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Abstract4

Accurate estimation of wind power curves using field data is instrumental to5

several wind farm operations including productivity assessment, power out-6

put estimation, operations and maintenance, among others. Existing meth-7

ods for estimating wind power curves mainly rely on environmental variables8

(e.g., wind speed, direction, density) as inputs to construct the wind-to-9

power relationship. This paper attempts to integrate yaw misalignment as10

an additional input to power curve models, constructing what is referred to11

hereinafter as “yaw-adjusted wind power curves.” Our analysis shows that12

integrating yaw misalignment into power curves is non-trivial, largely due to13

the overwhelming impact of environmental variables (mainly wind speed) on14

a turbine’s power output, which obscures the secondary effect of yaw errors on15

power production. In response, we propose a local-regression-based method16

which reconstructs the yaw-to-power relationship conditional on an effective17

neighborhood of environmental variables. Tested on operational data from18

two onshore wind turbines in France, our proposed approach achieves signif-19

icant improvements, in terms of power estimation accuracy, relative to a set20

of prevalent statistical- and machine-learning-based power curve models.21

Keywords: Local Regression, Power Curve, Wind Energy, Yaw Error22

1. Introduction23

Wind power continues to be one of the fastest growing sources of clean24

energy worldwide. Despite its rapid growth, the uncertainty associated with25

generating electricity from wind remains a fundamental barrier that impedes26

its large-scale penetration into modern-day power systems. This uncertainty27
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stems from two main sources: (i) uncertainty in the wind resource, which28

is, arguably, one of the most challenging meteorological processes to predict,29

especially at the turbine level [1, 2]; and (ii) uncertainty in the wind-to-power30

conversion process, i.e. the conversion of the hub-height wind conditions ex-31

perienced by a wind turbine into power output [3, 4, 5]. This work focuses on32

the latter, i.e., to develop accurate models for turbine-specific power output33

estimation. In the wind energy industry, an accurate estimation of a tur-34

bine’s power production is important to several key wind farm operations,35

including performance assessment [6, 7], power output prediction [8, 9], asset36

monitoring and prognostics [10, 11], and maintenance scheduling [12, 13].37

Theoretically, the wind power, P , produced by a wind turbine is expressed38

as in (1), where ρ denotes the air density, Aw is the rotor swept area, v is39

the hub-height wind speed, and Cp is the power coefficient, which, in turn,40

depends on the tip speed ratio λ and the blade pitch angle β.41

P =
1

2
ρAwCp(λ, β)v

3. (1)

From (1), it is clear that the power production of a wind turbine is primarily42

dependent on wind speed, as evident by the cubic speed-to-power relation-43

ship, but also on other environmental variables such as air density. Moreover,44

(1) assumes that the turbine’s rotor plane is perfectly perpendicular to the45

wind flow. In reality, this perfect alignment seldom happens, and the power46

produced by a wind turbine is further dependent on the yaw error (or mis-47

alignment), denoted hereinafter by γ [14].48

In practice, the actual wind-to-power conversion process, however, does49

not fully adhere to the physical relationship in (1), but instead, follows the so-50

called “power curve”, which is typically defined as the functional mapping51

relating the hub-height wind speed with the associated wind power, and52

comprises four main regions, as shown in Figure 1(a). In the first region, the53

turbine barely produces any power, as the wind speed is less than the so-54

called cut-in speed, vcut-in. In modern-day wind turbines, cut-in speeds range55

between 3 m/s to 5 m/s. In the second region, the power output rapidly56

increases, first in a convex-shaped pattern, which then turns into a concave-57

shaped pattern. The wind speed in this region ranges between vcut-in and the58

rated speed, denoted in Figure 1(a) by vrated, which refers to the minimum59

wind speed at which the maximal turbine capacity, Prated, is reached. This60

second region is further divided into two sub-regions: Regions II-a (Maximum61

power point tracking or MPPT control) and II-b (Fixed speed control). In62
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Figure 1: (a) Power curve of a typical wind turbine, with four regions defined by vcut-in,
vrated, and vcut-off.; (b) Actual wind speed versus power for a typical wind turbine.

the former, both the power output and the rotor speed are within their63

permissible operational limits, while in the latter, the rotor speed operates64

at its maximum limit, until the turbine reaches its rated power, Prated. In the65

third region, the power produced is maintained at the rated power level for66

damage-mitigating purposes. This rated power is maintained until the cut-67

off speed, vcut-off, is reached, after which the turbine shuts down to protect68

its components and structures from extreme wind conditions (Region IV).69

In practice, estimating a turbine’s power curve using field data is chal-70

lenging, because the actual power curve is rarely deterministic as the one71

displayed in Figure 1(a). Instead, as shown in Figure 1(b), it is contam-72

inated by large uncertainties which are attributed to multiple sources that73

can be broadly categorized into environmental and operational factors. Envi-74

ronmental factors refer to the impact of additional weather variables (other75

than wind speed) that may impact a turbine’s power output, such as air76

density, wind direction, turbulence, among others. Operational factors re-77

fer to the parameters related to the response of the turbine to its external78

environment, such as yaw errors, wake effects, aging and degradation, and79

measurement noise. An accurate power curve estimation should therefore80

seek to construct a functional relationship which accurately links the power81

output of a turbine to a set of environmental and operational factors, while82

taking into account the observational noise [4].83

Towards that end, there is an extensive literature on estimating power84

curves using field data. Broadly, those efforts can be classified into paramet-85
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ric versus nonparametric approaches [4, 15]. Parametric power curve models86

assume a pre-determined functional form with a fixed set of parameters.87

Prior efforts in parametric power curve modeling include but are not limited88

to piecewise linear models [16], polynomial regression models [3], and logistic89

functions [7]. Nonparametric models, on the other hand, impose little as-90

sumptions about the functional form of the input-output relationship. Non-91

parametric power curve modeling approaches include copula-based methods92

[17], cubic splines [18], artificial neural networks [19], Gaussian Processes93

[11], and k-nearest neighbors (k-NN) [7].94

To date, the large majority of the literature, whether using parametric or95

nonparametric methods, primarily uses wind speed as the sole input to wind96

power curve models [20]. The main limitation of those univariate models is97

that they largely overlook the impact of other environmental variables apart98

from wind speed. Recent efforts have investigated the potential of integrating99

additional environmental variables into power curve models [21, 22, 23, 24],100

such as air density, direction, and turbulence intensity. Those efforts con-101

cluded that multivariate power curve models, i.e. those that consider the102

impact of several environmental variables, are superior, in terms of estima-103

tion accuracy, to those that rely on wind speed as the sole input.104

Little research, however, has been conducted to explore the merit of inte-105

grating operational variables into power curve modeling. Barring few works106

which studied the integration of rotor speed and pitch angle in power curve107

estimation [25, 26], our work, up to our knowledge, constitutes the first108

attempt to formally integrate yaw misalignment in estimating wind power109

curves, yielding what we refer to hereinafter as “yaw-adjusted power curves.”110

We summarize the main contributions of this work as follows:111

• We investigate the impact of yaw errors on power using field data. We112

discover that, counter-intuitively, a direct integration of yaw misalign-113

ment as an additional regressor into a multivariate power curve model114

does not improve the power curve estimation accuracy. We postulate115

that this is mainly due to the overwhelming impact of the environmen-116

tal conditions (mainly wind speed) on a turbine’s power output, which117

obscures the secondary effect of yaw errors on a the power output,118

and prevents classical statistical models from leveraging such finer-scale119

yaw-to-power correlations for improved power output estimation.120

• Motivated by this observation, we propose a power curve estimation121

method based on local regression which reconstructs the yaw-to-power122
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relationship conditional on an effective neighborhood of environmental123

variables. We show that this approach in integrating yaw misalignment124

into wind power curves unearths its underlying impact on power gen-125

eration, therefore enabling the power curve model to leverage it as a126

significant predictor of wind power production.127

• We perform a series of extensive tests using real-world data from a wind128

farm in France to demonstrate the merit of our proposed approach rel-129

ative to prevalent statistical- and machine-learning-based power curve130

models, eventually concluding that significant improvements in power131

estimation accuracy, ranging from 3.21% to 32.13% are realizable.132

2. Data Description and Analysis133

The data used herein comprises 10-min measurements collected in 2013134

from the La Haute Borne-Vaudeville-le-Haut wind farm in north eastern135

France. The wind farm comprises four wind turbines, as shown in Figure136

2, and is operated by Engie Green (a subsidiary of Engie), which provides137

open access to its data [27]. The turbines have a rated capacity of 2050138

kW, 80-m hub height, and rotor diameter of 82 m. Of interest to us are the139

following SCADA variables: wind speed v (m/s), wind power P (kW), wind140

direction θ (◦), nacelle angle ϕ (◦), and air temperature T (K). Note that the141

wind direction and nacelle angle measurements have been pre-corrected in142

the dataset (we used the corrected versions of those variables) since SCADA143

measurements collected behind the turbine’s rotor can be fairly noisy [28].144

We also obtain co-located hourly air pressure measurements from Meteoblue145

[29], which we linearly interpolate to 10-min resolution. We filter the com-146

bined 10-min dataset by removing outliers (e.g., when P is negative or smaller147

than a certain threshold for a given wind speed).148

The focus of our analysis is on two wind turbines (Turbine ID#: R80711149

and R80721) for the period of September to December 2013. The turbines150

and time coverage were selected so that the turbines under study are up-151

stream relative to the prevailing wind, which is found to be dominantly south152

westerly during this time of the year—See Figure 2.153

We also compute two additional environmental variables: air density,154

denoted by ρ and determined as in (2), and turbulence intensity, denoted by155

I and computed as the ratio of the 10-min standard deviation of the wind156
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Figure 2: Map of the La Haute Borne-Vaudevulle-le-Haut wind farm operated by Engie.
Turbine locations are depicted by red stars. Numbers on arrows denote inter-turbine
distances. The top right inlet shows the wind rose plot at R80711, indicating a dominant
south westerly wind during that time of the year.

speed (denoted by σv) to its 10-min average v, such that I = σv

v
.157

ρ = 1.225× 288.15

T
× B

1013.3
, (2)

where B denotes the interpolated 10-min air pressure in mbar.158

In constructing power curves, the wind energy industry utilizes an air159

density correction, wherein the raw 10-min wind speed v is transformed to160

its air-density-corrected counterpart ṽ, through the following expression:161

ṽ = v ×
(

ρ

1.225

) 1
3

. (3)

The yaw misalignment, γ, is computed as the absolute difference between162

the corrected wind direction θ, and the corrected nacelle angle ϕ. The large163

majority of data points (96.16%) are found to have yaw errors in the [0◦, 20◦]164

interval, as shown in Figure 3a. Figure 3b shows a scatter plot of wind speeds,165

yaw errors, and power measurements, color-coded with the yaw misalignment166

values (only for γ <= 20◦). Looking at Figure 3, there does not seem to167
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Figure 3: (a): Histogram of yaw misalignment values for turbine R80711. (b): 3D scatter
plot of wind speed, yaw misalignment, and power for turbine R80711, color-coded by the
yaw misalignment values (γ ≤ 20◦ is considered).

be stark negative correlations between the yaw error and the power output168

(−0.24 on a Pearson’s correlation scale).169

Based on Figure 3, one may mistakenly rush to the conclusion that yaw170

errors do not have a notable impact on the power output and should perhaps171

be dropped from power curve modeling. We conjecture, however, that this172

mainly attributed to the overwhelming impact of environmental variables173

(largely wind speed) on wind power, which obscures the secondary effect of174

yaw error on power output. Literature suggests that the power gain (or loss)175

due to yaw misalignment is typically in the ∼0-3% range and is a function176

of wind speed [30]. This means that slight changes in wind speed can easily177

“mask” the power variations caused by yaw errors. For example, if both178

wind speed and yaw error change by 1%, then the variation in power output179

P due to the change in wind speed alone will be much larger than that due180

to yaw error. This confounding effect statistically obscures the underlying181

impact of yaw errors on the turbine’s power output.182

To reveal the impact of yaw errors on the power output, we have to183

“marginalize” the effect of wind speed on power. To do so, we partition the184

wind speed domain into narrow intervals of 0.1 m/s, and examine the yaw-185

to-power relationship within each of those wind speed intervals. Within each186

interval, the variation in wind speed is small, thereby allowing us to “zoom187

in” and explore potential yaw-to-power correlations. Figure 4(a-c) shows the188

results of this partitioning exercise for three selected wind speed intervals:189

[4.00, 4.10] m/s, [5.60, 5.70] m/s, and [7.30, 7.40] m/s. Within each wind190
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Figure 4: The yaw-to-power relationship for turbine R80711 within wind speed partitions
of (a): [4.00, 4.10] m/s, (b): [5.60, 5.70] m/s, and (c): [7.30, 7.40] m/s, showing a strong
negative linear association (yaw errors binned into 0.5◦ intervals) (d): R2 values of the
yaw-to-power linear fits for all wind speed partitions between 3.00 and 10.00 m/s.

speed internval, the data suggest strong negative linear association between191

yaw errors and power output (with R2 mostly in the 0.7-0.9 range). Figure192

4d shows the R2 values over all wind speed intervals considered.193

The analysis suggests that yaw error has a notable impact on power out-194

put, particularly in the early and middle portions of Region II in a turbine’s195

power curve. However, such impact is only noticeably revealed when condi-196

tioned on an effective neighborhood of environmental variables, or in other197

words, once the impact of other environmental variables (primarily wind198

speed) has been marginalized. A natural follow up question is how can we199

leverage such yaw-to-power correlations in estimating a turbine’s power curve200

without relying on arbitrary partitions like those assumed in Figure 4. We201

address this question in Section 3 by proposing a neighborhood-based ap-202

proach for yaw-adjusted power curve estimation.203

8



3. A Local Regression Model for Yaw-adjusted Wind Power Curves204

Our yaw-adjusted power curve model builds on a recently proposed multi-205

variate power curve method called “the additive multivariate kernel” (AMK)206

[23]. This section therefore starts with a brief overview of the AMK method207

and then proceeds to show how we extend it using a local regression formu-208

lation in order to construct yaw-adjusted wind power curves.209

3.1. Overview of The Additive Multivariate Kernel (AMK) Method210

Let xT = {x1, x2, ..., xq} be a set of explanatory variables which will be211

used as inputs to the power curve model. For instance, x can contain wind212

speed, direction, air density, among others. Broadly speaking, our power213

curve estimation task is to learn a functional mapping f : Rq → R which214

relates x to the power output P , given a set of training data denoted by215

D = {xT
i , P (xi)}ni=1. The estimated response surface, f̂ , constitutes the final216

power curve which will be used to make turbine-specific power predictions.217

To integrate additional environmental variables beside wind speed (e.g.,218

wind direction, air density) into wind power curves, kernel regression (KR)219

has been proposed in the past, due to its simplicity and attractive local220

modeling capabilities [31]. KR is essentially a nonparametric local regression221

model which uses the Nadaraya-Watson estimator [32], expressed in (4), to222

obtain a localized, yet smooth estimate of f(x∗) at a target input x∗.223

f̂(x∗) =

∑n
i=1 K(x∗,xi)P (xi)∑n

i=1 K(x∗,xi)
, (4)

whereK(x∗,xi) is a kernel function, which, in essence, is a measure of similar-224

ity between the target input x∗ and the ith training data point xi, thereby225

dictating the contribution of the latter in determining f̂(x∗). A popular226

choice for K(x∗,xi) is the multivariate Gaussian kernel defined as in (5).227

K(x∗,xi) =

q∏
j=1

K(x∗
j , xj) =

q∏
j=1

exp

(
− 1

2

||xij − x∗
j ||

λ2
j

)
, (5)

where xij is the ith observation of the variable xj, while x∗
j is the value of228

the jth variable in x∗. The set of parameters, λ1, ..., λq dictate the width229

of the univariate kernels, or in other words, the size of the effective local230

neighborhood, whereas || · || denotes the Euclidean distance.231
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KR has been successfully used to model bivariate power curves, with232

wind speed and direction as inputs [31]. If more variables beyond speed and233

direction are introduced, the multiplicative form of the kernel in (5) can cause234

the KR method to run into the so-called “curse of dimensionality,” wherein235

the number of data points within each high-dimensional neighborhood does236

not allow for a reliable (or in some cases, even feasible) estimation of f̂(x∗).237

To remedy this limitation, the Additive Multivariate Kernel (AMK) method238

was proposed by Lee et al. [23] to integrate several environmental variables239

(in their paper, up to seven variables) like wind speed, direction, air density240

into a multivariate power curve model.241

Instead of relying on the multiplicative form of (4), AMK proposes to242

compute f̂(x∗) as in (6).243

f̂(x∗) =
1

q − 2

[
f̂1(x

∗
1, x

∗
2, x

∗
3) + ...+ f̂q−2(x

∗
1, x

∗
2, x

∗
q)

]
, (6)

wherein f̂1(x
∗
1, x

∗
2, x

∗
3), ..., f̂q−2(x

∗
1, x

∗
2, x

∗
q) are defined as in (4) using three-244

dimensional Gaussian kernels. AMK chooses to always fix the two variables245

x1 and x2 in each of the multiplicative kernels as the wind speed and direction246

respectively, such that x1 = ṽ and x2 = θ, while x3, ..., xq denote additional247

environmental variables such as density, humidity, or turbulence intensity.248

Using the formulation in (6), AMK still uses multiplicative kernels to cap-249

ture interactions in the input space, but restricts them to be the product of250

three univariate kernels in order to ensure scalability in higher dimensions.251

As a result, AMK was shown to yield significant improvements in estimat-252

ing turbine-specific power relative to univariate and bivariate power curve253

models. Readers can refer to [23, 33] for more details of the AMK method.254

3.2. Towards Yaw-adjusted Power Curves: The YAMK Method255

Our method, the Yaw-adjusted Additive Multivariate Kernel, or in short256

YAMK, extends the AMK modeling framework to effectively integrate yaw257

misalignment into a multivariate wind power curve. The idea behind YAMK258

is to construct localized yaw-to-power regression models within the local259

neighborhoods defined by AMK. This formulation is inspired by the prelim-260

inary analysis in Section 2 wherein the effect of γ on P is only unearthed261

once the impact of other environmental conditions has been marginalized.262

In our work, we let x := {ṽ, θ, ρ, I}, that is, the set of all environmental263

variables. YAMK starts with a similar formulation to that of AMK expressed264
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in (6). The fundamental difference between YAMK and AMK, however, lies265

in how f1, ..., fq are defined. Instead of relying on locally weighted averages as266

in (4), YAMK defines them as locally weighted polynomial regression models267

which take the yaw misalignment, γ, as a direct input. That is, f̂j(x
∗), ∀268

j = 1, ..., q − 2 is defined as in (7).269

f̂j(x
∗) = g(x∗)T (GTKG)−1GTKP, (7)

whereP is the n×1 vector of power outputs, defined asP = {P (x1), ..., P (xn)}.270

We define g(x)T := (1, ṽ, γ), while G is the n×3 regression matrix whose ith271

row corresponds to g(xi)
T . The n × n diagonal matrix K contains the ker-272

nel weights obtained via the AMK kernel structure. Including ṽ as input to273

G is motivated by its unique importance in estimating power output, while274

the inclusion of γ allows us to capture its localized impact on power output,275

conditional on the environmental conditions within its neighborhood.276

Algorithm 1 The YAMK method for Power Curve Modeling

1: Input training data Dtr = {ṽi, θi, ρi, Ii, γi, Pi}ni=1

2: Input target inputs Dts = {ṽ∗s , θ∗s , ρ∗s, I∗s , γ∗
s}Ss=1

3: Determine the kernel parameters λv, νθ, λρ, and λI .
4: for s ∈ {1, ..., S} do
5: Construct K1 andK2 using the AMK kernel weights, such that their

ith diagonal entries are computed as K(ṽ∗s , ṽi)K(θ∗s , θi)K(ρ∗s, ρi) and
K(ṽ∗s , ṽi)K(θ∗s , θi)K(ρ∗, Ii), respectively.

6: Set g(x∗
s) = {1, ṽ∗s , γ∗

s}, and G as the correspondent n × 3 training
input matrix, for which the ith row is defined as {1, ṽi, γi}.

7: Estimate f̂1(x
∗
s) and f̂2(x

∗
s) using (7).

8: Predict at x∗
s = {ṽ∗s , θ∗s , ρ∗s, I∗s , γ∗

s} using (9).
9: end for

10: return the final yaw-adjusted power curve, defined by P̂ =
{f̂(ṽ∗s , θ∗s , ρ∗s, I∗s , γ∗

s )}Ss=1

Algorithm 1 summarizes the framework of the YAMK method. At our277

disposal is a training dataset, denoted as Dtr = {xi, γi, P (xi)}ni=1, and a set278

of target inputs, denoted by D∗ = {x∗
s, γ

∗
s}Ss=1, for which a set of predictions279

are needed, {f̂(x∗
s, γ

∗
s )}Ss=1. For each variable in x, we first find the set of280

univariate kernel bandwidth parameters. For wind speed, air density, and281

turbulence intensity, we use univariate Gaussian kernels. Since wind direction282
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is a circular variable, we use the Von Mises kernel, which is defined as in (8).283

Kν(θ
∗, θi) =

exp{ν cos(θ∗ − θi)}
2πI0(ν)

, (8)

where I0(·) is the modified Bessel function of order 0, and ν is the concentra-284

tion parameter. The parameters for all the kernels, namely λv, νθ, λρ, and285

λI are found using the direct plug-in (DPI) method [34, 35].286

Once the kernel parameters have been estimated, we estimate the coeffi-287

cients of the locally weighted polynomial regression models using (7), which288

are then plugged in to make a prediction f̂(x∗) as in (9).289

f̂(x∗) =
1

2

[
f̂1(ṽ

∗, θ∗, ρ∗) + f̂2(ṽ
∗, θ∗, I∗)

]
. (9)

4. Results and Discussions290

We test the performance of the YAMKmethod on the dataset described in291

Section 2. Two case studies are presented, one for each wind turbine (Turbine292

ID#: R80711 and R80721). We begin by describing the benchmarks, the293

evaluation procedure, then present the numerical results and analyses.294

4.1. Benchmarks295

We compare the predictive performance of the YAMK approach to a296

number of power curve modeling benchmarks, listed below as B1-B5:297

(B1) The Method of Bins (BINv,ρ) is a non-parametric approach for power298

curve modeling described in the IEC 61400-12-1 standard [36]. It discretizes299

the density-corrected wind speed domain into a number of bins, each with300

bin width of 0.5 m/s, and then takes the average of the power values within301

each bin as the estimated power, as expressed in (10).302

v̄k =
1

nk

nk∑
i=1

ṽik and P̄k =
1

nk

nk∑
i=1

P (v̄ik), (10)

where nk is the number of data points within the kth wind speed bin, while303

v̄k and P̄k are the average wind speed and power output within the kth bin,304

respectively. The prediction for a target input, x∗
s, is obtained as in (11).305

f̂(x∗
s) =

K∑
k=1

I(ṽ∗s ∈ Bk)P̄k, (11)
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where K is the total number of bins, I(·) is the indicator function, and Bk is306

the set of density-corrected wind speed values within the kth bin.307

(B2-B3) k nearest neighbors (kNN): kNN is widely used for power curve308

modeling [7]. It computes a local prediction at the s-th target input as the309

average of the outputs of its k-nearest neighbors, as expressed in (12).310

f̂(x∗
s) =

1

k

∑
xi∈N (x∗

s)

P (xi). (12)

We implement two variants of kNN. The first variant constructs a one-311

dimensional power curve by solely using the density-corrected wind speed312

as input, that is, in (12), we set x := {ṽ}. We call this method as kNNv,ρ313

because it takes wind speed and air density (through the density correction)314

as inputs. The second variant, which we call kNNv,ρ,γ directly integrates315

yaw misalignment γ as an additional input beside the density-corrected wind316

speed, that is, in (12), we set x := {ṽ, γ}.317

We implement kNN using the caret package in the statistical program-318

ming language R. The number of nearest neighbors, k, has a significant impact319

on the final predictive performance, and is selected by heuristically searching320

for the value of k that minimizes the out-of-sample error [37].321

(B4-B5) Additive Multivariate Kernel (AMK): This is the kernel-based322

regression method proposed by Lee et al. [23] and explained in Section323

3.1. Two variants of AMK are implemented. The first variant, denoted324

by AMKv,θ,ρ,I , is the same model proposed in [23], and uses x := {ṽ, θ, ρ, I}325

in (6). Its kernel structure comprises the addition of two trivariate kernels326

(one for {ṽ, θ, ρ}, and another for {ṽ, θ, I}), that are obtained as the product327

of three univariate kernels. This variant does not take yaw error into account,328

and unlike YAMK, computes the prediction as a local neighborhood average.329

The second variant, AMKv,θ,ρ,I,γ , augments this input set by γ, such that330

x := {ṽ, θ, ρ, I, γ} in (6). Its kernel structure comprises the addition of three331

trivariate kernels (one for {ṽ, θ, ρ}, one for {ṽ, θ, I}, and one for for {ṽ, θ,332

and γ}), that are formed by the product of three univariate kernels.333

4.2. Evaluation and Results334

For evaluation, we implement K-fold cross validation, where we set the335

number of folds K = 5, as is typical in machine learning practice. Predic-336

tions are evaluated using the normalized root mean squared error (NRMSE),337
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Table 1: 5-fold average NRMSE of power curve models for turbines R80711 and R80721.
Bold-faced values indicate best performance. Percentage improvements, denoted as %
IMP, are computed relative to the best-performing method.

Method
Number of Turbine 1 Turbine 2

Avg. % IMP
Inputs (R08711) (R80721)

BINv,ρ 2 2.585 2.260 2.423 32.13%
kNNv,ρ 2 2.078 1.713 1.896 13.27%
kNNv,ρ,γ 3 2.193 1.729 1.961 16.16%
AMKv,θ,ρ,I 4 1.827 1.570 1.699 3.21%
AMKv,θ,ρ,I,γ 5 1.890 1.588 1.739 5.46%
YAMKv,θ,ρ,I,γ 5 1.780 1.508 1.644 -

expressed as in (13). For Sk testing data points within the kth fold, the338

NRMSE of a power curve model M, is given by:339

NRMSE(M) =
1

K

K∑
k=1

[
100%

pr

√∑Sk

s=1[P (x∗
s)− f̂(x∗

s)]
2

Sk

]
, (13)

where Pr refers to the rated power. For both R80711 and R80721, the rated340

power is Pr = 2050 kW.341

Table 1 and Figure 5 show the averages and boxplots of the 5-fold NRMSE,342

respectively, across all methods for turbines R80711 and R80721. Looking343

at Table 1 and Figure 5, we can draw few key insights. First, one of the344

key findings is that a direct integration of yaw misalignment as an additional345

input to a multivariate power curve model does not lead to any improvement346

in the predictive performance (if any, it actually leads to a slight deteriora-347

tion). This is evident by how kNNv,ρ,γ and AMKv,θ,ρ,I,γ perform worse than348

kNNv,ρ, and AMKv,θ,ρ,I , respectively.349

The YAMK method, on the other hand, outperforms all of the bench-350

marks, with percentage improvements, on average, reaching up to 32.13%351

over the method of bins, and at least 3.21% relative to its closest com-352

petitor, AMKv,θ,ρ,I . The improvements appear to be more pronounced for353

turbine R80721 than R80711, which may be partly explained by the higher-354

on-average yaw errors for R80721 relative to R80711. Hence, the merit of355

leveraging the yaw-to-power correlations becomes more substantial.356
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Figure 5: Boxplots of the NRMSE values across the five folds, for different methods. The
numbers on top of the boxplots denote the median NRMSE value.

Figure 6 shows the estimated power curves for R80711 (left) and R80721357

(right) separated into two groups: Group 1 (red circles) represents power358

predictions for testing observations that had yaw errors below the median yaw359

misalignment value (5.17◦ for R80711 and 5.51◦ for R80721), while Group 2360

represents those for which the yaw errors were higher than the median values.361

In both R80711 and R80721, the predicted power curves for the first group’s362

data appear to dominate those for the second group, suggesting that YAMK363

effectively takes into account the influence of yaw errors on power predictions.364

The power gains (in %) of Group 1 relative to Group 2 are 1.73% and 3.18%365

for Turbines R80711 and R80721, respectively, which aligns with what has366

been shown in the literature [30].367

The distribution of the prediction errors of the wind power reveals the368

accuracy of the prediction approach, wherein a power curve model with poor369

accuracy will have its prediction errors distributed widely, as opposed to a370

sharper, concentrated distribution for an accurate power curve model. Figure371

7 shows the probability density distributions of the wind power prediction372

errors for three models: BINv,ρ, AMKv,θ,ρ,I.γ , and YAMKv,θ,ρ,I,γ . As we can373

observe, the distribution of the prediction errors from BINv,ρ is relatively374

spread out. AMK’s distribution of prediction errors is better than that of375

BINv,ρ highlighting the merit of integrating additional environmental vari-376

ables. YAMK’s error distribution is the sharpest among the three models,377

suggesting the importance of effectively integrating yaw as an additional op-378

erational input. This is further confirmed in Figure 7(b) and (d) which show379
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Figure 6: Final power curves for R80711 (left) and R80721 (right), separated into two
groups: Group 1 (red circles): yaw errors below the median yaw misalignment value (5.17◦

for R80711 and 5.51◦ for R80721); Group 2 (blue squares): yaw errors above the median
yaw misalignment value (5.17◦ for R80711 and 5.51◦ for R80721). Predicted power gains
(in %) between the two groups are 1.73% and 3.18% for R80711 and R80721, respectively.

the actual versus predicted wind power values from YAMKv,θ,ρ,I,γ , which380

closely match with the 45◦ line, indicating closeness to a perfect prediction.381

Finally, we would like to assess the performance of YAMK across different382

wind speed values. Figure 8 shows the median absolute error (scaled by383

Pr) versus the corresponding wind speed values (wind speed bins of 1 m/s384

are used), for four methods: YAMKv,θ,ρ,I,γ (black circles), AMKv,θ,ρ,I,γ (red385

triangles), kNNv,ρ (green squares), and BINv,ρ (blue diamonds). Errors from386

both turbines have been pooled to produce this analysis. Again, we can387

immediately see that YAMK significantly improves over all methods across388

almost all wind speed ranges. A closer look reveals that YAMK’s largest389

improvements over its closest competitor, AMK, manifests itself in the early390

and middle portions of Region II of a turbine’s power curve (between 3.5391

and 11 m/s). As the wind speed approaches the rated power region (Region392

III), the performance of YAMK gradually converges towards that of AMK393

(especially noticeable at wind speeds higher than 12 m/s). This finding is394

in line with the analysis in Figure 4 which suggests that the impact of yaw395

on power is more articulated for the early and middle portions of Region396

II in a turbine’s power curve. We also note that the relative improvements397

of YAMK over methods that do not take the yaw as an input in first place398

(namely, kNNv,ρ and BINv,ρ) are maintained across all wind speed values.399

The analysis above shows how our yaw-adjusted power curve is able to400
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Figure 7: (a) and (c): Residuals of wind power prediction for three models: BINv,ρ (red),
AMKv,θ,ρ,I,γ (green), and YAMKv,θ,ρ,I,γ (blue), on top of the histograms of YAMK’s
residuals. (b) and (d): Actual versus predicted wind power values (in kW) for the YAMK
method, lying closely to the 45◦ line suggesting high-quality predictive performance.

(1) leverage the AMK special kernel structure to scalably integrate several401

environmental parameters, and (2) effectively harness the yaw-to-power cor-402

relations in order to make significant predictive improvements, on top of those403

provided by the AMK and other nonparametric power curve models. Those404

results affirm our hypothesis: yaw is indeed a significant predictor of power,405

but its significance may only be statistically leveraged in a power curve model406

once conditioned on a neighborhood of environmental parameters.407

5. Conclusions408

In this paper, we proposed the notion of a “yaw-adjusted power curve.”409

Instead of directly adding yaw error as an additional input to a multivariate410
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Figure 8: Performance of YAMKv,θ,ρ,I,γ (black circles), AMKv,θ,ρ,I,γ (red triangles),
kNNv,ρ (green squares), and BINv,ρ (blue diamonds), in terms of median absolute error
(scaled by Pr). Points (A), (B), and (C) show the maximum differences in performance
of each method relative to YAMKv,θ,ρ,I,γ . Those correspond to percentage improvements
of 9.35% (point A), 28.3% (point B), and 44.3% (point C), respectively.

power curve model, which is found not to result in any competitive advan-411

tage, our approach learns the local yaw-to-power relationship conditional on412

an effective neighborhood of environmental variables defined using a special413

kernel structure which was recently proposed in the literature. Our experi-414

ments on a real-world dataset suggest that such approach results in signif-415

icant improvements, in terms of power output estimation accuracy, relative416

to several existing power curve models.417

We believe that the proposed yaw-adjusted power curve model can be418

valuable to several wind farm operations that primarily rely on wind power419

curves such as wind power prediction, asset monitoring and prognostics,420

maintenance scheduling, among others. In addition, such yaw-adjusted wind421

power curves can be highly relevant to the emerging area of yaw-based power422

production optimization in wind farms. Recent studies suggest that yaw-423

based production optimization can significantly improve power production.424

A pivotal assumption in such optimization routines, however, is the perfect425

knowledge about how yaw errors impact the power output of a wind turbine.426

Without a reliable method to accurately estimate the yaw-to-power response427

surface, as the one proposed herein, the power gains from such emerging428
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and promising efforts may be forfeited or largely compromised. An area of429

future research is to explore the impact of the improvement in power curve430

estimation from our model on such power production optimization routines.431

Another interesting line of future research is to consider turbine-to-turbine432

dependencies. It is known that a turbine’s yaw error does not only impact433

its power output, but also that of its neighbors in a wind farm. In this434

research, we have only considered a period of time when the turbines un-435

der study were upstream relative to the incoming winds. Future research436

may therefore look into modeling turbine dependencies when constructing437

the yaw-to-power relationship.438

Data Availability439

The wind turbine dataset used in this work has been made publicly440

available by Engie through its website and can be accessed at https://441
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