
Take Your MEDS: Digital Signatures
from Matrix Code Equivalence

Tung Chou1(B), Ruben Niederhagen1,2(B), Edoardo Persichetti3,4(B),
Tovohery Hajatiana Randrianarisoa5(B), Krijn Reijnders6(B),

Simona Samardjiska6(B), and Monika Trimoska6(B)

1 Academia Sinica, Taipei, Taiwan
blueprint@crypto.tw, ruben@polycephaly.org

2 University of Southern Denmark, Odense, Denmark
3 Florida Atlantic University, Boca Raton, USA

epersichetti@fau.edu
4 Sapienza University, Rome, Italy
5 Umea University, Umea, Sweden

tovo@aims.ac.za
6 Radboud Universiteit, Nijmegen, The Netherlands

{krijn,simonas,mtrimoska}@cs.ru.nl

Abstract. In this paper, we show how to use the Matrix Code Equiv-
alence (MCE) problem as a new basis to construct signature schemes.
This extends previous work on using isomorphism problems for signature
schemes, a trend that has recently emerged in post-quantum cryptogra-
phy. Our new formulation leverages a more general problem and allows
for smaller data sizes, achieving competitive performance and great flex-
ibility. Using MCE, we construct a zero-knowledge protocol which we
turn into a signature scheme named Matrix Equivalence Digital Sig-
nature (MEDS). We provide an initial choice of parameters for MEDS,
tailored to NIST’s Category 1 security level, yielding public keys as small
as 2.8 kB and signatures ranging from 18 kB to just around 6.5 kB, along
with a reference implementation in C.

Keywords: group action · signature scheme · code-based
cryptography · post-quantum cryptography · matrix codes

1 Introduction

Post-Quantum Cryptography (PQC) comprises all the primitives that are
believed to be resistant against attackers equipped with a considerable quantum

An extended and correctly typeset version of this paper can be found at https://eprint.
iacr.org/2022/1559.
Tung Chou is supported by Taiwan National Science and Technology Council (NSTC,
previously Ministry of Science and Technology) grant 109-2222-E-001-001-MY3.
Edoardo Persichetti is supported by NSF grant 1906360 and NSA grant H98230-22-1-
0328. Monika Trimoska is supported by the ERC Starting Grant 805031 (EPOQUE).

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
N. El Mrabet et al. (Eds.): AFRICACRYPT 2023, LNCS 14064, pp. 28–52, 2023.
https://doi.org/10.1007/978-3-031-37679-5_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-37679-5_2&domain=pdf
https://eprint.iacr.org/2022/1559
https://eprint.iacr.org/2022/1559
https://doi.org/10.1007/978-3-031-37679-5_2

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 29

computing power. Several such schemes have been around for a long time [39,44],
some being in fact almost as old as RSA [36]; however, the area itself was not for-
malized as a whole until the early 2000s, for instance with the first edition of the
PQCrypto conference [37]. The area has seen a dramatic increase in importance
and volume of research over the past few years, partially thanks to NIST’s inter-
est and the launch of the PQC Standardization process in 2017 [38]. After 4 years
and 3 rounds of evaluation, the process has crystallized certain mathematical
tools as standard building blocks (e.g. lattices, linear codes, multivariate equa-
tions, isogenies etc.). Some algorithms [31,35,42] have now been selected for stan-
dardization, with an additional one or two to be selected among a restricted set of
alternates [1,4,5] after another round of evaluation. While having a range of can-
didates ready for standardization may seem satisfactory, research is still active
in designing PQC primitives. In particular, NIST has expressed the desire for
a greater diversity among the hardness assumptions behind signature schemes,
and announced a partial re-opening of the standardization process for precisely
the purpose of collecting non-lattice-based protocols.

Cryptographic group actions are a popular and powerful instrument for con-
structing secure and efficient cryptographic protocols. The most well-known is,
without a doubt, the action of finite groups on the integers modulo a prime, or
the set of points on an elliptic curve, which give rise to the Discrete Logarithm
Problem (DLP), i.e. the backbone of public-key cryptography. Recently, propos-
als for post-quantum cryptographic group actions started to emerge, based on
the tools identified above: for instance, isogenies [18], linear codes [14], trilinear
forms [47] and even lattices [30]. All of these group actions provide very promis-
ing solutions for cryptographic schemes, for example signatures [8,23,47] and
many others; at the same time, they are very different in nature, with unique
positive and negative aspects.

Our Contribution. In this work, we formalize a new cryptographic group action
based on the notion of Matrix Code Equivalence. This is similar in nature to
the code equivalence notion at the basis of LESS [8,14], and in fact belongs
to a larger class of isomorphism problems that include, for example, the lattice
isomorphism problem, and the well-known isomorphism of polynomials [39]. The
hardness of the MCE problem was studied in [22,45], from which it is possible to
conclude that this is a suitable problem for post-quantum cryptography. Indeed,
we show that it is possible to use MCE to build a zero-knowledge protocol, and
hence a signature scheme, which we name Matrix Equivalence Digital Signature,
or simply MEDS. For our security analysis, we first study in detail the collision
attacks from [45] and then we develop two new attacks. The first attack that we
propose uses a nontrivial algebraic modeling inspired from the minors modellings
of MinRank in [7,26]. The second one is an adaptation of Leon’s algorithm [34]
for matrix codes. Based on this analysis, we provide an initial parameter choice,
together with several computational optimizations, resulting in a scheme with
great flexibility and very competitive data sizes. This group action allows for the
construction of (linkable) ring signatures, with performance results that improve
on the existing state of the art [9]. Due to limitations in space, the construction
of ring signatures is included in an extended version of this work.

30 T. Chou et al.

2 Preliminaries

Let Fq be the finite field of q elements. GLn(q) and AGLn(q) denote respectively
the general linear group and the general affine group of degree n over Fq. We use
bold letters to denote vectors a, c,x, . . . , and matrices A,B, The entries of
a vector a are denoted by ai, and we write a = (a1, . . . , an) for a (row) vector of
dimension n over some field. Similarly, the entries of a matrix A are denoted by
aij . Random sampling from a set S is denoted by a

$←−− S. For two matrices A
and B, we denote the Kronecker product by A ⊗ B. Finally, we denote the set
of all m × n matrices over Fq by Mm,n(Fq).

2.1 Cryptographic Group Actions

Definition 1. Let X be a set and (G, ·) be a group. A group action is a mapping

! : G × X → X
(g, x) &→ g ! x

such that the following conditions hold for all x ∈ X:

– e ! x = x, where e is the identity element of G.
– g2 ! (g1 ! x) = (g2 · g1) ! x, for all g1, g2 ∈ G.

A group action can have a number of mathematically desirable properties.
For example, we say that a group action is:

– Commutative: for any g1, g2 ∈ G, we have g2 ! (g1 ! x) = g1 ! (g2 ! x).
– Transitive: given x1, x2 ∈ X, there is some g ∈ G such that g ! x1 = x2.
– Free: if g ! x = x, then g is the identity.

In particular, a cryptographic group action is a group action with some additional
properties that are useful for cryptographic applications. To begin with, there
are some desirable properties of computational nature. Namely, the following
procedures should be efficient:

– Evaluation: given x and g, compute g ! x.
– Sampling : sample uniformly at random from G.
– Membership testing : verify that x ∈ X.

Finally, cryptographic group actions should come with security guarantees;
for instance, the vectorization problem should be hard:

Problem 1 (Group Action Vectorization).
Given: The pair x1, x2 ∈ X.
Goal: Find, if any, g ∈ G such that g ! x1 = x2.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 31

Early constructions using this paradigm are based on the action of finite
groups of prime order, for which the vectorization problem is the discrete loga-
rithm problem. Lately, multiple isogeny-based constructions have appeared: see,
for instance, the work of Couveignes in [21] and later by Rostovtsev and Stol-
bunov [46]. A general framework based on group actions was explored in more
detail by [3], allowing for the design of several primitives. The holy grail are those
cryptographic group actions that possess both the mathematical and crypto-
graphic properties listed above. Currently, CSIDH [18] is the only post-quantum
commutative cryptographic group action, although there is an ongoing debate
about the efficiency and quantum hardness of its vectorization problem [15]. In
Sect. 3, we introduce the group action that is relevant to our work.

2.2 Protocols

We give here an explicit characterization of the protocols we will build. The
corresponding security definitions are presented only in an informal manner;
formal definitions will are included in the full version of this work.1

Definition 2. A Sigma protocol is a three-pass interactive protocol between
two parties: a prover P = (P1,P2) and a verifier V = (V1,V2). The protocol is
composed of the following procedures:

I. Keygen: on input some public data (including system parameters), output a
public key pk (the instance) and the corresponding secret key sk (the witness).
Give sk to the prover; pk is distributed publicly and is available to all parties.
For simplicity, we assume that the public data is available as input in all the
remaining procedures.

II. Commit: on input the public key pk, P1 outputs a public commitment cmt
and sends it to the verifier.

III. Challenge: on input the public key pk and the commitment cmt, V1 samples
uniformly at random a challenge ch from the challenge space C and sends it
to the prover.

IV. Response: on input the secret key sk, the public key pk, the commitment cmt
and the challenge ch, P2 outputs a response rsp and sends it to the verifier.

V. Verify: on input a public key pk, the commitment cmt, the challenge ch, and
the response rsp, V2 outputs either 1 (accept) if the transcript (cmt, ch, rsp)
is valid, or 0 (reject) otherwise.

A Sigma protocol is usually required to satisfy the following properties. First,
if the statement is true, an honest prover is always able to convince an honest ver-
ifier. This property is called Completeness. Secondly, a dishonest prover cannot
convince an honest verifier other than with a small probability. This is captured
by the Soundness property, which also bounds such probability, usually known as
soundness error or, informally, cheating probability. Finally, the protocol has to
be Zero-Knowledge, i.e. anyone observing the transcript (including the verifier)
learns nothing other than the fact that the statement is true.
1 https://eprint.iacr.org/2022/1559.pdf.

https://eprint.iacr.org/2022/1559.pdf

32 T. Chou et al.

Definition 3. A Digital Signature scheme is a protocol between 2 parties: a
signer S and a verifier V. The protocol is composed of the following procedures:

I. Keygen: on input the public data (including system parameters), output a
secret signing key sk for S and the corresponding public verification key pk.

II. Sign: on input a secret key sk and a message msg, output a signature σ.
III. Verify: on input a public key pk, a message msg and a signature σ, V outputs

either 1 (accept) if the signature is valid, or 0 (reject) otherwise.

Correctness means that an honest signer is always able to get verified. The
usual desired security notion for signature schemes is Unforgeability, which guar-
antees computationally infeasible to forge a valid signature without knowing the
secret signing key. Again, we leave formal definitions to the full version of this
work.

3 The Matrix Code Equivalence Problem

A [m×n, k] matrix code is a subspace C of Mm,n(Fq). These objects are usually
measured with the rank metric, where the distance between two matrices A,B ∈
Mm,n(Fq) is defined as d(A,B) = Rank(A − B). We denote the basis of the
subspace by 〈C1, . . . ,Ck〉, where the Ci’s are linearly independent elements of
Mm,n(Fq). Due to symmetry, without loss of generality, in the rest of the text
we will assume m ! n.

For a matrix A ∈ Mm,n(Fq), let vec be a mapping that sends a matrix A to
the vector vec(A) ∈ Fmn

q obtained by ‘flattening’ A, i.e.:

vec : A =




a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n



 &→ vec(A) = (a1,1, . . . , a1,n, . . . , am,1, . . . , am,n).

The inverse operation is denoted by mat, i.e. mat(vec(A)) = A. Using the map
vec, an [m × n, k] matrix code can be thought of as an Fq-subspace of Fmn

q ,
and thus we can represent it with a generator matrix G ∈ Fk×mn

q , in a manner
similar to the common representation for linear codes. Indeed, if C is an [m×n, k]
matrix code over Fq, we denote by vec(C) the vectorization of C i.e.:

vec(C) := {vec(A) : A ∈ C}.

In this case, vec(C) is a k-dimensional Fq-subspace of Fmn
q .

Definition 4. Let C and D be two [m×n, k] matrix codes over Fq. We say that
C and D are equivalent if there exist two matrices A ∈ GLm(q) and B ∈ GLn(q)
such that D = ACB, i.e. for all C ∈ C, ACB ∈ D.

The equivalence between two matrix codes can be expressed using the Kro-
necker product of A# and B, which we denote by A# ⊗ B.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 33

Lemma 1. Let C and D be two [m × n, k] matrix codes over Fq. Suppose that
C and D are equivalent with D = ACB, with A ∈ GLm(q) and B ∈ GLn(q). If
G and G′ are generator matrices for C and D respectively, then there exists a
T ∈ GLk(q) such that G′ = TG(A# ⊗ B).

It is common to write the generator matrices in systematic form (i.e., as a
matrix of the shape (I|M)); we denote this operation by SF. Following Lemma
1, this gives us that D = ACB if and only if SF(G′) = SF(G(A# ⊗ B)).
To simplify notation, we introduce the following operator:

πA,B(G) := G(A# ⊗ B).

We are now ready to describe some hard problems connected to the objects
we just introduced. The Matrix Code Equivalence (MCE) problem is formally
defined as follows:

Problem 2 (Matrix Code Equivalence).
MCE(k, n,m, C,D):
Given: Two k-dimensional matrix codes C,D ⊂ Mm,n(q).
Goal: Determine if there exist A ∈ GLm(q),B ∈ GLn(q) such that D = ACB.

The map (A,B) : C &→ ACB is an isometry between C and D, in the
sense that it preserves the rank i.e. RankC = Rank(ACB). When n = m,
such isometries can also be extended by transpositions of codewords, however,
we choose to work with this smaller set of isometries for simplicity, at no cost
to cryptographic security. Note that, although we defined MCE as a decisional
problem, our signature construction relies on the computational version of it.

Remark 1. We thank Giuseppe D’Alconzo for the following sharp observation:
An MCE instance of dimension k with m×n matrices over Fq can be viewed as a
3-tensor problem, which is symmetrical in its arguments k, m and n. This means
that it is equivalent to an MCE instance of dimension m with k×n matrices and
to an MCE instance of dimension n with k×m matrices. Switching to equivalent
instances is a matter of changing perspective on the k × m × n object over Fq

defined by Aijl = A(l)
ij . In other words, each basis matrix m × n defines a slice

of a cube, and one can take different slices for equivalent instances.

Finally, we present a multiple-instance version of MCE, which is at the base
of one of the optimizations, using multiple public keys, which we will describe
in Sect. 5. It is easy to see that this new problem reduces to MCE, as done for
instance in [8] for the Hamming case.

Problem 3 (Multiple Matrix Code Equivalence).
MMCE(k, n,m, r, C,D1, . . . ,Dr):
Given: (r + 1) k-dimensional matrix codes C,D1, . . . ,Dr ⊂ Mm,n(Fq).
Goal: Find – if any – A ∈ GLm(q),B ∈ GLn(q) such that Di = ACB for some
i ∈ {1, . . . , r}.

34 T. Chou et al.

The MCE problem has been shown to be at least as hard as the Code
Equivalence problem in the Hamming metric [22]. Furthermore, under moderate
assumptions, MCE is equivalent to the homogeneous version of the Quadratic
Maps Linear Equivalence problem (QMLE) [45], which is considered the hard-
est among polynomial equivalence problems. An extensive security evaluation
will be given in Sect. 6, encompassing an overview of the best attack techniques
and concrete security estimates. From this, we infer a choice of parameters in
Sect. 7.1.

To conclude, we now lay out the details of the MCE-based group action, given
by the action of isometries on k-dimensional matrix codes. That is, the set X is
formed by the k-dimensional matrix codes of size m×n over some base field Fq,
and the group G = GLm(q) × GLn(q) acts on this set via isometries as follows:

! : G × X → X
((A,B), C) &→ ACB

We write Gm,n(q) to denote this group of isometries and Mk,m,n(q) for the
set of k-dimensional matrix codes; to simplify notation, we drop the indices
k,m, n and q when clear from context. Then, for this MCE-based group action
the Vectorization Problem is precisely Problem 2. This action is not commuta-
tive and in general neither transitive nor free. We can restrict the set M to a
single well-chosen orbit to make the group action both transitive and free. In
fact, picking any orbit generated from some starting code C ensures transitiv-
ity, and the group action is free if the chosen code C has trivial automorphism
group AutG(C) := {ϕ ∈ G : ϕ(C) = C}, where trivial means up to scalars
in Fq

2. The non-commutativity is both positive and negative: although it lim-
its the cryptographical design possibilities, e.g. key exchange becomes hard, it
prevents quantum attacks to which commutative cryptographic group actions
are vulnerable, such as Kuperberg’s algorithm for the dihedral hidden subgroup
problem [33].

With regards to efficiency, it is immediate to notice that our group action is
very promising, given that the entirety of the operations in the proposed proto-
cols is simple linear algebra; this is in contrast with code-based literature (where
complex decoding algorithms are usually required) and other group actions (e.g.
isogeny-based) which are burdened by computationally heavy operations. Fur-
ther details about performance are given in details about performance are given
Sect. 7.

4 Protocols from Matrix Code Equivalence

The efficient non-commutative cryptographic group action provided by
MCE from Sect. 3 yields a promising building block for post-quantum cryp-
tographic schemes. In this section, we obtain a digital signature scheme by

2 More accurately, as the action of an isometry (A,B) is only interesting up to scalars
λ, µ ∈ Fq, the group that is acting freely is PGLm(q) × PGLn(q).

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 35

Fig. 1. MCE Sigma Protocol

first designing a Sigma protocol and then applying the Fiat-Shamir transfor-
mation [28].

The first building block in our work is the Sigma protocol in Fig. 1, in which
a Prover proves the knowledge of an isometry (A,B) between two equivalent
matrix codes. The security result is given in Theorem 1. The proof is considered
standard in the literature (similar to the one given in [14], for instance) and is
therefore omitted in the interest of space.

Theorem 1. The Sigma protocol described above is complete, 2-special sound
and honest-verifier zero-knowledge assuming the hardness of the MCE problem.

Applying the Fiat-Shamir transformation gives the signature scheme in
Fig. 2.

Public Key and Signature Size. We begin by calculating the communica-
tion costs for the Sigma protocol of Fig. 1. Note that, for the case c = 0, the
response (µ, ν) consists entirely of randomly-generated objects, and is efficiently
represented by a single seed (that can be used to generate both matrices). This
yields the following cost per round, in bits:

{
3λ + 1 if c = 0
2λ + 1 + (m2 + n2)+log2(q), if c = 1

remembering that seeds are λ bits and hash digests 2λ to avoid collision attacks.
For the signature scheme we calculate the sizes as follows. First, since the

matrix G0 is random, it can also be represented via a short seed, and therefore

36 T. Chou et al.

Fig. 2. The basic signature scheme

can be included in the public key at negligible cost (see Algorithm I. of Fig. 2).
Keeping in mind that the number of rounds t is equal to the value of the desired
security level λ, the protocol above yields the following sizes (in bits):

– Public key size: λ + k(mn − k)+log2(q),

– Average signature size: t
(
1 +

λ + (m2 + n2)+log2(q),
2

)
.

5 Matrix Equivalence Digital Signature—MEDS

We apply the following optimizations from the literature to the basic Fiat-
Shamir-based signature scheme described in Sect. 4, to obtain our Matrix Equiv-
alence Digital Signature (MEDS).

Multiple Keys. The first optimization is a popular one in literature [8,13,23],
and it consists of utilizing multiple public keys, i.e. multiple equivalent codes
G0, . . . ,Gs−1, each defined as Gi = SF(πAi,Bi(G0)) for uniformly chosen secret
keys3 (Ai,Bi). This allows to reduce the soundness error from 1/2 to 1/2!, where
' = +log2 s,. The optimization works by grouping the challenge bits into strings
of ' bits, which can then be interpreted as binary representations of the indices
{0, . . . , s − 1}, thus dictating which public key will be used in the protocol.
Security is preserved since the proof of unforgeability can be easily modified to
rely on a multi-instance version of the underlying problem: in our case, MMCE
(Problem 3). Note that, although in the literature s is chosen to be a power of 2,
this does not have to be the case. In this work, we will instead select the value
of s based on the best outcome in terms of performance and signature size.
3 Again, for convenience, we choose A0 = Im, B0 = In.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 37

Remark 2. This optimization comes at the cost of an s-fold increase in public-key
size. As shown for instance in [23], it would be possible to reduce this impact by
using Merkle trees to a hash of the tree commitment of all the public keys. This,
however, would add some significant overhead to the signature size, because it
would be necessary to include the paths for all openings. Considering the sizes
of the objects involved, such an optimization is not advantageous in our case.

Partially Seeding the Public Key. The previous optimization comes at sig-
nificant cost to the public key, so we propose a new optimization that trades
public key size for private key size. This optimization is inspired by the trade-off
in the key generation of Rainbow [24] and UOV [11]. It has not been previously
used in Fiat-Shamir signatures, but we expect it can be used successfully in any
scheme coming from equivalence problems especially the ones using the previous
optimization, such as [8,13,23]. With this optimization, instead of generating the
secret (Ai,Bi) from a secret seed and then deriving the public Gi, we generate
Gi partially from a public seed and then use it to find (Ai,Bi) and the rest of
the public key Gi. In more detail, in order to generate the public Gi and the
corresponding secret (Ai,Bi) we perform the following:

– We perform a secret change of basis of G0 by multiplying it by a secret matrix
T ∈ GLk(q) to obtainG′

0. Assume the codewords fromG′
0 areP0

1,P0
2, . . . ,P0

k.
– For each i ∈ {1, . . . , s− 1}, we generate from a public seed a complete m× n
codeword Pi

1 and the top m − 1 rows of codeword Pi
2 (depending on the

parameters m,n one can get slightly more rows when m -= n).
– Find Ai and Bi from the linear relations:

Pi
1B

−1
i = AiP0

1

Pi
2B

−1
i = AiP0

2

by fixing the first (top left) value of Ai.
– Find Pi

j = AiP0
jBi for all j ∈ {3, . . . , k}.

– Construct the public Gi from Pi
1,Pi

2, . . . ,Pi
k.

The public key then is the public seed together with Pi
3, . . . ,Pi

k. For verification,
the complete Gi are reconstructed using the seed.

Fixed-Weight Challenges. Another common optimization is the use of fixed-
weight challenges. The idea is to generate the challenge string h with a fixed
number of 1s and 0s, i.e. Hamming weight, rather than uniformly at random.
This is because, when hi = 0, the response (µi, νi) consists entirely of randomly-
generated objects, and so one can just transmit the seed used for generating
them. This creates a noticeable imbalance between the two types of responses,
and hence it makes sense to minimize the number of 1 values. To this end, one
can utilize a so-called weight-restricted hash function, that outputs values in
Zt
2,w, by which we denote the set of vectors with elements in {0, 1} of length t

and weight w. In this way, although the length of the challenge strings increases,

38 T. Chou et al.

Fig. 3. The MEDS Protocol

the overall communication cost scales down proportionally to the value of w.
In terms of security, this optimization only entails a small modification in the
statement of the Forking Lemma, and it is enough to choose parameters such
that log2

(t
w

)
≥ λ. Note that this optimization can easily be combined with

the previous one, by mandating hash digests in Zt
s,w and choosing parame-

ters such that log2
((t

w

)
(s − 1)w

)
≥ λ. In practice, this can be achieved with

a hash function hash : {0, 1}∗ → {0, 1}λ, by expanding the output to a t-tuple
(h0, . . . , ht−1), 0 ≤ hi < s of weight w.

Seed Tree. Finally, the signature size can be optimized again using a seed tree.
This primitive allows to generate the many seeds used throughout the protocol in
a recursive way, starting from a master seed mseed and building a binary tree, via
repeated PRNG applications, having t seeds as leaves. When the required t−w
values need to be retrieved, it is then enough to reveal the appropriate sequence
of nodes. This reduces the space required for the seeds from λ(t−w) to λNseeds,
where Nseeds can be upper bounded by 2'log2(w)(+w(+log2(t), − +log2(w), − 1),
as shown in [29]. We refer the reader to Section 2.7 of [12] for more details. As
suggested in [12], we are including a 256-bit salt to ward off multi-target collision
attacks and the leaf address as identifier for domain separation in the inputs of
the seed-tree hash functions.

To give a complete picture, we present the MEDS protocol in Fig. 3, in its final
form, including all applicable variants. The various parameters control different

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 39

optimization: for instance s refers to the number of public keys used, whereas w
refers to the fixed weight of the challenge hash string. Parameter choices will be
thoroughly discussed in Sect. 7.1.

Public Key and Signature Size. With these various optimizations, we obtain
the following public key and signature size for MEDS:

– MEDS public key size: λ + (s − 1)((k − 2)(mn − k) + n)+log2(q),
– MEDS signature size:

λ
h

+w(m2 + n2)+log2(q),
{µi,νi}hi=1

+ λNseeds

{µi,νi}hi=0

+ 2λ
salt

6 Concrete Security Analysis

In this section, we will mostly use the Big O notationO to express the complexity
of algorithms. Where we are not interested in the polynomial factor we will use
O∗. We note that despite the notation, the estimates are quite tight and provide
a good basis for choosing parameters.

Recall that the goal of an adversary against MCE is to recover the matrices A
and B, given a description of the matrix codes C and D. The most näıve attack
would be to try every A ∈ GLm(q) and B ∈ GLn(q) until we find the correct
isometry, amounting to a complexity of O(qn

2+m2
).

The näıve attack can be improved by noting that once one of the matrices
A or B is known, the resulting problem becomes easy [22]. Hence, we only need
to brute-force one of A or B, so the complexity becomes O∗(qmin{m2,n2}).

In the rest of the section, we will see that there exist several non-trivial
attacks that perform much better than this upper bound.

6.1 Birthday-Based Graph-Theoretical Algorithms for Solving MCE

Recent works [22,45] investigate the hardness of MCE by connecting it to other
equivalence problems, namely, the Code Equivalence problem in the Hamming
metric [22] and the Quadratic Maps Linear Equivalence problem (QMLE) [45].
The latter provides complexity analysis by viewingMCE as an instance of QMLE.
We recap their results here. For better understanding, we include the definition
of the related QMLE problem.

Problem 4. QMLE(k,N,F ,P):
Given: Two k-tuples of multivariate polynomials of degree 2

F = (f1, f2, . . . , fk), P = (p1, p2, . . . , pk) ∈ Fq[x1, . . . , xN]k.

Goal: Find – if any – matrices S ∈ GLN (q),T ∈ GLk(q) such that

P(x) = (F(xS))T.

40 T. Chou et al.

Algorithm 1 Collision-search algorithm
1: function BuildList(F ,P)
2: L ← ∅
3: repeat

4: x
$←−− F(m+n)

q

5: if P(F ,x) then L ← L ∪ {x}
6: until |L| = "
7: return L

8: function CollisionFind(F ,P)
9: L1 ← BuildList(F ,P)
10: L2 ← BuildList(P,P)
11: for all (x,y) ∈ {L1 × L2} do
12: φ ←inhQMLE(x,y)
13: if φ '= ⊥ then
14: return solution φ

15: return ⊥

We denote by hQMLE, inhQMLE and BMLE the related problems when the poly-
nomials are homogeneous of degree 2, inhomogeneous and bilinear, respectively.
It was shown in [45] that, under the assumption that the two codes C and D
have trivial automorphism groups (which is believed to be true with overwhelm-
ing probability for big enough parameters), MCE(k, n,m, C,D) is equivalent to
hQMLE(k,N,F ,P) where N = m + n. Concretely, an MCE instance with a
solution (A,B) is transformed into an hQMLE instance with a solution (S,T)

where S =
[
A 0
0 B#

]
and T corresponds to a change of basis of D. Therefore it

is possible to apply algorithms for solving hQMLE to MCE instances such as the
graph-theoretic algorithm of Bouillaguet et al. [17]. The algorithm is basically
a collision-search algorithm comprised of two steps, as given in Algorithm1. In
the first step we build two lists L1 and L2 of size ' of elements in F(m+n)

q that
satisfy a predefined distinguishing property P related to the given systems of
polynomials F and P and that is preserved under isometry. In the second step,
we try to find a collision between the two lists that will lead us to the solution.
For the property P, the authors of [17] propose:

P(F ,x) = 0 ⇔ Dim(Ker(Dx(F))) = κ

for a suitably chosen κ, where Dx(F) : y &→ F(x + y) − F(x) − F(y) is the
differential of F at a point x. Clearly, the rank of the differential is preserved
under isometry, so this is an appropriate choice of P. Other instantiations are
possible as well, as long as they are invariant under isometry, although their
success depends on the distribution of elements that satisfy the property for
varying κ.

Once a collision (a,b) is found, it can be used to derive an associated inho-
mogeneous QMLE instance inhQMLE (k, (m + n),F ′,P ′) as F ′(x) = F(x + a),
P ′(x) = P(x + b) on which we call an inhomogeneous solver. Since it can not
be directly checked whether a pair is a collision, the solver needs to be called for
each pair, similar to the guess and check approach in ISD algorithms [41].

The inhomogeneous instance can be solved much more efficiently than the
homogeneous one. Heuristic evidence suggests that solving random instances
of the inhQMLE problem using an algebraic approach takes O((m + n)9) oper-
ations [27], however, the derived inhQMLE instances from the collision-search
attack are not random enough. These specific instances have a solver with a

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 41

complexity of O(qκ) [16]. As κ is typically chosen to be small, this approach is
still efficient in practice. Following the analysis from [45], the concrete complex-
ity of the algorithm for k ! 2(m + n) follows a birthday argument and is the
maximum of the complexity of the two steps, i.e.:

max(
√

q(m+n)/d · CP, dq
(m+n) · CiQ), (1)

with success probability of ≈ 63%. Here, CP denotes the cost of checking whether
an element satisfies the property P, d is the proportion of elements satisfying
P and CiQ denotes the cost of a single query to inhQMLE. Note that d can be
calculated as d = 1/O(qκ2+κ(k−(m+n))) and κ is chosen such that it minimizes
Eq. (1). Asymptotically, the complexity is O∗(q 2

3 (m+n)) by balancing the steps
[45]. The memory complexity is simply the size of the lists.

It is pointed out in [45] that when k ≥ 2(m + n), we can no longer assume
that we have any elements satisfying P, which forces us to consider all elements
in the collision search giving a complexity of O(qm+n). In that case, we can
consider choosing arbitrarily one element x and checking for a collision with all
other elements y ∈ Fm+n

q . Note that this approach was also proposed in [17],
and can be applied to any parameter set, thus giving an upper-bound on the
complexity of a classical collision-search algorithm.

For a quantum version of Algorithm1, both BuildList and CollisionFind
can be seen as searches of unstructured databases of a certain size, hence Grover’s
algorithm applies to both: we can build the list L using only

√
' · d−1 searches,

and we can find a collision using only
√
|L1 × L2| queries to the solver. This

requires both P and inhQMLE to be performed in superposition. The balance
between both sides remains the same. In total, the complexity of the quantum
version becomes O∗(q 1

3 (m+n)).

Collision-Search Algorithm Using Non-trivial Roots. When viewing an
MCE instance as an hQMLE instance, it is possible to use certain bilinear prop-
erties to improve Algorithm1. When n = m, such instances have approximately
q2n−k−1 non-trivial roots, which can be used to improve a subroutine of Algo-
rithm1, and to make it deterministic instead of probabilistic [45]. In practice,
such non-trivial roots exist i) almost always when k < 2n, ii) with probability
1/q for k = 2n, iii) with probability 1/qk+1−2n for k > 2n. The complexity of
this approach is O∗(qn), if such non-trivial roots exist. This complexity is proven
under the assumption that the complexity of the inhomogenous QMLE solver is
no greater than O(qn), which holds trivially when k ≥ n [45], and heuristically
when k < n. Finding the non-trivial roots can also be done using a bilinear XL
algorithm [40]. We do not consider this approach in our analysis, as it is only
interesting for a subset of parameters where the systems are (over)determined,
i.e. when k is close to m+ n.

42 T. Chou et al.

6.2 Algebraic Attacks

Direct Modelling. Recently, in [45], it was shown that MCE is equivalent
to BMLE. One of the natural attack avenues is thus to model the problem as
an algebraic system of polynomial equations over a finite field. This approach
was taken in [27], where the general Isomorphism of Polynomials (IP) problem
was investigated. Here, we focus specifically on BMLE and perform a detailed
complexity analysis.

First, fix arbitrary bases (C(1), . . . ,C(k)) and (D(1), . . . ,D(k)) of the codes
C and D respectively. In terms of the bases, the MCE problem can be rephrased
as finding A ∈ GLm(q),B ∈ GLn(q) and T = (tij) ∈ GLk(q) such that:

∑

1!s!k

trsD(s) = AC(r)B, ∀r, 1 ! r ! k (2)

The system (2) consists of knm equations in them2+n2+k2 unknown coefficients
of the matrices A,B and T. The quadratic terms of the equations are always
of the form γaijbi′j′ for some coefficients aij and bi′j′ of A and B respectively
which means the system (2) is bilinear. Note that the coefficients of T appear
only linearly. As previously, we can guess the m2 variables from A, which will
lead us to a linear system that can be easily solved. However, we can do better
by exploiting the structure of the equations.

For ease of readability of the rest of the paragraph denote by Mi and M i

the i-th row and i-th column of a matrix M. Note that, in (2), for i -= j,
the unknown coefficients from two rows Ai and Aj don’t appear in the same
equation. Symmetrically, the same holds for B i and B j , but we will make use of
it for the matrix A. Thus, we can consider only part of the system, and control
the number of variables from A. The goal is to reduce the number of variables
that we need to guess before obtaining an overdetermined linear system, and we
want to do this in an optimal way. Consider the first α rows from A. Extracting
the equations that correspond to these rows in (2) leads us to the system:

∑

1!s!k

trsD
(s)
i = Ai C(r)B, ∀r, i, 1 ! r ! k, 1 ! i ! α. (3)

Guessing the αm coefficients from Ai leads to a linear system of αkn equations
in n2 + k2 variables. Choosing α = +n2+k2

kn ,, the complexity of the approach

becomes O(qm'n2+k2
kn ((n2 + k2)3). For the usual choice of m = n = k, this

reduces to at least α = 2 and a complexity of O(q2nn6).
Note that, one can directly solve the bilinear system (3) using for example

XL [20] and the analysis for bilinear systems from [40] (similar results can be
obtained from [25]). We have verified, however, that due to the large number of
variables compared to the available equations, the complexity greatly surpasses
the one of the simple linearization attack presented above.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 43

Improved Modelling. In order to improve upon this baseline algebraic attack,
we will model the problem differently and completely avoid the trs variables. This
modelling is in the spirit of the minors modellings of MinRank as in [7,26].

As previously, letG andG′ be the k×mn generator matrices of the equivalent
codes C and D respectively. Then from Lemma 1, G̃ = G(A#⊗B) is a generator
matrix of D for some invertible matrices A and B. We will take the coefficients
of A and B to be our unknowns. A crucial observation for this attack is that
each row G̃i of G̃ is in the span of the rows of G′, since G′ and G̃ define the
same code. This means that adding G̃i to G′ does not change the code, i.e.,

(i)G′ =
(

G′

G̃i

)

is not of full rank. From here, all maximal minors |
(
(i)G′

j1
(i)G′

j2 . . .
(i) G′

jk+1

)
|

of (i)G′, for every {j1, j2, . . . , jk+1} ⊂ {1, 2, . . . ,mn}, are zero.
Now, as in a minors modeling of MinRank, we can form equations in the

unknown coefficients of A and B by equating all maximal minors to zero, which
amounts to a total of

(mn
k+1

)
equations. Since the unknown coefficients of A and B

appear only in the last row of the minors, and only bilinearly, the whole system
is also bilinear. Thus we have reduced the problem to solving the bilinear system

{
|
(
(i)G′

j1
(i)G′

j2 . . .
(i) G′

jk+1

)
| = 0, for all i ∈ {1, 2, . . . , k} and all

{j1, j2, . . . , jk+1} ⊂ {1, 2, . . . ,mn} (4)

in the m2 + n2 unknown coefficients of A and B.
At first sight, (4) seems to have more than enough equations to fully linearize

the system. However, the majority of these equations are linearly dependent. In
fact, there are only (mn − k)k linearly independent equations. To see this, fix
some i and consider a minor |

(
(i)G′

j1
(i)G′

j2 . . .
(i) G′

jk+1

)
| of (i)G′. Since all

rows except the first don’t contain any variables, the equation

|
(
(i)G′

j1
(i)G′

j2 . . .
(i) G′

jk+1

)
| = 0

basically defines the linear dependence between the columns (i)G′
j1 , . . .

(i) G′
jk+1

.
But the rank of the matrix is k, so all columns can be expressed through some
set of k independent columns. Thus, in total, for a fixed i we have mn − k
independent equations and in total (mn − k)k equations for all i.

Alternatively, we can obtain the same amount of equations from G̃ and the
generator matrix G′⊥ of the dual code of D. Since G̃ should also be a generator
matrix of D, we construct the system:

G′⊥ · G̃# = 0,

which is again a system of (mn − k)k bilinear equations in n2 +m2 variables.
The complexity of solving the obtained system using either of the modellings

strongly depends on the dimension of the code – it is the smallest for k = mn/2,

44 T. Chou et al.

and grows as k reduces (dually, as k grows towards mn). In Sect. 7 we give the
concrete complexity estimate for solving the system for the chosen parameters
using bilinear XL and the analysis from [40].

The attack does not seem to benefit a lot from being run on a quantum
computer. Since the costly part comes from solving a huge linear system for
which there are no useful quantum algorithms available, the only way is to
‘Groverize’ an enumeration part of the algorithm. One could enumerate over one
set of the variables, either ofA or B, typically the smaller one, and solve a biliner
system of less variables. Grover’s algorithm could then speed up quadratically
this enumeration. However, since in the classical case the best approach is to not
use enumeration, this approach only makes sense for quite small values of the
field size i.e. only when q < 4. In this parameter regime, however, combinatorial
attacks perform significantly better, so this approach becomes irrelevant.

6.3 Leon-Like Algorithm Adapted to the Rank Metric

Leon [34] proposed an algorithm against the code equivalence problem in the
Hamming metric that relies on the basic property that isometries preserve the
weight of the codewords and that the weight distribution of two equivalent codes
is the same. Thus, finding the set of codewords of smallest weight in both codes
reveals enough information to find a permutation that maps one set to the other,
which with high probability is the unknown isometry between the codes. This
algorithm is quite unbalanced and heavy on the ’codewords finding’ side, since
it requires finding all codewords of minimal weight. Beullens [10] proposed to
relax the procedure and instead perform a collision based algorithm, much in
the spirit of Algorithm1: Build two lists of elements of the codes of particular
weight (the distinguishing property from [10] actually also includes the multiset
of entries of a codeword) and find a collision between them. As in Leon’s algo-
rithm and Algorithm1, the ’collision finding’ part employs an efficient subroutine
for reconstructing the isometry.

The approach from the Hamming metric can be translated to matrix codes
and can be used to solve MCE, but some adjustments are necessary. First of
all note that finding codewords of a given rank r is equivalent to an instance
of MinRank [19,26] for k matrices of size m × n over Fq. Depending on the
parameters, we have noticed that the Kipnis-Shamir modelling [32] and Bardet’s
modelling [7] perform the best, so we use both in our complexity estimates.

For the collision part, notice that given two codewords C1 from C and D1

from D, it is not possible to determine the isometry (A,B), as there are many
isometries possible between single codewords. Thus, there is no efficient way of
checking that these codewords collide nor finding the correct isometry. On the
other hand, a pair of codewords is typically enough. For the pairs (C1,C2) and
(D1,D2) we can form the system of 2mn linear equations

{
A−1D1 = C1B
A−1D2 = C2B

(5)

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 45

in the m2 + n2 unknown coefficients of A and B. When m = n, which is a
typical choice, the system is expected to be overdetermined, and thus solved
in O(n6). In practice, and since C1, C2, D1 and D2 are low-rank codewords,
there are fewer than 2n2 linearly independent equations, so instead of a unique
solution, we can obtain a basis of the solution space. However, the dimension of
the solution space is small enough so that coupling this technique with one of the
algebraic modelings in Sect. 6.2 results in a system that can be solved through
direct linearization. It is then easy to check whether the obtained isometry maps
C to D. We will thus assume, as a lower bound, that we find collisions between
pairs of codewords.

Now, let C(r) denote the number of codewords of rank r in a k-dimensional
m × n matrix code. Then, using a birthday argument, two lists of size

√
2C(r)

of rank r codewords of C and D are enough to find two collisions. To detect the
two collisions, we need to generate and solve systems as in Eq. (5) for all possible

pairs of elements from the respective lists, so
(√2C(r)

2

)2
systems in total. Since

C(r) ≈ qr(n+m−r)−nm+k, the total complexity amounts to

O(q2(r(n+m−r)−nm+k)(m2 + n2)ω).

Note that a deterministic variant of this approach has the same asymptotic com-
plexity. Choosing two rank r codewords of C and checking them for a 2-collision
against all pairs of rank r codewords of D requires solving

(C(r)
2

)
systems.

Finally, we choose r so that both parts – the MinRank and the collision part
are as close to a balance as possible. Section 7 discuses further the complexity of
this approach for the chosen parameters of our scheme.

When considering the quantum version of the algorithm, we apply the same
reasoning as in the case of the collision based Algorithm1, and obtain quadratic
speedup in the collision part. Because hybridization is also possible for the Min-
Rank part, it can also benefit from using Grover, especially for larger fields.

7 Implementation and Evaluation

In this section we give an assessment of the performance of MEDS. We provide
concrete parameter choices for MEDS and a first preliminary evaluation of its
performance based on a C reference implementation as well as a comparison to
related signature schemes. The source code of our implementation is available
at https://github.com/MEDSpqc/meds.

For our reference implementation, we simply implemented all finite field
arithmetic in Fq using integer arithmetic modulo q, where q is a prime. We
implemented all matrix multiplication, generating random invertible matrices,
and computing the systematic form of a matrix in constant time such that their
runtime does not depend on secret input.

We are using two different approaches for generating an invertible matrix M :
We either generate a random matrix and check if it is invertible by explicitly
computing its inverse or we construct an invertible matrix following the approach

https://github.com/MEDSpqc/meds

46 T. Chou et al.

Table 1. Cost of the investigated attacks in log scale, and ‘SIG’ for ‘signature size in
bytes. Preferred choice in bold.

)log2 q* n = k Birthday Algebraic Leon SIG

9 16 235.29 181.55 131.20 13 296

9 17 249.04 194.55 149.65 16 237

10 15 244.62 174.75 130.50 12 428

11 14 250.79 160.24 131.21 12 519

12 14 272.40 160.24 141.17 13 548

13 13 274.10 146.76 130.41 11 586

14 13 294.10 146.76 134.41 13 632

20 12 383.75 138.46 135.40 16 320

of [47] based on the approach by [43] by generating a random lower-left triangular
matrix L with the diagonal all 1 and an upper-right triangular matrix U with
the diagonal all -= 0 and computing M as M = LU directly. This, however,
covers only a subset of ((q − 1)/q)n matrices of all invertibe matrices in Fn×n

q .
We are using the first approach for key generation, since here we need not only
invertible matrices but also their inverses anyways, and the second approach for
signing where the inverses of invertible matrices are not explicitly required.

7.1 Parameter Choice and Evaluation

A summary of the cost of the three different attacks described in Sect. 6 is given
in Table 1. First, we decide to set n = k, as this seems to be the Goldilocks zone
for our scheme. For k larger, the algebraic attack becomes significantly better,
and the same is true for Leon’s attack when k is smaller. Then, for finite fields of
different sizes, we find the smallest value of n that achieves the required security
level of 128 bits. We see that Leon’s algorithm performs the best in most cases,
although the algebraic approach is almost as good. Finally, to determine the
optimal value for q, we choose the optimization parameters (s, t, and w) such
that the sizes of the public key and the signature are comparable, and we report
the signature size in the last column of Table 1. We conclude that the sweet spot
for 128-bit security is given for the 13-bit prime q = 8191 and n = k = 13.

Remark 3. Given these parameters, we heuristically assume that the automor-
phism group of the codes is trivial with overwhelming probability. It is compu-
tationally infeasible to compute the automorphism group of codes of this size;
however, data on smaller-sized codes shows that the probability of a random code
having a trivial automorphism group grows rapidly as q, n, and m increase.

In this setting, we can vary s, t, and w for different trade-offs of public key
and signature sizes as well as performance. We also checked the impact of q if we
aim for small public keys or small signatures (instead if balancing these two as
in Table 1). In such cases, both 11-bit and 13-bit primes for q seem to perform
similarly well. Hence, we stick to the 13-bit prime q = 8191 in our discussion.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 47

Table 2. Parameters for MEDS, for λ = 128 bits of classical security. ‘ST’ for seed tree.
‘PK’ for ‘public key size’ and ‘SIG’ for ‘signature size in bytes, ‘FS’ for ‘Fiat-Shamir’
probability logarithmic to base 2.

Parameter Set q n m k s t w ST PK SIG FS

MEDS-2826-st 8191 13 13 13 2 256 30 " 2826 18020 −129.739

MEDS-8445-st-f 8191 13 13 13 4 160 23 " 8445 13946 −128.009

MEDS-8445-st 8191 13 13 13 4 464 17 " 8445 10726 −128.764

MEDS-8445-st-s 8191 13 13 13 4 1760 13 " 8445 8702 −128.162

MEDS-11255-st 8191 13 13 13 5 224 19 " 11255 11618 −128.451

MEDS-11255 8191 13 13 13 5 224 19 – 11255 13778 −128.451

MEDS-42161-st 8191 13 13 13 16 128 16 " 42161 9616 −128.849

MEDS-356839-st 8191 13 13 13 128 80 12 " 356839 7288 −129.64

MEDS-716471-st 8191 13 13 13 256 64 11 " 716471 6530 −127.374

Table 3. Performance of MEDS in time (ms) and mega cycles (mcyc.) at 1900MHz on
an AMD Ryzen 7 PRO 5850U CPU following the SUPERCOP setup (https://bench.
cr.yp.to/supercop.html) computed as median of 16 randomly seeded runs each.

Parameter Set Key Generation Signing Verification

(ms) (mcyc.) (ms) (mcyc.) (ms) (mcyc.)

MEDS-2826-st 71.128110 135.143409 102.787710 195.296649 98.00434 186.208246

MEDS-8445-st-f 211.447740 401.750706 63.206200 120.09178 60.13987 114.265753

MEDS-8445-st 211.354280 401.573132 185.680270 352.792513 178.42456 339.006664

MEDS-8445-st-s 211.766000 402.3554 697.002740 1324.305206 673.18607 1279.053533

MEDS-11255-st 258.177820 490.537858 88.123950 167.435505 84.46502 160.483538

MEDS-11255 258.988880 492.078872 88.191290 167.563451 84.50302 160.555738

MEDS-42161-st 969.972890 1842.948491 50.544150 96.033885 48.4196 91.99724

MEDS-356839-st 8200.832680 15581.582092 31.630390 60.097741 32.37874 61.519606

MEDS-716471-st 18003.067490 34205.828231 25.568960 48.581024 28.93696 54.980224

Table 2 provides an overview of 128-bit security parameters for MEDS, high-
lighting different performance and key/signature size trade-offs. The best attack
for all parameter set based on q = 8191, n = 13, and k = 13 is the Leon-like
attack as shown in Table 1 with an expected cost of slightly over 2130 operations.
The best quantum attack is obtained by Groverizing Leon’s algorithm and has
a cost of around 288 operations. We select s, t, and w such that the probability
of an attack on the Fiat-Shamir construction is around 2−128. To improve the
efficiency of vectorized implementations using SIMD instructions in the future,
we select t as multiple of 16. In general, we are using all optimizations discussed
in Sect. 5. However, we provide one parameter set without using the seed tree
(without ‘-st’ in the name of the parameter set).

Table 3 shows the resulting performance of these parameter sets from our
constant-time C reference implementation on an AMD Ryzen 7 PRO 5850U
CPU. The C reference implementation follows the implementation discussion

https://bench.cr.yp.to/supercop.html
https://bench.cr.yp.to/supercop.html

48 T. Chou et al.

Table 4. Performance comparison to other relevant schemes (mcyc. rounded to three
significant figures). Data marked with ‘(scop)’ is from the SUPERCOP website. For
SPHINCS+ we list results for the ‘simple’ variant.

Scheme pk size sig size key gen sign verify

(byte) (byte) (mcyc.) (mcyc.) (mcyc.)

ed25519 (scop) 32 64 0.048442 0.051300 0.182148

[35] dilithium2 (scop) 1312 2420 0.151339 0.363393 0.162999

[42] falcon512dyn (scop) 897 666 19.520464 0.880309 0.085587

[31] sphincsf128shake256 (scop) 32 16976 6.856442 220.279833 9.905358

[31] sphincss128shake256 (scop) 32 8080 217.958286 3502.227717 4.036804

[11] UOV ov-Ip 278432 128 2.903434 0.105324 0.090336

[8] LESS-I 8748 12728 — — —

[6] Wavelet 3236327 930 7403.069461 1644.281062 1.087538

[2] SDitH Var3f 144 12115 — 4.03000 3.0380

[2] SDitH Var3sss 144 5689 — 994.0460 969.2770

MEDS-8445-st-f 8445 13914 401.75 120.09 114.27

MEDS-11255-st 11255 11586 490.54 168.44 160.48

MEDS-42161-st 42161 9584 1842.95 96.03 92.00

MEDS-716471-st 716471 6498 34205.83 48.583 54.98

above but does not apply any further algorithmic or platform-specific optimiza-
tions. We expect that optimized and vectorized implementations can significantly
increase the performance.

The parameter set MEDS-2826-st with s = 2 provides the smallest public
key with about 2.8 kB and a signature of about 18 kB. MEDS-8445-st increases
the public key size with s = 4 to slightly over 8 kB while reducing the signature
size to about 10.5 kB. MEDS-8445-st-f is a ‘fast’ variant of this parameter set
with a smaller t = 160 but a larger w = 23, resulting in a larger signature
size of about 14 kB. MEDS-8445-st-s is ‘small’ and goes the opposite direction,
providing a smaller signature size of about 8.5 kB due to a smaller w = 13 at a
larger computational cost due to t = 1760. These three sibling parameter sets
illustrate the impact of t and w on performance and signature size.

MEDS-11255-st provides balanced public key and signature sizes, with both
around 11 kB, and a small sum of signature and public key size at moderate
computational cost for signing and verification due to t = 224. Removing the
seed tree optimization comes with an increase in signature size of about 2 kB,
which illustrates the impact of the seed tree.

Finally, sets MEDS-42161-st, MEDS-356839-st, and MEDS-716471-st push
the public key size to an extreme at the expense of key generation time in the
pursue of reducing signature size and computational cost for signing and verifica-
tion. However, we expect that at least the key generation time can significantly
be improved by optimizing the computation of solving the medium-size sparse
linear system used for partially seeding the public key.

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 49

7.2 Comparison to Related Signature Schemes

Table 4 shows a comparison of public key and signature sizes as well as computa-
tional performance of our new MEDS scheme with some established schemes and
related recent proposals. While the comparison of public key and signature sizes
is accurate, the comparison of the performance needs to be taken with a large
grain of salt: While we provide numbers in the same performance metric (mega
cycles – mcyc.), a direct comparison is still quite hard since not all schemes have
received the same degree of optimization and since not all performance data has
been obtained on the same CPU architecture.

The performance data from the ‘classical’ scheme ed25519 as well as from
the NIST PQC schemes CRYSTALS-Dilithium [35], Falcon [42], and SPHNICS+
[31] has been obtained from the SUPERCOP website4. We selected the perfor-
mance data from the AMD64 Zen CPU, which is an AMD Ryzen 7 1700 from
2017, i.e., the same microarchitecture (but a different CPU) as we used for our
measurements of MEDS. We are reporting median cycles directly from the web-
site.

For UOV [11], LESS [8] and Wavelet [6] we list the performance data as
reported in the respective papers unless such data was unavailable. In the case
of SDitH [2], only reports of performance data in milliseconds on a 3.1GHz Intel
Core i9-9990K are available. We computed the corresponding number of cycles
from this to enable a rough comparison to the other schemes, but note that this
data is therefore not entirely accurate.

Table 4 shows that, although code-based schemes do not compete well with
pre-quantum or lattice-based PQC schemes, MEDS fills a gap that was not
previously available for multivariate or code-based schemes, with a relatively
small combined size of public key and signature. Furthermore, its versatility in
parameter selection allows for great flexibility for specific applications. In terms
of performance, the current implementation of MEDS is still unoptimized. We
expect speed-ups of at least one order of magnitude from SIMD paralleliza-
tion on AVX256 and AVX512 CPUs, since both the data-independent loop of
the Fiat-Shamir construction and the matrix arithmetic lend themselves to effi-
cient parallelization. Providing optimized implementations of MEDS for modern
SIMD architectures as well as embedded systems is an open task for future work.

References

1. Aguilar Melchor, C., et al.: HQC. NIST PQC Submission (2020)
2. Aguilar-Melchor, C., Gama, N., Howe, J., Hülsing, A., Joseph, D., Yue, D.: The

return of the SDitH. Cryptology ePrint Archive, Paper 2022/1645 (2022, to appear
at Eurocrypt 2023)

3. Alamati, N., De Feo, L., Montgomery, H., Patranabis, S.: Cryptographic group
actions and applications. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12492, pp. 411–439. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64834-3 14

4 https://bench.cr.yp.to/results-sign.html – amd64; Zen (800f11); 2017 AMD Ryzen
7 1700; 8 × 3000MHz; rumba7, supercop-20220506.

https://doi.org/10.1007/978-3-030-64834-3_14
https://doi.org/10.1007/978-3-030-64834-3_14
https://bench.cr.yp.to/results-sign.html

50 T. Chou et al.

4. Albrecht, M.R., et al.: Classic McEliece. NIST PQC Submission (2020)
5. Aragon, N., et al.: BIKE. NIST PQC Submission (2020)
6. Banegas, G., Debris-Alazard, T., Nedeljković, M., Smith, B.: Wavelet: code-based

postquantum signatures with fast verification on microcontrollers. Cryptology
ePrint Archive, Paper 2021/1432 (2021)

7. Bardet, M., et al.: Improvements of algebraic attacks for solving the rank decoding
and MinRank problems. In: Moriai, S., Wang, H. (eds.) ASIACRYPT 2020. LNCS,
vol. 12491, pp. 507–536. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-64837-4 17

8. Barenghi, A., Biasse, J.-F., Persichetti, E., Santini, P.: LESS-FM: fine-tuning sig-
natures from the code equivalence problem. In: Cheon, J.H., Tillich, J.-P. (eds.)
PQCrypto 2021 2021. LNCS, vol. 12841, pp. 23–43. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-81293-5 2

9. Barenghi, A., Biasse, J.-F., Ngo, T., Persichetti, E., Santini, P.: Advanced signature
functionalities from the code equivalence problem. Int. J. Comput. Math. Comput.
Syst. Theory 7(2), 112–128 (2022)

10. Beullens, W.: Not enough LESS: an improved algorithm for solving code equiva-
lence problems over Fq. In: Dunkelman, O., Jacobson, Jr., M.J., O’Flynn, C. (eds.)
SAC 2020. LNCS, vol. 12804, pp. 387–403. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-81652-0 15

11. Beullens, W., et al.: Oil and vinegar: modern parameters and implementations.
Cryptology ePrint Archive, Paper 2023/059 (2023)

12. Beullens, W., Katsumata, S., Pintore, F.: Calamari and Falafl: logarithmic (link-
able) ring signatures from isogenies and lattices. In: Moriai, S., Wang, H. (eds.)
ASIACRYPT 2020. LNCS, vol. 12492, pp. 464–492. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-64834-3 16

13. Beullens, W., Kleinjung, T., Vercauteren, F.: CSI-FiSh: efficient isogeny based
signatures through class group computations. In: Galbraith, S.D., Moriai, S.
(eds.) ASIACRYPT 2019. LNCS, vol. 11921, pp. 227–247. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-34578-5 9

14. Biasse, J.-F., Micheli, G., Persichetti, E., Santini, P.: LESS is more: code-based
signatures without syndromes. In: Nitaj, A., Youssef, A. (eds.) AFRICACRYPT
2020. LNCS, vol. 12174, pp. 45–65. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-51938-4 3

15. Bonnetain, X., Schrottenloher, A.: Quantum security analysis of CSIDH. In: Can-
teaut, A., Ishai, Y. (eds.) EUROCRYPT 2020. LNCS, vol. 12106, pp. 493–522.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45724-2 17

16. Bouillaguet, C.: Algorithms for some hard problems and cryptographic attacks
against specific cryptographic primitives. Ph.D. thesis, Université Paris Diderot
(2011)

17. Bouillaguet, C., Fouque, P.-A., Véber, A.: Graph-theoretic algorithms for the “iso-
morphism of polynomials” problem. In: Johansson, T., Nguyen, P.Q. (eds.) EURO-
CRYPT 2013. LNCS, vol. 7881, pp. 211–227. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-38348-9 13

18. Castryck, W., Lange, T., Martindale, C., Panny, L., Renes, J.: CSIDH: an efficient
post-quantum commutative group action. In: Peyrin, T., Galbraith, S. (eds.) ASI-
ACRYPT 2018. LNCS, vol. 11274, pp. 395–427. Springer, Cham (2018). https://
doi.org/10.1007/978-3-030-03332-3 15

19. Courtois, N.T.: Efficient zero-knowledge authentication based on a linear algebra
problem MinRank. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp.
402–421. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-45682-1 24

https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-64837-4_17
https://doi.org/10.1007/978-3-030-81293-5_2
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-81652-0_15
https://doi.org/10.1007/978-3-030-64834-3_16
https://doi.org/10.1007/978-3-030-34578-5_9
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-51938-4_3
https://doi.org/10.1007/978-3-030-45724-2_17
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-642-38348-9_13
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/978-3-030-03332-3_15
https://doi.org/10.1007/3-540-45682-1_24

Take Your MEDS: Digital Signatures from Matrix Code Equivalence 51

20. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving
overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.)
EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45539-6 27

21. Couveignes, J.-M.: Hard homogeneous spaces. Cryptology ePrint Archive, Paper
2006/291 (2006)

22. Couvreur, A., Debris-Alazard, T., Gaborit, P.: On the hardness of code equivalence
problems in rank metric. CoRR, abs/2011.04611 (2020)

23. De Feo, L., Galbraith, S.D.: SeaSign: compact isogeny signatures from class group
actions. In: Ishai, Y., Rijmen, V. (eds.) EUROCRYPT 2019. LNCS, vol. 11478, pp.
759–789. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17659-4 26

24. Ding, J., et al.: Rainbow. Technical report, National Institute of Standards and
Technology (2020)

25. Faugère, J.-C., Din, M.S.E., Spaenlehauer, P.-J.: Gröbner bases of bihomogeneous
ideals generated by polynomials of bidegree (1, 1): algorithms and complexity. J.
Symb. Comput. 46(4), 406–437 (2011)

26. Faugère, J.-C., Levy-dit-Vehel, F., Perret, L.: Cryptanalysis of MinRank. In: Wag-
ner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 280–296. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-85174-5 16

27. Faugère, J.-C., Perret, L.: Polynomial equivalence problems: algorithmic and the-
oretical aspects. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp.
30–47. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679 3

28. Fiat, A., Shamir, A.: How to prove yourself: practical solutions to identification and
signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp.
186–194. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-47721-7 12

29. Gueron, S., Persichetti, E., Santini, P.: Designing a practical code-based signa-
ture scheme from zero-knowledge proofs with trusted setup. Cryptography 6(1), 5
(2022)

30. Haviv, I., Regev, O.: On the lattice isomorphism problem. In: Chekuri, C. (ed.)
SODA 2014, pp. 391–404. ACM SIAM (2014)

31. Hulsing, A., et al.: SPHINCS+. NIST PQC Submission (2020)
32. Kipnis, A., Shamir, A.: Cryptanalysis of the HFE public key cryptosystem by

relinearization. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 19–30.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1 2

33. Kuperberg, G.: Another subexponential-time quantum algorithm for the dihedral
hidden subgroup problem. In: Severini, S., Brandão, F.G.S.L. (eds.) TQC 2013.
LIPIcs, vol. 22, pp. 20–34. Schloss Dagstuhl (2013)

34. Leon, J.S.: Computing automorphism groups of error-correcting codes. IEEE
Trans. Inf. Theory 28(3), 496–510 (1982)

35. Lyubashevsky, V., et al.: CRYSTALS. NIST PQC Submission (2020)
36. McEliece, R.J.: A public-key cryptosystem based on algebraic coding theory. DSN

PR 42-44, California Institute of Technology (1978)
37. Nguyen, P., Wolf, C.: International workshop on post-quantum cryptography

(2006)
38. NIST. Post-Quantum Cryptography Standardization (2017). https://csrc.nist.gov/

Projects/Post-Quantum-Cryptography
39. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP):

two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT
1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). https://doi.org/10.
1007/3-540-68339-9 4

https://doi.org/10.1007/3-540-45539-6_27
https://doi.org/10.1007/978-3-030-17659-4_26
https://doi.org/10.1007/978-3-540-85174-5_16
https://doi.org/10.1007/11761679_3
https://doi.org/10.1007/3-540-47721-7_12
https://doi.org/10.1007/3-540-48405-1_2
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://csrc.nist.gov/Projects/Post-Quantum-Cryptography
https://doi.org/10.1007/3-540-68339-9_4
https://doi.org/10.1007/3-540-68339-9_4

52 T. Chou et al.

40. Perlner, R., Smith-Tone, D.: Rainbow band separation is better than we thought.
Cryptology ePrint Archive, Paper 2020/702 (2020)

41. Prange, E.: The use of information sets in decoding cyclic codes. IRE Trans. Inf.
Theory 8(5), 5–9 (1962)

42. Prest, T., et al.: FALCON. NIST PQC Submission (2020)
43. Randall, D.: Efficient Generation of Random Nonsingular Matrices. Technical

Report UCB/CSD-91-658, EECS Department, UC Berkeley (1991)
44. Regev, O.: On lattices, learning with errors, random linear codes, and cryptog-

raphy. In: Gabow, H.N., Fagin, R. (eds.) Theory of Computing, pp. 84–93. ACM
(2005)

45. Reijnders, K., Samardjiska, S., Trimoska, M.: Hardness estimates of the code equiv-
alence problem in the rank metric. Cryptology ePrint Archive, Paper 2022/276
(2022)

46. Rostovtsev, A., Stolbunov, A.: Public-key cryptosystem based on isogenies. Cryp-
tology ePrint Archive, Paper 2006/145 (2006)

47. Tang, G., Duong, D.H., Joux, A., Plantard, T., Qiao, Y., Susilo, W.: Practical
post-quantum signature schemes from isomorphism problems of trilinear forms. In:
Dunkelman, O., Dziembowski, S. (eds.) EUROCRYPT 2022. LNCS, vol. 13277, pp.
582–612. Springer, Cham (2022). https://doi.org/10.1007/978-3-031-07082-2 21

https://doi.org/10.1007/978-3-031-07082-2_21

	 Preface
	 Organization
	 Contents
	Post-quantum Cryptography
	MinRank in the Head
	1 Introduction
	2 Preliminaries
	2.1 Commitment Schemes
	2.2 Digital Signature Schemes
	2.3 5-Pass Identification Schemes
	2.4 The MinRank Problem
	2.5 Multi-party Computation

	3 Exceptional Sets of Matrices over a Finite Fields
	4 Matrix-Multiplication Triple Verification
	5 A Zero-Knowledge Protocol on the MinRank Problem
	5.1 Description of the Protocol
	5.2 Security Proofs
	5.3 Complexity of the MinRank Problem

	6 The Signature Scheme
	6.1 Non-interactive Zero-Knowledge Proofs
	6.2 Description of the Signature Scheme
	6.3 EUF-CMA Security of the Signature Scheme
	6.4 Parameters and Signature Size

	7 Comparisons with Other Signatures Schemes
	8 Conclusions and Future Work
	A Proof of Theorem 2 (Soundness)
	B Proof of Theorem 3 (Zero-Knowledge)
	C Proof of Theorem 4 (EUF-CMA)
	References

	Take Your MEDS: Digital Signatures from Matrix Code Equivalence
	1 Introduction
	2 Preliminaries
	2.1 Cryptographic Group Actions
	2.2 Protocols

	3 The Matrix Code Equivalence Problem
	4 Protocols from Matrix Code Equivalence
	5 Matrix Equivalence Digital Signature—MEDS
	6 Concrete Security Analysis
	6.1 Birthday-Based Graph-Theoretical Algorithms for Solving MCE
	6.2 Algebraic Attacks
	6.3 Leon-Like Algorithm Adapted to the Rank Metric

	7 Implementation and Evaluation
	7.1 Parameter Choice and Evaluation
	7.2 Comparison to Related Signature Schemes

	References

	Efficient Computation of (3n,3n)-Isogenies
	1 Introduction
	2 Preliminaries
	2.1 Genus-2 Curves and Their Jacobians
	2.2 Torsion Subgroups and Isogenies of p.p.a.s.
	2.3 The Quartic Model of the Kummer Surface

	3 (3,3)-Isogenies Between Jacobians
	3.1 BFT Approach
	3.2 Improvements

	4 Non-generic (3,3)-Isogeny Formulae
	4.1 (3,3)-Isogenies Between Elliptic Products
	4.2 Splitting
	4.3 Gluing

	5 Coordinate Transformations
	5.1 Explicit Formulae for Transformations
	5.2 Finding the Correct Transformation

	6 A (3,3)-Variant of the CGL Hash Function
	6.1 Starting p.p.a.s
	6.2 Optimal Strategies for (3n,3n)-Isogeny Computations
	6.3 Implementation

	7 Recovering Alice's Private Key in SIKE
	8 Auxiliary Code
	References

	On the Post-quantum Security of Classical Authenticated Encryption Schemes
	1 Introduction
	2 Definitions
	2.1 Notation
	2.2 Symmetric Schemes
	2.3 Quantum Attacks and Types of Adversaries
	2.4 A Wicked PRP

	3 Known Ideas and Results
	3.1 Simon's Problem, -subprogram, and -algorithm
	3.2 Counter- and CBC-Mode Under Superposition Queries ch4DBLP:confspspqcryptospsAnandTTU16
	3.3 Quantum Period Finding Attacks ch4DBLP:confspscryptospsKaplanLLN16
	3.4 Quantum Linearization for Beyond-Birthday MACs ch4DBLP:confspsasiacryptspsBonnetainLNS21

	4 Privacy Under Q2 Attacks (or Lack Theorof)
	4.1 GCM-SIV2
	4.2 GCM
	4.3 EAX

	5 Accidential Protection from Q2 Attacks
	5.1 The Nonce-Prefix MAC from the CCM Mode
	5.2 Key Derivation, as in AES-GCM-SIV

	6 Generic Approaches for Q2d and Q2 Security
	6.1 Intuition
	6.2 The O2H (``One-Way to Hiding'') Lemma
	6.3 From Q1 Security to Q2d Security
	6.4 Transitioning Q2d Security into Q2 Security
	6.5 On the Tightness of the Reductions

	7 Final Remarks
	References

	A Side-Channel Attack Against Classic McEliece When Loading the Goppa Polynomial
	1 Introduction
	2 Theoretical Background
	2.1 Preliminaries
	2.2 Code-Base Cryptography

	3 Template Attack on Classic McEliece
	3.1 Template Attacks
	3.2 Measurement Setup and Leakage Analysis
	3.3 Principle and Results

	4 Complexity of the Goppa Polynomial Search
	5 Comparison with Other Key Recovery Attacks
	6 Conclusion
	References

	Symmetric Cryptography
	Universal Hashing Based on Field Multiplication and (Near-)MDS Matrices
	1 Introduction
	1.1 Our Contribution
	1.2 Outline of the Paper

	2 Preliminaries
	2.1 and -universality
	2.2 Key-then-Hash Functions

	3 Parallel Universal Hashing
	3.1 Construction
	3.2 Propagation Probabilities of Fixed-Length Functions
	3.3 Differentials over Parallel[f] and Their Differential Probability

	4 Notations
	5 Differential Properties of Field Multiplication
	6 Duplicated Multiplication as Public Function
	7 The Multiply-Transform-Multiply Construction
	7.1 Maximum Image Probability of f[,]
	7.2 Maximum Differential Probability of f[,]
	7.3 -universality of Parallel[f[,]]

	8 Multi-265
	8.1 Maximum Image Probability of f-265
	8.2 Maximum Differential Probability of f-265
	8.3 -universality of Multi-265
	8.4 Implementation Aspects

	References

	Invertible Quadratic Non-linear Functions over Fpn via Multiple Local Maps
	1 Introduction
	1.1 Related Works: Shift-Invariant Lifting Functions Induced by a Local Map
	1.2 Our Contribution

	2 Preliminary: Notation and Related Works
	2.1 Notation
	2.2 Related Works: Invertibility of SF over Fpn via a Quadratic Local Map F:FpmFp

	3 Alternating/Cyclic Shift-Invariant Lifting Functions via Multiple Local Maps
	3.1 Balanced Functions and Class of Equivalence
	3.2 Necessary Conditions for Quadratic Functions F0, F1, …, Fh-1:Fp2Fp

	4 Invertible Functions SF0, F1 over Fpn via Quadratic F0, F1 : Fp2 Fp
	4.1 Proof of Proposition 3 for the Case n Even
	4.2 Proof of Proposition 3 for the Case n Odd

	5 Invertible Functions SF0, F1 over Fpn via Linear F0 and Quadratic F1 (or Vice-Versa)
	5.1 Proof of Proposition 4 for the Case n Even
	5.2 Proof of Proposition 4 for the Case n3 Odd

	6 Summary and Open Problems for Future Work
	References

	Poseidon2: A Faster Version of the Poseidon Hash Function
	1 Introduction
	1.1 Our Goals
	1.2 Our Contributions and Results

	2 Preliminaries: Modern Arithmetization Techniques
	3 Preliminaries: ZK-Friendly Symmetric Primitives
	3.1 Modes of Operation
	3.2 The Poseidon Permutation

	4 Security: Initial and Final Matrix Multiplications
	5 More Efficient Linear Layers
	5.1 Matrix for the External Round
	5.2 Matrix for the Internal Round
	5.3 Preventing Arbitrarily Long Subspace Trails

	6 POSEIDON Specification
	7 Security Analysis
	7.1 Statistical Attacks
	7.2 Algebraic Attacks
	7.3 Attack from Bariant et al. ch8DBLP:journalsspstoscspsBariantBLP22

	8 Performance Evaluation
	8.1 Theoretical Comparison
	8.2 Implementation and Benchmarks
	8.3 Efficient Plonkish Version

	References

	From Unbalanced to Perfect: Implementation of Low Energy Stream Ciphers
	1 Introduction
	2 Preliminaries
	2.1 Circuit Strand
	2.2 Unrolled Strand Tree and Perfect m-ary Tree
	2.3 Energy Consumption in Semiconductor Circuits

	3 Redundant Design for Reducing Glitches
	3.1 Glitches and Unbalanced Unrolled Strand Tree
	3.2 Redundant Modules with the Same Delay

	4 Search Algorithm
	5 Applications to Stream Ciphers
	5.1 Application to Trivium
	5.2 Application to Kreyvium

	6 Conclusion
	References

	Cryptanalysis
	The Special Case of Cyclotomic Fields in Quantum Algorithms for Unit Groups
	1 Introduction
	2 Our Improvement Seen as a Lattice Problem
	2.1 Informal Presentation
	2.2 Precise Statement

	3 Previous Results on the Quantum Unit-Group Calculation
	3.1 A Summary on CHSP
	3.2 Reduction of the Computation of the Unit Group to CHSP
	3.3 Exploiting Automorphisms

	4 A New Algorithm Using Cyclotomic Units
	4.1 Unconditional Results
	4.2 Consequences of a Recent Conjecture for Cyclotomic Fields

	5 Conclusion and Open Questions
	A An Alternative Function Hiding the Units
	B A Discussion on Quantum Security Levels
	References

	Improved Cryptanalysis of the Multi-Power RSA Cryptosystem Variant
	1 Introduction
	2 Preliminaries
	3 Useful Lemmas
	4 Solving the Polynomial Equation
	5 Comparison with Former Methods
	5.1 Comparison with the Original Method of Coppersmith
	5.2 Comparison with the Method of Blömer and May
	5.3 Comparison with the Method of Lu et al.
	5.4 Comparison with the Method of Lu, Peng, and Sarkar

	6 Applications of the New Method
	6.1 Application to the Small RSA Private Exponents
	6.2 Application to the Small RSA Private Exponents with Specific Prime Factors
	6.3 Application for Known Most Significant Bits of the RSA Private Exponent
	6.4 Application with Known Least Significant Bits of the RSA Private Exponent
	6.5 Application to the Small Private Exponent in Two Variants of RSA Based on Elliptic and Edwards Curves

	7 Conclusion
	References

	Blockchain
	The Curious Case of the Half-Half Bitcoin ECDSA Nonces
	1 Introduction
	2 Background and Related Work
	2.1 Bitcoin
	2.2 ECDSA
	2.3 Lattice Problems and Algorithms
	2.4 Hidden Number Problem
	2.5 ECDSA as a Hidden Number Problem

	3 Half Nonce Attack
	3.1 Setup and Main Attack
	3.2 Optimizations

	4 Implementation
	5 Analysis
	5.1 Source Address Analysis
	5.2 Attribution

	6 Conclusion
	References

	Maravedí: A Secure and Practical Protocol to Trade Risk for Instantaneous Finality
	1 Introduction
	2 Preliminaries
	2.1 Pseudorandom Function
	2.2 Digital Signature Schemes
	2.3 The UTXO Model
	2.4 The Lightning Network

	3 Desiderata
	4 Outline of the Construction
	5 Our Protocol: Maravedí
	5.1 Intuition
	5.2 Concrete Construction

	6 Security Analysis
	6.1 Online Security and Performance
	6.2 Risk Trade Security
	6.3 Desiderata

	7 Final Remarks
	References

	Lattice-Based Cryptography
	ComBo: A Novel Functional Bootstrapping Method for Efficient Evaluation of Nonlinear Functions in the Encrypted Domain
	1 Introduction
	2 TFHE
	2.1 Notations
	2.2 TFHE Structures
	2.3 TFHE Bootstrapping

	3 TFHE Functional Bootstrapping
	3.1 Encoding and Decoding
	3.2 Functional Bootstrapping Idea
	3.3 Example of Functional Bootstrapping in Z4
	3.4 Multi-value Functional Bootstrapping

	4 Look-Up-Tables over a Single Ciphertext
	4.1 Partial Domain Functional Bootstrapping – Half-Torus
	4.2 Full Domain Functional Bootstrapping – FDFB
	4.3 Full Domain Functional Bootstrapping – TOTA
	4.4 Full Domain Functional Bootstrapping with Composition - ComBo

	5 Error Rate and Noise Variance
	5.1 Noise Variance
	5.2 Probability of Error

	6 Experimental Results
	6.1 Parameters
	6.2 Error Rate
	6.3 Time Performance
	6.4 Wrapping-Up: Time-Error Trade-Offs

	7 Conclusion
	References

	Concrete Security from Worst-Case to Average-Case Lattice Reductions
	1 Introduction
	1.1 Our Contributions
	1.2 Overview

	2 Background
	2.1 Notation
	2.2 Gaussian Distributions
	2.3 Lattices
	2.4 Learning with Errors

	3 Cryptosystem
	3.1 OW-CPA Secure Public Key Encryption
	3.2 Correctness of Decryption
	3.3 QROM IND-CCA Secure KEM

	4 Proof of Security
	4.1 Solving DLWE with the Help of an Adversary
	4.2 Solving LWE with a DLWE Oracle
	4.3 Solving SIVP with the Help of an LWE Oracle
	4.4 Security Based on Hardness of SIVPR

	5 Hardness Estimate
	6 Parametrization
	7 Conclusion
	A More Parametrizations
	References

	Finding and Evaluating Parameters for BGV
	1 Introduction
	2 Preliminaries and Mathematical Background
	2.1 Cyclotomic Polynomials
	2.2 Canonical Embedding and Norm
	2.3 Lattices and Hermite Factor
	2.4 Security of RLWE-Based Schemes
	2.5 The BGV Scheme

	3 Improving the Parameter Generation Process
	3.1 New DCRT Bounds for Modulus Switching
	3.2 New DCRT Bounds for Key Switching
	3.3 Modeling the Homomorphic Circuit
	3.4 Determining Modulus Sizes
	3.5 Computing the Noise Bound B
	3.6 Security Analysis
	3.7 A Parameter Generator for BGV

	4 Results
	4.1 Security Parameter Evaluation
	4.2 Parameter Generation

	5 Conclusion
	References

	Quantum Search-to-Decision Reduction for the LWE Problem
	1 Introduction
	1.1 Our Contribution
	1.2 Technical Overview

	2 Preliminaries
	2.1 Notation and Definitions
	2.2 Quantum Computing

	3 Search-to-Decision Reduction for the Learning with Errors Problem
	3.1 Sample-Preserve Reduction
	3.2 Amplify the Success Probability

	4 Conclusion
	A Search-to-Decision Reduction for the LPN problem
	B Classical Search-to-Decision Reduction for the LWE
	B.1 A Simple Reduction
	B.2 Complexity of MM11 ch17MM11

	References

	Implementations
	Fast Falcon Signature Generation and Verification Using ARMv8 NEON Instructions
	1 Introduction
	2 Previous Work
	3 Background
	3.1 Falcon
	3.2 Dilithium
	3.3 XMSS
	3.4 SPHINCS+
	3.5 Hawk

	4 Number Theoretic Transform Implementation
	4.1 Barrett Multiplication
	4.2 Montgomery Multiplication
	4.3 Minimizing the Number of Barrett Reductions
	4.4 Forward and Inverse NTT Implementation

	5 Fast Fourier Transform Implementation
	5.1 Compressed Twiddle Factor Table
	5.2 Improved Forward FFT Implementation
	5.3 Improved Inverse FFT Implementation
	5.4 Floating-Point Complex Instructions and Data Storage
	5.5 Floating-Point to Integer Conversion
	5.6 Rounding Concern in Floating-Point Fused Multiply-Add

	6 Results
	7 Conclusions
	A Visualizing Complex Point Multiplication
	References

	Benchmarking and Analysing the NIST PQC Lattice-Based Signature Schemes Standards on the ARM Cortex M7
	1 Introduction
	1.1 Contributions

	2 Background
	3 Benchmarking on ARM Cortex M7
	3.1 Stack Usage and RAM Size

	4 Profiling on ARM Cortex M7
	4.1 Rate of Acceptance in Dilithium and Falcon
	4.2 Profiling Results of Dilithium and Falcon

	5 Constant-Time Validation of Falcon's Floating-Point Operations
	5.1 STM32 Development Boards
	5.2 Raspberry Pi 3

	6 Results and Discussions
	A The Dilithium Signature Scheme
	B The Falcon Signature Scheme
	References

	Theory
	Impossibilities in Succinct Arguments: Black-Box Extraction and More
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Preliminaries
	2.1 Continuous Leakage-Resilient OWFs
	2.2 Argument System

	3 On Adaptively-Secure Black-Box Extraction
	4 Non-adaptive Black-Box Knowledge Soundness
	4.1 A Construction for FewP
	4.2 Impossibility for All NP

	5 GW Impossibility for Preprocessing SNARGs
	6 Understanding SNARG Impossibilities
	6.1 Impossibility of Gentry-Wichs

	References

	Applications of Timed-Release Encryption with Implicit Authentication
	1 Introduction
	1.1 Technical Overview
	1.2 Related Work

	2 Timed-Release Encryption with Implicit Authentication
	3 Construction of a TRE-IA Scheme
	4 Security Analysis
	5 Performance and Integration with SecureDrop
	5.1 Performance Analysis
	5.2 Using TRE-IA with SecureDrop

	6 Conclusion
	References

	Author Index

