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On the Separation of Correlation-Assisted Sum

Capacities of Multiple Access Channels

Akshay Seshadri , Felix Leditzky , Vikesh Siddhu , and Graeme Smith

AbstractÐ The capacity of a channel characterizes the maxi-
mum rate at which information can be transmitted through the
channel asymptotically faithfully. For a channel with multiple
senders and a single receiver, computing its sum capacity is
possible in theory, but challenging in practice because of the
nonconvex optimization involved. To address this challenge,
we investigate three topics in our study. In the first part, we study
the sum capacity of a family of multiple access channels (MACs)
obtained from nonlocal games. For any MAC in this family,
we obtain an upper bound on the sum rate that depends only
on the properties of the game when allowing assistance from an
arbitrary set of correlations between the senders. This approach
can be used to prove separations between sum capacities when
the senders are allowed to share different sets of correlations,
such as classical, quantum or no-signalling correlations. We also
construct a specific nonlocal game to show that the approach of
bounding the sum capacity by relaxing the nonconvex optimiza-
tion can give arbitrarily loose bounds. Owing to this result, in the
second part, we study algorithms for non-convex optimization of
a class of functions we call Lipschitz-like functions. This class
includes entropic quantities, and hence these results may be of
independent interest in information theory. Subsequently, in the
third part, we show that one can use these techniques to compute
the sum capacity of an arbitrary two-sender MACs to a fixed
additive precision in quasi-polynomial time. We showcase our
method by efficiently computing the sum capacity of a family
of two-sender MACs for which one of the input alphabets has
size two. Furthermore, we demonstrate with an example that our
algorithm may compute the sum capacity to a higher precision
than using the convex relaxation.
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I. INTRODUCTION

S
TUDYING information transmission over a noisy channel

is of fundamental importance in communication theory.

In his landmark paper, Shannon studied the rate of trans-

mission over a channel having a single sender and a sin-

gle receiver [2]. The maximum number of bits per use of

channel that can be transmitted through the channel with

asymptotically vanishing error is known as the capacity of the

channel [3]. Shannon showed that the channel capacity can

be calculated by maximizing the mutual information between

the input and the output of the channel over all possible input

probability distributions [2], [3]. This is a convex optimiza-

tion problem that can be solved using standard optimization

techniques [4] or more specialized methods like the Arimoto-

Blahut algorithm [5], [6].

The importance of Shannon’s work was soon recognized,

and consequently, Shannon’s ideas were generalized in various

ways. In this study, we focus on one such generalization,

namely a channel that has multiple senders and a single

receiver, commonly known as a multiple access channel

(MAC). For such a channel, a tuple of rates is called achievable

if each sender can send information through their respective

input at their respective rate such that the total error of trans-

mission vanishes asymptotically. The set of all such achievable

rate tuples is called the capacity region, and Ahlswede [7] and

Liao [8] were the first to give an entropic characterization of it.

The total rate at which asymptotically error-free transmission

through a MAC is possible is called the sum capacity of the

MAC.

While there has been much research on MACs since the

work of Ahlswede & Liao, there are no efficient (polynomial

time) algorithms to date that compute the sum capacity of

a MAC. This difficulty stems from the fact that, unlike the

computation of the capacity of a point-to-point channel, the

optimization involved in computing the sum capacity is non-

convex [9], [10]. Proposals to solve this nonconvex problem

efficiently were found to be unsuitable. On the contrary, it was

recently shown that computing the sum capacity to a precision

that scales inversely with the cube of the input alphabet

size is an NP-hard problem [11]. Therefore, one should not

expect efficient general-purpose algorithms for computing the

capacity region or the sum capacity of a MAC.

Since computing the sum capacity of a MAC is a hard

nonconvex problem, a common approach that is adopted to
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circumvent this optimization is to relax the optimization to

obtain a convex problem. The relaxation gives an upper bound

on the sum capacity which can be efficiently computed. Such

an approach was adopted, for example, by Calvo et al. [9].

Since we generally expect that there are no efficient algorithms

to compute the sum capacity, quantifying the performance of

such an upper bound becomes important and essential.

We undertake this task of elucidating the performance of

the upper bound on sum capacity obtained through a convex

relaxation. For this purpose, we consider MACs that are con-

structed from nonlocal games. Such MACs were introduced

by Leditzky et al. [11] based on previous work of Quek &

Shor [12], and subsequently generalized in [13]. We present

an analytical upper bound on the sum capacity of such MACs.

Our bound extends to cases where the senders of these MACs

can share arbitrary correlations, such as classical, quantum,

and no-signalling correlations. Our upper bound depends only

on the number of question tuples in the nonlocal game and

the maximum winning probability of the game when the

questions are drawn uniformly and answers are obtained using

the strategies allowed by the shared correlations. Using these

bounds, we obtain separations between the sum rate obtained

from using different sets of correlations. These separations

help distinguish the ability of these correlations to assist

communication in MAC coding scenarios. In particular, our

bound gives a separation between the sum capacity and the

entanglement-assisted sum rate for the MAC obtained from

the magic square game. The separation found here is roughly

5 times larger than the previously reported 1% separation

in [11]. Furthermore, using our bounds, we show how prior

bounds on the sum capacity obtained using convex relax-

ation [9] can be arbitrarily loose.

Our result highlights the need to find better techniques

to bound the sum capacity from above. We take a step in

this direction by showing that computing the sum capacity is

equivalent to optimizing a Lipschitz-like function. Thereupon,

we present some algorithms for optimization of Lipschitz-like

functions, which may be of independent interest. We show that

these algorithms can compute the sum capacity of two-sender

MACs to a given additive precision in quasi-polynomial time.

Instead of a fixed precision, one of our algorithms can also

accept a fixed number of iterations as an input and output an

upper bound on the sum capacity. In particular, for a specific

family of two-sender MACs that includes binary MACs, the

number of iterations required for convergence grows at most

polynomially with the dimensions and inverse precision. Thus,

while it might not be possible to efficiently compute the sum

capacity for an arbitrary MAC in practice, we can nevertheless

efficiently compute the sum capacity for a large family of

MACs.

A. Organization of the Paper

We organize the paper in three parts, each one presenting

different contributions of this work that may be of independent

interest. Focus of the first part (Sec. III) is MACs obtained

from non-local games. We investigate the advantages of shar-

ing correlations between various senders of a nonlocal games

MAC. In Sec. III-A, we obtain an upper bound on the sum

capacity of MACs constructed from nonlocal games, and show

separations between different sets of correlations. In Sec. III-B

we accomplish another primary goal of our study, showing that

the convex relaxation of the sum capacity can be arbitrarily

loose.

Motivated by this result, in the second part (Sec. IV)

we develop methods to solve non-convex problems like sum

capacity computation. To this end, we define and study opti-

mization of Lipschitz-like functions in Sec. IV-A. We then give

an overview of the optimization algorithms for Lipschitz-like

functions featured in this work in Sec. IV-B, and discuss them

in greater detail in the following sections. That is, in Sec. IV-C

and Sec. IV-D we develop algorithms for global optimization

of such functions over a closed interval and over the standard

simplex respectively. Results on optimization of Lipschitz-like

functions over arbitrary compact and convex domains can be

found in App. C-D. We also present relevant convergence

guarantees and complexity analysis for our algorithms. In this

way, we generalize certain prior algorithms for optimizing

Lipschitz continuous functions. Our generalized algorithm

may be of independent interest for non-convex optimization in

information theory. For instance, we show that some entropic

quantities that may be derived from Shannon and von Neu-

mann entropies are Lipschitz-like functions.

The third part (Sec. V) applies algorithms developed in the

second part for computing the sum capacity of an arbitrary

two-sender MAC. In Sec. V-A, we prove that the sum capacity

computation can be viewed as an optimization of a Lipschitz-

like function. In Sec. V-B, we develop an efficient algorithm

to compute the sum capacity of a large family of two-sender

MACs, where one of the input alphabets is of size 2. Subse-

quently, in Sec. V-C, we present algorithms that can compute

or upper-bound the sum capacity of an arbitrary two-sender

MAC, along with a detailed complexity analysis. Finally,

in Sec. V-D, we construct examples which demonstrate that

our algorithm performs provably better than convex relaxation

in computing the sum capacity.

We have tried to minimize the overlap between these three

parts of our study, so that any one of these parts may be read

independently without loss of continuity. In the next section,

we provide a brief overview of notations, quantum states and

measurements, nonlocal games, and multiple access channels.

We recommend readers mainly interested in parts I and III

to read Sec. II-C on multiple access channels as it introduces

definitions used in these parts.

II. PRELIMINARIES

We briefly review some concepts that are used later. A short

summary of the notation used throughout is given below.

We denote the set of natural numbers as N = {0, 1, . . . }
and the set of positive integers as N+ = {1, 2, . . . }. For any

integer N ≥ 1, let [N ] := {1, . . . , N}. We denote the (n −
1)-dimensional standard simplex by ∆n = {x ∈ R

n | x ≥
0,
∑n

i=1 xi = 1}. When x ∈ R
n is a vector, we interpret

the inequality x ≥ 0 component-wise, i.e., xi ≥ 0 for all

i ∈ [n]. We denote the non-negative orthant in n-dimensional

Euclidean space by R
n
+ = {x ∈ R

n | x ≥ 0}. The Euclidean

inner product between two vectors x, y ∈ R
n is denoted by
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⟨x, y⟩. The space of (m × n)-matrices with entries in C is

denoted by C
m×n. The Kronecker product of two matrices A

and B is denoted by A⊗B.

For a random variable X taking values in a finite alphabet

X , we denote by pX(x) the probability of X taking the

value x ∈ X . The Shannon entropy of the random variable

X is denoted by H(X) = −∑x∈X pX(x) log(pX(x)). The

unit of entropy is referred to as bits when the base of the

logarithm in H(X) is 2, whereas the unit is referred to

as nats when the base of the logarithm is e. The mutual

information between two random variables X and Y is defined

as I(X;Y ) = H(X) + H(Y ) − H(X, Y ). A single-input

single-output channel is a triple (X ,Z,N ) consisting of an

input alphabet X , an output alphabet Z and a probability

transition matrix N (z|x) giving the probability of transmitting

z ∈ Z given the input x ∈ X . The capacity of the channel N
is given by the single-letter formula C(N ) = maxpX

I(X;Z),
where X and Z are the random variables describing the input

and output of N , respectively [3].

A. Quantum States and Measurements

A quantum state (or density matrix) ρ ∈ C
d×d is a

self-adjoint, positive semi-definite (PSD) matrix with unit

trace [14]. A measurement of this quantum state can be

described by a positive operator-valued measure (POVM),

a collection of PSD matrices {F1, . . . , FM} of size d × d
satisfying

∑M
m=1 Fm = I, where I is the identity matrix on

the Hilbert space C
d. Each POVM element Fm is associated

to a measurement outcome m ∈ [M ], which is obtained with

probability Prob(m) = Tr(ρFm) [14].

In quantum mechanics, a Hermitian operator O ∈ C
d×d is

often called an observable. It can be measured in the following

sense. First, we write the spectral decomposition of O as O =∑M
m=1 λmPm, where Pm ∈ C

d×d is the projector onto the

eigenspace of O corresponding to the eigenvalue λm ∈ R for

m = 1, . . . ,M . Then, the POVM associated with measuring

the observable O is given by {Pm | m ∈ [M ]} [14]. For

qubits, i.e., two-dimensional quantum systems described by

quantum states ρ ∈ C
2×2, the Pauli matrices

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, and σz =

(
1 0
0 −1

)
(1)

represent three commonly used observables associated to the

spin of an electron along different axes.

Let two parties, Alice and Bob, share a quantum

state ρ. If they perform local measurements with POVMs

{A1, . . . , AI} and {B1, . . . , BJ}, respectively, then the prob-

ability that Alice observes the outcome i and Bob observes the

outcome j is given by Prob(i, j) = Tr[ρ(Ai ⊗ Bj)]. In other

words, the overall POVM for the measurement is given by

{Ai ⊗Bj | i ∈ [I], j ∈ [J ]}.

B. Nonlocal Games

A nonlocal game is played between two players who each

receive a question from a referee that they need to answer.

The players are not allowed to communicate with each other

during the game. Prior to starting the game, one fixes the set

of questions and answers and a winning criterion, which are

known to everyone. A referee then randomly draws questions

and hands them out to the players. If the answers of the players

satisfy the winning condition, they win the game.

Formally, an N -player promise-free nonlocal game G is a

tuple G = (X1, . . . ,XN ,Y1, . . . ,YN ,W), where Xi and Yi

are the question and answer set for the ith player, respectively,

and the winning conditionW ⊆ (X1×· · ·×XN )×(Y1×· · ·×
YN ) determines the tuples of questions and answers that win

the game [15]. Throughout this study, we restrict our attention

to the case when Xi and Yi are finite sets for all i ∈ [N ].
Unless stated otherwise, we will always refer to promise-free

nonlocal games as nonlocal games.1

For convenience, we denote the question set as X = X1 ×
· · · × XN and the answer set as Y = Y1 × · · · × YN . Given

any question tuple x = (x1, . . . , xN ) ∈ X , the ith question is

given by xi ∈ Xi, and a similar notation is used for answers.

A strategy for the game G = (X ,Y,W) is any conditional

probability distribution pY |X(y|x) on the answer tuples y ∈
Y given a question tuple x ∈ X . There are different types

of strategies that one can consider, depending on whether the

players are allowed to use shared correlations after the game

starts. We list a few strategies that are central to our study.

1) Classical strategy: This is the typical setup of a nonlocal

game. Given a question xi ∈ Xi, the ith player decides an

answer as per the probability distribution pYi|Xi
(yi|xi),

i ∈ [N ]. This gives rise to a classical strategy

pY |X(y1, . . . , yN |x1, . . . , xN )

= pY1|X1
(y1|x1) · · · pYN |XN

(yN |xN ) (2)

In the general setting the players are allowed to choose

such a strategy on the basis of the outcome of a random

variable shared by all players, which is called a proba-

bilistic strategy. Therefore, the set of classical strategies

Scl corresponds to the convex hull of conditional proba-

bility distributions of the form given in Eq. (2) [16]. Oper-

ationally, convex combinations of product distributions

correspond to shared randomness, and hence the set of

classical correlations we use is similar to those defined by

local hidden variable theories [16], [17]. However, when

the questions are drawn uniformly at random, the classical

strategy maximizing the probability of winning the game

is of the form given in Eq. (2), with pYi|Xi
(yi|xi) =

δyi,fi(xi) for i ∈ [N ] [15]. Here, fi : Xi → Yi is a

function that outputs an answer given a question. Such a

strategy is called a deterministic strategy.

2) Quantum strategy: The players have access to a shared

quantum state ρ, but cannot communicate otherwise.

Given a question xi ∈ Xi, the ith player performs a

local measurement with some POVM {E(xi)
y | y ∈ Yi}.

Subsequently, a quantum strategy is described by the

1One may consider nonlocal games for which the possible question tuples
are restricted to a subset P ⊆ X1 × · · · × XN called a promise. A promise-
free nonlocal game as defined above is one with P = X1 × · · · × XN .
Any nonlocal game G = (X1, . . . ,XN ,Y1, . . . ,YN ,W) with promise P
can be turned into a promise-free game by defining a new winning condition
W ′ = W ∪ [(X1 × · · · × XN ) \ P ] × (Y1 × · · · × YN ), i.e., the players
automatically win on question tuples not contained in the promise.
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probability distribution

pY |X(y1, . . . , yN |x1, . . . , xN )

= Tr
[
ρ
(
E(x1)

y1
⊗ · · · ⊗E(xN )

yN

)]
(3)

We denote the set of quantum strategies by SQ. For any

given classical strategy, one can construct a quantum state

and POVMs so that the quantum strategy reduces to the

given classical strategy, and therefore, Scl ⊆ SQ [16].

3) No-signalling strategy: A strategy

pY |X(y1, . . . , yN |x1, . . . , xN ) is said to be no-signalling

if

pYi|X(yi|x1, . . . , xN ) = pYi|Xi
(yi|xi), i ∈ [N ] (4)

for all x1, . . . , xN [18]. Informally, this means that

players must respect locality, i.e., no information can

be transmitted between players ªfaster than lightº. As a

consequence, the strategy used by each player cannot

depend on the questions received by the other players.

We denote the set of no-signalling strategies by SNS.

Both classical and quantum strategies are no-signalling,

and therefore, Scl ⊆ SQ ⊆ SNS.

4) Full communication: When we impose no restriction on

the distribution pY |X(y|x), we are implicitly allowing

for communication between the players after they have

received the questions. The set of all possible condi-

tional probability distributions pY |X(y|x) is denoted by

Sall, which corresponds to allowing full communication

between the players. This contains all classical, quantum

and no-signalling strategies. Communication between the

players is usually not allowed in nonlocal games, but we

introduce this setting here for later use nevertheless.

In summary, we have the following hierarchy of correla-

tions: Scl ⊆ SQ ⊆ SNS ⊆ Sall.

Suppose that the questions are drawn randomly from the

set X as per the probability distribution π(x). Say the players

obtain their answers using strategies in some set S. Then the

maximum winning probability of the game G is given by

ωS

π (G) = sup
pY |X∈S

∑

(x,y)∈W

π(x)pY |X(y|x). (5)

Notice in particular that, if S ⊆ S
′, then ωS

π (G) ≤ ωS
′

π (G).
Hence, as we go from classical to quantum to no-signalling

strategies, the winning probability never decreases.

We will mainly be concerned with the scenario where the

questions are drawn uniformly at random, and so π = πU is

the uniform distribution on X with πU (x) = 1/|X | for all

x ∈ X . In this case, we use the notation ωS
πU

(G) = ωS(G).
The maximum winning probability when the questions are

drawn uniformly and answers are generated using classical

strategies is written as ωcl(G). Similarly, when using quantum

strategies, we write ωQ(G), and when using no-signalling

strategies, we write ωNS(G).

C. Multiple Access Channels

A discrete memoryless multiple access channel without

feedback, simply referred to as multiple access channel in this

study, is a tuple (B1, . . . ,BN ,Z,N (z|b1, . . . , bN )) consisting

of input alphabets B1, . . . ,BN , an output alphabet Z , and a

probability transition matrix N (z|b1, . . . , bN ) that gives the

probability that the channel output is z ∈ Z when the input is

b1 ∈ B1, . . . , bN ∈ BN [3]. For simplicity of notation, we will

denote a MAC by the probability transition matrix N when

the input and output alphabets are understood.

Since transmission over the channel is error-prone, one

usually encodes the messages and transmits them over multiple

uses of the channel, and subsequently, the transmitted symbols

are decoded to reconstruct the original message. Formally,

an ((M1, . . . ,MN ), n)-code for a multiple access channel

consists of message sets Mi = {1, . . . ,Mi} for i ∈ [N ],

encoding functions g
(e)
i : Mi → B×n

i for i ∈ [N ], and a

decoding function g(d) : Zn → M1 × · · · × MN ∪ {err},
where err is an error symbol [3]. For convenience, we denote

the message set as M =M1 × · · · ×MN . The performance

of the code can be quantified by the average probability of

error in reconstructing the message,

P (n)
e =

1

|M|
∑

m∈M

Prob{g(d)(Zn) ̸= m |

message m was sent}.
Here we assume that the messages are chosen uniformly

at random and transmitted through the channel. Note that

the above code uses the channel n times. We say that

a rate tuple (R1, . . . , RN ) is achievable if there exists

a sequence of codes ((⌈2nR1⌉, . . . , ⌈2nRN ⌉), n) such that

P
(n)
e → 0 as n→∞ [3].

The capacity region of a multiple access channel is

defined as the closure of the set of achievable rate tuples

(R1, . . . , RN ). For N = 2 one obtains a two-sender MAC.

Ahlswede [7] and Liao [8] were the first to give a so-called

single-letter characterization of the capacity region of a two-

sender MAC. The capacity region for an N -sender MAC N
can be written as

Cap(N )=conv

{
(R1, . . . , RN ) |

0≤
∑

j∈J

Ri≤I(BJ ;Z|BJc) ∀∅ ̸=J⊆ [N ],

p(b1, . . . , bN ) = p(b1) · · · p(bN )

}
(6)

where p(b1, . . . , bN ) is a probability distribution over the joint

random variable B1, . . . , BN describing the channel input,

p(bi) is a probability distribution for the random variable

Bi corresponding to the i-th sender’s input, random variable

Z describes the channel output, and for any set J ⊆ [N ],
BJ = {Bj | j ∈ J} [9]. Crucially, the optimization in Eq. (6)

restricts the joint input random variable to have a product

distribution, i.e., p(b1, . . . , bN ) = p(b1) · · · p(bN ). The main

quantity of interest in our study is the sum capacity of a

MAC [9],

S(N ) = sup

{
N∑

i=1

Ri | (R1, . . . , RN ) ∈ Cap(N )

}
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= max
p(b1···bN )

I(B1, . . . , BN ;Z)

s.t. p(b1, · · · , bN ) = p(b1) · · · p(bN ). (7)

Informally, the sum capacity represents the maximum sum

rate at which the senders can send information through the

MAC such that the transmission error vanishes asymptotically.

Because the maximization involved in computing the sum

capacity is constrained to be over product distributions on the

input, the resulting optimization problem is nonconvex. This

nonconvexity is the main source of difficulty in computing

the sum capacity of a MAC in practice [10], [11]. A common

approach to avoid this difficult is to relax the nonconvex con-

straint and maximize over all possible probability distributions

on the input. Such an approach was adopted by Calvo et al. [9],

leading to the upper bound

C(N ) = max
p(b1,...,bN )

I(B1, . . . , BN ;Z) (8)

on the sum capacity S(N ), where we now maximize over

arbitrary input probability distributions. Note that C(N ) is

the capacity of the channel N when we think about it as a

single-input single-output channel. Since it is a relaxation of

the sum capacity corresponding to the capacity region, we call

C the relaxed sum capacity.

III. NONLOCAL GAMES MAC AND RELAXED SUM

CAPACITY

A. Bounding the Sum Capacity of MACs From Nonlocal

Games

Suppose we are given a promise-free nonlocal game G
with question sets X1, . . . ,XN , answer sets Y1, . . . ,YN , and

a winning conditionW ⊆ (X1×· · ·×XN )× (Y1×· · ·×YN ).
Following Leditzky et al. [11], we construct a MAC NG with

input alphabets Bi = Xi × Yi for i ∈ [N ], output alphabet

Z = X1 × · · · XN , and a probability transition matrix

NG(x̂1, . . . , x̂N |x1, y1, . . . , xN , yN )

=

{
δx̂1,x1

· · · δx̂N ,xN
(x1, . . . , xN , y1, . . . , yN ) ∈ W

1
d (x1, . . . , xN , y1, . . . , yN ) /∈ W,

(9)

where d = |Z| = |X1 × · · · × XN |.
In words, the channel NG takes question-answer pairs from

each player as input, and if they win the game, then the

questions are transmitted without any noise. However, if they

lose the game, a question tuple chosen uniformly at random

is output by the channel. For convenience, we will denote the

input to the MAC NG as XY = (X1 × Y1) × · · · × (XN ×
YN ), and write xy = (x1, y1, . . . , xN , yN ). We will usually

abbreviate the phrase ªMAC obtained from a nonlocal gameº

to ªnonlocal game MACº or NG-MAC.

Before diving into any technical details, we explain why

such MACs are suitable for obtaining bounds on the sum

capacity that are better than the relaxed sum capacity.

We begin by noting that the sum capacity of the NG-MAC

NG can be written as

S(NG) = max
p(1)(x1,y1)···p(N)(xN ,yN )

I(X1, Y1, . . . , XN , YN ;Z)

where (Xi, Yi) is the random variable (with distribution

p(i)) describing the ith input and Z is the random variable

describing the output of NG. Note that p(i) is a probability

distribution over the question-answer pairs of the ith player.

By writing p(i)(xi, yi) = π(i)(xi)pYi|Xi
(yi|xi), we can break

p(i) into a distribution π(i) over questions and a strategy

pYi|Xi
chosen by the ith player. As a result, we can write

p(1) · · · p(N) = πpY |X , where π = π(1) · · ·π(N) is some

distribution over the questions and pY |X = pY1|X1
· · · pYN |XN

is a classical strategy chosen by the players. Such a decom-

position allows us to optimize separately over questions and

strategies. By performing suitable relaxations, we can obtain a

bound on the sum capacity that depends only on the winning

probability of the game (see Thm. (5) for a precise statement).

In fact, such a proof technique allows us to bound the sum

capacity even when the players are allowed to use different

sets of strategies such as those obtained from quantum or

no-signalling correlations. The resulting bound is helpful in

obtaining separations between the communication capabilities

of different sets of correlations.

In contrast, the relaxed sum capacity C(NG) is computed

by maximizing over all possible probability distributions. For

a nonlocal game MAC, this amounts to maximizing over all

distributions over the questions and all possible strategies

(allowing full communication between the players). Using

such strategies, the players will always win the game, assum-

ing that the game has at least one correct answer for every

question. This results in the trivial bound C(NG) = ln(d)
on the sum capacity, since the players can always win the

game. On the other extreme, if the winning probability of the

game is zero, then we have S(NG) = 0. Following this line

of thinking, we construct a game in Section III-B that allows

us to give an arbitrarily large separation between S(NG) and

C(NG).
The above discussion suggests that the sum capacity of

the NG-MAC NG increases with the winning probability of

the game G, an observation that was also noted by Leditzky

et al. [11]. On the other hand, we know that the winning

probability of the game can increase if we allow the players

to use a larger set of strategies. This motivates us to allow the

senders to share some set of correlations to play the game so

as to increase the sum capacity of NG-MAC.

1) Correlation Assistance: By a correlation, we mean a

probability distribution P (y′|xy), where xy ∈ XY is the

input to the NG-MAC, while y′ ∈ Y is an answer to the

nonlocal game G.2 We allow the N senders to share the

correlation P and perform local post-processing of the answer

generated by P to obtain their final answer for the game for

the input questions. This post-processing can be expressed

as a probability distribution fi(yi|xi, yi, y
′
i) over the answers

yi ∈ Yi given the input question-answer pair (xi, yi) ∈ Xi×Yi

and the answer y′
i ∈ Yi generated by the correlation P . For

2The correlation P may depend on the answers y ∈ Y in addition to the
questions x ∈ X because we wish to construct a larger MAC that has the
same structure as the NG-MAC NG and has assistance from the correlation
P . See Fig. 1 for example. In practice, the correlation will often produce the
answer tuple y

′ solely from the question tuple x, using some strategy for the
non-local game G.
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convenience, denote

f(y|xy,y′) =
N∏

i=1

fi(yi|xi, yi, y
′
i), (10)

which is a distribution over the answers y ∈ Y given input

question-answer pairs xy ∈ XY and answers y′ ∈ Y
generated by the correlation P .

This gives rise to the channel AP,f having input and output

alphabets XY and the probability transition matrix

AP,f (xy|xy) = δx,x

∑

y′∈Y

f(y|xy,y′)P (y′|xy). (11)

This probability transition matrix gives a probability distribu-

tion over the question-answer pairs xy ∈ XY given some

input question-answer pair xy ∈ XY . The probability dis-

tributions fi denote local post-processing by the ith sender to

generate the final answer yi. Note that the definition of AP,f in

Eq. (11) ensures that the input questions x ∈ X are transmitted

without any change, i.e., x = x. The post-processings are only

used to generate the final answers. This definition is slightly

more restrictive than the one given in Leditzky et al. [11],

where post-processing of both questions and answers is con-

sidered. We impose such a restriction on post-processing so as

to ensure that the set of strategies induced by the channel AP,f

has a close relation to the set of correlations C shared by the

senders. For example, classical or quantum correlations shared

by the senders give rise to classical or quantum strategies to

play the nonlocal game G. We make this idea precise in the

following discussion.

An input probability distribution p(xy) over

the question-answer pairs XY can be written as

p(xy) = π(x)pY |X(y|x), a product of probability

distribution over the questions π(x) and a strategy pY |X(y|x).
This input probability distribution is modified by the channel

AP,f to give

p(xy) =
∑

xy∈XY

AP,f (xy|xy)p(xy) = π(x)pY |X(y|x),

(12)

where the new strategy pY |X is given by

AP,f (pY |X) := pY |X(y|x)

=
∑

y∈Y

∑

y′∈Y

f(y|xy,y′)P (y′|xy)pY |X(y|x).

(13)

We use the notation AP,f (pY |X) to emphasize that pY |X is

the strategy induced by the action of AP,f on pY |X . There-

fore, the channel AP,f modifies the input strategy pY |X by

incorporating assistance from the correlation P and local post-

processings f . For this reason, we call AP,f the correlation-

assistance channel.

If the senders have access to some set of correlations C,

we can define the set of strategies induced by these correlations

as

SC =

{
AP,f (pY |X) | pY |X =

N∏

i=1

pYi|Xi
, P ∈ C, f ∈ PP

}
.

(14)

where PP is the set of all local post-processings of the answers

generated by the correlation (as defined in Eq. (10)). We now

show that there is a close relation between the correlations C
shared by the senders and the strategies SC induced by these

correlations.

If Ccl is the set of classical correlations, then any P ∈ Ccl

can be written as P (y′|xy) =
∏N

i=1 Pi(y
′
i|xi, yi) and convex

combinations thereof, where Pi are some distributions over Yi

given a question-answer pair from (Xi,Yi) for i ∈ [N ]. Then,

from Eq. (13), we find that the strategy AP,f (pY |X) induced

by the correlation assistance channel is also a classical strategy

(since the input pY |X is a classical strategy). Therefore, the

set of strategies induced by classical correlations (as defined

in Eq. (14)) is the set of classical strategies Scl.

On the other hand, if CQ is the set of quantum correlations,

then any P ∈ CQ can be written as

P (y′|xy) = Tr
[
ρ
(
E

(x1,y1)
y′
1

⊗ · · · ⊗E
(xN ,yN )
y′

N

)]

where ρ is the quantum state shared between the senders and

{E(xi,yi)
y′ | y′ ∈ Yi} is the local measurement implemented

by the ith player upon receiving the input (xi, yi) for each

i ∈ [N ]. Now, we define new local measurement operators

E
(xi)

yi
=

∑

yi,y′
i∈Yi

pYi|Xi
(yi|xi)fi(yi|xi, yiy

′
i)E

(xi,yi)
y′

i
,

so that the strategy induced by the correlation P can be written

using Eq. (13) as

pY |X(x|y) = Tr
[
ρ
(
E

(x1)

y1
⊗ · · · ⊗E

(xN )

yN

)]
.

This shows that the set of strategies induced by quantum corre-

lations, as defined in Eq. (14), is the set of quantum strategies

SQ. Similarly, one can verify that the set of strategies induced

by no-signalling correlations CNS is the set of no-signalling

strategies SNS.

We now elaborate on how one can use the

correlation-assistance channel to boost the sum capacity

of the nonlocal games MAC. Given the NG-MAC NG

obtained from a nonlocal game G, some correlation

P shared by the senders and local post-processings f ,

we define the correlation-assisted NG-MAC NG ◦ AP,f . That

is, the input question-answer pair is first passed through

the correlation-assistance channel AP,f , which tries to

improve the strategy for playing the game, and the modified

question-answer pair is passed on to the NG-MAC NG.

A schematic of this procedure for the case of two senders

is shown in Fig. 1. If the local post-processing f discards

information about the input questions as well as the answers

generated by the correlation P , i.e., f(y|xy,y′) = δy,y ,

then AP,f becomes the identity channel. Therefore, the

correlation-assisted NG-MAC NG ◦ AP,f is at least as

powerful as the NG-MAC NG if we allow the senders to

perform any local post-processing.

Suppose that the senders share a set of correlations C. The C-

assisted achievable rate region of the NG-MAC NG is defined

as

Cap
(1)
C (NG) =

⋃

P∈C,
f∈PP

Cap(NG ◦ AP,f ) (15)
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Fig. 1. Correlation-assisted NG-MAC NG ◦ AP,f for the case of two
senders, obtained from the nonlocal games MAC NG defined in Eq. (9) and
correlation-assistance channel AP,f defined in Eq. (11).

where Cap(NG◦AP,f ) is the capacity region defined in Eq. (6)

evaluated for the correlation-assisted NG-MAC NG ◦ AP,f .3

The C-assisted achievable sum rate of the NG-MAC NG is

SC(NG) = sup

{∑N

i=1
Ri | (R1, . . . , RN ) ∈ Cap

(1)
C (NG)

}
.

(16)

We now derive an alternate expression of SC(NG) that

is more convenient for computation. Prior to obtaining this

expression, note that for any given family of sets {Fi}i∈I

indexed by some set I and any function g : ∪i∈I Fi → R,

we have

sup
r∈∪i∈IFi

g(r) = sup
i∈I

sup
r∈Fi

g(r).

Using this equation along with Eq. (7), we can write

SC(NG) = sup
P∈C,f∈PP

S(NG ◦ AP,f )

= sup
P∈C,f∈PP

sup
p(1)···p(N)

I(X1, Y1, . . . , XN , YN ;Z),

(17)

where (Xi, Yi) is the random variable (with distribution p(i))

describing the input for i ∈ [N ], and Z is the random variable

describing the output of the NG-MAC NG ◦ AP,f .

Since SC(NG) corresponds to a maximization over all

possible local post-processings, we must have S(NG) ≤
SC(NG) for any set of correlations C. Furthermore, if C1 ⊆
C2, then Cap

(1)
C1

(NG) ⊆ Cap
(1)
C2

(NG), and consequently also

SC1
(NG) ≤ SC2

(NG). Finally, note that we compute the

relaxed sum capacity C(NG) by maximizing over all possible

distributions over the questions and all possible strategies Sall

that the players can use (since the maximization in Eq. (8) is

over all input probability distributions). Because SC ⊆ Sall

for any set of correlations C, we have SC(NG) ≤ C(NG).
Therefore, we obtain a hierarchy,

S(NG) ≤ Scl(NG) ≤ SQ(NG) ≤ SNS(NG) ≤ C(NG), (18)

where ªclº, ªQº, and ªNSº denote classical, quantum, and

no-signalling correlations, respectively. Note that the sum

capacity S(NG) might not be equal to Scl(NG) because

3The superscript (1) signifies that Cap
(1)
C (·) is merely a region consisting of

achievable rate pairs, and hence contained in the full capacity region CapC(·).

To determine whether Cap
(1)
C (·) = CapC(·) is outside the scope of this work.

classical correlations can be convex combinations of product

distributions.

We now proceed to obtaining a bound on the C-assisted

achievable sum rate.

2) Bounding the Correlation-Assisted Sum Rate: Let C be

any set of correlations shared between the senders. In order

to bound SC(NG), we first obtain an optimization problem

in terms of distributions over questions and strategies induced

by the shared correlations. For a given correlation P ∈ C,

the input and output of NG ◦ AP,f can be described as

follows. The channel AP,f takes the input random variable

(X1, Y1, . . . , XN , YN ) and outputs (X1, Y 1, . . . ,XN , Y N ).
The output of AP,f becomes the input to NG that returns

Z , i.e.,

(X1, Y1, . . . , XN , YN )
AP,f−−−→ (X1, Y 1, . . . ,XN , Y N )

NG−−→ Z

forms a Markov chain. From the data processing inequality [3],

we obtain

I(X1, Y1, . . . , XN , YN ;Z) ≤ I(X1, Y 1, . . . ,XN , Y N ;Z).

(19)

Then, using Eq. (17) and Eq. (19), we get

SC(NG) ≤ sup
p

I(X1, Y 1, . . . ,XN , Y N ;Z) (20)

where the probability distribution p defined in Eq. (12)

is obtained by varying product distributions p(x, y) =∏N
i=1 p(i)(xi, yi) input to AP,f , the correlation P ∈ C, and

the post-processing f ∈ PP.

We can reinterpret the above equation as a maximum over

distributions over questions and strategies for playing the game

G induced by the correlations C. First, we write p(i) =
π(i)pYi|Xi

, where π(i) is a distribution over the questions Xi

and pYi|Xi
is a strategy chosen by ith player for i ∈ [N ].

Therefore, the input probability distribution in Eq. (17) can

be written as p(1) · · · p(N) = πpY |X , where π = π(1) · · ·π(N)

is a distribution over questions X , and pY |X =
∏N

i=1 pYi|Xi

is a classical strategy chosen by the players. In particular, the

input strategy pY |X is always a classical strategy. As noted in

Eq. (13), the channel AP,f takes this input strategy and returns

a new strategy AP,f (pY |X) that incorporates assistance from

the shared correlation P . Since the senders have access to the

set of correlations C, we can write Eq. (20) as

SC(NG) ≤ sup
π(1)···π(N)

sup
p

Y |X∈SC

I(X1, Y 1, . . . ,XN , Y N ;Z),

(21)

where SC is the set of strategies induced by C as defined

in Eq. (14). To obtain an upper bound, we will perform

relaxations of the RHS of the above equation, and solve the

resulting optimization problems.

We begin by writing the RHS of Eq. (21) in a form that

is amenable for calculations. To that end, note that given

an input probability distribution p(xy) = π(x)pY |X(y|x),
the probability distribution corresponding to the output of the

channel NG is given by

p(z) =
∑

xy∈W

NG(z|xy)p(xy) +
∑

xy/∈W

NG(z|xy)p(xy)
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= π(z)
∑

y:zy∈W

pY |X(y|z) +
1

d
pL (22)

where d = |Z| denotes the number of question pairs, while

pL =
∑

xy/∈W p(xy) denotes the probability of losing the

game when questions are drawn as per the probability distri-

bution π.

Note that Z = X1 × · · · × XN = X is the set of question

tuples output by the NG-MAC NG. Since Z is a finite set

of size d, we can fix a labelling for the elements of Z and

write Z = {z1, . . . ,zd}. Each zi corresponds to a particular

question tuple. Then, we can define the contribution of a given

strategy pY |X towards winning the game for each question

tuple. We use Z and X interchangeably in the following

discussion.

Definition 1 (Winning Vector): Given a strategy pY |X for

playing the game G = (X ,Y,W), we let

wi =
∑

y:ziy∈W

pY |X(y|zi) for i ∈ [d] (23)

denote the contribution of the strategy towards winning the

game G for question zi. We call the vector w = (w1, . . . , wd)
the winning vector corresponding to the strategy pY |X . Let

WC denote the set of winning vectors allowed by the strategies

SC ,

WC =
{

w ∈ [0, 1]d |wi =
∑

y:ziy∈W
pY |X(y|zi),

for pY |X ∈ SC and i ∈ [d]
}

. (24)

Observe that wi ∈ [0, 1] for all i ∈ [d], so that w is an

element of the unit hypercube in R
d. Note that we have wi =

1 for a fixed strategy pY |X if and only if the players always

win the game G when asked the question zi using the strategy

pY |X . On the other extreme, wi = 0 if and only if the players

always lose the game G when asked the question zi using the

strategy pY |X . Generally, questions are drawn with probability

π over X . The probability of winning the game for question

i is πiwi, where πi = π(zi) is the probability of drawing the

question tuple zi. The total probability of winning the game

is pW =
∑d

i=1 πiwi and the probability of losing the game is

pL = 1−
d∑

i=1

πiwi = 1− ⟨π,w⟩ . (25)

Defining the matrix W with components

W ij = wiδij +
1− wj

d
, (26)

one may write the output probability p(z) in Eq. (22) as

p = Wπ. (27)

The mutual information I(X1, Y 1, . . . ,XN , Y N ;Z) can be

written as

I(X1, Y 1, . . . ,XN , Y N ;Z)

= H(Z)−H(Z|X1, Y 1, . . . ,XN , Y N )

= H(Z)− pL ln(d), (28)

where we used the fact that H(Z|xy) = 0 when xy ∈ W
whereas H(Z|xy) = ln(d) when xy /∈ W . Note that the

formula (28) was first derived in Ref. [11] for nonlocal games

MAC with two senders. Using Eq. (27) and Eq. (25), we obtain

Iw(π) := I(X1, Y 1, . . . ,XN , Y N ;Z)

= H(Wπ) + ⟨π,w⟩ ln(d)− ln(d) (29)

where the notation, Iw(π), for the mutual information empha-

sizes that it is only a function of the distribution π over

questions and the winning vector w.

The RHS in Eq. (21) can be written as

sup
π(1)···π(N)

sup
p

Y |X

I(X1, Y 1, . . . ,XN , Y N ;Z)

= sup
π(1)···π(N)

sup
w∈WC

Iw(π(1) · · ·π(N))

≤ sup
π∈∆d

sup
w∈WC

Iw(π), (30)

where WC is the set of winning vectors defined in Eq. (24).

To obtain Eq. (30), we relax the product distribution constraint

π(1) · · ·π(N) over the questions to obtain a maximization over

all distribution π ∈ ∆d over the questions, where ∆d denotes

the (d − 1)-dimensional standard simplex. This relaxation

differs from that of Eq. (8) used in obtaining C(NG) in that

we only relax the distribution over the questions, but not the

whole probability distribution.

For a fixed w, the function Iw(π) is continuous in π over

the compact set ∆d. Thus, the maximization in Eq. (30) can

be written as

sup
w∈WC

max
π∈∆d

Iw(π). (31)

The inner optimization in Eq. (31) is a convex problem since

Iw(π) is concave in π and ∆d is a convex set. However,

Iw(π) is not jointly concave in π and w, and moreover,

WC need not be a convex set. Therefore, the optimization

in Eq. (31) is generally nonconvex.

Our goal is to obtain an upper bound on the optimization in

Eq. (31). To give a general idea of our approach to obtaining

this bound, we list the main steps we will carry out.

Step 1: For a fixed w, we obtain an upper bound on the

inner optimization in Eq. (31). This bound is tight

when either w ∈ {0, 1}d or w > 0 component-

wise.

Step 2: We relax the set of allowed w values to bound the

outer optimization in Eq. (31) from above.

This procedure will result in the upper bound noted in

Eq. (39). We explain the steps in detail in the following

subsections.

Step 1: Bounding the inner optimization over question

distributions: We obtain an upper bound on maxπ∈∆d
Iw(π)

by considering two cases. First, we perform this optimization

exactly for the case when w ∈ {0, 1}d. Next, for any w ∈WC ,

we find an upper bound on maxπ∈∆d
Iw(π) using the result

of case 1. The upper bound obtained in case 2 is tight when

w > 0.

Case 1: optimizing maxπ∈∆d
Iw(π) for fixed w ∈

{0, 1}d Winning vectors w ∈ {0, 1}d arise from strategies

that either always win or always lose the game for any given

question. Deterministic strategies, for example, give rise to

such winning vectors. Recall that a classical deterministic
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strategy corresponds to functions fi : Xi → Yi, i ∈ [N ],
chosen by the players. Such functions give rise to the classical

strategy pYi|Xi
(y|x) = δy,f(x) that is 1 at y = fi(x) and zero

elsewhere. It follows from Eq. (23) that wi ∈ {0, 1} for all

i ∈ {1, . . . , d}, where w is the winning vector defined by such

a deterministic strategy.

The following proposition gives the result of the opti-

mization maxπ∈∆d
Iw(π) when w ∈ {0, 1}d. Note that

WC need not contain such winning vectors. Computing

maxπ∈∆d
Iw(π) for w ∈ {0, 1}d is a means to providing

a bound for Eq. (31).

Proposition 2: Let G be a nonlocal game, and let NG be

the MAC obtained from this nonlocal game. Let w denote a

winning vector as defined in Eq. (23), such that wi ∈ {0, 1}
for all i ∈ [d]. Let Iw denote mutual information between

input and outputs of NG, as defined in Eq. (29). Let K =
{i ∈ [d] | wi = 1} denote the set of questions for which the

strategy gives a correct answer. Denoting K = |K| and ∆d to

be the (d− 1)-dimensional standard simplex, we have

max
π∈∆d

Iw(π) =





0 K = 0

I ∗
K 0 < K < d

ln d K = d.

(32)

The quantity I ∗
K is given by the expression

I
∗
K = ln

(
K + (d−K)d−

d
d−K

)
. (33)

Proof: See Appendix A.

Observe that the maximum only depends on the total

number d of questions, as well as the number K of questions

that can be answered correctly using the deterministic strategy.

Case 2: Bounding maxπ∈∆d
Iw(π) for fixed w ∈ WC

When we work with arbitrary winning vectors, it is more chal-

lenging to maximize the mutual information over distributions

on the questions. To make this maximization easier, we first

show that the maximum mutual information I ∗
d−1 correspond-

ing to a winning vector that can answer exactly d−1 questions

correctly will always be larger than the maximum mutual

information maxπ∈∆d
Iw(π) for any winning vector w that

answers no more than d− 1 questions correctly. We therefore

turn our attention to w that doesn’t necessarily do worse than

this case, and obtain an expression for the maximum mutual

information in terms of such w.

Proposition 3: Let G be a nonlocal game, and let NG be

the MAC obtained from this nonlocal game. Suppose that the

senders of NG share a set of correlations C. Let w ∈WC be

any winning vector allowed by the correlations C as defined in

Eq. (24). Let K = {i ∈ [d] | wi ̸= 0} be the set of questions

with non-zero probability of winning the game using this

strategy, and denote K = |K|. Then, the following statements

hold.

1) Suppose that maxπ∈∆d
Iw(π) is achieved at π∗. Denote

K∗ = {i ∈ [d] | wiπ
∗
i ̸= 0} and K∗ = |K∗| (we have

K∗ ⊆ K). Then, if K∗ < d, we have maxπ∈∆d
Iw(π) ≤

I ∗
d−1, where I ∗

d−1 is given by Eq. (33).

2) As a consequence of the above result, we restrict our

attention to strategies with K∗ = K = d. In that case,

we have

max
π∈∆d

Iw(π) ≡ I
∗(w)

= ln




d∑

j=1

exp

[
dweff ln d

(
1− 1

wj

)]


(34)

where

weff =

(
d∑

i=1

1

wi

)−1

. (35)

Proof: See Appendix A.

Owing to the above result, we only need to focus on

maximizing I ∗(w) for those w ∈ WC with wi > 0 for all

i ∈ [d]. This is done in the next step.

Step 2: Bounding the outer optimization over winning

vectors: As noted in the previous step, our goal is to maximize

I ∗(w) with respect to the feasible winning vectors w ∈WC

with wi > 0 for all i ∈ [d]. The set of (feasible) winning

vectors WC was defined in Eq. (24). Note that WC depends

on the winning condition W of the game as well as the set

of correlations C shared by the senders. Since we make no

assumptions about the game or the set of correlations, it is

difficult to optimize over WC . For this reason, we obtain a

relaxation of the set WC , over which we optimize I ∗(w).
We will do this in two steps: (1) relate w to the winning

probability when the questions are drawn uniformly, and (2)

use the maximum winning probability ωSC (G) of the game

(assumed to be known) corresponding to the strategies SC

when the questions are drawn uniformly in order to obtain a

convex set containing WC .

(1) From the definition of winning vector given in Eq. (23),

we know that

wi =
∑

y:ziy∈W

pY |X(y|zi).

Recall that the winning probability of the game can be written

as pW =
∑d

i=1 πiwi when the questions are drawn as per

probability π ∈ ∆d. If the questions are drawn uniformly,

then πU (z) = 1/d for all questions z1, . . . ,zd. Therefore,

pW =
∑d

i=1 wi/d is the winning probability determined by

the winning vector w when the questions are drawn uniformly.

(2) We now look for a convex relaxation WC of WC .

We want to make WC fairly independent of the winning set,

except for dependence on ωSC (G) and the number of question

tuples d in the game.

Since ωSC (G) is the maximum winning probability using

the set of strategies SC under consideration, we must have

1

d

d∑

i=1

wi ≤ ωSC (G) (36)

where w ∈ WC . Now we make the relaxation that we

allow any winning vector that satisfies Eq. (36). Consequently,

we define

WC =

{
w ∈ [0, 1]d

∣∣∣
1

d

∑d

i=1
wi ≤ ωSC (G)

}
. (37)
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Since any w ∈WC will satisfy Eq. (36), we have WC ⊆WC ,

confirming that WC is a relaxation of WC . Such a relaxation

may allow for strategies not described by SC . Note that WC

is a compact and convex set, and it depends only on the

maximum winning probability and the number of questions

in the game. Using this relaxation, we compute an upper

bound on I ∗(w) maximized over w ∈ WC satisfying w >
0 componentwise.

Proposition 4: Let G be a nonlocal game and let NG be the

NG-MAC constructed from G, as defined in Eq. (9). Suppose

that the senders share the set of correlations C, and let WC

be the corresponding set of winning vectors as defined in

Eq. (24). Let WC be the convex relaxation of WC defined in

Eq. (37) that depends only on the number of question tuples

d in the game and the maximum winning probability ωSC (G)
when the questions are drawn uniformly and answers given

using strategies in SC . Let I ∗(w) be the function defined in

Eq. (34). Then the maximum of I ∗(w) over winning vectors

w > 0 in WC is bounded from above by

sup
w∈WC,w>0

I
∗(w) ≤ ln

(
d− 1 + d−(1−ωSC (G))d

)
(38)

Proof: See Appendix A.

Bound on the correlation-assisted achievable sum rate: We

put all the above steps together to obtain a bound on SC(NG).
Theorem 5: Let G be an N -player promise-free nonlocal

game with d question tuples, and let NG be the MAC obtained

from G as defined in Eq. (9). Suppose that the senders share a

set of correlations C. Let SC be the set of strategies induced by

the correlations as defined in Eq. (14). Let ωSC (G) denote the

maximum winning probability of the game when the questions

are drawn uniformly and answers are obtained using strategies

in SC . Let SC(NG) denote the C-assisted achievable sum rate

of the NG-MAC NG as defined in Eq. (17). Then, we have

SC(NG) ≤ ln
(
d− 1 + d−(1−ωSC (G))d

)
(39)

with entropy measured in nats.

Proof: To obtain an upper bound on SC(NG), we start with

Eq. (21). The RHS of Eq. (21) can be bounded by performing

the maximization supw∈WC
maxπ∈∆d

Iw(π), where Iw(π)
is the mutual information defined in Eq. (29). The set ∆d

denote the (d − 1)-dimensional standard simple, while WC

denotes the set of winning vectors induced by the correlations

C as defined in Eq. (24).

In Prop. 3, we show that if w ∈ WC has one or more

zero entries, then maxπ∈∆d
Iw(π) ≤ I ∗

d−1, where I ∗
d−1 is

given by Eq. (33). Therefore, we only maximize I ∗(w) =
maxπ∈∆d

Iw(π) over winning vectors w ∈ WC satisfying

w > 0. The expression for I ∗(w) in this case is given by

Eq. (34). We relax the set WC to the compact and convex set

WC defined in Eq. (37). Then, we give an upper bound on

supw∈WC,w>0 I ∗(w) in Eq. (38).

By preceding remarks, we have

SC(NG) ≤ max
{

I
∗
d−1, ln

(
d− 1 + d−(1−ωSC (G))d

)}
,

(40)

while from Eq. (33) we have

I
∗
d−1 = ln

(
d− 1 + d−d

)
.

Using ln
(
d− 1 + d−(1−ωSC (G))d

)
≥ I ∗

d−1 in Eq. (40),

we obtain Eq. (39).

Corollary 6: Let G be an N -player promise-free nonlocal

game with d question tuples, and let NG be the MAC obtained

from G as defined in Eq. (9). Let ωcl(G) denote the maximum

winning probability of the game when the questions are drawn

uniformly and answers are obtained using classical strategies.

Let S(NG) denote the sum capacity of the NG-MAC NG.

Then, we have

S(NG) ≤ ln
(
d− 1 + d−(1−ωcl(G))d

)
(41)

with entropy measured in nats.

Proof: From Eq. (18), we know that S(NG) ≤ Scl(NG).
Then, using Thm. 5, we obtain Eq. (41).

Note that the bounds on SC(NG) and S(NG) given by

Eq. (39) and Eq. (41), respectively, lie between ln(d− 1) and

ln(d). For sufficiently large d, when ωSC (G) is not close to

1, the sum capacity is bounded above by ≈ ln(d− 1). On the

other hand, for ωSC (G) = 1, we obtain an upper bound of

ln(d), which can be achieved by w = (1, . . . , 1)T as seen

from Prop. 2. Using this, we can obtain separations between

the correlation-assisted achievable sum rate corresponding to

two different sets of correlations.

3) Separation Between Sum Rates With Assistance From

Different Sets of Correlations: If C1 and C2 are two sets of

correlations such that ωSC1 (G) < 1 while ωSC2 (G) = 1, then

SC1(NG) < SC2(NG) = ln(d). We use this idea to provide

separations of correlation-assisted achievable sum rate using

classical, quantum and no-signalling correlations.

Separating SQ(NG) from S(NG) for two-sender MACs:

Consider the Magic Square Game, GMS, used previously

in [19], [20], [21], and [15] to obtain a separation between

S(NG) and SQ(NG). In this game, the referee selects a row

r ∈ {1, 2, 3} and column c ∈ {1, 2, 3} from a 3 × 3 grid

uniformly at random. The row is handed over to Alice while

the column is given to Bob. Without communicating with each

other, Alice & Bob need to fill bits in the given row and

column such that the total parity of bits in the row is even,

total parity of bits in the column is odd, and the bit at the

intersection of the given row and column match.

There are d = 9 possible question pairs corresponding to

the indices (r, c). Classically, Alice & Bob can win the game

at least 8 out of 9 times by implementing for example the

following strategy:

1 0 1

1 1 0

1 0 ?

where the entry in each box indicates bits filled by Alice and

Bob. It can be shown that this strategy is optimal, therefore

ωcl(gms) = 8/9 [15].

On the other hand, if Alice & Bob are allowed to use

a quantum strategy, then they can share two copies of a
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TABLE I

MEASUREMENT TABLE

maximally entangled Bell state,

ρBell =
1

2




1 0 0 1
0 0 0 0
0 0 0 0
1 0 0 1


 ,

and submit answers to the referee based on a set of mea-

surements given in Table I. Alice and Bob answer 0 if their

measurement yields an eigenvector with eigenvalue 1, else they

answer 1. Answers obtained this way can be shown to always

satisfy the winning condition of the magic square game, i.e.,

ωQ(GMS) = 1 [19], [20].

As the MAC obtained from the Magic Square Game has

received attention in a previous study, we summarize the

separation between sum capacity and entanglement-assisted

sum rate given by our method in the following corollary.

Corollary 7: Let NGMS
denote the MAC obtained from the

magic square game. Then, the sum capacity of this MAC is

bounded above as

S(NGMS
) ≤ 3.02 bits.

On the other hand, using assistance from quantum correlations,

we obtain SQ(NGMS
) = 3.17 bits. This gives a separation

of at least 0.15 bits between sum rate with and without

entanglement assistance.

Proof: Since ωcl(GMS) = 8/9, we may use Cor. (6) to

obtain a bound S(NGMS
) ≤ 3.02 bits. At the same time,

a perfect quantum strategy is available, i.e., ωQ(GMS) = 1,

and thus SQ(NGMS
) = 3.17 bits [11].

Our bound of 3.02 bits on the sum capacity of the NG-

MAC NGMS
is tighter than the previously reported bound of

3.14 bits [11]. Thus, our bound shows that entanglement assis-

tance increases the sum rate by at least 4.7%, in comparison

with the previously known result of 0.9%.

Since every quantum strategy is also a no-signalling strat-

egy, we automatically obtain a separation between S(NGMS
)

and SNS(NGMS
). However, SNS(NGMS

) = SQ(NGMS
). In the

following section, we use a game different from GMS to obtain

a separation between the quantum and no-signalling assisted

sum rates.

Separating SNS(NG) from S(NG) and SQ(NG) for two-

sender MACs: In order to obtain a separation between the

quantum-assisted sum rate and the no-signalling assisted sum

rate, we consider the Clauser-Horne-Shimony-Holt (CHSH)

game GCHSH [22], [23]. In this game, a referee selects bits

x1, x2 ∈ {0, 1} uniformly at random, and gives them to

Alice and Bob, respectively. Upon receiving these question

bits, Alice answers with the bit y1 ∈ {0, 1} and Bob with

y2 ∈ {0, 1}. Alice and Bob chose their answers without

communicating with each other. They win the game if

x1 ∧ x2 = y1 ⊕ y2,

where ∧ and ⊕ represent logical AND and bitwise addition

modulo 2. This game has a total of d = 4 question pairs.

It is known that the best classical strategy can answer only

3 out of the 4 question pairs correctly, i.e., ωcl(GCHSH) =
3/4 [23]. The optimal quantum strategy achieves a winning

probability of ωQ(GCHSH) = (1 + 1/
√

2)/2 ≈ 85.4% [23].

While there is no classical or quantum strategy that can always

win the game, one can construct a no-signalling distribution,

PPR(y1, y2|x1, x2) =
1

2
δx1∧x2,y1⊕y2 ,

usually called the Popescu-Rohrlich (PR) box [24], which

represents a perfect strategy for winning the CHSH game.

Therefore ωNS(GCHSH) = 1.

Using ωcl(GCHSH) = 3/4 in Cor. (6) gives S(NGCHSH
) ≤

1.7 in the classical case. On the other hand, using

ωQ(GCHSH) = (1+1/
√

2)/2 in Thm. 5, gives an upper bound,

SQ(NGCHSH
) ≤ 1.78 bits, in the quantum case. In the case of

no-signalling, a perfect strategy is possible and thus we have

SNS(NGCHSH
) = 2 bits. In this way, we obtain a separation

between the quantum and no-signalling assisted achievable

sum rate.

Separating SQ(NG) from S(NG) for N -sender MACs: We

now consider a game GMPP that we call the multiparty parity

game, which was first introduced by Brassard et al. [25]. In this

game, N players are each handed a bit and they each answer

by returning a bit. The players have a promise: the total number

of ones in the N -bit string handed to them is even. If this even

number is divisible by 4, then the winning condition is that the

total bit string returned by the players have an even number

of ones. Otherwise, the winning condition is to return a string

with an odd number of ones.

Formally, we have Xi = {0, 1} and Yi = {0, 1} for i ∈ [N ].
As before, we denote X = X1×· · ·×XN as the set of questions

and Y = Y1×· · ·×YN as the set of answers for the N players.

The promise,

P =
{

x ∈ X |
∑

i
xi = 0 (mod 2)

}

is a subset of X from which the questions are draw. The

winning condition for the game can be described by the set

WP =

{
(x,y) ∈ P × Y |

∑

i

yi −
1

2

∑

i

xi = 0 (mod 2)

}
.

Brassard et al. [25] demonstrated that classical strategies can

win this game with a probability of at most ωcl,P(GMPP) =
1/2 + 2−⌈N/2⌉ when the questions are drawn uniformly from

the promise set. In contrast, a perfect quantum strategy is

possible [25].

Now we consider the following promise-free version of

this game. Herein, the question and answer set remain the

same, but the winning condition is defined as the set W =
WP ∪ (Pc × Y). That is, the players win automatically if a

question from outside the promise set is presented to them.

To apply the bound obtained in Thm. 5, we need to compute

the maximum classical winning probability ωcl(GMPP) for
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the promise-free case when questions are drawn uniformly.

To that end, we show how to compute the maximum winning

probability ωS(G) when we convert any game with a promise

P to a promise-free game, assuming that the questions are

drawn uniformly and answers are given using strategies in S.

Since WP ∩ (Pc × Y) = ∅, we have

pW =
∑

(x,y)∈WP

1

|X |p(y|x) +
∑

x∈Pc

p(x)

=
|P|
|X |p

P
W +

(
1− |P||X |

)
.

Since the set of strategies S chosen by the players have a

maximum probability ωS,P(G) of winning when the questions

are drawn uniformly from P , we can infer that

ωS(G) =
|P|
|X |ω

S,P(G) +

(
1− |P||X |

)
.

For the multiparty parity game, since half the N -bit strings

are in P and the other half are in Pc, we get

ωcl(GMPP) =
3

4
+ 2−(⌈N/2⌉+1). (42)

Then, by Cor. (6), we find that the sum capacity for the

MAC obtained from the multiparty parity game is bounded

above as S(NGMPP
) ≤ log(d − 1 + 2−(1−ωcl(G))d) bits, where

d = 2N and ωcl(G) is given by Eq. (42). In particular,

S(NGMPP
) < log(d). In contrast, since a perfect quantum strat-

egy is available, we have SQ(NGMPP
) = log(d), thus giving a

separation between the sum capacity and the quantum-assisted

sum rate for N -sender MACs. For example, when we have

N = 3 senders, we obtain S(NGMPP
) ≤ 2.84 bits. In contrast,

SQ(NGMPP
) = 3 bits in the quantum case.

B. Looseness of Convex Relaxation of the Sum Capacity

In the previous section, we looked at separations between

the sum rates with assistance from classical, quantum and no-

signalling strategies. In this section, we construct a game such

that one can obtain an arbitrarily large separation between

the sum capacity and the relaxed sum capacity. Recall that

the relaxed sum capacity corresponds to dropping the product

distribution constraint in the maximization problem:

C(NG) = max
p(xy)

I(X1, Y 1, . . . ,XN , Y N ;Z),

where X1, Y 1, . . . ,XN , Y N are random variables describing

the input to the NG-MAC NG, while Z is the random variable

describing the output. We maximize over all possible input

probability distributions p, so that the resulting quantity is the

capacity of NG when we think of it as a single-input single-

output channel. As noted in Sec. III-A.1, we have S(NG) ≤
SC(NG) ≤ C(NG) for any set of correlations C. Indeed, since

we maximize over all probability distributions over the input

to NG, we can write the relaxed sum capacity as

C(NG) = max
p

Y |X∈Sall

max
π∈∆d

I(X1, Y 1, . . . ,XN , Y N ;Z)

where Sall denotes the set of all possible strategies that the

players can use to play the game. In particular, this amounts to

allowing the players to communicate after the questions have

been handed over to them.

To analyze C(NG), we study some properties of Sall. It can

be verified that Sall is a convex set. The extreme points of

this set correspond to deterministic strategies f : X → Y that

allow for communication between the players (see Prop. 13 in

App. B). This implies that the maximum winning probability

of the game ωSall(G), when the questions are drawn uniformly

and answers are obtained using the strategies in Sall, is always

achieved by a deterministic strategy of the form mentioned

above. We now give an explicit description of a deterministic

strategy (not necessarily unique) achieving the maximum

winning probability.

The best deterministic strategy f (D) : X → Y can be written

as

f (D)(x) =

{
y ∃y ∈ Y such that (x,y) ∈ W
yo otherwise,

(43)

where yo ∈ Y is an arbitrary element chosen beforehand.

We note that for each x ∈ X , some element y ∈ Y satisfying

(x,y) ∈ W is chosen apriori (if it exists), so that the function

is well-defined, though not necessarily unique. In other words,

f (D) gives the correct answer if a correct answer for the given

question exists, and if not, it gives an arbitrary answer that

is necessarily incorrect. It can, therefore, be inferred that the

maximum winning probability can be written as

ωSall(G) =
|{x ∈ X | ∃y ∈ Y such that (x,y) ∈ W}|

d
.

(44)

This is the best that one can do given any nonlocal game G.

Note also that ωSall(G) can be directly computed from the

winning condition W .

The above observation directly leads to upper and lower

bounds on C(NG). The upper bound is obtained by using

ωSall(G) from Eq. (44) in Thm. 5. Here, we implicitly use the

fact that our upper bound is valid even when the questions are

drawn arbitrarily. Let w(D) ∈ {0, 1}d be the winning vector

corresponding to the best deterministic strategy f (D) given in

Eq. (43). Note that we maximize over all distributions over the

questions when computing C(NG). Therefore, using w(D) in

Prop. 2, we obtain a lower bound on C(NG). In particular,

if there is at least one correct answer for every question, then

f (D) is a perfect strategy and C(NG) = ln(d).
Now, we obtain a separation between C(NG) and S(NG).

To that end, we construct a game called the signalling game.

1) Signalling Game Gs and separation of C(NGs
) from

S(NGs
) and SNS(NGs

): Consider a game where Alice & Bob

are each given a question from some set of questions. They

win the game if they can correctly guess the question handed

over to the other person. Since the game can be won if Alice

& Bob ªsignalº their question to each other, we call this the

signalling game Gs.

Formally, we consider question sets X1, X2 and answer sets

Y1 = X2 and Y2 = X1, and the winning condition is defined

as

W = {(x1, x2, y1, y2) ∈ (X1 ×X2)×(Y1 × Y2) |
y1 = x2, y2 = x1}.
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Note that there is exactly one correct answer for each question

pair (x1, x2) ∈ X1 ×X2.

Since we bound the sum capacity of the NG-MAC NGs

obtained from the signaling game Gs using the maximum

winning probability, we analyze the winning strategies for this

game. To that end, consider some set of strategies S that Alice

and Bob use to play the game. For simplicity, we assume

that this is a compact set (thinking of strategies as vectors

as in Prop. 13), which holds, for example, when S is the

set of no-signalling strategies (see Prop. 14). Suppose that

ωS(G) = 1 corresponding to this set of strategies, and let

p∗
Y |X be the strategy that achieves this maximum winning

probability. When the questions are drawn uniformly, the

winning probability for strategy p∗
Y |X is given by p∗W =

(
∑

i w∗
i )/d, where w∗ = (w∗

1 , . . . , w∗
d) is the winning vector

corresponding to p∗
Y |X , as defined in Eq. (23). Since p∗W =

ωS(G) = 1 by assumption and w∗ ∈ [0, 1]d, we must have

w∗
i = 1 for all i ∈ [d].
For convenience, denote X = X1 × X2 as the set of

questions. Using Def. 23, we can write the winning vector

w∗ as

w∗
x =

∑

y : xy∈W

p∗Y |X(y|x)

where we label the components of w∗ using the questions

x ∈ X . Since w∗
x = 1 for all x ∈ X and because there is

exactly one correct answer for each question x, we can infer

that p∗
Y |X must be a deterministic strategy. Written explicitly,

we have

p∗Y |X(y1, y2|x1, x2) = δy1,x2δy2,x1 .

Note that p∗
Y |X cannot be a no-signalling strategy. Indeed,

p∗Y |X(y1|x1, x2) =
∑

y2∈Y2

p∗Y |X(y1, y2|x1, x2) = δy1,x2
.

(45)

This cannot satisfy the no-signalling condition

p∗
Y |X(y1|x1, x2) = p∗

Y |X(y1|x1) given in Eq. (4) because

the RHS in Eq. (45) depends on x2. In other words,

we cannot have wx = 1 for any question x ∈ X using a

no-signalling strategy. In particular, the perfect strategy is not

no-signalling, and therefore, ωNS(Gs) < 1 for no-signalling

strategies. Subsequently, we also have ωQ(Gs) < 1 and

ωcl(Gs) < 1, because the set of classical and quantum

strategies are contained in the set of no-signalling strategies.

It then follows from Thm. 5 and Cor. 6 that each of

S(NGs
), SQ(NGs

), SNS(NGs
) is strictly less than ln(d).

On the other hand, since a perfect strategy is possible

allowing communication between Alice & Bob, we have

C(NGs
) = ln(d). Therefore, we have obtained a separation

between C(NGs
) and S(NGs

), SQ(NGs
), SNS(NGs

).
Below, we argue that this separation becomes arbitrarily

large as the number of questions increases. To that end,

we compute ωcl(Gs). Since the maximum winning probability

obtained using classical strategies when questions are drawn

uniformly is achieved by a deterministic strategy, it is sufficient

to restrict our attention to classical deterministic strategies

chosen by Alice & Bob. Recall that a classical deterministic

strategy corresponds to two functions f1 : X1 → Y1 and

f2 : X2 → Y2 chosen by Alice & Bob, respectively. This

translates to the probability distribution p
(D)
Y |X(y1, y2|x1, x2) =

δy1,f1(x)δy2,f2(x). Then, the winning probability using a clas-

sical deterministic strategy when the questions are drawn

uniformly is given by

p
(D)
W =

1

d

∑

x1∈X1,x2∈X2

δx2,f1(x1)δx1,f2(x2) (46)

where we used the fact that the signalling game has only

one correct answer (x2, x1) corresponding to each question

(x1, x2). It can be seen from Eq. (46) that, for achieving

maximum winning probability, the function f1 must be able

to invert the action of the function f2 or vice-versa.

If |X2| ≤ |X1|, then the set f2(X2) can cover at most |X2|
elements of X1. Subsequently, δx1,f2(x2) ̸= 0 for at most |X2|
elements of X1. We can then infer from Eq. (46) that

p
(D)
W ≤ |X2|

d
=

1

|X1|
since d = |X1||X2|. Using a similar reasoning when |X1| ≤
|X2|,

ωcl(Gs) =
1

max(|X1|, |X2|)
.

In particular, we have d→∞ if either of |X1| or |X2| diverges,

while the winning probability ωcl(G) → 0. Subsequently,

C(NGs
) → ∞ but S(NGs

) → 0. Therefore, we get an

arbitrarily large separation between C(NGs
) and S(NGs

).
In fact, we verify through numerical simulations that the

situation is equally bad for the no-signalling assisted sum rate.

To that end, we compute the maximum winning probability

ωNS(Gs) numerically. We show in Prop. 14 that the set of

no-signalling strategies for N -player games is a compact and

convex set (specifically, a convex polytope). Therefore, com-

puting ωNS(Gs) amounts to solving a linear program (this fact

is well-known for 2-player games [26]). For 2 ≤ |X1|, |X2| ≤
10, we verify that the numerically computed value for ωNS(Gs)
matches ωcl(NGs

) = 1/ max(|X1|, |X2|). Thus, we expect

ωcl(NGs
) = ωQ(NGs

) = ωNS(NGs
) for the signalling game.

This would imply that SQ(NGs
), SNS(NGs

) → 0 as d → ∞
but C(NGs

)→∞. In other words, even with quantum or no-

signalling assistance, the sum rate is far lower than the bound

given by the relaxed sum capacity.

This example highlights the importance of finding better

methods to upper bound the sum capacity of MACs. In the next

part, we take a step in this direction by defining and studying

a class of global optimization problems with relevance in

information theory. This class of optimization problems is

motivated from the non-convex problem encountered in sum

capacity computation. In the third part of this study, we will

show how to apply these algorithms for computing the sum

capacity of arbitrary two-sender MACs.

IV. OPTIMIZATION OF LIPSCHITZ-LIKE FUNCTIONS

A. Lipschitz-Like Functions

The main object of our study is a Lipschitz-like function.

Such functions are a generalization of Lipschitz-continuous
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and Hölder continuous functions. Recall that a function

f : D → E between two subsets of normed vector spaces

is said to be Lipschitz continuous if for all x, x′ ∈ D,

we have ∥f(x)− f(x′)∥E ≤ L ∥x− x′∥D for some constant

L > 0. The function f is said to be Hölder continuous if

∥f(x)− f(x′)∥E ≤ L ∥x− x′∥γD for some constants L, γ >

0 [27]. Hölder continuity is a more general notion than Lips-

chitz continuity since γ = 1 gives the definition of Lipschitz

continuity. Even so, this definition is not general enough

to capture the continuity properties of entropic quantities.

Shannon and von Neumann entropies, for example, satisfy

a different continuity bound. Specifically, if p, q ∈ ∆d are

discrete probability distributions, then the Shannon entropy

satisfies

|H(p)−H(q)| ≤ 1

2
log(d− 1) ∥p− q∥1 + h

(
1

2
∥p− q∥1

)
,

(47)

where h(x) = −x log(x) − (1 − x) log(1 − x) is the binary

entropy function [28]. Similarly, von Neumann entropy sat-

isfies the Fannes-Audenaert inequality [29]. To encapsulate

such behaviour of entropic quantities, we define Lipschitz-like

functions as follows.

Definition 8 (Lipschitz-Like Function): Let β : R+ → R be

a non-negative, continuous, monotonically increasing function

such that β(0) = 0. Let D and E be subsets of a normed vector

space. Then a function f : D → E is said to be Lipschitz-like

or β-Lipschitz-like if it satisfies

∥f(x)− f(x′)∥E ≤ β(∥x− x′∥D) ∀ x, x′ ∈ D. (48)

Some remarks about this definition are in order. The

definition of Lipschitz-like functions can be generalized to

metric spaces in a straightforward manner. The reason we

require β to be monotonically increasing is because it makes

Lipschitz-like functions behave similar to Lipschitz continuous

functions in the sense that the bound on ∥f(x)− f(x′)∥E
tightens or loosens with the value of ∥x− x′∥D. Moreover,

this assumption helps with optimization of Lipschitz-like

functions. Similarly, we require continuity of β for simplicity,

but this can be relaxed to right-continuity at 0. Since β is

(right-)continuous at 0, it follows from Eq. (48) that f is a

continuous function. If β(x) = Lx for some L > 0, then f
is a Lipschitz continuous function with Lipschitz constant L,

and if β(x) = Lxγ for L, γ > 0, then f is a Hölder con-

tinuous function with constant L. Lipschitz-like functions are

therefore a generalization of Lipschitz and Hölder continuous

functions.

With a slight modification of the right-hand side of Eq. (47),

we can show that entropy is a Lipschitz-like function. To that

end, we define the modified binary entropy as follows.

h(x) =

{
−x log(x)− (1− x) log(1− x) if x ≤ 1

2

log(2) if x ≥ 1
2

(49)

Observe that h is a non-negative, continuous, and mono-

tonically increasing function that satisfies h(0) = 0, and

furthermore, we have h(x) ≤ h(x) for all x ∈ [0, 1]. Thus,

defining βH(x) = log(d− 1)x/2 + h(x/2), we obtain

|H(p)−H(q)| ≤ βH (∥p− q∥1) .

From this, we can conclude that Shannon entropy (and simi-

larly, von Neumann entropy) is a Lipschitz-like function.

Moreover, linear combinations and compositions of

Lipschitz-like functions is again a Lipschitz-like function.

We summarize this observation in the following result.

Proposition 9: 1) If f1 : D → E and f2 : D →
E are β1-Lipschitz-like and β2-Lipschitz-like func-

tions respectively, then the linear combination α1f1 +
α2f2 is a (|α1|β1+|α2|β2)-Lipschitz-like function, where

α1, α2 are scalars.

2) If f1 : D → E and f2 : E → F are β1-Lipschitz-

like and β2-Lipschitz-like functions respectively, then the

composition f2 ◦f1 is a (β2 ◦β1)-Lipschitz-like function.

Proof: 1. The function g = α1f1 + α2f2 sat-

isfies ∥g(x)− g(y)∥E ≤ |α1| ∥f1(x)− f1(y)∥E +
|α2| ∥f2(x)− f2(y)∥E for x, y ∈ D by triangle inequality.

Then, using the fact that f1, f2 are Lipschitz-like, we obtain

∥g(x)− g(y)∥E ≤ |α1|β1(∥x− y∥D) + |α2|β2(∥x− y∥D).
Since β = |α1|β1 + |α2|β2 is non-negative, continuous and

monotonically increasing with β(0) = 0, we can conclude

that g is β-Lipschitz-like.

2. The function g = f2 ◦ f1 satisfies ∥g(x)− g(y)∥F ≤
β2(∥f1(x)− f1(y)∥E) for x, y ∈ D by using the fact that

f2 is β2-Lipschitz-like. Then, since f1 is β1-Lipschitz-like and

β2 is monotonically increasing, we obtain ∥g(x)− g(y)∥F ≤
β2(β1(∥x− y∥D)). Since β = β2 ◦ β1 is non-negative, con-

tinuous and monotonically increasing with β(0) = 0, we can

conclude that g is β-Lipschitz-like.

In light of the above result, we can conclude that several

entropic quantities derived from Shannon entropy and von

Neumann entropy are Lipschitz-like functions. This lends

support to our claim that the techniques developed in this

section can potentially be useful for non-convex optimization

problems in information theory.

For the purposes of optimization, we take the co-domain to

be the real line, i.e., E = R with the usual norm. Motivated by

applications in information theory, we will mainly be focusing

on the case where the domain D = ∆d is the standard simplex

in R
d and ∥·∥D = ∥·∥1. Nevertheless, our techniques work

more generally with any norm (for example, using equivalence

of norms in finite dimensions).

In this section, we will develop algorithms for optimiz-

ing Lipschitz-like functions over a closed interval and a

standard simplex. We also discuss techniques for optimizing

Lipschitz-like functions over arbitrary compact and convex

domains in App. C-D. We approach this problem by showing

how to extend a Lipschitz-like function from a compact and

convex domain to all of Euclidean space such that the global

optimum is not affected, which may be of independent interest.

Some of these algorithms we discuss are generalizations of

existing algorithms for optimization of Lipschitz continuous

functions. For this reason, we present a brief overview of

some existing algorithms and our approach to generalizing

them. In the next section, we focus on outlining the high-level

ideas without delving into the technical details. Subsequently,
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we will give detailed results on the optimization algorithms,

along with some numerical examples.

B. Overview of the Optimization Algorithms

All the algorithms we propose in this study are designed

to optimize any β-Lipschitz-like function f . The function β
is assumed to be known beforehand, but the function f is

unknown and we can only query it at a specified point. The

algorithms can then use the knowledge of the domain, the

function β, the queried points and corresponding values of

the objective function f to approximate the maximum of f to

an additive precision ϵ > 0. Such a setting is commonly used

to study the performance of optimization algorithms [27].

In order to make concrete statements about the complexity

of optimization, we will assume that β does not explicitly

depend on the dimension. Our algorithms and convergence

analysis are valid even if this assumption does not hold. By an

efficient algorithm for optimization, we mean an algorithm that

computes the optimum of f to a given additive precision ϵ >
0 in time polynomial in the dimension and inverse precision

1/ϵ. We sometimes informally use the phrase ªpractically

efficientº and variations thereof to mean that the algorithm

runs reasonably fast in practice, e.g., to exclude situations

where the scaling of runtime with dimension is too large (for

example, O(d10)).
Before discussing technical details of the algorithms pre-

sented in this study, we give a high-level overview of the main

ideas. We begin by presenting an algorithm that can optimize

any β-Lipschitz-like function f when the domain D = [a, b]
is a closed interval. Our algorithm is a generalization of

the Piyavskii-Shubert algorithm [30], [31], and it focuses

on constructing successively better upper-bounding functions

by using the Lipschitz-like property of the objective func-

tion. At each iteration, the maximum of the upper-bounding

function is computed, which is an easier problem because

we only need to maximize the function β that is known

to be monotonically increasing. The computed maximum

of the upper-bounding function at each iteration generates

a sequence of points that partitions the interval. When the

distance between any two of these points becomes sufficiently

small, one can show that the maximum of the upper-bounding

function is close to the maximum of the original objective

function. Our algorithm is guaranteed to converge to the

optimal solution within a precision of ϵ > 0 in ⌈(b − a)/δ⌉
time steps in the worst-case, where δ > 0 is the largest

number satisfying β(δ) ≤ ϵ/2 (see Prop. 15). We refer to this

algorithm as modified Piyavskii-Shubert algorithm. We remark

that several extensions of the Piyavskii-Shubert algorithm have

been presented in the literature (see, for example, Ref. [32],

[33], [34], [35]). It would be interesting to undertake a more

detailed study comparing such algorithms with our method in

the future.

In higher dimensions, we focus on the case where the

objective f is a β-Lipschitz-like function over the standard

simplex D = ∆d. For this case, we present two algorithms

for finding the global optimum of f . For the first algorithm,

we resort to a straightforward grid search. Using the results of

Ref. [36], one can show that a grid of size O(d⌈1/δ2⌉) suffices

to converge to a specified precision of ϵ > 0, where δ is the

largest number satisfying β(δ) ≤ ϵ/2 (see Prop. 17).4 These

results stand to demonstrate that one can, in principle, compute

the maximum of f in polynomial time for a fixed precision.

Moreover, a simple observation about ordering the elements

of the grid allows for efficient construction of the grid, along

with the possibility of parallelizing the grid search. Despite

the possibility of polynomial complexity (in dimension) and

numerical improvements, grid search is still too inefficient to

be of practical use except for very small dimensions.

Another strategy we propose is to construct a ªdenseº

Lipschitz continuous curve that gets close to each point of

D to within some specified distance. Such a strategy was

adopted by Ref. [37] for optimizing Lipschitz continuous

functions over a hypercube, and is referred to as Alienor

method in the literature. When D is the standard simplex in

d dimensions, we give a time and memory efficient algorithm

to construct such a curve. This allows us to reduce the d-

dimensional problem of optimizing f over D to the one-

dimensional problem of optimizing it over an interval using

the generated curve. If α > 0 is the largest number satisfying

β(α) ≤ ϵ/2, this method takes O(α1−d/d) iterations in the

worst case for large dimensions. While this is much worse

than a grid search in large dimensions, in small dimensions

this takes fewer iterations to converge than grid search when

the tolerance ϵ is small. The dense curve algorithm also has the

advantage that we can find an upper bound on the maximum

by running the algorithm for a fixed number of time steps.

Furthermore, similar to grid search, the dense curve algorithm

can be parallelized. Nevertheless, we remark that both the grid

search and dense curve algorithms are impractical for even

moderately large dimensions. We detail these methods here in

the hope that these engender the development of more practical

algorithms for optimizing Lipschitz-like functions over the

standard simplex in higher dimensions.

We also study the more general case when D is a compact

and convex set in R
d. To handle optimization in this general

case, we seek to reduce it to a case that can be solved using

known techniques. To that end, we show how to extend the

objective function f from the domain D to the full Euclidean

space R
d while retaining the Lipschitz-like property when β is

itself Lipschitz-like (see Def. 19 and Prop. 20). The extended

function f has the property that its optimum coincides with

the optimum of f when optimized over any set containing D.

Since we have the freedom to choose which set to optimize f
over, there are different algorithms one can potentially use

for this optimization. In this study, we find the maximum

value of f by optimizing its extension f over a hypercube

containing D. To perform this optimization, we resort to using

dense curves because the convergence analysis is very similar

to the case of the standard simplex D = ∆d. The effective

problem, as before, is one-dimensional and can be solved

using the modified Piyavskii-Shubert algorithm. In general,

this algorithm needs exponentially many iterations (with the

4Note the different scaling in δ in Prop. 17 compared to that of O(d⌈1/
√

δ⌉)
mentioned in [36], which we believe to be erroneous.
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dimension) to find the optimal solution to within a specified

precision of ϵ > 0 (see Prop. 21 for a precise statement).

This exponential scaling with the dimension stems from the

fact that we do not use any structure of D to construct the

dense curve and instead rely on a curve generated for a

hypercube. The O(1/ϵd) complexity cannot be improved in

general without additional assumptions on D or the class of

functions we optimize (see Prop. 21). However, it might be

possible to improve the other factors that scale exponentially in

the algorithm as noted in App. C-D. An advantage of using this

algorithm is that one can specify a fixed number of iterations to

obtain an upper bound on the maximum. Because optimizing

f over an arbitrary compact and convex domain is not directly

relevant to our study of MACs, we relegate this discussion to

App. C-D.

We now dive into details of the proposed algorithms.

C. Optimizing Lipschitz-Like Functions Over an Interval

Using Modified Piyavskii-Shubert Algorithm

We begin our study by presenting an algorithm for comput-

ing the maximum of any β-Lipschitz-like function f over a

closed interval D = [a, b]. A pseudocode for this algorithm is

given in Alg. 1.

Algorithm 1 Computing the Maximum of a Function f
Satisfying Eq. (48) for D = [a, b], Given ϵ > 0

1: function

MAXIMIZE_LIPSCHITZ-LIKE_FUNCTION_1D(ϵ)

2: Initialize q(0) = a
3: Set F0(q) = f(q(0)) + β(|q − q(0)|) for q ∈ [a, b]
4: Set F ← F0 and q∗ ← b
5: Set q(1) ← q∗, k ← 1
6: while F (q∗)− f(q∗) > ϵ do

7: Sort {q(0), . . . , q(k)} from smallest to largest

and relabel the points in ascending order.

8: Define Fi(q) = f(q(i)) + β(|q − q(i)|)
for 0 ≤ i ≤ k

9: for i = 0, . . . , k − 1 do

10: Set gi(q) = Fi(q)− Fi+1(q)
11: Find q(i) ∈ [q(i), q(i+1)] such that

gi(q
(i)) = 0 using any root finding method.

12: end for

13: Pick an index m ∈ argmax0≤i≤k−1 Fi(q
(i))

and set q∗ = q(m).

14: Update F ← Fm

15: Set q(k+1) ← q∗, k ← k + 1
16: end while

17: return f(q∗)
18: end function

We refer to the function Fi defined in line 8 of Alg. 1 as

a bounding function, since f(q) ≤ Fi(q) for all q ∈ [a, b] and

all i. Note that Fi(q
(i)) = f(q(i)) for all i. The bounding

function Fi depends non-trivially on the argument q only

through the function β(|q−q(i)|). We compute the optimum of

the function f by maximizing these bounding functions, which

is an easier problem because β is continuous and monotonic.

Essentially, the algorithm does the following. Suppose that

at the Kth time step, we have the iterates q(0), · · · , q(K)

sorted in the ascending order a = q(0) ≤ q(1) ≤ · · · ≤
q(K) = b. Then in each of the intervals [q(k), q(k+1)] for

k ∈ {0, . . . ,K − 1} we compute the point q(k) attaining

the maximum of the bounding function min{Fk, Fk+1} (see

lines 10, 11 in Alg. 1). Our next iterate q(K+1) is chosen

to be in argmax{q(0), . . . , q(K−1)}. In the next iterate, since

FK+1(q
(K+1)) = f(q(K+1)), we have essentially tightened

the upper bound on the function f . Proceeding this way,

one can verify that the algorithm eventually approximates

the function f from above well enough. A schematic of this

procedure is shown in Fig. 2.

Indeed, we show in Prop. 15 that Alg. 1 is guaranteed to

converge to the global maximum within an error of ϵ. This

convergence takes at most ⌈(b−a)/δ⌉ in the worst-case, where

δ > 0 is the largest number satisfying β(δ) ≤ ϵ/2. Since we

find successively better upper bounds on the objective, Alg. 1

can be modified so that it accepts a fixed number of iterations

instead of a precision, and outputs the upper bound F (q∗) on

the maximum of f . This upper bound has an error of at most

F (q∗)− f(q∗).
When the domain D = ∆2 is the standard simplex in 2-

dimensions, we can parameterize any x ∈ ∆2 as x = (q, 1−q)
with q ∈ [0, 1]. Furthermore, we have ∥x− y∥1 = 2|p− q| for

x, y ∈ ∆2 parametrized as x = (q, 1− q) and y = (p, 1− p).
Thus, taking a = 0, b = 1, and replacing |q − q(i)| with

2|q − q(i)| in Alg. 1, we get an algorithm for optimizing f
over ∆2.

Next, we present algorithms to optimize Lipschitz-like

functions in higher dimensions. Our main focus will be on

optimizing Lipschitz-like functions over the standard simplex

∆d for d ≥ 3.

D. Optimizing Lipschitz-Like Function Over the Standard

Simplex

We present two algorithms to optimize Lipschitz-like func-

tions over D = ∆d. The first algorithm is a simple grid

search, whereas the second algorithm uses dense curves to fill

D. We describe these algorithms, corresponding convergence

guarantees and practical implementation in detail.

1) Optimization Using Grid Search: Our goal in this section

is to optimize a β-Lipschitz-like function f over the standard

simplex D = ∆d. Based on the results of Ref. [36], we present

a grid search method for finding the maximum of f over D.

We begin by defining the integer grid

Id,N =

{
n ∈ N

d |
d∑

i=1

ni = N

}
, (50)

where d ∈ N+ denotes the dimension and N ∈ N+ denotes

the size of the integer grid. This grid has

Ngrid =

(
N + d− 1

d− 1

)
(51)

elements because each element of Id,N can be

obtained by arranging N ones into d coordinates. From
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Fig. 2. A schematic of iterations of Alg. 1 for optimizing a Lipschitz-like function f .

Id,N , we obtain the grid

∆d,N =
{ n

N
| n ∈ Id,N

}
(52)

for the standard simplex ∆d. Note that ∆d,N is just a rescaled

version of Id,N , i.e., ∆d,N = Id,N/N .

The authors of Ref. [36] propose to search the grid ∆d,N

in order to optimize Hölder continuous functions over the

standard simplex. Their results are based on approximations

of the function f using Bernstein polynomials, and are in fact

general enough to handle the optimization of Lipschitz-like

functions (see Prop. 17 for details). Such an approach to

compute the maximum of f to a specified precision ϵ > 0 is

summarized in Alg. 2.

Algorithm 2 Computing the Maximum of a Function f
Satisfying Eq. (48) for D = ∆d, Given ϵ > 0

1: function

MAXIMIZE_LIPSCHITZ-LIKE_FUNC_SIMPLEX(d, β, ϵ)

2: Set N = ⌈1/δ2⌉, where δ is the

largest number satisfying β(δ) ≤ ϵ/2
3: Construct the grid ∆d,N

4: return f∗ = max{f(x) | x ∈ ∆d,N}
5: end function

In Prop. 17, we show that Alg. 2 computes the maximum

of f to a precision ϵ > 0 in Ngrid =
(
N+d−1

d−1

)
time steps,

where N = ⌈1/δ2⌉ and δ is the largest number satisfying

β(δ) ≤ ϵ/2. For fixed ϵ > 0 and d ≫ N , this amounts to

O(d⌈1/δ2⌉) iterations. In other words, we can find the optimum

of f in polynomial time for a fixed precision. We note that if

β achieves the value ϵ/2, we can obtain δ by solving β(δ) =
ϵ/2 using bisection (or any other root finding method) because

β is continuous and monotonically increasing.

The crucial step in implementing the above algorithm is

computing the grid ∆d,N efficiently. For that purpose, note that

we can write any element x ∈ ∆d,N as x = (N−nd−1, nd−1−
nd−2, . . . , n2 − n1, n1)/N , where 0 ≤ ni ≤ ni+1 ≤ N for

i ∈ [d − 2] (see Prop. 16 for a proof). Thus, the elements

of ∆d,N can be computed iteratively, with the total number

of iterations equalling Ngrid. This also allows for parallelizing

the search over the grid. The exact algorithm we use to query

the elements of the grid orders the elements such that every

consecutive element is equidistant with respect to l1-norm.

This approach is explained in the next section and allows for

easy parallelization.

2) Optimization Using Dense Curves: Next, we outline a

method to optimize Lipschitz-like functions over D = ∆n

by filling D with an α-dense Lipschitz curve. We propose

this method as a way to reduce the total number of iterations

required for finding the optimum to a small additive error in

practice compared to grid search. Such a strategy of using

dense curves was outlined in Ref. [37] to optimize Lipschitz

continuous functions over a hypercube.

Definition 10 (α-Dense Curve): Given a number α > 0,

numbers a, b ∈ R, and a nonempty set S ⊆ R
n, a function

γ : [a, b] → S is said to be an α-dense curve in the norm

∥·∥ if for any x ∈ S, we can find some θ ∈ [a, b] such that

∥γ(θ)− x∥ ≤ α [37].

The curve γ is said to be βγ-Lipschitz-like if there is some

non-negative, continuous, monotonically increasing function

βγ : R+ → R with βγ(0) = 0 such that for any θ, θ′ ∈ [a, b],
we have ∥γ(θ)− γ(θ′)∥ ≤ βγ(|θ − θ′|).

The numbers a, b ∈ R are the end points of the interval

over which the curve is defined. In this section, we will focus

on constructing an α-dense curve for the standard simplex

S = ∆d in l1-norm, where α = 2(d − 1)/N . Here, d is the

dimension and N is a positive integer that controls the value

of α. We achieve this by finding a way to efficiently connect

the points of the grid Id,N defined in Eq. (50) in the previous

section. Towards this end, we define the following ordering of

the grid Id,N .

Definition 11 (Equidistant Ordering of Id,N ): Given

d, N ∈ N+ with d ≥ 2, let Id,N be the grid defined in

Eq. (52). For d = 2, define the forward ordering I2,N =
{(N, 0), (N − 1, 1), . . . , (1, N − 1), (0, N)} and the reverse

ordering I2,N = {(0, N), (1, N − 1), . . . , (N − 1, 1), (N, 0)}.
For d ≥ 3, define the forward ordering inductively as follows.

Start with Id,N = ∅. For each nd−1 ∈ [N ], forward order

the elements of Id−1,nd−1
if nd−1 is odd, and reverse order

them if nd−1 is even. Append the elements (N−nd−1, nd−1−
nd−2, . . . , n2−n1, n1) with (nd−1−nd−2, . . . , n2−n1n1) ∈
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Id−1,nd−1
as ordered above to the (ordered) set Id,N . Reverse

ordering of Id,N corresponds to writing the forward ordered

set in the reverse order.

We remark that d = 2 is just a special case of the

definition showing the basis step for induction. It can be

seen that the first element of Id,N is (N, 0, . . . , 0) and the

last element is (0, . . . , 0, N) if Id,N is forward ordered (and

the opposite is true if the elements are reverse ordered).

In Prop. 16, we show that Id,N can be ordered in this manner

and the distance between any two consecutive elements of

Id,N according to this ordering is 2 measured in l1-norm.

By default, we work with forward ordering unless specified

otherwise. As an example, the (forward) ordering of I3,3 is

given by

I3,3 = {(3, 0, 0), (2, 1, 0), (2, 0, 1), (1, 0, 2), (1, 1, 1),

(1, 2, 0), (0, 3, 0), (0, 2, 1), (0, 1, 2), (0, 0, 3)}.

It can be seen that any two consecutive elements have an l1-

norm distance of 2. Since the grid ∆d,N defined in Eq. (52)

is just a scaled version of Id,N , this ordering also applies to

∆d,N .

To generate a dense curve filling ∆d, we make use of the

grid ∆d,N along with the ordering described above. However,

∆d,N has Ngrid =
(
N+d−1

d−1

)
elements, and therefore, it can get

very expensive to store this grid in memory even if N and d are

only moderately large (for example, N = d = 20 gives Ngrid ≈
7 × 1010). For this purpose, we develop an algorithm that

can efficiently query the elements of ordered ∆d,N without

explicitly constructing the set. We skip the details of this

algorithm in the study, but include an implementation of

the algorithm on Github (see Sec. E-B). Owing to such an

approach, the resulting construction is both time and memory

efficient, i.e., γ(θ) can be computed efficiently for a curve γ.

We describe the construction of the curve below.

Algorithm 3 Construct an α-Dense Curve That Fills the

Simplex ∆d for α = 2(d−1)/N , N ∈ N+ and θ ∈ [0, Lcurve],
Where Lcurve Is Given in Eq. (53)

1: function

CONSTRUCT_DENSE_CURVE_STD_SIMPLEX(d, N , θ)

2: Compute the index k = ⌊θN/2⌋
3: Compute t = 1 + k − θN/2
4: Obtain the grid points xk, xk+1 ∈ ∆d,N , where

the elements of ∆d,N are ordered as per Def. (11)

5: return txk + (1− t)xk+1

6: end function

We now explain the reasoning behind Alg. 3. We construct

the (2(d − 1)/N)-dense curve γ by joining the consecutive

points of the ordered grid ∆d,N . Since every two consecutive

points in the ordered grid ∆d,N are 2/N distance apart in

l1-norm, the total length of this curve measured in l1-norm is

Lcurve =
2

N
Ngrid =

2

N

(
N + d− 1

d− 1

)
. (53)

In order to obtain γ(θ) efficiently for a given θ ∈ [0, Lcurve],
we first compute the grid points xk and xk+1 for which γ(θ) ∈

[xk, xk+1]. In particular, we have γ(θ) = txk + (1 − t)xk+1

for some t ∈ [0, 1]. In order to compute t, we note that

∥γ(θ)− xk∥1 = θ−2k/N , where the RHS is the length of the

curve at θ minus the length of the curve at grid point xk (which

is 2k/N ). Since ∥γ(θ)− xk∥1 = (1 − t) ∥xk+1 − xk∥1 =
2(1− t)/N , we obtain t = 1 + k− θN/2. Since θN/2− 1 ≤
k ≤ θN/2, we have 0 ≤ t ≤ 1. In Prop. 18, we show that

the curve constructed using Alg. 3 is (2(d− 1)/N)-dense and

satisfies the property

∥γ(θ)− γ(θ′)∥1 ≤ min{|θ − θ′|, 2}. (54)

That is, the curve γ is βγ-Lipschitz-like with βγ(x) =
min{x, 2}. In particular, γ is Lipschitz continuous with Lips-

chitz constant 1.

The essential idea behind the optimization of Lipschitz-like

functions using an α-dense curve is as follows. If the objective

function f : D → R is Lipschitz-like and γ : [a, b]→ D is an

α-dense Lipschitz-like curve, then the function f ◦γ : [a, b]→
R is also Lipschitz-like. Therefore, one can optimize the

function f◦γ using Alg. 1. In order to converge to the optimum

within a precision of ϵ > 0, the constant α must be chosen

appropriately. The exact procedure is outlined in Alg. 4.

Algorithm 4 Computing the Maximum of a β-Lipschitz-Like

Function f Satisfying Eq. (48) for D = ∆d, Given ϵ > 0

1: function

MAXIMIZE_LIPSCHITZ-LIKE_FUNC_SIMPLEX(d, β, ϵ)

2: Compute the largest number α > 0 such that

β(α) ≤ ϵ/2
3: Set N = ⌈2(d− 1)/α⌉
4: Construct the (2(d− 1)/N)-dense curve

γ : [0, Lcurve]→ D as per Alg. 3

5: Compute the maximum g∗ of g = f ◦γ over [0, Lcurve]
to a precision of ϵ/2 using Alg. 1

6: return g∗

7: end function

In Prop. 18, we show that Alg. 4 is guaranteed to converge

to the maximum of f to within a precision of ϵ > 0.

This takes ⌈2
(
N+d−1

d−1

)
/Nα⌉ iterations in the worst case. For

large dimensions and fixed precision, this number scales as

O(α1−d/d) with the dimension.

One can parallelize the above algorithm by breaking the

interval [0, Lcurve] into finitely many sub-intervals and opti-

mizing the function over each interval separately. The final

maximum can be obtained by taking the maximum of the

maximum values computed for each sub-interval. Since we

only break the interval into finitely many sub-intervals, the

guarantees given by Prop. 18 remain valid.

3) Numerical Examples: For verifying the performance of

the grid search algorithm (Alg. 2) and the algorithm based on

dense curves (Alg. 4), we present two numerical examples in

Tab. II where the maximum over the simplex can be computed

exactly. The functions considered in both these examples are

Lipschitz continuous with respect to the l1-norm. It can be seen

that both these methods compute the maximum to within the

specified precision. For small dimensions and small values of
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tolerance ϵ, we find that the algorithm based on dense curves

requires far fewer iterations than grid search. As a result, the

dense curve algorithm converges much faster than grid search

for the examples presented in Tab. II. On the other hand, for

larger values of tolerance and higher dimensions, grid search

can converge faster since its complexity scales polynomially

with the dimension whereas the complexity of dense curve

algorithm scales exponentially in the worst case. Even so, the

power of the polynomial in complexity of grid search can

be large. Therefore, as the dimension d increases, both these

algorithms become infeasible to implement in practice.

Details on how one can use α-dense curves to optimize a

Lipschitz-like function over any compact and convex domain

is given in App. C-D.

V. SUM CAPACITY COMPUTATION OF TWO-SENDER

MACS

A. Sum Capacity Computation as Optimization of a

Lipschitz-Like Function

Our focus in this part is computing the sum capacity of arbi-

trary 2-sender MACs. As noted in the preliminary Sec. II-C,

the optimization involved in computing the sum capacity is

non-convex. Unfortunately, the approach via convex relax-

ation commonly pursued is, in general, not a viable strategy

for bounding the sum capacity of MACs. The family of

two-sender MACs constructed in Sec. III-B provides a striking

example of this claim, where we show that the difference

between the convex relaxation and the actual sum capacity

can be made arbitrarily large. In light of this result, developing

algorithms to compute, or at least better approximate, the sum

capacity becomes important, and we undertake this task here.

As discussed in Sec. II-C, a two-sender MAC with input

alphabets B1 and B2 and output alphabet Z is described by

a transition matrix N . Each entry of this matrix, N (z|b1, b2),
where z ∈ Z, b1 ∈ B1, and b2 ∈ B2, represents the probability

that the channel output takes a value z when the first and

second channel inputs take values b1 and b2, respectively.

We introduce new notation for this sub-section. Let d1, d2, and

do denote |B1|, |B2|, and |Z| respectively. We write p(b1) ∈
∆d1

, but refer to p(b2) by q(b2) where q(b2) ∈ ∆d2
. In this

notation, the sum capacity (7) of the two-sender MAC N takes

the form

S(N ) = max
p(b1,b2)

I(B1, B2; Z) such that p(b1, b2) = p(b1)q(b2),

(55)

where B1, B2, and Z are random variables that describe the

channel’s first input, second input, and output respectively.

For fixed N (z|b1, b2), the mutual information I(B1, B2;Z)
function is concave in the argument p(b1, b2). On the other

hand, the set of joint distributions which satisfy the product

constraint, p(b1, b2) = p(b1)p(b2), is not convex. This lack of

convexity turns the maximization in Eq. (55) into a non-convex

problem.

Our approach to solving the non-convex problem (55) is to

move the non-convexity from the constraint to the objective

function. Instead of maximizing over the set of product dis-

tributions, p(b1, b2) = p(b1)q(b2), we maximize sequentially,

that is, we write

S(N ) = max
q∈∆d2

max
p∈∆d1

I(B1, B2;Z). (56)

Now, both the inner and outer maximization in Eq. (56)

are carried out over convex sets ∆d1
and ∆d2

, respectively.

To carry out these optimizations we derive certain convenient

expressions. The output probability distribution pZ over Z can

be written as

pZ(z) =
∑

b1∈B1

Aq(z, b1)p(b1) (57)

where

Aq(z, b1) =
∑

b2∈B2

N (z|b1, b2)q(b2) (58)

for z ∈ Z and b1 ∈ B1. Note that Aq can be considered as

a left stochastic matrix of size do × d1, i.e., every entry of

Aq is non-negative and the columns sum to 1. One can view

Eq. (57) as a vector equation pZ = Aqp, where p ∈ ∆d1

and pZ ∈ ∆do
. The mutual information I(B1, B2;Z) can be

written as

I(B1, B2;Z)=H(Z)−
∑

b1,b2

p(b1)q(b2)H(Z|B1 =b1, B2 =b2).

To express the mutual information in terms of vectors

and matrices, we define a d1-dimensional vector bq with

non-negative components bq(b1) for b1 = 1, . . . , d1, where

bq(b1) = −
∑

b2∈B2

q(b2)
∑

z∈Z

N (z|b1, b2) log(N (z|b1, b2)).

(59)

This allows us to express the mutual information compactly

as

I(p, q) ≡ I(B1, B2;Z) = H(Aqp)− ⟨bq, p⟩ , (60)

and the sum capacity as

S(N ) = max
q∈∆d2

max
p∈∆d1

{H(Aqp)− ⟨bq, p⟩} . (61)

The inner optimization over p ∈ ∆d1 is a convex optimization

problem because I(p, q) is a concave function of p for fixed

q. Since I(p, q) is not jointly concave over (p, q), the function

I∗(q) = max
p∈∆d1

(H(Aqp)− ⟨bq, p⟩) (62)

is not concave in general. Therefore, the outer optimization

of I∗(q) over q ∈ ∆d2
, i.e., S(N ) = maxq∈∆d2

I∗(q), is in

general a nonconvex problem.

Nevertheless, we show that the non-concave function I∗(q)
is a Lipschitz-like function as defined in Eq. (48). To elaborate,

this means there is some real-valued function βI that is

non-negative, continuous, and monotonically increasing with

βI(0) = 0, such that |I∗(q) − I∗(q′)| ≤ βI(∥q − q′∥1).
We show that I∗(q) indeed satisfies such a property by proving

an appropriate continuity bound for I∗(q). This is summarized

in the following result.

Proposition 12: Let N be any two-sender MAC with input

alphabets B1, B2 of size d1, d2, and output alphabet Z of

size do. Assume that d1, d2, do ≥ 2. Given input probability
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TABLE II

COMPUTING THE MAXIMUM OF LIPSCHITZ-CONTINUOUS FUNCTIONS f OVER THE STANDARD SIMPLEX ∆d ⊆ Rd IN DIMENSION d = 3 TO A PRECISION

OF ϵ = 0.15. GRID SEARCH (ALG. 2) AND THE ALGORITHM BASED ON DENSE CURVES (ALG. 4) ARE USED TO COMPUTE THE MAXIMUM

NUMERICALLY. NUMERICAL VALUES ARE ROUNDED TO THREE DECIMAL PLACES

distributions p over B1 and q over B2, the mutual information

between the inputs and the output of the MAC can be written

as

I(p, q) = H(Aqp)− ⟨bq, p⟩
where the matrix Aq and the vector bp are defined in Eq. (58)

and Eq. (59) respectively. Define the function

I∗(q) = max
p∈∆d1

I(p, q).

Then, for any p ∈ ∆d1
, and any q, q′ ∈ ∆d2

, we have

|I(p, q)− I(p, q′)| ≤ βI (∥q − q′∥1) ,

and subsequently,

|I∗(q)− I∗(q′)| ≤ βI (∥q − q′∥1) . (63)

The function βI is defined as

βI(x) =

(
1

2
log(do − 1) + Hmax

N

)
x + h

(x

2

)
, (64)

where

Hmax
N = max

a1∈A1,a2∈A2

{
−
∑

z∈Z

N (z|a1, a2) log(N (z|a1, a2))

}
,

(65)

and

h(x) =

{
−x log(x)− (1− x) log(1− x) if x ≤ 1

2

log(2) if x ≥ 1
2

is the modified binary entropy defined in Eq. (49).

Proof: See Appendix D.

This observation is important in the sense that it allows

for off-the-shelf use of algorithms developed in Sec. IV for

optimizing any Lipschitz-like function in order to compute

the sum capacity of two-sender MACs. Following this line of

approach, we will begin by developing an efficient algorithm

for computing the sum capacity of any two-sender MAC

where one of the input alphabets is of size 2. As a result,

we can efficiently compute the sum capacity of a large family

of MACs that includes all binary MACs. Next, we will

develop two algorithms for computing the sum capacity of

an arbitrary two-sender MAC. The first algorithm is important

from a theoretical standpoint, and shows that sum capacity

of an arbitrary two-sender MAC can be computed in quasi-

polynomial time. However, it can be costly to implement in

practice. Our second algorithm can be faster to run in practice,

at least when one of the MAC input alphabet sizes is small,

but it suffers from exponential complexity in the worst case.

B. Computing the Sum Capacity of a Two-Sender MAC With

One Input Alphabet of Size 2

As before, we take N to be a two-sender MAC with input

alphabets B1, B2 of sizes d1, d2 and an output alphabet Z of

size do. In this section, we focus on the case where at least

one of d1 or d2 is equal to 2. For concreteness, take d2 = 2
(this choice is inconsequential for the algorithm).

For this case, any probability distribution qs ∈ ∆d2 can be

expressed as qs = (s, 1 − s) for some 0 ≤ s ≤ 1. Thus, the

maximization over qs ∈ ∆2 in computing the sum capacity

S(N ) = maxqs∈∆d2
I∗(qs) is essentially one-dimensional.

In other words, considering the objective I∗(s) := I∗(qs) as

a function of s, we can write the sum capacity for any MAC

N with d2 = 2 as

S(N ) = max
s∈[0,1]

I∗(s).

We will show that the mutual information I∗(s) considered as

a function of s is still a Lipschitz-like function. First, observe

that for qs = (s, 1−s), we have ∥qs − qs′∥1 = 2|s−s′|. Then,

|I∗(s) − I∗(s′)| = |I∗(qs) − I∗(qs′)| ≤ βI(∥qs − qs′∥1) =
βI(2|s−s′|). Therefore, taking β(x) = βI(2x), we find that I∗

as a function of s is β-Lipschitz-like. Subsequently, we can use

modified Piyavskii-Shubert algorithm developed in Sec. IV-

C to compute the maximum maxs∈[0,1] I
∗(s) to any given

precision.

For the convenience of the reader, we rewrite Alg. 1

specifically for the purpose of computing the sum capacity

of a two-sender MAC Nwhen d2 = 2. This sum capacity

computation algorithm is summarized in Alg. 5 below. We note

that similar to Alg. 1, one can modify Alg. 5 so that it accepts a

fixed number of iterations and outputs the value F (s∗), which

is an upper bound on the sum capacity. This upper bound

exceeds the sum capacity by at most F (s∗)− I∗(s∗).
We make a technical remark that is important to perform the

optimization as per Alg. 5. The objective function I∗ appearing

in the optimization S(N ) = maxs∈[0,1] I
∗(x) is non-trivial to

compute. More precisely, in order to compute the value of

I∗(s) for any given s, we need to solve another optimization

problem. This follows from the definition of I∗ given in

Eq. (62). Fortunately, this optimization problem is convex,

and hence, it can be solved by standard convex optimization

techniques.

In Prop. 22, we show that the number of iterations required

by the while loop in Alg. 5 to converge to the sum capacity

within a tolerance of 0 < ϵ ≤ 3 is bounded above as

O(log(do)/ϵ), where do ≥ 2 is the size of the output alphabet
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Algorithm 5 Computing the Sum Capacity of a Two-Sender

MAC N to a Precision ϵ > 0, When One of the Input

Alphabets has Size 2

1: function COMPUTE_SUM_CAPACITY(N , d1, ϵ)

2: Initialize s(0) = 0
3: Define F0(s) = I∗(s(0)) + βI(2|s− s(0)|)

for s ∈ [0, 1]
4: Set F ← F0 and s∗ ← 1
5: Set s(1) ← s∗, k ← 1
6: while F (s∗)− I∗(s∗) > ϵ do

7: Sort {s(0), . . . , s(k)} from smallest to largest and

relabel the points in ascending order.

8: Set Fi(s) = I∗(s(i)) + βI(2|s− s(i)|)
for 0 ≤ i ≤ k

9: for i = 0, . . . , k − 1 do

10: Set gi(s) = Fi(s)− Fi+1(s)
11: Find si ∈ [s(i), s(i+1)] such that gi(si) = 0

using any root finding method.

12: end for

13: Pick an index m ∈ argmax0≤i≤k−1 Fi(si) and

set s∗ = sm.

14: Update F ← Fm

15: Set s(k+1) ← s∗, k ← k + 1
16: end while

17: return I∗(s∗)
18: end function

and ϵ is a fixed constant. Note that this bound does not account

for the number of iterations required to compute I∗, for sorting

or for root-finding. We show in Prop. 22 that the total cost

involved is at most polynomial in d1, do, and 1/ϵ.

Next, we show how to compute the sum capacity of any

two-sender MAC.

C. Computing the Sum Capacity of Any Two-Sender MAC

Let an arbitrary two-sender MAC N with input alphabet

sizes d1, d2 and output alphabet size do. Without loss of

generality, we assume that d2 ≤ d1. Then, the sum capacity

computation can be expressed as S(N ) = maxq∈∆d2
I∗(q).

This amounts to optimizing the Lipschitz-like function I∗(q)
over the standard simplex ∆d2

. As a result, the algorithms

developed in Sec. IV-D.1 and Sec. IV-D.2 can both be used

to compute the sum capacity of N . For the convenience of

the reader, we present these algorithms here again adapted

specifically for sum capacity computation.

The first algorithm that we discuss is grid search. This

algorithm is helpful in proving complexity results, but not as

helpful from a practical implementation standpoint.

1) Sum Capacity Computation Using Grid Search: Our

goal is to perform the optimization of I∗(q) over the simplex

q ∈ ∆d2
. We perform this optimization by computing the

maximum over the grid

∆d,N =
{ n

N
| n ∈ Id,N

}

defined in Eq. (52). Thus, the grid search algorithm can be

described as follows.

Algorithm 6 Computing the Sum Capacity of a Two-Sender

MAC N to a Precision ϵ > 0 Using Grid Search. d1, d2 Are

Input Alphabet Sizes With d2 ≤ d1 and do Is the Output

Alphabet Size. The Function βI Is Defined in Eq. (64)

1: function

COMPUTE_SUM_CAP_GRID_SEARCH(N , d1, d2, do, ϵ)

2: Set N = ⌈1/δ2⌉, where δ is the largest number

satisfying βI(δ) ≤ ϵ/2
3: Construct the grid ∆d2,N

4: return S∗ = max{I∗(q) | q ∈ ∆d2,N}
5: end function

As noted in Sec. IV-D.1, optimization of a β-Lipschitz-like

functions using grid search can be done in polynomial time

if the function β does not depend on the dimension. For the

case of sum capacity computation, the function β is βI given

in Eq. (64). βI depends on the size of the output alphabet

of the MAC, and therefore, the complexity analysis is more

involved. Furthermore, for any given q ∈ ∆d2 , the function

I∗(q) needs to be computed using convex optimization. Thus,

the cost of computing I∗ also needs to be included in the

complexity analysis.

In Prop. 23, we show that the total cost of computing the

sum capacity to a fixed precision 0 < ϵ ≤ 1 is roughly

bounded above by poly(d1, do, 1/ϵ)O(d
96 log2(do)/ϵ2+2
2 ) (see

Eq. (113) for a more precise statement). Therefore, the sum

capacity can be computed to a fixed precision ϵ > 0 in quasi-

polynomial time. This quasi-polynomial behaviour comes

from the fact that βI depends on log(do). From the proof of

Prop. 23, we can also infer that if one fixes the output alphabet

size do, then the sum capacity can be computed in polynomial

time.

While these results are useful from a theoretical standpoint,

grid search can be slow in practice. The reason is two-

fold. One, the power of the polynomial appearing in time

complexity can be large even for moderately small precision

and dimensions (i.e., the size of the grid becomes fairly large).

Two, for each point in the grid, we need to solve a convex

optimization problem for computing I∗. Together, these factors

make grid search not ideal for practical implementations.

We note that one can nevertheless parallelize grid search to

get some improvements in the speed, though eventually even

this will be too costly. With this in mind, we study another

algorithm to compute the sum capacity using dense curves.

2) Sum Capacity Computation Using Dense Curves: In this

section, we will study the application of algorithm developed

in Sec. IV-D.2 for computing the sum capacity. The idea

is to fill the simplex with a curve that comes within a

distance of α to any given point on the simplex. Such a

curve is therefore called an α-dense curve. Using such a

curve, we reduce a high-dimensional optimization problem to

a one-dimensional optimization problem over an interval. The

one-dimensional optimization problem can be solved using the

modified Piyavskii-Shubert algorithm that underlies Alg. 5.

We refer the reader to Alg. 3 which shows how to construct

an α-dense curve for filling the standard simplex for α =
2(d2 − 1)/N , where N is a positive integer that controls the
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value of α. Below, we show how to use Alg. 4 to compute

the sum capacity of a two-sender MAC.

Algorithm 7 Computing the Sum Capacity of a Two-Sender

MAC N to a Precision ϵ > 0 Using a Dense Curve. d1, d2

Are Input Alphabet Sizes With d2 ≤ d1 and do Is the Output

Alphabet Size. The Function βI Is Defined in Eq. (64)

1: function

COMPUTE_SUM_CAP_DENSE_CURVE(N , d1, d2, do, ϵ)

2: Compute the largest number α > 0 such that

βI(α) ≤ ϵ/2
3: Set N = ⌈2(d2 − 1)/α⌉
4: Construct the (2(d2 − 1)/N)-dense curve

γ : [0, Lcurve]→ D as per Alg. 3

5: Compute the maximum S∗ of the function I∗ ◦γ over

[0, Lcurve] to a precision of ϵ/2 using Alg. 1

6: return S∗

7: end function

From Prop. 18, we can infer that the above algorithm is

guaranteed to compute the sum capacity to within a precision

of ϵ > 0. Prop. 18 shows that the dense curve algorithm can

take an exponential time in the worst case to converge. For this

reason, we avoid doing a detailed complexity analysis of this

algorithm for sum capacity computation, as better theoretical

guarantees can be obtained using grid search. Instead, we focus

on more practical gains that may be obtained using Alg. 7 over

Alg. 6.

Using Alg. 7 gives another advantage. Instead of computing

the sum capacity to a given precision, one can run Alg. 7 for

a fixed number of time steps to get an upper bound on the

sum capacity. Thus, it can also be used for bounding the sum

capacity instead of computing it to a good precision.

3) Comparing Grid Search and Dense Curve Algorithm

Performance: We compare the performance of the grid search

algorithm and the dense curve algorithm for computing the

sum capacity. For this purpose, we will consider a ran-

domly constructed two-sender MAC with input alphabet sizes

d1, d2 and output alphabet size do. We fix d1 = 10 and do =
20 and consider the cases d2 = 2 and d2 = 3. Note that the

smaller dimension d2 determines the dimension for the non-

convex optimization. Hence, the value of d2 effectively decides

the overall computation time. The numerical simulations are

run on single core of a personal computer, and the code is

implemented in Python (see Sec. E-B for more details). All the

run times reported are average time taken over three repetitions

of the simulation.

For d2 = 2, the dense curve algorithm can be simplified to

modified Piyavskii-Shubert algorithm, as noted in Sec. V-B.

Thus, for d2 = 2, we compare the performance of modified

Piyavskii-Shubert Alg. 5 with that of grid search Alg. 6 for

computing the sum capacity to a tolerance of ϵ = 0.15. For

the example we consider, we find that Alg. 5 takes about

0.34 s to run, whereas Alg. 6 takes about 1.51 mins to run.

Thus, for this example, modified Piyavskii-Shubert algorithm

is more than 250 times faster than grid search. For a tolerance

of ϵ = 0.65, the run time of grid search Alg. 2 improves

greatly to 1.06 s, whereas the run time of modified Piyavskii-

Shubert Alg. 5 improves to 0.11 s. In this case, the modified

Piyavskii-Shubert algorithm is almost 10 ten times faster than

grid search. We remark that a tolerance of ϵ = 0.65 is not

acceptable in practice because the computed sum capacity is

about 0.19 nats. We therefore use such a large value of ϵ only

for benchmarking purposes.

Next, we consider the higher dimensional case of d2 = 3.

For this case, we compare the dense curve Alg. 7 with grid

search Alg. 6. For a tolerance of ϵ = 0.65, we find that the

dense curve Alg. 7 takes 3.55 s whereas grid search Alg. 6

takes 3.65 min. In this case, dense curve algorithm is about

65 times faster, though as noted previously, a tolerance of ϵ =
0.65 cannot be used in practice. For ϵ = 0.15, the dense curve

Alg. 7 takes about 1.72 mins, whereas grid search takes too

long to complete. We estimate that our current implementation

of grid search algorithm will take more than 3 days to complete

for ϵ = 0.15 on the hardware the code was executed. This

shows that for the example under consideration, grid search is

not a practical option.

We remark that there can be some cases where grid search

performs as good as or better than the dense curve algo-

rithm. For small dimensions, grid search scales poorly with

the tolerance in comparison with dense curve and modified

Piyavskii-Shubert algorithms, as evidenced from the above

numerical simulations. As the dimension d2 becomes large

and d1, do, and ϵ are fixed, the grid search algorithm scales

polynomially with d2 whereas dense curve algorithm scales

exponentially. Despite this, the polynomial power can be so

large in practice that grid search is still impractical. Thus,

our numerical simulations suggest that for small dimensions

and small tolerance, modified Piyavskii-Shubert algorithm (for

d2 = 2) and the dense curve algorithm (for d2 > 2) perform

better than the grid search algorithm in practice.

As noted previously, both the grid search algorithm and the

dense curve algorithm (as well as modified Piyavskii-Shubert

algorithm) can be parallelized to get better performance.

It remains to see if these algorithms can be improved further

so as to make them practical for larger values of d2. Finally,

we show how our algorithms compare with the relaxed sum

capacity.

D. Comparison With Relaxed Sum Capacity

In order to compare our algorithms for computing the

sum capacity with the relaxed sum capacity, we construct a

family of binary MACs parametrized by a tunable parameter

t ∈ [0, 1]. These MACs have the property that for t = 0,

the relaxed sum capacity is equal to the actual sum capacity,

whereas for t = 1, the relaxed sum capacity is twice the

actual sum capacity. By computing the sum capacity using

our algorithms as well as the relaxed sum capacity for as a

function of t, we can compare how well our algorithms do in

relation to the convex relaxation approach.

For generating examples of such binary MACs, we construct

a family of MACs that we call the noise-free subspace MAC.

To that end, let A and B be input alphabets and let Z
be the output alphabet of the noise-free subspace MAC.
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We assume that A, B and Z are finite sets. The noise-free

subspace corresponds to a set W ⊆ A × B. Consider the

mapping nF : W → Z that determines the symbol that is

deterministically output by the channel when the input is in the

noise-free subspace. Then, given the tuple (A,B,Z,W, nF ),
the MAC NF has the probability transition matrix

NF (z|a, b) =

{
δz,nF (a,b) (a, b) ∈ W
1

|Z| (a, b) /∈ W (66)

When the input is in the noise-free subspace, the channel

deterministically outputs the symbol selected by nF . On the

other hand, when the input is not in the noise-free subspace,

the channel outputs a symbol uniformly at random. Therefore,

a noise-free subspace MAC can be thought of as a generaliza-

tion of nonlocal games MAC studied in Part I (see Eq. (9)).

Now, for constructing the parametrized family of binary

MACs mentioned at the beginning of the section, we construct

two examples of the MAC NF corresponding to the ªextrem-

itiesº of the parametrized family. For both of these examples,

we consider the alphabets A = {a1, a2}, B = {b1, b2}, and

Z = {z1, z2}. The examples are labelled 0 and 1.

For the first example, we take W = {(a1, b1)} and

nF (a1, b1) = z1. That is, only a single input (a1, b1) is

transmitted noise-free. For this example, we can write the

probability transition matrix as

N (0)
F =

(
1 0.5 0.5 0.5
0 0.5 0.5 0.5

)

where the rows correspond to z ∈ Z , while the columns

correspond to (a, b) ∈ A × B. In App. E, we show that the

sum capacity in nats is

S(N (0)
F ) = h

(
4

5

)
− 2

5
ln(2) ≈ 0.223

where h is the binary entropy measured in nats. We further-

more show that the relaxed sum capacity in this case is also

equal to C(N (0)
F ) = 0.223 nats. Thus, for our first example,

we have C(N (0)
F ) = S(N (0)

F ).
For the second example, we take W = {(a1, b1), (a2, b2)}

as well as nF (a1, b1) = z1 and nF (a2, b2) = z2. That is,

the inputs (a1, b1) and (a2, b2) are transmitted noise-free. The

probability transition matrix in this case can be written as

N (1)
F =

(
1 0.5 0.5 0
0 0.5 0.5 1

)

where the rows correspond to z ∈ Z , while the columns

correspond to (a, b) ∈ A × B. In App. E, we show that the

sum capacity of the MAC N (1)
F in nats is equal to

S(N (1)
F ) = 0.5 ln(2) ≈ 0.3466.

On the other hand, we show that in this example the relaxed

sum capacity takes the maximum possible value C(N (1)
F ) =

ln(2) nats, thus significantly overestimating the sum capacity.

For this example, we have C(N (1)
F ) = 2 S(N (1)

F ).
Using these examples, we construct the parametric family

of binary MACs as a convex combination of the MACs in

above examples. That is,

N (t)
F = (1− t)N (0)

F + tN (1)
F

=

(
1 0.5 0.5 0.5(1− t)
0 0.5 0.5 0.5(1 + t)

)
(67)

where t ∈ [0, 1]. Observe that for t = 0, we get the first

example N (0)
F , whereas for t = 1, we get the second example

N (1)
F . From the above results, we know that C(N (0)

F ) =

S(N (0)
F ) whereas C(N (1)

F ) = 2 S(N (1)
F ). The MAC N (t)

F

basically interpolates between these two cases.

In Fig. 3, we plot S(N (t)
F ) and C(N (t)

F ) as a function of t.

The sum capacity S(N (t)
F ) is computed using Alg. 5 with a

tolerance of ϵ = 0.01, whereas relaxed sum capacity C(N (t)
F )

is computed using standard techniques in convex optimization.

We can see from the figure that at t = 0 and t = 1,

the numerically computed values agree with the analytical

results. Furthermore, we observe that C(N (t)
F ) becomes a

progressively worse bound on S(N (t)
F ) as t ranges from 0 to

1. Thus, we demonstrate that our algorithm for computing the

sum capacity does better than the relaxed sum capacity.

VI. CONCLUSION AND FUTURE DIRECTIONS OF

RESEARCH

Computing the sum capacity of a multiple access channel is

a nonconvex optimization problem. For MACs obtained from

nonlocal games, we obtained an analytical upper bound on

the sum capacity that depends only on the number of question

tuples in the game and the maximum winning probability of

the game when the questions are drawn uniformly at random.

Our formula is an upper bound on the achievable sum rate

even when the senders of the MAC can share an arbitrary

set of correlations. Using this formula, we found a separation

between the sum capacity and the entanglement-assisted sum

rate for the 2-sender MAC obtained from the Magic Square

game that is larger than the previously reported value. We also

obtained separations in some other relevant scenarios using the

CHSH game and multiparty parity game.

Furthermore, we studied the performance of the upper

bound on the sum capacity obtained by relaxing the nonconvex

problem to a convex optimization problem. By constructing the

signalling game, we showed that one can obtain an arbitrarily

large separation between the sum capacity and the relaxed sum

capacity. With the help of numerical simulations, we argued

that this separation holds even when the senders are allowed to

share no-signalling correlations. These results indicate that the

relaxed sum capacity can be a very poor upper bound on the

sum capacity. In a recent work, Fawzi & Fermé [38] compute

the no-signalling assisted sum rate for MACs, allowing feed-

back. In their study, they pose the question as to whether the

no-signalling assisted sum rate (allowing feedback) is equal

to the relaxed sum capacity. It would be interesting to see if

the MAC obtained from the signalling game can be used to

answer this question in the negative.

In response to the above observations, we studied algorithms

to compute the sum capacity. First, we identified that the

mutual information occurring in the computation of the sum

capacity satisfies a Lipschitz-like property. We subsequently

proposed a few algorithms one can use to optimize such

functions, by appropriately modifying and generalizing exist-

ing algorithms for optimizing Lipschitz-continuous functions.
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Fig. 3. Plot of the sum capacity S(N
(t)
F ) (in nats) and the relaxed sum capacity C(N

(t)
F ) (in nats) as a function of the tunable parameter t. The parameterized

family of binary MACs N
(t)
F is defined in Eq. (67). The sum capacity is computed to within a tolerance of ϵ = 0.01 using Alg. 5. We find that the relaxed

sum capacity gives a progressively worse bound on the actual sum capacity. We also find that the analytically computed values of S(N
(t)
F ) and C(N

(t)
F ) for

t = 0 and t = 1 show good agreement with the numerically computed values.

Using this, we were able to show that the sum capacity of

any two-sender MAC can be computed to a fixed precision in

quasi-polynomial time. Our algorithms are practically efficient

for computing the sum capacity of a family of two-sender

MACs that have at least one input alphabet of size two.

We remark that some other entropic quantities also satisfy

a Lipschitz-like property. This is also true in the quantum

setting, for example for the von Neumann entropy. There-

fore, further investigation of algorithms to optimize such

Lipschitz-like functions might be helpful in solving nonconvex

problems in both classical and quantum information theory.

In particular, it would be interesting to see if there are other

practically relevant problems in information theory which

would benefit from such an approach. In any case, the algo-

rithms we present in this study for optimizing Lipschitz-like

functions over the standard simplex suffer from the drawback

that they are not scalable, i.e., the optimization is very costly

to perform in practice as the dimension increases. Therefore,

finding more practical algorithms to perform this optimization

is an interesting direction for future research. In particular, the

algorithm for optimization using dense curves has a scope for

improvement because we only prove sub-optimal convergence

guarantees.

Another avenue for performing such nonconvex optimiza-

tion is to devise randomized algorithms, which might allow

for faster convergence (with high probability). We remark

that using randomized algorithms to optimize Lipschitz-like

functions over an arbitrary compact and convex domain is not

expected to give significant improvements over the determin-

istic algorithm we presented in this study. This is because

the number of iterations needed for convergence will scale

exponentially with the dimension in both the deterministic and

stochastic setting [39]. It is therefore important to use infor-

mation about the domain (for example, standard simplex) or

impose some additional restrictions on the objective functions

while designing such algorithms. It would also be interesting

to see if there is a general method to determine a priori if

the convex relaxation gives a good or a bad bound on the

optimum of the non-convex problem. This would allow one

to use the more efficiently computable convex relaxation in

relevant scenarios.

APPENDIX A

BOUNDING THE CORRELATION-ASSISTED ACHIEVABLE

SUM RATE OF MACS FROM NONLOCAL GAMES

Proof of Proposition 2: We solve the minimization prob-

lem minπ∈∆d
−Iw(π), which is equivalent to the given

maximization problem. Note that since the entries of w are

either 0 or 1, we can write K = {i ∈ [d] | wi ̸= 0}. Then we

can write the Lagrangian for this minimization problem as

L(π;λ, ν) = −Iw(π)− ⟨λ, π⟩+ ν

(
d∑

i=1

πi − 1

)

=

d∑

i=1

pi ln pi −
∑

i∈K

πjwj ln d + ln d

−
d∑

i=1

λiπi + ν

(
d∑

i=1

πi − 1

)
, (68)

where

pi = (Wπ)i = πiwi +
1

d
− 1

d

d∑

j=1

πjwj . (69)

The expression for the probability distribution p, which is the

output of the channel NG, is obtained from Eqs. (26) and (27).

The variables λ1, . . . , λd are the dual variables corresponding

to the inequality constraint πi ≥ 0 for all i ∈ [d], and ν
is the dual variable corresponding to the equality constraint∑d

i=1 πi = 1. We also write K = |K|.
Case 1: 0 < K < d
We can write

pi =

{
πi + 1

d − 1
d

∑
j∈K πj for i ∈ K

1
d − 1

d

∑
j∈K πj for i /∈ K.

(70)
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Since pi ≥ 0 for all i, we must have
∑

j∈K

πj ≤ 1,

Then, we can consider two sub-cases: either (a)
∑

j∈K πj =
1 or (b)

∑
j∈K πj < 1 at the optimum.

(a) If
∑

j∈K πj = 1 at the optimum, then from Eq. (70),

we get

pi =

{
πi for i ∈ K
0 for i /∈ K.

(71)

Furthermore, since
∑

j∈K πj = 1, we also have πi = 0 for

i /∈ K. It follows from Eq. (29) and Eq. (71) that Iw(π) =
H(p), where p is as given in Eq. (71). Thus, p can be taken as

a probability distribution on the indices K, and subsequently,

we obtain

max
π

Iw(π) = lnK. (72)

(b) If
∑

j∈K πj < 1 at the optimum, we can infer from

Eq. (70) that pi > 0 for all i ∈ [d] at the optimum.

Thus, the entropy H(p) is differentiable at the optimum, and

consequently, we can differentiate the Lagrangian given in

Eq. (69). The gradient of the Lagrangian is given as

∂L
∂πj

=

{
ln pj − 1

d

∑d
i=1 ln pi − ln d− λj + ν for j ∈ K

−λj + ν for j /∈ K.

Note that we are solving a convex optimization problem

and Slater’s condition holds because the constraint set is a

simplex [40]. Therefore, the KKT conditions are necessary

and sufficient for optimality (see Ch. 5.5 in Ref. [40]).

Subsequently, the optimal distribution π satisfies [40]

(Primal feasibility) π ∈ ∆d,

(Dual feasibility) λi ≥ 0 for all i ∈ [d],

(Complementary slackness) λiπi = 0 for all i ∈ [d], and

(Stationarity) ∇πL = 0.

For j /∈ K, the condition ∇πL = 0 gives

λj = ν. (73)

Since
∑

j∈K πj < 1 by assumption and π ∈ ∆d, we must have

πj′ > 0 for some j′ /∈ K. Then, by complementary slackness,

we obtain λj′ = 0. Using this in Eq. (73), we get ν = 0.

On the other hand, for j ∈ K the condition ∇πL = 0 gives

ln pj −
1

d

d∑

i=1

ln pi = λj + ln d,

where we used the fact that ν = 0. To simplify this equation

further, we make the observation that

pi =

{
πi + pL

d for i ∈ K
pL

d for i /∈ K
with pL > 0, which follows from Eq. (25) and Eq. (70).

Therefore,

d∑

i=1

ln pi =
∑

i∈K

ln pi + (d−K) ln(pL/d),

where d−K = |[d] \ K|. Thus, for j ∈ K, we obtain

ln pj −
1

d

∑

i∈K

ln pi = λj + ln d +

(
1− K

d

)
ln

pL

d
.

If we label the indices in K as j1, . . . , jK , we can write the

above as the following matrix equation:



1− 1
d − 1

d · · · − 1
d

... · · ·
...

− 1
d − 1

d · · · 1− 1
d







ln pj1
...

ln pjK




=




λj1 + ln d +
(
1− K

d

)
ln pL

d
...

λjK
+ ln d +

(
1− K

d

)
ln pL

d


 (74)

Let o =
(
1 · · · 1

)T
denote the vector of ones. Then, the

matrix appearing in the LHS of (74) can be expressed as

I−ooT /d. By the matrix determinant lemma (see Cor. (18.1.3)

in Ref. [41]), we know that this matrix is invertible iff

1 − oT o/d = 1−K/d ̸= 0, which is always true by our

assumption that K < d. Its inverse is given by the Sherman-

Morrison formula [42], [43] as follows:
(

I− 1

d
ooT

)−1

= I +
1

d−K
ooT .

Using this inverse in Eq. (74), for j ∈ K, we obtain

pj = Ej
pL

d
,

where

Ej = exp

(
λj +

1

d−K

∑

i∈K

λi +
d

d−K
ln d

)
.

Since λi ≥ 0 for all i ∈ [d] due to dual feasibility, we have

Ej > 1 for all j ∈ K.

Using pj = πj + pL/d for j ∈ K, we obtain

πj = (Ej − 1)
pL

d
. (75)

Because Ej > 1, we have πj > 0 for each j ∈ K. Then,

by complementary slackness, we have λj = 0 for all j ∈ K.

Therefore, we obtain

Ej = d
d

d−K ∀j ∈ K. (76)

Now, we will solve for πj for j ∈ K. For this purpose, note

that

e−1
j =

d

Ej − 1

is a positive number for all j ∈ K. Then, using pL = 1 −∑
i∈K πi and πj = ejpL for j ∈ K (see Eq. (75)), we can

write

e−1
j πj +

∑

i∈K

πi = 1,

which can be written in matrix form as



e−1
j1

+ 1 1 · · · 1
... · · ·

...

1 1 · · · e−1
jK

+ 1







πj1
...

πjK


 =




1
...

1


 .
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The matrix appearing in the LHS of the above equation can

be written as diag(e−1
j ) + ooT , which is invertible iff 1 +∑

j∈K ej ̸= 0. This condition always holds because ej > 0 for

each j ∈ K. Denoting A = diag(ej), we can use the Sherman-

Morrison formula [42], [43] to write




πj1
...

πjK


 = Ao− oT Ao

1 + oT Ao
Ao =




ej1

1+
∑

j∈K ej

...
ejK

1+
∑

j∈K ej


 . (77)

Then, using ej = (Ej − 1)/d for j ∈ K along with Eq. (76)

and Eq. (77), we obtain

πj =
d

d
d−K − 1

d + K(d
d

d−K − 1)
∀j ∈ K

and

pL =
d

d + K(d
d

d−K − 1)
.

Subsequently, we obtain

I
∗
K ≡ max

π∈∆d

Iw(π)

= − Kd
d

d−K

d + K(d
d

d−K − 1)
ln

(
d

d
d−K

d + K(d
d

d−K − 1)

)

− (d−K)

d + K(d
d

d−K − 1)
ln

(
1

d + K(d
d

d−K − 1)

)

− d

d + K(d
d

d−K − 1)
ln d. (78)

While the expression for I ∗
K looks complicated, it can be

greatly simplified. Denoting

δK =
d−K

d
d

d−K

,

one can rearrange terms in I ∗
K to obtain

I
∗
K = ln (K + δK) . (79)

From Eq. (72) and Eq. (78) and the fact that δK > 0 for

0 < K < d, we can infer that

max
π∈∆d

Iw(π) = I
∗
K .

Case 2: K = 0 or K = d
K = 0 implies wi = 0 for all i ∈ [d]. Thus, ⟨π,w⟩ = 0 for

all π ∈ ∆d, i.e., we will always lose the game. In that case,

it can be verified that we must have Iw(π) = 0 for all π ∈
∆d.

On the other hand, K = d implies wi = 1 for all i ∈ [d],
meaning that the strategy is perfect. In particular, we have

⟨π,w⟩ = 1 for all π ∈ ∆d, i.e., pL = 0 for any distribution

on questions. It can be verified that Iw(πU ) = ln d for the

uniform distribution πU ∈ ∆d.

Proof of Proposition 3: 1) Let w(D) ∈ {0, 1}d denote

a binary deterministic strategy that can answer d − 1 of

the d questions correctly. Then, there is exactly one index

k ∈ [d] such that w
(D)
k = 0. We show that we can achieve

maxπ Iw(π) using the deterministic strategy Iw(D)(π̃) for

some appropriate distribution π̃ ∈ ∆d. Note that the winning

vector w(D) may not be permitted by the game, but it still

gives an upper bound on maxπ Iw(π).
Since by assumption K∗ < d, we can find an injective

function σ : K∗ → [d] \ {k}. The map σ will be used to label

the indices. We construct the distribution π̃ ∈ ∆d as follows:

π̃i = wσ−1(i)π
∗
σ−1(i), for i ∈ σ(K∗)

π̃i = 0, for i /∈ σ(K∗) \ {k}
π̃k = 1−

∑

i∈σ(K∗)

π̃i. (80)

Since σ is an injective function on K∗, it is invertible when

its co-domain is restricted to its range σ(K∗). Thus, σ−1(i) is

well-defined for i ∈ σ(K∗).

Since w
(D)
j = 1 for j ∈ [d] \ {k} and w

(D)
k = 0, we have

〈
w(D), π̃

〉
=

∑

i∈σ(K∗)

wσ−1(i)π
∗
σ−1(i) =

∑

j∈K∗

wjπ
∗
j = ⟨w, π∗⟩ .

(81)

That is, the winning probabilities obtained from w, π∗ and

w(D), π̃ are the same.

Next, we will look at the output probability of the channel

in the two cases. For w, π∗, the output probability is given as

(see Eq. (27))

p∗i =





wiπ
∗
i + 1

d − 1
d

∑
j∈K∗ wjπ

∗
j for i ∈ K∗

1
d − 1

d

∑
j∈K∗ wjπ

∗
j for i /∈ K∗,

whereas for w(D), π̃, the output probability is given as

p̃i =





wσ−1(i)π
∗
σ−1(i)+

1
d− 1

d

∑
j∈K∗ wjπ

∗
j for i ∈ σ(K∗)

1
d − 1

d

∑
j∈K∗ wjπ

∗
j for i /∈ σ(K∗).

Here we used Eq. (81) to obtain the expression for p̃. Since

|K∗| = |σ(K∗)|, the probability p̃ is just a permutation

of p∗. Furthermore, because Shannon entropy is invariant

under permutation of the entries of the probability distribution,

we have H(p̃) = H(p∗). Then from Eq. (27), Eq. (29), and

Eq. (81), we have

max
π∈∆d

Iw(π)=Iw(π∗)=Iw(D)(π̃)≤max
π∈∆d

Iw(D)(π)=I
∗
d−1

where I ∗
d−1 is given by Eq.(33).

2) We focus on the case where K∗ = K = d. This implies

wi ̸= 0 and π∗
i ̸= 0 for all i ∈ [d]. Our goal is to solve the

optimization problem maxπ∈∆d
Iw(π). Following Eq. (69),

we write the Lagrangian for the problem

L(π;λ, ν) =

d∑

i=1

pi ln pi −
d∑

i=1

πjwj ln d + ln d

−
d∑

i=1

λiπi + ν

(
d∑

i=1

πi − 1

)
, (82)

where

pi = πiwi +
1

d
− 1

d

d∑

j=1

πjwj . (83)
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Since K∗ = d, the probabilities pi are non-zero at the

optimum, and hence we can differentiate the entropy at the

optimum.

Note that we are solving a convex optimization problem

and Slater’s condition holds [40]. Therefore, KKT conditions

are necessary and sufficient for optimality [40]. From KKT

conditions, it follows that ∇πL = 0, which gives

ln pj −
1

d

d∑

i=1

ln pi =
λj

wj
− ν

wj
+ ln d, j ∈ [d].

Since by assumption πi ̸= 0 at the optimum for all i ∈ [d],
we have λi = 0 by complementary slackness. This gives

pj = d

(
d∏

i=1

pi

)1/d

exp

(
− ν

wj

)
(84)

for j ∈ [d]. By multiplying Eq. (84) for j = 1, . . . , d, we can

infer that

ν = dweff ln d (85)

since pi ̸= 0 at the optimum. Next, summing over j ∈ [d] in

Eq. (84), we obtain

d

(
d∏

i=1

pi

)1/d

=
1

∑d
j=1 exp

(
− ν

wj

) . (86)

Combining this with Eq. (84) and Eq. (85), we obtain

pi =
exp

(
−dweff ln d

wi

)

∑d
j=1 exp

(
−dweff ln d

wj

) . (87)

Therefore, at the optimum, we have a Boltzmann distribution

for the probability of outcomes of the channel.

Now, instead of solving for π from Eq. (87), we find a

suitable expression for the objective function Iw(π) in terms

of p and w (instead of π and w). To this end, subtracting

Eq. (83) corresponding to two different indices i and j and

summing over the index i, we obtain

d∑

i=1

πiwi = 1 + d(πjwj − pj).

Dividing this equation by wj and summing over j, we get

d∑

j=1

1

wj

d∑

i=1

πiwi =

d∑

j=1

1

wj
+ d


1−

d∑

j=1

pj

wj




d∑

i=1

πiwi = 1−dweff




d∑

j=1

pj

wj
− 1


 ,

where weff is as defined in Eq. (35). Substituting this in

Eq. (29), we find that the mutual information Iw(π) can be

written as a function of the outcome probability p as follows:

Iw(π) = H(p)−dweff




d∑

j=1

pj

wj
− 1


 ln d. (88)

To obtain the value of Iw(π) at the optimum, we substitute

Eq. (87) in Eq. (88). Denoting maxπ∈∆d
Iw(π) = I ∗(w),

one can rearrange terms to obtain

I
∗(w) = dweff ln d + ln




d∑

j=1

exp

(
−dweff ln d

wj

)
 (89)

= ln




d∑

j=1

exp

[
dweff ln d

(
1− 1

wj

)]
 , (90)

where we get the last equation by noting that dweff ln d =
ln exp(dweff ln d).

Proof of Proposition 4: To obtain an upper bound on

sup
w∈WC,w>0

I
∗(w)

given in Eq. (38), we solve a relaxation of this optimization

problem. For this purpose, note that the set over which we

optimize can be written as

WC> =

{
w ∈ [0, 1]d | w > 0,

∑d
i=1 wi

d
≤ ωC(G)

}
.

Let HM(w1, . . . , wd) be the harmonic mean and

AM(w1, . . . , wd) be the arithmetic mean of w1, . . . , wd,

respectively. Observe that

dweff = HM(w1, . . . , wd).

Then, since HM(w1, . . . , wd) ≤ AM(w1, . . . , wd) for

w1, . . . , wd > 0 (with equality iff w1 = · · · = wd), we have

dweff ≤
∑d

i=1 wi

d
≤ ωSC (G). (91)

With this in mind, we define the set

WCeff =
{
w ∈ [0, 1]d | w > 0, dweff ≤ ωSC (G)

}
.

Then, from Eq. (91), it follows that WC> ⊆WCeff. Therefore,

we have

sup
w∈WC>

I
∗(w) ≤ sup

w∈WC eff

I
∗(w).

Subsequently, we solve the optimization problem

supw∈WC eff
I ∗(w). To that end, we make the change

of variables

ti =
1

wi

for i ∈ [d]. The optimization problem then becomes

sup ln

(
d∑

i=1

exp

[
d

∑d
j=1 tj

ln d (1− ti)

])

s.t. t ≥ 1
∑d

i=1 ti
d

≥ 1

ωSC (G)
. (92)

We solve Eq. (92) by splitting it into two maximizations.

To that end, define

s =

∑d
i=1 ti
d

, (93)
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so that the objective of the optimization in Eq. (92) can be

written as

f(t, s) = f(t, s) = LSE

(
− ln d

s
t1, . . . ,−

ln d

s
td

)
+

ln d

s
,

(94)

where LSE(y1, . . . , yd) = ln(
∑d

j=1 eyj ) is the log-sum-exp

function. Since LSE is a convex function, we can conclude

that f(t, s) is convex in t for a fixed s. Then, Eq. (92) can be

expressed as

sup
t∈WC eff

f(t) = sup
s≥(ωC(G))−1

max
t∈WC

(s)
eff

f(t, s),

where

WC
(s)

eff =

{
t ∈ R

d | t ≥ 1,

∑d
i=1 ti
d

= s

}

is a translated and scaled simplex. The extreme points of

WC
(s)

eff are given as

t(1)s =
(
1, . . . , 1, 1 + (s− 1)d)

)T
, (95)

and its permutations are denoted by t
(2)
s , . . . , t

(d)
s . Note that

the constraints in Eq. (92) imply s ≥ 1.

Now, we are seeking to maximize the convex function

f(t, s) over the set WC
(s)

eff (for a fixed s). However, since

f is convex and any point t ∈ WC
(s)

eff can be written as

t =
∑d

i=1 λit
(i)
s , we have

f(t, s) ≤
d∑

i=1

λif(t(i)s , s).

Then, because f(t, s) is invariant under the permutation of

the components of t, we have f(t
(i)
s , s) = f(t

(j)
s , s) for any

i, j ∈ [d]. Therefore,

max
t∈WC

(s)
eff

f(t, s) = f(t(1)s , s)

= ln

(
d− 1 + exp

[
−d ln d

(
s− 1

s

)])

where we substituted Eq. (95) in Eq. (94) in the last equation.

Then, since f(t(1), s) is a decreasing function of s, we can

infer that

sup
s≥(ωSC (G))−1

max
t∈WC

(s)
eff

f(t, s) = f

(
t(1)s ,

1

ωSC (G)

)

= ln
(
d− 1 + d−(1−ωSC (G))d

)
,

giving the desired bound.

APPENDIX B

SOME NOTES ON STRATEGIES FOR NONLOCAL GAMES

We begin by characterizing the extreme points of the set of

conditional distributions (over finite sets).

Proposition 13: Let X and Y be finite sets, and let C denote

the set of conditional probability distributions on Y given

X . Then, the extreme points of C correspond to conditional

probabilities pf
Y |X(y|x) = δy,f(x) obtained from functions

f : X → Y . In particular, any conditional probability distri-

bution pY |X ∈ C can be written as a convex combination of

pf
Y |X corresponding to functions f .

Proof: For convenience, let us denote |X | = m and

|Y| = n for some m, n ∈ N. We also fix a labelling of

elements X = {x1, . . . , xm} and Y = {y1, . . . , yn}. The set

of conditional probability distributions C can be thought of as

the set of functions from X → ∆n. That is, for each x ∈ X ,

we have a probability distribution over Y . Thus, we identify

C with the set (∆n)m.

Since ∆n is a simplex in R
n, its extreme points are

e1, . . . ,en, where ei is the standard Euclidean basis vector

for the ith coordinate. Therefore, the extreme points of C =
(∆n)m are (ei1 , . . . ,eim

) for i1, . . . , im ∈ [n]. We argue that

such extreme points can be obtained from functions f : X →
Y .

To that end, given an extreme point (ei1 , . . . ,eim
) of C,

construct the function

f(xj) = yij
j ∈ [m].

Observe that the conditional probability distribution deter-

mined by the function f is

pf
Y |X(·,xj) = δ·,f(xj) = δ·,yij

= eij

for j ∈ [m]. Since there are a total of |Y||X | extreme points

of C, and just as many functions from X to Y , the above

construction gives a bijective mapping between the extreme

points and these functions. Since C is a compact and convex

set with a finite number of extreme points, it is generated as

the convex hull of its extreme points by the Krein-Milman

theorem [44].

In the following proposition, we show that the set of

no-signalling strategies is a compact and convex set. The proof

of this proposition is constructive, and it can therefore be used

to construct the set of no-signalling distributions numerically.

Proposition 14: Let X1, . . . ,XN denote the question set for

N players, and let Y1, . . . ,YN denote the answer set. Let SNS

denote the set of no-signalling strategies used by the players.

That is, pY |X ∈ SNS iff

pYi|X(yi|x1, . . . , xN )=pYi|Xi
(yi|xi) ∀xk∈Xk, k∈ [N ] \ {i}

(96)

for all yi ∈ Yi, xi ∈ Xi, i ∈ [N ]. Then, SNS is a compact and

convex set. Specifically, SNS is a convex polytope obtained as

the intersection of hyperplanes and halfspaces.

Proof: For convenience, we denote X = X1 × · · · × XN

as the question set and Y = Y1× · · · ×YN as the answer set.

The set of all strategies pY |X(y1, . . . , yN |x1, . . . , xN ) can be

written as a product of simplices (∆|Y|)
|X | (see Prop. 13),

and is therefore a compact set. Also note that we can write

the no-signalling condition given in Eq. (96) as
∑

yj∈Yj

j ̸=i

pY |X(y1, . . . , yi, . . . , yN |x1, . . . , xi, . . . , xN )

=
∑

yj∈Yj

j ̸=i

pY |X(y1, . . . , yi, . . . , yN |x′
1, . . . , xi, . . . , x

′
N )
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∀xk, x′
k ∈ Xk, k ∈ [N ] \ {i} (97)

for all yi ∈ Yi, xi ∈ Xi, i ∈ [N ]. In the above equation,

the sum over yj ∈ Yj is a shorthand for the sum over y1 ∈
Y1, . . . , yN ∈ YN .

We will show that the set of no-signalling strategies SNS

is a closed set. First, note that SNS ⊆ (∆|Y|)
|X |, i.e., the

set of no-signalling strategies is contained in the set of all

strategies. Thus, we can write the elements of SNS as vectors

v = (v(1), . . . , v(|X |)), where v(i) ∈ ∆|Y| is a probability

vector. Note that v(i) is a |Y|-dimensional vector whereas v is a

|X ||Y|-dimensional vector. Essentially, the vector v(i) denotes

a probability distribution pY |X(y|x(i)) over Y for a fixed

x(i) ∈ X . Using this vectorial representation of a strategy,

we will write the no-signalling condition given in Eq. (97) in

matrix form.

To that end, fix an ordering for the elements of Y .

Then, we can index the elements of v(i) as v
(i)
(y1,...,yN ) for

(y1, . . . , yN ) ∈ Y corresponding to that ordering. For each

yi ∈ Yi (i ∈ [d]), let syi
denote the |Y|-dimensional vector

with 1 at each index (y′
1, . . . , y

′
N ) ∈ Y with y′

i = yi and

0 elsewhere. For example, if Y1 = {a, b} and Y2 = {c, d}
and we write the elements of Y = {(a, c), (a, d), (b, c), (b, d)}
in that order, then, sa = (1, 1, 0, 0)T , sc = (1, 0, 1, 0)T , and

so forth. Observe also that, for each k ∈ [|X |],

sT
yi

v(k) =
∑

yj∈Yj

j ̸=i

pY |X(y1, . . . , yi, . . . , yN |x(k)).

Similarly, fix an ordering for X . For each xi ∈ Xi with i ∈
[N ], let Ixi

be the set that contains the indices (x′
1, . . . , x

′
N ) ∈

X with x′
i = xi. Then, define the |Ixi

| × |X ||Y| matrix

S(xi,yi) in block form as follows. Imagine each row of

S(xi,yi) being split into |X | blocks of |Y|-dimensional vectors,

i.e.,
(
b1 · · · b|X |

)
with bi a |Y|-dimensional (row) vector.

We label the rows of S(xi,yi) with Ixi
. Define the row k ∈ Ixi

to be the block
(
01×|Y| · · · sT

yi
· · · 01×|Y|

)
with sT

yi
in

the k-th block.

Let us label the blocks v(i) of the vector

v = (v(1), . . . , v(|X |)) ∈ (∆|Y|)
|X | as v(x1,...,xN ) for

(x1, . . . , xN ) ∈ X using the ordering of X that we have

fixed. Then, we have (S(xi,yi)v)(x1,...,xN ) = sT
yi

v(x1,...,xN ) for

(x1, . . . , xN ) ∈ Ixi
. That is, S(xi,yi)v is a |Ixi

|-dimensional

vector with the entries

(S(xi,yi)v)(x1,...,xN )

=
∑

yj∈Yj

j ̸=i

pY |X(y1, . . . , yi, . . . , yN |x1, . . . , xi, . . . , xN )

for (x1, . . . , xN ) ∈ Ixi
. Since the i-th component of

(x1, . . . , xN ) ∈ Ixi
is fixed to be xi, the no-signalling

condition given in Eq. (97) says that all the components of

S(xi,yi)v are equal.

Therefore, we enforce the no-signalling condition as fol-

lows. Define a (|Ixi
| − 1)× |Ixi

| matrix

Dxi
=




1 −1 0 · · · 0 0
0 1 −1 · · · 0 0

. . .

0 0 0 · · · 1 −1


 ,

and observe that if r =
(
r1 · · · r|Ixi

|

)T
is any |Ixi

|-
dimensional vector, then Dxi

r is the (|Ixi
| − 1)-dimensional

vector
(
r1 − r2 · · · r|Ixi

|−1 − r|Ixi
|

)T
. Then, by the pre-

ceding remarks, the no-signalling condition can be written as

Dxi
S(xi,yi)v = 0 for all xi ∈ Xi, yi ∈ Yi, i ∈ [N ]. (98)

Since Dxi
S(xi,yi) is a (|Ixi

| − 1) × |X ||Y| matrix and v
is a |X ||Y|-dimensional vector, the equation Dxi

S(xi,yi)v =
0 encodes (|Ixi

|−1) hyperplanes (thinking of v as an arbitrary

|X ||Y|-dimensional vector). Therefore, the set of no-signalling

strategies can be written as

SNS = {v ∈ (∆|Y|)
|X | |Dxi

S(xi,yi)v = 0

∀xi ∈ Xi, yi ∈ Yi, i ∈ [N ]}. (99)

This is the intersection of the compact set (∆|Y|)
|X | with the

hyperplanes defined by Dxi
S(xi,yi)v = 0. Since hyperplanes

are closed, the set SNS is closed as well.

Since (∆|Y|)
|X | is bounded, SNS is also bounded, so that

SNS is compact. The convexity of SNS follows from the fact

that (∆|Y|)
|X | and hyperplanes are convex.

APPENDIX C

ANALYSIS OF ALGORITHMS FOR OPTIMIZATION OF

LIPSCHITZ-LIKE FUNCTION

In this section, we present convergence analysis for algo-

rithms used for Lipschitz-like optimization. We also present

an algorithm for performing optimization of Lipschitz-like

functions over an arbitrary compact & convex domain.

A. Optimizing Lipschitz-Like Functions Over an Interval

Using Modified Piyavskii-Shubert Algorithm

We first present a convergence analysis for modified

Piyavskii-Shubert algorithm that finds the global maximum

of Lipschitz-like functions over a closed interval.

Proposition 15: Let β : R+ → R be a non-negative, con-

tinuous, monotonically increasing function with β(0) = 0. Let

D = [a, b] be a closed interval, where a, b ∈ R. Let f : D → R

be a real-valued function satisfying

|f(q)− f(q′)| ≤ β(|q − q′|)

Then, for each choice of tolerance ϵ > 0, Alg. 1 terminates

in a finite number of time steps. If f(q∗) denotes the output

of Alg. 1 corresponding to a tolerance of ϵ > 0, we have

maxq∈D f(q)−f(q∗) ≤ ϵ. The number of time steps required

to converge with a tolerance of ϵ > 0 is bounded above by

⌈(b− a)/δ⌉, where δ = sup{δ′ > 0 | β(x) < ϵ/2 ∀ 0 ≤ x ≤
δ′}.
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Proof: Let i ∈ N be a natural number. Given any q(i) ∈
[a, b], define the function

Fi(q) = f(q(i)) + β(|q − q(i)|) (100)

for q ∈ [a, b]. Since f(q(i)) − f(q) ≥ −β(|q − q(i)|) by

assumption, we have f(q) ≤ Fi(q) for all q ∈ [a, b]. Given

that we initialize q(0) = a, the maximum of F0(q) occurs

at b because β is a monotonically increasing function with

β(0) = 0. This justifies the assignment q(1) = b at the start of

the algorithm.

Now, suppose that Alg. 1 terminates at the Kth time step.

Then, the algorithm has generated points q(0), . . . , q(K) ∈
[a, b] and a point q∗ ∈ [a, b] satisfying F (q∗) − f(q∗) ≤ ϵ.

The function F and the point q∗ are obtained as follows.

The points q(0), . . . , q(K) are sorted at the beginning of the

Kth iteration, so that a = q(0) ≤ q(1) ≤ · · · ≤ q(K) = b.

Then, points q(i) ∈ argmaxq∈[q(i),q(i+1)] min{Fi(q), Fi+1(q)}
are obtained through root finding for 0 ≤ i ≤ K − 1.

We choose m ∈ argmax0≤i≤K−1 Fi(q
(i)) and set q∗ = q(m)

and F = Fm.

Next, we elaborate on how q(i) ∈
argmaxq∈[q(i),q(i+1)] min{Fi(q), Fi+1(q)} is computed

using root finding. First, consider the function

gi(q) = Fi(q) − Fi+1(q). From the non-negativity and

monotonicity of β, it follows that Fi(q) is a monotonically

increasing function in the interval q ∈ [q(i), q(i+1)], whereas

Fi+1(q) is a monotonically decreasing function in the

interval q ∈ [q(i), q(i+1)]. Therefore, gi(q) is a continuous

and monotonically increasing function in the interval

q ∈ [q(i), q(i+1)], where the continuity of gi follows from that

of Fi and Fi+1. Since β(0) = 0 and f ≤ Fi for all 0 ≤ i ≤ K,

we have gi(q
(i)) ≤ 0 and gi(q

(i+1)) ≥ 0. Therefore, the

function gi has a root q(i) in the interval [q(i), q(i+1)], and

since gi = Fi − Fi+1, we have Fi(q
(i)) = Fi+1(q

(i)). From

the monotonicity properties of Fi and Fi+1, we can infer

that q(i) maximizes the bounding function min{Fi, Fi+1} in

the interval [q(i), q(i+1)], and this maximum value is equal to

Fi(q
(i)) = Fi+1(q

(i)).
Then, because m ∈ argmax0≤i≤K−1 Fi(q

(i)), q∗ = q(m)

and F = Fm, we can infer that for all q ∈ [q(i), q(i+1)],
we have

f(q) ≤ min{Fi(q), Fi+1(q)} ≤ Fi(q
(i)) ≤ F (q∗) ≤ f(q∗)+ϵ

Since the above equation holds for every 0 ≤ i ≤ K − 1, and

the intervals [q(0), q(1)], . . . , [q(K−1), q(K)] cover [a, b], we can

infer that

max
q∈[a,b]

f(q) ≤ f(q∗) + ϵ

It remains to show that Alg. 1 terminates in a finite number

of time steps. To that end, note that β(x) is a continuous

function of x ∈ R+ with β(0) = 0. Therefore, for any given

ϵ > 0, we can find a δ > 0 such that β(x) ≤ ϵ/2 whenever

0 ≤ x ≤ δ. Let K ∈ N denote the current time step. For

0 ≤ i ≤ K−1, let q(i) denote a root of Fi−Fi+1 in the interval

[q(i), q(i+1)]. Let m ∈ argmax0≤i≤K−1 Fi(q
(i)), q∗ = q(m)

and F = Fm as before. Since f(q(m)) − f(q∗) ≤ β(|q∗ −
q(m)|), we have F (q∗)− f(q∗) ≤ 2β(|q∗− q(m)|). Therefore,

when |q∗ − q(m)| ≤ δ, we have F (q∗) − f(q∗) ≤ ϵ. Since

F (q∗) = Fm(q∗) = Fm+1(q
∗), we can similarly infer that

F (q∗) − f(q∗) ≤ ϵ whenever |q∗ − q(m+1)| ≤ δ. Therefore,

the algorithm terminates if either |q∗ − q(m)| ≤ δ or |q∗ −
q(m+1)| ≤ δ, where q∗ ∈ [q(m), q(m+1)].

As per the procedure outlined in Alg. 1, the point q∗ will

join the iterates q(0), . . . , q(K) at the (K + 1)th time step.

When this new iterate q∗ is added, the updated intervals

include [q(m), q∗] and [q∗, q(m+1)]. Since q∗ ∈ [q(m), q(m+1)],
we either have |q∗ − q(m)| ≤ |q(m+1) − q(m)|/2 or |q∗ −
q(m+1)| ≤ |q(m+1) − q(m)|/2. Since there are only a finite

number of intervals at each time step and the length of one of

the sides of the interval where the new iterate falls is at least

halved at each time step, at some large enough time step K,

we will have |q∗ − q(m)| ≤ δ or |q∗ − q(m+1)| ≤ δ. Thus, the

algorithm terminates in a finite number of time steps.

The worst case scenario corresponds to the situation where

|q(i) − q(i+1)| = δ for all 0 ≤ i ≤ K − 1. In this case, the

algorithm terminates at the Kth time step, wherein q∗ falls

within one of these intervals. Taking δ = sup{δ′ > 0 | β(δ′) ≤
ϵ/2}, there is a sequence δ′n → δ with β(δ′n) ≤ ϵ/2 ∀n, so that

by continuity of β, we have β(δ) = limn→∞ β(δ′n) ≤ ϵ/2.

Therefore, the number of time steps required for the algorithm

to terminate is bounded above by the number ⌈(b − a)/δ⌉,
where δ > 0 can be taken as the largest number that satisfies

β(x) ≤ ϵ/2 for 0 ≤ x ≤ δ.

Next, we present details of constructing and searching over

the grid for Lipschitz-like optimization.

B. Lipschitz-Like Optimization Over the Standard Simplex

Using Grid Search

We make the following observations about the integer grid

defined in Eq. (50). For the grid ∆d,N defined in Eq. (52) over

the standard simplex, we have ∆d,N = Id,N/N := {n/N |
n ∈ Id,N}. Therefore, the observations noted below also apply

to ∆d,N with appropriate modifications.

Proposition 16: Given d, N ∈ N+, let Id,N denote the

integer grid defined in Eq. (50). Then the following hold.

1) Any element n ∈ Id,N can be written as n = (N −
ℓd−1, ℓd−1− ℓd−2, . . . , ℓ2− ℓ1, ℓ1) for some integers 0 ≤
ℓi ≤ ℓi+1 ≤ N , i ∈ [d− 2].

2) The elements of In,N can be ordered such that any two

consecutive elements are distance 2 apart in l1-norm.

This ordering is constructive and can be implemented

algorithmically.

3) The grid ∆d,N defined in Eq. (52) is a (2(d− 1)/N)-net

in the l1-norm for the standard simplex in dimension d.

That is, given any x ∈ ∆d, there is some z ∈ ∆d,N such

that ∥x− z∥1 ≤ 2(d− 1)/N .

Proof: 1) We prove this statement by induction on the

dimension. For d = 2, any n ∈ Id,M satisfies n1 + n2 = M ,

and therefore, n = (M −n1, n1) holds for all M ∈ N+. Now,

assume that for any M ∈ N+, we can write each m ∈ Id−1,M

in dimension d−1 as m = (M−sd−2, . . . , s2−s1, s1), where

s1, . . . , sd−2 ∈ N satisfy 0 ≤ si ≤ si+1 ≤M for i ∈ [d− 3].
Then, given any n ∈ Id,N , we can write nd +

∑d−1
i=1 ni =

N . Denote ℓd−1 =
∑d−1

i=1 ni, so that nd = N − ℓd−1 and
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0 ≤ ℓd−1 ≤ N . Then, since
∑d−1

i=1 = ℓd−1, we can find some

numbers ℓ1, . . . , ℓd−2 such that 0 ≤ ℓi ≤ ℓi+1 ≤ ℓd−1 ≤ N
for i ∈ [d− 3] and (n1, . . . , nd−1) = (ℓd−1 − ℓd−2, . . . , ℓ2 −
ℓ1, ℓ1) by assumption. Subsequently, we can write n = (N −
ℓd−1, . . . , ℓ2− ℓ1, ℓ1). Thus, by induction, the statement holds

for all dimensions.

2) We explicitly construct an ordering to prove the asser-

tion. The proof uses induction to obtain the desired result.

Suppose that for dimension d ∈ N+ and any N ∈ N+, the

elements of Id,N can be arranged such that the first element

is (N, 0, . . . , 0), the last element is (0, . . . , 0, N), and the

l1-norm distance between any two consecutive elements is

2. We call this forward ordering of elements. Writing the

elements of a forward ordered set gives us reverse ordering,

i.e., the first element is (0, . . . , 0, N), the last element is

(N, 0, . . . , 0), and the l1-norm distance between any two

consecutive elements is 2.

For d = 2, the elements of I2,N can be ordered as either

{(N, 0), (N−1, 1), . . . , (1, N−1), (0, N)} (forward ordering)

or {(0, N), (1, N − 1), . . . , (N − 1, 1), (N, 0)} (reverse order-

ing), so that 1-norm distance between any two consecutive

elements is 2.

Assuming that this statement (induction hypothesis) holds

for dimension d, we show that it also holds for d + 1. To that

end, we note using the previous result that every element

of Id+1,N can be written as (N − sd, . . . , s2 − s1, s1) with

0 ≤ si ≤ si+1 ≤ N for i ∈ [d − 1]. Then, we (forward)

order the elements of Id+1,N as follows. Let the first element

be (N, 0, . . . , 0). Choose the next sequence of elements as

follows. For elements of the form (N − 1, 1− sd−1, . . . , s2−
s1, s1) arrange the elements (1 − sd−1, . . . , s2 − s1, s1) in

forward order, which is possible by assumption. For elements

of the form (N−2, 2−sd−1, . . . , s2−s1) arrange the elements

(2− sd−1, . . . , s2− s1) in reverse order. Continuing this way,

given elements of the form (N−sd, sd−sd−1, . . . , s2−s1, s1)
for fixed sd, arrange the elements (sd− sd−1, . . . , s2− s1, s1)
in forward order if sd is odd, and in reverse order if sd is

even.

Then, for a fixed 0 ≤ sd ≤ N , if (N − sd, sd −
s′d−1, . . . , s

′
1) is the element after (N − sd, sd −

sd−1, . . . , s1) as per the above ordering, we have∥∥(N−sd, sd−s′d−1, . . . , s
′
1)−(N−sd, sd−sd−1, . . . , s1)

∥∥
1

=∥∥(sd − s′d−1, . . . , s
′
1)− (sd − s′d−1, . . . , s

′
1)
∥∥

1
= 2 by

induction hypothesis. Next, we consider the case when

sd increases by 1. In this case, the last element of

(N−sd, . . . , s2−s1) is (N−sd, sd, 0, . . . , 0) if sd is even and

it is (N −sd, 0, . . . , 0, sd) if sd is odd. Then, the first element

of the next sequence (N − sd − 1, sd + 1 − sd−1, . . . , s1)
is (N − sd − 1, sd + 1, 0, . . . , 0) if sd is even and it is

(N − sd − 1, 0, . . . , 0, sd + 1) if sd is odd. Therefore, the

l1-norm distance between consecutive elements when sd

increases by 1 is equal to 2. Therefore, the elements of

Id+1,N can be ordered as described above. By induction, the

result holds for any dimension.

3) We prove this by induction. Given dimension d ∈ N+,

assume that for every x ∈ ∆d, there is some z ∈ ∆d,N such

that ∥x− z∥1 ≤ 2(d − 1)/N for all N ∈ N+. For d = 2,

we can write any x ∈ ∆2 as x = (1− x1, x1) for some x1 ∈

[0, 1]. Let n1 ∈ argmin{|x1−m1/N | | 0 ≤ m1 ≤ N}, so that

have |x1−n1/N | ≤ 1/2N . Choosing z = (1−n1/N, n1/N),
we obtain ∥x− z∥1 ≤ 1/N ≤ 2/N .

Now, suppose that the assumption holds for dimension d.

We show that it also holds for dimension d + 1. To that end,

let x ∈ ∆d+1 be written as x = (1− s, x2, . . . , xd+1), where

s =
∑d+1

i=2 xi. If s = 0, then x = (1, 0, . . . , 0) and the result

follows. Therefore, let s > 0 and consider the vector x′ =
(x2, . . . , xd+1)/s, so that x′ ∈ ∆d. Let M = ⌈sN⌉, and by

assumption, there is some z′ ∈ ∆d,M such that ∥x′ − z′∥1 ≤
2(d−1)/M . Denote z′ = (n2, . . . , nd+1)/M and define n1 =
N −∑d+1

i=2 ni = N −M . Then, |(1 − s) − n1/N | = |sN −
M |/N ≤ 1/N since sN ≤ M ≤ sN + 1. Then, denoting

z = (n1, . . . , nd+1)/N , we have

∥x− z∥1 =
∣∣∣(1− s)− n1

N

∣∣∣+ ∥sx′ − z′M/N∥1

≤ 1

N
+ s ∥x′ − z′∥1 +

∣∣∣∣s−
M

N

∣∣∣∣ ∥z′∥1

≤ 2

N
+ 2(d− 1)

s

M

≤ 2d

N

where we used the fact the s/M ≤ 1/N . Thus, the statement

holds by induction.

Prop. 16.1 helps in iterative construction of the grid, while

Prop. 16.2,3 will be used in construction of dense curve.

In practice, the ordering of elements given in Prop. 16.2 can

be done efficiently for moderately small dimensions. We use

this ordering in practice to generate the grid, and this allows

for easy parallelization.

Next, based on the results of Ref. [36], we calculate the

value of N that needs to be used in the grid search to converge

to a precision of ϵ > 0.

Proposition 17: Let f : D → R be a β-Lipschitz-like

function satisfying Eq. (48), where D = ∆d is the standard

simplex in R
d. Let N = ⌈1/δ2⌉, where δ = sup{δ′ > 0 |

β(δ′) ≤ ϵ/2}. Let ∆d,N be the grid defined in Eq. (52),

and let f∗ = max{f(z) | z ∈ ∆d,N}. Then, we have

maxx∈∆d
f(x)− f∗ ≤ ϵ.

Proof: This result is implied by techniques developed in

Ref. [36]. For the sake of completeness, we give a proof here

for the specific case of Lipschitz-like functions.

Given f : D → R, the Bernstein polynomial approximation

of f of order N ∈ N+ is defined as

BN (f)(x) =
∑

n∈Id,N

f
( n

N

) N !

n!
xn

for x ∈ ∆d, where we use the multi-index notation n! =
n1! · · ·nd!, xn = xn1

1 · · ·xnd

d for n ∈ Id,N [36]. The sup-norm

of a continuous function f : D → R is given by ∥f∥∞ =
maxx∈D |f(x)|, where we use the fact that D is compact.

Next, given a continuous function f : D → R, the modulus of

continuity of f is defined as

ω(f, δ) = max
x,y∈D

∥x−y∥≤δ

|f(x)− f(y)|
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with respect to a suitable norm ∥·∥ on R
n [36]. If f is

Lipschitz-like, then we use the norm with respect to which

f satisfies the Lipschitz-like property. For a β-Lipschitz-like

function f , using Eq. (48), we have

ω(f, δ) ≤ β(δ), (101)

where we used the fact that β is a monotonically increasing

function.

Then, given a β-Lipschitz-like function f : D → R, using

Thm. (3.2) of Ref. [36], we have

∥BN (f)− f∥∞ ≤ 2ω

(
f,

1√
N

)
≤ 2β

(
1√
N

)

where we used Eq. (101) to obtain the last inequality. In par-

ticular, this implies that maxx∈D BN (f) ≥ maxx∈D f(x) −
2β(1/

√
N). Using this result along with Lemma (3.1) of

Ref. [36], we obtain

max
x∈D

f(x)− 2β

(
1√
N

)
≤ max

x∈D
BN (f)(x) ≤ max

x∈∆d,N

f(x).

Therefore, choosing

β

(
1√
N

)
≤ ϵ

2
,

we obtain

max
x∈D

f(x) ≤ max
x∈∆d,N

f(x) + ϵ

giving us the desired result. In other words, to compute the

maximum of f to within a precision of ϵ > 0, it suffices to

search the grid ∆d,N with N = ⌈1/δ2⌉, where δ is the largest

number satisfying β(δ) ≤ ϵ/2.

C. Lipschitz-Like Optimization Over the Standard Simplex

Using Dense Curves

We show how to optimize Lipschitz-like functions over the

standard simplex using α-dense curves. Such curves get within

a distance α of all points in the simplex (see Def. (10)). As we

show below, by appropriately choosing α, one can perform a

one-dimensional optimization to obtain the maximum of f to

the desired precision.

Proposition 18: Suppose that f : ∆d → R is a β-Lipschitz-

like function satisfying Eq. (48). Then the following hold.

1) Given N ∈ N)+, let γ : [0, Lcurve] → ∆d be a

Lipschitz-like curve constructed as per Alg. 3. Then the

curve γ is (2(d − 1)/N)-dense in the simplex ∆d and

satisfies Eq. (54).

2) Alg. 4 computes the maximum of f to within a precision

of ϵ > 0 for any βγ-Lipschitz-like, (2(d − 1)/N)-dense

curve γ. Here, N = ⌈2(d − 1)/α⌉ with α = sup{α′ >
0 | β(α′) ≤ ϵ/2} as noted in Alg. 4. In the worst case,

the algorithm takes
⌈

2

Nδ

(
N + d− 1

d− 1

)⌉

time steps to converge to the maximum within a precision

of ϵ > 0, where δ = sup{δ′ > 0 | β(βγ(δ′)) ≤ ϵ/2}.
When γ is the curve generated by Alg. 3, α < 1 and

d ≫ 1, this amounts to O(α1−d/d) time steps in the

worst case.

Proof: 1. From Prop. 16, we know that ∆d,N is a (2(d−
1)/N)-net. Since ∆d,N ⊆ Range(γ), for any x ∈ ∆d, there

is some z ∈ Range(γ) such that ∥x− z∥1 ≤ 2(d − 1)/N .

In other words, γ is a (2(d−1)/N)-dense curve in ∆d. Next,

we show that γ is Lipschitz-like function. To that end, given

θ, θ′ ∈ R, let k = ⌈θN/2⌉ and k′ = ⌈θ′N/2⌉. Without loss

of generality, take θ ≤ θ′. Given i ∈ [Ngrid], where Ngrid is

defined in Eq. (51), denote xi ∈ ∆d,N to be the ith element

of ∆d,N ordered as per Eq. (11). Now, if k = k′, then we can

write γ(θ) = txk+(1−t)xk+1 and γ(θ′) = t′xk+(1−t′)xk+1,

where t = 1+k− θN/2 and t′ = 1+k− θ′N/2 (see Alg. 3).

Therefore, ∥γ(θ′)− γ(θ)∥1 ≤ |t − t′| ∥xk+1 − xk∥1 = |θ′ −
θ|, where we used the fact that ∥xk+1 − xk∥1 = 2/N (see

Prop. 16). Thus, consider the case k′ > k, so that

∥γ(θ′)− γ(θ)∥1 ≤∥γ(θ′)− xk′∥1

+
k′−1∑

i=k+1

∥xi+1 − xi∥1 + ∥xk+1 − γ(θ)∥1

= |θ′ − θ|

where in the last line we used the fact that θ (and θ′) is

defined as the length along obtained by joining consecutive

points of the grid until we reach θ (and θ′ respectively). Since

∥x− y∥1 ≤ 2 for all x, y ∈ ∆d, Eq. (54) follows.

2. Consider the real-valued function g = f ◦ γ defined

on the interval [0, Lcurve]. Here, γ is a (2(d − 1)/N)-dense

βγ-Lipschitz-like curve with N = ⌈2(d − 1)/α⌉ and α =
sup{α′ > 0 | β(α) ≤ ϵ/2}. Since 2(d − 1)/N ≤ α, γ
is also an α-dense curve. Let θ∗ ∈ argmax{g(θ) | θ ∈
[0, Lcurve]}, and let θ∗ϵ ∈ [0, Lcurve] be the point output by

Alg. 1. Since f is β-Lipschitz-like and γ is βγ-Lipschitz-like,

g = f ◦ γ is β ◦ βγ-Lipschitz-like, so by Prop. 15, we know

that g(θ∗) − g(θ∗ϵ ) ≤ ϵ/2. Let x∗ ∈ argmax{f(x) | x ∈ ∆d}
denote a point achieving the maximum of f . Then, since γ
is an α-dense curve, there is some point θ0 ∈ [0, Lcurve] such

that ∥x∗ − γ(θ0)∥1 ≤ α. Noting that g(θ0) ≤ g(θ∗), we have

f(x∗)− g(θ∗ϵ ) ≤ f(x∗)− g(θ∗) +
ϵ

2

≤ f(x∗)− g(θ0) +
ϵ

2

≤ β(∥x∗ − γ(θ0)∥1) +
ϵ

2
≤ ϵ

To obtain the penultimate inequality we used the Lipschitz-like

property of f along with the fact that g(θ0) = f(γ(θ0)). The

last inequality follows by noting that β(∥x∗ − γ(θ0)∥1) ≤
β(α) ≤ ϵ/2. The number of iterations needed to compute

θ∗ϵ in the worst-case is given by

Nmaxiter =

⌈
Lcurve

δ

⌉
=

⌈
2

Nδ

(
N + d− 1

d− 1

)⌉

where δ = sup{δ′ > 0 | β(βγ(δ′)) ≤ ϵ/2}, which follows

from Prop. 15. Using the fact that (n/k)k ≤
(
n
k

)
≤ (en/k)k

and 2(d−1)/α ≤ N ≤ 2(d−1)/α+1, the number of iterations
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is bounded as

α

(d− 1)δ

(
(2(d− 1)/α + d− 1)

d− 1

)d−1

≤ Nmaxiter ≤
α

(d− 1)δ

(
e(2(d− 1)/α + d)

d− 1

)d−1

.

Thus, assuming α < 1 and d ≫ 1, we need O(α2−dδ−1/d)
time steps for convergence. For the case when γ is the curve

generated by Alg. 3, we can take βγ(x) = x owing to Eq. (54),

and therefore, the statement of the proposition follows.

D. Lipschitz-Like Optimization Over a Compact & Convex

Domain

We now consider the general problem of optimizing a β-

Lipschitz-like function f : D → R satisfying Eq. (48), where

D ⊆ R
d is a nonempty compact and convex domain. Many

techniques have been developed for optimizing Lipschitz or

Hölder continuous functions when D is a specific set such as

hypercube, simplex or is the full Euclidean space R
n as noted

in Sec. IV. However, when dealing with an arbitrary compact

and convex domain, it is not always obvious how to encode

the constraints defining the domain in the algorithm.

We circumvent this problem by looking for a function

f : R
d → R satisfying the following properties:

1) The function f is an extension of f in the sense that f
is Lipschitz-like and f |D = f .

2) The maximum of f and f coincide. More specifically,

supx∈K f = maxx∈D f for every set D ⊆ K ⊆ R
d.

3) The function f can be efficiently computed whenever f
and β can be efficiently computed.

The first property ensures that we are able to use existing

Lipschitz-like optimization algorithms. The second property

ensures that we can compute the maximum of f by computing

the maximum of f over a convenient set K containing the

domain D. The choice of the set K will usually depend on

the actual algorithm used to perform the optimization. The

last property ensures that the function f can be efficiently

evaluated in practice.

We show that one can construct a function f satisfying all

the above properties for the case when β is itself a Lipschitz-

like function. That is, there is some non-negative, continuous,

monotonically increasing function κ : R+ → R with κ(0) =
0 such that, for all x, y ∈ R+,

|β(x)− β(y)| ≤ κ(|x− y|). (102)

This assumption is not too restrictive for our purposes because

Lipschitz continuous functions (i.e., β(x) = x), and functions

β relevant to entropic quantities like the one in Eq. (64) satisfy

Eq. (102) (see Prop. 20). In this case, we can define the

extension of f as follows.

Definition 19 (Lipschitz-Like Extension): Let f : D → R

be a β-Lipschitz-like function over a compact and convex

domain D ⊆ R
d. Let ∥·∥ be the norm on R

d with respect to

which Eq. (48) holds. Suppose that β is κ-Lipschitz-like. Then,

the Lipschitz-like extension of f is the function f : R
d → R

defined as

f(x) = f(ΠD(x))− β(∥x−ΠD(x)∥), (103)

where ΠD = argminz∈D ∥z − x∥2 is the projection of x onto

D with respect to the Euclidean norm.

We remark that the choice of norm in Eq. (48), and

subsequently in Eq. (103), is flexible. Moreover, because all

norms on R
d are equivalent, one can change the function β so

as to get a Lipschitz-like property with respect to a different

norm. Recall that two norms ∥·∥a and ∥·∥b on R
d are said

to be equivalent if there exist constants c1, c2 > 0 (possibly

dimension dependent) such that c1 ∥·∥a ≤ ∥·∥b ≤ c2 ∥·∥a.

The caveat of using equivalence of norms to change the

function β is that the modified β might end up depending on

the dimension. This could negatively impact the convergence

rate (for example, polynomial time convergence guarantee for

optimization over the simplex using grid search might be lost

if β depends on the dimension). This observation is also of

relevance in Def. 19 because we define the projection with

respect to the Euclidean norm, while allow an arbitrary choice

of norm in Eq. (103) (also see Prop. 20).

Note that ΠD is well-defined since D is compact and

convex (see Thm. (2.5) in Ref. [44]). Since ΠD(x) = x
for x ∈ D, we can see that f is indeed an extension of f .

Roughly speaking, the extension is also Lipschitz-like because

both f and β are Lipschitz-like. Furthermore, since β is a

non-negative monotonically increasing function, the value of

f decreases as we move away from D. Thus, the maximum

of f occurs over D. Finally, so long as the projection ΠD

can be efficiently computed, the function f can be efficiently

computed (assuming f and β can be efficiently computed).

We formalize the observations made above in the following

proposition.

Proposition 20: Let β : R+ → R be a non-negative, con-

tinuous, monotonically increasing function with β(0) = 0.

Suppose that β is κ-Lipschitz-like in the sense of Eq. (102)

for some appropriate κ. Let f : D → R be a β-Lipschitz-like

function over some compact and convex domain D ⊆ R
d. Let

f be the extension of f as defined in Eq. (103). Then the

following statements hold.

1) Define the constant C = c2/c1, where c1, c2 > 0 are

obtained from equivalence of ∥·∥ , ∥·∥2 on R
d, i.e.,

c1 ∥·∥ ≤ ∥·∥2 ≤ c2 ∥·∥. Then, the extension f is a β-

Lipschitz-like function, where

β(x) = β(Cx) + κ((C + 1)x). (104)

2) Given any set D ⊆ K ⊆ R
d, we have supx∈K f(x) =

maxx∈D f(x). Moreover, any point achieving the maxi-

mum of f achieves the maximum of f .

3) The modified binary entropy h defined in Eq. (49) is an

h-Lipschitz-like function, that is,

|h(x)− h(y)| ≤ h(|x− y|)

for all x, y ∈ R+. Subsequently, βI defined in Eq. (64)

is a βI -Lipschitz-like function.

Proof: 1. We first note that ΠD is a non-expansive

mapping on R
d, i.e., for all x, y ∈ R

d, we have

∥ΠD(x)−ΠD(y)∥2 ≤ ∥x− y∥2 [45]. By equivalence of

norms, we can find a (possibly dimension-dependent) constant

C > 0 noted in the statement of the proposition, such that
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∥ΠD(x)−ΠD(y)∥ ≤ C ∥x− y∥. From this, we can infer the

following list of inequalities:

|f(x)− f(y)|
≤ |f(ΠD(x)− f(ΠD(y))|

+ |β(∥x−ΠD(x)∥)− β(∥y −ΠD(y)∥)|
≤ β(∥ΠD(x)−ΠD(y)∥)

+ κ(| ∥x−ΠD(x)∥ − ∥y −ΠD(y)∥ |)
≤ β(C ∥x− y∥) + κ(∥x−y + ΠD(y)−ΠD(x)∥)
≤ β(C ∥x− y∥) + κ(∥x− y∥+ ∥ΠD(x)−ΠD(y)∥)
≤ β(C ∥x− y∥) + κ((C + 1) ∥x− y∥)
= β(∥x− y∥)

To obtain the second inequality, we use the fact that f is β-

Lipschitz-like and β is κ-Lipschitz-like. To obtain the third

inequality, we use the reverse triangle inequality, the fact that

ΠD is non-expansive, and that β and κ are monotonically

increasing functions. The last two inequalities follow from

similar observations. Finally, we note that β(x) = β(Cx) +
κ((C + 1)x) is a non-negative, continuous, monotonically

increasing function with β(0) = 0.

2. Since β is a non-negative function, we have f(x) ≤
f(ΠD(x)) for all x ∈ R

d. Therefore, given any set D ⊆
K ⊆ R

d, we have supx∈K f(x) ≤ supx∈K f(ΠD(x)) =
maxx∈D f(x). The last equality follows by noting that

ΠD(x) ∈ D for all x ∈ R
d, f is continuous and D is

compact. If x∗ ∈ D achieves the maximum of f , then

supx∈K f(x) = maxx∈D f(x) = f(x∗) = f(x∗), where in

the last step, we used the fact that f = f on D.

3. Let h be the modified binary entropy defined in Eq. (49).

If x ∈ [0, 1/2] then, h(x) = h(x). Furthermore, we have

h(x) = H((x, 1− x)) for x ∈ [0, 1], where H is the Shannon

entropy. Therefore, given x, y ∈ [0, 1/2], we have |h(x) −
h(y)| = |h(x) − h(y)| = |H((x, 1 − x)) −H((y, 1 − y))| ≤
h(|x − y|) = h(|x − y|), where the inequality follows from

the results of Ref. [28]. Here, we used the fact that |x− y| ≤
1/2 when x, y ∈ [0, 1/2]. For x, y ≥ 1/2, we have h(x) =
h(y) = ln(2), and thus, |h(x) − h(y)| ≤ h(|x − y|). Finally,

we consider the case when x ∈ [0, 1/2] and y ≥ 1/2. Here,

we have |h(x) − h(y)| = ln(2) − h(x) = h(1/2) − h(x) ≤
h(|1/2 − x|) = h(|1/2 − x|) ≤ h(|y − x|). In the last step,

we used the fact that |1/2−x| ≤ |y−x| and h is monotonically

increasing. Therefore, we have |h(x)−h(y)| ≤ h(|x− y|) for

all x, y ∈ R+.

The above extension gives some freedom in determining

what algorithm to use to perform the maximization of f ,

especially for the case when f is Lipschitz or Hölder con-

tinuous. One can, for example, use an unconstrained opti-

mization method developed for optimization of Lipschitz or

Hölder continuous function. Alternatively, one can embed D
inside a hypercube K, and use an algorithm that can perform

global Lipschitz optimization [37], [46], [47]. In this study,

we generalize the method used in Ref. [37] using dense curves

because the proof of convergence essentially follows Prop. 18.

In practice, one might get faster convergence by generalizing

the global optimization method using Hilbert space-filling

curves studied in Ref. [46].

We use the α-dense curve for filling the hypercube K =∏d
i=1[ai, bi] used in Ref. [37], which we reproduce below for

convenience. Let d ≥ 2, η > 0, η1 = 1 and define

ηi =
( η

π

)i−1 i∏

j=2

1

|aj |+ |bj |
(105)

for i = 2, . . . , d. Then, the curve γ : [0, π/ηd]→ K defined as

γi(θ) =
ai − bi

2
cos(ηiθ) +

ai + bi

2
(106)

for i ∈ [d] is a (
√

d− 1η)-dense curve with respect to the

Euclidean norm [37]. Furthermore, γ is Lipschitz continuous

(with respect to the Euclidean norm) with Lipschitz constant

Lγ =
1

2

(
n∑

i=1

(|ai|+ |bi|)2η2
i

)1/2

. (107)

Algorithm 8 Computing the Maximum of a β-Lipschitz-Like

Function f Satisfying Eq. (48) for D = ∆d, Given ϵ > 0

1: function

MAXIMIZE_LIPSCHITZ-LIKE_FUNC

_COMPACT_CONVEX_DOMAIN(d, β, ϵ)

2: Find K =
∏d

i=1[ai, bi] ⊆ R
d such that D ⊆ K

3: Find c1 > 0 such that c1 ∥·∥ ≤ ∥·∥2
4: Construct the curve γ as per Eq. (106) for

η = c1α/
√

d− 1, where

α = sup{α′ > 0 | β(α′) ≤ ϵ/2}
5: Construct the extension f as per Eq. (103)

6: Compute the maximum g∗ of g = f ◦γ over [0, π/ηd]
to a precision of ϵ/2 using Alg. 1

7: return g∗

8: end function

Below, we show that the above algorithm will converge to

the maximum within precision ϵ > 0. The proof essentially

adapts the ideas used to prove Prop. 18.

Proposition 21: Let f : D → R be a β-Lipschitz-like

function with respect to the norm ∥·∥ on R
d, where D ⊆ R

d

is a compact & convex set. Suppose that β is κ-Lipschitz-

like. Let K ⊆ R
d be a bounded set containing D. Let γ be

any α-dense, βγ-Lipschitz-like curve from the interval [a, b]
into the set K. Let f be a β-Lipschitz-like extension of f
defined in Eq. (103), where β is given in Eq. (104). Suppose

that we compute the maximum of f using an appropriate

generalization of Alg. 8 with the curve γ. Then, for α =
sup{α′ > 0 | β(α′) ≤ ϵ/2}, the algorithm computes the

maximum of f to within a precision of ϵ > 0. In the worst

case, this algorithm takes ⌈(b− a)/δ⌉ time steps to converge,

where δ = sup{δ′ > 0 | β(βγ(δ′)) ≤ ϵ/2}.
In particular, if K is a hypercube containing D and γ is the

curve generated as per Eq. (106), a value of η = c1α/
√

d− 1
suffices to converge to the maximum of f within a precision

of ϵ > 0. Here, α is as defined above and c1 > 0 is a (possibly

dimension dependent) constant satisfying c1 ∥·∥ ≤ ∥·∥2. The

algorithm takes ⌈ π
ηdδ ⌉ time steps to converge in the worst

case, where ηd is defined in Eq. (105) and δ is as defined
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above. For the case when f is a Lipschitz continuous function

with Lipschitz constant L with respect to the Euclidean norm,

Alg. 8 takes O((6πL
√

d/ϵ)d) iterations to converge to a

precision of ϵ > 0. The exponential scaling with L and ϵ
cannot be improved without additional assumptions on the

functions or the domain.

Proof: Since D ⊆ R
d is compact, it is bounded, and can

therefore be embedded into a bounded set K ⊆ R
d. Let f be

the β-Lipschitz-like extension of f defined in Eq. (103), where

β is given in Eq. (104). Let γ : [a, b]→ K be an α-dense, βγ-

Lipschitz-like curve, where α = sup{α′ > 0 | β(α′) ≤ ϵ/2}.
Consider the real-valued function g = f ◦ γ defined on the

interval [a, b]. Let θ∗ ∈ argmax{g(θ) | θ ∈ [a, b]}, and let θ∗ϵ ∈
[a, b] be the point output by Alg. 1. Since f is β-Lipschitz-like

and γ is βγ-Lipschitz-like, g = f ◦ γ is β ◦ βγ-Lipschitz-like.

So, by Prop. 15, we know that g(θ∗)− g(θ∗ϵ ) ≤ ϵ/2.

Let x∗ ∈ argmax{f(x) | x ∈ ∆d} denote a point achieving

the maximum of f . From Prop. 20, we know that f(x∗) =
supx∈K f(x) = supx∈D f(x) = f(x∗). Then, since γ is an α-

dense curve and D ⊆ K, there is some point θ0 ∈ [a, b] such

that ∥x∗ − γ(θ0)∥1 ≤ α. Noting that g(θ0) ≤ g(θ∗), we have

f(x∗)− g(θ∗ϵ ) ≤ f(x∗)− g(θ∗) +
ϵ

2

≤ f(x∗)− g(θ0) +
ϵ

2

≤ β(∥x∗ − γ(θ0)∥1) +
ϵ

2
≤ ϵ

To obtain the penultimate inequality we used the Lipschitz-like

property of f along with the fact that g(θ0) = f(γ(θ0)). The

last inequality follows by noting that β(∥x∗ − γ(θ0)∥1) ≤
β(α) ≤ ϵ/2. The number of iterations needed to compute

θ∗ϵ in the worst-case is given by

Nmaxiter =

⌈
b− a

δ

⌉

where δ = sup{δ′ > 0 | β(βγ(δ′)) ≤ ϵ/2}, which follows

from Prop. 15.

Now suppose that K is a hypercube containing D and γ
is the curve given in Eq. (106). By equivalence of norms

on R
d, we have c1 ∥·∥ ≤ ∥·∥2 ≤ c2 ∥·∥ for some (possibly

dimension dependent) constants c1, c2 > 0. Therefore, γ is

(
√

d− 1η/c1)-dense and (Lg/c1)-Lipschitz continuous with

respect to the norm ∥·∥, where Lg is given in Eq. (107).

By the above results, we can choose η = c1α/
√

d− 1 for

convergence, where α = {α′ > 0 | β(α′) ≤ ϵ/2}. In this

worst case, this algorithm takes ⌈π/(ηdδ)⌉, where ηd is defined

in Eq. (105) and δ = sup{δ′ > 0 | β(Lγδ′) ≤ ϵ/2}.
Consider the case when d ≥ 2, D = [0, 1]d, K = D, and f is

Lipschitz continuous with Lipschitz constant L (independent

of the dimension) with respect to the Euclidean norm ∥·∥2.

Then, c1 = c2 = 1 as defined above, and subsequently, C
defined in Prop. 20 is equal to 1. Then, since κ(x) = β(x) =
Lx, we have β(x) = 3 Lx. Subsequently, we have α = ϵ/6L,

and for ϵ < 6L, we have α < 1. For the curve γ, we have

η = α/
√

d− 1 = ϵ/6L
√

d− 1, ηd = (η/π)d−1, δ = ϵ/6LLγ ,

and Lγ ≤
√

d/2 assuming that α < 1. Thus, the Alg. 8 takes

⌈
6πdLLγ

ηd−1ϵ

⌉
≤
⌈

(6πL
√

d)d

ϵd

⌉

iterations to converge. It is known that any algorithm (in

the sense of a black box model) needs at least O((L/2ϵ)d)
iterations to compute the optimum of a L-Lipschitz function

over the unit hypercube to a precision of ϵ > 0 (see Ref. [27]

for details). Thus, one cannot, in general improve the 1/ϵd

scaling for Alg. 8 without additional assumptions on D or the

class of functions that are optimized by the algorithm.

The above result shows that the exponential scaling with the

dimension cannot be improved without additional assumptions

on the functions or the domain. It is likely the case that the
√

d
factor is sub-optimal and comes from the choice of the curve

γ in Eq. (106), so one might be able to improve that factor

by using better constructions for the curve or by resorting to

a different approach altogether.

We remark that the above algorithm will perform worse

than Alg. 2 and Alg. 4 in practice when D is the standard

simplex. This is because we essentially use no information

about the domain except for the projection ΠD in constructing

the extension f (see Eq. (103)). Indeed, when using grid

search specially designed for D = ∆d, we can get polynomial

scaling with the dimension for a fixed precision (see Prop. 17).

Thus, it might be preferable to resort to methods designed

specifically for the particular domain and function class of

interest, as opposed to general algorithms like Alg. 8. That

said, an advantage of Alg. 8 is that the maximum is computed

by finding successively better approximations. Therefore, one

can decide to terminate the computation after some fixed

number of iterations in order to obtain an upper bound on

the maximum.

APPENDIX D

ANALYSIS OF ALGORITHMS FOR COMPUTING THE SUM

CAPACITY FOR TWO-SENDER MACS

Proof of Prop. 12: For any probability distributions

pZ
1 , pZ

2 ∈ ∆do
, we have |H(pZ

1 )−H(pZ
2 )| ≤ θ log(do − 1) +

h(θ), where θ =
∥∥pZ

1 − pZ
2

∥∥
1
/2 and h is the binary entropy

function [28]. In particular, if we define h as in Eq. (49), then

we have

|H(pZ
1 )−H(pZ

2 )| ≤ 1

2
log(do − 1)

∥∥pZ
1 − pZ

2

∥∥
1

+ h

(
1

2

∥∥pZ
1 − pZ

2

∥∥
1

)
(108)

because h(x) ≤ h(x) for all x ∈ [0, 1].
Now, note that using the same ideas employed in obtaining

I(p, q) given in Eq. (60), we can interchange the roles of p ∈
∆d1

and q ∈ ∆d2
to obtain

I(p, q) = H(Apq)− ⟨bp, q⟩
where

Ap(z, b2) =
∑

b1∈B1

N(z|b1, b2)p(b1)
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and

bp(b2) = −
∑

b1∈B1

p(b1)
∑

z∈Z

N(z|b1, b2) log(N(z|b1, b2)).

Then, for any q, q′ ∈ ∆d2
and a fixed p ∈ ∆d1

, we have

|I(p, q)− I(p, q′)|
≤ |H(Apq)−H(Apq

′)|+ | ⟨bp, q − q′⟩ |

≤ 1

2
log(do − 1) ∥Apq −Apq

′∥1

+ h

(
1

2
∥Apq −Apq

′∥1
)

+ ∥bp∥∞ ∥q − q′∥1
(109)

where in the second step, we used Eq. (108) and Hölder’s

inequality.

Now, we note that ∥Apq −Apq
′∥1 ≤ ∥Ap∥1→1 ∥q − q′∥1,

where ∥Ap∥1→1 is the induced matrix norm with respect to

l1-norm on the domain and the co-domain of Ap. This norm

is equal to the maximum (absolute value) column sum of

Ap. Since Ap is a left stochastic matrix, all of its entries are

non-negative and all of its columns sum to 1, and therefore,

∥Ap∥1→1 = 1. Similarly, we have 0 ≤ bp(b2) ≤ Hmax
N for all

b2 ∈ B2 (see Eq. (65) for definition of Hmax
N ). Therefore,

we have ∥bp∥∞ ≤ Hmax
N . Then, since h a monotonically

increasing function, from Eq. (109), we obtain

|I(p, q)−I(p, q′)|≤ 1

2
log(do−1) ∥q−q′∥1+h

(
1

2
∥q−q′∥1

)

+ Hmax
N ∥q − q′∥1

= βI (∥q − q′∥1) (110)

Since Eq. (110) holds for every p ∈ ∆d1 , we have for fixed

q, q′ ∈ ∆d2

max
p∈∆d1

I(p, q) ≤ max
p∈∆d1

I(p, q′) + βI (∥q − q′∥1)

and

max
p∈∆d1

I(p, q′) ≤ max
p∈∆d1

I(p, q) + βI (∥q − q′∥1)

Since I∗(q) = maxp∈∆d1
I(p, q), we obtain |I∗(q)−I∗(q′)| ≤

βI (∥q − q′∥1).
Proposition 22: Let N be any two-sender MAC with input

alphabets of size d1, d2, and output alphabet of size do.

Suppose that that d1, do ≥ 2 and d2 = 2. Then, for 0 < ϵ ≤
3 log(do), the number of iterations required by the while

loop in Alg. 5 to compute the sum capacity of the MAC N
to a precision ϵ > 0 is bounded above by

⌈
2(µ2 + 4)

(ϵµ + 4)−
√

16 + 8ϵµ− 4ϵ2

⌉
(111)

where µ = 3 log(do). In particular, for a precision 0 <
ϵ ≤ 3 chosen independent of do, the number of iterations

is bounded above by O(log(do)/ϵ) for log(do)≫ 1.

The total cost of computing the sum capacity to a precision

ϵ > 0, including the costs of performing intermediate steps

such as computing I∗, sorting and root-finding, is at most

polynomial in d1, do and 1/ϵ.

Proof: To compute the total number of iterations required

to compute the sum capacity to a precision ϵ > 0, we break

the analysis into the following steps.

1) Number of iterations required for the while loop to

converge in Alg. 5.

2) Cost of computing I∗(s) in Alg. 5 to a precision ϵI > 0.

3) Cost of sorting the points s(0), . . . , s(k) in Alg. 5.

4) Cost for finding a root of gi(s) in Alg. 5 to a precision

ϵr > 0.

From these, we can compute the total cost of converging to a

precision ϵ > 0.

1. We begin by computing the number of iterations required

for Alg. 5 to converge to a precision ϵ > 0. To that end, note

that for obtaining Alg. 5 from Alg. 1, we used the fact that

∥qs − qs′∥1 = 2|s− s′|, where given any s ∈ [0, 1], we define

qs = (s, 1−s). Therefore, we have an additional factor of 2 in

βI(2|s − s′|) in Alg. 5. Therefore, to make Alg. 5 the same

as Alg. 1, we define β(x) = βI(2x). Then, from Prop. 15,

we know that the number of iterations required to converge

to the maximum within an error of ϵ > 0 is bounded above

by ⌈1/δ⌉, where we used the fact that D = [0, 1] for the

optimization. The number δ > 0 is chosen such that β(x) ≤
ϵ/2 whenever 0 ≤ x ≤ δ.

In the following analysis, we measure entropy in bits.

To proceed, we note that the binary entropy h satisfies the

inequality h(x) ≤ 2
√

x(1− x) [48]. Further, for any probabil-

ity transition matrix N , the quantity Hmax
N defined in Eq. (65)

is bounded above by log(do), where do is the size of the output

alphabet. For x ≤ 1/2, we have h(x) = h(x), where h is the

modified binary entropy function defined in Eq. (49). Then,

from Eq. (64) and the definition β(x) = βI(2x), it follows

that

β(x) < µx + 2
√

x(1− x)

for x ≤ 1/2, where µ = 3 log(do). Then, solving the inequality

µx + 2
√

x(1− x) ≤ ϵ/2, we obtain

x ≤ (ϵµ + 4)−
√

16 + 8ϵµ− 4ϵ2

2(µ2 + 4)

which holds whenever ϵ ≤ µ. Therefore, we choose

δ =
(ϵµ + 4)−

√
16 + 8ϵµ− 4ϵ2

2(µ2 + 4)

which is a positive number for 0 < ϵ ≤ µ. Then, from

Prop. 15, we know that the number of iterations to converge

to a precision ϵ > 0 is bounded above by

KPS =

⌈
2(µ2 + 4)

(ϵµ + 4)−
√

16 + 8ϵµ− 4ϵ2

⌉

where the subscript PS stands for Piyavskii-Shubert.

2. Next, we calculate the cost of computing I∗(s) to

a precision ϵI > 0. This is a non-trivial cost because is

obtained by solving a convex optimization problem. Specif-

ically, I∗(s) = maxp∈∆d1
H(Aqs

p) − ⟨bqs
, p⟩, where qs =

(s, 1 − s). This cost depends on the algorithm one uses to

solve the optimization problem. For example, if one uses an

interior point method based on the log-barrier, then one needs
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at most O(d3
1

√
d1 + do log((d1 + do)/ϵI) flops to converge to

the optimum within a precision of ϵI > 0 (see Ch. (11.5) in

Ref. [40]). We denote the cost of computing I∗ as KI .

3. If we use quicksort to sort the numbers s(0), . . . , s(k),

then in the worst case, one needs O(k2) operations to perform

this sorting.

4. If we compute the root to a precision ϵr > 0 using

bisection, then one needs at most O(log(1/ϵr)) iterations to

find this root.

The total cost of sorting (including all KPS iterations) is

bounded above by O(K3
PS). The number of times the root

needs to be computed is bounded above by O(K2
PS) and

the number of times the function I∗ is calculated in the

algorithm is O(K2
PS log(1/ϵr)). Since we can only compute

I∗ to a precision ϵI and find the root to a precision ϵr,

we need to choose these small enough so that the total

error is below ϵ. In particular, if we choose ϵI = ϵr such

that O(K2
PS log(1/ϵI))ϵI = ϵ/2, then using the fact that

−x ln(x) ≥ x−x2 for x > 0, we can infer that it is sufficient

to choose ϵI = O(ϵ/K2
PS). Then running the while loop in

Alg. 5 to a precision ϵ/2 so that the total error is within a

tolerance of ϵ, we can infer that the total number of iterations

needed is bounded above by

O(KIK
2
PS log(K2

PS/ϵ))

where we used the fact that KI is at least as large as KPS.

Therefore, the total cost to converge to the optimum is at most

polynomial in d1, do, and 1/ϵ.

Next, we obtain an upper bound on the number of iterations

needed to compute the sum capacity of an arbitrary two-sender

MAC to a fixed precision. The algorithm we use to analyze

this is grid search explained in Sec. IV-D.1, and many of the

calculations follow the ideas given in Prop. 22.

Proposition 23: Let N be any two-sender MAC with input

alphabets of size d1, d2, and output alphabet of size do.

Suppose that that d1, d2, do ≥ 2 with d1 ≥ d2. Suppose that all

the entropies are measured in bits and denote µ = 3 log(do).
Then, for a fixed 0 < ϵ ≤ 3, the number of iterations required

by the grid search in Alg. 5 to compute the sum capacity of

the MAC N to a precision ϵ > 0 is bounded above by

(
eϵ2

µ2
d2 + e

) 4µ2

ϵ2
+1

(112)

when µ ≥ max{(8/ϵ) + 2
√

(16/ϵ2)− 1, ϵ/2}.
The total cost of computing the sum capacity to a precision

ϵ > 0, including the cost of computing I∗, is at most

poly

(
d1, do,

1

ϵ

)(
eϵ2

36

d2

(log(do))2
+ e

) 96(log(do))
2

ϵ2
+2

(113)

for 0 < ϵ ≤ 3 and µ ≥ max{(16/ϵ) + 2
√

(64/ϵ2)− 1, ϵ/4}.
Proof: The sum capacity of a two sender MAC can be

expressed as S(N ) = maxq∈∆d2
I∗(q), where I∗ is defined

in Eq. (62). Note that I∗ is βI -Lipschitz-like, where βI is

defined in Eq. (64). By Prop. 17, we know that the number

of iterations needed for the grid search algorithm to compute

the sum capacity is equal to

KGS =

(
N + d2 − 1

d2 − 1

)
,

where N = ⌈1/δ2⌉ and δ = sup{δ′ > 0 | βI(δ
′) ≤ ϵ/2}.

In particular, the number δ > 0 can be chosen such that

βI(x) ≤ ϵ/2 whenever 0 ≤ x ≤ δ to obtain an upper bound

on the number of iterations.

As noted in the proof of Prop. 22, the binary entropy

h (measured in bits) satisfies the inequality h(x) ≤
2
√

x(1− x) [48]. Further, the quantity Hmax
N defined in

Eq. (65) is bounded above by log(do). For x ≤ 1/2, we have

h(x) = h(x), where h is the modified binary entropy function

defined in Eq. (49). Then, from Eq. (64), it follows that

βI(x) <
µ

2
x +

√
x(2− x)

for x ≤ 1/2, where µ = 3 log(do). Then, solving the inequality

(µ/2)x +
√

x(2− x) ≤ ϵ/2, we obtain

x ≤ (ϵµ + 4)− 2
√

4 + 2ϵµ− ϵ2

µ2 + 4

which holds whenever ϵ ≤ µ. Therefore, we choose

δ =
(ϵµ + 4)− 2

√
4 + 2ϵµ− ϵ2

µ2 + 4

which is a positive number for 0 < ϵ ≤ µ. For a fixed 0 <
ϵ ≤ min{16, µ} and µ ≥ max{(8/ϵ) + 2

√
(16/ϵ2)− 1, ϵ/2},

it can be verified that

µ

ϵ
≤ 1

δ
≤ 2µ

ϵ
.

Further, since
(
n
k

)
≤ (en/k)k, we can write

(
N+d2−1

d2−1

)
=(

N+d2−1
N

)
≤ (e(N + d2 − 1)/N)N . Then, noting that 1/δ2 ≤

N ≤ 1/δ2 +1, the number of iterations needed for grid search

to converge to a precision 0 < ϵ ≤ min{µ, 16} is bounded

above by

KGS ≤
(

eϵ2

µ2
d2 + e

) 4µ2

ϵ2
+1

when µ ≥ max{(8/ϵ) + 2
√

(16/ϵ2)− 1, ϵ/2}. In order to

avoid specifying simultaneous conditions on both ϵ and µ,

we note that µ = 3 log(do) ≥ 3 for do ≥ 2. Therefore, we can

simply assume 0 < ϵ ≤ 3 in the above equations.

Next, as noted in the proof of Prop. 22, the cost of

computing I∗ to a precision of ϵI > 0 is at most

O(d3
1

√
d1 + do log((d1 + do)/ϵI). Choosing ϵI = ϵ/2KGS,

we can ensure that after KGS calls to I∗, the error is at most

ϵ/2. Then, solving the grid search to a precision of ϵ/2, we can

infer that the total cost of computing the sum capacity is at

most

O

(
d3
1

√
d1 + do log

(
2(d1+do)KGS

ϵ

))(
eϵ2

4µ2
d2 + e

)16µ2

ϵ2
+1

≤ O

(
d3
1

√
d1+do log

(
2(d1+do)

ϵ

))(
eϵ2

4µ2
d2+e

)32µ2

ϵ2
+2

when 0 < ϵ ≤ 6 and µ ≥ max{(16/ϵ)+2
√

(64/ϵ2)− 1, ϵ/4}.
To obtain the last inequality, we used the fact that log(KGS) ≤
KGS for KGS > 0.

Authorized licensed use limited to: University of Illinois. Downloaded on August 22,2023 at 11:57:23 UTC from IEEE Xplore.  Restrictions apply. 



5842 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

APPENDIX E

NOISE-FREE SUBSPACE MAC

We compute the sum capacity and the relaxed sum capacity

for the examples constructed using the noise-free subspace

MAC defined in Eq. (66). For both the examples, we consider

the input alphabets A = {a1, a2}, B = {b1, b2} and the output

alphabet Z = {z1, z2}.

A. Example 1

For the first example, the MAC N (0)
F has the probability

transition matrix

N (0)
F =

(
1 0.5 0.5 0.5
0 0.5 0.5 0.5

)
.

Let us denote the input probability distribution of sender A
as (p, 1−p) corresponding to the symbols (a1, a2). Similarly,

denote the input probability distribution of sender B as (q, 1−
q) corresponding to the symbols (b1, b2). When the input

to the MAC is a product distribution, the output probability

distribution determined by the channel is

pZ(z1) =
1 + pq

2
and pZ(z2) =

1− pq

2
.

The mutual information I(A, B;Z) between the senders and

the receiver is given by

I(A, B;Z) = −1 + pq

2
ln

(
1 + pq

2

)

− 1− pq

2
ln

(
1− pq

2

)
− (1− pq) log(2).

We wish to compute the sum capacity

S(N (0)
F ) = max

0≤p,q≤1
I(A, B;Z).

For (p, q) ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}, we have

I(A, B;Z) = 0, and hence we can focus on the interior of

the domain. For maximization over p for a fixed q, by com-

plementary slackness (Lagrangian not written here), we can

simply set the derivative of I(A, B;Z) with respect to p equal

to 0. The derivative is given as

∂I

∂p
=

q

2
ln

(
4
(1− pq)

(1 + pq)

)
.

Setting this equal to zero gives pq = 3/5. In this case,

no maximization over q is necessary, and subsequently, we find

that S(N (0)
F ) = h(4/5) − (2/5) ln(2), where h is the binary

entropy function.

For computing C(N (0)
F ), we maximize over all probability

distributions over the inputs. For an arbitrary input probability

distribution p(a, b), we can write the mutual information

between the inputs and the output as

I(A, B;Z) = −1 + p(a1, b1)

2
ln

(
1 + p(a1, b1)

2

)

− 1− p(a1, b1)

2
ln

(
1− p(a1, b1)

2

)

− (1− p(a1, b1)) log(2).

In this case, we again find that the maximum is attained at

p(a1, b1) = 3/5, and subsequently, the maximum value of the

mutual information is equal to h(4/5)−(2/5) ln(2) as before.

Thus, the capacity corresponding to the relaxed sum region

matches the actual sum capacity.

B. Example 2

For the second example, the probability transition matrix is

given as

N (1)
F =

(
1 0.5 0.5 0
0 0.5 0.5 1

)
.

As before, denote the input probability distribution of sender

A as (p, 1−p) and that of sender B as (q, 1− q). Then, given

an input probability distribution to the MAC N (1)
F , the output

probability distribution is given by

p(z1) =
p + q

2
and p(z2) = 1− (p + q)

2
.

Then, the mutual information I(A, B;Z) between the senders

and the receiver can be written as

I(A, B;Z) = −p + q

2
ln

(
p + q

2

)

−
(

1− (p + q)

2

)
ln

(
1− (p + q)

2

)

− (p + q − 2pq) ln(2).

We wish to compute the sum capacity S(N (1)
F ) =

max0≤p,q≤1 I(A, B;Z). The edge cases (p, q = 0, 1) will be

handled separately. First, we perform the maximization over

p for each fixed q,

I∗(q) = max
0≤p≤1

I(A, B;Z).

We look for maxima in the interior (0, 1), which can be

obtained through ∂
∂pI(A, B;Z) = 0. Note that the out-

put probability is (1, 0) or (0, 1) only when (p, q) ∈
{(0, 0), (1, 1)}, and therefore, the derivative of I(A, B;Z) is

well-defined in the interior. This derivative is given as

∂I

∂p
=

1

2
ln

(
2− (p + q)

p + q

)
− (1− 2q) ln(2).

Setting the derivative to zero, we find that p + q = 2/(κq +
1), where κq = 22−4q. Therefore, the function I∗(q) can be

written as

I∗(q) = h

(
1

κq + 1

)
−
(

2

κq + 1
− 2

(
2

κq + 1
− q

)
q

)
ln(2),

where h is the binary entropy. Now, to compute the sum

capacity, we wish to perform the maximization S(N (1)
F ) =

max0≤q≤1 I∗(q). Since I∗(q) is a continuous function of q, the

maximum is either attained at the interior or at the boundaries.

The maxima in the interior can be found via ∂
∂q I∗(q) = 0:

ln

(
1

κq

)
= ln(2)

[
(4q − 2)

− 1

ln(2)

(
κq + 1

κq

)
(q(κq + 1)− 1)

]
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=⇒ q =
1

κq + 1
.

It can be verified that q = 1/2 is a solution to the above equa-

tion, corresponding to which we have p = 1/2. Furthermore,

this solution is unique. Thus, in the interior of the domain,

the maximum occurs at p = 1/2, q = 1/2. Correspondingly,

the maximum value of I(A, B;Z) in the interior is equal to

0.5 ln(2).
Now, we check the edge cases. For p = 0, we need to

maximize g(q) = I(p = 0, q) = h(q/2) − q ln(2) over q.

At q = 0, 1, we have g(0) = g(1) = 0. Then, the maximum

in the interior can be obtained by setting the derivative with

respect to q to zero. This gives q = 2/5, and since g(2/5) ≈
0.223 < 0.5 log(2), this is not the global maximum. On the

other hand, for p = 1, we need to maximize g(q) = I(p =
1, q) = h((1 + q)/2) − (1 − q) ln(2). At q = 0, 1, we have

g(0) = g(1) = 0. The maximum in the interior can be obtained

by setting the derivative of g(q) with respect to q equal to

zero. This gives q = 3/5, and correspondingly, we have

g(3/5) ≈ 0.223 < 0.5 ln(2). Since I(p, q) is symmetric under

interchange of p and q, the same results will be obtained

when beginning with q = 0 or q = 1 and then maximizing

over p. Therefore, we find that the sum capacity is equal to

S(N (1)
F ) = 0.5 ln(2).

Now, we compute the relaxed sum capacity. For this, note

that output probability distribution of the MAC N (1)
F when

using an arbitrary input probability distribution p(a, b) is given

as

p(z1) =
1

2
+

p(a1, b1)− p(a2, b2)

2

and

p(z2) =
1

2
− (p(a1, b1)− p(a2, b2))

2
.

Correspondingly, the mutual information between the senders

and the receivers is given by

I(A, B;Z) = h

(
1

2
+

p(a1, b1)− p(a2, b2)

2

)

− (1− p(a1, b1)− p(a2, b2)) ln(2).

It can be verified that for p(a1, b1) = p(a2, b2) = 1/2 we have

I(A, B;Z) = ln(2), which is the maximum possible value for

the mutual information. Therefore, C(N (1)
F ) = ln(2).
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CODE AVAILABLILITY

An open source implementation of the codes used in this

study can be found at https://github.com/akshayseshadri/sum-

capacity-computation.

This repository contains code to perform the following

tasks: 1) Maximize Lipschitz-like functions over the interval

(Alg. 1) and standard simplex using grid search (Alg. 2)

and dense curves (Alg. 4), 2) Compute the sum capacity

of two-sender MACs by implementing the aforementioned

algorithms, and 3) Find the maximum winning probability of

an N -player non-local game using no-signalling strategies and

a corresponding optimal NS strategy.
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