds.

To reinterpret the L-geometry on the static background (M, g), let

γ (s) = �−s(�(s)) for s ∈ [0, τ ].

Then

γ̇ = ∇ f |� + �−s∗(�̇),
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and

L(�) =
∫ τ

0

√
s
(
Rg + |γ̇ − ∇ f |2g

)
(γ (s)) ds,

and this expression only uses the static metric g. If we perform a change of variables:
u = √

s, and write γ̃ (u) = γ (u2), then

L(�) =
∫ √

τ

0

(
1

2

∣∣∣ ˙̃γ − 2u∇ f
∣∣∣2 + 2u2R(γ̃ (u))

)
du.

For any x ∈ M and τ > 0, we define

L(�τ (x), τ ) := inf
�

L(�),

where the infimum is taken over all� : [0, τ ] → M with�(0) = o and�(τ) = �τ (x).
On the static metric background, we may define an equivalent function:


(x, τ ) := L(�τ (x), τ ) = inf
∫ τ

0

√
s(Rg + |γ̇ − ∇ f |2g)(γ (s)) ds, (2.1)

where the infimum is taken over all γ : [0, τ ] → M with γ (0) = o and γ (τ) = x,
and a curve at which the above infimum is attained shall be called a 
-geodesic.
Accordingly, define

λ(x, τ ) := �(�τ (x), τ ) := 1

2
√

τ

(x, τ ).

Arguing as Perelman in [33, Section 7.1], we have that, for any τ > 0, there is a point
pτ ∈ M such that λ(pτ , τ ) = �(�τ (pτ ), τ ) ≤ n/2. Any such point pτ is called an
�-center at time −τ. Note that in our current case we are considering the �-center
on a static metric background, hence it differs from the �-center defined in [14] by a
diffeomorphism.

2.2 Locations of �-Centers

Lemma 2.1 λ(o, τ ) ≥ τ/12, for any τ > 0.

Proof Let γ : [0, τ ] → M be a loop at o and let γ̃ : [0,√τ ] → M be the
reparametrization: γ̃ (u) = γ (u2). Then

∫ τ

0

√
s(R + |γ̇ − ∇ f |2) =

∫ √
τ

0

(
1

2

∣∣∣ ˙̃γ − 2u∇ f
∣∣∣2 + 2u2R(γ̃ (u))

)
du

=
∫ √

τ

0

(
1

2
| ˙̃γ |2 − 2u( f ◦ γ̃ − f (o))′ + 2u2

)
du
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= 2

3
τ 3/2 +

∫ √
τ

0

(
1

2
| ˙̃γ |2 + 2( f ◦ γ̃ (u) − f (o))

)
du,

(2.2)

where in the second equality we have applied (1.3). Let F(u) = f ◦ γ̃ (u) − f (o) and
define

L := sup
u∈[0,√τ ]

dist(o, γ̃ (u)) =: dist(o, γ̃ (u1)),

for some u1 ∈ [0,√τ ]. Then we have

1

2

∫ √
τ

0
| ˙̃γ |2 ≥ 1

2

∫ u1

0
| ˙̃γ |2 + 1

2

∫ √
τ

u1
| ˙̃γ |2

≥ L2

2

(
1

u1
+ 1√

τ − u1

)
≥ 2L2

√
τ

,

where we have applied the Cauchy–Schwarz inequality (e.g., L2 ≤ (
∫ u1
0 | ˙̃γ |)2 ≤∫ u1

0 | ˙̃γ |2 · ∫ u1
0 12). Since |∇ f | ≤ 1 by (1.3), we have

|F(u)| ≤ dist(γ̃ (u), o) ≤ L, ∀ u ∈ [0,√τ ],

and thus

∫ √
τ

0
2( f ◦ γ̃ (u) − f (o))du ≥ −2L

√
τ .

In summary, we have

∫ τ

0

√
s(R + |γ̇ − ∇ f |2) ≥ 2

3
τ 3/2 + 2L2

√
τ

− 2L
√

τ

= 2

3
τ 3/2 + 2√

τ
(L2 − Lτ)

= 1

6
τ 3/2 + 2√

τ

(
L − τ

2

)2

≥ 1

6
τ 3/2,

and the conclusions follow by taking the infimum on the left hand side. ��
The following lemma is straightforward and is similar to the standard triangle

inequality; cf. [14, §4, Claim 3].

Lemma 2.2 For any x, y ∈ M, τ > 0 and any δ ∈ (0, 1),

λ(x, (1 + δ)2τ) ≤ λ(y, τ ) + dist2(x, y)

δτ
+ 5δτ.

123
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Proof Let γ1 : [0, τ ] → M be aminimizing
-geodesic from o to y, namely, a curve at
which the infimum in (2.1) is attained. Let γ̃2 : [√τ , (1+δ)

√
τ ] → M be aminimizing

g-geodesic from y to x with constant speed. Define γ2 : [τ, (1 + δ)2τ ] → M by
γ2(s) = γ̃2(

√
s).


(x, (1 + δ)2τ) ≤
∫ τ

0

√
s(R + |γ̇1 − ∇ f |2)(γ1(s)) ds

+
∫ (1+δ)2τ

τ

√
s(R + |γ̇2 − ∇ f |2)(γ2(s)) ds

≤ 
(y, τ ) +
∫ (1+δ)

√
τ

√
τ

(
1

2
| ˙̃γ 2|2 + 2u| ˙̃γ 2||∇ f | + 2u2(R + |∇ f |2)

)
du

≤ 
(y, τ ) +
∫ (1+δ)

√
τ

√
τ

(
| ˙̃γ 2|2 + 4u2

)
du

≤ 
(y, τ ) + dist2(x, y)

δ
√

τ
+ 4

(1 + δ)3 − 1

3
τ3/2

≤ 
(y, τ ) + dist2(x, y)

δ
√

τ
+ 10δτ3/2.

The conclusion follows by dividing 2(1 + δ)
√

τ on both sides. ��
Lemma 2.3 There is a universal constant α ∈ (0, 1), such that for any τ ≥ τ̄ (n) and
any �-center pτ , we have

dist(pτ , o) ≥ ατ.

Proof By Lemmas 2.1 and 2.2, for any δ ∈ (0, 1), if τ ≥ τ̄ (n, δ), then we have

(1 + δ)2τ

12
≤ λ(o, (1 + δ)2τ) ≤ λ(pτ , τ ) + dist2(pτ , o)

δτ
+ 5δτ

≤ dist2(pτ , o)

δτ
+ 10δτ,

where we have used the fact that λ(pτ , τ ) ≤ n
2 . Wemay take, e.g., δ = 10−3 to obtain

the inequality. ��
Lemma 2.4 For any τ ≥ τ̄ (n), there is xτ ∈ M such that dist(xτ , o) = τ and
λ(xτ , τ0) ≤ C for some τ0 ∈ [cτ, τ/α], where c > 0 and C < ∞ are dimensional
constants and α is given by Lemma 2.3.

Proof Let γ : [0, τ/α] → M be a minimizing 
-geodesic from o to p := pτ/α. By
Lemma 2.3, dist(p, o) ≥ τ. So we can define

τ0 := sup{s ∈ [0, τ/α] : dist(γ (s), o) ≤ τ }, xτ := γ (τ0).
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We first show that τ0 ≥ cτ for some universal constant c > 0. Define γ̃ :[
0,

√
τ/α

] → M by γ̃ (u) = γ (u2). Note that, arguing in the same way as (2.2),
we have

1

2

∫ √
τ0

0
| ˙̃γ |2 ≤ 
(p, τ/α) +

∫ √
τ0

0
2u〈 ˙̃γ ,∇ f 〉

≤ n
√

τ/α + 1

4

∫ √
τ0

0
| ˙̃γ |2 + 4

∫ √
τ0

0
u2,

1

4

∫ √
τ0

0
| ˙̃γ |2 ≤ n

√
τ/α + 4

3
τ
3/2
0 .

It follows that

1

4
τ 2 = 1

4
dist(o, xτ )

2 ≤ 1

4

(∫ √
τ0

0
| ˙̃γ |

)2

≤ 1

4

√
τ0

∫ √
τ0

0
| ˙̃γ |2

≤ n
√

τ0τ/α + 4

3
τ 20 ≤ 1

8
τ 2 + 4

3
τ 20 ,

if τ ≥ τ̄ (n). Hence τ0 ≥ cτ for some dimensional constant c > 0. Then

λ(xτ , τ0) ≤
√

τ/α√
τ0

λ(p, τ/α) ≤ n

2
√
cα

.

��
Lemma 2.5 Suppose that (Mn, g, f ) satisfies the assumptions in Theorem 1.1. Then
for any τ ≥ τ̄ (n), there is xτ ∈ M such that dist(xτ , o) = τ and

|B(xτ ,
√
Aτ)| ≥ ceμ∞τ n/2,

where A = Cn(1 − μ∞), c = c(n) > 0.

Proof Let xτ , τ0 be given by Lemma 2.4. Recall that cτ ≤ τ0 ≤ τ/α and λ(xτ , τ0) ≤
C, for some dimensional constants c,C and α is given by Lemma 2.3.

It suffices to show that

∣∣Bg−τ0

(
yτ ,

√
αAτ0

)∣∣
g−τ0

≥ cne
μ∞τ

n/2
0 , (2.3)

where yτ = �τ0(xτ ). Because once we can show (2.3), we have

∣∣Bg
(
xτ ,

√
Aτ

)∣∣
g ≥ ∣∣Bg

(
xτ ,

√
αAτ0

)∣∣
g = ∣∣Bg−τ0

(
yτ ,

√
αAτ0

)∣∣
g−τ0

≥ cne
μ∞τ

n/2
0 ≥ cne

μ∞τ n/2, (2.4)

where we used the fact that τ/α ≥ τ0 ≥ cτ for some dimensional constant c > 0. We
leave the details of the proof of (2.4) to the reader.
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Now we prove (2.3). Let (z,−τ0) be an Hn-center of (o, 0). By [33, 9.5] and [2,
Theorem 7.2] (or [14, Theorem 3.2]), we have

(4πτ0)
−n/2e−C ≤ (4πτ0)

−n/2e−�(yτ ,τ0) ≤ K (o, 0 | yτ ,−τ0)

≤ Cne
−μ∞τ

−n/2
0 exp

(
−dist2−τ0

(yτ , z)

9τ0

)
,

where K is the fundamental solution to the conjugate heat equation, and we also used
Lemma 2.4 and the fact that �(yτ , τ0) = λ(xτ , τ0) ≤ C . Hence

dist2−τ0
(yτ , z) ≤ 9(−μ∞ + Cn)τ0.

We choose A so that

αA = 18(−μ∞ + Cn) + 10Hn .

Note that, by [14, Proposition 3.3], [2, Theorem 6.2] also holds for Ricci flows with
bounded curvature on compact intervals. All the results in [2] applies to singularity
models (in the sense of Hamilton or in the sense of [4]), because of the smooth
convergence. By [2, Theorem 6.2],

∣∣(Bg−τ0

(
yτ ,

√
αAτ0

))∣∣−τ0
≥ ∣∣(Bg−τ0

(
z,

√
αAτ0/2

))∣∣−τ0
≥ c(n)eμ∞τ

n/2
0 .

So we finished the proof of (2.3). ��

2.3 Proof of theMain Theorem

Now we are ready to prove Theorem 1.1.

Proof of Theorem 1.1 Let τ̄ (n) < ∞be given byLemma2.5. For each r > 10A+τ̄ (n),

we construct a decreasing sequence r = τ1 > τ2 > · · · > τN > 0, such that
τN < r/10 and for 1 ≤ j ≤ N − 1,

τ j − τ j+1 = √
Aτ j + √

Aτ j+1.

As long as τ j ≥ r/10, the above equation is solvable for positive τ j+1 since the
discriminant A + 4(τ j − √

Aτ j ) = 4(
√

τ j − √
A/2)2 ≥ 0. Since τ j ≥ r/10 and

r > 10A, there is a unique positive solution for τ j+1.Moreover, τ j −τ j+1 ≥ √
Aτ j ≥√

Ar/10, hence we can find a finite positive integer N such that 0 < τN < r/10. For
each j, by Lemma 2.5, there is x j ∈ M such that dist(x j , o) = τ j , and

∣∣B(
x j ,

√
Aτ j

)∣∣ ≥ c(n)eμ∞τ
n/2
j .
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By the construction of {τ j }, the balls
{
B

(
x j ,

√
Aτ j

)}N
j=1 are pairwise disjoint. It

follows that

|B2r (o)| ≥
N∑
j=1

∣∣B(
x j ,

√
Aτ j

)∣∣ ≥
N∑
j=1

c(n)eμ∞τ
n/2
j

≥ c(n)√
A
eμ∞

N−1∑
j=1

τ
n−1
2

j (τ j − τ j+1)

≥ c(n)√
A
eμ∞

N−1∑
j=1

∫ τ j

τ j+1

τ
n−1
2 dτ

= c(n)√
A
eμ∞

∫ r

τN

τ
n−1
2 dτ

≥ c(n)√
A
eμ∞r

n+1
2 .

��
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