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ABSTRACT

Consistent dosages placed with high accuracy onto the substrate are critical for drop-on-demand (DoD) inkjet
printing to be adopted in additive manufacturing and device characterization. Practically, the consistency
of drop volume and drop jetting velocity is subject to process uncertainties, such as fluctuations of applied
pressure and variations in printheads, for which open-loop approaches are unable to compensate. In this
work, a stochastic process model of the relation between two control parameters of a firing waveform and
two output features, drop volume and drop jetting velocity, is developed from standard printhead calibration
data. An image-based control strategy based on a projection-based one-step-ahead Kalman estimator for model
parameters estimation is proposed to regulate the drop volume and the drop jetting velocity. The effectiveness
of the proposed control strategy is experimentally validated for three inks with broad properties. By including
input boundary layers, an order of magnitude improvement in reducing drop volume and jetting velocity

variations is also experimentally demonstrated.

1. Introduction

Drop-on-demand (DoD) inkjet printing, which is characterized by
small drops controlled in an on-demand fashion, has been extensively
seen in many applications, such as drug delivery [1,2] and function-
alization of electrochemical and microfluidics devices [3-6]. These
applications require the inkjet printing system to deliver and pattern
functional materials with precise volume on the substrate at a constant
jetting velocity.

Studies of drop dynamics in DoD inkjet printing have been reported
for decades [7-9], aiming at understanding fluid response to the ac-
tuating signal. The actuating signal given in commercial printheads
is typically a parameterized waveform, only a few control parame-
ters of which are accessible and can be adjusted by users. For appli-
cations using commercial printheads, tuning the control parameters
through trial-and-error and designing new parameterized waveforms
to achieve desired drop behaviors are more straightforward and prac-
tical [10,11]. Model-based and experiment-driven waveform optimiza-
tion approaches were proposed by Khalate et al. [12,13] and Ezzeldin
et al. [14] to improve drop velocity consistency at a broad range
of jetting frequencies. Uncertainties in DoD inkjet printing, such as
tolerance of the nozzle size and fluctuations of supply pressure and
environmental conditions, result in variations in drop characteristics in
practice. Tomaszewski et al. [15] and Kiefer et al. [16] reported that
print results differ from nozzles and times. Hass et al. [17] and Trondle
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et al. [18] obtained high relative standard deviations (RSDs) of drop
volume when they fabricated nuclear targets and bio-structures, respec-
tively. An empirical example is shown in Fig. 1, where fluctuations of
drop volume and drop jetting velocity were observed by authors using
the same nozzle and the same firing waveform at different times for DI
water, color ink and glycerol-water mixture, respectively. Wide spreads
of the drop volume and drop jetting velocity can interpret the varying
printed results.

Since open-loop methods cannot address process uncertainty effi-
ciently, feedback approaches were proposed. Barton et al. [19] devel-
oped a control and sensing strategy in electrohydrodynamic jet printing
to compensate for uncertainty in jetting operating conditions. In [20], a
neural network was introduced to associate drop behaviors with drive
voltages, and then a PID controller was used in [20] to control the drop
behavior via the voltage.

Wang et al. [21] modeled the relationship between one control
parameter of a firing waveform and drop volume in a static func-
tion and proposed an image-based PI controller to regulate the drop
volume. By incorporating the control to drop jetting velocity, Wang
et al. [22] further derived a two-input two-output stochastic model
from standard printhead calibration data and constructed a control
strategy to regulate the drop volume and the drop jetting velocity.
The associated analyses of stability and parameter convergence were
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Fig. 1. Drop volumes and jetting velocities of DI water, color ink, and glycerol-water mixture using the same nozzle with the same firing waveform, respectively, at different

times.

detailed in [23]. This paper expands the experimental-base modeling
outlined in [22,23] by providing detailed analysis and experimental
validation of the methods used to accomplish real-time computation of
drop volume and drop jetting velocity for real-time control. Experimen-
tal results and input-output analysis in [23] suggest room to further
improve the controller performance in reducing output variations. In
this work, an improvement to the control algorithm developed in [22,
23] is presented by introducing boundary layers in the control input to
reduce output variations. Experimental validation using three different
inks/materials confirms the effectiveness of the proposed modification
with properly selected boundary layers (described in Section 5), where
up to 19% further reduction in output variation can be achieved.

The remainder of this paper is structured as follows. The printing
system is introduced in Section 2, followed by the system model
development. Section 4 shows the control strategy. Experimental val-
idation of the control algorithm is given in Section 5 followed by the
conclusion.

2. Printing system

A commercial piezo-driven nanoliter inkjet printhead is used in this
study (BioFluidix PipeJet, Freiburg, Germany). The printhead nozzle is
a disposable elastic polymer pipe clamped between two guide plates,
see Fig. 2, one end of which is connected to a syringe barrel as an
ink reservoir, where back pressure can be applied. Ink is jetted out
at the other open end controlled by the displacement of a piezostack-
driven piston [24]. The piston displacement can be described as a preset
trapezoidal waveform [25], see Fig. 3, which is parameterized by four
parameters: stroke velocity u;, the rate of piston movement; piston
stroke u,, the distance the piston will move; instroke velocity u;, which
is associated with the printing frequency; and stroke holding time 7.
Among them, u; and u, are the control inputs/parameters which can be
adjusted by users to regulate the drop volume and the jetting velocity.
The stroke velocity u; primarily changes the drop jetting velocity, and
the pm- scale stroke u, influences the drop volume more, see Fig. 6.

Syringe pump

Conptroller + PC + Amplifier

Printhead

Strobe LED Camera + Lens

Ve

Translation stage

Fig. 2. Schematic of the printing system.

The printing system also comprises a translation stage to move the
substrate for pattern generation, a monochrome camera (Flea3 FL3-
U3-13Y3M) with a 1X telecentric lens, a NI myRIO embedded device
(National Instruments), a strobe LED, a homemade syringe pump for
pressure regulation in the reservoir, and a PC. The printer, camera, and
strobe LED are synchronized by a trigger signal generated by processing
the stage encoder output through an FPGA. Strobe-illuminated drops at
different distances away from the nozzle can be observed by changing
the trigger delay to the camera. The optical system used in this study
has a resolution of 1.3 megapixels with a pixel size of 4.73 pm which
is calibrated by a 0.25 mm Thorlabs R2L2S3P2 grid distortion target.
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Fig. 3. A parameterized waveform to the printhead, where stroke velocity u; = 55

pm/ms, stroke u, = 25 pm, instroke velocity u; = 2 pm/ms, and stroke holding time
ty = 20 ps.

3. System model development

Although first-principle models detail drop formation, their com-
plexity and limited accessible control parameters provided in commer-
cial printheads make these models difficult for controller design [26].
Instead, using the experimental data collected in waveform tuning
practice for matching the ink and the printhead, a data-driven control-
oriented model can be derived by mapping the control parameters onto
the measured drop characteristics.

3.1. Drop volume and jetting velocity estimations

Stroboscopic technique has been widely used to observe drop for-
mation in DoD inkjet printing [10,25,27], where a strobe LED is syn-
chronized with the drop firing trigger signal to illuminate an in-flight
drop and ensure an appropriately-exposed drop image. Fig. 4(a) shows
an example of an in-flight drop that is stroboscopically illuminated and
acquired at a strobe trigger delayed by 1.8 ms from the drop firing
trigger signal. To further separate drop profile from its background,
image processing and analysis steps are needed.

3.1.1. Drop volume estimation

Fig. 4(a) shows the image processing steps for estimating drop
volume. A region of interest (ROI) containing the drop and the nozzle
tip is first identified and cropped from the acquired image. Otsu’s
method is then used to identify the appropriate threshold to convert
the grayscale ROI image into a binary image [28]. Additional image
filtering and extraction are applied to isolate the drop and identify
its axis of symmetry. The drop profile is rotated by aligning its axis
of symmetry to the vertical axis of the image. Assuming that the in-
flight drop is incompressible and rotationally symmetric with respect
to the axis of symmetry, a rotationally symmetric model is used to
estimate the drop volume [21,27,29]. Fig. 4(b) shows that the drop
profile is sliced into one-pixel-height disks along the axis of symmetry.
The distance between the two outermost edge pixels of a disk is defined
as the diameter of the disk. The volume of the ith disk, V;, is computed
by

whd?

Vi=—t €

where d; is the diameter in pixel of the ith disk and 4 is the pixel height,
which is one in this work. Assuming that the drop is H pixels high, the
estimated drop volume is

V=Y. ©)

H
-

i

Uneven back illuminance across the field of view of the imaging
system introduces uncertainty in edge identification when the drop
is imaged at different distances away from the nozzle. Assuming the
diameter d; of the ith disk is offset by Ad, pixels, where 4d; < d;, the
volume uncertainty can be calculated as

H
zh
4

i=1

AV = (df —(d, - Ad,-)z). 3)
The uncertainty in edge identification not only accounts for the accu-
racy of volume estimation but also implies the potential variation in
identifying the geometric centroid of the drop profile.

A gravimetric method was utilized to verify the volume estimation
algorithm by jetting 500, 600 and 800 drops of DI water at a constant
pair of stroke velocity 70 pm/ms and stroke 25 pm, see Table 1. In
each test, drops fired at 1 Hz were collected with a pre-weighed 1.5
ml microcentrifuge tube at room temperature. Once the collection was
completed, the tube lid was immediately closed to prevent further
liquid evaporation. The filled tube was weighed five times using an
analytical balance (Radwag AS 82/220.X2). The corresponding volume
per drop was calculated with the density of DI water listed in Table 2.

While collecting the drops with the tube, each drop was strobo-
scopically illuminated in flight and imaged for volume estimation. To
account for the uncertainty associated with uneven back illuminance,
an additional increment of 10 ps strobe trigger delay was added to each
consecutive drop to ensure drop images were acquired along the field
of view. Eq. (2) was used to estimate the volume of each drop. Table 1
shows drop volume based on image estimation, Eq. (2), and gravimetric
measurement, respectively. As can be seen, the drop volume calculated
from Eq. (2) is an acceptable real-time estimation of drop volume,
where its mean value is within 1.5% (less than 0.2 nl) from that of
gravimetric measurement.

3.1.2. Drop jetting velocity estimation

By illuminating in-flight drops at different strobe trigger delays,
their locations relative to the nozzle tip can be obtained, as illustrated
in Fig. 5. The difference between locations, Az in Fig. 5, can be obtained
from consecutive drop images. Since the time difference Ar between
trigger delays for the consecutive images is also known, the drop jetting
velocity can be estimated by

vel _ Az

U= 4
where Az is the relative distance between two drop centroids identified
from two consecutive drop images, and 4r is the difference between
strobe LED delays to the two consecutive images.

3.2. System modeling

In DoD inkjet printing, a commercial printhead and inks/materials
are matched through a calibration process. Since only a few control
parameters are typically made available to the users by the printhead
manufacturers, the calibration process involves varying the accessible
control parameters through a grid pattern to identify printable regions
of control parameters for the specified drop characteristics, such as vol-
ume and jetting velocity. This practice also includes acquiring multiple
stroboscopic drop images at each set of control parameters for drop
characterization.

Using the methods described in the previous section, drop vol-
umes and jetting velocities associated with different sets of control
parameters can be estimated from images and data collected from the
calibration process. By mapping drop characteristics to their associated
control parameters, input—-output relationships between the control
parameters and the drop characteristics can be identified.
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Table 1

Comparison between image estimation and gravimetric measurement of drop volumes at stroke velocity u; =70 pm/ms and stroke u, =25 pm.

Test Total jetted drops Image estimation (nl) Gravimetric measurement (nl) Discrepancy of mean (%)
1 500 13.08 + 0.326 12.90 + 0.065 1.40
2 500 13.61 + 0.356 13.59 + 0.090 0.15
3 600 13.47 + 0.290 13.42 + 0.064 0.37
4 600 13.48 + 0.287 13.34 + 0.054 1.05
5 800 13.58 + 0.314 13.48 + 0.053 0.74
6 800 13.50 + 0.262 13.38 + 0.034 0.90

1 Bel Bnl Bm B

l Axjs of symmetry

.0 0 0
Az

tg =1800pus t; =1900ps t; =2000ps t; =2100ps tz; = 2200 ps

-

Fig. 5. A sequence of stroboscopic drop images captured at different strobe delays 7,
for constant control parameters, stroke velocity u, and stroke u,.

Table 2

List of ink physical properties and experimental parameters.
Name DI water Color ink GW mixture
Density (g/cm’) 1.002 0.993 1.158
Viscosity (mPa s) 1.07 2.21 9.53
Surface Tension (mN/m) 73.24 28.72 67.87
Back Pressure (Pa) 0 —-500 -100
Stroke Velocity u; Range (pm/ms) 60-75 50-80 70-100
Stroke Velocity u; Increment (pm/ms) 1.25 5 2.5
Stroke u, Range (pm) 20-35 20 - 35 25-35
Stroke u, Increment (pm) 1.25 1.25 1.25

3.2.1. Printhead-ink calibration experiments

Three inks were tested with the PipeJet printhead in this study:
deionized (DI) water, pigmented color ink (INKUTEN Premium Pig-
mented Sublimation ink), and glycerol-water (GW) mixture of 60 wt%
glycerol and 40 wt% DI water. They represent different densities, vis-
cosities and surface tensions that are commonly used in DoD inkjet
printing. Table 2 gives their densities (calculated by a sample mass
divided by the associated given volume), viscosities (measured by a vis-
cometer, microVISC, RheoSense, INC), and surface tensions (measured
by a tensiometer, Kriiss DSA 100, Germany), which were measured at
room temperature 22.7°C. To form a stable meniscus, back pressure
for each ink was measured by an inline differential pressure sensor
and maintained at the setpoint with less than +5 Pa variations using
a syringe pump driven by a PID-controlled voice coil motor.

In this study, printable regions for control parameters u; and u, were
selected, where acceptable jetting behaviors were observed, i.e., no

satellite drops and no unstable tails, see Table 2. At each pair of control
parameters (u,, u,), at least two hundred drops were jetted and imaged
at different strobe delays in increments of 10 ps from the instant when
the drop was pinched off from the nozzle to the instant when the drop
fell out of the field of view. With drop volumes and jetting velocities
estimated from these images, input—output maps of drop characteristics
for the inks under test were generated with respect to control input
pairs (u;, u,), see Fig. 6.

3.2.2. Drop volume data

Figs. 6(a), (c) and (e) show the mean of drop volumes estimated by
Eq. (2) with one standard deviation at different pairs of stroke velocity
u; and stroke u, of DI water, color ink, and GW mixture, respectively.
The data suggest that the drop volume is linearly dependent on stroke
velocity u; and stroke u,, i.e., the drop volume y** can be presented by
a linear equation,

Y=g u gy + £ (5)

where g;; and g, are the coefficients of stroke velocity u; and stroke
u,, respectively, and f, is the bias. The linear models were validated by
10-fold cross validation and drawn as gray hyperplanes in Figs. 6(a),
(c) and (e) with the approximated coefficients from the least squares
regression. The hyperplanes verify that stroke u, impacts drop volume
more than stroke velocity u;. Drop volumes of the DI water have larger
fluctuations in comparison with drop volumes of the other two inks.
Large process uncertainties mainly account for these fluctuations.

3.2.3. Drop jetting velocity data

Figs. 6(b), (d) and (f) show the average of drop jetting velocities
calculated by Eq. (4) with one standard deviation at different pairs of
stroke velocity u; and stroke u, of DI water, color ink, and GW mixture,
respectively. Similar to drop volume, the data in Figs. 6(b), (d) and
(f) suggest that a linear hyperplane can be used to relate drop jetting
velocity to stroke velocity u; and stroke u,,

Y =gy uy g iy + S, ©

where g,, and g,, are the coefficients of stroke velocity u; and stroke
u,, respectively, and f, is the bias. The linear hyperplanes were also
validated by 10-fold cross validation and drawn in gray as shown in
Figs. 6(b), (d) and (f) using the approximated coefficients from the
least squares regression. The hyperplanes confirm that stroke velocity
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Fig. 6. In-flight drop volumes (nl) and drop jetting velocities (m/s) of DI water, color ink, and GW mixture with respect to pairs of control parameters/inputs (u;, u,): Black dots
are mean values, red bars represent one standard deviations, and gray planes are first-order fitting hyperplanes.

u; has more influence on drop jetting velocity than stroke u,. Large
fluctuations of drop jetting velocity are found in the experiments with
high stroke velocity u,. It is mainly due to the large variation in the
calculated centroid velocity during the notable recoil of the drop jetted
with high forward momentum.

3.2.4. Data-driven modeling
A two-input two-output static model can be formed by combining
Egs. (5) and (6),

Y = [YZ:;] —F+GU = [fl] + [gn g12] “1]
y o &1 &n

1]

2 @

=U@=l 0 u u 0 O0]|gy
01 0 0 u wl|legnl

&21
822 ]

where Y is the output vector, F is the system bias vector, G is the
system gain matrix, U is the system input vector, U is the input matrix,
and O is the model parameter vector which consists of the bias F and
the system gain G. With the experimental data presented in Fig. 6, the
nominal model parameters F, and G, or equivalently ©, approximated
from linear least squares regression are

for DI water,

G = >0~23<10A002) 0-83&0‘002)7 F 7—18-97(10017)7

? 00490003 0.0250003]  ° | —3.080.18) |’

for color ink,

G = _0~15<¢o‘001> 0-81(10‘002{ F o= -_12'06(104065)- ®
o

,0'035(10.001)

and for glycerol-water mixture,

0.021 (40,000 ] | —1.870.067) |

G = | 1taooon [=13.05(10,060)|
[

0.85(+0.002) F
10.035(1.0.001)

0.020¢,0.001)] ~ °

[ =2-51(x0.060) |
where subscripts are the 95% confidence interval errors.

To remove the drifting trend and various mean values in Fig. 1, the
difference between consecutive outputs was taken in each open-loop

test,
=Y =Y, )

where the subscript k is the sampled drop instant, and ¢, is the
fluctuation. The fluctuations shown in Fig. 7 exhibit a Gaussian-like
distribution with a zero mean for drop volume and drop jetting velocity
of different inks. A random walk can be used to model the process.

Since open-loop outputs were generated with a constant control
input U, from the static relationship in Eq. (7), Eq. (9) can be rewritten
as

€ = U@, — 6,_)).

It suggests that the output fluctuation is equivalent to the fluctuation
of model parameters. Therefore, it is reasonable to present the change
of the model parameters in a random walk,

Oyl = O + Wiy, 10

where w; is the parameter uncertainty. Influence of process uncer-
tainties, such as fluctuations in applied pressure and variations in
printheads, is included in Eq. (10).

By considering the measurement noise v, Eq (7) becomes

Y, =F +GU +v,=U0, +v,, 1D

where w, and v, are assumed to have uncorrelated, zero-mean, Gaus-
sian distributions with respective covariance matrices Q, and R.
Egs. (10) and (11) are the stochastic plant model of drop volume and
jetting velocity used for control design.

4. Control strategy

Because each drop is critical in on-demand functional printing for
ensuring product functionality and geometry, the control objective is
structured to regulate the volume and jetting velocity of each drop, that
is, to minimize the one-step-ahead tracking error between the desired
output Y, and the system output Y, ; with the known input-output
information at the instant k. Given the use of Kalman algorithm in
state estimation of random processes [30,31], using the similar fashion
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of indirect adaptive control, the proposed control strategy comprises
a Kalman estimator to estimate the one-step-ahead model parame-
ter/state ©,,; and a controller which is a function of the estimated
model parameters to reduce the tracking error at k + 1.

Remark 1. In the following control strategy development, regression
representation of the plant model Y, = U, 0, + v, shown in Eq. (11) is
used for the estimation algorithm of model parameter vector ©,. The
equivalent affine representation Y, = F, + G, U, + v, is employed for
controller design. According to the equivalence of model representa-
tions shown in Eq. (7), the estimated model parameter vector ék can
be arranged to the estimated model gain G, and the estimated model
bias F,.
4.1. Parameter estimation

Given the plant model Egs. (10) and (11) and a control candidate
U, the output Y at the sampling instant k + 1 can be estimated by
Yert = U1 Opar- 12

O, is the estimated model parameter vector computed by the Kalman
algorithm [32,33]

01 =0, + L (Y, — V) = O, + L(Y,, — U B)), 13
where L, is the Kalman gain, formulated as
L, = PUUPUT +R)™". a4

In Eq. (14), P, is the covariance matrix of parameter estimation error,
6, = 9, — O,, given by

Py =U - LU)P + Oy (15)

To prevent drifts in parameter estimation and ensure the bound-
edness of estimated parameters subject to system uncertainty, follow-
ing the similar approach in [34,35], the parameter updating formula
Eq. (13) is modified with a projection operator,

01 = O +Prg (L(Yy —Y))). (16)

where
0 ifd >6 ande >0,
0 ifél <o’ and+ <0,

o otherwise.

Préi{ (o’) =

9;( is the ith entry of the parameter vector ©,. The range of 0;'(,
0,5 anax), can be set to be larger than the confidence interval of the
nominal model parameters in Eq. (8).

Given the measured output Y, and the implemented control input
U, (equivalently U,), model parameter ©,,, can be estimated using
Egs. (14), (15) and (16). Drop volume and jetting velocity at the instant
k + 1 can be, in turn, estimated from Eq. (12) and used to solve the

control input U, (equivalently U,, ).
4.2. Control design

Based on the estimated system output Y,,,, the control candidate
Uy, is calculated by minimizing the expectation of a cost function of
the squared one-step-ahead tracking error and the penalized control
effort at the instant k + 1 [36],

J= Lr7rlin E (Y=Y ) (Y =YD+ €0 Uy |, a7
k+1

where Y, = [*? y4]7, y4*' is the desired drop volume, y*' is the
desired drop jetting velocity, and « is a positive weight coefficient.
The solution to Eq. (17) has the form of

U1 = (G},

as)

Gy + KI)_IGA;{H(Yd - Fip1),

where G, and F,, are the estimated system gain and system bias
which are regrouped from the estimated ,,, in Eq. (16).

Fig. 8 illustrates the proposed control strategy, where ¢! is the one-
step delay operator. Eq. (18) is the control law used to control the plant
model Egs. (10) and (11) with the estimated parameters from Egs. (14),
(15) and (16).

Remark 2. The plant model Eq. (11) implies that the variations of
control input and system output are proportionally correlated. When
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Fig. 8. Diagram of the proposed control strategy.
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Fig. 9. Schematic of trigger timings for the printhead to jet a drop, for the camera to
image the drop, and for the controller to update control parameters. (a) and (c) show
drop images sampled at odd instants. (b) is a drop image sampled at an even instant.

system outputs are within acceptable thresholds, it may be advanta-
geous to apply boundary layers (BL) around the control input to reduce
unnecessary output fluctuation. Based on the impact of each control
parameter on the output, the following BLs were proposed:

_ : y I el

up =uy oy i 10 -y ST 19
_ ; y ol 1

Uy =ty i [y0%, =y ST

T and T" in Eq. (19) are the error threshold values for drop velocity
and drop volume, respectively.

Remark 3. Following the similar approach in [37], boundedness of
the expectation of spectral norms of the tracking error and the control
input can be straightforwardly shown, respectively, with the projection
operator used in the model parameter updating, which turns out to
be bounded by the parameter estimation error. With certain similar
assumptions given in [38-40], the boundedness and convergence of the
parameter estimation error can be analyzed and are detailed in [23].
Then the closed-loop system is shown to be stable. For the situation that
system outputs satisfy Eq. (19), it can be seen that the tracking error is
bounded by the threshold while the control input is a constant.

5. Experimental validation of control algorithm
5.1. Control implementation

Three closed-loop experiments for each ink were conducted at dif-
ferent times using the proposed control strategy, see Fig. 8. The trigger
timings used to implement the proposed control strategy are illustrated
in Fig. 9. In-flight drops were imaged at drop jetting frequency of 2
Hz. Strobe trigger delay 7, with respect to the printhead trigger was
adjusted until a distinct drop was clearly observed and stable in flight
as seen in Fig. 9(a). Drop jetting velocity was calculated from two
consecutive drops where an additional delay Ar was applied to even
samples so that the drop jetting velocity can be approximated using
Eq. (4). Drop volumes of the odd sampled drops were calculated using
Eq. (2). The control inputs u; and u, were updated at the instant k =
2, 3,..., in Fig. 9.

To implement the parameter estimation algorithm, covariances Q,
and R, have to be specified. Because it is not feasible to image the
same drop several times at the same distance away from the nozzle
using one optical system, we assume that the measurement noise v, is
stationary. An open-loop experimental dataset was used to determine
the measurement noise covariance R,

R |:COU(yUDI, yvul) COU(yUDI, yue[)

COU(yUEI, yval) COU(yUE[, yvel)
[ oo1 0.00007
~10.00007  0.00002|°

where couv(-, ) is the covariance of two random variables.
An innovation-based adaptive algorithm [41] was used to estimate
the covariance Q, of the parameter uncertainty w,,

Oy = LWL, (20)
where ¥ is defined as
k
1 T
Y=y 2wy @
j=k—N+1

N is the moving window size, which was set to 5 in this work.
The innovation sequence y; is defined as the difference between the
measured output and the estimated output,

w; =Y, -U,0;,. (22)

The nominal model parameters in Eq. (8) were used to initialize the
Kalman estimation algorithm. Closed-loop experiments were imple-
mented with

+ proposed controller w/o BL: the controller described by Eq. (18)
without the input boundary layer, which was described in [22,
23],

+ proposed controller w BL: the controller Eq. (18) with the input
boundary layer specified in Eq. (19).

The BL thresholds were determined from one standard deviation of
fluctuation ¢, from Eq. (9), where T = 0.01 m/s and T = 0.1 nl.
Maximum and minimum values of control inputs were included in
practice, where

k= Umax if Uk 2 Umax’
if0, <0,,, (23)

otherwise.
5.2. Experimental results

For each of the three ink types in Table 2, six open-loop experiments
were conducted at different times using the same nozzle with the same
control inputs u; and u,. The control inputs were determined from
the nominal model parameters in Eq. (8) to deliver the target volume
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Fig. 10. System inputs and outputs of DI water in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color

markers are the controlled outputs.
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Fig. 11. System inputs and outputs of color ink in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color

markers are the controlled outputs.
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Fig. 12. System inputs and outputs of GW mixture in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color

markers are the controlled outputs.

of 15 nl and target jetting velocity of 0.8 m/s. In each experiment, a
total of 1000 drops were fired. 500 drop volumes and 500 drop jetting
velocities were estimated for analysis.

In printing preparation, a printhead is routinely primed before
printing to remove the “first drop” problem [42,43]. Therefore, in the
following discussion, the first ten transient samples were removed.

Gray markers in Figs. 10-12 denote drop volume and jetting ve-
locity from the six open-loop tests of DI water, color ink, and GW
mixture. In general, the open-loop output deviates away from the
target output, the center of the scatter plot. Although the implemented
constant control input was calculated based on the nominal plant model
to generate the desired characteristics, wide spreads of drop volume
and drop jetting velocity present multi-modal distributions as seen in
the associated histograms. These significantly limit DoD inkjet printing
in dosage-sensitive and high-volume applications and suggest the need
for closed-loop control.

In Figs. 10-12, color markers present the drop volume and drop
jetting velocity of three tests controlled by the proposed controller
w/0 BL and w BL conducted at different times for DI water, color
ink, and GW mixture, respectively. Unlike the open-loop results, for
each ink, the outputs from the three tests controlled by the proposed
controller w/o BL cluster around the center of the scatter plot with
narrow spreads, which, in turn, present one distinguishable peak in the
associated histogram. In Figs. 10-12(d), the results using the proposed
controller w BL show much tighter spreads in both drop volume and
drop jetting velocity without loss of tracking accuracy. The taller and
thinner peaks in the associated histograms indicate that more drops
have the desired characteristics. As summarized in Table 3, the tracking
performance of the controlled drop volume and jetting velocity is
remarkably improved, the mean values of which are close to the target.
Large reductions in RSD demonstrate the effectiveness of the proposed
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Table 3

Statistics of open-loop and controlled drop volumes (nl) and drop jetting velocities (m/s) of different inks. Target outputs are 15 nl and 0.8 m/s.

Ink Statistics Volume (nl) Jetting velocity (m/s)
Open-loop Controllerw/o BL? Controllerw BL Open-loop Controllerw/o BL Controllerw BL

DI Water Mean 14.51 15.02 14.99 0.75 0.80 0.80

RSD %" 3.11 0.49 0.36 4.53 1.38 0.88
Color Ink Mean 14.41 15.00 14.98 0.82 0.80 0.80

RSD % 3.23 0.42 0.26 2.56 0.75 0.25
GW Mixture Mean 13.73 14.97 14.98 1.15 0.80 0.80

RSD % 1.85 0.38 0.36 5.13 1.38 0.75

2Controller w/o BL is the controller described in [22,23].

PRSD (relative standard deviation) is calculated as the ratio of one standard deviation to the mean.

controller in regulating output variation. Around 80% variance reduc-
tion in drop volume and more than two thirds variance reduction in
drop jetting velocity are observed for the inks under test in comparison
to the open-loop results. The advantageousness of the boundary layer is
also verified, see Table 3. Compared to the open-loop results, more than
nine tens of variances of drop volume and jetting velocity are reduced
in the result of color ink. Spreads of drop volume and jetting velocity of
the other inks are also narrowed down to some extent with the added
boundary layer to the proposed controller.

Drop volumes of the other 500 drops sampled at even instants,
which were used for velocity calculation but for volume feedback, were
estimated also. Their statistics are comparable to the results in Table 3.

Control inputs/parameters of the proposed controller w/o BL and w
BL in three tests of DI water, color ink, and GW mixture are shown in
Figs. 10-12(b)(c)(e)(f). It can be seen that fluctuations of control input
and system output are correlated. The added boundary layers flatten
the control inputs, resulting in less varying outputs.

6. Conclusion

This study proposes a control strategy to regulate drop volume and
drop jetting velocity, with the use of a two-input two-output plant
model developed from experimental printhead-ink calibration data. A
one-step-ahead estimator for model parameters estimation is incor-
porated in the controller development. The efficacy of the proposed
controller is experimentally verified with various inks by delivering
drops with consistent volume and jetting velocity. Experiments also val-
idate that including control boundary layers can further reduce output
variance, i.e., less tracking-error-sensitive control may be preferred in
regulating the stochastic process. This work benefits the modeling and
control in commercial piezo-actuated drop-on-demand inkjet printers
with different actuation mechanisms for printing different inks. Fu-
ture work will concentrate on the integration of the proposed control
strategy with learning-type controls in patterning different functional
materials.
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