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Abstract: Structured linear block codes such as cyclic, quasi-cyclic and quasi-dyadic codes have gained an

increasing role in recent years both in the context of error control and in that of code-based cryptography.

Some well known families of structured linear block codes have been separately and intensively studied,

without searching for possible bridges between them. In this article, we start from well known examples of

this type and generalize them into a wider class of codes that we call � -reproducible codes. Some families

of � -reproducible codes have the property that they can be entirely generated from a small number of

signature vectors, and consequently admit matrices that can be described in a very compact way. We denote

these codes as compactly reproducible codes and show that they encompass known families of compactly

describable codes such as quasi-cyclic and quasi-dyadic codes. We then consider some cryptographic

applications of codes of this type and show that their use can be advantageous for hindering some current

attacks against cryptosystems relying on structured codes. This suggests that the general framework we

introduce may enable future developments of code-based cryptography.
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1 Introduction

Defining linear block codes that possess a certain inner structure and verify some regularity properties is a

natural process in coding theory. Arguably, the most relevant example is represented by the class of cyclic

codes, which includes several families of codes that proved to be important throughout the history of

communications, such as BCH and Hamming codes, as well as the binary Golay codes, Reed–Solomon

codes, and many others. This class is defined by the property of having codewords that are invariant under

the action of a specific permutation, namely the cyclic (circular) shift, which consists of cyclically rotating a

vector by one position to the right (equivalently, to the left). Other examples which are well known in the

literature include constacyclic codes, negacyclic codes, quasi-cyclic codes, and many others.

Recently, this research direction has been investigated further: Misoczki and Barreto in 2009 intro-

duced quasi-dyadic codes [1], which contain codewords invariant under a different type of permutation. The

work was motivated by its implications for the McEliece cryptosystem [2], and in particular by the necessity

of having a family of codes whose generator and parity-check matrices can be represented in a compact

way. This is because, in code-based cryptography, the public key of an encryption (or signature) scheme
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usually consists precisely of a generator or parity-check matrix of a linear block code. With the size of the

codes used in code-based cryptography (typical code lengths are in the order of 103 to 104), describing a

whole matrix results in a public key of several kilobytes, and this size increases quadratically in the code

length. This has historically prevented the use of the original McEliece cryptosystem, which exploits

random-looking public codes, in many applications. On the other hand, structured codes admit a generator

and parity-check matrix which can be entirely described by one or few rows; this allows for a very important

reduction in public key size, and it is arguably a fundamental step toward making code-based cryptography

truly practical. Previous efforts to reduce key size were centered on quasi-cyclic algebraic codes [3] and

have been since then extended to codes of a different nature, namely the Low-Density Parity-Check (LDPC)

codes [4] and their recent generalization known as Moderate-Density Parity-Check (MDPC) codes [5]. These

codes are characterized by sparse parity-check matrices and admit matrices in quasi-cyclic form, formed by

circulant square blocks. Due to their efficient decoding algorithms and the lack of additional algebraic

structure that could lead to structural attacks, schemes based on Quasi-Cyclic Low-Density Parity-Check

(QC-LDPC) codes [6] and Quasi-Cyclic Moderate-Density Parity-Check (QC-MDPC) codes [5] are among the

most promising solution in this area.

The importance of code-based cryptography has risen dramatically in modern times due to the work of

Shor [7], who showed how it will be possible to effectively break cryptography based on “classical” number

theory problems by introducing polynomial-time algorithms for factoring large integers and computing

discrete logarithms on a quantum computer. This calls for cryptographic primitives that rely on different

hard problems, which will not be affected once quantum computers of an appropriate size will be available.

Code-based cryptography is one of the most important areas in this scenario, and ever since McEliece’s

seminal work in 1978 [2], it has shown no vulnerabilities against quantum attackers. Moreover, generic

decoding attacks, which have exponential complexity, have improved only marginally over nearly 40 years

of cryptanalysis. Together with lattice-based schemes, code-based cryptography is at the basis of many

candidates for the post-quantum standardization call recently launched by NIST [8].

In this article, we provide a general framework for the definition of structured codes, which are of

increasing interest in several McEliece and Niederreiter cryptosystem variants. First, we introduce the

notion of � -reproducible codes as a general framework for describing both structured and unstructured

codes. Then, we introduce some special families of � -reproducible codes, that we denote as compactly

reproducible (CR) codes, which require a smaller-than-maximum number of degrees of freedom for the

representation of each code belonging to the same family. This generalizes existing families of structured

codes used in code-based cryptosystems. We also propose a framework for constructing � -reproducible

codes of any kind and present concrete families of non-trivial CR codes which have not appeared in

literature before. Our goal is to provide a generic framework to serve as a basis for future constructions,

as indeed was the case in ref. [9], which references a preprint version of this work.

To highlight the importance of these codes in cryptography, we mention that among the 26 candidates

that were admitted to the second round of the NIST’s standardization effort [10], 5 are based on structured

random and pseudo-random codes, which are the focus of this article. In particular, BIKE and LEDAcrypt

are two public-key encryption schemes based on, respectively, QC-MDPC and QC-LDPC codes, which

naturally fit into the general framework we describe in this article. The same occurs for the system named

HQC, in which part of the public key consists in a random QC code. Although we focus on the Hamming

metric case, the framework we describe could also be applied to the generation of structured codes in the

rank metric (with the proper modifications). ROLLO and RQC are other two candidates that could be

encompassed by such a framework in the rank metric domain.

The article is organized as follows. In Section 2, we recall some basic concepts and introduce the

notation we use throughout the article. In Section 3, we introduce � -reproducible matrices, and we use

them to define the new class of codes in Section 4. Section 5 is devoted to the study of their possible use in

code-based cryptosystems and provides some practical constructions for this purpose. In Section 6, we

draw some conclusions.
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2 Preliminaries and notation

We denote with �q the finite field with q elements, where q is a prime power. For two sets X and Y, XY

denotes the set of all maps from Y to X. For a set Swe then denote by 2S its power set, i.e., the set containing

all possible subsets of S, exploiting the well known bijection with the set of functions from S to { }0, 1 . We use

bold letters to denote vectors and matrices. Given a vector a, we refer to its element in position i as ai. The

size-k identity matrix is denoted as Ik, while the ×k n null matrix is denoted as ×0k n. Finally, we use the

term pseudo-ring to denote a structure that satisfies all the ring axioms, apart from the existence of

the multiplicative identity. Such a structure is also typically known as rng.

2.1 Coding theory background

A linear code � is a k-dimensional subspace of the n-dimensional vector space over the finite field �q. The

parameters n (length) and k (dimension) are positive integers with ≤k n. The value = −r n k is known as

codimension of the code.

Definition 2.1. (Hamming metric) The Hamming weight ( )xwt of a vector �∈x q
n is the number of its non-

zero entries. The Hamming distance ( )x yd , between two vectors �∈x y, q
n is defined as the weight of their

difference, i.e., ( ) ( )= −x y x yd , wt . The minimum distance d of a code � is defined as the minimum

distance between any two different codewords of �, or equivalently as the minimum weight over all

non-zero codewords.

A linear code of length n, dimension k, and minimum distance d is called an [ ]n k d, , -code.

The error-correcting capability of a linear code is connected to its minimum distance, and in particular

it corresponds to ( )⌊ − / ⌋d 1 2 under bounded distance decoding. When soft-decision decoding is used, a

linear block code with distance d may correct up to −d 1 symbol errors.

Definition 2.2. (Generator and parity-check matrices) Let � be a linear code over �q. We call generator

matrix of � a ×k n matrix G whose rows form a basis for the vector space defined by �, i.e.:

�� { }= ∈xG x: .q
k

For any matrix H and any vector x, the vectorHxT is called syndrome of x. We then call parity-check matrix

of � a full rank ×r n matrix H such that every codeword belonging to � has syndrome 0 with respect to

H, i.e.,

�� { }= ∈ =x Hx: 0 .q
n T

Note that the parity-check matrix of a code � is also a generator matrix of the dual code �⊥, i.e., the

linear code formed by all the words of �q
n that are orthogonal to �. It follows that for any generator matrixG

and parity-check matrix H of a code, we have = ×HG 0T
r k .

Both matrices are required to have full rank. Moreover, note that, clearly, neither matrix is unique: for

instance, given a generator matrix G it is always possible to obtain another generator matrix for the same

code by a linear transformation, that is, the left multiplication by an invertible ×k k matrix S, so that

′ =G SG. This corresponds to a change of basis for the vector space. A similar property is verified by the

parity-check matrix. Finally, two generator matrices generate equivalent codes if one is obtained from the

other by a permutation of columns. These two facts are at the basis of the McEliece cryptosystem.

Joining the two properties above, we can write any generator matrixG in systematic form as [ ∣ ]=G I Ak ,

where ∣ denotes concatenation. If � is generated by [ ∣ ]=G I Ak , then a (systematic) parity-check matrix for �

is [ ∣ ]= −H A IT
r .
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2.2 The McEliece cryptosystem

The McEliece public-key encryption scheme [2] was introduced by R.J. McEliece in 1978. The original

scheme uses binary Goppa codes, with which it remains unbroken (with a proper choice of parameters),

but the scheme can be used with any class of codes for which an efficient decoding algorithm is known.

2.2.1 Key generation

Let G be a generator matrix of a linear [ ]n k d, , -code over �q with an efficient decoding algorithm � which

can correct up to ( )= ⌊ − / ⌋t d 1 2 errors under bounded-distance decoding. Let S be an invertible ×k k

matrix and P be a random ×n n permutation matrix over �q. The private key is ( )S G P, , and the public

key is ′ ≔G SGP.

2.2.2 Encryption

To be able to encrypt a plaintext, it has to be represented as a vectorm of length k over �q. The encryption

algorithm chooses a random error vector e of weight t in �q
n and computes the ciphertext = ′ +c mG e.

2.2.3 Decryption

The decryption algorithm first computes = = +− −c cP mSG ePˆ 1 1. As P is a permutation matrix, −eP 1 has the

same weight as e. Therefore, � can be used to decode the errors and obtain �( )= =m mS cˆ ˆ . Finally, the

plaintext is retrieved as = −m mSˆ 1.

In successive papers, the original McEliece cryptosystem was refined and tweaked many times; for

example, it is now common practice to replace the scrambling method given by S and P with the computation

of the systematic form, i.e., ′G is the systematic form ofG. This is possible when the McEliece cryptosystem is

embedded into a larger framework to convert it into an IND-CCA2¹ secure Public Key Encryption (PKE) scheme

or Key Encapsulation Mechanism (KEM), and has the additional advantage (beyond the obvious simpler

formulation) of a smaller public key (since only the non-identity submatrix needs to be stored).

The (one-way) security of McEliece is based on the following hard problem.

Problem 2.3

(Syndrome decoding problem) Given an ×r n full-rank matrixH and a vector s, both with entries in �q, and

a non-negative integer t; find a vector �∈e q
n of weight t such that =He sT T .

The Syndrome Decoding Problem (SDP) is a well known problem in complexity theory, and it has been

shown to be NP complete [11]. Note that, since the McEliece cryptosystem uses an [ ]n k d, , code, the number

of error vectors of weight t is ( )( ) −q 1
n

t
t, while the number of possible syndromes is qr. Therefore,

⎛⎝ ⎞⎠( )− <n

t
q q1 t r

is a necessary condition for the existence of at most one solution to the problem, i.e., for the decoding

process to have a unique solution.



1 The term IND-CCA2 stands for Indistinguishability under Adaptively Chosen Ciphertext Attack, which is the highest security

notion for a PKE and KEM since it considers the strongest adversarial model.
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2.3 Sparse-matrix codes

One of the most delicate points about the McEliece cryptosystem is that, in order for the security to reduce to

the SDP, it is assumed that the matrix used as the public key is indistinguishable from a uniformly random

matrix of the same size. This is a plausible assumption, which however has been shown to be false in several

cases. For many variants of McEliece (e.g., ref. [12]), in fact, this opened up avenues of attack which simply

ruled out the variant altogether. Even the long-standing binary Goppa codes have been shown to be distin-

guishable from random codes [13] when the code rate is chosen carelessly (too high). This is arguably one of

the main reasons that pushed researchers away from algebraic codes and toward codes of a different nature.

LDPC codes are defined by parity-check matrices whose main requirement is to be sparse, with a very

low row and column weight. These codes are easy to generate and moreover admit a variety of choices

for the decoding algorithm � , inspired by the Bit Flipping (BF) decoder of Gallager [14], which is very

efficient in practice. For these reasons, this class of codes is a natural candidate for the McEliece crypto-

system. A first instantiation was studied in ref. [4], where a private LDPC matrix was considered, along with

a linearly transformed version of the same matrix used as the public key. As highlighted in ref. [4], security

of the private LDPC code is not preserved unless the public matrix is dense. Thus, in such a framework, the

private LDPC code � is represented through its sparse parity-check matrix H, while the public key corre-

sponds to a dense generator matrix G for �. It is important to note that, from the knowledge of G, the

opponent can compute several parity-check matrices ′H for �, but they will not lead to an efficient

decoding, unless they are sparse. As explained in Section 2.2, typically having G in systematic form is

enough to guarantee such a property. Indeed, we can always write [ ∣ ]=H H H0 1 , where H0 and H1 have size

×r k and ×r r, respectively, and H1 is full rank. Then, the corresponding generator matrix in systematic

form is obtained as [ ∣ ]= −G I H Hk
T T
0 1 . Typically (unless for particular choices of H), the inverse of a sparse

matrix is dense, and so −H T
1 is dense: in such a case, the multiplication of HT

0 by −H T
1 is enough to hide the

structure of H into the one of G.

It is important to note that, due to their probabilistic nature, decoding algorithms for LDPC codes are

characterized by a non-trivial Decoding Failure Rate (DFR). This means that, in the case of a decoding

failure, Bob must ask Alice for a retransmission of the plaintext, encrypted with a different error vector. In

order to avoid frequent retransmissions, which would obviously increase the latency of the system, the DFR

must be kept sufficiently low; typically, values are in the range of −10 6 to −10 9. As we will discuss later, this

fact represents a crucial difference, with respect to the case of algebraic codes, since it leads to a new family

of attacks aimed at recovering the secret key by observing Bob’s reactions. This also has implications on the

security model against a Chosen Ciphertext Attack (CCA) for these systems [15]. Therefore, finding reliable

models for their DFR is necessary to ensure that its value is negligible for those instances designed to

achieve indistinguishability under chosen ciphertext attack (IND-CCA) [16].

2.4 Main attacks

We briefly recall the two main types of attacks that can be mounted against the McEliece cryptosystem and

its variants when using sparse-matrix codes.

2.4.1 Decoding attacks

Decoding attacks are aimed at recovering the plaintext from the ciphertext by performing decoding through

the public code. In fact, being unable to retrieve the private code representation that enables efficient

decoding, an attacker can still try to perform decoding through the public code, which looks like a general

random code.

At the current state of the art, the best procedure for this task is the Information-Set Decoding (ISD)

algorithm, which was first introduced by Prange in 1962 [17] and has received many improvements during
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the years [18–21]. However, ISD and all its variants are characterized by an exponential complexity: the

search for a weight-w codeword has asymptotic complexity equal to 2αw, where the value of the constant α

depends on the code parameters and on the particular algorithm we are analyzing. Even in a quantum

setting, ISD algorithms are still characterized by exponential complexity: indeed, the only known applica-

tion of a quantum algorithm to an ISD algorithm, which consists in using Grover’s algorithm [22] to speed

up the search, leads to a reduction in the complexity, with respect to the classical case, which cannot be

larger than half the exponent α [23].

2.4.2 Key-recovery attacks

When LDPC codes are used, key recovery attacks boil down to recovering low-weight codewords from the

dual of the public code, which is again a decoding problem. Let us denote by �⊥ the dual code of �, having

generator matrix H. Since the rows of H are sparse, and of maximum weight ≪w n, they are minimum-

weight codewords in�⊥ with overwhelming probability, and so can be searched with a generic algorithm for

finding low-weight words, for which ISD algorithms can be used as well.

Since the difficulty of such a task increases with the weight of the searched codewords, it makes sense

to relax the notion of “low-density”: the authors in ref. [5] introduce the notion of “moderate-density” by

increasing the allowed row weight in the parity-check matrix from ( ( ))O nlog to ( )O n , thus defining

moderate-density parity-check (MDPC) codes. It is still possible to decode MDPC codes with the previously

mentioned algorithms; the error-correction capacity gets obviously worse, but the gain in security makes

this tradeoff worth it. In the end, the adoption of LDPC and MDPC codes in modern variants of the McEliece

cryptosystem does not reduce the security against key recovery attacks, since attacks deriving from the

structure of the secret code can be easily avoided by fixing the minimum weight of the rows of H.

2.5 Structured sparse-matrix codes

Using generic LDPC and MDPC codes without any structure in the McEliece cryptosystem is not a practical

choice, as pointed out in ref. [4]. This is because the need to avoid sparse public matrices makes the

resulting public key sizes significantly larger than the ones we can obtain with other families of codes,

like Goppa codes. In fact, even if the private sparse parity-check matrix can be compactly represented

through the positions of its non-null entries (and so, a row with Hamming weight equal to w can be stored

just withw n qlog log2 2 bits), applying this technique to the public key is not possible, since a sparseGmight

compromise the security of the system. One way to avoid this issue is to add some structure to the code

family. This idea was first introduced by considering Quasi-Cyclic (QC) codes [3] and was then extended to

LDPC codes [24] and algebraic codes [25]. In all cases, the authors propose to use QC codes to reduce the

public key size. A QC code can be simply seen as a code which admits parity-check and generator matrices

made of circulant blocks. A circulant matrix is a matrix in which every row is obtained as the cyclic shift of

the previous one; an example of a circulant matrix is

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

=

…
…

⋮ ⋮ ⋱ ⋮
…

−
− −

a a a

a a a

a a a

A .

p

p p

0 1 1

1 0 2

1 2 0

Any circulant matrix is fully described by one of its rows, conventionally the first one. This means that,

in the McEliece cryptosystem, we can describe the public key completely using just the first row of each one

of its circulant blocks; it is clear that this results in a significant reduction in the public key size with respect

to instances using non-structured public matrices. However, this additional structure presents some draw-

backs, since it exposes the system to structural weaknesses. In particular, the QC structure summed to the

algebraic structure of the underlying codes provides a lot of information to the attacker and opens up the
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possibility of structural attacks aimed at recovering the private code. The most famous structural attack of

this type is known as FOPT [26] and works by solving a multivariate algebraic system with Gröbner bases

techniques together with the QC property, which greatly reduces the number of unknowns of the system. As

a result, it seems very hard to provide secure schemes which involve QC algebraic codes (Goppa, GRS etc.),

while still obtaining an effective key reduction: the recent NIST proposal BIG QUAKE [27] shows a reduction

of about 1/4 in the key size compared to what would be obtained in a “classical” McEliece using unstruc-

tured binary Goppa codes.

Therefore, once again, it seems safer to deploy code-based schemes using sparse-matrix codes, since in

this case there is no additional algebraic structure, and the QC property alone is not enough to provide a

structural attack. However, some care is still necessary when using sparse-matrix codes. In particular, two

main aspects have to be considered:

• ISD algorithms might obtain a speed up from the QC structure. This results in a complexity reduction for

the relevant attacks. Such a speedup is achieved for both key recovering attacks and decoding attacks

(following from the Decoding One Out of Many [DOOM] approach [28]). The attack complexity remains

exponential in the key length, but the attack speedup leads to an increase in the row weight of H and in

the number of errors to be used during encryption, which in turn results in an increase in the key length.

• It has been recently shown that the probability of a decoding failure depends on the number of over-

lapping ones between the error vector and rows of H [29]. In addition, in a circulant matrix, all the rows

are characterized by the same set of cyclic distances between set symbols (given two ones at positions i

and j, the corresponding cyclic distance is computed as { ( ) }± −i j pmin mod , with p being the circulant

size). Based on these considerations, it has been shown in ref. [29] that an adversary can mount a key

recovery attack by impersonating Alice, producing many ciphertexts and requesting Bob to decrypt them.

The adversary can then exploit Bob’s reactions concerning decoding failures, which are of public knowl-

edge, in order to gather information about the secret key structure. The set of all distances of the rows ofH

is called distance spectrum and can be used to reconstruct H. This problem can be related to a graph

problem, in which a row ofH corresponds to a clique with maximum size. For a sparse QC matrix, such a

graph is sparse as well, which gives a small number of cliques. This means that, once the distance

spectrum is known, recovering the corresponding parity-check matrix is not a hard task in most cases.

Currently, the countermeasures that have been devised against the aforementioned reaction attacks

exploit the use of ephemeral keys [30,31], of special iterative decoders that allow theoretical modeling of

their failure rate [32,33], or of particular families of codes that make the reconstruction of the secret key

unfeasible [34]. However, all these solutions come with some price to key pair must be generated for each

encryption (in the first case) or the size of the public key must be increased (in the second and third cases).

As we will see in the rest of this article, the idea of using some structure to reduce the public key size

can be strongly generalized. In particular, we will show that existing solutions are just very special cases of

a wider framework, characterized by a large variety of options. This generalization comes with no increase

in public key size, while on the other hand potentially allows us to avoid DOOM and/or reaction attacks, or

at least to reduce their efficiency.

3 Reproducibility

We now introduce the main notions we use to provide a generalized approach to the design of structured

codes.

Definition 3.1. Let �∈n k, , with = ℓk m where also �ℓ ∈m, . Let � { }= … ℓ−σ σ, ,0 1 be a family of ℓ linear
maps, with � �↦σ :i q

n
q
n (thus, we can think of each σi as a square matrix of size n and values in �q). We say

that a ×k n matrix A is an � -reproducible matrix if there exists an ×m n matrix a such that

26  Paolo Santini et al.



⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

=

⋅
⋅
⋮
⋅ ℓ−

A

a σ
a σ

a σ .

0

1

1

(3.1)

We callm the reproducible order and a the signature set and write �( )=A a . We say that a code �� ⊆ q
n is an

� -reproducible code if it admits a generator matrix and/or a parity-check matrix which are� -reproducible.

Let us consider an � -reproducible code described by an � -reproducible generator matrix �∈ ×G q
k n

such that, for � { }= … ℓ−σ σ, ,0 1 , we have

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

=

⋅
⋅
⋮
⋅ ℓ−

σ

σ

σ

G

g

g

g

,

0

1

1

(3.2)

where g is the ×m n signature set of G. Then, for the fixed family � of linear maps, the code is completely

represented through g . The same reasoning applies to an � -reproducible code described by an � -repro-

ducible parity-check matrix �∈ ×H q
r n with signature set h.

Proposition 3.2. Any [ ]n k d, , -code over �q is an � -reproducible code for at least one choice of � and the

corresponding signature set. Such a choice corresponds to ℓ = 1, =m k, =g G, and � { }= In , where In is the

×n n identity matrix. Equivalently, the code can be described through the parity-check matrix H considering

ℓ = 1, =m r, =h H, and � { }= In .

Once the family � is defined, an � -reproducible matrix can be described just by its signature set.

Consequently, when the family of maps � is fixed and universally known, having an � -reproducible

generator matrix (or equivalently parity-check matrix) with ℓ > 1 leads to a more compact representation

of the code with respect to storing its full generator or parity-check matrix. This happens because � is

universally known, and it does not need to be included in the code representation, thus the signature set

alone is sufficient for representing the code.

If we consider a single code, then it is always possible to find some family � according to which such a

code has an � -reproducible generator matrix (or equivalently parity-check matrix) with ℓ > 1. This is

detailed in the following two propositions.

Proposition 3.3. Any single [ ]n k d, , -code over �q admits multiple generator and parity-check matrices, thus it

can be an � -reproducible code for several choices of � and the corresponding signature set.

Proof. The proof is straightforward and omitted for saving space. □

Proposition 3.4. For any single [ ]n k d, , -code � over �q, a family � with ℓ = k entries can be defined

according to which such a code admits an � -reproducible generator matrix with reproducible order =m 1.

Similarly, a family � with ℓ = r entries can be defined according to which � admits an � -reproducible parity-

check matrix with reproducible order =m 1.

Proof. Let �∈ ×G q
k n be a valid generator matrix for the code �. Let us consider the ith row gi ofG and define

σi, [ ]∈i k1; , as the ×n n matrix �∈ ×
q
n n having its first row equal to gi, and all the other rows filled with

arbitrary entries. Then, G is easily obtained as ( )= FG a , with [ ]= …a 1, 0, 0, ,0 . The fact that � admits an

� -reproducible parity-check matrix with reproducible order =m 1 can be proved with a similar rea-

soning. □

From Proposition 3.4, we know that any single code is � -reproducible for some family � yielding ℓ > 1

and <m k (considering the generator matrix) or <m r (considering the parity-check matrix). However, if
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instead of a single code we consider a group of codes and aim at representing all of them as � -reproducible

codes for the same, universally known family of maps � , then it is not always possible to find a solution

with ℓ > 1 and <m k (considering the generator matrix) or <m r (considering the parity-check matrix). The

only trivial solutions that always exist are those of the type considered in Proposition 3.2, yielding ℓ = 1 and

=m k (considering the generator matrix) or =m r (considering the parity-check matrix), and thus not

enabling more compact code representations than those corresponding to storing the full generator or

parity-check matrix. We are instead interested in group of codes that, besides these trivial solutions,

also admit � -reproducible generator and parity-check matrices for a fixed � with ℓ > 1 and <m k or

<m r, as detailed in the next definition.

Definition 3.5.We say that a group of [ ]n k d, , -codes over �q are Compactly Reproducible (CR) codes if, for a

fixed � with ℓ > 1, each of them admits at least one � -reproducible generator matrix with <m k, or at least

one � -reproducible parity-check matrix with <m r, thus enabling a more compact code representation

with respect to storing the full generator or parity-check matrix.

The condition for a code to be CR can be generalized, in order to take into account other structures that

enable a compact representation.

Definition 3.6. Let �∈ ×
Ai j q

k n
,

i j i j, , be � -reproducible matrices, each with its own dimensions, signature set

�∈ ×
ai j q

m n
,

i j i j, , , and family of linear functions �i j, . Let A be a matrix obtained using as building blocks the

matrices Ai j, ; then, we say that A is � -quasi-reproducible.

Definition 3.7. Let us consider a group of linear codes over�q. If, for a fixed� with ℓ > 1, any code� in such

a group can be described by an� -quasi-reproducible generator matrix �∈ ×G q
k n such that <m k, and/or an

� -quasi-reproducible parity-check matrix �∈ ×H q
r n such that <m r, then we say that � is a quasi-com-

pactly reproducible (QCR) code.

It is clear that, in order to describe an � -quasi-reproducible matrix, we just need the ensemble of the

signature sets of its building blocks, together with the corresponding families of linear functions. Quasi-

reproducibility generalizes the concept of reproducibility, since each reproducible code can be seen as a

particular quasi-reproducible code, with a generator matrix described just by one signature set. A particular

type of quasi-reproducible code is the one in which the blocks Ai j, are square matrices, defined by the same

family � .

We are now ready to introduce a very important notion regarding the set of � -reproducible matrices

obtained via a given family of transformations. Specifically, consider a family of linear functions

� { }= … −σ σ σ, , ,0 1 1
p
m

, where each σi is a ×p p matrix over �q. We denote by � �
q
m, the set of all � -repro-

ducible matrices over �q obtained via signatures of size ×m p and � , equipped with the usual operations of

matrix sum and multiplication. Then the following results² hold.

Theorem 3.8. The set � �
q
m, is an abelian group with respect to the sum.

Proof. Showing that� �
q
m, is an additive abelian group is quite straightforward. In fact, the signature of the

sum of two matrices corresponds to the sum of the original signatures. Commutativity and associativity

follow from the element-wise sum between twomatrices. The identity is given by the null signature (i.e., the

signature made of all zeros), while the inverse of a matrix with signature a is the matrix with signature

−a. □



2 For simplicity we assume =σ Ip0 , but this is not necessary and the results hold even if � does not contain the identity

function.
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On the other hand, it is possible to show that the set, with respect to the multiplication, is a semigroup;

in this case, the only requirements are closure and associativity. While associativity easily follows from the

properties of the multiplication between two matrices, in order to guarantee closure, we must make an

additional assumption.

Theorem 3.9. � �
q
m, is a semigroup with respect to the multiplication if and only if for every matrix

� �∈M q
m, , we have

�= ∀ ∈ ≤ ≤ −σ σ i i
p

m
M M , , 0 1.i i

Proof. We show that commutativity is necessary first. For what we discussed above, we only need to prove

closure. Let A and B be two matrices of � �
q
m, , with respective signatures a0, b0, that is,

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
= ⋮ = ⋮ = ⋮ = ⋮

− − − −

σ

σ

σ

σ

A

a

a

a

a

a

a

B

b

b

b

b

b

b

, .

0

0 1

0 1

0

1

1

0

0 1

0 1

0

1

1
p
m

p
m p

m
p
m

Multiplying these two matrices we get

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

= = ⋮ = ⋮ = ⋮
− − −

σ

σ

C AB

a B

a B

a B

a B

a B

a B

c

c

c

.

0

1

1

0

0 1

0 1

0

1

1p
m

p
m

p
m

(3.3)

Now by hypothesis

= = =σ σ σc a B a B c ,i i i i0 0 0 (3.4)

for all ≤ −i 1
p

m
. It follows that C is � -reproducible and defined by � .

Conversely, suppose � �
q
m, is a semigroup, and in particular that it is closed with respect to multi-

plication. Consider again two matrices A and B and their product, defined as in equation (3.3). Since by

hypothesis � �∈C q
m, , and therefore is � -reproducible, we have that = σc ci i0 for all ≤ −i 1

p

m
. It follows

that

= = =σ σ σa B c c a B .i i i i0 0 0 (3.5)

Now, since equation (3.5) holds in general for every signature a0, it must be that =σ σB Bi i, which concludes

the proof. □

Finally, note that multiplication distributes over addition, as usual. This means that, if Theorem 3.9

holds, � �
q
m, verifies all the requisites of a mathematical pseudo-ring, i.e., a ring without multiplicative

identity, as defined in Section 2. We call this the � -reproducible pseudo-ring induced by � over �q.

3.1 Pseudo-rings induced by families of permutations

In the particular case of signatures made of just one row (i.e., reproducible order =m 1) and the functions σi
being permutations, we have a further result, which is described in Theorem 3.10. We point out that all the

results we present in this section can be generalized, in order to consider the case >m 1, but we will not go

into further details here. Since a ×p p permutation corresponds to a matrix in which every row and column

has weight equal to 1, it can equivalently be described as a bijection over �[ ]− ⊂p0, 1 . Given a permuta-

tion matrixσi, we denote the corresponding bijection as fσi. If the element ofσi in position ( )v z, is equal to 1,
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then ( ) =f v zσi . The inverse of fσi is denoted as −fσ
1
i
, which is the bijection associated with the permutation

matrix =−σ σi i
T1 ; if ( ) =f v jσi , then ( ) =−f j vσ

1
i

. Let a and ′a be two row vectors with entries { }…a a a, , ,0 1 2 and

{ }′ ′ ′ …a a a, , ,0 1 2 , respectively, such that ′ = σa a i. Then, ( )′ = −a aj f jσi
1 . If instead ′ = σa aT

i
T , then ( )′ =a aj f jσi

. We

use ∘f fσ σi j
to denote the bijection defined by the application of fσi after fσj. In other words, ∘f fσ σi j

corresponds to the permutation matrix σσi j, and ( ) ( ( ))∘ =f f v f f vσ σ σ σi j i j
. The identity Ip can be seen as the

particular permutation that does not change the order of the elements; the corresponding bijection, which

will be denoted as fIp, is such that each element is mapped into itself (in other words, ( ) =f v vIp ).

Theorem 3.10. Let � { }= = … −σ σ σI , , ,p p0 1 1 be a family of linear transformations, with each σi being a

permutation, and suppose that � induces the � -reproducible pseudo-ring � �
q

,1 over �q. Then, the following

relation must be satisfied

�( )= ∀ ∈ ≤ ≤ − ≤ ≤ −σσ σ i j i p j p, , , 0 1, 0 1.j i f jσi

Proof. Since � �
q

,1 is a pseudo-ring, we know from Theorem 3.9 that, for every matrix � �∈B q
,1 and every

function �∈σi , it must be =σ σB Bi i. In particular, the left-hand term multiplication of σi by B corresponds

to a row permutation, such that

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

( )
( )

( )

( )
( )

( )

=
⋮
=

=
⋮

− −

σ

σ

σ

σ

B

b

b

b

b

b

b

,i

f

f

f p

f

f

f p

0

1

1

0 0

0 1

0 1

σ

σ

σ

σ

σ

σ

i

i

i

i

i

i

(3.6)

where bi denotes the ith row of B. The product σB i instead defines a column permutation of B, and can be

expressed as

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
= ⋮ = ⋮

− −

σ

σ

σ

σ

σ σ

σ σ

σ σ

σB

b

b

b

b

b

b

.i

p

i

i

i

p i

0 0

0 1

0 1

0 0

0 1

0 1

(3.7)

Putting together equations (3.6) and (3.7), we obtain

( )=σσ σ ,j i f jσi (3.8)

which must be satisfied for every pair of indexes ( )i j, . □

Starting from the result of Theorem 3.10, we can easily derive some other properties that� must satisfy.

Corollary 3.11. Let � be a family of permutations such that the induced� �
q
m, is a pseudo-ring. Then, � has

the following properties:

(a) ( ) = ∀f i i0 ,σi ;

(b) ∀ ∃ ∘ =i j f f fs.t. σ σ Ii j p
.

Proof. Since � satisfies the hypothesis of Theorem 3.10, we have

( ) = = =σ σ σ σ σI ,f i p i i0 0σi
(3.9)

which can be satisfied only if ( ) =f i0σi , and this proves property ( )a .

Since each fσi is a bijection of the integers in [ ]−p0, 1 , we know that, for a fixed value of i, there is a

value [ ]∈ −j p0, 1 such that ( ) =f j 0σi . Then, we have

( )= = =σσ σ σ I .j i f j p0σi
(3.10)
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In other words, the bijections corresponding to fσi and fσj are one the inverse of the other, and this proves

property ( )b . □

Corollary 3.12. Let � be a family of permutations such that the induced� �
q
m, is a pseudo-ring. Then,� �

q
,1 is

a ring, which we call, by analogy, � -reproducible ring induced by � .

Proof. Let us show that� �
q

,1 contains the multiplicative identity, i.e., the ×p p identity matrix. Because of

Corollary 3.11, � is formed by ×p p permutations such that ( ) = ∀f i i0 ,σi . If we generate the element of

� �
q

,1 corresponding to the signature [ ]= …u 1, 0, ,0 , we easily obtain the ×p p identity matrix Ip. □

Theorem 3.13. Let � be a family of permutations such that the induced� �
q
m, is a pseudo-ring. Then,� �

q
,1 is

an � -reproducible ring and the invertible elements of � �
q

,1 form a multiplicative group.

Proof. Based on Corollary 3.12,� �
q

,1 is an � -reproducible ring provided with multiplicative identity. Now,

we need to prove that any non-singular matrix in � �
q

,1 admits inverse in � �
q

,1. Let us consider a matrix

� �∈A q
m, , with signature a, and let B be its inverse. Since =AB Ip, we have

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

= ⋮ = = ⋮
− −

σ

σ

σ

σ

AB

a
a

a

B I

u
u

u

,

p

p

p

1

1

1

1

with [ ]= …u 1, 0, ,0 as in Corollary 3.12. Then we have =σ σa B ui i. For =i 0, we have =u aB. Hence, for

whichever value i, we get

= =σ σ σa B u aB ,i i i

which can be satisfied for whichever a only if σi and B commute. Because of Theorem 3.9, this means that

� �∈B q
,1. □

Sum and multiplication are not the only matrix operations we consider. In Theorem 3.14, we analyze

how transposition acts on the matrices belonging to an � -reproducible pseudo-ring � �
q

,1.

Theorem 3.14. Let � �
q

,1 be an � -reproducible pseudo-ring; if

( ) ( ) ( )= = ∀ ≤ ≤ − ≤ ≤ −− − −f i f v f j i j i p j p0 , , , s.t. 0 1, 0 1σ σ σ
1 1 1
j v i

then � �
q

,1 is closed under the transposition operation.

Proof. Let � �∈A q
,1, with signature a, and denote as =B AT its transpose. The ith row of B corresponds to

the ith column of A. In particular, the ith column of A is defined as

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

( )
( )

( )
⋮

−

−

−
−

a
a

a

a

.

i

f i

f i

f i

σ

σ

σp

1
1

2
1

1
1

Because B is the transpose of A, the ith row of B corresponds to the ith column of A. Let us denote as b0 the

first row of B, that is,

( ) ( ) ( ) ( ) ( )[ ] [ ]= … = …−
−
− − −

−
−a a a a a ab , , , , , , .f f f f f0 0 0 0 0 0 0σ σ σ σ σp p1

1
1

1
0
1

1
1

1
1 (3.11)

Let us consider the ith row of B, and denote it as bi; if transposition has closure in � �
q

,1, then it must be
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( ) ( ) ( ) ( ) ( )[ ] [ ]= … = … =−
−
− − −

−
− σa a a a a ab b, , , , , , .i i f i f i f i f i f i i0σ σ σ σ σp p1

1
1

1
0
1

1
1

1
1 (3.12)

Now suppose that ( ) =f v jσi ; then, the jth entry of bi corresponds to the vth entry of b0, that is, ( )−a f 0σv
1 . In

other words, we have =b ai j z, , with

( ) ( )= =− −z f v f j0 , .σ σ
1 1
v i

(3.13)

In order to satisfy eq. (3.12), az must be equal to the jth entry of the ith column of A, that is, ( )−a f iσj
1 . Then, it

must be ( ) =−f i zσ
1
j

, that is,

( ) ( ) ( )= =− − −f i f v f j0 , ,σ σ σ
1 1 1
j v i

(3.14)

which concludes the proof. □

Depending on the properties stated in the previous theorems, the family � might induce different

algebraic structures over � ×q
p p. In particular, let us consider the case of � corresponding to� �

q
,1 satisfying

both Theorems 3.13 and 3.14. Let A be a square matrix whose elements are picked from� �
q

,1. By definition,

we have ( ) ( )=− −A A Adet adj1 1 , where ( )Adet is the determinant of A and ( )Aadj is the adjugate of A.

Computing ( )Adet involves only sums and multiplications: this means that � �( ) ∈Adet q
,1; because of

Theorem 3.13, � �( ) ∈−Adet q
1 ,1. Computing ( )Aadj involves sums, multiplications and transpositions:

because of Theorem 3.14, we have that the entries of ( )Aadj are again elements of � �
q

,1. This means that

−A 1 is a matrix whose elements belong to � �
q

,1, and so has the same � -quasi-reproducible structure of A.

3.2 Known examples of � -reproducible pseudo-rings

In Section 3.1, we have described some properties that a family of permutations � must have to guarantee

that it induces algebraic structures on � ×q
p p. Well-known cases of such objects, with common use in

cryptography, are circulant matrices and dyadic matrices.

3.2.1 Circulant matrices

As we have seen before, a circulant matrix is a ×p pmatrix for which each row is obtained as the cyclic shift

of the previous one. In particular, a circulant matrix can be seen as a square � -reproducible matrix, whose

signature corresponds to the first row and the functions σi defining � correspond to π i, where π is the

unitary circulant permutation matrix with entries

⎧⎨⎩=
+ ≡

π
l j p1 if 1 mod

0 otherwise .
l j, (3.15)

Basically, the bijection representing π is defined as

( ) = +f v v p1 mod .π (3.16)

It can be easily shown that

  ( ) ( ) ( )= = ∘ ⋯ ∘ = +f v f v f f f v v i pmod ,σ π π π π

i times

i
i

(3.17)

which leads to =π Ip
p and = +π π πi j i j pmod . Since permutation matrices are orthogonal, their inverses

correspond to their transposes, and thus ( ) = −π πi T p i. With these properties, we have

= =+ +σσ π σ ,i j
i j p

i j p
mod

mod (3.18)
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which is compliant with Theorem 3.10, since ( ) = +f j i j pmodσi . With some simple computations, it can be

easily shown that circulant matrices satisfy Theorem 3.14 and that the multiplication between two circulant

matrices is commutative.

3.2.2 Dyadic matrices

A dyadicmatrix is a ×p pmatrix, with p being a power of 2, whose signature is again its first row. The rows

of a dyadic matrix are obtained by permuting the elements of the signature, such that the element at

position ( )i j, is the one in the signature at position ⊕i j, where ⊕ denotes the bitwise XOR between i

and j. Then, a dyadic matrix can be written as an � -reproducible matrix, for which each function σi is

the dyadic matrix whose signature has all-zero entries, except that at position i. This means that σi can be

described by the following bijection:

( ) = ⊕f v v i pmod .σi (3.19)

If we combine two transformations, we obtain

( ) ( ) ( ) ( )∘ = ⊕ ⊕ = ⊕ ⊕ = ⊕f f v v j i v i j f v .σ σ σi j i j (3.20)

Since ( ) = ⊕f j i jσi , this proves that the family of dyadic matrices is compliant with Theorem 3.10. It can be

straightforwardly proven that dyadic matrices are symmetric (and so satisfy Theorem 3.14), and that the

multiplication between two dyadic matrices is commutative.

Circulant and dyadic matrices are just two particular cases of � -reproducible pseudo-rings and can

obviously be further generalized by considering signatures that are composed by more than one row. In

addition, several more constructions can be obtained. For instance, for every permutation matrix ψ and

every � -reproducible pseudo-ring � �
q
m, , induced by � { }= = … −σ σ σI , , ,p0 1 1

p
m

, we can obtain a new

� -reproducible pseudo-ring as

� �� �{ ∣ }= ′ ′ = ∈′ ψ ψM M M M, .q
m T

q
m, , (3.21)

The corresponding family of transformations is � { }′ = ′ ′ … ′ −σ σ σ, , ,0 1 1
p
m

, with ( )′ =σ σ ψi f i
T

ψ
. Proving that �′

actually induces a pseudo-ring is quite simple; indeed, for any two matrices = ψ ψA MA
T and = ψ ψB MB

T ,

with � �∈M M,A B m, , we have

( )+ = + = +ψ ψ ψ ψ ψ ψMA B M M M ,A
T

B
T

A B
T (3.22)

= =ψ ψ ψ ψ ψ ψAB M M M M ,A
T

B
T

A B
T (3.23)

which return matrices belonging to � � ′
q

m, , since � �+ ∈M MA B q
m, and � �∈M MA B q

m, . In addition,

if multiplication is commutative in � �
q
m, , then it will be commutative in � � ′

q
m, too. To prove this fact,

let us consider two matrices � �∈M M,A B q
m, , such that =M M M MA B B A. Then, for = ψ ψA MA

T and

= ψ ψB MB
T , we have

= = = = =ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψ ψAB M M M M M M M M BA.A
T

B
T

A B
T

B A
T

B
T

A
T

It is easy to prove that, if � �
q
m, is closed under transposition, � � ′

q
m, is too.

4 Compactly reproducible codes

In the previous section, we have described the properties that a family of functions � must have in order to

generate � -reproducible matrices. This opens a wide range of possibilities for obtaining codes with com-

pact representations, that is, CR codes according to Definition 3.5. In fact, � -reproducible pseudo-rings
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allow us to design codes that can be described in a very compact manner. Codes of this type are of interest in

code-based cryptography, where small public keys are important.

In this section, we describe how to design CR codes, and the properties that characterize them. In

particular, we study how to achieve an� -reproducible representation for the parity-checkmatrixH starting

from an � -reproducible generator matrix G. In addition, we provide intuitive methods to obtain random-

looking CR codes, starting from their parity-check matrix.

Let � be a CR code over �q, with length n, dimension k, and codimension = −r n k, with an � -repro-

ducible generator matrix �∈ ×G q
k n defined by the signature �∈ ×g q

m n
0 and the fixed and universally known

family of transformations � . In particular, according to Definition 3.5 we have ℓ = > 1
k

m
and we write

� { }= … −σ σ σ, , , l0 1 1 . Without loss of generality, we can suppose that = =σ id In0 . The matrixG can thus be

expressed as

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

⎡

⎣
⎢⎢⎢

⎤

⎦
⎥⎥⎥

= ⋮ = ⋮
ℓ− ℓ−

σ

σ

G

g

g

g

g

g

g

.

0

1

1

0

0 1

0 1

(4.1)

Let �∈ ×H q
r n be a parity-check matrix for � and s be one of the factors of r; if r is a prime, necessarily =s 1.

Then, H can be expressed as

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
= ⋮

−

H

h

h

h

,

0

1

1r
s

(4.2)

where each hi is a matrix with dimensions ×s n. Since by definition = ×GH 0T
k r, it must be

�= = ∀ ∈ ≤ ≤ − ≤ ≤ −×σ i j i l j
r

s
g h g h 0 , , s.t. 0 1, 0 1.i j

T
i j

T
m s0 (4.3)

Let us assume that = ×g H 0T
m n0 : as we explain later, in the practical case of a cryptographic scheme,

this condition can be easily satisfied. The following theorem considers a particular construction for a CR

code and states some properties that its parity-check matrix must satisfy.

Theorem 4.1. Let �∈ ×G q
k n be an � -reproducible matrix, with signature �∈ ×g q

m n
0 (hence, m divides k)

and family � { }= … −σ σ σ, , ,0 1 1k
m

. For simplicity, we suppose =σ In0 . Let = −r n k, and �∈ ×H q
r n such

that = ×g H 0T
m r0 . Let s be a factor of r, and denote by hj the subset of rows of H at positions

{ ( ) }+ … + −js js j s, 1, , 1 1 . If we can define a function �( ) ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦− × − ⊂ →f x x, : 0, 1 0, 1
k

m

r

s0 1
2

�⎡⎣ ⎤⎦− ⊂0, 1
r

s
, such that

�( )= ∀ ∈ ≤ ≤ − ≤ ≤ −σ i j i
k

m
j

r

s
h h , , , 0 1, 0 1,j i

T
f i j, (4.4)

then G and HT are orthogonal, i.e., = ×GH 0T
k r.

Proof. Since the generator matrix G is � -reproducible, with signature g0, we have

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢

⎤

⎦

⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
= ⋮ = ⋮ = ⋮

− − −

σ

σ

G

g

g

g

g

g

g

H

h

h

h

, .

0

1

1

0

0 1

0 1

0

1

1
k
m

k
m r

s

(4.5)

In order for G to be a valid generator matrix, it must be = ×GH 0T
k r, that is,
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�= = ∀ ∈ ≤ ≤ − ≤ ≤ −×σ i j i
k

m
j

r

s
g h g h 0 , , s.t. 0 1, 0 1.i j

T
i j

T
m s0 (4.6)

By hypothesis, g0 is an ×m n matrix such that = ×g H 0T
m r0 , which means

�= ∀ ∈ ≤ ≤ −× j j
r

s
g h 0 , s.t. 0 1.j

T
m s0 (4.7)

Consider now the product = σg h g hi j
T

i j
T

0 , for ≥i 1. If we can define a function

� �( ) ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦ ⎡⎣ ⎤⎦− × − ⊂ → − ⊂f x x, : 0, 1 0, 1 0, 1
k

m

r

s

r

s0 1
2 with the aforementioned property described by

(4.4), then for all couples of indexes i j, we have

( )=σ h h ,i j
T

f i j
T

, (4.8)

and (4.6) is surely satisfied, since

( )= = = ×σg h g h g h 0 ,i j
T

i j
T

f i j
T

m s0 0 , (4.9)

where ( ) = ×g h 0f i j
T

m s0 , because of (4.7). □

Remark 4.2. Note that if r is a prime, then we either have =s r or =s 1. The first case may lead

to somehow trivial constructions: we have that the function f is constant, since it maps any pair

( ) ⎡⎣ ⎤⎦( )∈ −x x, 0 with 0, 1
k

m0 0 to 0. This implies that the matrix H is such that =σH Hi
T , for any �∈σi :

if the functions σi have all full rank (for instance, they are permutations), then H cannot have maximum

rank r. Hence, when r is a prime, the only case with practical interest is that of =s 1 (i.e., the one in which

each hj is actually a row vector).

For G and H to be, respectively, the generator and parity-check matrix of a code �, some conditions

have to be verified, given in Corollary 4.3.

Corollary 4.3. Let �∈ ×G q
k n be an � -reproducible matrix, with signature �∈ ×g q

m n
0 (hence, m is among the

factors of k) and family � { }= … −σ σ σ, , ,0 1 1k
m

. Let �∈ ×H q
r n be a matrix such that = ×GH 0T

k n, and suppose

that it satisfies the hypothesis of Theorem 4.1. ForH andG to be, respectively, the parity-check and generator

matrices of a code � with length n, dimension k and redundancy r, the following conditions are necessary:

(a) � contains k

m
distinct linear transformations;

(b) ≤k

m

r

s
;

(c) For any three integers ⎡⎣ ⎤⎦∈ −i 0, 1
k

m
and ⎡⎣ ⎤⎦′ ″ ∈ −j j, 0, 1

r

s
, with ′ ≠ ″j j , it must be ( ) ( )′ ≠ ″f i j f i j, , .

Proof. We want the � -reproducible ×k n matrix G to be the generator matrix of a code with dimension k:

then, G must have rank equal to k. If � contains two transformations =σ σi j, with ≠i j, then the rows of G

obtained as σg i0 are identical to the ones obtained as σg j0 . IfG has some identical rows, then its rank cannot

be maximum, and this proves condition ( )a . It is straightforward to show that this condition can also be

expressed as follows: there cannot exist three integers ⎡⎣ ⎤⎦′ ″ ∈ −i i, 0, 1
k

m
, with ′ ≠ ″i i and ⎡⎣ ⎤⎦∈ −j 0, 1

r

s
,

such that ( ) ( )′ = ″f i j f i j, , . Indeed, if we can determine such integers, then

( ) ( )= = =′ ′ ″ ″σ σh h h h ,j i
T

f i j f i j j i
T

, ,

which results in =′ ″σ σi i .

We can then easily prove condition ( )b . Indeed, fix an integer ⎡⎣ ⎤⎦∈ −j 0, 1
r

s
and consider, for all

⎡⎣ ⎤⎦∈ −i 0, 1
k

m
, all the images ( )f i j, : because of condition ( )a , these images must be distinct. However,

the dimension of the codomain of ( )f i j, is equal to r

s
: if >k

m

r

s
, then ( )a cannot be satisfied. This proves ( )b .
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If H is the parity-check matrix of a code with redundancy r, then it must have rank equal to r.

If we suppose that there exists three integers ⎡⎣ ⎤⎦∈ −i 0, 1
k

m
, ⎡⎣ ⎤⎦′ ″ ∈ −j j, 0, 1

r

s
, with ′ ≠ ″j j , such that

( ) ( )′ = ″f i j f i j, , then, because of Theorem 4.1, we also have =′ ″σ σh hj i
T

j i
T , which implies =′ ″h hj j . If H

has some identical rows, then its rank must be <r, and this proves condition ( )c . □

Theorem 4.1 and Corollary 4.3 allow us to generate a CR code in a very simple way. Given a family of

transformations � , first obtain a matrix H with the characteristics required by the theorem. Then, for the

code � having H as parity-check matrix, a variety of � -reproducible generator matrices can be found.

Indeed, letG be a generator matrix for�: by definition, since = ×GH 0T
k r, we know that whichever subset g0

formed by m rows of G is such that = ×g H 0T
m r0 . Then, g0 is a valid signature for an � -reproducible

generator matrix, defined by the family � . On condition that both H and G have full rank, and

< ⇒ >m k l 1, then they can be used to represent the CR code � with length n, dimension k, and

redundancy r.

We point out that the properties defined by Theorem 4.1 can be described in a graphical way, con-

sidering the fact that the linear functions σi define a mapping acting on the ensemble of matrices hj. We can

consider a directed graph� , with r

s
nodes, labeled from 0 to − 1

r

s
. In such a graph, we have an edge from a

node j0 to a node j1 if there exists an integer i such that =σh hj i
T

j0 1
. In addition, every edge is labeled with

the corresponding function σi
T . With this construction, the graph � contains all the information about the

mapping defined by � . The meaning of the graph is the following: if there exists a length-l path from a node

j0 to a node j1, whose edges have labels I { }= … −i i i, , , l0 1 1 , then it must be

I

∏=
∈
σh h .j j

i

i
T

1 0 (4.10)

We can now consider two different paths having the same starting and final nodes, with the corresponding

sets of edges labeled as Ia and Ib. Then, it must be

I I

∏ ∏=
∈ ∈

σ σ .
i

i
T

i

i
T

a b
(4.11)

The definitions we have introduced in the previous section describe codes whose generator matrices can be

efficiently described just by a subset of their entries; for this reason, they are natural candidates for being

used in a McEliece cryptosystem. Actually, some variants of this type have already been proposed during

the years, with the aim of reducing the public-key size by exploiting such a property. We show that these

already existing variants are encompassed by our general framework and that the possibilities for obtaining

such features are actually many more than those already exploited.

In some cases, a QCR code can be seen as a particular case of a CR code (and viceversa). Let us consider

a code � with length =n n p0 , dimension =k p, and codimension ( )= −r n p10 , for some integer �∈n0 . Let

us suppose that G is obtained as a row of n0 blocks with size ×p p, that is,

∣ ∣ ∣[ ]= ⋯ −G G G G .n0 1 10
(4.12)

This form of the generator matrix is commonly used in sparse-matrix code-based cryptosystems [5,35].

Suppose that G in (4.12) is an � -quasi-reproducible matrix, i.e., each Gi is an element of the pseudo-ring

� �
q

m,i i and has signatureVi. If the signatures have all the same number of rows (that is, =m mi ), then such a

G can be seen as a particular � -reproducible matrix. Let us write the ith family of transformations as

� ( ) ( ) ( ){ }= … −σ σ σ, , ,i
i i i

0 1 1
p
m

and define an overall family of transformations � { }= … −σ σ σ, , ,0 1 1
p
m

, such that

⎡

⎣

⎢⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥⎥

( )
( )

( )

( )

=

⋯
⋯
⋯

⋮ ⋮ ⋮ ⋱ ⋮
⋯

× × ×

× × ×

× × ×

× × ×
−

σ

σ

σ

σ

σ

0 0 0

0 0 0

0 0 0

0 0 0

.i

i p p p p p p

p p i p p p p

p p p p i p p

p p p p p p i
n

0

1

2

10

(4.13)
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Then, it is easy to see that a matrix in the form (4.12) is also an � -reproducible matrix obtained through �

in (4.13), with signature

[ ∣ ∣ ∣ ]( ) ( ) ( )= ⋯ −g g g g .n
0 0

0
0
1

0
10 (4.14)

4.1 CR codes from Householder matrices

A Householder matrix [36] is a matrix that is at the same time orthogonal and symmetric. Let us consider a

set of distinct Householder matrices … −ψ ψ, , v0 1. We have that, for all = … −j v0, , 1, it must be

= =−ψ ψ ψ
j j

T
j

1 . In order to fulfill the conditions of Theorem 4.1, these matrices must form a commutative

group, that is,

= ≤ ≤ −ψψ ψψ i j v, 0 , 1.i j j i (4.15)

Let us consider two sets containing all the 2v distinct binary v-tuples, i.e.,

�

�

{ ∣ }
{ ∣ }
( ) ( ) ( ) ( )
( ) ( ) ( ) ( )
≤ ≤ − ∈ ≠ ∀ ≠
≤ ≤ − ∈ ≠ ∀ ≠
i i j

i i j

a a a a

b b b b

0 2 1, , s.t. , ,

0 2 1, , s.t. , .

i v i v i j

i v i v i j

2

2

(4.16)

For the sake of simplicity, let us fix ( ) = ×a 0 v
0

1 . It is clear that these two sets are identical, except for the

order of their elements. We can now define a family of transformations � , containing 2v linear functions σi,

defined as

( )∏=
=

−
σ ψ ,i

l

v

l
a

0

1

l
i

(4.17)

where ( )al
i is the lth entry of ( )a i . Since we are considering Householder matrices with the property (4.15), it is

easy to verify that =σ Ii n
2 , and it follows that each function is an involution.

The family � can be used to define an � -reproducible generator matrix G for a code �; a parity-check

matrix for � can then be the � -reproducible matrix H, with signature �∈ ×h q
s n

0 , whose rows are obtained

as

⎜ ⎟⎛
⎝

⎞
⎠

( )∏=
=

−
ψh h .j

l

v

l
b

T

0

0

1

l
j

(4.18)

If H has full rank, the corresponding code has redundancy =r s2v, and

⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

( )
( ) ( ) ( ) ( ) ( )∏ ∏ ∏ ∏= = = =

=

−

=

−

=

−

=

−
⊕

σ ψ ψ ψ ψh h h h h ,j i
T

j

l

v

l
a

T

l

v

l
b

T

l

v

l
a

T

l

v

l
a b

T

f i j

0

1

0

0

1

0

1

0

0

1

,

i j
l
i

l
j

l
i

where ⊕ denotes the modulo 2 sum and

( ) ( ) ( ) ( )= = ⊕f i j u b a b, , s.t. .u i j (4.19)

It is straightforward to show that such a function satisfies the properties required by Theorem 4.1 and

Corollary 4.3. The corresponding code has length n, dimension =k m2v, and redundancy =r s2v, thus the

code rate corresponds to
+
m

m s
. In addition, we point out that it might be possible to tune the code para-

meters, by selecting only proper subsets of all the binary v-tuples, in order to form the rows of bothG andH.

4.2 CR codes from powers of a single function

In this section, we present another construction of reproducible codes satisfying Theorem 4.1. Let us

consider an ×n n matrix π such that =π Ib
n, for some integer b. Let v be a divisor of b; obviously, if b
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is a prime, then =v 1. We can use π to build a family � of ≤k

m

b

v
linear transformations, where k is the

desired code dimension and m is the number of rows in a signature. Indeed, the functions in � can be

defined as =σ πi
vzi, where the values zi are distinct integers ≤b

v
. For simplicity, we assume =z 00 , i.e.,

=σ In0 . Then, given an ×m n signature g0, we can use the family � to obtain a generator matrix G for a

code � as

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=
⋮
=
⋮

− −

π

π

π

G

g

g

g

g

g

g

g

g

.

vz

vz

vz

0

1

2

1

0

0

0

0
k
m

k
m

1

2

1

(4.20)

An � -reproducible parity-check matrix for � can be obtained by taking an ×s n matrix h0, and using it to

generate the parity-check matrix H as

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥

⎡

⎣

⎢⎢⎢⎢⎢

( )
( )

( )

⎤

⎦

⎥⎥⎥⎥⎥
=
⋮
=

⋮
−

−

−
π

π

π

H

h

h

h

h

h

h

h

h

.

b v T

b v T

v T

0

1

2

1

0

0

0
2

0
b
v

(4.21)

If H is full rank, then � has redundancy =r s
b

v
; the code dimension and redundancy must be linked to the

code length according to + =k s n
b

v
.

It is quite easy to show that such a parity-check matrix is compliant with Theorem 4.1. In fact, we have

( ) [ ]( )( )= =− + −σ π π πh h h .j i
T b jv T vz T b z j v T

0 0
i i (4.22)

If ≥z ji , we have

[ ] [ ] ⎡
⎣⎢

⎤
⎦⎥ [ ] ⎡

⎣⎢
⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( ) ( ) ( )= = = =+ − − + − − + − − + − − −
π π π π π π .b z j v T b b z j v T b b

v j z v
T

b T b b
v j z v

T
b j z b

v v
T

2 mod
i i i i i

In the case of <z ji , we can write

[ ] [ ] ⎡⎣⎢
⎤
⎦⎥

( ) ( ) ( )=+ − − − − −
π π π .b z j v T b j z v T b j z b

v v
T

mod
i i i (4.23)

Thus, we have proven that

⎡
⎣⎢

⎤
⎦⎥

( ) ( )= =− −
−σ πh h h ,j i

T b j z b
v v

T

j z0
mod

mod
i

i
b
v

(4.24)

such that the function ( )f x x,0 1 required by Theorem 4.1 is defined as

( ) = −f x x x z
b

v
, mod .x0 1 1 0

(4.25)

For instance, a simple construction can be obtained by choosing = =m s 1 and = = /k r n 2: the matricesG

and H are two � -reproducible matrices, with signatures that are row vectors of length n and are character-

ized by the same number of rows (thus, � has rate 1/2).

For what concerns property ( )b , we can consider the following equivalence:

− ′ ≡ − ″x x x x
r

s
mod ,0 1 0 1 (4.26)

which turns into

″ − ′ ≡x x
r

s
0 mod .1 1 (4.27)
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Then, it is clear that it must be ′ ″ <x x,
r

s
: however, this condition is quite straightforward, since j denotes

the row index of the matrix blocks inH. In the same way, when considering the index of the transformation

σi, we have

′ − ≡ ″ −x x x x
r

s
mod ,0 1 0 1 (4.28)

which turns into

′ − ″ ≡x x
r

s
0 mod .0 0 (4.29)

Again, in order to guarantee that the previous equivalence has no solution, it must be ′ ″ <x x,
r

s0 0 . This

basically means that we must have ≤k m
r

s
.

Remark. There is a clear analogy between the concept of reproducibility and that of automorphism group of

a code. Remember that, by automorphism group, we refer to the set of functions that map a code into itself.

For instance, consider codes obtained from generator matrices as in (4.20) and assume that π is a permuta-

tion. Let us further assume, for simplicity, that =v 1 and choose =k b, i.e., suppose the code has dimension

equal to the order of the considered permutation π . We then have � { }= … −π π πI , , , ,n
k2 1 , and for each

each �∈g q
n

0 we obtain an � -reproducible generator matrix as

⎡

⎣

⎢⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥⎥
=
⋮
−

π

π

π

G

g

g

g

g

.

k

0

0

0
2

0
1

It is trivial to show that � is in the automorphism group of the code � having G as a generator matrix.

Indeed, each codeword is obtained as

�∑= = ∈
=

−
πu uc uG g , .

j

k

j
j

j q

0

1

0

If we permute c according to a permutation π i, we obtain

∑ ∑= = ′ = ′ ′ =
=

−
+

=

−

−π π πu u u uc g g u G, with .i

j

k

i
i j

j

k

j
j

j j i k

0

1

0

0

1

0 mod

Thus, ′u is a cyclic permutation of u: this proves that �∈πc i . Hence, the automorphism group of �

contains all permutations of the form π i, for [ ]∈ −i k1; 1 . With similar arguments, one can prove that

analogous results hold for other families of transformations that we consider in this article.

4.3 Code-based schemes from QCR codes

The algebraic structures we have introduced in the previous sections can be used to generate key pairs in

code-based cryptosystems. For instance, let us consider a parity-check matrix H made of ×r n0 0 matrices

belonging to a pseudo-ring � �
q
m, . In order to use H as the private key of a sparse-matrix code-based

instance of the Niederreiter cryptosystem, we must guarantee that H is sufficiently sparse: this property

can be easily achieved by choosing a family � of sparse matrices σi, which guarantee that an � -repro-

ducible matrix defined by a sparse signature will be sparse as well. In such a case, we can obtain the public

key as ′ =H SH, where S is a random dense matrix, whose elements are picked over � �
q
m, . Because of

Theorem 3.9, the entries of ′H belong to � �
q
m, , thus they maintain the same structure defined by � .
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If =m 1 and � is a family of permutations satisfying Theorem 3.10, then � �
q

,1 is actually a ring (see

Corollary 3.12). Then, the secret key can be chosen as [ ]= … −H H H H, , , n0 1 10
, with � �∈Hi q

,1, while the

public key can correspond to the systematic form ofH, that is, ′ = −H H H0
1 . Indeed, because of Theorem 3.13,

we have � �∈−H q0
1 ,1, and so ′H is a matrix constituted of blocks over� �

q
,1. This is the approach followed in

previous instances of the McEliece and Niederreiter cryptosystems based on QC-LDPC and QC-MDPC codes

[5,35], which, however, only considered the special case of circulant matrices as Hi.

Suppose we have a family � satisfying Theorem 3.14, for which multiplication in� �
q

,1 is commutative

(see Section 3.2 for some examples). Then, we can use the � -reproducible pseudo-ring induced by � to

obtain key pairs for a McEliece cryptosystem. For instance, we can choose [ ]=H H H,0 1 , with � �∈Hi q
,1,

and obtain a generator matrix as [ ]= −G S H H,T T
1 0 , with � �∈S q

,1. The matrices H and G can be used as the

private and public key, respectively, for a McEliece cryptosystem. Even if this case might seem quite

specific, it is of significant interest since it is exactly the structure appearing in the first of the three variants

(BIKE-1) of the BIKE proposal to the NIST competition [37].

When both Theorems 3.13 and 3.14 are satisfied, we can obtain a generator matrix in systematic form,

which is still an � -reproducible matrix. In fact, starting from an ×r n parity-check matrix H, where the

elements are picked randomly from� �
q

,1, we can use the corresponding parity-check matrix in systematic

form as the public key for a Niederreiter cryptosystem instance. In the same way, we can compute the

systematic generator matrix, and use it as the public key in a McEliece cryptosystem instance.

The idea of using codes that are completely reproducible, and not formed by reproducible pseudo-

rings, opens up for the possibility of a whole new way of generating key pairs in the McEliece cryptosystem.

Indeed, once we have generated a sparse parity-check matrix H, we can use it as the secret key. Then, a

possible public key can be obtained by taking a bunch of linearly independent codewords, and using them

as the signature of the public generator matrix. If such codewords correspond to rows of the generator

matrix in systematic form, then we obviously obtain another significant reduction in the public key size,

since there is no need for publishing the first k bits of each one of the selected codewords.

It is clear that having a CR public code may lead to a significant reduction in the public-key size.

Indeed, once the structure of the matrix is fixed by the protocol (i.e., dimensions, family � ), the whole

public key can be efficiently represented using just the signatures of each building block.

5 Cryptographic properties and attacks

In the previous sections, we have introduced the notion of reproducibility and have described some proper-

ties of reproducible codes. Our analysis has shown that there can be a wide variety of methods which allow

us obtaining reproducible codes. As we have seen in Section 4.3, these codes can be used to generate key

pairs in code-based cryptosystems. The main advantage is the possibility of reducing the information

needed to represent the matrix used as the public key. In particular, following the considerations in Section

2.3, this framework is well suited for sparse-matrix code-based cryptosystems. Let � be a secret code with

parity-check matrixH, and suppose that the public key is constituted by a general generator matrix (for the

McEliece case) or parity-check matrix (for the Niederreiter case) of �. Then, the following properties must

be satisfied:

(a) H is sufficiently sparse to perform efficient decoding;

(b) the knowledge of the public key does not admit efficient techniques for obtaining H or another valid

sparse parity-check matrix ′H .

When property (a) is satisfied,� is an LDPC code and so admits an efficient decoding algorithm� . We point

out that this property can be easily satisfied if we choose � as a family of sparse matrices: this way,

choosing a sparse signature for H guarantees that H will be sparse as well. Satisfying property (b) might

result in being the most delicate part, since it depends on the particular reproducible structure we consider.
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However, as the case of circulant matrices clearly shows, this property might not be hard to satisfy. For

instance, let us consider the systematic form of [ ∣ ]=H H H0 1 obtained as ′ = −H H H1
1 . For a generic sparse

matrix, there is no constraint regarding the density of its inverse. This means that, unless for particular

structures (like orthogonal matrices), −H1
1 is dense with overwhelming probability, and this is enough to

hide the structure of H into that of ′H . For the systematic generator matrix, we have [ ∣( ) ]′ = −G I H Hk
T

1
1

0 , and

so we can make analogous considerations.

Regardless of the particular choice of � , it is important to note that this additional structure does not

expose the secret key to the risk of enumeration. For instance, let us consider the construction described in

Section 4.2, in which the signatureH is defined by a signature of size ×m n, with all the rows having weight

w. If we assume that the rows are picked in such a way as to be linearly independent, the cardinality of the

secret key is then approximately equal to( )nw m
. It is easy to see that, for practical choices of the parameters,

this number is sufficiently large to make attacks based on the enumeration of the secret key unfeasible. In

the next sections, we provide some considerations on attacks that work for QC codes and that may be

hindered by proper families of reproducible codes. We only provide some qualitative arguments and leave

detailed and thorough considerations about these attacks for future works.

5.1 Reaction attacks

Reaction attacks [29,38–40] are a recent kind of attacks aimed at recovering the private key by exploiting

events of decoding failure. In this section, we briefly describe the attack proposed in ref. [29], and then we

make some considerations about reproducible codes. In particular, we consider a binary QC code with

parity-check matrix [ ∣ ]=H H H0 1 , where each Hi is a sparse ×p p circulant with row and column weight

equal to w. Then, the resulting code has length =n p2 , dimension and redundancy equal to p.

In a reaction attack, the opponent impersonates Alice, producing ciphertexts and sending them to Bob.

Events of decoding failure can be detected since, in the case of a decoding failure, Bob must ask for a

retransmission. A crucial player in a reaction attack is the distance spectrum, that is, the set of all distances

produced by the elements of value 1 in a vector [29]. If a distance d appears μ times in the spectrum, we say

that it has multiplicity equal to μ; if a distance is not in the spectrum, we say that it has zero multiplicity. In

the case of QC codes, these distances are computed cyclically: given two ones at positions x0 and x1, the

corresponding distance is obtained as { ( ) }= ± −d x x pmin mod0 1 . In a circulant matrix, all the rows are

characterized by the same distance spectrum; in particular, an opponent performing a reaction attack aims

to obtain the distance spectrum of the rows of H0. For this purpose, he collects the produced ciphertexts

into subsets Σd, such that each error vector used for the encryption of a ciphertext in Σd has d in the distance

spectrum of its first circulant block. Then he observes a sufficiently large number of Bob’s reactions and

assigns a decoding failure probability to each set. As observed in ref. [29], the decoding failure probability

of Σd depends on the presence of couples of ones in the rows ofH0, at the same distance d. Indeed, suppose

that the first length-p block of e has a couple of ones forming the distance d; then, the following properties

hold

• if the distance spectrum ofH0 contains dwith multiplicity μ, then the couple of ones overlaps with μ rows

of H;

• if the distance spectrum of H0 does not contain d, then the couple of ones does not overlap with any row

of H.

These justify the fact that the average syndrome weight of the ciphertexts belonging to the same set Σd

depends on the multiplicity of d in the spectrum ofH0, as observed in ref. [40]. In particular, the syndrome

weight slightly decreases as μ increases, and this causes the difference in the corresponding decoding

failure probabilities [40]. This allows an opponent to obtain the distance spectrum ofH0, since he can guess

the multiplicity of each distance d by looking at the decoding failure probability of the corresponding set Σd.

Since H0 is sparse, its distance spectrum is not dense, which means that it contains a small number of
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distances, with multiplicities that generically are rather low. It is then possible to recover H0 from the

knowledge of its distance spectrum, with a procedure that can be related to that of finding cliques of

prefixed size in a given graph. In principle, cliques finding algorithms run with a time complexity that

grows exponentially with the clique size; however, for sparse graphs (i.e., graphs that contain a small

number of edges), the problem becomes significantly easier [29,38].

In summary, reaction attacks against QC codes are possible because of two factors:

(i) A sufficiently high DFR;

(ii) The invariance of the set of distances between pairs of ones in a row of the secret key with respect to the

row index. This guarantees feasibility of the key reconstruction phase, since the resulting graph (in

which rows of the secret key are represented by cliques of fixed size) is sparse.

In particular, one can try to counter reaction attacks by choosing codes for which condition (ii) is not met.

For instance, in ref. [34] authors propose to use a specific family of QC monomial codes with the property

that the distances between pairs of ones in the secret key fill the distance spectrum. In this way, the density

in the obtained graph becomes maximal and, as a consequence, reconstructing the secret key becomes

unfeasible. We argue that families of reproducible codes may, in general, be characterized by analogous

properties.

For simplicity, consider the example of a reproducible code with = =k r p and =n p2 , with a signature

made of just one row, and a family � of functions σi that are obtained as consecutive powers of a

permutation ψ. In addition, suppose that ψ is obtained as the product of two disjoint p-cycles. In other

words,ψ is such that that we can find two disjoint sets { }( ) ( ) ( )… −a a a, , , p0
0

1
0

1
0 and { }( ) ( ) ( )… −a a a, , , p0

1
1

1
1

1 , for which

( ) { }( ) ( )= ∈+f a a b, 0, 1 .ψ j
b

j p
b

1 mod (5.1)

It is clear that

( ) { }( ) ( )= ∈ ∀+f a a b i, 0, 1 , .σ j
b

j i p
b

modi
(5.2)

Suppose now that the signature of H has two ones at positions ( )av
0 and ( )al

0 , with ( ) ( )− =a a dl v
0 0 . Then, in

the ith row ofH these ones correspond to the positions ( )
+av i pmod
0 and ( )

+al i pmod
0 . The corresponding distance is

( ) ( )′ = −+ +d a al i p v i pmod
0

mod
0 which, in general, is different from d.

As a toy example, set =p 7 and suppose ψ is formed by the cycles { }1, 8, 5, 3, 7, 0, 13 and

{ }4, 12, 10, 6, 15, 11, 2 . For simplicity, suppose that in the secret signature there are two ones in positions

0 and 1. These correspond to the ones at positions 13 and 8 in the second row ofH, at positions 1 and 8 in the

third row, etc. The distances between these ones are all different and, furthermore, are not an invariant of

the row index. Thus, differently from the case of QC codes, the distances that are produced between ones in

the first row of the secret key are not maintained in the other rows.

With this simple example we have shown that, differently from the QC case, the distance spectrum of

generic reproducible codes becomes richer and, as a consequence, the graph which is used to discover the

secret key becomes denser. Thus, the secret key reconstruction phase, which is the final step of a reaction

attack, may be hindered, and this may be enough to remove the basis upon which reaction attacks are built.

Asserting the resistance of general families of transformations requires a deeper investigation, although

some conclusions can already be drawn.

5.2 DOOM

In ref. [28], Sendrier introduced a technique, called DOOM, which is able to speed up the execution of ISD

algorithms for certain families of codes, including QC codes. In general, this technique can be applied

whenever there are multiple instances of SDP with just one solution. When ISD is used to perform a

decoding attack, the gain obtained from DOOM can be explained as follows. Consider the public parity-

check matrix ′H and a set of N different syndromes � { }( ) ( ) ( )= … −s s s, , , N0 1 1 to be decoded. Suppose that,
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( )∀e i such that ( ) ( )′ =H e si T i , there exists a bijective function that allows us to obtain ( )e i from ( )e 0 and vice

versa. We denote such a function by� , so that �( )( ) ( )=e ei 0 and � ( )( ) ( )= −e e i0 1 . Then each pair { }( ) ′s H,i can

be considered as the input of an ISD algorithm aimed at finding ( )e 0 with weight ≤w such that

�( )( ) ( ) ( )′ = ′ =H e H e sT i T i0 . According to DOOM, we consider Ni independent calls to an ISD algorithm. As

soon as one of these runs successfully comes to an end, the whole algorithm ends as well, since ( )e 0 has

been found. The corresponding gain is equal to �∣ ∣/ = /N N Ni i , which becomes N when =N Ni .

Obviously, exploiting DOOM is beneficial when the Ni independent decoding instances have comparable

complexity. This only occurs on the condition that �( )( ) ( )=e ei 0 has the same Hamming weight as ( )e 0 , or

almost the same.

The rationale of exploiting DOOM for a decoding attack is to intercept one ciphertext and then try to

obtain other valid ciphertexts from it, corresponding to transformed versions of the same error vector. Let us

consider the case in which the opponent intercepts a ciphertext corresponding to an initial syndrome ( )s 0

and wants to recover the vector ( )e 0 used during encryption. Then, in order to apply DOOM, the opponent

must produce other syndromes corresponding to as many error vectors being deterministic functions of ( )e 0 .

In other words, suppose that ISD returns the solution ( )e i for ( )s i , then it must be ( ) ( )=e Aei 0 , with A being a

full-rank matrix. For instance, in the QC case, the opponent can obtain a set of p syndromes � just by

cyclically shifting the initial syndrome ( )s 0 and the corresponding error vector ( )e 0 .

In general terms, the applicability of DOOM can be modeled as follows. Starting from a syndrome
( ) ( )= ′s H e T0 0 , we want to determine a transformationΦ of the syndrome that corresponds to a transforma-

tion Ψ of the error vector, that is,

( )( ) ( ) ( ) ( )= ′ = ′ = ′Φs ΦH e H e Ψ H Ψ e ,T T T T0 0 0 0 (5.3)

whereΦ andΨ are two matrices over�q, with size ×r r and ×n n, respectively. The previous equation must

be satisfied for every vector ( )e 0 ; this can happen only if

� �∃ ∈ ′ = ′× ×Φ Ψ ΦH H Ψ, s.t. .q
r r

q
n n T (5.4)

For the general class of reproducible codes, the applicability of DOOM must be carefully analyzed. For

instance, consider a code obtained with the procedure described in Section 4.2, using a family of functions

� consisting of powers of a single function. If this is a permutation, due to Theorem 4.1, we have that σH i

with �∈σi always results in a permutation of the rows ofH. So, the opponent can build the set �, which is

used as input for the DOOM algorithm, by multiplying the initial syndrome by the matrices σi.

However, as we have described in the previous sections, reproducible families of codes can be obtained

in many different ways. For instance, we can use functions σi that are powers of a matrix θ that is not a

permutation. In this case, the opponent can still produce a set �, since equation (5.3) can be satisfied by

choosing = σΨ i; the corresponding reordering of the rows of H is a cyclic shift by i positions. However, it

results that ( ) ( )= σe ei
i

0 . Unless θ is a permutation, powers of this matrix would contain a rather large

number of non-null entries: for instance, if θ is selected at random, then we expect that for any σi the

portion of non-null components is close to −q
q

1 . In such a case, any ( )e i would have a rather large Hamming

weight( )−say, close to
q

q

1
, way larger than that of ( )e 0 . According to ref. [41], we can approximate the time

complexity of an ISD algorithm searching for a vector with weight t as 2ct, where ( )= − −c log 1
k

n2 . If t is the

weight of ( )e 0 , then we have that the ISD algorithm taking ( )s 0 as input is expected to run in time 2ct. Since all

the other syndromes ( )s i , with ≥i 1, are associated with error vectors with weights significantly larger than t,

applying ISD on them requires a time complexity that is significantly larger than 2ct. Then, there is no gain

in considering this set of multiple instances, since the additional instances (which are produced by the

opponent) are associated with an ISD complexity that is significantly larger than that of the original one.

We note that codes of this type may be employed in cryptosystems where codes in compact form are not

required to admit efficient decoding. This is the case, for instance, of the HQC KEM [42] and the AGS

identification scheme [43]. In both schemes, a code in compact form is needed to obtain a syndrome decoding

instance: while in HQC decoding is done with a public and fixed code, in AGS decoding is not involved at all.
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Hence, in this type of applications, the adoption of reproducible families of codes may be convenient:

defeating DOOM would obviously result in the possibility of choosing better parameters for a scheme.

5.3 Construction examples

We provide some explicit constructions of reproducible codes that can be advantageous for the use in code-

based cryptographic schemes, with the aim of illustrating the potential of the introduced theoretical framework.

5.3.1 Quasi-dyadic MDPC codes

Dyadic matrices, which we have already mentioned in Section 3.2, have been used with some measure of

success in cryptography, but always in the context of algebraic codes. The first proposal using quasi-dyadic

(QD) Goppa codes [1] was cryptanalyzed [26] almost in its entirety. A later proposal based on generalized

Srivastava (GS) codes [44] was designed to be more robust against the previous attack and led to one of the

NIST submissions for the key exchange functionality, DAGS [45,46]. Nevertheless, the threat of structural

attacks is always present, as shown by the recent results of Barelli and Couvreur [47]. On the other hand,

using dyadic matrices has undeniable advantages, not only in terms of key reduction but also because it

leads to fast and efficient arithmetic (as shown in ref. [48]) while at the same time featuring a reproducible

structure which is less “obvious” than that provided by circulant matrices.

The reasons mentioned above are why we believe that designing MDPC codes with a QD structure, i.e.,

QD-MDPC codes, has potential in cryptography. Dyadic matrices have many good properties (e.g., they are

symmetric and orthogonal) and satisfy Theorems 3.9–3.13, which means the ensemble � �
q

,1 of dyadic

matrices forms a fully-fledged ring (which is also commutative). A formal definition of reproducible codes

having such a structure is given below.

Definition 5.1. (QD-MDPC codes) Let� �
q

,1 be the ring of dyadic matrices. We call Quasi-Dyadic MDPC (QD-

MDPC) code of type ( )r n,0 0 a linear code of length =n n p0 and redundancy ≤r r p0 that admits a parity-

check matrix in the form { }=H Zij , where � �∈Zij q
,1 for all ≤ ≤ −i r0 10 , ≤ ≤ −j n0 10 , such thatH has row

weight ( )O n .

Constructing a code-based cryptosystem from QD-MDPC codes is actually rather intuitive, since we can

follow the guidelines detailed in Section 4.3. However, due to the very same properties we just mentioned,

building QD-MDPC codes for cryptographic purposes requires some caution. For example, in the simplest

instantiation, one could form a parity-check matrix by selecting just two blocks, i.e., [ ]=H H H,0 1 , with

� �∈Hi q
,1 of size ×p p. However, this would not be secure. In fact, since dyadic matrices are orthogonal,

the density of the inverse matrix is not guaranteed. This means that a Niederreiter instantiation would not

be secure, since the non-systematic block is obtained as −H H0
1

1. Similarly, to use the McEliece framework,

one could compute a generator matrix as [ ] [ ]= = −G G G S H H, ,T T
0 1 1 0 , where � �∈S q

,1 is dense, but then the

product −G G0 1
1 may still reveal the private key, due to the sparsity of the inverse of a dyadic matrix.

As a consequence, to construct code-based schemes using this particular family of reproducible codes,

it is recommended to choose ≥r 20 and employ “true” block matrices, with blocks in � �
q

,1.

5.3.2 Block-wise circulant matrices

As shown in Section 3.2, circulant matrices are a classic special case of reproducible matrices and have

already been used in cryptography for quite some time. For a traditional circulant matrix, the signature
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corresponds to its first row and the set of transformations is � { }= = = = … =− −σ σ π σ π σ πI , , , ,p p
p

0 1 2
2

1
1 ,

where π is the unitary circulant permutation matrix (3.15).

The concept of circulant matrix can be easily generalized into that of a block-wise circulant matrix, or a

periodically circulant matrix as defined in ref. [49]. Such a generalization of circulant matrices can be

described in the form of � -reproducible matrices as follows. Let us consider >m 1, such that ∣m p, and an

×m p signature z formed by m independent rows of p elements each, with entries over �q. Then, let us

consider a fixed family of linear maps � formed by the set of permutations

� { }= = = = … =− −σ σ π σ π σ πI , , , , ,p
m m p m

0 1 2
2

1
p
m

(5.5)

which induces � �
q
m, as the set of all � -reproducible matrices of the type

⎡

⎣

⎢⎢⎢⎢

⎤

⎦

⎥⎥⎥⎥
=
⋮
−

π

π

π

Z

z

z

z

z

.

m

m

p m

2 (5.6)

These matrices are indeed block-wise circulant, in the sense that any block of m rows is originated by the

previous block of m rows through a cyclic shift by m positions. It is easy to verify that, for every matrix

� �∈Z q
m, , we have

�= = = ∀ ∈ ≤ ≤ −σ π π σ i i
p

m
Z Z Z Z , , 0 1.i

im im
i

Based on Theorem 3.9,� �
q
m, is a semigroup with respect to the multiplication, and therefore a pseudo-ring.

With this in mind, we can define the following object.

Definition 5.2. (BC-MDPC codes) Let � �
q
m, be the pseudo-ring formed by block-wise circulant matrices

of the form (5.6). We call Block-wise Cyclic MDPC (BC-MDPC) code of type ( )r n,0 0 a linear code of length

=n n p0 and redundancy ≤r r p0 that admits a parity-check matrix in the form { }=H Zij , where � �∈Zij q
m,

for all ≤ ≤ −i r0 10 , ≤ ≤ −j n0 10 , such that H has row weight ( )O n .

Circulant matrices have the property that any distance between a pair of ones in their first row can be

found in any other position in one of the other rows, due to the unitary cyclic shift between any row and the

subsequent one. In this more general formulation, shifts bym positions replace unitary shifts, therefore the

aforementioned property no longer holds. Therefore, we expect that using BC-MDPC codes could hinder

reaction attacks of the type introduced in ref. [29], which rely on such a property of circulant matrices.

Remark 5.3. Note that the above formulation of BC-MDPC codes could be made even more general. In fact, in

Definition 5.2, these codes are described asmade of blocks all coming from the same pseudo-ring� �
q
m, . However,

this is not strictly necessary to preserve a reproducible structure. One could in fact select block-wise circulant

components with different reproducible orders, which would lead to a BC-MDPC code of reproducible order

( )=m mlcm i . We believe that such a formulation could be an interesting avenue to investigate in future works.

6 Conclusion

We have introduced the notions of reproducibility and quasi-reproducibility. They capture the idea of

matrices that can be compactly represented through a signature, i.e., a subset of rows, and a family of

functions which generate all remaining rows. We have provided theoretical results about the existence and

properties of these families of matrices, which only depend on the chosen family of transformations.

Alongside, we have extended these notions to coding theory and have introduced the concept of
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reproducible and quasi-reproducible codes, which are codes described by a generator or a parity-check

matrix yielding a compact representation. We have shown that existing and well known families of struc-

tured codes are encompassed within this framework, and have provided some concrete constructions of

other families of reproducible codes.

A direct application of this work is in code-based cryptography, where the representation of a code is

commonly used as the public key. As the recent NIST call for the standardization of post-quantum crypto-

systems clearly emphasizes, random and pseudo-random codes are of interest for many code-based cryp-

tosystems. In particular, at the current state of the art, many systems rely on the quasi-cyclic structure of

codes in order to reduce the public key size. Essentially, all the schemes employing such structured codes

can be generalized to the use of reproducible codes, via some of the constructions we have shown in this

article. While the compactness of the public key is preserved, advantages come from the fact that attacks

targeting the specific quasi-cyclic structure can be avoided when more general code constructions are

considered. Although a complete cryptanalysis of these new families of codes requires a deeper investiga-

tion, and is out of the scope of this article, these potential benefits motivate the study of reproducible codes

as a generalization of quasi-cyclic and other known structured codes.
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