2022 5th International Conference on Artificial Intelligence for Industries (AI41) | 978-1-6654-5961-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/A14154798.2022.00015

2022 5th International Conference on Artificial Intelligence for Industries (AI4I)

Channel Pruning in Quantization-aware Training: an
Adaptive Projection-gradient
Descent-shrinkage-splitting Method

Zhijian Li
Department of Mathematics
University of California, Irvine
Irvine, USA
zhijil2 @uci.edu

Abstract—We propose an adaptive projection-gradient descent-
shrinkage- splitting method (APGDSSM) to integrate penalty
based channel pruning into quantization-aware training (QAT).
APGDSSM concurrently searches weights in both the quantized
subspace and the sparse subspace. APGDSSM uses shrinkage
operator and a splitting technique to create sparse weights, as
well as the Group Lasso penalty to push the weight sparsity into
channel sparsity. In addition, we propose a novel complementary
transformed [; penalty to stabilize the training for extreme
compression.

Index Terms—convolutional neural network, quantization,
channel pruning, LASSO,

I. INTRODUCTION

Convolutional neural networks (CNNs) have been widely
used for computer vision tasks such as image classification
and segmentation. To increase efficiency and reduce memory
costs in mobile and IoT applications, network compression
is necessary. Quantization and channel pruning are two com-
monly adopted methods. QAT searches the optimal weight
in the quantized subspace. For a CNN with L convolutional
layers, let w = {wy, -+ ,wr} be weight tensors structured
in (height, width, channel) per layer. The subspace of m-bit
(m > 2) quantization @ € R" is

Q=Rx{0,£1,£2,--- 7i2m71}n

Given an objective function £, the quantization problem is
argmin .o £(u) for which [4] proposed a widely used QAT
algorithm based on an auxiliary float weight w to perform
QAT. With learning rate -, it can be formulated as

w +w —yVL(u), u+ Projg (w) (1)

where the Proj Q() is the projection that maps the float weight
into the quantized subspace. For a theoretical convergence
analysis of (1) and a relaxed formulation with improved
performance , see [16]. Channel pruning is a structured com-
pression well-studied by itself ([3], [5], [10], [13], [14] and
references therein). Integrating QAT into adversarial training

This work is partly supported by NSF grants DMS-1854434, DMS-
1952644, DMS-1924548.

978-1-6654-5961-7/22/$31.00 ©2022 IEEE
DOI 10.1109/A14154798.2022.00015

31

Jack Xin
Department of Mathematics
University of California, Irvine)
Irvine, USA
jack.xin@uci.edu

and studying the sparsity of quantized models are performed
in [9]

The main contribution of our work here is to propose
an integrated objective to do channel pruning and weight
quantization in one shot. This is achieved by minimizing
a new objective function with group sparse penalty over ()
through an adaptive splitting, projection, gradient descent and
proximal operations (APGDSSM algorithm). The adaptive step
is to avoid weights in a layer all becoming very small, or
fix potential model collapse when trained by the integrated
steps of the algorithm. Besides adapting training schedule,
we also found a new penalty, the so called complementary
transformed-¢; (CT/;), to steer weights away from the trivial
state in each layer. Using CT/¢;) gives more room to trade-
off accuracy for efficiency than adapting training schedule.
Experimental results on CIFAR-10, CIFAR-100, and Imagenet
support our proposed methodology and framework.

II. RELATED WORK

For a loss function [, the Lasso regularized problem is
L(w) =1(w)+ A|w]|1. 2)

It is well-known that Lasso regularization does parameter
selection for the model, and several approaches exist for
solving problem (2). In [1], an iterative algorithm of proximal
operator (FISTA) solves (2), where the proximal operator for a
penalty function g is defined as Prox,(w) = argmin, g(u) +
[lu — x|[%. The algorithm is:

wit! = Prox, (w' — 4V f(w?"))

where
Proxy (z) = sgn(z) - max (|z] — A, 0).

An alternative method to solve (2) is the Alternating Direc-
tion Method of Multipliers (ADMM), through an augmented
Lagrangian (Boyd et al. [2]):

L(w,u,2) = f(W)JrMIllHl+<27W—U>Jrgllw—u\l2)

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

ADMM is adapted to neural network training in [12], [15].
The convergence theorems of ISTA and ADMM require both
the loss function and penalty function to be convex, which
does not apply to deep neural networks. The relaxed splitting
variable method (RSVM, [6]) sparsifies non-convex neural
networks by minimizing a simplified augmented Lagrangian:

B
Dya(w,u) = f(w) + Allulls + Sf[u - wlf”.
RVSM updates weights as

w < w =V f(w) —y6(w — u), u < Prox, 5(w) (4)

which extends to non-differential penalties (e.g. fo) with the
corresponding proximal operator. The RVSM does not require
convex or differentiable penalty function for convergence [6],
and it applies to adversarially trained networks [5]. Though
models trained by RVSM usually have unstructured sparsity
with limited channel sparsity, RVSM extends readily to a
group-wise variable splitting method (RGSM, [14]) based on
Group Lasso (GL) penalty:

L

llwller = ZZ [Jwiil2

l=114el;

to increase channel sparsity, where I; is the collection of
channels in the [-th layer. GL penalty with its proximal
operator in closed form is applied channel-wise in network
training to realize sparse channels [5], [14]. In [11], RGSM
and QAT are combined in a multi-stage process to achieve
both channel pruning and binary weights.

III. METHODOLOGY AND APGSSM ALGORITHM

To train quantized neural networks with sparse channels,
we proposed an algorithm to concurrently search the optimal
weights in the quantized subspace and the sparse subspace, as
shown in Algorithm 1. The objective is

min L(u) = l(u) + /\2||L1||GL + /\1||u||1
ueQ

(&)

The procedure of training is shown in Algorithm 1. We note
that the Lasso regularization term in equation (5) is imposed
implicitly; the [; penalty does not contribute to the gradient.
Instead, we use the shrinkage operator to minimize it. For
parameters, we use symbols against the epoch number ¢, e.g.
AL, to indicate that there is an adaptive scheme for the values.

This algorithm concurrently searches both the quantized
subspace and the subspace of sparse weight (with small [y
norm). We can either use only shrinkage operator (APGDSM)
or use it together with the splitting (APGDSSM). The splitting
term updates the gradient descent of 5||w* — uf||?, which
makes the float weight w' close to the quantized weight u’.
Since u! is much more sparse than w', the splitting step
renders w! with more small elements, which strengthens the
performance of the following shrinkage operator. However,
pushing w? close to u’ can jeopardize the performance, as
it is not the descending direction guided by gradient.

32

Algorithm 1 APGDSM and APGDSSM
Input: Float weights w®. Hyperparameters A1, Az, 3.
Output : Quantized weights w.
for t =1,---,200 do:
u! = Projgo(w')
f(u') = 1(u") + A5[[u’llar
w! =w!"! —aVf(u)
if Splitting then:

> Split if APGDSSM

wt = wt — 4134wt —ut)
end if
w' = Proxy: (w})

end for

u = Projg(w?%)

TABLE I
ADAPTIVE SCHEME FOR THE PARAMETERS IN ALGORITHM 1. AT EPOCHS
LISTED IN THE LEFT-SIDE COLUMN, WE MULTIPLY THE PARAMETERS BY
THE FATCOR IN THE RIGHT-SIDE COLUMN

Epoch | Factor for A\1&M\2 | Factor for 8
35 0.5 0.5
70 0.2 0.2
110 0.5 0.1
150 0.5 0.1

IV. IMPLEMENTATION AND EXPERIMENTS

We use the standard adaptive scheme for the learning rate
~*. The initial learning rate is 0.1, and we multiply the learning
rate by a factor of 0.1 at epochs 80, 120, and 160. During the
training, we need to change the scale of the regularization
parameters to fit the current learning rate. For both Aq, Ao,
and (3, we empirically design a scheme to adapt the values of
parameters. The reason we have a different adaptive scheme
from the learning rate is that the training has a high probability
to collapse if the parameters are re-scaled too late. As in
Algorithm 1, all GL regularization, shrinkage operator, and
splitting terms drive the weights to be sparse, which can lead
the neural network to reach 100% channel sparsity at some
point. When it happens, the training collapses as the cross-
entropy loss becomes infinity.

V. RESULTS

We validate Algorithm 1 in CIFAR10 and CIFAR100 with
ResNet ([8]). The results are shown in Table II. As the table
shows, the GL penalty and the shrinkage operator can signif-
icantly improve the weight sparsity and the channel sparsity
with minor reduction on accuracy. The splitting step before
the shrinkage operator can greatly improve the sparsity. Of
course, the model performance would be somewhat affected.

Meanwhile, we numerically verify the convergence of the
sparsity in Figure 2. Although the weight sparsity will decease
every time the values of parameters updated, the channel
sparsity has a nice convergence along training. The channel-
wise GL penalty is the key to push the weight sparsity created
by shrinkage and potential splitting into channel sparsity. In
Figure 3, we show the comparison of a float ResNet56 and a 4-

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

0.15

005

0.00

-0.05

-0.10

100 200

300

400 500

Fig. 1. Visualization the 45th layer of a float resnet56 (bottom) and a 4-
bit resnet56 pruned by APGDSSM (top). The layer originally has shape
[64,64,3,3] and is permuted and reshaped to shape 64x576 for visualization.
Each row of the plots represents a channel.

S
—

f
..

—4— APGDSM Weight

=4#= APGDSSM Weight
-+ APGDSM Channel
<= APGDSSM Channel

5 Sb ke lTIS ZE'!U
Fig. 2. Weight sparsity and channel sparsity against epochs. The weights
sparsity deceases at milestones of the adaptive schemes, while the channel
sparsity has smooth convergence

TABLE II
4-BIT QUANTIZED MODELS WITH PRUNING METHODS ON CIFAR-10
DATASET. THE INITIAL VALUES OF PARAMETERS ARE
Al =0.04,7\] =5.e — 6,8 = 1.e — 3. FOR CIFAR-10 AND
Al =0.02,\} = 5e — 6,8 = le — 3 FOR CIFAR-100

Model | Pruning | Ch.sp | Wt.sp | Accuracy |

CIFAR-10

Resnet20 None 9.53% 42.73% 91.75%

Resnet20 APGDSM 14.67% | 72.68% 91.53%

Resnet20 APGDSSM | 24.56% | 85.04% 90.64%

Resnet56 None 25.16% | 61.83% 93.24%

Resnet56 APGDSM 52.76% | 78.11% 92.58%

Resnet56 APGDSSM | 64.28% | 84.59% 91.69%
CIFAR-100

Resnet110 None 24.63% | 53.20% 71.74%

Resnet110 APGDSM 33.61% | 69.44% 71.68%

Resnet110 | APGDSSM | 36.62% | 85.04% 71.59%

bit ResNet56 pruned via APGDSSM. We see that the channels
are largely pruned in most layers.

VI. EFFICIENCY AND ACCURACY TRADE-OFF

As we mentioned in the previous sections, the training
might collapse if the adaptive scheme and parameter values are
selected carelessly. In order to further compress the models, we
propose a complementary transformed-l; (CTL;) penalty to
prevent the training from collapse. This penalty is inspired by

33

the transformed /; (TL;) regularization in robust compressed
sensing [17]. We define

||
a+ |x|
We remark that || - ||c7r,q is not a norm but only a regulariza-
tion. We abuse the norm notation here for convenience. Note
that

Hm”CTLha =1—pa(z)=1-

1 z=0

x o=1—lz|lo =
lellern,a =1 llello= 10 =~ ¢

lim
a—0t
For small choice of a, the value of ||z||c7r, . is negligible
when |z| is large. The behavior of the CTL; penalty is
illustrated in figure 4. To prevent the neural network from
having a zero layer, we apply it to each layer of our model
L
>
=1
By imposing this CTL; penalty, we force each layer to have
some nonzero weights, so the training will not collapse. The
augmented objective is

min L(u) := f(u) +Xof[uller + Asllullerr, +Adllulls (6)

[[wi] 2

w = -
|| HCTL1,a a+||wl”1

As a result, we can have more ’aggressive’ choices for the
values of parameters and the adaptive scheme to further
pruning the neural networks.

Algorithm 2 APDSSM with CT/; penalty

Input: Float weights w®. Hyperparameters Ai, Ag, /3.
Output : Quantized weights u.
for t =1,---,200 do:
u’ = Projo(w')
fu') = 1(u') + v Xl [u'ller + As|0’llerr, qta
wt = wi~! — 4V f(ut)
t

w!=w!—4ff(w' —u)
w' = Prox, (whi™')
end for
u = Projg(w?0)

TABLE III
THE STRONGER PRUNING SCHEME STABILIZED BY CTl; PENALTY
A1 = 0.2, 8 =0.01; R.=RESNET.

Model | Ag initial | Ch.sp | Wt sp | Accuracy

CIFAR-10
R.56 1.5-1073 [73.67% | 95.80% 90.27%
R.56 51073 82.90% | 96.70% 88.71%
CIFAR-100
R.110 5.10~7 55.12% | 80.07% 70.75%
R.110 1-1073 58.06% | 80.75% 70.16%

In Algorithm2, we let the parameters A;, and A, A3 and
[have the same adaptive scheme by multiply it by the
learning rate. This scheme makes the parameters decrease
slower. Hence, as shown in Table III, the channel sparsity
increases significantly. The CTi; penalty allows us to further
trader-off the performance to efficiency based on our needs.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

BN Orginal
801 mmm Pruned

&

]

Number of Channels

3

10

12345678 910111213141516171819 2021 222324 252627 2629 303132 3334 353637 353940 414243 444546 47 45 4950 5152 5354 55

Fig. 3. The blue bars are the numbers of channels in layers of float ResNet56. The orange bars are the numbers of channels in layers of pruned 4-bit model

by APGDSSM. The 55 of the 56 layers in ResNet56 are convolutional.

70'20 70715 70f10 7Uf05 DbO D.bS

||

a+t|z|

Fig. 4. CTl; penalty 1 — for different values of a.

VII. CONCLUSION

In this paper, we proposed APGDSSM to integrate the
penalty based channel pruning and QAT. We remark that
relaxations of QAT ([7], [16]) will lead to sub-optimal
outcomes, because such methods search the sparse subspace
first and then find local optimal quantized weights around
the searched sparse weights. The two subspaces need to be
searched concurrently from the beginning. We verify that
APGDSSM can deliver sparse quantized neural network with
minor trader-off for performance. Further, we designed an
auxiliary complementary transformed [; penalty to prevent
training from collapsing, so we can trade more performance
for efficiency if needed.

REFERENCES

Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging
sciences, 2(1):183-202, 2009.

Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and
statistical learning via the alternating direction method of multipliers.
Now Publishers Inc, 2011.

Kevin Bui, Fredrick Park, Shuai Zhang, Yingyong Qi, and Jack Xin.
Nonconvex regularization for network slimming: Compressing cnns even
more. In International Symposium on Visual Computing, pages 39-53.
Springer, 2020.

Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123-3131, 2015.

34

[5

[7]

[8

[10]

(1

(12

[13]

[14]

[15]

[16]

[17]

Thu Dinh, Bao Wang, Andrea Bertozzi, Stanley Osher, and Jack Xin.
Sparsity meets robustness: channel pruning for the Feynman-Kac for-
malism principled robust deep neural nets. In International Conference
on Machine Learning, Optimization, and Data Science, pages 362-381.
Springer, 2020.

Thu Dinh and Jack Xin. Convergence of a relaxed variable splitting
method for learning sparse neural networks via ¢1, £o, and transformed-
£y penalties. In Proceedings of SAI Intelligent Systems Conference,
pages 360-374. Springer, 2020.

Tim Dockhorn, Yaoliang Yu, Eyyiib Sari, Mahdi Zolnouri, and Vahid
Partovi Nia. Demystifying and generalizing binaryconnect. Advances in
Neural Information Processing Systems, 34, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pages 770-778,
2016.

Zhijian Li, Bao Wang, and Jack Xin. An integrated approach to produce
robust deep neural network models with high efficiency. In International
Conference on Machine Learning, Optimization, and Data Science,
pages 451-465. Springer, 2021.

Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.
Rethinking the value of network pruning. In /CLR, 2019.

Jiancheng Lyu and Spencer Sheen. A channel-pruned and weight-
binarized convolutional neural network for keyword spotting. In Le Thi
H., Le H., Pham Dinh T., Nguyen N. (eds), Advanced Computational
Methods for Knowledge Engineering. ICCSAMA 2019. Advances in
Intelligent Systems and Computing, volume 1121. Springer, Cham, 2020.
Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel,
and Tom Goldstein. Training neural networks without gradients: A
scalable admm approach. In International conference on machine
learning, pages 2722-2731. PMLR, 2016.

Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.
Learning structured sparsity in deep neural networks. In Advances in
neural information processing systems, pages 2074-2082, 2016.

Biao Yang, Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin.
Channel pruning for deep neural networks via a relaxed groupwise split-
ting method. In IEEE International Conference on Artificial Intelligence
for Industries, pages 97-98, 2019.

Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts,
Huan Zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin.
Adversarial robustness vs. model compression, or both? In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages
111-120, 2019.

Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong
Qi, and Jack Xin. BinaryRelax: A Relaxation Approach for Training
Deep Neural Networks with Quantized Weights. SIAM Journal on
Imaging Sciences, 11(4):2205-2223, 2018.

Shuai Zhang and Jack Xin. Minimization of transformed ¢ penalty:
Closed form representation and iterative thresholding algorithms. Comm.
Math Sci., 15(2):511-537, 2017.

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

