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A B S T R A C T

Consistent dosages placed with high accuracy onto the substrate are critical for drop-on-demand (DoD) inkjet
printing to be adopted in additive manufacturing and device characterization. Practically, the consistency
of drop volume and drop jetting velocity is subject to process uncertainties, such as fluctuations of applied
pressure and variations in printheads, for which open-loop approaches are unable to compensate. In this
work, a stochastic process model of the relation between two control parameters of a firing waveform and
two output features, drop volume and drop jetting velocity, is developed from standard printhead calibration
data. An image-based control strategy based on a projection-based one-step-ahead Kalman estimator for model
parameters estimation is proposed to regulate the drop volume and the drop jetting velocity. The effectiveness
of the proposed control strategy is experimentally validated for three inks with broad properties. By including
input boundary layers, an order of magnitude improvement in reducing drop volume and jetting velocity
variations is also experimentally demonstrated.
1. Introduction

Drop-on-demand (DoD) inkjet printing, which is characterized by
small drops controlled in an on-demand fashion, has been extensively
seen in many applications, such as drug delivery [1,2] and function-
alization of electrochemical and microfluidics devices [3–6]. These
applications require the inkjet printing system to deliver and pattern
functional materials with precise volume on the substrate at a constant
jetting velocity.

Studies of drop dynamics in DoD inkjet printing have been reported
for decades [7–9], aiming at understanding fluid response to the ac-
tuating signal. The actuating signal given in commercial printheads
is typically a parameterized waveform, only a few control parame-
ters of which are accessible and can be adjusted by users. For appli-
cations using commercial printheads, tuning the control parameters
through trial-and-error and designing new parameterized waveforms
to achieve desired drop behaviors are more straightforward and prac-
tical [10,11]. Model-based and experiment-driven waveform optimiza-
tion approaches were proposed by Khalate et al. [12,13] and Ezzeldin
et al. [14] to improve drop velocity consistency at a broad range
of jetting frequencies. Uncertainties in DoD inkjet printing, such as
tolerance of the nozzle size and fluctuations of supply pressure and
environmental conditions, result in variations in drop characteristics in
practice. Tomaszewski et al. [15] and Kiefer et al. [16] reported that
print results differ from nozzles and times. Hass et al. [17] and Tröndle
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et al. [18] obtained high relative standard deviations (RSDs) of drop
volume when they fabricated nuclear targets and bio-structures, respec-
tively. An empirical example is shown in Fig. 1, where fluctuations of
drop volume and drop jetting velocity were observed by authors using
the same nozzle and the same firing waveform at different times for DI
water, color ink and glycerol–water mixture, respectively. Wide spreads
of the drop volume and drop jetting velocity can interpret the varying
printed results.

Since open-loop methods cannot address process uncertainty effi-
ciently, feedback approaches were proposed. Barton et al. [19] devel-
oped a control and sensing strategy in electrohydrodynamic jet printing
to compensate for uncertainty in jetting operating conditions. In [20], a
neural network was introduced to associate drop behaviors with drive
voltages, and then a PID controller was used in [20] to control the drop
behavior via the voltage.

Wang et al. [21] modeled the relationship between one control
parameter of a firing waveform and drop volume in a static func-
tion and proposed an image-based PI controller to regulate the drop
volume. By incorporating the control to drop jetting velocity, Wang
et al. [22] further derived a two-input two-output stochastic model
from standard printhead calibration data and constructed a control
strategy to regulate the drop volume and the drop jetting velocity.
The associated analyses of stability and parameter convergence were
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Fig. 1. Drop volumes and jetting velocities of DI water, color ink, and glycerol–water mixture using the same nozzle with the same firing waveform, respectively, at different
times.
detailed in [23]. This paper expands the experimental-base modeling
outlined in [22,23] by providing detailed analysis and experimental
validation of the methods used to accomplish real-time computation of
drop volume and drop jetting velocity for real-time control. Experimen-
tal results and input–output analysis in [23] suggest room to further
improve the controller performance in reducing output variations. In
this work, an improvement to the control algorithm developed in [22,
23] is presented by introducing boundary layers in the control input to
reduce output variations. Experimental validation using three different
inks/materials confirms the effectiveness of the proposed modification
with properly selected boundary layers (described in Section 5), where
up to 19% further reduction in output variation can be achieved.

The remainder of this paper is structured as follows. The printing
system is introduced in Section 2, followed by the system model
development. Section 4 shows the control strategy. Experimental val-
idation of the control algorithm is given in Section 5 followed by the
conclusion.

2. Printing system

A commercial piezo-driven nanoliter inkjet printhead is used in this
study (BioFluidix PipeJet, Freiburg, Germany). The printhead nozzle is
a disposable elastic polymer pipe clamped between two guide plates,
see Fig. 2, one end of which is connected to a syringe barrel as an
ink reservoir, where back pressure can be applied. Ink is jetted out
at the other open end controlled by the displacement of a piezostack-
driven piston [24]. The piston displacement can be described as a preset
trapezoidal waveform [25], see Fig. 3, which is parameterized by four
parameters: stroke velocity 𝑢1, the rate of piston movement; piston
stroke 𝑢2, the distance the piston will move; instroke velocity 𝑢3, which
is associated with the printing frequency; and stroke holding time 𝑡𝐻 .
Among them, 𝑢1 and 𝑢2 are the control inputs/parameters which can be
adjusted by users to regulate the drop volume and the jetting velocity.
The stroke velocity 𝑢1 primarily changes the drop jetting velocity, and

the μm- scale stroke 𝑢2 influences the drop volume more, see Fig. 6.
Fig. 2. Schematic of the printing system.

The printing system also comprises a translation stage to move the
substrate for pattern generation, a monochrome camera (Flea3 FL3-
U3-13Y3M) with a 1X telecentric lens, a NI myRIO embedded device
(National Instruments), a strobe LED, a homemade syringe pump for
pressure regulation in the reservoir, and a PC. The printer, camera, and
strobe LED are synchronized by a trigger signal generated by processing
the stage encoder output through an FPGA. Strobe-illuminated drops at
different distances away from the nozzle can be observed by changing
the trigger delay to the camera. The optical system used in this study
has a resolution of 1.3 megapixels with a pixel size of 4.73 μm which

is calibrated by a 0.25 mm Thorlabs R2L2S3P2 grid distortion target.
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Fig. 3. A parameterized waveform to the printhead, where stroke velocity 𝑢1 = 55
m∕ms, stroke 𝑢2 = 25 μm, instroke velocity 𝑢3 = 2 μm∕ms, and stroke holding time
𝐻 = 20 μs.

. System model development

Although first-principle models detail drop formation, their com-
lexity and limited accessible control parameters provided in commer-
ial printheads make these models difficult for controller design [26].
nstead, using the experimental data collected in waveform tuning
ractice for matching the ink and the printhead, a data-driven control-
riented model can be derived by mapping the control parameters onto
he measured drop characteristics.

.1. Drop volume and jetting velocity estimations

Stroboscopic technique has been widely used to observe drop for-
ation in DoD inkjet printing [10,25,27], where a strobe LED is syn-
hronized with the drop firing trigger signal to illuminate an in-flight
rop and ensure an appropriately-exposed drop image. Fig. 4(a) shows
an example of an in-flight drop that is stroboscopically illuminated and
acquired at a strobe trigger delayed by 1.8 ms from the drop firing
trigger signal. To further separate drop profile from its background,
image processing and analysis steps are needed.

3.1.1. Drop volume estimation
Fig. 4(a) shows the image processing steps for estimating drop

volume. A region of interest (ROI) containing the drop and the nozzle
tip is first identified and cropped from the acquired image. Otsu’s
method is then used to identify the appropriate threshold to convert
the grayscale ROI image into a binary image [28]. Additional image
filtering and extraction are applied to isolate the drop and identify
its axis of symmetry. The drop profile is rotated by aligning its axis
of symmetry to the vertical axis of the image. Assuming that the in-
flight drop is incompressible and rotationally symmetric with respect
to the axis of symmetry, a rotationally symmetric model is used to
estimate the drop volume [21,27,29]. Fig. 4(b) shows that the drop
profile is sliced into one-pixel-height disks along the axis of symmetry.
The distance between the two outermost edge pixels of a disk is defined
as the diameter of the disk. The volume of the 𝑖th disk, 𝑉𝑖, is computed
by

𝑉𝑖 =
𝜋ℎ𝑑2𝑖
4

, (1)

where 𝑑𝑖 is the diameter in pixel of the 𝑖th disk and ℎ is the pixel height,
which is one in this work. Assuming that the drop is 𝐻 pixels high, the
estimated drop volume is

𝑉 =
𝐻
∑

𝑉𝑖. (2)

𝑖=1
Uneven back illuminance across the field of view of the imaging
system introduces uncertainty in edge identification when the drop
is imaged at different distances away from the nozzle. Assuming the
diameter 𝑑𝑖 of the 𝑖th disk is offset by 𝛥𝑑𝑖 pixels, where 𝛥𝑑𝑖 ≤ 𝑑𝑖, the
olume uncertainty can be calculated as

𝑉 = 𝜋ℎ
4

𝐻
∑

𝑖=1

(

𝑑2𝑖 − (𝑑𝑖 − 𝛥𝑑𝑖)2
)

. (3)

he uncertainty in edge identification not only accounts for the accu-
acy of volume estimation but also implies the potential variation in
dentifying the geometric centroid of the drop profile.
A gravimetric method was utilized to verify the volume estimation

lgorithm by jetting 500, 600 and 800 drops of DI water at a constant
air of stroke velocity 70 μm∕ms and stroke 25 μm, see Table 1. In
ach test, drops fired at 1 Hz were collected with a pre-weighed 1.5
l microcentrifuge tube at room temperature. Once the collection was
ompleted, the tube lid was immediately closed to prevent further
iquid evaporation. The filled tube was weighed five times using an
nalytical balance (Radwag AS 82/220.X2). The corresponding volume
er drop was calculated with the density of DI water listed in Table 2.
While collecting the drops with the tube, each drop was strobo-

copically illuminated in flight and imaged for volume estimation. To
ccount for the uncertainty associated with uneven back illuminance,
n additional increment of 10 μs strobe trigger delay was added to each
consecutive drop to ensure drop images were acquired along the field
of view. Eq. (2) was used to estimate the volume of each drop. Table 1
shows drop volume based on image estimation, Eq. (2), and gravimetric
measurement, respectively. As can be seen, the drop volume calculated
from Eq. (2) is an acceptable real-time estimation of drop volume,
here its mean value is within 1.5% (less than 0.2 nl) from that of
ravimetric measurement.

.1.2. Drop jetting velocity estimation
By illuminating in-flight drops at different strobe trigger delays,

heir locations relative to the nozzle tip can be obtained, as illustrated
n Fig. 5. The difference between locations, 𝛥𝑧 in Fig. 5, can be obtained
rom consecutive drop images. Since the time difference 𝛥𝑡 between
rigger delays for the consecutive images is also known, the drop jetting
elocity can be estimated by

𝑣𝑒𝑙 = 𝛥𝑧
𝛥𝑡
, (4)

where 𝛥𝑧 is the relative distance between two drop centroids identified
from two consecutive drop images, and 𝛥𝑡 is the difference between
strobe LED delays to the two consecutive images.

3.2. System modeling

In DoD inkjet printing, a commercial printhead and inks/materials
are matched through a calibration process. Since only a few control
parameters are typically made available to the users by the printhead
manufacturers, the calibration process involves varying the accessible
control parameters through a grid pattern to identify printable regions
of control parameters for the specified drop characteristics, such as vol-
ume and jetting velocity. This practice also includes acquiring multiple
stroboscopic drop images at each set of control parameters for drop
characterization.

Using the methods described in the previous section, drop vol-
umes and jetting velocities associated with different sets of control
parameters can be estimated from images and data collected from the
calibration process. By mapping drop characteristics to their associated
control parameters, input–output relationships between the control

parameters and the drop characteristics can be identified.
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Fig. 4. Image processing outline for drop volume estimation.
Table 1
Comparison between image estimation and gravimetric measurement of drop volumes at stroke velocity 𝑢1 = 70 μm∕ms and stroke 𝑢2 = 25 μm.
Test Total jetted drops Image estimation (nl) Gravimetric measurement (nl) Discrepancy of mean (%)

1 500 13.08 ± 0.326 12.90 ± 0.065 1.40
2 500 13.61 ± 0.356 13.59 ± 0.090 0.15
3 600 13.47 ± 0.290 13.42 ± 0.064 0.37
4 600 13.48 ± 0.287 13.34 ± 0.054 1.05
5 800 13.58 ± 0.314 13.48 ± 0.053 0.74
6 800 13.50 ± 0.262 13.38 ± 0.034 0.90
Fig. 5. A sequence of stroboscopic drop images captured at different strobe delays 𝑡𝑑
for constant control parameters, stroke velocity 𝑢1 and stroke 𝑢2.

Table 2
List of ink physical properties and experimental parameters.
Name DI water Color ink GW mixture

Density (g∕cm3) 1.002 0.993 1.158
Viscosity (mPa s) 1.07 2.21 9.53
Surface Tension (mN∕m) 73.24 28.72 67.87
Back Pressure (Pa) 0 −500 −100
Stroke Velocity 𝑢1 Range (μm∕ms) 60–75 50–80 70–100
Stroke Velocity 𝑢1 Increment (μm∕ms) 1.25 5 2.5
Stroke 𝑢2 Range (μm) 20–35 20 – 35 25–35
Stroke 𝑢2 Increment (μm) 1.25 1.25 1.25

3.2.1. Printhead-ink calibration experiments
Three inks were tested with the PipeJet printhead in this study:

deionized (DI) water, pigmented color ink (INKUTEN Premium Pig-
mented Sublimation ink), and glycerol–water (GW) mixture of 60 wt%
glycerol and 40 wt% DI water. They represent different densities, vis-
cosities and surface tensions that are commonly used in DoD inkjet
printing. Table 2 gives their densities (calculated by a sample mass
divided by the associated given volume), viscosities (measured by a vis-
cometer, microVISC, RheoSense, INC), and surface tensions (measured
by a tensiometer, Krüss DSA 100, Germany), which were measured at
room temperature 22.7◦C. To form a stable meniscus, back pressure
or each ink was measured by an inline differential pressure sensor
nd maintained at the setpoint with less than ±5 Pa variations using
a syringe pump driven by a PID-controlled voice coil motor.

In this study, printable regions for control parameters 𝑢1 and 𝑢2 were
selected, where acceptable jetting behaviors were observed, i.e., no
satellite drops and no unstable tails, see Table 2. At each pair of control
parameters (𝑢1, 𝑢2), at least two hundred drops were jetted and imaged
at different strobe delays in increments of 10 μs from the instant when
the drop was pinched off from the nozzle to the instant when the drop
fell out of the field of view. With drop volumes and jetting velocities
estimated from these images, input–output maps of drop characteristics
for the inks under test were generated with respect to control input
pairs (𝑢1, 𝑢2), see Fig. 6.

3.2.2. Drop volume data
Figs. 6(a), (c) and (e) show the mean of drop volumes estimated by

Eq. (2) with one standard deviation at different pairs of stroke velocity
𝑢1 and stroke 𝑢2 of DI water, color ink, and GW mixture, respectively.
The data suggest that the drop volume is linearly dependent on stroke
velocity 𝑢1 and stroke 𝑢2, i.e., the drop volume 𝑦𝑣𝑜𝑙 can be presented by
a linear equation,

𝑦𝑣𝑜𝑙 = 𝑔11 ⋅ 𝑢1 + 𝑔12 ⋅ 𝑢2 + 𝑓1, (5)

where 𝑔11 and 𝑔12 are the coefficients of stroke velocity 𝑢1 and stroke
𝑢2, respectively, and 𝑓1 is the bias. The linear models were validated by
10-fold cross validation and drawn as gray hyperplanes in Figs. 6(a),
(c) and (e) with the approximated coefficients from the least squares
regression. The hyperplanes verify that stroke 𝑢2 impacts drop volume
more than stroke velocity 𝑢1. Drop volumes of the DI water have larger
fluctuations in comparison with drop volumes of the other two inks.
Large process uncertainties mainly account for these fluctuations.

3.2.3. Drop jetting velocity data
Figs. 6(b), (d) and (f) show the average of drop jetting velocities

calculated by Eq. (4) with one standard deviation at different pairs of
stroke velocity 𝑢1 and stroke 𝑢2 of DI water, color ink, and GW mixture,
respectively. Similar to drop volume, the data in Figs. 6(b), (d) and
(f) suggest that a linear hyperplane can be used to relate drop jetting
velocity to stroke velocity 𝑢1 and stroke 𝑢2,

𝑦𝑣𝑒𝑙 = 𝑔21 ⋅ 𝑢1 + 𝑔22 ⋅ 𝑢2 + 𝑓2, (6)

where 𝑔21 and 𝑔22 are the coefficients of stroke velocity 𝑢1 and stroke
𝑢2, respectively, and 𝑓2 is the bias. The linear hyperplanes were also
validated by 10-fold cross validation and drawn in gray as shown in
Figs. 6(b), (d) and (f) using the approximated coefficients from the

least squares regression. The hyperplanes confirm that stroke velocity
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Fig. 6. In-flight drop volumes (nl) and drop jetting velocities (m∕s) of DI water, color ink, and GW mixture with respect to pairs of control parameters/inputs (𝑢1 , 𝑢2): Black dots
are mean values, red bars represent one standard deviations, and gray planes are first-order fitting hyperplanes.
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𝑢1 has more influence on drop jetting velocity than stroke 𝑢2. Large
fluctuations of drop jetting velocity are found in the experiments with
high stroke velocity 𝑢1. It is mainly due to the large variation in the
calculated centroid velocity during the notable recoil of the drop jetted
with high forward momentum.

3.2.4. Data-driven modeling
A two-input two-output static model can be formed by combining

Eqs. (5) and (6),

𝑌 =
[

𝑦𝑣𝑜𝑙

𝑦𝑣𝑒𝑙

]

= 𝐹 + 𝐺𝑈̄ =
[

𝑓1
𝑓2

]

+
[

𝑔11 𝑔12
𝑔21 𝑔22

] [

𝑢1
𝑢2

]

= 𝑈𝛩 =
[

1 0 𝑢1 𝑢2 0 0
0 1 0 0 𝑢1 𝑢2

]

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝑓1
𝑓2
𝑔11
𝑔12
𝑔21
𝑔22

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

,
(7)

where 𝑌 is the output vector, 𝐹 is the system bias vector, 𝐺 is the
system gain matrix, 𝑈̄ is the system input vector, 𝑈 is the input matrix,
and 𝛩 is the model parameter vector which consists of the bias 𝐹 and
the system gain 𝐺. With the experimental data presented in Fig. 6, the
nominal model parameters 𝐹𝑜 and 𝐺𝑜 or equivalently 𝛩𝑜 approximated
from linear least squares regression are

for DI water,

𝐺𝑜 =
[

0.23(±0.002) 0.83(±0.002)
0.049(±0.003) 0.025(±0.003)

]

, 𝐹𝑜 =
[

−18.97(±0.017)
−3.08(±0.18)

]

,

for color ink,

𝐺𝑜 =
[

0.15(±0.001) 0.81(±0.002)
0.035(±0.001) 0.021(±0.002)

]

, 𝐹𝑜 =
[

−12.06(±0.065)
−1.87(±0.067)

]

,

and for glycerol–water mixture,

𝐺𝑜 =
[

0.11(±0.001) 0.85(±0.002)
0.035(±0.001) 0.020(±0.001)

]

, 𝐹𝑜 =
[

−13.05(±0.060)
−2.51(±0.060)

]

,

(8)

where subscripts are the 95% confidence interval errors.
To remove the drifting trend and various mean values in Fig. 1, the

difference between consecutive outputs was taken in each open-loop
 s
test,

𝜖𝑘 = 𝑌𝑘 − 𝑌𝑘−1, (9)

where the subscript 𝑘 is the sampled drop instant, and 𝜖𝑘 is the
fluctuation. The fluctuations shown in Fig. 7 exhibit a Gaussian-like
distribution with a zero mean for drop volume and drop jetting velocity
of different inks. A random walk can be used to model the process.

Since open-loop outputs were generated with a constant control
input 𝑈 , from the static relationship in Eq. (7), Eq. (9) can be rewritten
s

𝑘 = 𝑈 (𝛩𝑘 − 𝛩𝑘−1).

t suggests that the output fluctuation is equivalent to the fluctuation
f model parameters. Therefore, it is reasonable to present the change
f the model parameters in a random walk,

𝑘+1 = 𝛩𝑘 + 𝐰𝑘+1, (10)

here 𝐰𝑘 is the parameter uncertainty. Influence of process uncer-
ainties, such as fluctuations in applied pressure and variations in
rintheads, is included in Eq. (10).
By considering the measurement noise 𝐯𝑘, Eq (7) becomes

𝑘 = 𝐹𝑘 + 𝐺𝑘𝑈̄𝑘 + 𝐯𝑘 = 𝑈𝑘𝛩𝑘 + 𝐯𝑘, (11)

here 𝐰𝑘 and 𝐯𝑘 are assumed to have uncorrelated, zero-mean, Gaus-
ian distributions with respective covariance matrices 𝑄𝑘 and 𝑅𝑘.
qs. (10) and (11) are the stochastic plant model of drop volume and
etting velocity used for control design.

. Control strategy

Because each drop is critical in on-demand functional printing for
nsuring product functionality and geometry, the control objective is
tructured to regulate the volume and jetting velocity of each drop, that
s, to minimize the one-step-ahead tracking error between the desired
utput 𝑌𝑑 and the system output 𝑌𝑘+1 with the known input–output
nformation at the instant 𝑘. Given the use of Kalman algorithm in

tate estimation of random processes [30,31], using the similar fashion
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of indirect adaptive control, the proposed control strategy comprises
a Kalman estimator to estimate the one-step-ahead model parame-
ter/state 𝛩𝑘+1 and a controller which is a function of the estimated
model parameters to reduce the tracking error at 𝑘 + 1.

Remark 1. In the following control strategy development, regression
representation of the plant model 𝑌𝑘 = 𝑈𝑘𝛩𝑘 + 𝐯𝑘 shown in Eq. (11) is
used for the estimation algorithm of model parameter vector 𝛩𝑘. The
equivalent affine representation 𝑌𝑘 = 𝐹𝑘 + 𝐺𝑘𝑈̄𝑘 + 𝐯𝑘 is employed for
controller design. According to the equivalence of model representa-
tions shown in Eq. (7), the estimated model parameter vector 𝛩̂𝑘 can
be arranged to the estimated model gain 𝐺̂𝑘 and the estimated model
bias 𝐹𝑘.

4.1. Parameter estimation

Given the plant model Eqs. (10) and (11) and a control candidate
𝑘+1, the output 𝑌 at the sampling instant 𝑘 + 1 can be estimated by

̂𝑘+1 = 𝑈𝑘+1𝛩̂𝑘+1. (12)

̂𝑘+1 is the estimated model parameter vector computed by the Kalman
lgorithm [32,33]

̂𝑘+1 = 𝛩̂𝑘 + 𝐿𝑘(𝑌𝑘 − 𝑌𝑘) = 𝛩̂𝑘 + 𝐿𝑘(𝑌𝑘 − 𝑈𝑘𝛩̂𝑘), (13)

here 𝐿𝑘 is the Kalman gain, formulated as

𝑘 = 𝑃𝑘𝑈
𝑇
𝑘 (𝑈𝑘𝑃𝑘𝑈

𝑇
𝑘 + 𝑅𝑘)−1. (14)

n Eq. (14), 𝑃𝑘 is the covariance matrix of parameter estimation error,
̃𝑘 = 𝛩𝑘 − 𝛩̂𝑘, given by

𝑘+1 = (𝐼 − 𝐿𝑘𝑈𝑘)𝑃𝑘 +𝑄𝑘+1. (15)

To prevent drifts in parameter estimation and ensure the bound-
dness of estimated parameters subject to system uncertainty, follow-
ng the similar approach in [34,35], the parameter updating formula
q. (13) is modified with a projection operator,

̂ = 𝛩̂ + 𝐏𝐫
(

𝐿 (𝑌 − 𝑌 )
)

,
𝑘+1 𝑘 𝜣̂𝐤 𝑘 𝑘 𝑘 (16)
here

𝐫
𝜽̂𝐢𝐤

(

∙𝑖
)

=

⎧

⎪

⎨

⎪

⎩

0 if 𝜃̂𝑖𝑘 ≥ 𝜃𝑖𝑚𝑎𝑥 and ∙𝑖 > 0,
0 if 𝜃̂𝑖𝑘 ≤ 𝜃𝑖𝑚𝑖𝑛 and ∙𝑖 < 0,
∙𝑖 otherwise.

𝑖
𝑘 is the 𝑖th entry of the parameter vector 𝛩𝑘. The range of 𝜃𝑖𝑘,
𝜃𝑖𝑚𝑖𝑛, 𝜃

𝑖
𝑚𝑎𝑥), can be set to be larger than the confidence interval of the

ominal model parameters in Eq. (8).
Given the measured output 𝑌𝑘 and the implemented control input

𝑘 (equivalently 𝑈̄𝑘), model parameter 𝛩𝑘+1 can be estimated using
qs. (14), (15) and (16). Drop volume and jetting velocity at the instant
+ 1 can be, in turn, estimated from Eq. (12) and used to solve the
ontrol input 𝑈𝑘+1 (equivalently 𝑈̄𝑘+1).

.2. Control design

Based on the estimated system output 𝑌𝑘+1, the control candidate
̄𝑘+1 is calculated by minimizing the expectation of a cost function of
he squared one-step-ahead tracking error and the penalized control
ffort at the instant 𝑘 + 1 [36],

= min
𝑈̄𝑘+1

𝐸
[

(𝑌𝑑 − 𝑌𝑘+1)𝑇 (𝑌𝑑 − 𝑌𝑘+1) + 𝜅𝑈̄𝑇
𝑘+1𝑈̄𝑘+1

]

, (17)

here 𝑌𝑑 = [𝑦𝑣𝑜𝑙𝑑 𝑦𝑣𝑒𝑙𝑑 ]𝑇 , 𝑦𝑣𝑜𝑙𝑑 is the desired drop volume, 𝑦𝑣𝑒𝑙𝑑 is the
esired drop jetting velocity, and 𝜅 is a positive weight coefficient.
The solution to Eq. (17) has the form of

𝑈̄𝑘+1 = (𝐺̂𝑇𝑘+1𝐺̂𝑘+1 + 𝜅𝐼)
−1𝐺̂𝑇𝑘+1(𝑌𝑑 − 𝐹𝑘+1), (18)

where 𝐺̂𝑘+1 and 𝐹𝑘+1 are the estimated system gain and system bias
which are regrouped from the estimated 𝛩̂𝑘+1 in Eq. (16).

Fig. 8 illustrates the proposed control strategy, where 𝑞−1 is the one-
step delay operator. Eq. (18) is the control law used to control the plant
model Eqs. (10) and (11) with the estimated parameters from Eqs. (14),
15) and (16).

emark 2. The plant model Eq. (11) implies that the variations of

control input and system output are proportionally correlated. When
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Fig. 8. Diagram of the proposed control strategy.

Fig. 9. Schematic of trigger timings for the printhead to jet a drop, for the camera to
image the drop, and for the controller to update control parameters. (a) and (c) show
drop images sampled at odd instants. (b) is a drop image sampled at an even instant.

system outputs are within acceptable thresholds, it may be advanta-
geous to apply boundary layers (BL) around the control input to reduce
unnecessary output fluctuation. Based on the impact of each control
parameter on the output, the following BLs were proposed:
{

𝑢1,𝑘 = 𝑢1,𝑘−1 if |𝑦𝑣𝑒𝑙𝑘−1 − 𝑦
𝑣𝑒𝑙
𝑑 | ≤ 𝑇 𝑣𝑒𝑙 ,

𝑢2,𝑘 = 𝑢2,𝑘−1 if |𝑦𝑣𝑜𝑙𝑘−1 − 𝑦
𝑣𝑜𝑙
𝑑 | ≤ 𝑇 𝑣𝑜𝑙 .

(19)

𝑇 𝑣𝑒𝑙 and 𝑇 𝑣𝑜𝑙 in Eq. (19) are the error threshold values for drop velocity
and drop volume, respectively.

Remark 3. Following the similar approach in [37], boundedness of
the expectation of spectral norms of the tracking error and the control
input can be straightforwardly shown, respectively, with the projection
operator used in the model parameter updating, which turns out to
be bounded by the parameter estimation error. With certain similar
assumptions given in [38–40], the boundedness and convergence of the
parameter estimation error can be analyzed and are detailed in [23].
Then the closed-loop system is shown to be stable. For the situation that
system outputs satisfy Eq. (19), it can be seen that the tracking error is
bounded by the threshold while the control input is a constant.
t

5. Experimental validation of control algorithm

5.1. Control implementation

Three closed-loop experiments for each ink were conducted at dif-
ferent times using the proposed control strategy, see Fig. 8. The trigger
timings used to implement the proposed control strategy are illustrated
in Fig. 9. In-flight drops were imaged at drop jetting frequency of 2
Hz. Strobe trigger delay 𝑡𝑑 with respect to the printhead trigger was
adjusted until a distinct drop was clearly observed and stable in flight
as seen in Fig. 9(a). Drop jetting velocity was calculated from two
consecutive drops where an additional delay 𝛥𝑡 was applied to even
samples so that the drop jetting velocity can be approximated using
Eq. (4). Drop volumes of the odd sampled drops were calculated using
Eq. (2). The control inputs 𝑢1 and 𝑢2 were updated at the instant 𝑘 =
2, 3,… , in Fig. 9.

To implement the parameter estimation algorithm, covariances 𝑄𝑘
and 𝑅𝑘 have to be specified. Because it is not feasible to image the
same drop several times at the same distance away from the nozzle
using one optical system, we assume that the measurement noise 𝐯𝑘 is
stationary. An open-loop experimental dataset was used to determine
the measurement noise covariance 𝑅,

𝑅 =
[

𝑐𝑜𝑣(𝑦𝑣𝑜𝑙 , 𝑦𝑣𝑜𝑙) 𝑐𝑜𝑣(𝑦𝑣𝑜𝑙 , 𝑦𝑣𝑒𝑙)
𝑐𝑜𝑣(𝑦𝑣𝑒𝑙 , 𝑦𝑣𝑜𝑙) 𝑐𝑜𝑣(𝑦𝑣𝑒𝑙 , 𝑦𝑣𝑒𝑙)

]

=
[

0.01 0.00007
0.00007 0.00002

]

,

where 𝑐𝑜𝑣(⋅, ⋅) is the covariance of two random variables.
An innovation-based adaptive algorithm [41] was used to estimate

the covariance 𝑄𝑘 of the parameter uncertainty 𝐰𝑘,

𝑄̂𝑘 = 𝐿𝑘𝛹𝐿
𝑇
𝑘 , (20)

where 𝛹 is defined as

𝛹 = 1
𝑁

𝑘
∑

𝑗=𝑘−𝑁+1
𝜓𝑗𝜓

𝑇
𝑗 . (21)

𝑁 is the moving window size, which was set to 5 in this work.
The innovation sequence 𝜓𝑗 is defined as the difference between the
measured output and the estimated output,

𝜓𝑗 = 𝑌𝑗 − 𝑈𝑗𝛩̂𝑗 . (22)

he nominal model parameters in Eq. (8) were used to initialize the
alman estimation algorithm. Closed-loop experiments were imple-
ented with

• proposed controller w/o BL: the controller described by Eq. (18)
without the input boundary layer, which was described in [22,
23],

• proposed controller w BL: the controller Eq. (18) with the input
boundary layer specified in Eq. (19).

he BL thresholds were determined from one standard deviation of
luctuation 𝜖𝑘 from Eq. (9), where 𝑇 𝑣𝑒𝑙 = 0.01 m∕s and 𝑇 𝑣𝑜𝑙 = 0.1 nl.
aximum and minimum values of control inputs were included in
ractice, where

𝑈̄𝑘 = 𝑈̄𝑚𝑎𝑥 if 𝑈̄𝑘 ≥ 𝑈̄𝑚𝑎𝑥,
𝑈̄𝑘 = 𝑈̄𝑚𝑖𝑛 if 𝑈̄𝑘 ≤ 𝑈̄𝑚𝑖𝑛,
𝑈̄𝑘 = 𝑈̄𝑘 otherwise.

(23)

.2. Experimental results

For each of the three ink types in Table 2, six open-loop experiments
ere conducted at different times using the same nozzle with the same
ontrol inputs 𝑢1 and 𝑢2. The control inputs were determined from
he nominal model parameters in Eq. (8) to deliver the target volume
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Fig. 10. System inputs and outputs of DI water in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color
markers are the controlled outputs.
Fig. 11. System inputs and outputs of color ink in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color
markers are the controlled outputs.
Fig. 12. System inputs and outputs of GW mixture in different tests using the proposed controller w/o BL and w BL, respectively. Gray markers are the open-loop outputs. Color
arkers are the controlled outputs.
f 15 nl and target jetting velocity of 0.8 m∕s. In each experiment, a
otal of 1000 drops were fired. 500 drop volumes and 500 drop jetting
elocities were estimated for analysis.
In printing preparation, a printhead is routinely primed before

rinting to remove the ‘‘first drop’’ problem [42,43]. Therefore, in the
ollowing discussion, the first ten transient samples were removed.
Gray markers in Figs. 10–12 denote drop volume and jetting ve-

ocity from the six open-loop tests of DI water, color ink, and GW
ixture. In general, the open-loop output deviates away from the
arget output, the center of the scatter plot. Although the implemented
onstant control input was calculated based on the nominal plant model
o generate the desired characteristics, wide spreads of drop volume
nd drop jetting velocity present multi-modal distributions as seen in
he associated histograms. These significantly limit DoD inkjet printing
n dosage-sensitive and high-volume applications and suggest the need
or closed-loop control.
In Figs. 10–12, color markers present the drop volume and drop
jetting velocity of three tests controlled by the proposed controller
w/o BL and w BL conducted at different times for DI water, color
ink, and GW mixture, respectively. Unlike the open-loop results, for
each ink, the outputs from the three tests controlled by the proposed
controller w/o BL cluster around the center of the scatter plot with
narrow spreads, which, in turn, present one distinguishable peak in the
associated histogram. In Figs. 10–12(d), the results using the proposed
controller w BL show much tighter spreads in both drop volume and
drop jetting velocity without loss of tracking accuracy. The taller and
thinner peaks in the associated histograms indicate that more drops
have the desired characteristics. As summarized in Table 3, the tracking
performance of the controlled drop volume and jetting velocity is
remarkably improved, the mean values of which are close to the target.
Large reductions in RSD demonstrate the effectiveness of the proposed
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Table 3
Statistics of open-loop and controlled drop volumes (nl) and drop jetting velocities (m∕s) of different inks. Target outputs are 15 nl and 0.8 m∕s.
Ink Statistics Volume (nl) Jetting velocity (m∕s)

Open-loop Controllerw/o BLa Controllerw BL Open-loop Controllerw/o BL Controllerw BL

DI Water Mean 14.51 15.02 14.99 0.75 0.80 0.80
RSD %b 3.11 0.49 0.36 4.53 1.38 0.88

Color Ink Mean 14.41 15.00 14.98 0.82 0.80 0.80
RSD % 3.23 0.42 0.26 2.56 0.75 0.25

GW Mixture Mean 13.73 14.97 14.98 1.15 0.80 0.80
RSD % 1.85 0.38 0.36 5.13 1.38 0.75

aController w/o BL is the controller described in [22,23].
bRSD (relative standard deviation) is calculated as the ratio of one standard deviation to the mean.
ontroller in regulating output variation. Around 80% variance reduc-
ion in drop volume and more than two thirds variance reduction in
rop jetting velocity are observed for the inks under test in comparison
o the open-loop results. The advantageousness of the boundary layer is
lso verified, see Table 3. Compared to the open-loop results, more than
ine tens of variances of drop volume and jetting velocity are reduced
n the result of color ink. Spreads of drop volume and jetting velocity of
he other inks are also narrowed down to some extent with the added
oundary layer to the proposed controller.
Drop volumes of the other 500 drops sampled at even instants,

hich were used for velocity calculation but for volume feedback, were
stimated also. Their statistics are comparable to the results in Table 3.
Control inputs/parameters of the proposed controller w/o BL and w

L in three tests of DI water, color ink, and GW mixture are shown in
igs. 10–12(b)(c)(e)(f). It can be seen that fluctuations of control input
nd system output are correlated. The added boundary layers flatten
he control inputs, resulting in less varying outputs.

. Conclusion

This study proposes a control strategy to regulate drop volume and
rop jetting velocity, with the use of a two-input two-output plant
odel developed from experimental printhead-ink calibration data. A
ne-step-ahead estimator for model parameters estimation is incor-
orated in the controller development. The efficacy of the proposed
ontroller is experimentally verified with various inks by delivering
rops with consistent volume and jetting velocity. Experiments also val-
date that including control boundary layers can further reduce output
ariance, i.e., less tracking-error-sensitive control may be preferred in
egulating the stochastic process. This work benefits the modeling and
ontrol in commercial piezo-actuated drop-on-demand inkjet printers
ith different actuation mechanisms for printing different inks. Fu-
ure work will concentrate on the integration of the proposed control
trategy with learning-type controls in patterning different functional
aterials.

RediT authorship contribution statement

Jie Wang: Conceptualization, Methodology, Software, Validation,
ormal analysis, Investigation, Data curation, Visualization, Writing
original draft. George T.-C. Chiu: Conceptualization, Methodology,
isualization, Resources, Supervision, Writing – review & editing.

eclaration of competing interest

The authors declare that they have no known competing finan-
ial interests or personal relationships that could have appeared to
nfluence the work reported in this paper.

ata availability

Data will be made available on request.
References

[1] Evans SE, Harrington T, Rodriguez Rivero MC, Rognin E, Tuladhar T, Daly R.
2D and 3D inkjet printing of biopharmaceuticals – A review of trends and future
perspectives in research and manufacturing. Int J Pharm 2021;599:120443.

[2] Chou W-H, Gamboa A, Morales JO. Inkjet printing of small molecules, biologics,
and nanoparticles. Int J Pharm 2021;600:120462.

[3] Hodul JN, Murray AK, Carneiro NF, Meseke JR, Morris J, He X, et al.
Modifying the surface chemistry and nanostructure of carbon nanotubes fa-
cilitates the detection of aromatic hydrocarbon gases. ACS Appl Nano Mater
2020;3(10):10389–98.

[4] Bräuniger Y, Lochmann S, Grothe J, Hantusch M, Kaskel S. Piezoelectric inkjet
printing of nanoporous carbons for micro-supercapacitor devices. ACS Appl
Energy Mater 2021;4(2):1560–7.

[5] Zhu Z, Gong Z, Qu P, Li Z, Rasaki SA, Liu Z, et al. Additive manufacturing of
thin electrolyte layers via inkjet printing of highly-stable ceramic inks. J Adv
Ceram 2021;10(2):279–90.

[6] Hennig S, Shu Z, Gutzweiler L, Koltay P, von Stetten F, Zengerle R, et al. Paper-
based open microfluidic platform for protein electrophoresis and immunoprobing.
Electrophoresis 2022;43(4):621–31.

[7] Shield TW, Bogy DB, Talke FE. Drop formation by DOD ink-jet nozzles:
A comparison of experiment and numerical simulation. IBM J Res Dev
1987;31(1):96–110.

[8] Xu Q, Basaran OA. Computational analysis of drop-on-demand drop formation.
Phys Fluids 2007;19(10):102111.

[9] Morrison NF, Harlen OG. Viscoelasticity in inkjet printing. Rheol Acta
2010;49(6):619–32.

[10] Liu Y, Derby B. Experimental study of the parameters for stable drop-on-demand
inkjet performance. Phys Fluids 2019;31(3):032004.

[11] Oktavianty O, Kyotani T, Haruyama S, Kaminishi K. New actuation waveform
design of DoD inkjet printer for single and multi-drop ejection method. Addit
Manuf 2019;25:522–31.

[12] Khalate AA, Bombois X, Babuška R, Wijshoff H, Waarsing R. Performance
improvement of a drop-on-demand inkjet printhead using an optimization-based
feedforward control method. Control Eng Pract 2011;19(8):771–81.

[13] Khalate AA, Bombois X, Scorletti G, Babuska R, Koekebakker S, de Zeeuw W.
A waveform design method for a piezo inkjet printhead based on robust
feedforward control. J Microelectromech Syst 2012;21(6):1365–74.

[14] Ezzeldin M, van den Bosch P, Weiland S. Experimental-based feedforward control
for a DoD inkjet printhead. Control Eng Pract 2013;21(7):940–52.

[15] Tomaszewski G, Potencki J. Drops forming in inkjet printing of flexible electronic
circuits. Circuit World 2017;43(1):13–8.

[16] Kiefer O, Fischer B, Breitkreutz J. Fundamental investigations into metoprolol
tartrate deposition on orodispersible films by inkjet printing for individualised
drug dosing. Pharmaceutics 2021;13(2):247.

[17] Haas R, Lohse S, Düllmann C, Eberhardt K, Mokry C, Runke J. Development and
characterization of a drop-on-demand inkjet printing system for nuclear target
fabrication. Nucl Instrum Methods Phys Res A 2017;874:43–9.

[18] Tröndle K, Rizzo L, Pichler R, Koch F, Itani A, Zengerle R, et al. Scalable
fabrication of renal spheroids and nephron-like tubules by bioprinting and
controlled self-assembly of epithelial cells. Biofabrication 2021;13(3):035019.

[19] Barton K, Mishra S, Alleyne A, Ferreira P, Rogers J. Control of high-resolution
electrohydrodynamic jet printing. Control Eng Pract 2011;19(11):1266–73.

[20] Wang T, Kwok T-H, Zhou C, Vader S. In-situ droplet inspection and closed-loop
control system using machine learning for liquid metal jet printing. J Manuf Syst
2018;47:83–92.

[21] Wang J, Chen X, Chiu G. Drop volume control in drop-on-demand inkjet printing.
In: Proc. ASME dyn. syst. control conf.. 2019, V003T17A011.

[22] Wang J, Chiu GT-C. Control of drop volume and drop jetting velocity in inkjet
printing. IFAC-PapersOnLine 2022;55(27):37–43.

[23] Wang J, Chiu GT-C. Drop-on-demand inkjet drop control with one-step
look ahead estimation of model parameters. IEEE/ASME Trans Mechatronics
2023;28(4). [in press].



J. Wang and G.T.-C. Chiu
[24] Streule W, Lindemann T, Birkle G, Zengerle R, Koltay P. PipeJet: A simple
disposable dispenser for the nano- and microliter range. J Assoc Lab Autom
2004;9(5):300–6.

[25] Wang J, Chiu GT-C. Data-driven drop formation modeling in nanoliter drop-
on-demand inkjet printing. In: Proc. ASME dyn. syst. control conf.. 2020,
V002T28A002.

[26] Landers RG, Barton K, Devasia S, Kurfess T, Pagilla P, Tomizuka M. A review
of manufacturing process control. J Manuf Sci Eng 2020;142(11):110814.

[27] Snyder B, Yang M, Singhal S, Abed O, Sreenivasan S. Automated tuning of
high-order waveforms for picoliter resolution jetting of rheologically challenging
materials. Precis Eng 2019;56:143–55.

[28] Otsu N. A threshold selection method from gray-level histograms. IEEE Trans
Syst Man Cybern 1979;9(1):62–6.

[29] Hirshfield L, Içten E, Giridhar A, Nagy ZK, Reklaitis GV. Real-time process
management strategy for dropwise additive manufacturing of pharmaceutical
products. J Pharm Innov 2015;10(2):140–55.

[30] Kiruluta A, Eizenman M, Pasupathy S. Predictive head movement tracking using
a Kalman filter. IEEE Trans Syst Man Cybern B 1997;27(2):326–31.

[31] Zanni L, Boudec JYL, Cherkaoui R, Paolone M. A prediction-error covariance
estimator for adaptive Kalman filtering in step-varying processes: Applica-
tion to power-system state estimation. IEEE Trans Control Syst Technol
2017;25(5):1683–97.

[32] Palmer E, Pen W, Spanos CJ. Control of photoresist properties: A Kalman filter
based approach. IEEE Trans Semicond Manuf 1996;9(2):208–14.

[33] Åström K, Wittenmark B. Problems of identification and control. J Math Anal
Appl 1971;34(1):90–113.

[34] Fujimoto H, Bin Yao. Multirate adaptive robust control for discrete-time non-
minimum phase systems and application to linear motors. IEEE/ASME Trans
Mechatronics 2005;10(4):371–7.

[35] Ioannou PA, Sun J. Robust adaptive control. PTR Prentice-Hall Upper Saddle
River, NJ; 1996.

[36] Goodwin GC, Sin KS. Adaptive filtering, prediction and control. Dover
Publications; 2014.

[37] Goodwin GC, Ramadge PJ, Caines PE. Discrete time stochastic adaptive control.
SIAM J Control Optim 1981;19(6):829–53.

[38] Jazwinski AH. Stochastic processes and filtering theory. New York: Academic
Press; 1970.

[39] Guo L. Estimating time-varying parameters by the Kalman filter based algorithm:
Stability and convergence. IEEE Trans Automat Control 1990;35(2):141–7.

[40] Reif K, Gunther S, Yaz E, Unbehauen R. Stochastic stability of the discrete-time
extended Kalman filter. IEEE Trans Automat Control 1999;44(4):714–28.
[41] Mohamed AH, Schwarz KP. Adaptive Kalman filtering for INS/GPS. J Geod
1999;73(4):193–203.

[42] Taylor C, Lewis RH, Murcia A. Printer and method for priming an inkjet
printhead. 2002, [U.S. Patent 6419343].

[43] Famili A, Palkar SA, Baldy WJ. First drop dissimilarity in drop-on-demand inkjet
devices. Phys Fluids 2011;23(1):012109.

Jie Wang: received his M.S. degree in Mechanical Engineer-
ing from the Purdue University in 2016. He is currently
working towards the Ph.D. degree with the School of
Mechanical Engineering at Purdue University. His research
interests include the modeling and control of dynamic
systems and manufacturing processes, and mechatronics.

George T.-C. Chiu: is a Professor in the School of Mechan-
ical Engineering with courtesy appointments in the School
of Electrical and Computer Engineering and the Department
of Psychological Sciences at Purdue University. Dr. Chiu
received the B.S. degree in Mechanical Engineering from
National Taiwan University in 1985 and the M.S. and Ph.D.
degrees from the University of California at Berkeley, in
1990 and 1994, respectively. Before joining Purdue, he
worked for the Hewlett-Packard Company, designing inkjet
printer and multi-function devices. From 2011–14, he served
as the Program Director for the Control Systems Program
in the Engineering Directorate of the National Science
Foundation. His current research interests are mechatronics
and dynamic systems and control with applications to digital
printing and imaging systems, digital fabrications, human
motor control and robotics, motion and vibration perception
and control. He is a Fellow of ASME and a Fellow of the
Society for Imaging Science and Technology (IS&T) and a
Senior Member of IEEE.


	Control of on-demand nanoliter drop volume and jetting velocity in piezoelectric inkjet printing
	Introduction
	Printing System
	System Model Development
	Drop Volume and Jetting Velocity Estimations
	Drop Volume Estimation
	Drop Jetting Velocity Estimation

	System Modeling
	Printhead-ink Calibration Experiments
	Drop Volume Data
	Drop Jetting Velocity Data
	Data-driven Modeling


	Control Strategy
	Parameter Estimation
	Control Design

	Experimental Validation of Control Algorithm
	Control Implementation
	Experimental Results

	Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	References


