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A B S T R A C T

Vehicle electrification has emerged as a global strategy to address climate change and emissions externalities from
the transportation sector. Deployment of charging infrastructure is needed to accelerate technology adoption;
however, managers and policymakers have had limited evidence on the use of public charging stations due to
poor data sharing and decentralized ownership across regions. In this article, we use machine learning based
classifiers to reveal insights about consumer charging behavior in 72 detected languages including Chinese. We
investigate 10 years of consumer reviews in East and Southeast Asia from 2011 to 2021 to enable infrastructure
evaluation at a larger geographic scale than previously available. We find evidence that charging stations at
government locations result in higher failure rates with consumers compared to charging stations at private points
of interest. This evidence contrasts with predictions in the U.S. and European markets, where the performance is
closer to parity. We also find that networked stations with communication protocols provide a relatively higher
quality of charging services, which favors policy support for connectivity, particularly for underserved or remote
areas.

1. Introduction

Electric vehicle (EV) mobility has received attention from govern-
ments and the private sector as a strategy to reduce greenhouse gas
emissions from the transportation sector. Transport electrification has
emerged as a global priority to address health-based air quality standards
and the associated mobile source emissions, which contribute to ozone,
particulate matter air pollution, and climate change (Environmental
Protection Agency, 2021; UK Science, 2021). Globally, countries have
adopted electrification targets and other policies to promote electric
vehicle deployment. These policies have focused on vehicle and manu-
facturer subsidies at national or local levels. For example, China's

national dual-credit policy aims to increase the share of electric cars to
20% by 2025 through fuel consumption targets and electric vehicle
quotas (Ou et al., 2020; International Energy Agency, 2021). However,
recent theory and evidence suggest that government policies to accel-
erate vehicle electrification, such as purchase subsidies, may be twice as
cost-effective when they focus on infrastructure deployment as opposed
to car sales (Li et al., 2017; Springel, 2021). This is due to indirect
network effects because the value of charging services increases adoption
exponentially as others join the network (Rohlfs, 1974; Katz and Shapiro,
1994).

The surge in electric vehicles has motivated government-supported
spending programs for interconnected EV charging stations. The EV
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charging market is projected to grow by 15.8 billion USD from 2021 to
2026 (Technavio, 2022). However, performance data on the reliability of
public charging is largely unstructured and remains distributed due to
poor data interoperability (Asensio et al., 2020; 2021). Expanding con-
sumer analysis beyond one country or region presents a fundamental
communication challenge related to language inference. Consequently,
little is known about the quality of consumer experiences in charging
station infrastructure globally across service territories or regions. This
article uses machine learning (ML) to classify 20,880 electric vehicle
consumer reviews in 72 detected languages from 2022 charging stations
and multiple networks in East and Southeast Asia. Our supervised ML
classification scheme leverages transformer-based deep learning (Devlin
et al., 2018) to identify measures of charging infrastructure reliability
and location features.

As EV infrastructure is fast-growing worldwide, there is a need for
real-time intelligence about the reliability of public charging. Many pa-
pers in the field of intelligent transportation systems have applied ma-
chine learning methods to vehicle automatic driving (Fang et al., 2020),
EV charge scheduling (Mohanty et al., 2020), and distributed charging
management (Zhang et al., 2018), but less is known about the real-time
reliability of EV charging infrastructure. Scholars have identified
behavioral issues in the quality of charging service provision in the U.S.
and European markets, but more needs to be known about charging
behavior in East and Southeast Asia. One fundamental challenge is the
uncertainty regarding the generalizability of ML-based models for
text-based data discovery in both high- and low-resource languages.
Low-resource languages for example, are less commonly studied,
computerized or have lower densities of training attributes or labeled
data (Singh, 2008; Cieri et al., 2016; Tsvetkov, 2017). The processing of
low-resource languages typically suffers from data scarcity since expert
annotators and translators can be costly and have limited capacity
(Magueresse et al., 2020). Therefore, leveraging insights about charging
behavior in multiple regions requires cross-lingual language processing
and analysis.

Cross-lingual transfer learning typically requires linguistic knowledge
and training resources between the source and target language such as
parallel corpora (Singh, 2008; Magueresse et al., 2020; Kim et al., 2015;
Yarowsky et al., 2001). Such multilingual projection is not always
possible, particularly with specialized corpora in transportation-related
communications. Pre-trained language models with transformers such
as multilingual Bidirectional Encoder Representations from Transformers
(BERT) could be very competitive for few-shot cross-lingual transfer
learning (Wang et al., 2019; Wu and Dredze, 2019). This is important
because, in the future, these models might not require expensive expert
annotators in the source language to produce high accuracy classifica-
tion, which can be cost prohibitive for policy evaluations. We know that
supervised knowledge of small tag dictionaries can help guide
sentence-level analysis in other target languages even without parallel
text (Das and Hasegawa-Johnson, 2015; Chang et al., 2008). For EV
consumer reviews, this brings us to a form of zero or few shot-learning in
pre-trained large language models, where unlabeled sample reviews from
East Asian charging stations could be classified with very few or even
zero training examples in the target language. In lieu of language models
that can handle the scope of represented languages, we use machine
translation to project English training data to its semantic representation
across source languages.

By leveraging ML models trained with the U.S. data, we demonstrate
that cross-lingual transfer learning can automatically detect EV infra-
structure failures at a larger geographic scale than previously available.
To assess station reliability, we propose an ML-based measure of station
service quality from a consumer perspective, represented as the ML-
based functionality ratio, which allows us to predict station reliability
issues from unstructured consumer data. We find that counter to US-
based evidence (Asensio et al., 2020; Kim et al., 2015; Ha et al., 2021),
charging stations at government locations (e.g., government and
municipal buildings, public libraries, rest areas, public parks, and visitor

centers) are less reliable than those at privately-owned and/or operated
locations. We also find that networked charging stations with Internet
connectivity are more reliable with consumers than non-connected
charging stations. Additionally, charging stations incentivized to offer
high-quality charging services such as those at hotels, lodging, and
workplace destinations (Asensio et al., 2022) do not necessarily provide a
greater degree of reliability beyond the network subscription. In this
paper, we demonstrate that ML-based classifiers can be deployed in
various resource allocation or infrastructure management decisions
(Athey, 2017; Kleinberg et al., 2015). Further, machine classification can
be combined with causal inference methods by activating unstructured
consumer data to inform government progress on EV infrastructure
deployment.

2. Consumer data from mobile apps

There is a growing literature on the use of real-time data from mobile
applications for the analysis of sustainability and climate change issues
(Asensio et al., 2020; Ford et al., 2016; Asensio et al., 2022). In electric
vehicle mobility, a large quantity of unstructured user data requires
additional processing efforts to extract and handle information. For
example, scholars have recently used unstructured social data from Reddit
to uncover public perception issues related to electric vehicle adoption
(Ruan and Lv, 2022). These studies reveal important insights from un-
structured texts but have not yet incorporated location-based features for
analysis. Given the prominent use of smartphones in transportation and
mobility services, it is possible to learn about consumer experiences from
charging station locator apps in which user networks exchange informa-
tion. For example, information regarding station location, car model,
charger type, network type, and other observable characteristics were
collected. We also merged nearby points of interest (POIs) information
from Google Places Application Program Interface (API) to identify station
amenities. POIs include government, hotel/lodging, retail/supermarket/-
shopping center, dealership, education, entertainment, gas station,
healthcare, outdoor, parking, place of worship, and residential (see Fig. 1).

Fig. 1. Distribution of ML-classified topics in EV reviews.
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In Table 1, we provide descriptive statistics of consumer reviews data
in East and Southeast Asia from 2011 to 2021 by country/region, year,
and point of interest. The dataset is comprised of 10,041 publicly-
available EV station reviews collected across 2022 charging stations
from a popular charging station locator mobile app. Innovations in data
collection from digital platforms have uniquely enabled large-scale ag-
gregation of user phenomena in multiple languages from publicly-
available data. This includes consumer charging reviews from 10 coun-
tries/regions covering Thailand, Japan, Malaysia, Chinese mainland,
Taiwan region, Hong Kong/Macao region, Republic of Korea,
Philippines, Singapore, and Indonesia. This includes an average of 573
station reviews (S.D. 1041) and 1898 (S.D. 4671) user check-ins per
country/region. These locations are generally representative of the
existing public non-residential EV charging market to date. We do not
have reviews in Brunei, Cambodia, Laos, Vietnam, or Democratic Peo-
ple's Republic of Korea, as these locations are still emerging with respect
to publicly-available EV infrastructure data. We also note that stations
and reviews in Chinese mainland reflect usage on a U.S. basedmobile app
and are non-representative of the entire infrastructure in that region.
However, EV adoption is large enough in that region to support a do-
mestic market for competing mobile apps in native languages, but with
limited data access outside of its geographical borders.

To adjust for factors driving the selection to review, we also captured
information about the number of station check-ins with and without
written reviews. The total number of check-ins is 20,880 in total, while
written reviews represent 49.3% of total station check-ins over a span of
10 years of evidence in the dataset. We find that EV charging infra-
structure is already available in 10 out of 16 economies in the region
(excluding Vietnam, Laos, Myanmar, Democratic People's Republic of
Korea, East Timor, and Brunei). The top 4 distinct languages in this
dataset are Chinese, English, Thai, and Japanese, which make up 85.6%
of all reviews. Given that Chinese comprises 70.8% of the data, we
conducted language validation experiments for machine translation in
Chinese. Table 2 provides a detailed list of all the languages detected in
our dataset.

3. Methods

Deep learning models for NLP typically require large data and
graphics processing units (GPUs) in order to achieve state-of-the-art
performance in classification tasks. Pre-trained, large language models,
such as transformer neural networks offer a solution for supervised text
classification without a large corpus of annotated data. These language
models utilize vast amounts of unannotated web text as a pre-training
resource, while learning bidirectional context from unstructured text
(Devlin et al., 2018). Transformer-based deep learning models have been
applied to a broad range of tasks including sentiment analysis, question
answering, entity recognition, and importantly for our analysis,
multi-label topic classification and machine translation (Devlin et al.,
2018; Vaswani et al., 2017; Lin et al., 2022). These models can be useful
in generating insights from datasets spanning across several languages,

including low-resource languages (Das and Hasegawa-Johnson, 2015;
Chang et al., 2008). Machine translation systems typically rely on the
availability of parallel data to generate multilingual model predictions,
usually using English as an assisting language (Pires et al., 2019; Fan
et al., 2021; Libovický et al., 2019; Wu et al., 2016; Johnson et al., 2017b;
David et al., 2001). In recent advancements, multilingual BERT has been
proven effective in 104 languages with zero-shot cross-lingual models
(Tsvetkov, 2017; Libovický et al., 2019). In other developments, multiple
groups have recently released multilingual translation models (Johnson
et al., 2017b; Firat et al., 2017; Bapna et al., 2019; Dabre et al., 2019;
Rubino et al., 2020; Haddow et al., 2022), which could enable language
processing without relying on English (Radford et al., 2022; Face, 2023).
Though well-received and compatible with many low-resource lan-
guages, these models are still in development and have yet to reach the
quality achieved by machine translation. Therefore, this paper employs a
three-stage methodology to analyze unstructured text data by combining
machine translation in a ML classification pipeline, followed by econo-
metric analysis for statistical adjustment, see Fig. A1 in the Appendix.

In the first stage, we fine-tune BERT and tailor it to specific classifi-
cation tasks related to EV consumer reviews data. We use domain-specific
and human-expert curated English language training data as described in
Asensio et al. (2020) and Ha et al. (2021), to develop BERT for
multi-topic classification of EV consumer reviews in other target lan-
guages. To assure training data quality standards, the reviews go into a
pre-processing step that includes machine translation and validation
using Google Cloud's Translation API service. For example, the consumer
review detected in Chinese, “總是壞掉” is translated into “Always
Broken”. We use the advanced edition of the Google Translate API to
perform the translation. The application provides support for over 100
languages and it conforms to the ISO-639 identifiers, which is a set of
standards for representing names of languages and language groups
(Google Cloud, 2023).

Second, the translated reviews are then embedded and classified with
English BERT-uncased model according to a comprehensive multi-label

Table 1
Descriptive statistics for user reviews from 2011 to 2021.

Mean SD Min Max

Reviews per

Country/region 573 1,041 14 3,996
Year 103 1,304 1 3,283
Point of interest 937 2,526 1 8,517

Check-ins per

Country/region 1,898 4,671 24 15,874
Year 1,899 2,532 1 6,535
Point of interest 1,160 2,184 19 8,575

Note: There are a total of 20,880 user check-ins and 10,041 reviews.

Table 2
List of all languages detected in the dataset.

Language Number of reviews Percent

Chinese 7,304 70.85%
English 739 7.17%
Thai 540 5.24%
Japanese 246 2.39%
Luxembourgish 107 1.04%
Marathi 84 0.81%
Hindi 68 0.66%
Nepali 54 0.52%
Serbian 36 0.35%
Frisian 26 0.25%
Galician 23 0.22%
Xhosa 23 0.22%
Czech 22 0.21%
Korean 22 0.21%
Haiti 20 0.19%
Filipino 19 0.18%
Catalan 17 0.16%
Germany 16 0.16%
Norwegian 16 0.16%
Ukrainian 13 0.13%
Spanish 12 0.12%
Indonesian 12 0.12%
Hungarian 11 0.11%
Lithuanian 11 0.11%
Igbo 10 0.10%

Note: Other languages that are less 0.1% representative include Irish, Danish,
Polish, Slovenian, Dutch, Vietnamese, French, Malay, Pashto, Syriac, Swedish,
Afrikaans, Finnish, Maltese, Portuguese, Somali, Corsican, Basque, Persian, Ice-
landic, Kyrgyz, Russian, Estonian, Scottish Gaelic, Italian, Romanian, Urdu, Zulu,
Bulgarian, Welsh, Kazakh, Central Kurdish, Macedonian, Malayalam, Slovak,
Sotho, Tajik, and Tsonga.
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typology that identifies 8 main discussion topics for each review: service
time, station availability, cost, range anxiety, station functionality,
dealership issues, location attributes, and user tips and interactions (Ha
et al., 2021). The multi-label classifier allows for each review to be
assigned to one or more categories as appropriate. The domain-specific
machine learning model achieves strong performance. In scientific rep-
lications, we report high accuracy (89.1%) and F1 (0.78) scores, both
within the published uncertainty in Ha et al. (2021). We expanded the
data processing to include support for native languages observed in
consumer reviews, other than English.

Finally, in the third stage, we use the outputs of the machine classified
reviews as inputs for statistical analysis. For a given station location and
year, we regress the conditional probability of a review being tagged as a
given topic (i.e., station functionality, cost, and range anxiety) as a
function of observable station characteristics. The dependent variables
are two empirical measures of reliability: the ML-based functionality
ratio and the system-reported error rate. The functionality ratio, indexed
between 0 and 1, refers to the share of reviews that mention whether
particular attributes are working properly at a given station per year.
Values close to 1 are less desirable as they indicate a prevalence of station
functionality issues. To validate our ML-based measure of reliability, we
consider the system-reported error rate, which is an indicator variable
that systematically identifies an error or failed transaction.

Our independent variables include station characteristics such as the
number and type of station connectors and network types, common
points of interest around the stations, geography (country/region), and
time (year) fixed effects resolved to the nearest station. We also include a
dummy for machine-translated reviews to mitigate the potential effect of
translation errors. The unit of analysis is at the station review level, and
we cluster standard errors by location ID. As a robustness check, we
include higher-order terms and interactions for sub-group analysis.

To estimate factors influencing the functionality ratio and the error
rate, we employ a fractional response model (FRM) using a quasi-
maximum likelihood estimator (QMLE) (Ramalho et al., 2011). For
each station i, and year t, we regress our outcomes of interest yi;t on a
location xiEðyi;t

!!xiÞ ¼ GðxiθÞ, where G is a data-driven transfer function
such as the cumulative distribution function or logistic function, which is
2 R. The station characteristics include an indicator for public versus
private stations, the number of plug connectors, the networked station
dummy, and points of interest dummies. To investigate the effect of
station characteristics on the functionality ratio, we estimate the frac-
tional dependent variable directly using the Bernoulli log-likelihood
function, given by

l i;tðθÞ$ yi;t log½GðxiθÞ& þ
"
1( yi;t

#
log½1(GðxiθÞ& (1)

where θ is a parameter vector of interest and yi;t is the fractional
dependent variable for the AI-based functionality ratio or the system-
reported error rate. For fractional data, the Bernoulli QMLE estimator
of θ does not require dichotomization of the dependent variable and is
computed as

bθ ¼ argmax
θ

XN

i¼1
l i;tðθÞ (2)

We are able to statistically adjust for the factors that influence the
likelihood of functionality-related reviews or errors. In a greater context,
these “human-in-the-loop" machine learning systems provide the addi-
tional benefits of greater model performance through interventional
model training (Wu et al., 2022). For an overview of the methodology
workflow, see Fig. A1 in the Appendix.

This approach allows us to uniquely: (1) activate citizen generated
data (unstructured, hard-to-reach consumer data); (2) offer scalable in-
sights spanning multiple regions and geographies (not limited to cities or
states); (3) allow for cross-lingual analysis in at least 72 target languages;
and (4) offer the potential for near-real-time updating/station manage-
ment. In the context of public infrastructure, this approach can pave the

way for operational enhancements, resource allocation and optimization,
impact evaluation, and long-term support for EV adoption. The meth-
odology also allows us to overcome the data interoperability challenges
resulting from decentralized ownership and the lack of mandatory
disclosure policies for EV data sharing. Citizen-generated data from
digital platforms can better capture people's real-time behaviors. Addi-
tionally, ML-based predictions are highly scalable which allows us to
analyze phenomena at larger spatial scales. Furthermore, given the high
accuracy of machine translation and transfer-based classifiers, the
methodology covers many low-resourced languages in a cross-lingual
context, overcoming language barriers.

The proposed methodology provides benefits for proactive opera-
tional management strategies in which behavior plays an important role
in decision-making. These approaches include real-time control and
optimization for charging performance (Zhang et al., 2020; Pandit and
Coogan, 2018; Santoyo et al., 2023), reduced grid impacts with increased
EV adoption (Powell et al., 2022), and carbon and emissions scenario
forecasting (Lei et al., 2022). For example, scholars have argued that to
achieve decarbonization, it may be necessary to change utility rates and
infrastructure deployment to promote the shift from home to daytime
charging. Such real-time updates can better identify day-time barriers to
public charging to design targeted policies for efficient resource use.
Another potential benefit is in support for public decision-making related
to effective investments in infrastructure provision.

To evaluate the accuracy of our machine translations, we conducted
human annotator experiments on a representative sample of Chinese
reviews. For this task, we recruited 10 independent annotators with
native or high proficiency in traditional Chinese and with technical
backgrounds. From 7,304 written Chinese language reviews, which
encompassed 70.9% of our dataset, we selected a 10% random sample for
hand-validation. Every review was labeled by two separate annotators.
Annotators were asked to complete two tasks. First, annotators were
instructed to validate whether or not the translation was accurate with a
binary "yes" or "no" and a short justification. Next, they rated translation
quality on a Likert scale from 1 to 5 (see details in Table A1 in the Ap-
pendix), where 1 indicated a low-quality translation and 5 indicated a
high-quality translation. Based on the experiments, we confirmed that in
38% of cases, the machine translations achieved a perfect rating, ac-
cording to human experts. In another 42% of cases, the translation is
imperfect, but there is no semantic shift that would affect the appropriate
tagging of the label for topic classification. Thus, for traditional Chinese,
our experiments reveal a machine-translation accuracy for the corpus of
EV reviews of about 80%, which is consistent with other reports (Wu
et al., 2016; Johnson et al., 2017b). Importantly, we found that machine
translation inaccuracy affects the label classification for functionality and
other topics in less than 5% of cases.

4. Results and discussion

In this paper, we evaluate the dominant discussion topics at EV
charging stations across countries/regions in the dataset. We find that the
top 3 concerns relate to: (1) location features or amenities related to the
station (38.0%); (2) functionality, such as whether particular features are
working properly (28.1%); and (3) availability, whether the station is
unoccupied and available for use (15.6%). These 3 topics of discussion
account for 76.5% of the total reviews in the multi-label classification
dataset, which allows for a review to be simultaneously classified into
one or more labels. We also find that charging station service quality in
the existing Level 2 and Level 3 public infrastructure is a principal
concern. This stands in contrast with the popular narrative that range
anxiety is a major barrier to EV owners (Ha et al., 2021).

Recent studies have pointed to the conceptualization of range anxiety
as primarily a psychological or rhetorical barrier (Noel et al., 2019).
Other studies have also reported that range anxiety may be a perception
problem mainly for inexperienced EV drivers and, therefore, this issue
might decrease with practical experience (Rauh et al., 2014). Many have
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suggested that this disparity comes from a disproportionately large
number of scalable interventions focused on reducing situational range
anxiety through means of first-hand EV experiences (Herberz et al.,
2022). Conversely, interventions targeting anticipatory range anxiety – a
unique barrier to those who have not considered driving or purchasing an
EV – have been largely neglected (Herberz et al., 2022). The compati-
bility bias, the difference between perceived and actual EV compatibility
with a potential driver's needs, is cited as a major roadblock for potential
buyers (Noel et al., 2019). Fundamentally, this bias subsides when an
individual acquires an EV because over 90% of individual mobility needs
are consistent with increasingly affordable EV battery ranges (Herberz
et al., 2022). A longitudinal study of range anxiety found users to be
considerably satisfied after 3 months of EV usage (Franke and Krems,
2013). Consistent with this, we find that range anxiety is a minor issue for
existing EV owners. For review of additional factors on mitigating range
anxiety, we point readers elsewhere (Neubauer and Wood, 2014; Guo
et al., 2018; Xu et al., 2020).

We define the ML-based functionality ratio as the probability that a
written review mentions functionality at a given station location and
year. When we use the functionality ratio as the dependent variable, we
find that stations at government locations (e.g., public buildings, transit,
visitor centers, and public parks) are 18.6% more likely to mention
functionality issues in consumer reviews than charging stations at private
locations or points of interest (Table 3, Model II). This result is statisti-
cally significant at the 1% level and net of all statistical controls.
Although there is some heterogeneity in the charging service quality at
various POIs, we find limited evidence of differences in the functionality
ratio across POIs (Table 3, Model II). We hypothesize that this could be
due to common maintenance, operation, and subscription services at a
network level. Further, we evaluate the performance of networked sta-
tions versus non-networked stations. We find that networked chargers
are 5.1% more reliable than non-networked charging stations (Table 3,

Model II), which favors centralized as opposed to individually managed
operations and maintenance subscription services. To validate these es-
timates, we also evaluated performance using the system-reported error
rates as the dependent variable, which provides a systematic reliability
measure. The results suggest that networked chargers have 7.8% fewer
errors than non-networked charging stations (Table 3 Model IV) and that
government-provided charging stations are 5.6% less reliable than pri-
vately provided charging stations (Table 3, Model IV). These results are
significant at the 5% level. These estimates are consistent with the ML-
powered findings. However, we note a larger effect size for govern-
ment stations from the consumer perspective than the system-reported
error rates.

4.1. Public provision is worse

There has been an active debate on the public versus private provision
of public goods and services as a means to investigate environmental
externalities (Andreoni, 1990; Andreoni, 1989; Bergstrom et al., 1986;
Kotchen, 2006; Warner and Hefetz, 2008; Grant and Langpap, 2018).
There has been mixed empirical evidence on whether private provision is
preferred in a wide range of domains, such as water quality and sanita-
tion (Braadbaart, 2002; Baisa et al., 2010), air quality (Davis, 2005; Li
et al., 2019), renewable energy (Kotchen and Moore, 2007; Khan et al.,
2020), and climate change adaptation (Tompkins and Eakin, 2012). In
the context of EVs, we can conceptualize EV charging infrastructure as an
impure public good that has two components – a public environmental
good of reduced emissions and a private attribute of energy consumption
(Kotchen, 2006; Andreoni, 1989, 1990; Cornes and Sandler, 1984; Ribar
andWilhelm, 2002). As more countries announced zero-emission vehicle
targets with plans to install charging stations with public funds, it is
unclear who will provide a better quality of charging service. From the
standpoint of policymakers and business leaders, relevant strategies are
focused on establishing more flexible pricing mechanisms for private
stations (De Alessi, 1977), stimulating entrepreneurship (Wiederer and
Philip, 2010), supporting customer-based quick response (Jimenez et al.,
1991), and developing profit-maximizing strategies (Besley and Ghatak,
2007). These efforts could contribute to higher customer satisfaction of
privately provided stations. From a public choice perspective, it is still
unclear whether consumers might prefer private over public provided EV
charging stations.

Government investment in charging infrastructure often includes
funding or subsidies to achieve a targeted number of electric vehicle
charging installations. For example, as of January 2022, China has built
approximately 810,000 public charging piles, according to the National
Development and Reform Commission (NDRC) (Xinhua News, 2022).
Similarly, in 2021, Japan earmarked JPY 6.5 billion to expand its
charging station network to 150,000 chargers by 2030 (NIKKEI Asia,
2021). Another important policy mechanism is the use of subsidies to
encourage joint investment with the private sector. In Thailand, the
government has utilized subsidies to encourage the PTT Plc, a
state-owned oil and gas company, and the Electricity Generating Au-
thority of Thailand to build charging stations in the country/region (IHS
Markit, 2020). The Thai government also offered soft loans to small and
medium-sized enterprises (SMEs) and startups for charging station in-
vestment (Paultan, 2022; Lei et al., 2022). Although governments in Asia
vary in their approach to promoting electrification efforts, they are all
rapidly investing in EV infrastructure development. Long-term commit-
ments, including bans and restrictions on internal combustion, are also
reinforcing these actions to promote transport electrification engine
(ICE) vehicles, official EV targets, and consumer subsidies (McKinsey,
2022).

Our finding that stations in government locations provide a lower
degree of reliability could be attributed to the additional cost of upkeep
and maintenance to support long-term use (Alternative Fuels Data Cen-
ter, 2022). Government points of interest in our analysis include libraries,
courthouses, fire stations, city halls, post offices, police stations,

Table 3
Summary of FRM results.

Variable Dependent variable: AI-
generated functionality
discussion ratio (0–1)

Dependent variable:
System-reported error rate
(0–1)

I II III IV

Service provision
Government
provision

18.84%***
(5.81)

19.11%
*** (5.70)

5.16%*
(2.93)

5.40% *
(2.90)

Station characteristics
Networked station (4.90% ***

(1.55)
(5.01%
*** (1.55)

(7.32%
*** (1.24)

(7.45%
*** (1.24)

No. of connectors 5.28% ***
(0.92)

5.38% ***
(0.93)

(2.00% **
(0.74)

(1.80% **
(0.74)

Location features
POI – retail/dining/
shopping centers/
supermarkets

(1.38%
(2.70)

(1.28%
(2.70)

(1.26%
(1.35)

(1.09%
(1.35)

POI – lodging (3.10%
(2.92)

(3.05%
(2.92)

(1.32%
(1.46)

(1.23%
(1.45)

POI – services 0.69% (4.46) 1.04%
(4.41)

0.90%
(2.44)

1.58%
(2.35)

POI – entertainment 1.00% (3.55) 1.08%
(3.55)

(0.36%
(2.03)

(0.19%
(2.03)

POI – gas station (0.79%
(4.58)

(0.60%
(4.54)

(7.17%*
(4.01)

(7.08%*
(3.93)

Translation dummy — (8.61%
** (4.32)

— (19.64%
*** (2.19)

Location FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes
Clustered SE Yes Yes Yes Yes
No. of observations 10,041 10,041 20,880 20,880

Note: Coefficients reported are average partial effects. Standard errors are clus-
tered by location ID. Significant to *p < 0.5, **p < 0.1, ***p < 0.01. Other POIs
include dealership, education, healthcare, outdoor, parking, place of worship,
and residential.
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government offices, and visitor centers. As governments often seek to
increase access to EV charging rather than to generate revenue for station
owners, the charging stations may not be cost-recovering and could lead
to differential quality in charging experiences for users. To exemplify the
automated process, a user writes in Thai: “น
เจ้าหน้าที่แจ้งว่าเครื่องเสีย ชาร์ตไม่ได้ค่ะ”, which the Google API
translates to “The officials reported that the device was broken. Can't
charge”. Similarly for another case, the user writes in Chinese: “第一次去

停車充電,設備竟然損壞待修中,不知這情況已經多久了”, which the Goo-
gle API translates to “The first time I went to charge my car, the equip-
ment was damaged and awaiting repair. I do not know how long it has
been”. Given that these infrastructure failures are mentioned frequently
within the reviews, government support for EV infrastructure is critical to
enabling reliable and equitable access to charging especially in otherwise
underserved areas. Electric vehicle charging infrastructure is a form of
quasi-public goods, where the initial investment is large but not suffi-
cient. In this sense, the government's mitigating role could have impor-
tant equity implications for infrastructure growth, as the private
providers of charging services are profit-maximizing and may not suffi-
ciently develop infrastructure in areas with weaker demand.

4.2. Networked stations deliver better service

As countries continue to set ambitious vehicle electrification targets
(UK Science, 2021), the lack of sub-metering of EV infrastructure and
poor data interoperability makes it increasingly difficult to have
real-time performance tracking and management of charging infra-
structure. With this in mind, our consumer-based performance measure
(e.g., the functionality ratio) allows us to unique circumvent data chal-
lenges and determine whether networked stations have differential
performance as compared to non-networked stations. After controlling
for observable station-characteristics, our results indicate that networked
chargers are 5.1% more reliable than non-networked charging stations
(Table 3, Model II), which demonstrates that consumers have better ex-
periences in networked charging infrastructure. To validate, we utilize
the technology-based measure (e.g., the system-reported error rate) and
find networked stations were indeed 7.5% more likely to have
system-reported errors. Both measures indicate that networked chargers
are more reliable with consumers.

Although there could be many reasons for differences in performance
between networked and non-networked stations, the main drivers are:
(1) dedicated customer support: networked stations could have more
responsive operations and maintenance services. For example, one user
comments in Chinese: “反應後修好了。感謝本站服務人員” which the
Google API translates to: “Fixed after response. Thanks to the service staff
of this site!”; (2) remote access and connectivity: networked stations
typically include mobile applications, allowing the networked stations to
offer actionable information through open-sourced communication
standards. For example, another user comments in Chinese: “設備完善空

間寬敞,有聯網雲端控管,厲害了”which the Google API translates to: “The
equipment is well-equipped and the space is spacious with networked
cloud control. Great!"; iii) real-time response: networked stations provide
real-time updates such as availability and station amenities for users to
easily access and benefit from. Another user comments in Thai:
“วันนี้ชาจได้นะครับ แวะทานข้าวชาจไปพอดี แต่ชาจครึ่ง
ชม.ตัดนะครับ”, which the Google API translates to “You can charge
today. I just stopped by to have some tea but the charge is half an hour
and I cut it off.”

Networked EV charging infrastructure is part of a larger move to-
wards information sharing in social Internet of Things (IOT) platforms
and smart mobility across cities. These IoT platforms allow for better
service management, data and information sharing while enabling social
IOT applications for users (Noura et al., 2018; Karpenko et al., 2018).
However, many stations are non-networked and do not have Internet
access to have real-time information on neither availability or usage.
Therefore, technology standards, such as the Open Charge Point Protocol

(OCPP) and the Open Smart Charging Protocol (OSCP), can foster a
number of benefits for interoperability and innovation diffusion through
the means of collaboration, education, testing, and certification (Open
charge alliance, 2020). Such strategies, which are being deployed glob-
ally, will allow a greater number of firms and entrepreneurs to appro-
priate gains from innovation (Noura et al., 2018; Karpenko et al., 2018;
Tassey, 2000; Teece, 2018). We note that it is unclear whether the use of
open standards will in fact provide a greater degree of infrastructure
reliability, as opposed to closed, proprietary networks. In future work, we
suggest exploration of the impact of open standards on reliability.

Following our discovery of differences in performance between net-
worked and non-networked stations, we also evaluate the differences by
point of interest. Charging station locations are primarily centered
around user destinations as opposed to proximity along the route. This
infrastructure growth model differs somewhat from gas refueling sta-
tions. We provide the distribution of station POIs across all locations in
Fig. 2, which show dining and lodging as the top 2most popular locations
for charging stations. This is not surprising because having charging at
destinations where there is an expectation of an extended stay and at the
end of the journey (versus along the route) is more desirable (Dong et al.,
2014). For example, hotels and lodging destinations have a greater
incentive to provide reliable charging infrastructure in order to attract EV
owners to their properties, and can use the EV chargers as an additional
stream of revenue similar to paid parking. The addition of EV chargers
increases the hotel's visibility in search engines and the provision of
reliable services is integral to receiving positive visitor reviews. This
aligns well with the finding by Rathnayake et al. (2020) that hotels are
the most suitable to establish charging stations since they create addi-
tional value and provide additional guest services. Considering both the
AI-generated functionality ratio and system-reported error rates as
outcome measures for performance, however, we found weak evidence
that POIs such as hotels and lodging destinations significantly influence
the quality of charging service delivery (Table 3) net of all statistical
controls. This is because our dummies for networked stations capture the
main heterogeneity. Therefore, we conclude that the quality of

Fig. 2. Distribution of EV charging stations by point of interest.
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networked charging, maintenance, and subscription services may be
more important than the station point of interest.

4.3. Gaps in infrastructure provision

Based on the publicly available data, we find that 37.5% (6 out of 16)
of economies in East and Southeast Asia do not yet have widely-available
public fast-charging infrastructure. This includes Vietnam, Laos,
Myanmar, Democratic People's Republic of Korea, East Timor, and
Brunei. However, based on commitments from the Glasgow Climate Pact,
we expect there to be growing momentum and interest in electrification
of the transportation sector and associated infrastructure investment,
even among countries with significant oil and gas reserves (UK Science,
2021). For example, Brunei, the third largest oil producer in Southeast
Asia, has announced in their Wawasan 2035, and in their National
Climate Change Policy Strategy 3, to increase the total share of EVs to
60% of the total annual vehicle sales by 2035 (Government of Brunei
Darussalam National Council on Climate Change, 2021). Among the
remaining 62.5% (10 out of 16) economies, station coverage is primarily
situated in the densely populated urban centers. Globally, the Interna-
tional Energy Agency has established proposed population density as an
input to predict the optimal EV infrastructure development (International
Energy Agency, 2022). Given that many areas in East and Southeast Asia
are densely populated, and most countries within the region are still at
the early stages of EV adoption, we predict large-scale deployment of EV
supply equipment in future years.

Although there remains widespread adoption barriers (Brückmann
et al., 2021), our data reveals that consumer information can be benefi-
cial in strategic decision making on infrastructure development. We
highlight 3 approaches needed to help governments accelerate the
transition. First, better data sharing and interoperability is critical to
overcome barriers of distributed and siloed data by encouraging greater
collaboration (Ha et al., 2021). This could involve reporting standards
and data-sharing agreements between station providers and municipal
governments. Second, infrastructure deployments generate increased
local visibility, resulting in positive network externalities for consumer
intent-to-purchase (Ou et al., 2020; International Energy Agency, 2021).
This suggests the further use of subsidies for station deployment to
incentivize regional investment and entrepreneurial activity. Third,
given the persistence of distributive equity issues in less populated and
underserved regions, we expect to see policies targeted in both national
corridors and under resourced communities with latent demand. Such
targeted policies are needed to catalyze private investment in under-
served areas (Ha et al., 2021).

5. Closing

More than 35 countries, along with 43 cities, states, regions, and 6
major vehicle manufacturers, have already committed to all zero-
emission vehicle sales by 2040 globally (UK Science, 2021). The elec-
tric vehicle supply equipment (EVSE) industry was valued at 3.7 billion
USD in 2020 and is projected to grow to 73.3 billion USD by 2031

(Technavio, 2022). Given the scale of both public and private investment,
countries are currently lacking evidence-based measures to evaluate the
quality of EV infrastructure provision. Here we show that using un-
structured consumer data from mobile apps, it is possible to develop new
sustainability performance measures that can update in near real-time.
Given the decentralized growth models of EV charging infrastructure
globally, we demonstrate a unique use case for automated data discovery.
Given that EV drivers experience significant differences in reliability and
performance between government and non-government stations, as well
as networked and non-networked stations, we argue that electrifications
policies in the region should prioritize quality of service provision and
access to EV infrastructure among under-served communities.
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Appendix

Fig. A1. Human-in-the-loop methodology workflow.

Table A1
Sample reviews and human ratings of translation quality.

Original reviews Translation Translation quality

左邊那支怪怪的 試好幾次都沒能充

電 右邊倒是正常使用

The weird one on the left has failed to charge after several
attempts but the right is in normal use.

Perfect translation

空位很多,但也停很多不是電動車的

車

There are a lot of vacancies but there are also many cars that are
not electric cars.

Perfect translation

管理良好 Good Management Perfect translation
左邊維修中 Maintenance on the left Imperfect translation with minor semantic mistakes that do not affect the

delivery of main meanings and the labelling
壞掉,修理中 Broken repaired Wrong translation which delivers a confusing meaning
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