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Uncertainty Quantification for Sparse Estimation
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Abstract—Line spectral estimation is an important problem
that finds many useful applications in signal processing. Many
high-performance methods have been proposed for solving this
problem: they select the number of spectral lines and provide point
estimates of the frequencies and amplitudes of such spectral lines.
This paper studies the line spectral estimation problem from a
different and equally important angle: uncertainty quantification.
More precisely, this paper develops a novel method that provides an
uncertainty measure for the number of spectral lines and also offers
point estimates and confidence intervals for other parameters of
interest. The proposed method is based on the generalized fiducial
inference framework and is shown to possess desirable theoretical
and empirical properties. It has also been numerically compared
with existing methods in the literature and applied for the detection
of exoplanets.

Index Terms—Confidence intervals, exoplanet detection, gene-
ralized fiducial inference, line spectral estimation, high-dimen-
sional grid selection.

I. INTRODUCTION

S PECTRAL analysis is an important topic that attracts much
attention in the signal processing community. It has rich

applications in areas like speech coding [1], radar and sonar
signal processing [2], [3], and imaging system [4], to name a
few.

This paper focuses on the sparse spectral line estimation
problem as described, for example, in [5]. Let

Y = [Y (t1), Y (t2), . . . , Y (tN )]T ∈ CN×1 (1)

denote the complex-valued signal data vector, where the ob-
served times tk ∈ R+, k ∈ 1, . . . , N , are not required to be
regularly spaced. We shall focus on complex-valued signals,
but our methodology can be naturally carried over to real-valued
signals; see Section VI. We assume thatY satisfies the following
model, sometimes known as the sinusoids-in-noise model [5],
in which p represents the true number of significant frequencies:

Y =
p∑

l=1

αla(fl) + ε, (2)
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where αl ∈ C are the complex amplitudes of the p sinusoidal
components, fl ∈ R are the true frequencies, and

a(f) = [ei2πft1 , ei2πft2 , ei2πft3 , . . . , ei2πftN ]T ∈ CN×1.

Also, ε ∈ CN×1 is the noise vector, and we assume that its
elements are i.i.d. and follow the complex normal distribution
with mean 0 and variance σ2, denoted as CN (0,σ2).

With this setup, the problem is to use the observation signal
vector Y to estimate the true frequencies fl and their ampli-
tudes |αl|. This problem has been studied for a long time, and
different methods have been proposed. An earlier set of methods
are non-parametric, including conventional periodogram-based
methods and variants like the Daniell method [6] and the Welch
method [7]. There are also correlogram-based, temporal win-
dowing, and lag windowing methods. However, these methods
may show low performance, such as limited resolving power.

The second set of methods is parametric and models the
time series data with auto-regressive or auto-regressive moving-
average processes [8], [9]. They provide accurate spectral esti-
mation if the assumed model is appropriate for the observed
time series. However, a drawback of these methods is that
they typically require prior knowledge of the number of true
frequencies p, which is often not practical.

The third set of methods is semi-parametric, which mostly
performs sparse estimation. The performances of these methods
are similar to those of parametric methods despite not requiring
prior knowledge of p. Some of these methods perform sparse
data recovery using mixed norm approximation [10], or atomic
norm denoising [11]. Also, there are other sparse estimation
methods that need other prior information, such as the noise
variance as in [12]. One notable exception is the LIKES method
(LiKelihood-based Estimation of Sparse), which does not re-
quire prior information [5].

Lastly, Bayesian methods have also been proposed [13], [14].
In addition to offering point estimates, the latter work also pro-
vides uncertainty quantification for some parameters of interest.

We need more notations to proceed. Assume fmax to be the
upper bound of all the true frequencies {fl}; i.e., fmax ≥ fl, l =
1, . . . , p. Let ∆ be the step size or the distance between two
adjacent grid points of a uniform grid covering the interval
[0, fmax]. This paper only considers the positive frequencies for
notation simplicity, but the discussion can be straightforwardly
extended to negative frequencies. Finally, write

K =

⌊
fmax

∆

⌋
(3)
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and

A = [a(0),a(∆), . . . ,a((K − 1)∆))] ∈ CN×K .

Using these notations, we can approximately re-express (2) as

Y = Aβ + ε, (4)

where β = [β1, . . . ,βK ]T is a sparse vector with mostly zero
elements. Those non-zero elements ofβ equal to {αl}, while the
indexes of these non-zero elements represent the corresponding
frequencies in A that are equal to {fl}.

The main idea of this so-called on-grid method is to use
the grid that is closest to the true frequency to approximate it.
Also, the problem of estimating {αl, fl} can be reformulated as
estimating the sparse vector β in (4) and detecting the non-zero
elements of the sparse vector. By choosing K to be sufficiently
large and ∆ to be sufficiently small, one can have the distance
between the true frequencies and their closest grids be practically
negligible. However, a very large value of K usually implies
high-dimensional problems, so there is actually a trade-off be-
tween estimation accuracy and computational efficiency.

In practice, K is almost always much larger than N , which
makes the estimation ofβ fromY in (4) a very challenging task.
Different methods have been proposed to solve this problem,
where some require additional prior knowledge such as noise
variance or the number of non-zero frequencies; e.g., see [12],
[15], [16].

It is fair to say that most existing methods focus on estimating
the amplitudes αl and noise variance σ2. At the same time, very
little treatment has been given to the issue of uncertainty quan-
tification. The main goal of this paper is to construct confidence
intervals for αl, σ2, as well as the number of the true frequen-
cies, p. The proposed method is based on the relatively new
methodology termed generalized fiducial inference (GFI) [17].
To the best of our knowledge, this is one of the first complete
systematic analyses that capture these uncertainties in the line
spectral estimation problem. It is also the first time that GFI is
being applied to a complex-valued problem.

The rest of this paper is organized as follows. Section II pro-
vides some background material and usage on GFI. Section III
applies the methodology to the sparse line spectral estimation
problem, and one relatively simple and fast algorithm to gen-
erate fiducial samples is proposed. The theoretical properties
of the proposed solution are examined in Section IV, while
its empirical properties are illustrated in Sections V and VI
by numerical simulations and a real data application. Lastly,
concluding remarks are offered in Section VII, and technical
details are provided in the appendix.

II. METHODOLOGY

A. A Brief History of Generalized Fiducial Inference

The idea of fiducial inference was first proposed by Fisher in
1930s [18] as an alternative to the Bayesian approach with the
goal of constructing an appropriate statistical distribution on the
estimator of an unknown parameter. One potential issue of the
Bayesian approach is that, when inappropriate prior distributions
are used, the performance and reliability of the approach could

be affected. Fisher’s fiducial method intends to avoid using the
prior distribution; instead, it considers a switching mechanism
between the model parameters and the observed data that is very
similar to the idea of the method of maximum likelihood. In spite
of Fisher’s continuous endeavor to complete the framework of
fiducial inference, it has not received much attention because it
works well only for single-parameter problems but fails in the
context of multiple parameters. Interested readers are referred
to [17], where a more detailed introduction about the history of
fiducial inference is given.

In recent years, there has been a resurgent interest in re-
formulating the fiducial concept. These modifications include
Dempster-Shafer theory [19], [20] and inferential models [21].
Motivated by generalized confidence intervals [22], [23] and
the surrogate variable method for obtaining confidence intervals
for variance components [24], GFI was developed in a series of
papers published around 2010 s, and summarized in [17]. It has
been successfully applied to solve different uncertainty quan-
tification problems, including wavelet regression [25], ultrahigh
dimensional regression [26] and sparse additive models [27].

B. An Introduction to Generalized Fiducial Inference

As mentioned before, GFI utilizes the idea of a so-called
switching principle that is similar to Fisher’s celebrated max-
imum likelihood method. It first begins with expressing the
relationship between the data Y and the parameter θ with

Y = G(U ,θ), (5)

where G(·, ·) is sometimes known as the “structural equation.”
Also, U is the random component of the problem whose dis-
tribution is completely known and is independent of θ. For
example, for the problem of estimating µ from {Xi}ni=1 with
Xi’s as i.i.d. N (µ,σ2), we write Xi = µ+ σZi with Zi as i.i.d.
N (0, 1), where the parameter θ = {µ,σ}, data Y = {Xi}ni=1

and random componentU = {Zi}ni=1. Note that the distribution
of U is completely known.

Similar to the main idea behind maximum likelihood esti-
mation, with the switching principle, the roles of θ and Y are
switched in the GFI framework once the data are observed.
That is, to treat the random data Y as deterministic and the
deterministic parameter θ as random. With this idea, we can
define a set {θ : y = G(U ∗,θ)} as the inverse mapping of G,
where U ∗ is an independent copy of U and y is an observation
of Y . A method is provided by [28] to ensure the existence and
uniqueness of this inverse mapping.

With the above setup, we can build a distribution of θ from
(5) in the following manner. For any observed data y and u, we
can adopt the method from [28] to identify one θ that guarantees
the existence of the inverse

Hy(u) = {θ : y = G(U ∗,θ)}. (6)

Since the distribution of U is totally known and independent of
θ, we can generate the random samples U1, U2, . . . and use (6)
to obtain the random samples for θ via

θ1 = Hy(U1), θ2 = Hy(U2), . . .

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 22,2023 at 05:00:52 UTC from IEEE Xplore.  Restrictions apply. 



HAN AND LEE: UNCERTAINTY QUANTIFICATION FOR SPARSE ESTIMATION OF SPECTRAL LINES 6245

In other words, GFI transfers the randomness in U1,U2, . . . to
θ1,θ2, . . . via the inverse equation (6). We call these θ1,θ2, . . .
fiducial samples, which can be used to calculate point estimates
and construct confidence intervals of θ in a way similar to
posterior samples in the Bayesian context. Notice that an explicit
expression for Hy may not exist for certain problems, but next,
we describe how the fiducial samples can still be generated
without calculating an expression for Hy .

Through (6) one can see that a density function r(θ|y) is
implicitly defined for θ. We refer r(θ|y) as the generalized
fiducial density (GFD) of θ, which plays a similar role as the
posterior density in the Bayesian context. It is shown in [17]
that under some mild smoothness assumptions on the likelihood
function f(y, θ) of y, the GFD r(θ|y) admits the following
expression

r(θ|y) = f(y,θ)J(y,θ)∫
Θ f

(
y,θ′) J

(
y,θ′) dθ′ , (7)

where

J(y, θ) = D

(
d

dθ
G(U, θ)|U=G−1(Y,θ)

)
(8)

with D(A) = | det(ATA)|1/2 and u = G−1(y, θ) as the
value of u such that y = G(U, θ).

We note that although (7) provides an explicit formula to
calculate the GFD, it may not be as straightforward as it looks:
the denominator requires the calculation of an integral that
is intractable for some problems, and hence Monte Carlo or
other numerical techniques are needed to sample from the GFD
r(θ|y).

C. Incorporating Model Selection in GFI

Up to now, our discussion on GFI assumes that the dimension
of θ is fixed and known. In other words, (7) cannot be used for
model selection problems, where the size of θ also needs to be
chosen.

In the context of wavelet regression, [25] incorporated model
selection in the GFI framework, which can be extended to more
general situations. The idea is similar to penalized likelihood
estimation, where a penalty term is added to the (log)-likelihood
function to achieve a balanced trade-off between data fidelity and
model complexity. Here we provide a brief description and refer
the reader to [17] for further details.

Let M be the set of all possible models and θM be the
parameters of any model M ∈ M. The GFD of (θM ,M) can
be expressed as

r(θM ,M |y) = r(θM |y,M)r(M |y),

where the conditional GFD r(θM |y,M) of θM (given M ) can
be calculated using (7), while the marginal GFD r(M |y) of M
admits the expression

r(M |y) =
∫
r(θM |y,M)e−q(M)dθM∑

M ′∈M
∫
r(θM ′ |y,M ′)e−q(M ′)dθM ′

, (9)

where q(M) is the penalty associated with model M .

Different choices of q(M) will lead to different penalty
strengths, which will in turn affect the final results. In general, the
stronger the penalty, the lesser the number of spectral lines we
would expect to obtain. When q(M) is suitably chosen, it leads
to some well-known model selection methods commonly used
in the signal processing and statistics communities. For example,
if we set q(M) = 2|M | with |M | as the number of parameters
in model M , we have the Akaike Information Criterion (AIC).
Here we follow [26] and choose q(M) as

q(M) =
|M |
2

logN + loge1/γ
( K
|M |
)
, (10)

where K is the number of parameters of the largest model in
M. Also, γ is a constant measuring the sparsity belief of the
model. A natural choice is γ = 1, but other choices are also
possible, and we note that there is not a universal choice of γ
that is suitable for all different kinds of true models. In our work,
we use γ = 1, which aligns (10) with the minimum description
length principle [29] for high-dimensional problems [30]. This
is a main reason behind our choice of q(M), as the minimum
description length principle is a well-studied model selection
method that often produces excellent theoretical and empirical
results.

III. GFI FOR LINE SPECTRAL ESTIMATION

This section applies the above GFI methodology to the line
spectral estimation problem represented by (4). We shall cal-
culate the GFDs for this problem and devise a method for
generating fiducial samples. To the best of our knowledge, this
is the first time that GFI is being applied to a problem with
complex-valued coefficients and responses.

Let M0 be the true model and M be any candidate model
such that |M | < K. Given M , the structural equation (5) for
model (4) is:

y = AMβM + σU , (11)

where AM and βM represent, respectively, the design matrix
and the parameter vector of model M . Also, σ is the standard
deviation of the error term and U is a standard multivariate
complex normal variable; i.e.U ∼ CN (0, IN ). To calculate the
GFD of θ = (σ,β)T given M for (11), we first compute (8)

J(y, θ) = D

(
d

dθ
G(U, θ)|U=G−1(y,θ)

)

= D

(
AM ,

y −AMβM

σ

)

=

[
det

{(
AH

M
yH−βH

MAH
M

σ

)(
AM

y−AMβM
σ

)}] 1
2

= σ−1| det(AH
MAM )|

1
2 RSS

1
2
M ,

where AH
M is the conjugate transpose of a A and RSSM is the

residual sum of squares of model M .
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Next we calculate the GFD of θ given M using (7):

r(θ|y,M) =
cNσ−1RSS

1
2
M ( 1

σ−2n )e
−1
σ2 (y−AMβM )H (y−AMβM )

∫
Θ cNσ−1RSS

1
2
M ( 1

σ−2n )e
−1
σ2 (y−AMβM )H (y−AMβM )

dθ′
,

where cN = 1
πN | det(AH

MAM )| 12 .
Let K be the length of βM . So the numerator of (9) can be

calculated as:

r (M |y) ∝
∫

σ−1| det
(
AH

MAM

)
|1/2RSS1/2

M

(
1

πNσ−2N

)

· e−
1
σ2 (y−AMβM )H(y−AMβM )dθe−q(M)

= e−q(M)

·
∫

π−Nσ−2N+1| det
(
AH

MAM

)
|1/2RSS1/2

M dσ

·
∫

e−
1
σ2 (y−AMβM )H(y−AMβM )dβM ,

where the last term is
∫
e−

1
σ2 (y−AMβM )H(y−AMβM )dβM =

π|M |σ2|M | det(AH
MAM )−1 exp(−RSSM

σ2 ). Therefore

r (M |y) ∝
∫

π−Nσ−(2N+1)| det
(
AH

MAM

)
|1/2π|M |σ2|M |

· 1

det
(
AH

MAM

)e−
1
σ2 RSSMdσe−q(M)

= π|M |−N | det
(
AH

MAM

)
|−1/2RSS1/2

M e−q(M)

·
∫

σ2|M |−2N−1e−
1
σ2 RSSMdσ

= π|M |−N | det
(
AH

MAM

)
|−1/2 · RSS

1
2+|M |−N
M

· Γ (N − |M |) · e−q(M). (12)

A. Generating Fiducial Samples

This subsection presents a method for generating fiducial
samples for the line spectral estimation problem that this paper
considers. The idea is to first generate a candidate model M ,
then given M , generate θ = (σ,β).

First of all, due to the large number of columns of A in the
line spectral estimation context, we are facing an extremely
large number of potential models in the model set M; i.e.,
the cardinality of M equals 2K , which is often intractable.
Therefore, for various practical considerations, we only consider
models from a subset M∗ of M. We delay our discussion of
how to choose M∗ to Appendix A. In principle, an ideal M∗

should include all the models that have a non-negligible value
of r(M |Y ), while at the same time excluding other models that
have a zero or near-zero r(M |Y ) value.

Suppose now we have a good M∗. For each M ∈ M∗, we
compute (see (12))

R(M) = π|M |−N | det(AH
MAM )|−1/2 · RSS

1
2+|M |−N
M

· Γ(N − |M |) · e−q(M),

where e−q(M) is given by (10). The generalized fiducial proba-
bility r(M |y) (12) can then be well approximated by

r(M |y) ≈ R(M)∑
M ∗∈M∗ R(M ∗)

. (13)

We can then sample a candidate model M ∈ M∗ from (13).
Once a model M is generated, we set up the corresponding

design matrix AM . Then we estimate the parameters βM of
the generated model M using maximum likelihood and obtain
the estimate β̂ML and the corresponding residual sum of squares
RSSM . AsAH

MAM is of full rank (i.e., not in a high-dimensional
setting), these two quantities can be calculated using classical
regression formulae: β̂ML = (AH

MAM )−1AH
My and RSSM =

yH(I −AM (AH
MAM )−1AH

M )y. Then, using the properties of
the complex normal distribution, σ and β can be sampled using
the following distributional results:

2RSSM

σ2
∼ χ2

2(N−|M |) (14)

and

β ∼ CN
(
β̂ML,σ

2(AH
MAM )−1

)
, (15)

whereχ2
2(N−|M |) is the chi-square distribution with 2(N − |M |)

degrees of freedom.
To sum up, a fiducial sample for (M,σ,β) can be generated

by the following steps.
1) Sample a model M from M∗ using (13).
2) Fit M using maximum likelihood and obtain β̂ML and

RSSM .
3) Sample σ2 using (14).
4) Sample β using (15), where the σ2 obtained from the

above step is used in the RHS of (15).
By repeating the above steps, one can generate enough sam-

ples of (M,σ,β) for forming point estimates and constructing
confidence intervals. Notice that (13) only needs to be calculated
once, so it is fast to generate an M . Also, notice that no costly
procedures are required to generate σ or β so overall the whole
sample method is fast.

B. Point Estimates and Confidence Intervals

Repeating the above procedure, we obtain multiple fiducial
samples for (M,σ,β), which can be used to perform statistical
inference in a similar manner as with posterior samples in the
Bayesian context. For the case of σ, we can use the mean
or the median of its fiducial samples as a point estimate, and
the (α/2, 1− α/2) quantiles of the fiducial samples to be its
100(1− α)% confidence intervals.

The situation is less straightforward for M , as its domain
M is a discrete space with 2K elements and it is not entirely
clear what would be a universally accepted definition for a
“confidence interval” for a model. However, the fiducial samples
of M could still provide valuable information on uncertainties.
For example, for any M the samples can be used to approximate
the generalized fiducial probability r(M |y) as in (13), which is
a numerical measure indicating how likely (or unlikely) M is
the true model.

Authorized licensed use limited to: Univ of Calif Davis. Downloaded on August 22,2023 at 05:00:52 UTC from IEEE Xplore.  Restrictions apply. 



HAN AND LEE: UNCERTAINTY QUANTIFICATION FOR SPARSE ESTIMATION OF SPECTRAL LINES 6247

The fiducial samples can also provide uncertainty information
for p, the number of significant frequencies. For example, the
generalized fiducial probability for p = l can be approximated
by the sum of the generalized fiducial probabilities r(M |y) of
all models M with p = l.

One can also construct confidence intervals for β in the
following manner. First, notice that, unless the GFD r(M |y)
has all its mass at one model, the fiducial samples will contain
different models. In other words, for any l = 1, . . . ,K, βl may
be declared insignificant by some of the fiducial samples. These
insignificant fiducial samples for βl are zero, which will have an
adverse effect when calculating averages or quantiles with those
non-zero βl values. We follow [26] to handle this issue: for each
βl, we count the percentage of non-zero fiducial sample values.
If it is more than 50%, we claim that this specific βl is significant
and use all the non-zero fiducial sample values to obtain point
estimates and confidence intervals, in the same manner as for σ.

IV. THEORETICAL PROPERTIES

This section investigates the theoretical properties of the
above proposed GFI-based method under the situation that K is
diverging and the size of the true model is fixed.

First, some notations. Recall M is any candidate model and
M0 is the true model. Let PM be the projection matrix of
AM ; i.e., PM = AM (AH

MAM )−1AH
M . Define ∆M = ‖µ−

PMµ‖2, where µ = E(Y ) = AM0βM0
.

Throughout this section, we assume that the following iden-
tifiability condition holds:

lim
n→∞

min

{
∆M

|M0| log(K)
: M0 -⊂ M, |M | ≤ b|M0|

}
= ∞

(16)
for some fixed constant b > 1. This b ensures that we only con-
sider models whose size is comparable to the true model. This
assumption is an identifiability condition because it guarantees
the uniqueness of the true model among all the models that
have a comparable size to the true model. To be more specific,
this condition guarantees that if the true model M0 -⊂ M , the
residuals will become unbounded as n → ∞. The restriction
|M | ≤ b|M0| is imposed because in practice only those models
with sizes comparable to the true model will be considered.
Overall, this assumption means the true model is identifiable
if no model other than the true model of comparable size can
predict the response almost equally well, which ensures the true
model can be differentiated from the other models.

Theorem 4.1: Assume condition (16). If N → ∞, K → ∞,
|M0| log(K) = o(N), log(|M0|)

log(K) → δ and log(N)
log(K) → η, then

there exists γ > 1+δ
1−δ − 5η

2(1−δ) such that

max
M -=M0,M∈M∗

r(M)

r(M0)
P→ 0. (17)

Moreover, Suppose there exists a procedure for obtainingM∗

that satisfies:

P (M0 ∈ M∗) → 1 and log
(∣∣M∗

j

∣∣) = o(j log(N)), (18)

where M∗
j denotes the set of all sub-models in M∗ of size j, we

have

r(M0)
P→ 1.

Theorem 4.1 implies that, under some regularity conditions,
the true model M0 has the highest generalized fiducial proba-
bility amongst all the candidate models. Assumption (18) guar-
antees the true model in the candidate set and the candidate set
not to be too large. The proof of this theorem is provided in the
appendix.

V. SIMULATION RESULTS

Two simulation experiments were conducted to evaluate the
practical performance of the proposed GFI method under the
line spectral model (1).

A. Confidence Intervals and Widths

In the first experiment, we follow the experimental setting
of [5], where! Number of spectral lines: p = 3.! Parameters: f1 = 0.4230, f2 = 0.6875, f3 = f2 + δf ,

α1 = 5ei2πu1 , α2 = 5ei2πu2 and α1 = 10ei2πu3 , where
u1, u2, u3 are randomly chosen from Unif(0, 1). See below
for a discussion on the values used for δf .! Number of observations: N = 50.! Sampling times: t1 = 0 [sec], tN = 50 [sec], and {tk}49k=2
are uniformly randomly selected (real numbers) from the
interval (0, 50).! Noise: ε is sampled from a complex normal distribution
CN (0,σ2IN ).

The signal-to-noise ratio (SNR) is defined as

SNR=10 log10

(
|α1|2+|α2|2+|α3|2

σ2

)
=10 log10

(
150

σ2

)
.

As in here we have mink(tk+1 − tk) < 0.5 [sec], we can set
fmax = 1 [Hz]. For the choices of K and ∆ in (3), we adopted
the suggestion by [5] and set

∆ =
1

c(tN − t1)

with c = 20, which gives ∆ = 1× 10−3 [Hz]. As we chose
fmax = 1 [Hz], using (3) we have K = 1000.

For the frequency separation δf between f2 and f3, we consid-
ered three values: δf = {0.01, 0.015, 0.1}. The first two values
are considered “high-resolution” cases, and the last is a “normal”
case. We also considered two SNRs = {5, 10}. Therefore, we
have six different scenarios in this first simulation experiment.
For each scenario, we generated 1,000 data sets and applied the
proposed GFI method to each of them, where the number of
fiducial samples for each data set was 10,000.

Recall that, unlike many traditional methods, the proposed
GFI method also provides the generalized fiducial probabilities
r(M |Y ) for all the candidate models, which in turn can be
used to generate the corresponding generalized fiducial proba-
bilities for the number of frequencies p; see Section III-B. These
probabilities provide valuable information about how certain or
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TABLE I
PERCENTAGES OF TIMES THAT DIFFERENT FREQUENCY NUMBERS P WERE

SELECTED BY GFI IN THE SIX DIFFERENT SCENARIOS

TABLE II
EMPIRICAL COVERAGE RATES OF THE CONFIDENCE INTERVALS FOR σ2

OBTAINED BY THE PROPOSED GFI METHOD AND ORACLE

uncertain we are with the estimated results. For the six scenarios,
Table I lists the percentages of times that different frequency
numbers p were selected by the fiducial samples. As expected,
the percentages for choosing the correct p are higher when the
separation δf and/or the SNR are higher. Also, given the high
percentages for selecting the true p = 3, one may conclude that
the GFI estimation results are reliable.

For each data set, we also applied the LIKES method of [31]
and the so-called Oracle method that has the knowledge of the
true p and fl’s. Of course, the Oracle results cannot be obtained
in practice as such knowledge is not available, but they are
used here for benchmark comparisons. Table II provides the
empirical coverage rates of the confidence intervals from Oracle
and the GFI method for σ2 (note that LIKES does not produce
confidence intervals forσ2). One can observe that the GFI results
are comparable to those from Oracle.

We also constructed confidence intervals for the amplitudes
αl’s using all three methods: GFI, LIKES, and Oracle. Note that
for GFI and LIKES, we only used those results where the true
number of frequencies was selected. The empirical coverage
rates of these confidence intervals are reported in Table III. One
can see that the GFI results are slightly worse than those from
Oracle, but in general, are superior to those from LIKES. Also,
very often, GFI produced higher empirical coverage rates with
narrower confidence intervals.

B. Comparison With Bayesian Approach

In this second experiment, the simulation setting is similar
to [14]:! Number of spectral lines: p = 3.! Parameters: f1 = 0.4230, f2 = 0.6875, f3 = 0.7875,

α1 = 1 + 0.1ei2πu1 , α2 = 1 + 0.1ei2πu2 and α3 = 5 +
0.1ei2πu3 , where u1, u2, u3 are randomly chosen from
Unif(0, 1).! Other quantities such as the sampling times are the same
as in the first experiment.

As in [14] we use these two metrics to measure the quality
of the estimation results: the normalized mean-squared-error
(NMSE) of Â (only with those columns selected by the methods)
and the mean-squared-error (MSE) of f = (f1, f2, f3), defined
respectively as

NMSE(Â) = 20 log
(
‖Aβ − Âβ̂‖F /‖Âβ̂‖F

)

and

MSE
(
f̂
)
= 20 log

(
‖f̂ − f‖2

)
,

where ‖ · ‖F is the Frobenius norm for matrices and ‖ · ‖2 is
the L2 norm for vectors. Following [14], MSE(f̂) is calculated
only when both the model order p is correctly estimated and
MSE(f̂) ≤ 0(dB). In addition, we also approximated the prob-
ability that the correct model order p is selected; i.e., P (p̂ = 3).

For each simulated data set, we applied the GFI method and
the MVALSE method of [14] and calculated the above metrics.
Fig. 1 summarizes the results when the number of observations is
fixed atN = 75with changing SNRs = {−5, 0, 5, 10}. One can
observe that when SNR = 10, both methods give comparable
results, while GFI is better for the remaining SNRs. Similarly,
Fig. 2 presents the results when SNR = 2 is fixed for different
values of N = {25, 50, 75, 100, 125}. The results suggest that
GFI is superior.

To sum up, results from these two sets of numerical exper-
iments suggest that the proposed GFI method produces highly
reliable results, and compares favorably with some of the leading
methods in the literature. This agrees largely with the authors’
experience in applying GFI to other problems. A thorough
theoretical study is underway to identify those conditions under
which GFI is expected to produce reliable results.

VI. REAL DATA EXAMPLE: RADIAL VELOCITY ANALYSIS

A. Background

The detection of extrasolar planets, also known as exoplanets,
has always been a challenging and fascinating area in astronomy.
Until the end of 2021, a total of 1274 exoplanets have been
discovered. Popular techniques for exoplanet detection include
radial velocity analysis, the transit method, direct imaging, grav-
itational microlensing, and astrometry minuscule movements;
e.g., [32]. Among these techniques, radial velocity analysis is
one of the most commonly used.

Radial velocity refers to the speed at which an object (in this
case an exoplanet) moves away from Earth (or approaches it,
with a negative radial velocity). Orbiting exoplanets cause the
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TABLE III
EMPIRICAL COVERAGE RATES OF THE CONFIDENCE INTERVALS FOR THE FREQUENCY AMPLITUDES OBTAINED BY

THE PROPOSED GFI METHOD, LIKES, AND ORACLE

Fig. 1. Empirical performances of the MVALSE method [14] and the proposed GFI method with different SNRs and N = 75.

Fig. 2. Empirical performances of the MVALSE method [14] and the proposed GFI method with different N and SNR= 2.
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TABLE IV
ESTIMATED RESULTS FOR STAR HD 63454 OBTAINED FROM

DIFFERENT METHODS

TABLE V
PERCENTAGES THAT DIFFERENT NUMBERS OF EXOPLANETS

WERE SELECTED FOR THE THREE STARS

stars to wobble in space, which in turn changes the color of
the light astronomers observe. This permits an analysis of the
Doppler shifts to confirm if there is any exoplanet revolving
around a star. In order to do so, the radial velocity frequencies and
amplitudes of the stars, need to be estimated. Notice that the ra-
dial velocity measurements are often obtained at non-uniformly
spaced time intervals due to hardware and practical constraints,
which limits the applications of many spectral analysis methods
designed for equally-spaced data.

Here we apply the proposed GFI method to estimate the radial
velocity frequencies and amplitudes of three different stars: HD
63454 [33], HD 208487 [34], and GJ 876 [35]. We note that
the model we use (2) and (4) is simpler than those that are
based on Keplerian’s planetary motion, which also consider
eccentricity and periastron parameters of the orbital planets
thus more accurate; e.g., [32]. We also note that our model is
complex-valued while the radial velocity data are real-valued. To
circumvent this issue, we follow [32] and require both positive
and negative frequencies in the model to represent a real-valued
component. Below we compare our results with those reported
in [32].

B. HD 63454

The radial velocity data set of star HD 63454 contains 26
samples spanning 350 days. The sampling pattern and the radial
velocity measurements are shown in Fig. 3(a) and (b), respec-
tively. The proposed GFI method was applied to the data set and
the results are shown in Table IV, where f represents its orbital
frequency (in cycles day−1) and β represents the corresponding
amplitude. As the results suggest, only one exoplanet was de-
tected whose estimated frequency was 0.3549 cycles day−1 (i.e.,
an orbital period of 2.8176 days), which is the same as in [32].
The GFI estimated amplitude is smaller than the one reported
by [32] but the corresponding GFI confidence interval does cover
it, so overall the GFI results are consistent with those in [32] for
HD 63454. Table V shows the percentages that different numbers
of exoplanets were selected. One can see that for this star the

TABLE VI
SIMILAR TO TABLE IV BUT FOR STAR HD 208487

TABLE VII
SIMILAR TO TABLE IV BUT FOR STAR GJ 876

proposed method is highly confident (99.9%) that there is only
one exoplanet.

C. HD 208487

The data set for star HD 208487 contains 31 samples spanning
2250 days. The sampling pattern and the radial velocity measure-
ments are displayed in, respectively, Fig. 3(c) and (d). The GFI
method only detected one exoplanet with an estimated orbital
frequency of 0.0078 cycles day−1, while 3 detected exoplanets
were reported in [32]; see Table VI. However, as noted in
both [32] and [34], there is no convincing evidence to support
the claim of the existence of the two additional exoplanets for
this star system, so the GFI method provided reasonable results
for HD 208487. Table V also provides strong evidence (around
94%) that there is only one exoplanet for this star.

D. GJ 876

The last data set is for star GJ 876. It consists of 100 samples
spanning 2000 days; see Fig. 3(e) and (f) for the sampling
pattern and the radial velocity measurements, respectively. The
results are shown in Table VII. The GFI method detected 3
exoplanets with orbital frequencies 0.0165, 0.0332 and 0.0666
cycles day−1. A previous study by [35] also detected 3 exoplan-
ets, but with a different orbital frequency (0.516 cycles day−1)
for the last one. The method of [32] detected 5 exoplanets.
However, [32] also suggested that there is no concrete evidence
to support the existence of the additional 2 exoplanets. In any
case, all these methods agreed on the first 2 exoplanets in this
star system. The uncertainty information in Table V also sug-
gests that there are three exoplanets, but with lower confidence
(around 85%). This indicates that for this star, the true number
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Fig. 3. Sampling times tk’s (left column) and radial velocity measurements Y (tk)’s (right column) for stars HD 63454 (top row), HD 208487 (middle row), and
GJ 876 (bottom row).

of exoplanets is more challenging to estimate, as can be seen
from the very different results obtained from previous studies.

VII. CONCLUDING REMARKS

This paper developed a new method to perform statistical
inference on the line spectral estimation problem. The proposed
method is based on the approach of generalized fiducial infer-
ence. In greater detail, a procedure was developed to generate
fiducial samples from a so-called generalized fiducial density for

a set of candidate models. This generalized fiducial density plays
a similar role as the posterior density in the Bayesian context.
Its samples (i.e., fiducial samples) can be used to perform statis-
tical inferences such as forming point estimates and confidence
intervals. The proposed method was shown to enjoy desir-
able asymptotic properties under some regularity conditions.
Through numerical experiments, it was also demonstrated that
the proposed method possesses promising empirical properties
and often outperforms existing methods in the literature. Lastly,
the proposed method was applied to analyze three radial velocity
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data sets in the context of exoplanet detection and yielded similar
results as those reported in the astronomy literature.

Recall that our method is an example of semi-parametric
method, which can be further divided into three categories [36]:
on-grid, off-grid, and gridless. The on-grid methods require a
pre-selected grid and the true frequencies to be one of the grid
values. Our method can be classified as on-grid. However, as
mentioned in Section I and demonstrated by the simulation
experiments in Section V, our method can handle the situation
when some of the true frequencies do not fall on the grid, by
suitably choosing the values of K and ∆. For off-grid methods,
they also require a grid, which is estimated jointly with the
sparse signals. Consequently, more variables are needed to be
estimated, which increases the dimension of the problem. The
last category of gridless methods does not require any grid
when compared with the first two categories. However, they are
typically designed for equally spaced sampled data, which may
restrict their applicability. We believe that GFI can be applied to
these methods, but the form of the structural equation (5) will
need to be formulated differently. Overall, we are confident that
the GFI approach can be applied to these off-grid and gridless
methods. The main challenge will be the development of a
practical algorithm for generating the fiducial samples. These
are left for future work.

APPENDIX A
OBTAINING M∗

This appendix presents our method for obtaining M∗. Recall
that an ideal M∗ should only contain those models that have a
non-negligible value of r(M |Y ). Our method consists of two
stages. The first stage applies a fast algorithm to traverse the
space of M to obtain a set of non-negligible models, where the
true model will be included with high probability. In the second
stage, we obtain more models by data perturbation and add these
models to M∗. Notice that we are not choosing the models by
comparing their values of r(M |Y ) with a threshold.

Stage 1: In the context of ultra-high dimensional regression,
the lasso algorithm [37] has been applied by [26] to obtain a
M∗. The idea is that, by changing the lasso tuning parameter,
a sequence of models (also known as a solution path) will be
generated, and all these models form M∗. We shall follow
this idea in the first stage of our method. However, due to
the complex-valued coefficients, the lasso algorithm cannot be
directly applied, as it does not guarantee to select both the real
and imaginary parts of a complex coefficient simultaneously. To
circumvent this, one can use for example the complex lasso [38].
Below, however, we shall re-express the problem and apply the
group lasso algorithm of [39].

First, express the lasso problem as:

min
β

(
1

2
‖Xβ − y‖22 + λ‖β‖∗1

)
, (19)

where X = 0(X) + i1(X) ∈ CN×K , y = 0(y) + i1(y) ∈
CN , β = 0(β) + i1(β) ∈ CK , and

‖β‖∗1 =
n∑

j=1

√
0(β))2j + 1(β)2j ,

with 0(β),1(β) ∈ R and j = 1, . . . , n. Minimizing (19) with
different values ofλwill give different models. However, as sug-
gested before, there is no guarantee that all the resulting models
are legitimate in the sense that the corresponding estimates in
0(β) and 1(β) are both zeros or non-zeros.

Now we can re-express

‖Xβ − y‖22 = ‖0(X)0(β)−1(X)1(β)−0(y)‖22
+ ‖0(X)1(β) + 1(X)0(β)−1(y)‖22

=

∥∥∥∥∥

(
0(X) −1(X)

1(X) 0(X)

)(
0(β)
1(β)

)
−
(
0(y)
1(y)

)∥∥∥∥∥

2

2

and (19) becomes

min
β

(
1

2
‖X̃β̃ − ỹ‖22 + λ‖β̃‖2,1

)
(20)

with X̃ =

(
0(X) −1(X)

1(X) 0(X)

)
, ỹ =

(
0(y)
1(y)

)
, β̃ =

(
0(β)
1(β)

)

and ‖β‖2,1 =
∑n

j=1

√
0(β)2j + 1(β)2j . With the above, we can

apply the group lasso algorithm to (20) to generate different
models with different values of λ. In practice, we observe that
the true model was almost always included as one of the models
generated by this algorithm.

Stage 2: To achieve theoretical guarantee, in the second stage,
we apply the adaptive group lasso algorithm to generate more
models, which was shown by [40] that the true model will be se-
lected consistently. We can also obtain more models by applying
the group lasso algorithm to various re-sampled data sets [41],
so that in practice most non-negligible models are included in
M∗. We can yet further enrich M∗ by adding solutions from
other methods to M∗, such as SPICE [42] and GIST [43]. By
doing so, we expect the size of M∗ to be much smaller than
the size of M (which is 2K ) and yet

∑
M∈M∗ r(M |Y ) is close

to 1.
Lastly, we note that before we generate the fiducial samples,

the model parameters will be re-fitted using maximum likeli-
hood, and therefore the parameter estimation bias from group
lasso will not be carried over.

APPENDIX B
PROOF AND TECHNICAL DETAILS

This appendix proves Theorem 4.1. When compared to earlier
theoretical results in GFI, a major difference is that the current
work considers complex-valued coefficients and responses. We
begin by presenting three lemmas.

A. Lemmas

Lemma B.1: If log j/log p → δ as p → ∞, then log
(p
j

)
=

j log p(1− δ)(1 + o(1)).
Proof: First, calculate

(p
j

)
= p!

j!(p−j)! =
p(p−1)···(p−j+1)

j! =
pj(1− 1

p )(1−
2
p )···(1−

j−1
p )

j! and we have

(
1− j − 1

p

)j−1

<

(
1− 1

p

)(
1− 2

p

)
· · ·
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(
1− j − 1

p

)
<

(
1− 1

p

)j−1

.

By sterling’s formula,
√
2πjj+1/2e

−j+1
12j+1 < j! <

√
2πjj+1/2e

−j+1
12j

so we have

log
(p
j

)
≤ j log p+ (j − 1) log

(
1− 1

p

)
− log j!

≤ j log p+ (j − 1) log

(
1− 1

p

)

−
(
j +

1

2

)
log j + j − 1

12j + 1
− log

√
2π

≤ j log p−
(
j +

1

2

)
log j + j

= j log p

[
1−

(
j + 1

2

)
log j

j log p
+

1

log p

]

= j log p(1− δ)(1 + o(1))

and

log
(p
j

)
≥ j log p+ (j − 1) log

(
1− j − 1

p

)

−
(
j +

1

2

)
log j + j − 1

12j
− log

√
2π

≥ j log p+ (j − 1) log

(
1− j − 1

p

)

−
(
j +

1

2

)
log j − log

√
2π

= j log p



1 +
(j − 1) log

(
1− j−1

p

)

j log p





− j log p

((
j + 1

2

)
log j

j log p
− log

√
2π

j log p

)

= j log p(1− δ)(1 + o(1)),

which completes the proof. !
Lemma B.2: Let χ2

j be a chi-square random variable with j

degrees of freedom. If c → ∞ and J
c → 0, then

P
(
χ2
j > c

)
=

1

Γ
( j
2

)
( c
2

)k/2−1
e−c/2(1 + o(1))

uniformly over j ≤ J .
Proof: The pdf of χ2

j is f(x) = 1

2
j
2 Γ( j

2 )
x

j
2−1e−

x
2 , so

P
(
x2
j > c

)
=

∫ ∞

c

(
1
2

) j
2

Γ
( j
2

)x
i
2−1e−

x
2 dx

=

(
1
2

) j
2

Γ
( j
2

)
∫ +∞

c
x

j
2−1e−

x
2 dx.

Now calculate
∫ ∞

c
x

j
2−1e−

x
2 dx =

∫ ∞

c
x

j
2−1(−2)de−

x
2

= (−2)x
j
2 − e−

x
2

∣∣∞
c

−
∫ ∞

c
e−

x
2 (−2)

(
j

2
− 1

)
x

j
2−2dx

= (j − 2)

∫ +∞

c
x

j
2−2e−

x
2 dx+ 2c

j
2−1e−

c
2 .

Therefore

Fj(c) = P
(
X2

j > c
)
=

(
1
2

) j
2−1

Γ
( j
2

) c
j
2−1e−

c
2

+

(
1
2

) j
2

Γ
( j
2

) (j − 2)

∫ ∞

c
x

j
2−2e−

x
2 dx

=

(
1
2

) j
2−1

Γ
( j
2

) c
j
2−1e−

c
2 + Fj−2(c).

So if j is even,

Fj(c) =
1

Γ
( j
2

)
( c
2

) j
2−1

· e−
c
2



1 +

j−2
2∑

i=1

(( j
2 − 1

)
· · ·
( j
2 − i

)

(c/2)i

)



and if j is odd,

Fj(c) =
1

Γ
( j
2

)
( c
2

) j
2−1

· e−
c
2



1 +

j−3
2∑

i=1

(( j
2 − 1

)
· · ·−

( j
2 − i

)
(
c
2

)i

)

 ,

+ F1(m),

where

F1(c) = P (χ2
1 ≥ c) ≈ 2

exp
(
− c

2

)
√
2πc

=
1

Γ
( j
2

)
( c
2

) j
2−1

e−
c
2

2T
( j
2

)

√
2π
(
c
2

) j−1
2

.

Now when c → ∞, we have

Fj(c) =
1

Γ
( j
2

)
( c
2

) j
2−1

e−
c
2 [1 +R(j, c)].

Finally, it is straightforward to see that R(j, c) ≤ R(J, c) → 0
as c → ∞, which completes the proof. !

Lemma B.3: Let χ2
j be a chi-square random variable with j

degree of freedom. Let cj = 2jlog p+ log(j log p). If p → ∞,
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then for any J ≤ p,

J∑

j=1

(p
j

)
P (χ2

j > cj) → 0.

Proof: Here we can directly apply Lemma B.2. Let qj =√
cj

(j log p)2 , by using
(p
j

)
≤ pj , we have

(p
j

)
P
(
x2
j > cj

)
=
(p
j

)
( cj

2

) j
2−1

e−
cj
2

Γ
( j
2

) (1 +O(1))

≤(cj)
j
2−1 pje−

1
2 ·2j(log p+log(j log p))

2
j
2−1Γ

( j
2

) (1 + o(1))

=(cj)
j
2−1 (1 + o(1)) · p

je−j log p−j log(j log p)

2
j
2 − 1Γ

( j
2

)

=(cj)
j
2−1 (1 + o(1)) · (j log p)

−j

2
j
2−1Γ( j2 )

.

Let

qj =

√
cj

(j log p)2
≤ (cj)

j
2−1

(j log p)j
(1 + o(1)) ≤

qjj
cj
(1 + o(1))

and therefore

J∑

j=1

(p
j

)
P (χ2

j > cj) ≤
J∑

j=1

qjj
cj
(1 + o(1))

qj→0−→ 0,

which completes the proof. !

B. Proof of Theorem 4.1

Denote M as the collection of models for which (16) holds.

We shall prove that maxM
r(M)
r(M0)

P−→ 0. Without loss of gener-
ality, we assumeσ2 = 1. We write |M0| = m0, |M | = m, where
m0 = o(N) and m = o(N). For simplicity, we can rewrite

r(M)

r(M0)
= exp{−T1 − T2 − T3},

where

T1 =

(
N −m− 1

2

)
log

RSSM

RSSM0

,

T2 =
m−m0

2
log n+ (m−m0) log πRSSM0

+ log
Γ(N −m0)

Γ(N −m)
+ γ log

(K
m

)
− γ log

(K
m0

)

and

T3 = −1

2
log

[det(AH
M0

AM0)]

[det(AH
MAM )]

.

Next we consider the following two cases:
Case 1: M0 -⊂ M .

Let M| = {M : |M | = j,M ∈ M}. Notice that RSSM0 =
(N −m0)(1 + op(1)) = N(1 + op(1)),

RSSM − RSSM0 = ∆M + 2µH(I − PM )ε− εHPMε

+ εH(I − PM0)ε,
(21)

where µ = AM0βM0
, ∆M = ||(I − PM )µ||2 and εHPM0ε

= m0(1 + op(1)).
First consider the second term in (21) and denote ZM =

µH(I − PM )ε/
√
∆M , we have

µH (I − PM ) ε =
√
∆MZM ,

where ZM ∼ CN (0, 1). Let cj = j{logK + log j logK}. For
simplicity, we denote c|M | by cm. Then by Lemma B.3

P
(
max
M

|ZM/
√
cm| > 1

)
≤

bm0∑

j=1

∑

Mj

P (Z2
M > cj)

=
bm0∑

j=1

(K
j

)
P

(
χ2
2

2
> cj

)

≤
bm0∑

j=1

(K
j

)
P (χ2

j > 2cj)

→ 0.

Therefore,

|µH(I − PM )ε| ≤
√

∆M |ZM | ≤
√

∆M
√
cM (1 + op(1))

uniformly over M. Since cm = o(m0 logK) and the identifi-
ability condition (16) states m0 log(K) = op(∆M ) uniformly
over M s.t. M0 -⊂ M ,

|µH(I − PM )ε| = op(∆M ).

Next, we consider the third term in (21). By Lemma B.3 again,
we have

P
(
max
M

εHPMε/cm > 1
)

≤
km0∑

j=1

∑

Mj

P
(
εHPMε > cj

)

≤
km0∑

j=1

(K
j

)
P
(
χ2
j > 2cj

)
→ 0.

So εHPMε ≤ cm(1 + op(1)), and εHPMε = op(∆M ) uni-
formly over M s.t. M0 -⊂ M . Therefore

RSSM − RSSM0 = ∆(M)(1 + op(1))

and we have

log

(
RSSM

RSSM0

)
= log

(
1 +

RSSM − RSSM0

RSSM0

)

= log

(
1 +

∆(M)

N
(1 + op(1))

)

uniformly over all M ∈ M s.t. M0 -⊂ M . Thus

T1 =

(
N −m− 1

2

)
log

(
RSSM

RSSM0

)
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=

(
N −m− 1

2

)
log

(
1 +

∆(M)

N
(1 + op(1))

)

=
2N (op(1)+1)

2
·∆(M)

N
(1+op(1))=∆(M)(1+op(1))

uniformly for M ∈ M such that M0 -⊂ M .
Also,

(m−m0) log(πRSSM0) + log
Γ(N −m0)

Γ(N −m)

= (m−m0) logN(1+op(1))+(m−m0) logN(1 + op(1))

= 2(m−m0) logN(1 + op(1)).

Finally, we have

T2 =
5

2
(m−m0) logN(1 + op(1))− γ log

( p
m0

)
+ γ log

(K
m

)

≥ −5

2
m0 logN(1 + op(1))− γm0 logK.

Case 2: Let M∗ = {M ∈ M,M0 ⊂ M,M -= M0} and
M∗

j = {M, |M | = j,M0 ⊂ M}. First notice that when M0 ⊂
M , we have RSSM0 − RSSM = 1

2χ
2
2(m−m0)

(M), where
χ2
2(m−m0)

(M) is a chi-square distribution with 2(m−m0)

degrees of freedom depending on M . Write cj = j{logK +
log(j logK)}. Then by Lemma B.3 we have

P

(
max

1≤j≤bm0−m0

max
M∈M∗

j

χ2
j (M) /2cj ≥ 1

)

≤
bm0−m0∑

j=1

P

(
max
M∈M∗

j

≥ 2cj

)

=
bm0−m0∑

j=1

(K−m0

j

)
P
(
χ2
j (M) ≥ 2cj

)

≤
bm0−m0∑

j=1

(K
j

)
P
(
χ2
j ≥ 2cj

)
→ 0,

which implies

χ2
2(m−m0)

(M) ≤ 2c2(m−m0) (1 + op (1)) .

Notice that 2c2(m−m0) = o(N), and therefore
(
N −m− 1

2

)
log

(
RSSm

RSSM0

)

= −
(
N −m− 1

2

)
log

(
1 +

1
2χ

2
2(m−m0)

(M)

RSSM0 − 1
2χ2(m−m0)

2(M)

)

≥
(
N −m− 1

2

)
log

(
χ2(m−m0)

2(M)

2RSSM0 − χ2
2(m−m0)

(M)

)

≥ −
c2(m−m0)

2
(1 + op (1)) ≥ −2 (m−m0)

×
[
1 +

log{(bm0 −m0) logK}
logK

]
logK (1 + op (1))

≥ − 2 (m−m0) (1 + δ) logK (1 + op (1))

uniformly over M∗. Consequently, we have shown that

T1 ≥ −2 (m−m0) (1 + δ) logK (1 + op (1))

uniformly over M∗. By Lemma B.1, for m0 < m < bm0, we
have

log
(K
m

)
= (1− δ)m logK(1 + o(1))

uniformly over M∗. So

T2 =
5

2
(m−m0) logN(1− op(1))

+ γ(1− δ)(m−m0) logK(1 + o(1))

uniformly over M∗.
Finally, we have

max
M -=M0,M∈M

r(M)

r(M0)
= max

{
max
M0 -⊂M

exp (−T1 − T2 − T3),

max
M0⊂M

exp(−T1 − T2 − T3)

}
.

As T3 = − 1
2 log

[det(AH
M0

AM0 )]

[det(AH
MAM )]

and under the identifiability

condition (16), where we only consider |M | ≤ b|M0|, we have
T3 > −∞. Together with the above analysis, we have

max
M0 -⊂M

exp(−T1 − T2 − T3)
P→ 0, (22)

since min
M0 -⊂M

{T1 + T2 + T3} → ∞. Also,

max
M0⊂M

exp(−T1 − T2 − T3) → 0, (23)

as min
M0⊂M

T1 + T2 + T3 → ∞ if γ > 1+δ
1−δ − 5η

2(1−δ) , which is

guaranteed by the assumption.
So (22) and (23) together show that

max
M -=M0,M∈M∗

r(M)

r(M0)
P−→ 0.

"
Moreover, if condition (18) holds, we have

∑

M -=M0,M∈M∗

r(M)

r(M0)
≤

km0∑

j=1

∑

M∗

r(M)

r(M0)

≤ km0 max
M -=M0,M∈M∗

|M ∗
j |

r(M)

r(M0)
P−→ 0

which shows that r(M0)
P−→ 0 over the class M∗.
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