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Abstract

Accurate estimation of wind power curves using field data is instrumental to
several wind farm operations including productivity assessment, power out-
put estimation, operations and maintenance, among others. Existing meth-
ods for estimating wind power curves mainly rely on environmental variables
(e.g., wind speed, direction, density) as inputs to construct the wind-to-
power relationship. This paper attempts to integrate yaw misalignment as
an additional input to power curve models, constructing what is referred to
hereinafter as “yaw-adjusted wind power curves.” Our analysis shows that
integrating yaw misalignment into power curves is non-trivial, largely due to
the overwhelming impact of environmental variables (mainly wind speed) on
a turbine’s power output, which obscures the secondary effect of yaw errors on
power production. In response, we propose a local-regression-based method
which reconstructs the yaw-to-power relationship conditional on an effective
neighborhood of environmental variables. Tested on operational data from
two onshore wind turbines in France, our proposed approach achieves signif-
icant improvements, in terms of power estimation accuracy, relative to a set
of prevalent statistical- and machine-learning-based power curve models.

Keywords: Local Regression, Power Curve, Wind Energy, Yaw Error

1. Introduction

Wind power continues to be one of the fastest growing sources of clean
energy worldwide. Despite its rapid growth, the uncertainty associated with
generating electricity from wind remains a fundamental barrier that impedes
its large-scale penetration into modern-day power systems. This uncertainty
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stems from two main sources: (i) uncertainty in the wind resource, which
is, arguably, one of the most challenging meteorological processes to predict,
especially at the turbine level [1, 2]; and (ii) uncertainty in the wind-to-power
conversion process, i.e. the conversion of the hub-height wind conditions ex-
perienced by a wind turbine into power output [3, 4, 5]. This work focuses on
the latter, i.e., to develop accurate models for turbine-specific power output
estimation. In the wind energy industry, an accurate estimation of a tur-
bine’s power production is important to several key wind farm operations,
including performance assessment [6, 7|, power output prediction [8, 9], asset
monitoring and prognostics [10, 11], and maintenance scheduling [12, 13].

Theoretically, the wind power, P, produced by a wind turbine is expressed
as in (1), where p denotes the air density, A, is the rotor swept area, v is
the hub-height wind speed, and C), is the power coefficient, which, in turn,
depends on the tip speed ratio A and the blade pitch angle 5.

P = %pAwC'p()\, B)v®. (1)

From (1), it is clear that the power production of a wind turbine is primarily
dependent on wind speed, as evident by the cubic speed-to-power relation-
ship, but also on other environmental variables such as air density. Moreover,
(1) assumes that the turbine’s rotor plane is perfectly perpendicular to the
wind flow. In reality, this perfect alignment seldom happens, and the power
produced by a wind turbine is further dependent on the yaw error (or mis-
alignment), denoted hereinafter by ~ [14].

In practice, the actual wind-to-power conversion process, however, does
not fully adhere to the physical relationship in (1), but instead, follows the so-
called “power curve”, which is typically defined as the functional mapping
relating the hub-height wind speed with the associated wind power, and
comprises four main regions, as shown in Figure 1(a). In the first region, the
turbine barely produces any power, as the wind speed is less than the so-
called cut-in speed, voyp.in- In modern-day wind turbines, cut-in speeds range
between 3 m/s to 5 m/s. In the second region, the power output rapidly
increases, first in a convex-shaped pattern, which then turns into a concave-
shaped pattern. The wind speed in this region ranges between vy, and the
rated speed, denoted in Figure 1(a) by v,44eq, which refers to the minimum
wind speed at which the maximal turbine capacity, P,geq, is reached. This
second region is further divided into two sub-regions: Regions II-a (Maximum
power point tracking or MPPT control) and II-b (Fixed speed control). In
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Figure 1: (a) Power curve of a typical wind turbine, with four regions defined by veut.in,
Vrated; and Veut-ofr-; (b) Actual wind speed versus power for a typical wind turbine.

the former, both the power output and the rotor speed are within their
permissible operational limits, while in the latter, the rotor speed operates
at its maximum limit, until the turbine reaches its rated power, P,4q. In the
third region, the power produced is maintained at the rated power level for
damage-mitigating purposes. This rated power is maintained until the cut-
off speed, veyrof, is reached, after which the turbine shuts down to protect
its components and structures from extreme wind conditions (Region IV).

In practice, estimating a turbine’s power curve using field data is chal-
lenging, because the actual power curve is rarely deterministic as the one
displayed in Figure 1(a). Instead, as shown in Figure 1(b), it is contam-
inated by large uncertainties which are attributed to multiple sources that
can be broadly categorized into environmental and operational factors. Envi-
ronmental factors refer to the impact of additional weather variables (other
than wind speed) that may impact a turbine’s power output, such as air
density, wind direction, turbulence, among others. Operational factors re-
fer to the parameters related to the response of the turbine to its external
environment, such as yaw errors, wake effects, aging and degradation, and
measurement noise. An accurate power curve estimation should therefore
seek to construct a functional relationship which accurately links the power
output of a turbine to a set of environmental and operational factors, while
taking into account the observational noise [4].

Towards that end, there is an extensive literature on estimating power
curves using field data. Broadly, those efforts can be classified into paramet-
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ric versus nonparametric approaches [4, 15]. Parametric power curve models
assume a pre-determined functional form with a fixed set of parameters.
Prior efforts in parametric power curve modeling include but are not limited
to piecewise linear models [16], polynomial regression models [3], and logistic
functions [7]. Nonparametric models, on the other hand, impose little as-
sumptions about the functional form of the input-output relationship. Non-
parametric power curve modeling approaches include copula-based methods
[17], cubic splines [18], artificial neural networks [19], Gaussian Processes
[11], and k-nearest neighbors (k-NN) [7].

To date, the large majority of the literature, whether using parametric or
nonparametric methods, primarily uses wind speed as the sole input to wind
power curve models [20]. The main limitation of those univariate models is
that they largely overlook the impact of other environmental variables apart
from wind speed. Recent efforts have investigated the potential of integrating
additional environmental variables into power curve models [21, 22, 23, 24],
such as air density, direction, and turbulence intensity. Those efforts con-
cluded that multivariate power curve models, i.e. those that consider the
impact of several environmental variables, are superior, in terms of estima-
tion accuracy, to those that rely on wind speed as the sole input.

Little research, however, has been conducted to explore the merit of inte-
grating operational variables into power curve modeling. Barring few works
which studied the integration of rotor speed and pitch angle in power curve
estimation [25, 26], our work, up to our knowledge, constitutes the first
attempt to formally integrate yaw misalignment in estimating wind power
curves, yielding what we refer to hereinafter as “yaw-adjusted power curves.”

We summarize the main contributions of this work as follows:

o We investigate the impact of yaw errors on power using field data. We
discover that, counter-intuitively, a direct integration of yaw misalign-
ment as an additional regressor into a multivariate power curve model
does not improve the power curve estimation accuracy. We postulate
that this is mainly due to the overwhelming impact of the environmen-
tal conditions (mainly wind speed) on a turbine’s power output, which
obscures the secondary effect of yaw errors on a the power output,
and prevents classical statistical models from leveraging such finer-scale
yaw-to-power correlations for improved power output estimation.

e Motivated by this observation, we propose a power curve estimation
method based on local regression which reconstructs the yaw-to-power

4
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relationship conditional on an effective neighborhood of environmental
variables. We show that this approach in integrating yaw misalignment
into wind power curves unearths its underlying impact on power gen-
eration, therefore enabling the power curve model to leverage it as a
significant predictor of wind power production.

e We perform a series of extensive tests using real-world data from a wind
farm in France to demonstrate the merit of our proposed approach rel-
ative to prevalent statistical- and machine-learning-based power curve
models, eventually concluding that significant improvements in power
estimation accuracy, ranging from 3.21% to 32.13% are realizable.

2. Data Description and Analysis

The data used herein comprises 10-min measurements collected in 2013
from the La Haute Borne-Vaudeville-le-Haut wind farm in north eastern
France. The wind farm comprises four wind turbines, as shown in Figure
2, and is operated by Engie Green (a subsidiary of Engie), which provides
open access to its data [27]. The turbines have a rated capacity of 2050
kW, 80-m hub height, and rotor diameter of 82 m. Of interest to us are the
following SCADA variables: wind speed v (m/s), wind power P (kW), wind
direction @ (°), nacelle angle ¢ (°), and air temperature 7' (K). Note that the
wind direction and nacelle angle measurements have been pre-corrected in
the dataset (we used the corrected versions of those variables) since SCADA
measurements collected behind the turbine’s rotor can be fairly noisy [28].
We also obtain co-located hourly air pressure measurements from Meteoblue
[29], which we linearly interpolate to 10-min resolution. We filter the com-
bined 10-min dataset by removing outliers (e.g., when P is negative or smaller
than a certain threshold for a given wind speed).

The focus of our analysis is on two wind turbines (Turbine ID#: R80711
and R80721) for the period of September to December 2013. The turbines
and time coverage were selected so that the turbines under study are up-
stream relative to the prevailing wind, which is found to be dominantly south
westerly during this time of the year—See Figure 2.

We also compute two additional environmental variables: air density,
denoted by p and determined as in (2), and turbulence intensity, denoted by
I and computed as the ratio of the 10-min standard deviation of the wind
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Figure 2: Map of the La Haute Borne-Vaudevulle-le-Haut wind farm operated by Engie.
Turbine locations are depicted by red stars. Numbers on arrows denote inter-turbine
distances. The top right inlet shows the wind rose plot at R80711, indicating a dominant
south westerly wind during that time of the year.

speed (denoted by 0,) to its 10-min average v, such that I = 2=,

288.15 B

— 1225
P T X 10133

(2)

where B denotes the interpolated 10-min air pressure in mbar.

In constructing power curves, the wind energy industry utilizes an air
density correction, wherein the raw 10-min wind speed v is transformed to
its air-density-corrected counterpart v, through the following expression:

. po\?
veu (1.225) ‘

The yaw misalignment, v, is computed as the absolute difference between
the corrected wind direction €, and the corrected nacelle angle ¢. The large
majority of data points (96.16%) are found to have yaw errors in the [0°, 20°]
interval, as shown in Figure 3a. Figure 3b shows a scatter plot of wind speeds,
yaw errors, and power measurements, color-coded with the yaw misalignment
values (only for v <= 20°). Looking at Figure 3, there does not seem to

(3)
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Figure 3: (a): Histogram of yaw misalignment values for turbine R80711. (b): 3D scatter
plot of wind speed, yaw misalignment, and power for turbine R80711, color-coded by the
yaw misalignment values (v < 20° is considered).

be stark negative correlations between the yaw error and the power output
(—0.24 on a Pearson’s correlation scale).

Based on Figure 3, one may mistakenly rush to the conclusion that yaw
errors do not have a notable impact on the power output and should perhaps
be dropped from power curve modeling. We conjecture, however, that this
mainly attributed to the overwhelming impact of environmental variables
(largely wind speed) on wind power, which obscures the secondary effect of
yaw error on power output. Literature suggests that the power gain (or loss)
due to yaw misalignment is typically in the ~0-3% range and is a function
of wind speed [30]. This means that slight changes in wind speed can easily
“mask” the power variations caused by yaw errors. For example, if both
wind speed and yaw error change by 1%, then the variation in power output
P due to the change in wind speed alone will be much larger than that due
to yaw error. This confounding effect statistically obscures the underlying
impact of yaw errors on the turbine’s power output.

To reveal the impact of yaw errors on the power output, we have to
“marginalize” the effect of wind speed on power. To do so, we partition the
wind speed domain into narrow intervals of 0.1 m/s, and examine the yaw-
to-power relationship within each of those wind speed intervals. Within each
interval, the variation in wind speed is small, thereby allowing us to “zoom
in” and explore potential yaw-to-power correlations. Figure 4(a-c) shows the
results of this partitioning exercise for three selected wind speed intervals:
[4.00,4.10] m/s, [5.60,5.70] m/s, and [7.30,7.40] m/s. Within each wind
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Figure 4: The yaw-to-power relationship for turbine R80711 within wind speed partitions
of (a): [4.00,4.10] m/s, (b): [5.60,5.70] m/s, and (c): [7.30,7.40] m/s, showing a strong

negative linear association (yaw errors binned into 0.5° intervals) (d): R? values of the

yaw-to-power linear fits for all wind speed partitions between 3.00 and 10.00 m/s.

speed internval, the data suggest strong negative linear association between
yaw errors and power output (with R? mostly in the 0.7-0.9 range). Figure
4d shows the R? values over all wind speed intervals considered.

The analysis suggests that yaw error has a notable impact on power out-
put, particularly in the early and middle portions of Region II in a turbine’s
power curve. However, such impact is only noticeably revealed when condi-
tioned on an effective neighborhood of environmental variables, or in other
words, once the impact of other environmental variables (primarily wind
speed) has been marginalized. A natural follow up question is how can we
leverage such yaw-to-power correlations in estimating a turbine’s power curve
without relying on arbitrary partitions like those assumed in Figure 4. We
address this question in Section 3 by proposing a neighborhood-based ap-
proach for yaw-adjusted power curve estimation.
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3. A Local Regression Model for Yaw-adjusted Wind Power Curves

Our yaw-adjusted power curve model builds on a recently proposed multi-
variate power curve method called “the additive multivariate kernel” (AMK)
[23]. This section therefore starts with a brief overview of the AMK method
and then proceeds to show how we extend it using a local regression formu-
lation in order to construct yaw-adjusted wind power curves.

3.1. Overview of The Additive Multivariate Kernel (AMK) Method

Let x = {z1, 29, ...,7,} be a set of explanatory variables which will be
used as inputs to the power curve model. For instance, x can contain wind
speed, direction, air density, among others. Broadly speaking, our power
curve estimation task is to learn a functional mapping f : R? — R which
relates x to the power output P, given a set of training data denoted by
D = {x!, P(x;)}",. The estimated response surface, f, constitutes the final
power curve which will be used to make turbine-specific power predictions.

To integrate additional environmental variables beside wind speed (e.g.,
wind direction, air density) into wind power curves, kernel regression (KR)
has been proposed in the past, due to its simplicity and attractive local
modeling capabilities [31]. KR is essentially a nonparametric local regression
model which uses the Nadaraya-Watson estimator [32], expressed in (4), to
obtain a localized, yet smooth estimate of f(x*) at a target input x*.

f(X*) _ Z?:l K(X*7 Xz)P(Xz)

i K (x, xq)
where K (x*,x;) is a kernel function, which, in essence, is a measure of similar-
ity between the target input x* and the ith training data point x;, thereby

dictating the contribution of the latter in determining f(x*). A popular
choice for K(x*,x;) is the multivariate Gaussian kernel defined as in (5).

. LT . LT 1|z — 27|
K(X’Xi)—HK(%‘@j)—HeXP 5T a2 ) (5)
J

J=1 J=1

(4)

where z;; is the ith observation of the variable x;, while z} is the value of
the jth variable in x*. The set of parameters, A, ..., A\, dictate the width
of the univariate kernels, or in other words, the size of the effective local
neighborhood, whereas || - || denotes the Euclidean distance.



232

233

234

235

236

237

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

261

262

263

264

KR has been successfully used to model bivariate power curves, with
wind speed and direction as inputs [31]. If more variables beyond speed and
direction are introduced, the multiplicative form of the kernel in (5) can cause
the KR method to run into the so-called “curse of dimensionality,” wherein
the number of data points within each high-dimensional neighborhood does
not allow for a reliable (or in some cases, even feasible) estimation of f(x*).
To remedy this limitation, the Additive Multivariate Kernel (AMK) method
was proposed by Lee et al. [23] to integrate several environmental variables
(in their paper, up to seven variables) like wind speed, direction, air density
into a multivariate power curve model.

Instead of relying on the multiplicative form of (4), AMK proposes to
compute f(x*) as in (6).

1

f(x7) = —2 fi(@y, 25, 23) + o+ fea(a], 25, 77) | (6)

wherein fi (%, 23, 23), ..., fq_g(xf,xg,x;) are defined as in (4) using three-
dimensional Gaussian kernels. AMK chooses to always fix the two variables
21 and x5 in each of the multiplicative kernels as the wind speed and direction
respectively, such that z; = v and 9 = 0, while z3, ..., , denote additional
environmental variables such as density, humidity, or turbulence intensity.
Using the formulation in (6), AMK still uses multiplicative kernels to cap-
ture interactions in the input space, but restricts them to be the product of
three univariate kernels in order to ensure scalability in higher dimensions.
As a result, AMK was shown to yield significant improvements in estimat-
ing turbine-specific power relative to univariate and bivariate power curve
models. Readers can refer to [23, 33] for more details of the AMK method.

3.2. Towards Yaw-adjusted Power Curves: The YAMK Method

Our method, the Yaw-adjusted Additive Multivariate Kernel, or in short
YAMK, extends the AMK modeling framework to effectively integrate yaw
misalignment into a multivariate wind power curve. The idea behind YAMK
is to construct localized yaw-to-power regression models within the local
neighborhoods defined by AMK. This formulation is inspired by the prelim-
inary analysis in Section 2 wherein the effect of v on P is only unearthed
once the impact of other environmental conditions has been marginalized.

In our work, we let x := {0,0, p, [}, that is, the set of all environmental
variables. YAMK starts with a similar formulation to that of AMK expressed

10
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in (6). The fundamental difference between YAMK and AMK, however, lies
in how fi, ..., f, are defined. Instead of relying on locally weighted averages as
in (4), YAMK defines them as locally weighted polynomial regression models
which take the yaw misalignment, ~, as a direct input. That is, fj(x*), v
j=1,...,q— 2 is defined as in (7).

fi(x) = g(x"T(GTKG)'GTKP, (7)

where P is the nx 1 vector of power outputs, defined as P = { P(x1), ..., P(x,)}.
We define g(x)” := (1,9,7), while G is the n x 3 regression matrix whose ith
row corresponds to g(x;)?. The n x n diagonal matrix K contains the ker-
nel weights obtained via the AMK kernel structure. Including v as input to
G is motivated by its unique importance in estimating power output, while
the inclusion of v allows us to capture its localized impact on power output,
conditional on the environmental conditions within its neighborhood.

Algorithm 1 The YAMK method for Power Curve Modeling

1: Input training data D = {0y, 0;, pi, I;, vi, P},

2: Input target inputs D' = {o%, 0%, p*, I, v: )5,

3: Determine the kernel parameters \,, v, A,, and Az.

4: for se{l,..,5} do

5: Construct Ky and Ko using the AMK kernel weights, such that their
ith diagonal entries are computed as K (0%, 0;) K (0%, 0;) K (p%, p;) and
K (0%, 0;)K(0%,0,)K(p*, I;), respectively.

6: Set g(x%) = {1,0%,~*}, and G as the correspondent n x 3 training
input matrix, for which the ith row is defined as {1, v;,~;}.

7 Estimate fi(x*) and fo(x*) using (7).

8: Predict at xt = {05, 0%, pk, I7,~5} using (9).

9: end for A
10: return  the final yaw-adjusted power curve, defined by P =

{f (00,02, 2, 15 72) Y

Algorithm 1 summarizes the framework of the YAMK method. At our
disposal is a training dataset, denoted as D" = {x;,7;, P(x;)}";, and a set
of target inputs, denoted by D* = {x*,~v*}2_,, for which a set of predictions
are needed, {f(x:,7*)}5_,. For each variable in x, we first find the set of
univariate kernel bandwidth parameters. For wind speed, air density, and

turbulence intensity, we use univariate Gaussian kernels. Since wind direction

11



283

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

is a circular variable, we use the Von Mises kernel, which is defined as in (8).

where Iy(+) is the modified Bessel function of order 0, and v is the concentra-
tion parameter. The parameters for all the kernels, namely \,, vy, A,, and
As are found using the direct plug-in (DPI) method [34, 35].

Once the kernel parameters have been estimated, we estimate the coeffi-
cients of the locally weighted polynomial regression models using (7), which
are then plugged in to make a prediction f (x*) as in (9).

P

f(x*):% R 0%, o) + fole, 07, 1)) . ()

4. Results and Discussions

We test the performance of the YAMK method on the dataset described in
Section 2. Two case studies are presented, one for each wind turbine (Turbine
ID#: R80711 and R80721). We begin by describing the benchmarks, the
evaluation procedure, then present the numerical results and analyses.

4.1. Benchmarks

We compare the predictive performance of the YAMK approach to a
number of power curve modeling benchmarks, listed below as B1-B5:

(B1) The Method of Bins (BIN, ,) is a non-parametric approach for power
curve modeling described in the IEC 61400-12-1 standard [36]. It discretizes
the density-corrected wind speed domain into a number of bins, each with
bin width of 0.5 m/s, and then takes the average of the power values within
each bin as the estimated power, as expressed in (10).

1 & I e

Vp = — QNJZ]C and Pk = — P Vik s 10

> 3 pla (10

where ny is the number of data points within the kth wind speed bin, while

U, and Py, are the average wind speed and power output within the kth bin,
respectively. The prediction for a target input, x?, is obtained as in (11).

) K
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where [ is the total number of bins, I(+) is the indicator function, and By, is
the set of density-corrected wind speed values within the kth bin.

(B2-B3) k nearest neighbors (kNN): kNN is widely used for power curve
modeling [7]. It computes a local prediction at the s-th target input as the
average of the outputs of its k-nearest neighbors, as expressed in (12).

fe=1 S P (12)

x; EN(x%)

We implement two variants of kNN. The first variant constructs a one-
dimensional power curve by solely using the density-corrected wind speed
as input, that is, in (12), we set x := {0}. We call this method as kNN, ,
because it takes wind speed and air density (through the density correction)
as inputs. The second variant, which we call kNN, ,. directly integrates
yaw misalignment v as an additional input beside the density-corrected wind
speed, that is, in (12), we set x := {0, v}.

We implement kNN using the caret package in the statistical program-
ming language R. The number of nearest neighbors, k, has a significant impact
on the final predictive performance, and is selected by heuristically searching
for the value of k£ that minimizes the out-of-sample error [37].

(B4-B5) Additive Multivariate Kernel (AMK): This is the kernel-based
regression method proposed by Lee et al. [23] and explained in Section
3.1. Two variants of AMK are implemented. The first variant, denoted
by AMK, g, 1, is the same model proposed in [23], and uses x := {7,6,p, [ }
in (6). Its kernel structure comprises the addition of two trivariate kernels
(one for {9, 0, p}, and another for {7, 0, I}), that are obtained as the product
of three univariate kernels. This variant does not take yaw error into account,
and unlike YAMK, computes the prediction as a local neighborhood average.
The second variant, AMK, 4,7, augments this input set by v, such that
x = {0,0,p,1,7} in (6). Its kernel structure comprises the addition of three
trivariate kernels (one for {v, 0, p}, one for {v, 6, I}, and one for for {7, 0,
and v}), that are formed by the product of three univariate kernels.

4.2. FEvaluation and Results

For evaluation, we implement K-fold cross validation, where we set the
number of folds K = 5, as is typical in machine learning practice. Predic-
tions are evaluated using the normalized root mean squared error (NRMSE),
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Table 1: 5-fold average NRMSE of power curve models for turbines R80711 and R80721.
Bold-faced values indicate best performance. Percentage improvements, denoted as %
IMP, are computed relative to the best-performing method.

Number of | Turbine 1 | Turbine 2
Method Iputs | (RO8711) | (R8o721) | Ve | 70 IMP
BIN, , 2 2.585 2.260 2423 | 32.13%
kNN, , 2 2.078 1.713 1.896 | 13.27%
kNN, 5~ 3 2.193 1.729 1.961 | 16.16%
AMK, 0,1 4 1.827 1.570 1.699 | 3.21%
AMK,. 0,514 5 1.890 1.588 1.739 | 5.46%
YAMK, 4.,/ 5 1.780 1.508 | 1.644 -

expressed as in (13). For Sy testing data points within the kth fold, the
NRMSE of a power curve model M, is given by:

NRMSE(M) = 100% \/ Zt = TP (13)

where P, refers to the rated power. For both R80711 and R80721, the rated
power is P, = 2050 kW.

Table 1 and Figure 5 show the averages and boxplots of the 5-fold NRMSE,
respectively, across all methods for turbines R80711 and R80721. Looking
at Table 1 and Figure 5, we can draw few key insights. First, one of the
key findings is that a direct integration of yaw misalignment as an additional
input to a multivariate power curve model does not lead to any improvement
in the predictive performance (if any, it actually leads to a slight deteriora-
tion). This is evident by how kNN, ,, and AMK, ¢ , - perform worse than
kNN, ,, and AMK, g , 1, respectively.

The YAMK method, on the other hand, outperforms all of the bench-
marks, with percentage improvements, on average, reaching up to 32.13%
over the method of bins, and at least 3.21% relative to its closest com-
petitor, AMK, 4 ,;. The improvements appear to be more pronounced for
turbine R80721 than R80711, which may be partly explained by the higher-
on-average yaw errors for R80721 relative to R80711. Hence, the merit of
leveraging the yaw-to-power correlations becomes more substantial.
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Figure 5: Boxplots of the NRMSE values across the five folds, for different methods. The
numbers on top of the boxplots denote the median NRMSE value.

Figure 6 shows the estimated power curves for R80711 (left) and R80721
(right) separated into two groups: Group 1 (red circles) represents power
predictions for testing observations that had yaw errors below the median yaw
misalignment value (5.17° for R80711 and 5.51° for R80721), while Group 2
represents those for which the yaw errors were higher than the median values.
In both R80711 and R80721, the predicted power curves for the first group’s
data appear to dominate those for the second group, suggesting that YAMK
effectively takes into account the influence of yaw errors on power predictions.
The power gains (in %) of Group 1 relative to Group 2 are 1.73% and 3.18%
for Turbines R80711 and R80721, respectively, which aligns with what has
been shown in the literature [30].

The distribution of the prediction errors of the wind power reveals the
accuracy of the prediction approach, wherein a power curve model with poor
accuracy will have its prediction errors distributed widely, as opposed to a
sharper, concentrated distribution for an accurate power curve model. Figure
7 shows the probability density distributions of the wind power prediction
errors for three models: BIN, ,, AMK,,7~, and YAMK, g ,7-. As we can
observe, the distribution of the prediction errors from BIN, , is relatively
spread out. AMK’s distribution of prediction errors is better than that of
BIN, , highlighting the merit of integrating additional environmental vari-
ables. YAMK’s error distribution is the sharpest among the three models,
suggesting the importance of effectively integrating yaw as an additional op-
erational input. This is further confirmed in Figure 7(b) and (d) which show

15



380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

R80711 R80721

500 1000 1500 2000
1000 1500 2000

Wind Power (kW)

500

0
0

0 5 10 15 20 0 5 10 15 20
Wind Speed (m/s) Wind Speed (m/s)

Figure 6: Final power curves for R80711 (left) and R80721 (right), separated into two
groups: Group 1 (red circles): yaw errors below the median yaw misalignment value (5.17°
for R80711 and 5.51° for R80721); Group 2 (blue squares): yaw errors above the median
yaw misalignment value (5.17° for R80711 and 5.51° for R80721). Predicted power gains
(in %) between the two groups are 1.73% and 3.18% for R80711 and R80721, respectively.

the actual versus predicted wind power values from YAMK, g , ., which
closely match with the 45° line, indicating closeness to a perfect prediction.
Finally, we would like to assess the performance of YAMK across different
wind speed values. Figure 8 shows the median absolute error (scaled by
P,) versus the corresponding wind speed values (wind speed bins of 1 m/s
are used), for four methods: YAMK, 4, (black circles), AMK, ¢, (red
triangles), kNN, , (green squares), and BIN,, , (blue diamonds). Errors from
both turbines have been pooled to produce this analysis. Again, we can
immediately see that YAMK significantly improves over all methods across
almost all wind speed ranges. A closer look reveals that YAMK’s largest
improvements over its closest competitor, AMK, manifests itself in the early
and middle portions of Region II of a turbine’s power curve (between 3.5
and 11 m/s). As the wind speed approaches the rated power region (Region
I1I), the performance of YAMK gradually converges towards that of AMK
(especially noticeable at wind speeds higher than 12 m/s). This finding is
in line with the analysis in Figure 4 which suggests that the impact of yaw
on power is more articulated for the early and middle portions of Region
IT in a turbine’s power curve. We also note that the relative improvements
of YAMK over methods that do not take the yaw as an input in first place
(namely, kNN, , and BIN, ,) are maintained across all wind speed values.
The analysis above shows how our yaw-adjusted power curve is able to
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Figure 7: (a) and (c): Residuals of wind power prediction for three models: BIN,, , (red),
AMK, 9.1 (green), and YAMK, ¢, 1~ (blue), on top of the histograms of YAMK’s
residuals. (b) and (d): Actual versus predicted wind power values (in kW) for the YAMK
method, lying closely to the 45° line suggesting high-quality predictive performance.

(1) leverage the AMK special kernel structure to scalably integrate several
environmental parameters, and (2) effectively harness the yaw-to-power cor-
relations in order to make significant predictive improvements, on top of those
provided by the AMK and other nonparametric power curve models. Those
results affirm our hypothesis: yaw is indeed a significant predictor of power,
but its significance may only be statistically leveraged in a power curve model
once conditioned on a neighborhood of environmental parameters.

5. Conclusions
113

In this paper, we proposed the notion of a “yaw-adjusted power curve.”
Instead of directly adding yaw error as an additional input to a multivariate
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Figure 8: Performance of YAMK, g , 1~ (black circles), AMK, g, r~ (red triangles),
kNN, , (green squares), and BIN, , (blue diamonds), in terms of median absolute error
(scaled by P.). Points (A), (B), and (C) show the maximum differences in performance
of each method relative to YAMK, ¢ , 1 4. Those correspond to percentage improvements
of 9.35% (point A), 28.3% (point B), and 44.3% (point C), respectively.

power curve model, which is found not to result in any competitive advan-
tage, our approach learns the local yaw-to-power relationship conditional on
an effective neighborhood of environmental variables defined using a special
kernel structure which was recently proposed in the literature. Our experi-
ments on a real-world dataset suggest that such approach results in signif-
icant improvements, in terms of power output estimation accuracy, relative
to several existing power curve models.

We believe that the proposed yaw-adjusted power curve model can be
valuable to several wind farm operations that primarily rely on wind power
curves such as wind power prediction, asset monitoring and prognostics,
maintenance scheduling, among others. In addition, such yaw-adjusted wind
power curves can be highly relevant to the emerging area of yaw-based power
production optimization in wind farms. Recent studies suggest that yaw-
based production optimization can significantly improve power production.
A pivotal assumption in such optimization routines, however, is the perfect
knowledge about how yaw errors impact the power output of a wind turbine.
Without a reliable method to accurately estimate the yaw-to-power response
surface, as the one proposed herein, the power gains from such emerging
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and promising efforts may be forfeited or largely compromised. An area of
future research is to explore the impact of the improvement in power curve
estimation from our model on such power production optimization routines.

Another interesting line of future research is to consider turbine-to-turbine
dependencies. It is known that a turbine’s yaw error does not only impact
its power output, but also that of its neighbors in a wind farm. In this
research, we have only considered a period of time when the turbines un-
der study were upstream relative to the incoming winds. Future research
may therefore look into modeling turbine dependencies when constructing
the yaw-to-power relationship.
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