

1 Yaw-Adjusted Wind Power Curve Modeling: A Local
2 Regression Approach

3 Praanjal Nasery^a, Ahmed Aziz Ezzat^b

^a*The Electric Power Research Institute, Palo Alto, 94304, CA, USA*

^b*Department of Industrial & Systems Engineering, Rutgers
University, Piscataway, 08854, NJ, USA*

4 **Abstract**

5 Accurate estimation of wind power curves using field data is instrumental to
6 several wind farm operations including productivity assessment, power out-
7 put estimation, operations and maintenance, among others. Existing meth-
8 ods for estimating wind power curves mainly rely on environmental variables
9 (e.g., wind speed, direction, density) as inputs to construct the wind-to-
10 power relationship. This paper attempts to integrate yaw misalignment as
11 an additional input to power curve models, constructing what is referred to
12 hereinafter as “yaw-adjusted wind power curves.” Our analysis shows that
13 integrating yaw misalignment into power curves is non-trivial, largely due to
14 the overwhelming impact of environmental variables (mainly wind speed) on
15 a turbine’s power output, which obscures the secondary effect of yaw errors on
16 power production. In response, we propose a local-regression-based method
17 which reconstructs the yaw-to-power relationship *conditional* on an effective
18 neighborhood of environmental variables. Tested on operational data from
19 two onshore wind turbines in France, our proposed approach achieves signif-
20 icant improvements, in terms of power estimation accuracy, relative to a set
21 of prevalent statistical- and machine-learning-based power curve models.

22 *Keywords:* Local Regression, Power Curve, Wind Energy, Yaw Error

23 **1. Introduction**

24 Wind power continues to be one of the fastest growing sources of clean
25 energy worldwide. Despite its rapid growth, the uncertainty associated with
26 generating electricity from wind remains a fundamental barrier that impedes
27 its large-scale penetration into modern-day power systems. This uncertainty

28 stems from two main sources: (i) uncertainty in the wind resource, which
 29 is, arguably, one of the most challenging meteorological processes to predict,
 30 especially at the turbine level [1, 2]; and (ii) uncertainty in the wind-to-power
 31 conversion process, i.e. the conversion of the hub-height wind conditions ex-
 32 perienced by a wind turbine into power output [3, 4, 5]. This work focuses on
 33 the latter, i.e., to develop accurate models for turbine-specific power output
 34 estimation. In the wind energy industry, an accurate estimation of a tur-
 35 bine’s power production is important to several key wind farm operations,
 36 including performance assessment [6, 7], power output prediction [8, 9], asset
 37 monitoring and prognostics [10, 11], and maintenance scheduling [12, 13].

38 Theoretically, the wind power, P , produced by a wind turbine is expressed
 39 as in (1), where ρ denotes the air density, A_w is the rotor swept area, v is
 40 the hub-height wind speed, and C_p is the power coefficient, which, in turn,
 41 depends on the tip speed ratio λ and the blade pitch angle β .

$$P = \frac{1}{2} \rho A_w C_p(\lambda, \beta) v^3. \quad (1)$$

42 From (1), it is clear that the power production of a wind turbine is primarily
 43 dependent on wind speed, as evident by the cubic speed-to-power relation-
 44 ship, but also on other environmental variables such as air density. Moreover,
 45 (1) assumes that the turbine’s rotor plane is perfectly perpendicular to the
 46 wind flow. In reality, this perfect alignment seldom happens, and the power
 47 produced by a wind turbine is further dependent on the yaw error (or mis-
 48 alignment), denoted hereinafter by γ [14].

49 In practice, the actual wind-to-power conversion process, however, does
 50 not fully adhere to the physical relationship in (1), but instead, follows the so-
 51 called “power curve”, which is typically defined as the functional mapping
 52 relating the hub-height wind speed with the associated wind power, and
 53 comprises four main regions, as shown in Figure 1(a). In the first region, the
 54 turbine barely produces any power, as the wind speed is less than the so-
 55 called cut-in speed, v_{cut-in} . In modern-day wind turbines, cut-in speeds range
 56 between 3 m/s to 5 m/s. In the second region, the power output rapidly
 57 increases, first in a convex-shaped pattern, which then turns into a concave-
 58 shaped pattern. The wind speed in this region ranges between v_{cut-in} and the
 59 rated speed, denoted in Figure 1(a) by v_{rated} , which refers to the minimum
 60 wind speed at which the maximal turbine capacity, P_{rated} , is reached. This
 61 second region is further divided into two sub-regions: Regions II-a (Maximum
 62 power point tracking or MPPT control) and II-b (Fixed speed control). In

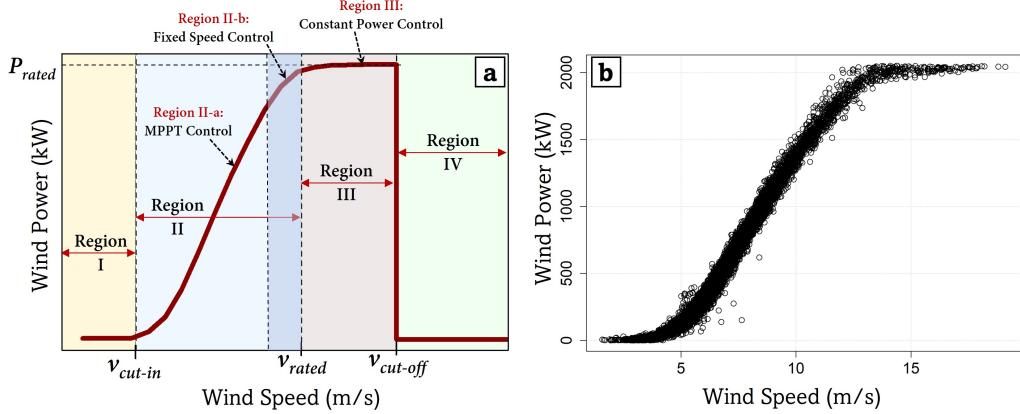


Figure 1: (a) Power curve of a typical wind turbine, with four regions defined by v_{cut-in} , v_{rated} , and $v_{cut-off}$; (b) Actual wind speed versus power for a typical wind turbine.

the former, both the power output and the rotor speed are within their permissible operational limits, while in the latter, the rotor speed operates at its maximum limit, until the turbine reaches its rated power, P_{rated} . In the third region, the power produced is maintained at the rated power level for damage-mitigating purposes. This rated power is maintained until the cut-off speed, $v_{cut-off}$, is reached, after which the turbine shuts down to protect its components and structures from extreme wind conditions (Region IV).

In practice, estimating a turbine's power curve using field data is challenging, because the actual power curve is rarely deterministic as the one displayed in Figure 1(a). Instead, as shown in Figure 1(b), it is contaminated by large uncertainties which are attributed to multiple sources that can be broadly categorized into *environmental* and *operational* factors. Environmental factors refer to the impact of additional weather variables (other than wind speed) that may impact a turbine's power output, such as air density, wind direction, turbulence, among others. Operational factors refer to the parameters related to the response of the turbine to its external environment, such as yaw errors, wake effects, aging and degradation, and measurement noise. An accurate power curve estimation should therefore seek to construct a functional relationship which accurately links the power output of a turbine to a set of environmental and operational factors, while taking into account the observational noise [4].

Towards that end, there is an extensive literature on estimating power curves using field data. Broadly, those efforts can be classified into paramet-

86 ric versus nonparametric approaches [4, 15]. Parametric power curve models
87 assume a pre-determined functional form with a fixed set of parameters.
88 Prior efforts in parametric power curve modeling include but are not limited
89 to piecewise linear models [16], polynomial regression models [3], and logistic
90 functions [7]. Nonparametric models, on the other hand, impose little as-
91 sumptions about the functional form of the input-output relationship. Non-
92 parametric power curve modeling approaches include copula-based methods
93 [17], cubic splines [18], artificial neural networks [19], Gaussian Processes
94 [11], and k-nearest neighbors (k-NN) [7].

95 To date, the large majority of the literature, whether using parametric or
96 nonparametric methods, primarily uses wind speed as the sole input to wind
97 power curve models [20]. The main limitation of those univariate models is
98 that they largely overlook the impact of other environmental variables apart
99 from wind speed. Recent efforts have investigated the potential of integrating
100 additional environmental variables into power curve models [21, 22, 23, 24],
101 such as air density, direction, and turbulence intensity. Those efforts con-
102 cluded that multivariate power curve models, i.e. those that consider the
103 impact of several environmental variables, are superior, in terms of estima-
104 tion accuracy, to those that rely on wind speed as the sole input.

105 Little research, however, has been conducted to explore the merit of inte-
106 grating operational variables into power curve modeling. Barring few works
107 which studied the integration of rotor speed and pitch angle in power curve
108 estimation [25, 26], our work, up to our knowledge, constitutes the first
109 attempt to formally integrate yaw misalignment in estimating wind power
110 curves, yielding what we refer to hereinafter as “yaw-adjusted power curves.”

111 We summarize the main contributions of this work as follows:

- 112 • We investigate the impact of yaw errors on power using field data. We
113 discover that, counter-intuitively, a direct integration of yaw misalign-
114 ment as an additional regressor into a multivariate power curve model
115 does *not* improve the power curve estimation accuracy. We postulate
116 that this is mainly due to the overwhelming impact of the environmen-
117 tal conditions (mainly wind speed) on a turbine’s power output, which
118 obscures the secondary effect of yaw errors on a the power output,
119 and prevents classical statistical models from leveraging such finer-scale
120 yaw-to-power correlations for improved power output estimation.
- 121 • Motivated by this observation, we propose a power curve estimation
122 method based on local regression which reconstructs the yaw-to-power

123 relationship *conditional* on an effective neighborhood of environmental
124 variables. We show that this approach in integrating yaw misalignment
125 into wind power curves unearths its underlying impact on power generation,
126 therefore enabling the power curve model to leverage it as a
127 significant predictor of wind power production.

128 • We perform a series of extensive tests using real-world data from a wind
129 farm in France to demonstrate the merit of our proposed approach relative
130 to prevalent statistical- and machine-learning-based power curve
131 models, eventually concluding that significant improvements in power
132 estimation accuracy, ranging from 3.21% to 32.13% are realizable.

133 **2. Data Description and Analysis**

134 The data used herein comprises 10-min measurements collected in 2013
135 from the La Haute Borne-Vaudeville-le-Haut wind farm in north eastern
136 France. The wind farm comprises four wind turbines, as shown in Figure
137 2, and is operated by Engie Green (a subsidiary of Engie), which provides
138 open access to its data [27]. The turbines have a rated capacity of 2050
139 kW, 80-m hub height, and rotor diameter of 82 m. Of interest to us are the
140 following SCADA variables: wind speed v (m/s), wind power P (kW), wind
141 direction θ ($^{\circ}$), nacelle angle ϕ ($^{\circ}$), and air temperature T (K). Note that the
142 wind direction and nacelle angle measurements have been pre-corrected in
143 the dataset (we used the corrected versions of those variables) since SCADA
144 measurements collected behind the turbine’s rotor can be fairly noisy [28].
145 We also obtain co-located hourly air pressure measurements from Meteoblue
146 [29], which we linearly interpolate to 10-min resolution. We filter the com-
147 bined 10-min dataset by removing outliers (e.g., when P is negative or smaller
148 than a certain threshold for a given wind speed).

149 The focus of our analysis is on two wind turbines (Turbine ID#: R80711
150 and R80721) for the period of September to December 2013. The turbines
151 and time coverage were selected so that the turbines under study are up-
152 stream relative to the prevailing wind, which is found to be dominantly south
153 westerly during this time of the year—See Figure 2.

154 We also compute two additional environmental variables: air density,
155 denoted by ρ and determined as in (2), and turbulence intensity, denoted by
156 I and computed as the ratio of the 10-min standard deviation of the wind

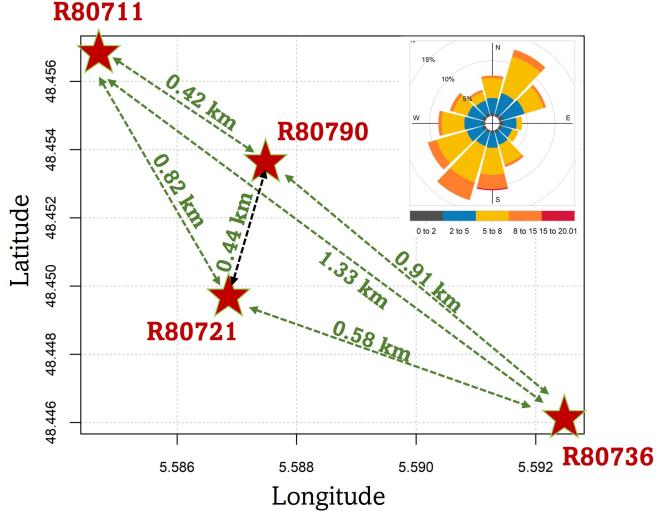


Figure 2: Map of the La Haute Borne-Vaudeville-le-Haut wind farm operated by Engie. Turbine locations are depicted by red stars. Numbers on arrows denote inter-turbine distances. The top right inset shows the wind rose plot at R80711, indicating a dominant south westerly wind during that time of the year.

157 speed (denoted by σ_v) to its 10-min average v , such that $I = \frac{\sigma_v}{v}$.

$$\rho = 1.225 \times \frac{288.15}{T} \times \frac{B}{1013.3}, \quad (2)$$

158 where B denotes the interpolated 10-min air pressure in mbar.

159 In constructing power curves, the wind energy industry utilizes an air
160 density correction, wherein the raw 10-min wind speed v is transformed to
161 its air-density-corrected counterpart \tilde{v} , through the following expression:

$$\tilde{v} = v \times \left(\frac{\rho}{1.225} \right)^{\frac{1}{3}}. \quad (3)$$

162 The yaw misalignment, γ , is computed as the absolute difference between
163 the corrected wind direction θ , and the corrected nacelle angle ϕ . The large
164 majority of data points (96.16%) are found to have yaw errors in the $[0^\circ, 20^\circ]$
165 interval, as shown in Figure 3a. Figure 3b shows a scatter plot of wind speeds,
166 yaw errors, and power measurements, color-coded with the yaw misalignment
167 values (only for $\gamma \leq 20^\circ$). Looking at Figure 3, there does not seem to

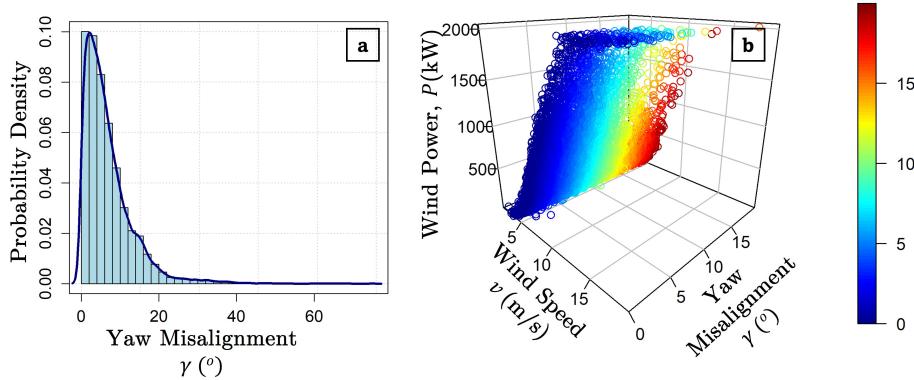


Figure 3: (a): Histogram of yaw misalignment values for turbine R80711. (b): 3D scatter plot of wind speed, yaw misalignment, and power for turbine R80711, color-coded by the yaw misalignment values ($\gamma \leq 20^\circ$ is considered).

168 be stark negative correlations between the yaw error and the power output
 169 (-0.24 on a Pearson’s correlation scale).

170 Based on Figure 3, one may mistakenly rush to the conclusion that yaw
 171 errors do not have a notable impact on the power output and should perhaps
 172 be dropped from power curve modeling. We conjecture, however, that this
 173 mainly attributed to the overwhelming impact of environmental variables
 174 (largely wind speed) on wind power, which obscures the secondary effect of
 175 yaw error on power output. Literature suggests that the power gain (or loss)
 176 due to yaw misalignment is typically in the $\sim 0\text{-}3\%$ range and is a function
 177 of wind speed [30]. This means that slight changes in wind speed can easily
 178 “mask” the power variations caused by yaw errors. For example, if both
 179 wind speed and yaw error change by 1%, then the variation in power output
 180 P due to the change in wind speed alone will be much larger than that due
 181 to yaw error. This confounding effect statistically obscures the underlying
 182 impact of yaw errors on the turbine’s power output.

183 To reveal the impact of yaw errors on the power output, we have to
 184 “marginalize” the effect of wind speed on power. To do so, we partition the
 185 wind speed domain into narrow intervals of 0.1 m/s, and examine the yaw-
 186 to-power relationship within each of those wind speed intervals. Within each
 187 interval, the variation in wind speed is small, thereby allowing us to “zoom
 188 in” and explore potential yaw-to-power correlations. Figure 4(a-c) shows the
 189 results of this partitioning exercise for three selected wind speed intervals:
 190 [4.00, 4.10] m/s, [5.60, 5.70] m/s, and [7.30, 7.40] m/s. Within each wind

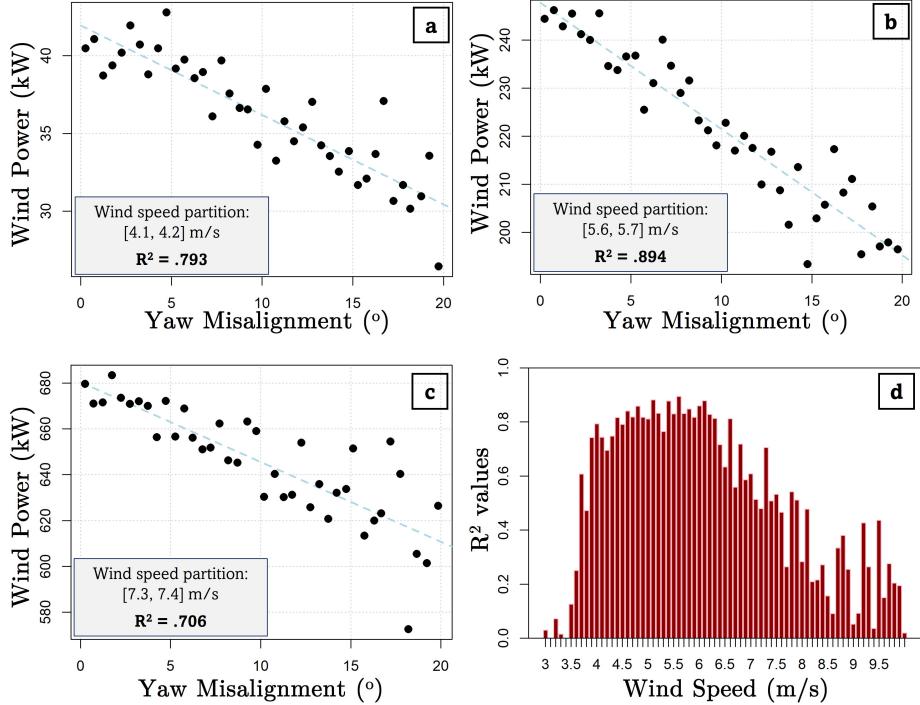


Figure 4: The yaw-to-power relationship for turbine R80711 within wind speed partitions of (a): [4.00, 4.10] m/s, (b): [5.60, 5.70] m/s, and (c): [7.30, 7.40] m/s, showing a strong negative linear association (yaw errors binned into 0.5° intervals) (d): R^2 values of the yaw-to-power linear fits for all wind speed partitions between 3.00 and 10.00 m/s.

191 speed interval, the data suggest strong negative linear association between
 192 yaw errors and power output (with R^2 mostly in the 0.7-0.9 range). Figure
 193 4d shows the R^2 values over all wind speed intervals considered.

194 The analysis suggests that yaw error has a notable impact on power out-
 195 put, particularly in the early and middle portions of Region II in a turbine's
 196 power curve. However, such impact is only noticeably revealed when condi-
 197 tioned on an effective neighborhood of environmental variables, or in other
 198 words, once the impact of other environmental variables (primarily wind
 199 speed) has been marginalized. A natural follow up question is how can we
 200 leverage such yaw-to-power correlations in estimating a turbine's power curve
 201 without relying on arbitrary partitions like those assumed in Figure 4. We
 202 address this question in Section 3 by proposing a neighborhood-based ap-
 203 proach for yaw-adjusted power curve estimation.

204 **3. A Local Regression Model for Yaw-adjusted Wind Power Curves**

205 Our yaw-adjusted power curve model builds on a recently proposed multi-
 206 variate power curve method called “the additive multivariate kernel” (AMK)
 207 [23]. This section therefore starts with a brief overview of the AMK method
 208 and then proceeds to show how we extend it using a local regression formu-
 209 lation in order to construct yaw-adjusted wind power curves.

210 *3.1. Overview of The Additive Multivariate Kernel (AMK) Method*

211 Let $\mathbf{x}^T = \{x_1, x_2, \dots, x_q\}$ be a set of explanatory variables which will be
 212 used as inputs to the power curve model. For instance, \mathbf{x} can contain wind
 213 speed, direction, air density, among others. Broadly speaking, our power
 214 curve estimation task is to learn a functional mapping $f : \mathbb{R}^q \rightarrow \mathbb{R}$ which
 215 relates \mathbf{x} to the power output P , given a set of training data denoted by
 216 $\mathcal{D} = \{\mathbf{x}_i^T, P(\mathbf{x}_i)\}_{i=1}^n$. The estimated response surface, \hat{f} , constitutes the final
 217 power curve which will be used to make turbine-specific power predictions.

218 To integrate additional environmental variables beside wind speed (e.g.,
 219 wind direction, air density) into wind power curves, kernel regression (KR)
 220 has been proposed in the past, due to its simplicity and attractive local
 221 modeling capabilities [31]. KR is essentially a nonparametric local regression
 222 model which uses the Nadaraya-Watson estimator [32], expressed in (4), to
 223 obtain a localized, yet smooth estimate of $f(\mathbf{x}^*)$ at a target input \mathbf{x}^* .

$$\hat{f}(\mathbf{x}^*) = \frac{\sum_{i=1}^n K(\mathbf{x}^*, \mathbf{x}_i) P(\mathbf{x}_i)}{\sum_{i=1}^n K(\mathbf{x}^*, \mathbf{x}_i)}, \quad (4)$$

224 where $K(\mathbf{x}^*, \mathbf{x}_i)$ is a kernel function, which, in essence, is a measure of similar-
 225 ity between the target input \mathbf{x}^* and the i th training data point \mathbf{x}_i , thereby
 226 dictating the contribution of the latter in determining $\hat{f}(\mathbf{x}^*)$. A popular
 227 choice for $K(\mathbf{x}^*, \mathbf{x}_i)$ is the multivariate Gaussian kernel defined as in (5).

$$K(\mathbf{x}^*, \mathbf{x}_i) = \prod_{j=1}^q K(x_j^*, x_j) = \prod_{j=1}^q \exp \left(-\frac{1}{2} \frac{\|x_{ij} - x_j^*\|}{\lambda_j^2} \right), \quad (5)$$

228 where x_{ij} is the i th observation of the variable x_j , while x_j^* is the value of
 229 the j th variable in \mathbf{x}^* . The set of parameters, $\lambda_1, \dots, \lambda_q$ dictate the width
 230 of the univariate kernels, or in other words, the size of the effective local
 231 neighborhood, whereas $\|\cdot\|$ denotes the Euclidean distance.

KR has been successfully used to model bivariate power curves, with wind speed and direction as inputs [31]. If more variables beyond speed and direction are introduced, the multiplicative form of the kernel in (5) can cause the KR method to run into the so-called “curse of dimensionality,” wherein the number of data points within each high-dimensional neighborhood does not allow for a reliable (or in some cases, even feasible) estimation of $\hat{f}(\mathbf{x}^*)$. To remedy this limitation, the Additive Multivariate Kernel (AMK) method was proposed by Lee *et al.* [23] to integrate several environmental variables (in their paper, up to seven variables) like wind speed, direction, air density into a multivariate power curve model.

Instead of relying on the multiplicative form of (4), AMK proposes to compute $\hat{f}(\mathbf{x}^*)$ as in (6).

$$\hat{f}(\mathbf{x}^*) = \frac{1}{q-2} \left[\hat{f}_1(x_1^*, x_2^*, x_3^*) + \dots + \hat{f}_{q-2}(x_1^*, x_2^*, x_q^*) \right], \quad (6)$$

wherein $\hat{f}_1(x_1^*, x_2^*, x_3^*)$, ..., $\hat{f}_{q-2}(x_1^*, x_2^*, x_q^*)$ are defined as in (4) using three-dimensional Gaussian kernels. AMK chooses to always fix the two variables x_1 and x_2 in each of the multiplicative kernels as the wind speed and direction respectively, such that $x_1 = \tilde{v}$ and $x_2 = \theta$, while x_3 , ..., x_q denote additional environmental variables such as density, humidity, or turbulence intensity. Using the formulation in (6), AMK still uses multiplicative kernels to capture interactions in the input space, but restricts them to be the product of three univariate kernels in order to ensure scalability in higher dimensions. As a result, AMK was shown to yield significant improvements in estimating turbine-specific power relative to univariate and bivariate power curve models. Readers can refer to [23, 33] for more details of the AMK method.

3.2. Towards Yaw-adjusted Power Curves: The YAMK Method

Our method, the *Yaw-adjusted Additive Multivariate Kernel*, or in short YAMK, extends the AMK modeling framework to effectively integrate yaw misalignment into a multivariate wind power curve. The idea behind YAMK is to construct localized yaw-to-power regression models within the local neighborhoods defined by AMK. This formulation is inspired by the preliminary analysis in Section 2 wherein the effect of γ on P is only unearthed once the impact of other environmental conditions has been marginalized.

In our work, we let $\mathbf{x} := \{\tilde{v}, \theta, \rho, I\}$, that is, the set of all environmental variables. YAMK starts with a similar formulation to that of AMK expressed

265 in (6). The fundamental difference between YAMK and AMK, however, lies
 266 in how f_1, \dots, f_q are defined. Instead of relying on locally weighted averages as
 267 in (4), YAMK defines them as locally weighted polynomial regression models
 268 which take the yaw misalignment, γ , as a direct input. That is, $\hat{f}_j(\mathbf{x}^*)$, \forall
 269 $j = 1, \dots, q - 2$ is defined as in (7).

$$\hat{f}_j(\mathbf{x}^*) = g(\mathbf{x}^*)^T (\mathbf{G}^T \mathbf{K} \mathbf{G})^{-1} \mathbf{G}^T \mathbf{K} \mathbf{P}, \quad (7)$$

270 where \mathbf{P} is the $n \times 1$ vector of power outputs, defined as $\mathbf{P} = \{P(\mathbf{x}_1), \dots, P(\mathbf{x}_n)\}$.
 271 We define $g(\mathbf{x})^T := (1, \tilde{v}, \gamma)$, while \mathbf{G} is the $n \times 3$ regression matrix whose i th
 272 row corresponds to $g(\mathbf{x}_i)^T$. The $n \times n$ diagonal matrix \mathbf{K} contains the ker-
 273 nel weights obtained via the AMK kernel structure. Including \tilde{v} as input to
 274 \mathbf{G} is motivated by its unique importance in estimating power output, while
 275 the inclusion of γ allows us to capture its localized impact on power output,
 276 conditional on the environmental conditions within its neighborhood.

Algorithm 1 The YAMK method for Power Curve Modeling

- 1: *Input* training data $\mathcal{D}^{tr} = \{\tilde{v}_i, \theta_i, \rho_i, I_i, \gamma_i, P_i\}_{i=1}^n$
- 2: *Input* target inputs $\mathcal{D}^{ts} = \{\tilde{v}_s^*, \theta_s^*, \rho_s^*, I_s^*, \gamma_s^*\}_{s=1}^S$
- 3: *Determine* the kernel parameters λ_v , ν_θ , λ_ρ , and λ_I .
- 4: **for** $s \in \{1, \dots, S\}$ **do**
- 5: *Construct* \mathbf{K}_1 and \mathbf{K}_2 using the AMK kernel weights, such that their
 *i*th diagonal entries are computed as $K(\tilde{v}_s^*, \tilde{v}_i)K(\theta_s^*, \theta_i)K(\rho_s^*, \rho_i)$ and
 $K(\tilde{v}_s^*, \tilde{v}_i)K(\theta_s^*, \theta_i)K(\rho_s^*, I_i)$, respectively.
- 6: *Set* $g(\mathbf{x}_s^*) = \{1, \tilde{v}_s^*, \gamma_s^*\}$, and \mathbf{G} as the correspondent $n \times 3$ training
 input matrix, for which the i th row is defined as $\{1, \tilde{v}_i, \gamma_i\}$.
- 7: *Estimate* $\hat{f}_1(\mathbf{x}_s^*)$ and $\hat{f}_2(\mathbf{x}_s^*)$ using (7).
- 8: *Predict* at $\mathbf{x}_s^* = \{\tilde{v}_s^*, \theta_s^*, \rho_s^*, I_s^*, \gamma_s^*\}$ using (9).
- 9: **end for**
- 10: **return** the final yaw-adjusted power curve, defined by $\hat{\mathbf{P}} = \{\hat{f}(\tilde{v}_s^*, \theta_s^*, \rho_s^*, I_s^*, \gamma_s^*)\}_{s=1}^S$

277 Algorithm 1 summarizes the framework of the YAMK method. At our
 278 disposal is a training dataset, denoted as $\mathcal{D}^{tr} = \{\mathbf{x}_i, \gamma_i, P(\mathbf{x}_i)\}_{i=1}^n$, and a set
 279 of target inputs, denoted by $\mathcal{D}^* = \{\mathbf{x}_s^*, \gamma_s^*\}_{s=1}^S$, for which a set of predictions
 280 are needed, $\{\hat{f}(\mathbf{x}_s^*, \gamma_s^*)\}_{s=1}^S$. For each variable in \mathbf{x} , we first find the set of
 281 univariate kernel bandwidth parameters. For wind speed, air density, and
 282 turbulence intensity, we use univariate Gaussian kernels. Since wind direction

283 is a circular variable, we use the Von Mises kernel, which is defined as in (8).

$$K_\nu(\theta^*, \theta_i) = \frac{\exp\{\nu \cos(\theta^* - \theta_i)\}}{2\pi I_0(\nu)}, \quad (8)$$

284 where $I_0(\cdot)$ is the modified Bessel function of order 0, and ν is the concentration
285 parameter. The parameters for all the kernels, namely λ_v , ν_θ , λ_ρ , and
286 λ_I are found using the direct plug-in (DPI) method [34, 35].

287 Once the kernel parameters have been estimated, we estimate the coefficients
288 of the locally weighted polynomial regression models using (7), which
289 are then plugged in to make a prediction $\hat{f}(\mathbf{x}^*)$ as in (9).

$$\hat{f}(\mathbf{x}^*) = \frac{1}{2} \left[\hat{f}_1(\tilde{v}^*, \theta^*, \rho^*) + \hat{f}_2(\tilde{v}^*, \theta^*, I^*) \right]. \quad (9)$$

290 4. Results and Discussions

291 We test the performance of the YAMK method on the dataset described in
292 Section 2. Two case studies are presented, one for each wind turbine (Turbine
293 ID#: R80711 and R80721). We begin by describing the benchmarks, the
294 evaluation procedure, then present the numerical results and analyses.

295 4.1. Benchmarks

296 We compare the predictive performance of the YAMK approach to a
297 number of power curve modeling benchmarks, listed below as B1-B5:

298 (B1) *The Method of Bins (BIN_{v,ρ})* is a non-parametric approach for power
299 curve modeling described in the IEC 61400-12-1 standard [36]. It discretizes
300 the density-corrected wind speed domain into a number of bins, each with
301 bin width of 0.5 m/s, and then takes the average of the power values within
302 each bin as the estimated power, as expressed in (10).

$$\bar{v}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} \tilde{v}_{ik} \quad \text{and} \quad \bar{P}_k = \frac{1}{n_k} \sum_{i=1}^{n_k} P(\bar{v}_{ik}), \quad (10)$$

303 where n_k is the number of data points within the k th wind speed bin, while
304 \bar{v}_k and \bar{P}_k are the average wind speed and power output within the k th bin,
305 respectively. The prediction for a target input, \mathbf{x}_s^* , is obtained as in (11).

$$\hat{f}(\mathbf{x}_s^*) = \sum_{k=1}^K \mathbb{I}(\tilde{v}_s^* \in \mathcal{B}_k) \bar{P}_k, \quad (11)$$

306 where \mathcal{K} is the total number of bins, $\mathbb{I}(\cdot)$ is the indicator function, and \mathcal{B}_k is
 307 the set of density-corrected wind speed values within the k th bin.

308 (B2-B3) *k nearest neighbors (kNN)*: kNN is widely used for power curve
 309 modeling [7]. It computes a local prediction at the s -th target input as the
 310 average of the outputs of its k -nearest neighbors, as expressed in (12).

$$\hat{f}(\mathbf{x}_s^*) = \frac{1}{k} \sum_{\mathbf{x}_i \in \mathcal{N}(\mathbf{x}_s^*)} P(\mathbf{x}_i). \quad (12)$$

311 We implement two variants of kNN. The first variant constructs a one-
 312 dimensional power curve by solely using the density-corrected wind speed
 313 as input, that is, in (12), we set $\mathbf{x} := \{\tilde{v}\}$. We call this method as $\text{kNN}_{v,\rho}$
 314 because it takes wind speed and air density (through the density correction)
 315 as inputs. The second variant, which we call $\text{kNN}_{v,\rho,\gamma}$ directly integrates
 316 yaw misalignment γ as an additional input beside the density-corrected wind
 317 speed, that is, in (12), we set $\mathbf{x} := \{\tilde{v}, \gamma\}$.

318 We implement kNN using the `caret` package in the statistical program-
 319 ming language `R`. The number of nearest neighbors, k , has a significant impact
 320 on the final predictive performance, and is selected by heuristically searching
 321 for the value of k that minimizes the out-of-sample error [37].

322 (B4-B5) *Additive Multivariate Kernel (AMK)*: This is the kernel-based
 323 regression method proposed by Lee *et al.* [23] and explained in Section
 324 3.1. Two variants of AMK are implemented. The first variant, denoted
 325 by $\text{AMK}_{v,\theta,\rho,I}$, is the same model proposed in [23], and uses $\mathbf{x} := \{\tilde{v}, \theta, \rho, I\}$
 326 in (6). Its kernel structure comprises the addition of two trivariate kernels
 327 (one for $\{\tilde{v}, \theta, \rho\}$, and another for $\{\tilde{v}, \theta, I\}$), that are obtained as the product
 328 of three univariate kernels. This variant does not take yaw error into account,
 329 and unlike YAMK, computes the prediction as a local neighborhood average.
 330 The second variant, $\text{AMK}_{v,\theta,\rho,I,\gamma}$, augments this input set by γ , such that
 331 $\mathbf{x} := \{\tilde{v}, \theta, \rho, I, \gamma\}$ in (6). Its kernel structure comprises the addition of three
 332 trivariate kernels (one for $\{\tilde{v}, \theta, \rho\}$, one for $\{\tilde{v}, \theta, I\}$, and one for $\{\tilde{v}, \theta,$
 333 and $\gamma\}$), that are formed by the product of three univariate kernels.

334 *4.2. Evaluation and Results*

335 For evaluation, we implement K -fold cross validation, where we set the
 336 number of folds $K = 5$, as is typical in machine learning practice. Predic-
 337 tions are evaluated using the normalized root mean squared error (NRMSE),

Table 1: 5-fold average NRMSE of power curve models for turbines R80711 and R80721. Bold-faced values indicate best performance. Percentage improvements, denoted as % IMP, are computed relative to the best-performing method.

Method	Number of Inputs	Turbine 1 (R80711)	Turbine 2 (R80721)	Avg.	% IMP
$\text{BIN}_{v,\rho}$	2	2.585	2.260	2.423	32.13%
$\text{kNN}_{v,\rho}$	2	2.078	1.713	1.896	13.27%
$\text{kNN}_{v,\rho,\gamma}$	3	2.193	1.729	1.961	16.16%
$\text{AMK}_{v,\theta,\rho,I}$	4	1.827	1.570	1.699	3.21%
$\text{AMK}_{v,\theta,\rho,I,\gamma}$	5	1.890	1.588	1.739	5.46%
$\text{YAMK}_{v,\theta,\rho,I,\gamma}$	5	1.780	1.508	1.644	-

338 expressed as in (13). For S_k testing data points within the k th fold, the
 339 NRMSE of a power curve model \mathcal{M} , is given by:

$$\text{NRMSE}(\mathcal{M}) = \frac{1}{K} \sum_{k=1}^K \left[\frac{100\%}{p_r} \sqrt{\frac{\sum_{s=1}^{S_k} [P(\mathbf{x}_s^*) - \hat{f}(\mathbf{x}_s^*)]^2}{S_k}} \right], \quad (13)$$

340 where P_r refers to the rated power. For both R80711 and R80721, the rated
 341 power is $P_r = 2050$ kW.

342 Table 1 and Figure 5 show the averages and boxplots of the 5-fold NRMSE,
 343 respectively, across all methods for turbines R80711 and R80721. Looking
 344 at Table 1 and Figure 5, we can draw few key insights. First, one of the
 345 key findings is that a direct integration of yaw misalignment as an additional
 346 input to a multivariate power curve model does not lead to any improvement
 347 in the predictive performance (if any, it actually leads to a slight deterioration).
 348 This is evident by how $\text{kNN}_{v,\rho,\gamma}$ and $\text{AMK}_{v,\theta,\rho,I,\gamma}$ perform worse than
 349 $\text{kNN}_{v,\rho}$, and $\text{AMK}_{v,\theta,\rho,I}$, respectively.

350 The YAMK method, on the other hand, outperforms all of the bench-
 351 marks, with percentage improvements, on average, reaching up to 32.13%
 352 over the method of bins, and at least 3.21% relative to its closest com-
 353 petitor, $\text{AMK}_{v,\theta,\rho,I}$. The improvements appear to be more pronounced for
 354 turbine R80721 than R80711, which may be partly explained by the higher-
 355 on-average yaw errors for R80721 relative to R80711. Hence, the merit of
 356 leveraging the yaw-to-power correlations becomes more substantial.

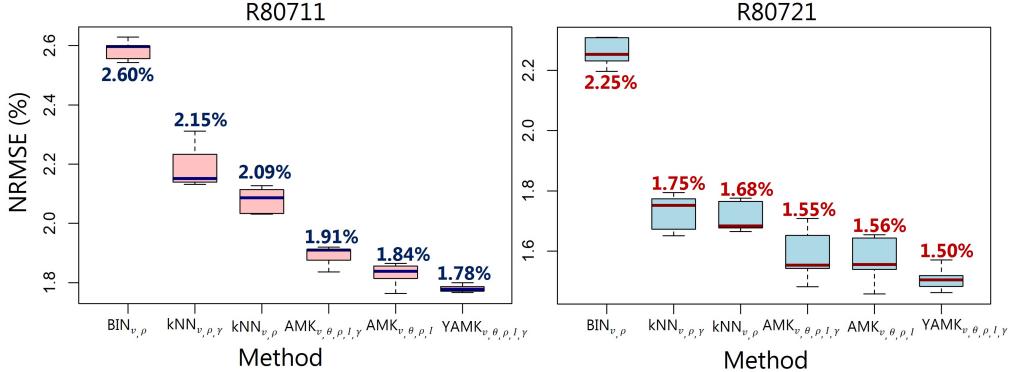


Figure 5: Boxplots of the NRMSE values across the five folds, for different methods. The numbers on top of the boxplots denote the median NRMSE value.

357 Figure 6 shows the estimated power curves for R80711 (left) and R80721
 358 (right) separated into two groups: Group 1 (red circles) represents power
 359 predictions for testing observations that had yaw errors below the median yaw
 360 misalignment value (5.17° for R80711 and 5.51° for R80721), while Group 2
 361 represents those for which the yaw errors were higher than the median values.
 362 In both R80711 and R80721, the predicted power curves for the first group's
 363 data appear to dominate those for the second group, suggesting that YAMK
 364 effectively takes into account the influence of yaw errors on power predictions.
 365 The power gains (in %) of Group 1 relative to Group 2 are 1.73% and 3.18%
 366 for Turbines R80711 and R80721, respectively, which aligns with what has
 367 been shown in the literature [30].

368 The distribution of the prediction errors of the wind power reveals the
 369 accuracy of the prediction approach, wherein a power curve model with poor
 370 accuracy will have its prediction errors distributed widely, as opposed to a
 371 sharper, concentrated distribution for an accurate power curve model. Figure
 372 7 shows the probability density distributions of the wind power prediction
 373 errors for three models: $\text{BIN}_{v,\rho}$, $\text{AMK}_{v,\theta,\rho,I,\gamma}$, and $\text{YAMK}_{v,\theta,\rho,I,\gamma}$. As we can
 374 observe, the distribution of the prediction errors from $\text{BIN}_{v,\rho}$ is relatively
 375 spread out. AMK's distribution of prediction errors is better than that of
 376 $\text{BIN}_{v,\rho}$ highlighting the merit of integrating additional environmental vari-
 377 ables. YAMK's error distribution is the sharpest among the three models,
 378 suggesting the importance of effectively integrating yaw as an additional op-
 379 erational input. This is further confirmed in Figure 7(b) and (d) which show

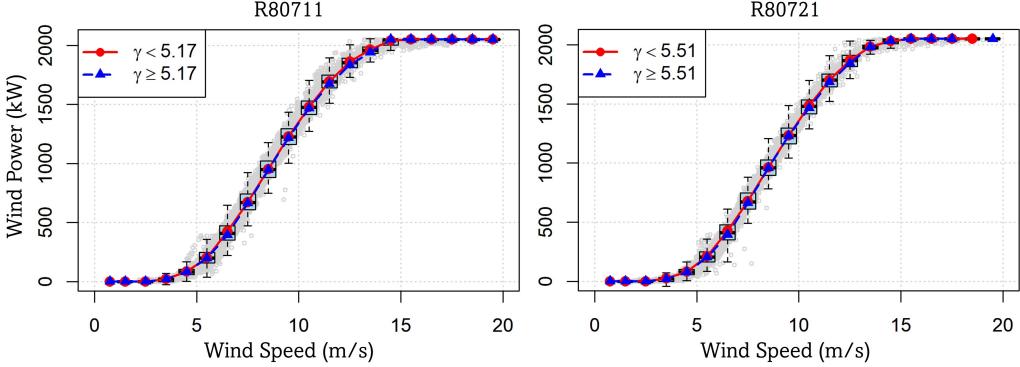


Figure 6: Final power curves for R80711 (left) and R80721 (right), separated into two groups: Group 1 (red circles): yaw errors below the median yaw misalignment value (5.17° for R80711 and 5.51° for R80721); Group 2 (blue squares): yaw errors above the median yaw misalignment value (5.17° for R80711 and 5.51° for R80721). Predicted power gains (in %) between the two groups are 1.73% and 3.18% for R80711 and R80721, respectively.

380 the actual versus predicted wind power values from $\text{YAMK}_{v,\theta,\rho,I,\gamma}$, which
 381 closely match with the 45° line, indicating closeness to a perfect prediction.

382 Finally, we would like to assess the performance of YAMK across different
 383 wind speed values. Figure 8 shows the median absolute error (scaled by
 384 P_r) versus the corresponding wind speed values (wind speed bins of 1 m/s
 385 are used), for four methods: $\text{YAMK}_{v,\theta,\rho,I,\gamma}$ (black circles), $\text{AMK}_{v,\theta,\rho,I,\gamma}$ (red
 386 triangles), $\text{kNN}_{v,\rho}$ (green squares), and $\text{BIN}_{v,\rho}$ (blue diamonds). Errors from
 387 both turbines have been pooled to produce this analysis. Again, we can
 388 immediately see that YAMK significantly improves over all methods across
 389 almost all wind speed ranges. A closer look reveals that YAMK's largest
 390 improvements over its closest competitor, AMK, manifests itself in the early
 391 and middle portions of Region II of a turbine's power curve (between 3.5
 392 and 11 m/s). As the wind speed approaches the rated power region (Region
 393 III), the performance of YAMK gradually converges towards that of AMK
 394 (especially noticeable at wind speeds higher than 12 m/s). This finding is
 395 in line with the analysis in Figure 4 which suggests that the impact of yaw
 396 on power is more articulated for the early and middle portions of Region
 397 II in a turbine's power curve. We also note that the relative improvements
 398 of YAMK over methods that do not take the yaw as an input in first place
 399 (namely, $\text{kNN}_{v,\rho}$ and $\text{BIN}_{v,\rho}$) are maintained across all wind speed values.

400 The analysis above shows how our yaw-adjusted power curve is able to

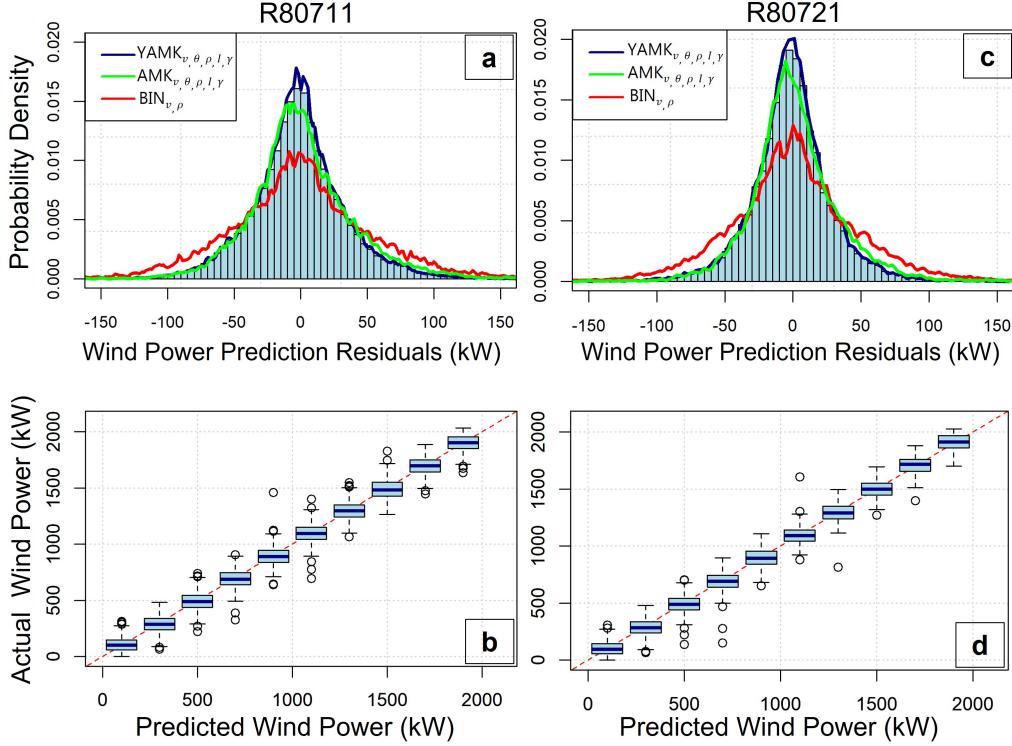


Figure 7: (a) and (c): Residuals of wind power prediction for three models: $\text{BIN}_{v,\rho}$ (red), $\text{AMK}_{v,\theta,\rho,I,\gamma}$ (green), and $\text{YAMK}_{v,\theta,\rho,I,\gamma}$ (blue), on top of the histograms of YAMK’s residuals. (b) and (d): Actual versus predicted wind power values (in kW) for the YAMK method, lying closely to the 45° line suggesting high-quality predictive performance.

401 (1) leverage the AMK special kernel structure to scalably integrate several
 402 environmental parameters, and (2) effectively harness the yaw-to-power cor-
 403 relations in order to make significant predictive improvements, on top of those
 404 provided by the AMK and other nonparametric power curve models. Those
 405 results affirm our hypothesis: yaw is indeed a significant predictor of power,
 406 but its significance may only be statistically leveraged in a power curve model
 407 once *conditioned on* a neighborhood of environmental parameters.

408 **5. Conclusions**

409 In this paper, we proposed the notion of a “yaw-adjusted power curve.”
 410 Instead of directly adding yaw error as an additional input to a multivariate

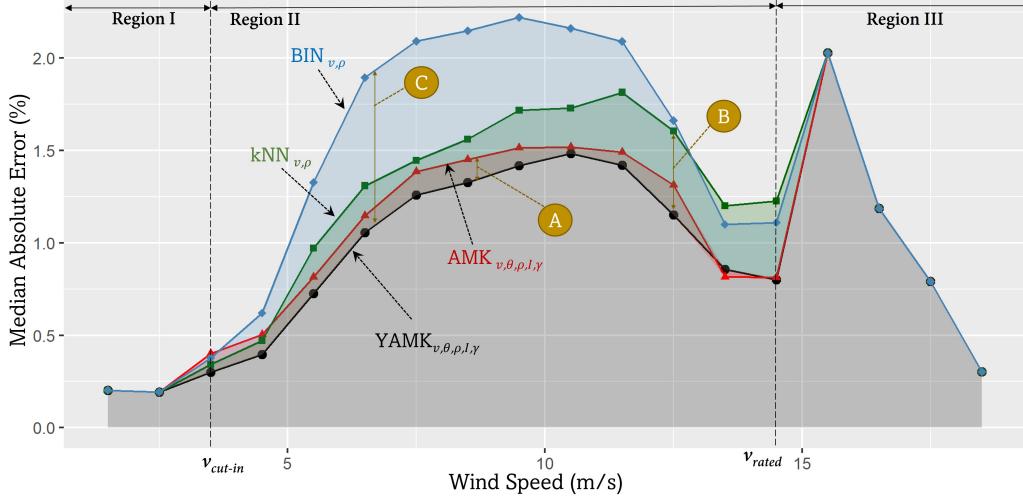


Figure 8: Performance of $YAMK_{v,\theta,\rho,I,\gamma}$ (black circles), $AMK_{v,\theta,\rho,I,\gamma}$ (red triangles), $kNN_{v,\rho}$ (green squares), and $BIN_{v,\rho}$ (blue diamonds), in terms of median absolute error (scaled by P_r). Points (A), (B), and (C) show the maximum differences in performance of each method relative to $YAMK_{v,\theta,\rho,I,\gamma}$. Those correspond to percentage improvements of 9.35% (point A), 28.3% (point B), and 44.3% (point C), respectively.

411 power curve model, which is found not to result in any competitive advan-
 412 tage, our approach learns the local yaw-to-power relationship conditional on
 413 an effective neighborhood of environmental variables defined using a special
 414 kernel structure which was recently proposed in the literature. Our experi-
 415 ments on a real-world dataset suggest that such approach results in signif-
 416 icant improvements, in terms of power output estimation accuracy, relative
 417 to several existing power curve models.

418 We believe that the proposed yaw-adjusted power curve model can be
 419 valuable to several wind farm operations that primarily rely on wind power
 420 curves such as wind power prediction, asset monitoring and prognostics,
 421 maintenance scheduling, among others. In addition, such yaw-adjusted wind
 422 power curves can be highly relevant to the emerging area of yaw-based power
 423 production optimization in wind farms. Recent studies suggest that yaw-
 424 based production optimization can significantly improve power production.
 425 A pivotal assumption in such optimization routines, however, is the perfect
 426 knowledge about how yaw errors impact the power output of a wind turbine.
 427 Without a reliable method to accurately estimate the yaw-to-power response
 428 surface, as the one proposed herein, the power gains from such emerging

429 and promising efforts may be forfeited or largely compromised. An area of
430 future research is to explore the impact of the improvement in power curve
431 estimation from our model on such power production optimization routines.

432 Another interesting line of future research is to consider turbine-to-turbine
433 dependencies. It is known that a turbine's yaw error does not only impact
434 its power output, but also that of its neighbors in a wind farm. In this
435 research, we have only considered a period of time when the turbines un-
436 der study were upstream relative to the incoming winds. Future research
437 may therefore look into modeling turbine dependencies when constructing
438 the yaw-to-power relationship.

439 **Data Availability**

440 The wind turbine dataset used in this work has been made publicly
441 available by Engie through its website and can be accessed at [https://
442 opendata-renewables.engie.com/](https://opendata-renewables.engie.com/) [27]. Air pressure measurements, co-
443 located with Engie's dataset, have been obtained from Meteoblue [29].

444 **Acknowledgment**

445 This research has been partly supported by the Rutgers Research Council
446 Grant Program, and by the National Science Foundation (NSF) under Grant
447 ECCS-2114422.

448 **References**

- 449 [1] C. Sweeney, R. J. Bessa, J. Browell, P. Pinson, The future of forecast-
450 ing for renewable energy, Wiley Interdisciplinary Reviews: Energy and
451 Environment 9 (2) (2020) e365.
- 452 [2] A. Ezzat, Turbine-specific short-term wind speed forecasting considering
453 within-farm wind field dependencies and fluctuations, Applied Energy
454 269 (2020) 115034.
- 455 [3] C. Carrillo, A. O. Montaño, J. Cidrás, E. Díaz-Dorado, Review of power
456 curve modelling for wind turbines, Renewable and Sustainable Energy
457 Reviews 21 (2013) 572–581.

458 [4] M. Lydia, S. S. Kumar, A. I. Selvakumar, G. E. P. Kumar, A comprehensive review on wind turbine power curve modeling techniques, Renewable and Sustainable Energy Reviews 30 (2014) 452–460.

461 [5] Y. Wang, Q. Hu, L. Li, A. M. Foley, D. Srinivasan, Approaches to wind power curve modeling: A review and discussion, Renewable and Sustainable Energy Reviews 116 (2019) 109422.

464 [6] B. Niu, H. Hwangbo, L. Zeng, Y. Ding, Evaluation of alternative power production efficiency metrics for offshore wind turbines and farms, Renewable Energy 128 (2018) 81–90.

467 [7] A. Kusiak, H. Zheng, Z. Song, On-line monitoring of power curves, Renewable Energy 34 (6) (2009) 1487–1493.

469 [8] P. Pinson, Wind energy: Forecasting challenges for its operational management, Statistical Science 28 (4) (2013) 564–585.

471 [9] A. Ezzat, M. Jun, Y. Ding, Spatio-temporal asymmetry of local wind fields and its impact on short-term wind forecasting, IEEE Transactions on Sustainable Energy 9 (3) (2018) 1437–1447.

474 [10] Y. He, A. Kusiak, Performance assessment of wind turbines: data-derived quantitative metrics, IEEE Transactions on Sustainable Energy 9 (1) (2017) 65–73.

477 [11] P. Guo, D. Infield, Wind turbine power curve modeling and monitoring with Gaussian process and SPRT, IEEE Transactions on Sustainable Energy 11 (1) (2018) 107–115.

480 [12] P. Papadopoulos, D. W. Coit, A. A. Ezzat, STOCHOS: Stochastic opportunistic maintenance scheduling for offshore wind farms, arXiv preprint arXiv:2207.02274 (2022).

483 [13] P. Papadopoulos, D. Coit, A. Ezzat, Seizing opportunity: Maintenance optimization in offshore wind farms considering accessibility, production, and crew dispatch, IEEE Transactions on Sustainable Energy (2021).

486 [14] P. A. Fleming, A. Scholbrock, A. Jehu, S. Davoust, E. Osler, A. D. Wright, A. Clifton, Field-test results using a nacelle-mounted lidar for improving wind turbine power capture by reducing yaw misalignment,

489 in: Journal of Physics: Conference Series, Vol. 524, IOP Publishing,
490 2014, p. 012002.

491 [15] V. Sohoni, S. Gupta, R. Nema, A critical review on wind turbine power
492 curve modelling techniques and their applications in wind based energy
493 systems, *Journal of Energy* 2016 (2016).

494 [16] M. G. Khalfallah, A. M. Koliub, Suggestions for improving wind turbines
495 power curves, *Desalination* 209 (1-3) (2007) 221–229.

496 [17] B. Stephen, S. J. Galloway, D. McMillan, D. C. Hill, D. G. Infield, A
497 copula model of wind turbine performance, *IEEE Transactions on Power
498 Systems* 26 (2) (2010) 965–966.

499 [18] V. Thapar, G. Agnihotri, V. K. Sethi, Critical analysis of methods for
500 mathematical modelling of wind turbines, *Renewable Energy* 36 (11)
501 (2011) 3166–3177.

502 [19] A. Marvuglia, A. Messineo, Monitoring of wind farms' power curves
503 using machine learning techniques, *Applied Energy* 98 (2012) 574–583.

504 [20] S. Shokrzadeh, M. J. Jozani, E. Bibeau, Wind turbine power curve
505 modeling using advanced parametric and nonparametric methods, *IEEE
506 Transactions on Sustainable Energy* 5 (4) (2014) 1262–1269.

507 [21] T. Ouyang, A. Kusiak, Y. He, Modeling wind-turbine power curve: A
508 data partitioning and mining approach, *Renewable Energy* 102 (2017)
509 1–8.

510 [22] R. K. Pandit, D. Infield, J. Carroll, Incorporating air density into a
511 Gaussian process wind turbine power curve model for improving fitting
512 accuracy, *Wind Energy* 22 (2) (2019) 302–315.

513 [23] G. Lee, Y. Ding, M. G. Genton, L. Xie, Power curve estimation with
514 multivariate environmental factors for inland and offshore wind farms,
515 *Journal of the American Statistical Association* 110 (509) (2015) 56–67.

516 [24] B. Golparvar, P. Papadopoulos, A. Ezzat, R.-Q. Wang, A surrogate-
517 model-based approach for estimating the first and second-order moments
518 of offshore wind power, *Applied Energy* 299 (2021) 117286.

519 [25] R. K. Pandit, D. Infield, A. Kolios, Gaussian process power curve mod-
520 els incorporating wind turbine operational variables, *Energy Reports* 6
521 (2020) 1658–1669.

522 [26] D. Astolfi, Wind turbine operation curves modelling techniques, *Elec-
523 tronics* 10 (3) (2021) 269.

524 [27] Engie's Open Data, <https://opendata-renewables.Engie.com/>.

525 [28] T. Duc, G. Giebel, T. Göçmen, M. Korpås, O. Coupiac, Optimization of
526 wind farm power production using innovative control strategies (2017).

527 [29] Meteoblue Official Website, [https://www.meteoblue.com/en/
528 weather/week/passaic_united-states-of-america_5102443](https://www.meteoblue.com/en/weather/week/passaic_united-states-of-america_5102443).

529 [30] K. A. Kragh, M. H. Hansen, Potential of power gain with improved yaw
530 alignment, *Wind Energy* 18 (6) (2015) 979–989.

531 [31] J. Jeon, J. W. Taylor, Using conditional kernel density estimation for
532 wind power density forecasting, *Journal of the American Statistical As-
533 sociation* 107 (497) (2012) 66–79.

534 [32] E. A. Nadaraya, On estimating regression, *Theory of Probability & Its
535 Applications* 9 (1) (1964) 141–142.

536 [33] Y. Ding, *Data Science for Wind Energy*, CRC Press, 2019.

537 [34] D. Ruppert, S. J. Sheather, M. P. Wand, An effective bandwidth selector
538 for local least squares regression, *Journal of the American Statistical
539 Association* 90 (432) (1995) 1257–1270.

540 [35] C. C. Taylor, Automatic bandwidth selection for circular density estima-
541 tion, *Computational Statistics & Data Analysis* 52 (7) (2008) 3493–3500.

542 [36] Wind Energy Generation Systems - Part 12-1: Power Performance
543 Measurements of Electricity Producing Wind Turbines, IEC 61400-12-
544 1International Electrotechnical Commission (2017).

545 [37] M. Kuhn, Building predictive models in R using the caret package, *Jour-
546 nal of Statistical Software* 28 (2008) 1–26.