
Channel Pruning in Quantization-aware Training: an

Adaptive Projection-gradient

Descent-shrinkage-splitting Method

Zhijian Li

Department of Mathematics

University of California, Irvine

Irvine, USA

zhijil2@uci.edu

Jack Xin

Department of Mathematics

University of California, Irvine)

Irvine, USA

jack.xin@uci.edu

Abstract—We propose an adaptive projection-gradient descent-
shrinkage- splitting method (APGDSSM) to integrate penalty
based channel pruning into quantization-aware training (QAT).
APGDSSM concurrently searches weights in both the quantized
subspace and the sparse subspace. APGDSSM uses shrinkage
operator and a splitting technique to create sparse weights, as
well as the Group Lasso penalty to push the weight sparsity into
channel sparsity. In addition, we propose a novel complementary
transformed l1 penalty to stabilize the training for extreme
compression.

Index Terms—convolutional neural network, quantization,
channel pruning, LASSO,

I. INTRODUCTION

Convolutional neural networks (CNNs) have been widely

used for computer vision tasks such as image classification

and segmentation. To increase efficiency and reduce memory

costs in mobile and IoT applications, network compression

is necessary. Quantization and channel pruning are two com-

monly adopted methods. QAT searches the optimal weight

in the quantized subspace. For a CNN with L convolutional

layers, let w = {w1, · · · , wL} be weight tensors structured

in (height, width, channel) per layer. The subspace of m-bit

(m ≥ 2) quantization Q ∈ Rn is

Q = R× {0,±1,±2, · · · ,±2m−1}n

Given an objective function L, the quantization problem is

argmin
u∈Q L(u) for which [4] proposed a widely used QAT

algorithm based on an auxiliary float weight w to perform

QAT. With learning rate γ, it can be formulated as

w ← w − γ∇L(u), u ← ProjQ (w) (1)

where the ProjQ(·) is the projection that maps the float weight

into the quantized subspace. For a theoretical convergence

analysis of (1) and a relaxed formulation with improved

performance , see [16]. Channel pruning is a structured com-

pression well-studied by itself ([3], [5], [10], [13], [14] and

references therein). Integrating QAT into adversarial training

This work is partly supported by NSF grants DMS-1854434, DMS-
1952644, DMS-1924548.

and studying the sparsity of quantized models are performed

in [9]

The main contribution of our work here is to propose

an integrated objective to do channel pruning and weight

quantization in one shot. This is achieved by minimizing

a new objective function with group sparse penalty over Q

through an adaptive splitting, projection, gradient descent and

proximal operations (APGDSSM algorithm). The adaptive step

is to avoid weights in a layer all becoming very small, or

fix potential model collapse when trained by the integrated

steps of the algorithm. Besides adapting training schedule,

we also found a new penalty, the so called complementary

transformed-ℓ1 (CTℓ1), to steer weights away from the trivial

state in each layer. Using CTℓ1) gives more room to trade-

off accuracy for efficiency than adapting training schedule.

Experimental results on CIFAR-10, CIFAR-100, and Imagenet

support our proposed methodology and framework.

II. RELATED WORK

For a loss function l, the Lasso regularized problem is

L(w) = l(w) + λ||w||1. (2)

It is well-known that Lasso regularization does parameter

selection for the model, and several approaches exist for

solving problem (2). In [1], an iterative algorithm of proximal

operator (FISTA) solves (2), where the proximal operator for a

penalty function g is defined as Proxg(w) = argmin
u
g(u) +

1

2
||u− x||2. The algorithm is:

w
t+1 = Proxλ

(

w
t − γ∇f(wt)

)

where

Proxλ(x) = sgn(x) ·max (|x| − λ, 0).

An alternative method to solve (2) is the Alternating Direc-

tion Method of Multipliers (ADMM), through an augmented

Lagrangian (Boyd et al. [2]):

L(w,u, z) = f(w)+λ||u||1+ 〈z,w−u〉+
β

2
||w−u||2 (3)

31

2022 5th International Conference on Artificial Intelligence for Industries (AI4I)

978-1-6654-5961-7/22/$31.00 ©2022 IEEE
DOI 10.1109/AI4I54798.2022.00015

2
0
2
2
 5

th
 I

n
te

rn
at

io
n
al

 C
o
n
fe

re
n
ce

 o
n
 A

rt
if

ic
ia

l
In

te
ll

ig
en

ce
 f

o
r

In
d
u
st

ri
es

 (
A

I4
I)

 |
9
7
8
-1

-6
6
5
4
-5

9
6
1
-7

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/A

I4
I5

4
7
9
8
.2

0
2
2
.0

0
0
1
5

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

ADMM is adapted to neural network training in [12], [15].

The convergence theorems of ISTA and ADMM require both

the loss function and penalty function to be convex, which

does not apply to deep neural networks. The relaxed splitting

variable method (RSVM, [6]) sparsifies non-convex neural

networks by minimizing a simplified augmented Lagrangian:

lλ/β(w,u) = f(w) + λ||u||1 +
β

2
||u−w||2.

RVSM updates weights as

w ← w − γ∇f(w)− γβ(w − u), u ← Proxλ/β(w) (4)

which extends to non-differential penalties (e.g. ℓ0) with the

corresponding proximal operator. The RVSM does not require

convex or differentiable penalty function for convergence [6],

and it applies to adversarially trained networks [5]. Though

models trained by RVSM usually have unstructured sparsity

with limited channel sparsity, RVSM extends readily to a

group-wise variable splitting method (RGSM, [14]) based on

Group Lasso (GL) penalty:

||w||GL =

L
∑

l=1

∑

i∈Il

||wl,i||2

to increase channel sparsity, where Il is the collection of

channels in the l-th layer. GL penalty with its proximal

operator in closed form is applied channel-wise in network

training to realize sparse channels [5], [14]. In [11], RGSM

and QAT are combined in a multi-stage process to achieve

both channel pruning and binary weights.

III. METHODOLOGY AND APGSSM ALGORITHM

To train quantized neural networks with sparse channels,

we proposed an algorithm to concurrently search the optimal

weights in the quantized subspace and the sparse subspace, as

shown in Algorithm 1. The objective is

min
u∈Q

L(u) := l(u) + λ2||u||GL + λ1||u||1 (5)

The procedure of training is shown in Algorithm 1. We note

that the Lasso regularization term in equation (5) is imposed

implicitly; the l1 penalty does not contribute to the gradient.

Instead, we use the shrinkage operator to minimize it. For

parameters, we use symbols against the epoch number t, e.g.

λt
1, to indicate that there is an adaptive scheme for the values.

This algorithm concurrently searches both the quantized

subspace and the subspace of sparse weight (with small l1
norm). We can either use only shrinkage operator (APGDSM)

or use it together with the splitting (APGDSSM). The splitting

term updates the gradient descent of β
2
||wt − u

t||2, which

makes the float weight wt close to the quantized weight ut.

Since u
t is much more sparse than w

t, the splitting step

renders w
t with more small elements, which strengthens the

performance of the following shrinkage operator. However,

pushing w
t close to u

t can jeopardize the performance, as

it is not the descending direction guided by gradient.

Algorithm 1 APGDSM and APGDSSM

Input: Float weights w0. Hyperparameters λ1, λ2, β.

Output : Quantized weights u.

for t = 1, · · · , 200 do:

u
t = ProjQ(w

t)
f(ut) = l(ut) + λt

2||u
t||GL

w
t = w

t−1 − α∇f(ut)
if Splitting then: ⊲ Split if APGDSSM

w
t = w

t − γtβt(wt − u
t)

end if

w
t = Proxλt

1
(wt

g)
end for

u = ProjQ(w
200)

TABLE I
ADAPTIVE SCHEME FOR THE PARAMETERS IN ALGORITHM 1. AT EPOCHS

LISTED IN THE LEFT-SIDE COLUMN, WE MULTIPLY THE PARAMETERS BY

THE FATCOR IN THE RIGHT-SIDE COLUMN

Epoch Factor for λ1&λ2 Factor for β

35 0.5 0.5
70 0.2 0.2

110 0.5 0.1
150 0.5 0.1

IV. IMPLEMENTATION AND EXPERIMENTS

We use the standard adaptive scheme for the learning rate

γt. The initial learning rate is 0.1, and we multiply the learning

rate by a factor of 0.1 at epochs 80, 120, and 160. During the

training, we need to change the scale of the regularization

parameters to fit the current learning rate. For both λ1, λ2,

and β, we empirically design a scheme to adapt the values of

parameters. The reason we have a different adaptive scheme

from the learning rate is that the training has a high probability

to collapse if the parameters are re-scaled too late. As in

Algorithm 1, all GL regularization, shrinkage operator, and

splitting terms drive the weights to be sparse, which can lead

the neural network to reach 100% channel sparsity at some

point. When it happens, the training collapses as the cross-

entropy loss becomes infinity.

V. RESULTS

We validate Algorithm 1 in CIFAR10 and CIFAR100 with

ResNet ([8]). The results are shown in Table II. As the table

shows, the GL penalty and the shrinkage operator can signif-

icantly improve the weight sparsity and the channel sparsity

with minor reduction on accuracy. The splitting step before

the shrinkage operator can greatly improve the sparsity. Of

course, the model performance would be somewhat affected.

Meanwhile, we numerically verify the convergence of the

sparsity in Figure 2. Although the weight sparsity will decease

every time the values of parameters updated, the channel

sparsity has a nice convergence along training. The channel-

wise GL penalty is the key to push the weight sparsity created

by shrinkage and potential splitting into channel sparsity. In

Figure 3, we show the comparison of a float ResNet56 and a 4-

32

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 1. Visualization the 45th layer of a float resnet56 (bottom) and a 4-
bit resnet56 pruned by APGDSSM (top). The layer originally has shape
[64,64,3,3] and is permuted and reshaped to shape 64×576 for visualization.
Each row of the plots represents a channel.

Fig. 2. Weight sparsity and channel sparsity against epochs. The weights
sparsity deceases at milestones of the adaptive schemes, while the channel
sparsity has smooth convergence

TABLE II
4-BIT QUANTIZED MODELS WITH PRUNING METHODS ON CIFAR-10

DATASET. THE INITIAL VALUES OF PARAMETERS ARE

λ1
1
= 0.04, λ1

2
= 5.e− 6, β1 = 1.e− 3. FOR CIFAR-10 AND

λ1
1
= 0.02, λ1

2
= 5e− 6, β1 = 1e− 3 FOR CIFAR-100

Model Pruning Ch. sp Wt .sp Accuracy

CIFAR-10

Resnet20 None 9.53% 42.73% 91.75%

Resnet20 APGDSM 14.67% 72.68% 91.53%

Resnet20 APGDSSM 24.56% 85.04% 90.64%

Resnet56 None 25.16% 61.83% 93.24%

Resnet56 APGDSM 52.76% 78.11% 92.58%

Resnet56 APGDSSM 64.28% 84.59% 91.69%

CIFAR-100

Resnet110 None 24.63% 53.20% 71.74%

Resnet110 APGDSM 33.61% 69.44% 71.68%

Resnet110 APGDSSM 36.62% 85.04% 71.59%

bit ResNet56 pruned via APGDSSM. We see that the channels

are largely pruned in most layers.

VI. EFFICIENCY AND ACCURACY TRADE-OFF

As we mentioned in the previous sections, the training

might collapse if the adaptive scheme and parameter values are

selected carelessly. In order to further compress the models, we

propose a complementary transformed-l1 (CTL1) penalty to

prevent the training from collapse. This penalty is inspired by

the transformed l1 (TL1) regularization in robust compressed

sensing [17]. We define

||x||CTL1,a := 1− ρa(x) = 1−
|x|

a+ |x|

We remark that || · ||CTL,a is not a norm but only a regulariza-

tion. We abuse the norm notation here for convenience. Note

that

lim
a→0+

||x||CTL1,a = 1− ||x||0 =

{

1 x = 0

0 x �= 0

For small choice of a, the value of ||x||CTL1,a is negligible

when |x| is large. The behavior of the CTL1 penalty is

illustrated in figure 4. To prevent the neural network from

having a zero layer, we apply it to each layer of our model

||w||CTL1,a :=

L
∑

l=1

1−
||wl||1

a+ ||wl||1

By imposing this CTL1 penalty, we force each layer to have

some nonzero weights, so the training will not collapse. The

augmented objective is

min
u∈Q

L(u) := f(u)+λ2||u||GL+λ3||u||CTL1
+λ1||u||1 (6)

As a result, we can have more ’aggressive’ choices for the

values of parameters and the adaptive scheme to further

pruning the neural networks.

Algorithm 2 APDSSM with CTl1 penalty

Input: Float weights w0. Hyperparameters λ1, λ2, β.

Output : Quantized weights u.

for t = 1, · · · , 200 do:

u
t = ProjQ(w

t)
f(ut) = l(ut) + γtλ2||u

t||GL + λ3||u
t||CTL1,γta

w
t = w

t−1 − γt∇f(ut)
w

t = w
t − γtβ(wt − u

t)
w

t = Proxγtλ1
(wt−1

g)
end for

u = ProjQ(w
200)

TABLE III
THE STRONGER PRUNING SCHEME STABILIZED BY CTl1 PENALTY

λ1 = 0.2, β = 0.01; R.=RESNET.

Model λ2 initial Ch. sp Wt. sp Accuracy

CIFAR-10

R.56 1.5 · 10−3 73.67% 95.80% 90.27%

R.56 5 · 10−3 82.90% 96.70% 88.71%

CIFAR-100

R.110 5 · 10−4 55.12% 80.07% 70.75%

R.110 1 · 10−3 58.06% 80.75% 70.16%

In Algorithm2, we let the parameters λ1, and λ2, λ3 and

β have the same adaptive scheme by multiply it by the

learning rate. This scheme makes the parameters decrease

slower. Hence, as shown in Table III, the channel sparsity

increases significantly. The CTl1 penalty allows us to further

trader-off the performance to efficiency based on our needs.

33

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

Fig. 3. The blue bars are the numbers of channels in layers of float ResNet56. The orange bars are the numbers of channels in layers of pruned 4-bit model
by APGDSSM. The 55 of the 56 layers in ResNet56 are convolutional.

Fig. 4. CTl1 penalty 1−
|x|

a+|x|
for different values of a.

VII. CONCLUSION

In this paper, we proposed APGDSSM to integrate the

penalty based channel pruning and QAT. We remark that

relaxations of QAT ([7], [16]) will lead to sub-optimal

outcomes, because such methods search the sparse subspace

first and then find local optimal quantized weights around

the searched sparse weights. The two subspaces need to be

searched concurrently from the beginning. We verify that

APGDSSM can deliver sparse quantized neural network with

minor trader-off for performance. Further, we designed an

auxiliary complementary transformed l1 penalty to prevent

training from collapsing, so we can trade more performance

for efficiency if needed.

REFERENCES

[1] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding
algorithm for linear inverse problems. SIAM journal on imaging

sciences, 2(1):183–202, 2009.

[2] Stephen Boyd, Neal Parikh, and Eric Chu. Distributed optimization and

statistical learning via the alternating direction method of multipliers.
Now Publishers Inc, 2011.

[3] Kevin Bui, Fredrick Park, Shuai Zhang, Yingyong Qi, and Jack Xin.
Nonconvex regularization for network slimming: Compressing cnns even
more. In International Symposium on Visual Computing, pages 39–53.
Springer, 2020.

[4] Matthieu Courbariaux, Yoshua Bengio, and Jean-Pierre David. Bina-
ryconnect: Training deep neural networks with binary weights during
propagations. In Advances in neural information processing systems,
pages 3123–3131, 2015.

[5] Thu Dinh, Bao Wang, Andrea Bertozzi, Stanley Osher, and Jack Xin.
Sparsity meets robustness: channel pruning for the Feynman-Kac for-
malism principled robust deep neural nets. In International Conference

on Machine Learning, Optimization, and Data Science, pages 362–381.
Springer, 2020.

[6] Thu Dinh and Jack Xin. Convergence of a relaxed variable splitting
method for learning sparse neural networks via ℓ1, ℓ0, and transformed-
ℓ1 penalties. In Proceedings of SAI Intelligent Systems Conference,
pages 360–374. Springer, 2020.

[7] Tim Dockhorn, Yaoliang Yu, Eyyüb Sari, Mahdi Zolnouri, and Vahid
Partovi Nia. Demystifying and generalizing binaryconnect. Advances in

Neural Information Processing Systems, 34, 2021.
[8] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep

residual learning for image recognition. In Proceedings of the IEEE

conference on computer vision and pattern recognition, pages 770–778,
2016.

[9] Zhijian Li, Bao Wang, and Jack Xin. An integrated approach to produce
robust deep neural network models with high efficiency. In International

Conference on Machine Learning, Optimization, and Data Science,
pages 451–465. Springer, 2021.

[10] Zhuang Liu, Mingjie Sun, Tinghui Zhou, Gao Huang, and Trevor Darrell.
Rethinking the value of network pruning. In ICLR, 2019.

[11] Jiancheng Lyu and Spencer Sheen. A channel-pruned and weight-
binarized convolutional neural network for keyword spotting. In Le Thi

H., Le H., Pham Dinh T., Nguyen N. (eds), Advanced Computational

Methods for Knowledge Engineering. ICCSAMA 2019. Advances in

Intelligent Systems and Computing, volume 1121. Springer, Cham, 2020.
[12] Gavin Taylor, Ryan Burmeister, Zheng Xu, Bharat Singh, Ankit Patel,

and Tom Goldstein. Training neural networks without gradients: A
scalable admm approach. In International conference on machine

learning, pages 2722–2731. PMLR, 2016.
[13] Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li.

Learning structured sparsity in deep neural networks. In Advances in

neural information processing systems, pages 2074–2082, 2016.
[14] Biao Yang, Jiancheng Lyu, Shuai Zhang, Yingyong Qi, and Jack Xin.

Channel pruning for deep neural networks via a relaxed groupwise split-
ting method. In IEEE International Conference on Artificial Intelligence

for Industries, pages 97–98, 2019.
[15] Shaokai Ye, Kaidi Xu, Sijia Liu, Hao Cheng, Jan-Henrik Lambrechts,

Huan Zhang, Aojun Zhou, Kaisheng Ma, Yanzhi Wang, and Xue Lin.
Adversarial robustness vs. model compression, or both? In Proceedings

of the IEEE/CVF International Conference on Computer Vision, pages
111–120, 2019.

[16] Penghang Yin, Shuai Zhang, Jiancheng Lyu, Stanley Osher, Yingyong
Qi, and Jack Xin. BinaryRelax: A Relaxation Approach for Training
Deep Neural Networks with Quantized Weights. SIAM Journal on

Imaging Sciences, 11(4):2205–2223, 2018.
[17] Shuai Zhang and Jack Xin. Minimization of transformed ℓ1 penalty:

Closed form representation and iterative thresholding algorithms. Comm.

Math Sci., 15(2):511–537, 2017.

34

Authorized licensed use limited to: Access paid by The UC Irvine Libraries. Downloaded on May 17,2023 at 17:58:36 UTC from IEEE Xplore. Restrictions apply.

