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On the Separation of Correlation-Assisted Sum
Capacities of Multiple Access Channels

Akshay Seshadri™, Felix Leditzky™, Vikesh Siddhu™, and Graeme Smith

Abstract— The capacity of a channel characterizes the maxi-
mum rate at which information can be transmitted through the
channel asymptotically faithfully. For a channel with multiple
senders and a single receiver, computing its sum capacity is
possible in theory, but challenging in practice because of the
nonconvex optimization involved. To address this challenge,
we investigate three topics in our study. In the first part, we study
the sum capacity of a family of multiple access channels (MACs)
obtained from nonlocal games. For any MAC in this family,
we obtain an upper bound on the sum rate that depends only
on the properties of the game when allowing assistance from an
arbitrary set of correlations between the senders. This approach
can be used to prove separations between sum capacities when
the senders are allowed to share different sets of correlations,
such as classical, quantum or no-signalling correlations. We also
construct a specific nonlocal game to show that the approach of
bounding the sum capacity by relaxing the nonconvex optimiza-
tion can give arbitrarily loose bounds. Owing to this result, in the
second part, we study algorithms for non-convex optimization of
a class of functions we call Lipschitz-like functions. This class
includes entropic quantities, and hence these results may be of
independent interest in information theory. Subsequently, in the
third part, we show that one can use these techniques to compute
the sum capacity of an arbitrary two-sender MACs to a fixed
additive precision in quasi-polynomial time. We showcase our
method by efficiently computing the sum capacity of a family
of two-sender MACs for which one of the input alphabets has
size two. Furthermore, we demonstrate with an example that our
algorithm may compute the sum capacity to a higher precision
than using the convex relaxation.
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I. INTRODUCTION

TUDYING information transmission over a noisy channel
Sis of fundamental importance in communication theory.
In his landmark paper, Shannon studied the rate of trans-
mission over a channel having a single sender and a sin-
gle receiver [2]. The maximum number of bits per use of
channel that can be transmitted through the channel with
asymptotically vanishing error is known as the capacity of the
channel [3]. Shannon showed that the channel capacity can
be calculated by maximizing the mutual information between
the input and the output of the channel over all possible input
probability distributions [2], [3]. This is a convex optimiza-
tion problem that can be solved using standard optimization
techniques [4] or more specialized methods like the Arimoto-
Blahut algorithm [5], [6].

The importance of Shannon’s work was soon recognized,
and consequently, Shannon’s ideas were generalized in various
ways. In this study, we focus on one such generalization,
namely a channel that has multiple senders and a single
receiver, commonly known as a multiple access channel
(MAC). For such a channel, a tuple of rates is called achievable
if each sender can send information through their respective
input at their respective rate such that the total error of trans-
mission vanishes asymptotically. The set of all such achievable
rate tuples is called the capacity region, and Ahlswede [7] and
Liao [8] were the first to give an entropic characterization of it.
The total rate at which asymptotically error-free transmission
through a MAC is possible is called the sum capacity of the
MAC.

While there has been much research on MACs since the
work of Ahlswede & Liao, there are no efficient (polynomial
time) algorithms to date that compute the sum capacity of
a MAC. This difficulty stems from the fact that, unlike the
computation of the capacity of a point-to-point channel, the
optimization involved in computing the sum capacity is non-
convex [9], [10]. Proposals to solve this nonconvex problem
efficiently were found to be unsuitable. On the contrary, it was
recently shown that computing the sum capacity to a precision
that scales inversely with the cube of the input alphabet
size is an NP-hard problem [11]. Therefore, one should not
expect efficient general-purpose algorithms for computing the
capacity region or the sum capacity of a MAC.

Since computing the sum capacity of a MAC is a hard
nonconvex problem, a common approach that is adopted to
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circumvent this optimization is to relax the optimization to
obtain a convex problem. The relaxation gives an upper bound
on the sum capacity which can be efficiently computed. Such
an approach was adopted, for example, by Calvo et al. [9].
Since we generally expect that there are no efficient algorithms
to compute the sum capacity, quantifying the performance of
such an upper bound becomes important and essential.

We undertake this task of elucidating the performance of
the upper bound on sum capacity obtained through a convex
relaxation. For this purpose, we consider MACs that are con-
structed from nonlocal games. Such MACs were introduced
by Leditzky et al. [11] based on previous work of Quek &
Shor [12], and subsequently generalized in [13]. We present
an analytical upper bound on the sum capacity of such MACs.
Our bound extends to cases where the senders of these MACs
can share arbitrary correlations, such as classical, quantum,
and no-signalling correlations. Our upper bound depends only
on the number of question tuples in the nonlocal game and
the maximum winning probability of the game when the
questions are drawn uniformly and answers are obtained using
the strategies allowed by the shared correlations. Using these
bounds, we obtain separations between the sum rate obtained
from using different sets of correlations. These separations
help distinguish the ability of these correlations to assist
communication in MAC coding scenarios. In particular, our
bound gives a separation between the sum capacity and the
entanglement-assisted sum rate for the MAC obtained from
the magic square game. The separation found here is roughly
5 times larger than the previously reported 1% separation
in [11]. Furthermore, using our bounds, we show how prior
bounds on the sum capacity obtained using convex relax-
ation [9] can be arbitrarily loose.

Our result highlights the need to find better techniques
to bound the sum capacity from above. We take a step in
this direction by showing that computing the sum capacity is
equivalent to optimizing a Lipschitz-like function. Thereupon,
we present some algorithms for optimization of Lipschitz-like
functions, which may be of independent interest. We show that
these algorithms can compute the sum capacity of two-sender
MAC:s to a given additive precision in quasi-polynomial time.
Instead of a fixed precision, one of our algorithms can also
accept a fixed number of iterations as an input and output an
upper bound on the sum capacity. In particular, for a specific
family of two-sender MACs that includes binary MACs, the
number of iterations required for convergence grows at most
polynomially with the dimensions and inverse precision. Thus,
while it might not be possible to efficiently compute the sum
capacity for an arbitrary MAC in practice, we can nevertheless
efficiently compute the sum capacity for a large family of
MAC:s.

A. Organization of the Paper

We organize the paper in three parts, each one presenting
different contributions of this work that may be of independent
interest. Focus of the first part (Sec. III) is MACs obtained
from non-local games. We investigate the advantages of shar-
ing correlations between various senders of a nonlocal games
MAC. In Sec. IlII-A, we obtain an upper bound on the sum
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capacity of MACs constructed from nonlocal games, and show
separations between different sets of correlations. In Sec. ITI-B
we accomplish another primary goal of our study, showing that
the convex relaxation of the sum capacity can be arbitrarily
loose.

Motivated by this result, in the second part (Sec. IV)
we develop methods to solve non-convex problems like sum
capacity computation. To this end, we define and study opti-
mization of Lipschitz-like functions in Sec. IV-A. We then give
an overview of the optimization algorithms for Lipschitz-like
functions featured in this work in Sec. IV-B, and discuss them
in greater detail in the following sections. That is, in Sec. IV-C
and Sec. IV-D we develop algorithms for global optimization
of such functions over a closed interval and over the standard
simplex respectively. Results on optimization of Lipschitz-like
functions over arbitrary compact and convex domains can be
found in App. C-D. We also present relevant convergence
guarantees and complexity analysis for our algorithms. In this
way, we generalize certain prior algorithms for optimizing
Lipschitz continuous functions. Our generalized algorithm
may be of independent interest for non-convex optimization in
information theory. For instance, we show that some entropic
quantities that may be derived from Shannon and von Neu-
mann entropies are Lipschitz-like functions.

The third part (Sec. V) applies algorithms developed in the
second part for computing the sum capacity of an arbitrary
two-sender MAC. In Sec. V-A, we prove that the sum capacity
computation can be viewed as an optimization of a Lipschitz-
like function. In Sec. V-B, we develop an efficient algorithm
to compute the sum capacity of a large family of two-sender
MACs, where one of the input alphabets is of size 2. Subse-
quently, in Sec. V-C, we present algorithms that can compute
or upper-bound the sum capacity of an arbitrary two-sender
MAC, along with a detailed complexity analysis. Finally,
in Sec. V-D, we construct examples which demonstrate that
our algorithm performs provably better than convex relaxation
in computing the sum capacity.

We have tried to minimize the overlap between these three
parts of our study, so that any one of these parts may be read
independently without loss of continuity. In the next section,
we provide a brief overview of notations, quantum states and
measurements, nonlocal games, and multiple access channels.
We recommend readers mainly interested in parts I and III
to read Sec. II-C on multiple access channels as it introduces
definitions used in these parts.

II. PRELIMINARIES

We briefly review some concepts that are used later. A short
summary of the notation used throughout is given below.

We denote the set of natural numbers as N = {0,1,...}
and the set of positive integers as N, = {1,2,...}. For any
integer N > 1, let [N] := {1,..., N}. We denote the (n —
1)-dimensional standard simplex by A, = {z € R" | z >
0, Y% ,x; = 1}. When = € R" is a vector, we interpret
the inequality x > 0 component-wise, i.e., ; > 0 for all
i € [n]. We denote the non-negative orthant in n-dimensional
Euclidean space by RY = {z € R" | > 0}. The Euclidean
inner product between two vectors x,y € R"™ is denoted by
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(x,y). The space of (m X n)-matrices with entries in C is
denoted by C™*". The Kronecker product of two matrices A
and B is denoted by A ® B.

For a random variable X taking values in a finite alphabet
X, we denote by px(z) the probability of X taking the
value x € X. The Shannon entropy of the random variable
X is denoted by H(X) = — > . px(x)log(px(x)). The
unit of entropy is referred to as bits when the base of the
logarithm in H(X) is 2, whereas the unit is referred to
as nats when the base of the logarithm is e. The mutual
information between two random variables X and Y is defined
as I(X;Y) = HX)+ HY) — H(X,Y). A single-input
single-output channel is a triple (X, Z, N) consisting of an
input alphabet X', an output alphabet Z and a probability
transition matrix NV'(z|z) giving the probability of transmitting
z € Z given the input x € X. The capacity of the channel A/
is given by the single-letter formula C'(N') = max,, I(X; Z),
where X and Z are the random variables describing the input
and output of N, respectively [3].

A. Quantum States and Measurements

A quantum state (or density matrix) p € C%*? is a
self-adjoint, positive semi-definite (PSD) matrix with unit
trace [14]. A measurement of this quantum state can be
described by a positive operator-valued measure (POVM),
a collection of PSD matrices {F},...,Fy} of size d X d
satisfying 2%21 F,, = L, where I is the identity matrix on
the Hilbert space C?. Each POVM element F), is associated
to a measurement outcome m € [M], which is obtained with
probability Prob(m) = Tr(pF,,) [14].

In quantum mechanics, a Hermitian operator O € C%*¢ is
often called an observable. It can be measured in the following
sense. First, we write the spectral decomposition of O as O =
Z%:l AP, where P, € C%*? is the projector onto the
eigenspace of O corresponding to the eigenvalue \,,, € R for
m = 1,..., M. Then, the POVM associated with measuring
the observable O is given by {P,, | m € [M]} [14]. For
qubits, i.e., two-dimensional quantum systems described by
quantum states p € C2*2, the Pauli matrices

01 0 —i 1 0
agj—(l 0),0y—<i O)7andaz—(0 1) (D)

represent three commonly used observables associated to the
spin of an electron along different axes.

Let two parties, Alice and Bob, share a quantum
state p. If they perform local measurements with POVMs
{Ay,...,Ar} and {By,..., By}, respectively, then the prob-
ability that Alice observes the outcome ¢ and Bob observes the
outcome j is given by Prob(i,j) = Tr[p(A; ® Bj)]. In other
words, the overall POVM for the measurement is given by
{A;®Bj |ie€[l],je[J]]}.

B. Nonlocal Games

A nonlocal game is played between two players who each
receive a question from a referee that they need to answer.
The players are not allowed to communicate with each other
during the game. Prior to starting the game, one fixes the set
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of questions and answers and a winning criterion, which are
known to everyone. A referee then randomly draws questions
and hands them out to the players. If the answers of the players
satisfy the winning condition, they win the game.

Formally, an N-player promise-free nonlocal game G is a
tuple G = (X1,..., XN, V1,-.., YN, W), where X; and );
are the question and answer set for the ith player, respectively,
and the winning condition W C (X; X« - X Xn) X (Y1 X -+ X
V) determines the tuples of questions and answers that win
the game [15]. Throughout this study, we restrict our attention
to the case when X; and ); are finite sets for all i € [N].
Unless stated otherwise, we will always refer to promise-free
nonlocal games as nonlocal games.!

For convenience, we denote the question set as X' = A} x
--- X Xy and the answer set as ) = Vi X --- X V. Given
any question tuple = (z1,...,2y) € X, the ith question is
given by z; € X}, and a similar notation is used for answers.

A strategy for the game G = (X, Y, W) is any conditional
probability distribution py|x (y|z) on the answer tuples y €
Y given a question tuple x € X. There are different types
of strategies that one can consider, depending on whether the
players are allowed to use shared correlations after the game
starts. We list a few strategies that are central to our study.

1) Classical strategy: This is the typical setup of a nonlocal
game. Given a question x; € A;, the ith player decides an
answer as per the probability distribution py, x, (y:|:),
i € [N]. This gives rise to a classical strategy

pY\X(ylw"7yN|x17"'7l‘N)
=pyx, (Wil21) - pyyxy (unlzn)  (2)

In the general setting the players are allowed to choose
such a strategy on the basis of the outcome of a random
variable shared by all players, which is called a proba-
bilistic strategy. Therefore, the set of classical strategies
&, corresponds to the convex hull of conditional proba-
bility distributions of the form given in Eq. (2) [16]. Oper-
ationally, convex combinations of product distributions
correspond to shared randomness, and hence the set of
classical correlations we use is similar to those defined by
local hidden variable theories [16], [17]. However, when
the questions are drawn uniformly at random, the classical
strategy maximizing the probability of winning the game
is of the form given in Eq. (2), with py;|x, (yi|lz:) =
5y7,f7(z7) for i € [N] [15]. Here, fz X; — Y is a
function that outputs an answer given a question. Such a
strategy is called a deterministic strategy.

2) Quantum strategy: The players have access to a shared
quantum state p, but cannot communicate otherwise.
Given a question z; € X, the ith player performs a
local measurement with some POVM {E?wa) |y € Vi}.
Subsequently, a quantum strategy is described by the

'One may consider nonlocal games for which the possible question tuples
are restricted to a subset P C &7 X --- X X' called a promise. A promise-
free nonlocal game as defined above is one with P = &7 X --- X Xn.
Any nonlocal game G = (X1,...,XN,V1,...,YN, W) with promise P
can be turned into a promise-free game by defining a new winning condition
W =WU[(X x - x Xn)\ P] x (V1 x -+ x Yn), ie., the players
automatically win on question tuples not contained in the promise.
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probability distribution

PY|X(yl,---,ZUN|331,---,37N)

=Tr [p (El(ffl) ®'~-®EZSTVN))} €))

We denote the set of quantum strategies by Gq. For any
given classical strategy, one can construct a quantum state
and POVMs so that the quantum strategy reduces to the
given classical strategy, and therefore, S C Sq [16].
3) No-signalling strategy: A strategy

py|x (W1, YN|T1,. .., 2N) is said to be no-signalling
if

Py, 1x (WilT1, .., oN) = Py x, (il2i), i€ [N] (4)
for all xq,...,xny [18]. Informally, this means that

players must respect locality, i.e., no information can
be transmitted between players “faster than light”. As a
consequence, the strategy used by each player cannot
depend on the questions received by the other players.
We denote the set of no-signalling strategies by Gys.
Both classical and quantum strategies are no-signalling,
and therefore, &, C Gq C Gs.

4) Full communication: When we impose no restriction on
the distribution py | x (y|x), we are implicitly allowing
for communication between the players after they have
received the questions. The set of all possible condi-
tional probability distributions py|x (y|z) is denoted by
G, which corresponds to allowing full communication
between the players. This contains all classical, quantum
and no-signalling strategies. Communication between the
players is usually not allowed in nonlocal games, but we
introduce this setting here for later use nevertheless.

In summary, we have the following hierarchy of correla-

tions: & C GQ C Gns € Gy

Suppose that the questions are drawn randomly from the

set X' as per the probability distribution 7 (). Say the players
obtain their answers using strategies in some set &. Then the
maximum winning probability of the game G is given by

wP(G) = sup Y w(@pyx(ylr).  (©S)
pY|X66 (:c,y)EW

Notice in particular that, if & C &', then w®(G) < w®'(G).
Hence, as we go from classical to quantum to no-signalling
strategies, the winning probability never decreases.

We will mainly be concerned with the scenario where the
questions are drawn uniformly at random, and so m = 7 is
the uniform distribution on X with 7y (x) = 1/|X| for all
@ € X. In this case, we use the notation wS (G) = w®(G).
The maximum winning probability when the questions are
drawn uniformly and answers are generated using classical
strategies is written as w*'(G). Similarly, when using quantum
strategies, we write w?(G), and when using no-signalling
strategies, we write W™ (G).

C. Multiple Access Channels

A discrete memoryless multiple access channel without
feedback, simply referred to as multiple access channel in this

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

study, is a tuple (B1,...,Bn, Z,N(z|b1,...,bx)) consisting
of input alphabets Bi,..., By, an output alphabet Z, and a
probability transition matrix A (z|by,...,by) that gives the
probability that the channel output is z € Z when the input is
b1 € By,...,by € By [3]. For simplicity of notation, we will
denote a MAC by the probability transition matrix A/ when
the input and output alphabets are understood.

Since transmission over the channel is error-prone, one
usually encodes the messages and transmits them over multiple
uses of the channel, and subsequently, the transmitted symbols
are decoded to reconstruct the original message. Formally,
an ((My,...,My),n)-code for a multiple access channel
consists of message sets M; = {1,...,M;} for i € [N],
encoding functions gge): M; — B" for i € [N], and a
decoding function ¢g(¥: Z" — M; x --- x My U {err},
where err is an error symbol [3]. For convenience, we denote
the message set as M = M; x --- x My. The performance
of the code can be quantified by the average probability of
error in reconstructing the message,

n 1 n
P = ™M > Prob{g(2") #m |
meM

message m was sent}.

Here we assume that the messages are chosen uniformly
at random and transmitted through the channel. Note that
the above code uses the channel n times. We say that
a rate tuple (Ry,...,Ry) is achievable if there exists
a sequence of codes (([27F1], ..., [2"~7) n) such that
P =0 as n — oo [3].

The capacity region of a multiple access channel is
defined as the closure of the set of achievable rate tuples
(Ri,...,Rn). For N = 2 one obtains a two-sender MAC.
Ahlswede [7] and Liao [8] were the first to give a so-called
single-letter characterization of the capacity region of a two-
sender MAC. The capacity region for an N-sender MAC N
can be written as

Cap(N)conv{(Rhu-,RN) |

0<Y  Ri<I(By; Z|Bye) Vo #JCIN],
jeJ

p(bi,...,bN) Zp(bl)"'p(bN)} (6)

where p(by,...,by) is a probability distribution over the joint
random variable Bj,..., By describing the channel input,
p(b;) is a probability distribution for the random variable
B; corresponding to the i-th sender’s input, random variable
Z describes the channel output, and for any set J C [N],
By ={B,|j € J} [9]. Crucially, the optimization in Eq. (6)
restricts the joint input random variable to have a product
distribution, i.e., p(b1,...,bn) = p(b1)---p(bx). The main
quantity of interest in our study is the sum capacity of a
MAC [9],

N
S(N) SUP{ZRl | (Rl,...7RN) S Cap(N)}
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= max I(By,..
p(ble)

st. p(bi,---,bn) =p(b1)---plbn). (D)

Informally, the sum capacity represents the maximum sum
rate at which the senders can send information through the
MAC such that the transmission error vanishes asymptotically.
Because the maximization involved in computing the sum
capacity is constrained to be over product distributions on the
input, the resulting optimization problem is nonconvex. This
nonconvexity is the main source of difficulty in computing
the sum capacity of a MAC in practice [10], [11]. A common
approach to avoid this difficult is to relax the nonconvex con-
straint and maximize over all possible probability distributions
on the input. Such an approach was adopted by Calvo et al. [9],
leading to the upper bound

CWN) =

max

p(b1,..,bN)
on the sum capacity S(N'), where we now maximize over
arbitrary input probability distributions. Note that C(N) is
the capacity of the channel A/ when we think about it as a
single-input single-output channel. Since it is a relaxation of
the sum capacity corresponding to the capacity region, we call
C the relaxed sum capacity.

III. NONLOCAL GAMES MAC AND RELAXED SUM
CAPACITY

A. Bounding the Sum Capacity of MACs From Nonlocal
Games

Suppose we are given a promise-free nonlocal game G
with question sets A7, ..., X, answer sets V;,..., Yy, and
a winning condition W C (X x -+ - X Xy ) X (V1 X - - X YN ).
Following Leditzky et al. [11], we construct a MAC Ng with
input alphabets B; = X; x Y; for ¢ € [N], output alphabet
Z =X x---Xp, and a probability transition matrix

Ne(@y, .. ZN|e, y1, - 2N, YN)
_ {dw G (1 INLYL e YN) EW
3 (T1,- 2N, Y1, YN) €W,
)

where d = |Z] = |X) X -+ X Xp|.

In words, the channel N takes question-answer pairs from
each player as input, and if they win the game, then the
questions are transmitted without any noise. However, if they
lose the game, a question tuple chosen uniformly at random
is output by the channel. For convenience, we will denote the
input to the MAC Ng as XY = (X; x V1) X -+ x (Xny X
Yn), and write xy = (z1,41,-..,ZN,yn). We will usually
abbreviate the phrase “MAC obtained from a nonlocal game”
to “nonlocal game MAC” or NG-MAC.

Before diving into any technical details, we explain why
such MACs are suitable for obtaining bounds on the sum
capacity that are better than the relaxed sum capacity.
We begin by noting that the sum capacity of the NG-MAC
Ng can be written as

S(Ng) = max

pM (z1,y1)-pN) (zN,yN)

I(X1,Y1,...,XN,YN; 2)
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where (X;,Y;) is the random variable (with distribution
p) describing the ith input and Z is the random variable
describing the output of Ng. Note that p(*) is a probability
distribution over the question-answer pairs of the ith player.
By writing p*) (z;, ;) = 7 (2;)py;| x; (ys|2:), we can break
p into a distribution 7V over questions and a strategy
Py;|x; chosen by the ith player. As a result, we can write
pM - pWM) = mpy x, where 7 = 7). 7x(V) is some
distribution over the questions and py|x = py;|x, ' Pyn|Xn
is a classical strategy chosen by the players. Such a decom-
position allows us to optimize separately over questions and
strategies. By performing suitable relaxations, we can obtain a
bound on the sum capacity that depends only on the winning
probability of the game (see Thm. (5) for a precise statement).
In fact, such a proof technique allows us to bound the sum
capacity even when the players are allowed to use different
sets of strategies such as those obtained from quantum or
no-signalling correlations. The resulting bound is helpful in
obtaining separations between the communication capabilities
of different sets of correlations.

In contrast, the relaxed sum capacity C'(Ng) is computed
by maximizing over all possible probability distributions. For
a nonlocal game MAC, this amounts to maximizing over all
distributions over the questions and all possible strategies
(allowing full communication between the players). Using
such strategies, the players will always win the game, assum-
ing that the game has at least one correct answer for every
question. This results in the trivial bound C(Ng) = In(d)
on the sum capacity, since the players can always win the
game. On the other extreme, if the winning probability of the
game is zero, then we have S(Ng) = 0. Following this line
of thinking, we construct a game in Section III-B that allows
us to give an arbitrarily large separation between S(Ng) and
C(Ng).

The above discussion suggests that the sum capacity of
the NG-MAC Ny increases with the winning probability of
the game G, an observation that was also noted by Leditzky
et al. [11]. On the other hand, we know that the winning
probability of the game can increase if we allow the players
to use a larger set of strategies. This motivates us to allow the
senders to share some set of correlations to play the game so
as to increase the sum capacity of NG-MAC.

1) Correlation Assistance: By a correlation, we mean a
probability distribution P(y’|xy), where xy € X)) is the
input to the NG-MAC, while 4’ € ) is an answer to the
nonlocal game G.> We allow the N senders to share the
correlation P and perform local post-processing of the answer
generated by P to obtain their final answer for the game for
the input questions. This post-processing can be expressed
as a probability distribution f;(y;|z;, i, y;) over the answers
Y, € ); given the input question-answer pair (z;,y;) € X; xX);
and the answer y; € ); generated by the correlation P. For

2The correlation P may depend on the answers y € ) in addition to the
questions @ € X because we wish to construct a larger MAC that has the
same structure as the NG-MAC N and has assistance from the correlation
P. See Fig. 1 for example. In practice, the correlation will often produce the
answer tuple y’ solely from the question tuple &, using some strategy for the
non-local game G.
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convenience, denote

N
f@lzy.y') = Hfi(yilxiayhyz/‘)’ (10)
i=1
which is a distribution over the answers y € ) given input
question-answer pairs xy € XY and answers y' € )
generated by the correlation P.
This gives rise to the channel Ap ; having input and output
alphabets X)) and the probability transition matrix

Aps(@Ylzy) = 6z Y [(@lzy,y) Py |zy).
y'ey

(1)

This probability transition matrix gives a probability distribu-
tion over the question-answer pairs xy € X)) given some
input question-answer pair £y € X'). The probability dis-
tributions f; denote local post-processing by the ith sender to
generate the final answer ;. Note that the definition of Ap y in
Eq. (11) ensures that the input questions & € X are transmitted
without any change, i.e., * = x. The post-processings are only
used to generate the final answers. This definition is slightly
more restrictive than the one given in Leditzky et al. [11],
where post-processing of both questions and answers is con-
sidered. We impose such a restriction on post-processing so as
to ensure that the set of strategies induced by the channel Ap ¢
has a close relation to the set of correlations C shared by the
senders. For example, classical or quantum correlations shared
by the senders give rise to classical or quantum strategies to
play the nonlocal game G. We make this idea precise in the
following discussion.

An  input probability  distribution p(xy) over
the question-answer pairs X) can be written as
p(xy) = w(x)py|x(y|z), a product of probability
distribution over the questions 7 (x) and a strategy py| x (y|x).
This input probability distribution is modified by the channel
-AP, f to give

pEy) = Y, Aps(@yley)p(zy) = 7(@)Dy x (U[T),
zycXY

12)
where the new strategy py|x is given by

Ap t(py|x) = Py |x (YIT)

=> > @y, y) P [@y)py x (y[2).
yeyy'ey
(13)

We use the notation Ap,¢(py|x) to emphasize that pyx is
the strategy induced by the action of Ap ; on py | x. There-
fore, the channel Ap ; modifies the input strategy py|x by
incorporating assistance from the correlation P and local post-
processings f. For this reason, we call Ap ; the correlation-
assistance channel.

If the senders have access to some set of correlations C,
we can define the set of strategies induced by these correlations
as

N
GC{AP,f(PYX) | py|x = Hpmxi, PecC, fe PP}
=1

(14)
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where PP is the set of all local post-processings of the answers
generated by the correlation (as defined in Eq. (10)). We now
show that there is a close relation between the correlations C
shared by the senders and the strategies G¢ induced by these
correlations.

If C. is the set of classical correlations, then any P € C
can be written as P(y’|xy) = Hf\; P;(y}|zi,y;) and convex
combinations thereof, where P; are some distributions over );
given a question-answer pair from (X;,);) for ¢ € [N]. Then,
from Eq. (13), we find that the strategy Ap, ;(py|x) induced
by the correlation assistance channel is also a classical strategy
(since the input py | x is a classical strategy). Therefore, the
set of strategies induced by classical correlations (as defined
in Eq. (14)) is the set of classical strategies S,.

On the other hand, if Cq is the set of quantum correlations,
then any P € Cq can be written as

’ _ (z1,91) (zN,yN)
P(y'|zy) =Tr [p (Eyi ®-~-®EyEV )]

where p is the quantum state shared between the senders and
{Ez(j,”y) | ¥/ € Y} is the local measurement implemented
by the ith player upon receiving the input (x;,y;) for each
i € [N]. Now, we define new local measurement operators
B = 3T pyx (wil@) fi@ilT yiy) BS,
Yi, Y, €Vi '

so that the strategy induced by the correlation P can be written
using Eq. (13) as

e (@l = Te [p (B 0 0 B

This shows that the set of strategies induced by quantum corre-
lations, as defined in Eq. (14), is the set of quantum strategies
Gq. Similarly, one can verify that the set of strategies induced
by no-signalling correlations Cns is the set of no-signalling
strategies Os.

We now elaborate on how one can wuse the
correlation-assistance channel to boost the sum capacity
of the nonlocal games MAC. Given the NG-MAC Ng
obtained from a nonlocal game (, some correlation
P shared by the senders and local post-processings f,
we define the correlation-assisted NG-MAC N¢ o Ap ;. That
is, the input question-answer pair is first passed through
the correlation-assistance channel Ap, #» which tries to
improve the strategy for playing the game, and the modified
question-answer pair is passed on to the NG-MAC Ng.
A schematic of this procedure for the case of two senders
is shown in Fig. 1. If the local post-processing f discards
information about the input questions as well as the answers
generated by the correlation P, ie., f(ylzy,y') = gy
then Ap ¢ becomes the identity channel. Therefore, the
correlation-assisted NG-MAC Ng o Apy is at least as
powerful as the NG-MAC N if we allow the senders to
perform any local post-processing.

Suppose that the senders share a set of correlations C. The C-
assisted achievable rate region of the NG-MAC N is defined
as

Capl) (Ng) = | Cap(Ng o Ap,y) (15)
PecC,
f€PP
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(X0.Y, E E(Xh?l)
1, Y1) : Y f1 :

E P : Ne  — (X1, Xs)

: < Y4 ;
(X2,Y2) 2 f

: ! (X2,Y5)

Ap, ¢

Fig. 1.  Correlation-assisted NG-MAC Ng o Ap, s for the case of two

senders, obtained from the nonlocal games MAC N defined in Eq. (9) and
correlation-assistance channel Ap s defined in Eq. (11).

where Cap(NgoAp ) is the capacity region defined in Eq. (6)
evaluated for the correlation-assisted NG-MAC Ng o A P, f.3
The C-assisted achievable sum rate of the NG-MAC N is

Sc(Ng) = sup {Zjvl Ri | (Rl, e ,RN) € Cap(cl)(N'G)} .
(16)

We now derive an alternate expression of S¢(Ng) that
is more convenient for computation. Prior to obtaining this
expression, note that for any given family of sets {F;}iez
indexed by some set Z and any function g: U;ez F; — R,
we have

sup  g(r) = sup sup g(r).
r€Uier F; 1€Z reF;

Using this equation along with Eq. (7), we can write

Sc(Ng) = sup S(NG o .Ap’f)
PecC,fePp
= sup sup I(X1,Y1,...,Xn,YN; 2),
PeC,fePP p(1)...p(N)
(7

where (X;,Y;) is the random variable (with distribution p(?))
describing the input for ¢ € [N], and Z is the random variable
describing the output of the NG-MAC N¢ o Ap 5.

Since Sc(Ng) corresponds to a maximization over all
possible local post-processings, we must have S(Ng) <
Sc(Ng) for any set of correlations C. Furthermore, if C; C
Cs, then Capéll) Ng) C Capét) (Ng), and consequently also
Se,(Ng) < Sc,(Ng). Finally, note that we compute the
relaxed sum capacity C'(Ng) by maximizing over all possible
distributions over the questions and all possible strategies G
that the players can use (since the maximization in Eq. (8) is
over all input probability distributions). Because G¢ C Gy
for any set of correlations C, we have S¢(Ng) < C(Ng).
Therefore, we obtain a hierarchy,

S(Ne) < SaNe) < SoNa) < Sns(Ne) < C(Ng), (18)

where “cl”, “Q”, and “NS” denote classical, quantum, and
no-signalling correlations, respectively. Note that the sum
capacity S(Ng) might not be equal to Sg(Ng) because

3The superscript (&) signifies that Cap(cl) (+) is merely a region consisting of
achievable rate pairs, and hence contained in the full capacity region Capg(-).

To determine whether Cap<cl) (+) = Capg (+) is outside the scope of this work.
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classical correlations can be convex combinations of product
distributions.

We now proceed to obtaining a bound on the C-assisted
achievable sum rate.

2) Bounding the Correlation-Assisted Sum Rate: Let C be
any set of correlations shared between the senders. In order
to bound S¢(Ng), we first obtain an optimization problem
in terms of distributions over questions and strategies induced
by the shared correlations. For a given correlation P € C,
the input and output of Ng o Ap s can be described as
follows. The channel Ap ; takes the input random variable
(X1,Y1,...,XnN,Yy) and outputs (X1,Y1,..., XN, Y N).
The output of Ap s becomes the input to N¢ that returns
Z,1.e.,

(X1,Y1,..., XN, YN) Ant, (X1,Y1,..., XN, YnN) No, gz

forms a Markov chain. From the data processing inequality [3],
we obtain

I(Xl,Yl,...,XN7YN;Z) S I(Yl,?h...,y]\“?N;Z).

(19)
Then, using Eq. (17) and Eq. (19), we get

SC(NG) Ssup[(yl,Yl,...,YN,?N;Z) (20)
P

where the probability distribution p defined in Eq. (12)

is obtained by varying product distributions p(z,y) =

1Y, p(x;,y;) input to Ap s, the correlation P € C, and

the post-processing f € PP.

We can reinterpret the above equation as a maximum over
distributions over questions and strategies for playing the game
G induced by the correlations C. First, we write p(i) =
@ py, | x,, where 7 is a distribution over the questions X;
and py,|x, is a strategy chosen by ith player for i € [N].
Therefore, the input probability distribution in Eq. (17) can
be written as p(!) ... p(N) = Tpy|x, Where m = a® . op(V)
is a distribution over questions X, and py | x = Hf\il PY;|X;
is a classical strategy chosen by the players. In particular, the
input strategy py|x is always a classical strategy. As noted in
Eq. (13), the channel Ap ; takes this input strategy and returns
a new strategy Ap ;(py|x) that incorporates assistance from
the shared correlation P. Since the senders have access to the
set of correlations C, we can write Eq. (20) as

Se(Ng) < sup sup I(X1,Y1,....,. XN, YN; 2Z),

7). (N) By x €6¢
(21)

where G¢ is the set of strategies induced by C as defined
in Eq. (14). To obtain an upper bound, we will perform
relaxations of the RHS of the above equation, and solve the
resulting optimization problems.

We begin by writing the RHS of Eq. (21) in a form that
is amenable for calculations. To that end, note that given
an input probability distribution p(zy) = 7(Z)py | x (Y|T),
the probability distribution corresponding to the output of the
channel Ng is given by

p(z)= > Ne(zlzy)p(@y) + Y Nolzloy)p(@y)

TYEW TYy¢EWwW
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1
=7(z) > Pyix(lz)+ gpr (22)

y:zyeWw
where d = |Z| denotes the number of question pairs, while
PL = Y ggew P(TY) denotes the probability of losing the
game when questions are drawn as per the probability distri-
bution 7.

Note that Z = &} x --- x Xy = X is the set of question
tuples output by the NG-MAC N¢. Since Z is a finite set
of size d, we can fix a labelling for the elements of Z and
write Z = {z1,...,24}. Each z; corresponds to a particular
question tuple. Then, we can define the contribution of a given
strategy Dy |x towards winning the game for each question
tuple. We use Z and X interchangeably in the following
discussion.

Definition 1 (Winning Vector): Given a strategy pyx for
playing the game G = (X, ), W), we let

We = Z Py x (ylz:) for i € [d]
y:z;yeWw

(23)

denote the contribution of the strategy towards winning the
game G for question z;. We call the vector w = (wq, ..., wq)
the winning vector corresponding to the strategy Py |x. Let
20 denote the set of winning vectors allowed by the strategies
Se,

We = {w €0, juy =3
for Py x € S¢ and i € [d]}. (24)

viziyEW PY\X(y\Zi)’

Observe that w; € [0,1] for all ¢ € [d], so that w is an
element of the unit hypercube in R?. Note that we have w; =
1 for a fixed strategy Py |x if and only if the players always
win the game G when asked the question z; using the strategy
Py|x- On the other extreme, w; = 0 if and only if the players
always lose the game GG when asked the question z; using the
strategy Dy | x . Generally, questions are drawn with probability
m over X. The probability of winning the game for question
i is m;w;, where m; = m(z;) is the probability of drawing the
question tuple z;. The total probability of winning the game
is pw = Zle m;w; and the probability of losing the game is

pLzlfimwizlf@T,w). (25)
i=1
Defining the matrix W with components
Wi = widyy + 2, (26)
one may write the output probability p(z) in Eq. (22) as
p=Wr. Q7
The mutual information I(X1,Y1,..., Xy, Y n; Z) can be
written as
I(X,Y1,...,XN, YN Z)
=H(Z)-H(Z|X1,Y1,...,XN,YN)
= H(Z) — prIn(d), (28)

where we used the fact that H(Z|Zy) = 0 when Ty € W
whereas H(Z|Zy) = In(d) when Ty ¢ W. Note that the
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formula (28) was first derived in Ref. [11] for nonlocal games
MAC with two senders. Using Eq. (27) and Eq. (25), we obtain

fw(ﬂ') = I(Yl,?h...,yN,?N;Z)

= H(Wn) 4 (r,w) In(d) — In(d) (29)

where the notation, %y, (), for the mutual information empha-
sizes that it is only a function of the distribution 7 over
questions and the winning vector w.
The RHS in Eq. (21) can be written as
sup  sup[(X1,Y1,..., XN, YN; 2)
7D (V) By x
= sup  sup Fp(rM ... 7))
7). (V) wee

< sup sup I(m),
TEAL weEWe

(30)

where ¢ is the set of winning vectors defined in Eq. (24).
To obtain Eq. (30), we relax the product distribution constraint
7 ... x(N) over the questions to obtain a maximization over
all distribution m € A4 over the questions, where A, denotes
the (d — 1)-dimensional standard simplex. This relaxation
differs from that of Eq. (8) used in obtaining C(N¢) in that
we only relax the distribution over the questions, but not the
whole probability distribution.

For a fixed w, the function .%, () is continuous in 7 over
the compact set A4. Thus, the maximization in Eq. (30) can
be written as

sup max %, (). (31)

weWe TEAI

The inner optimization in Eq. (31) is a convex problem since
Jw(m) is concave in m and Ay is a convex set. However,
Jw(m) is not jointly concave in 7 and w, and moreover,
2 need not be a convex set. Therefore, the optimization
in Eq. (31) is generally nonconvex.

Our goal is to obtain an upper bound on the optimization in
Eq. (31). To give a general idea of our approach to obtaining
this bound, we list the main steps we will carry out.

Step 1: For a fixed w, we obtain an upper bound on the
inner optimization in Eq. (31). This bound is tight
when either w € {0,1}¢ or w > 0 component-
wise.

Step 2: We relax the set of allowed w values to bound the
outer optimization in Eq. (31) from above.

This procedure will result in the upper bound noted in
Eq. (39). We explain the steps in detail in the following
subsections.

Step 1: Bounding the inner optimization over question
distributions: We obtain an upper bound on max,ca, o ()
by considering two cases. First, we perform this optimization
exactly for the case when w € {0, 1}¢. Next, for any w € W,
we find an upper bound on max,ca, #(7) using the result
of case 1. The upper bound obtained in case 2 is tight when
w > 0.

Case 1: optimizing max,ca, Z(m) for fixed w €
{0,1}? Winning vectors w € {0,1}% arise from strategies
that either always win or always lose the game for any given
question. Deterministic strategies, for example, give rise to
such winning vectors. Recall that a classical deterministic
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strategy corresponds to functions f; : X; — Vi, ¢ € [N],
chosen by the players. Such functions give rise to the classical
strategy py,|x, (y|T) = 0y f(x) thatis 1 at y = f;(z) and zero
elsewhere. It follows from Eq. (23) that w; € {0,1} for all
i €{1,...,d}, where w is the winning vector defined by such
a deterministic strategy.

The following proposition gives the result of the opti-
mization max,en, S () when w € {0,1}¢. Note that
W need not contain such winning vectors. Computing
max,en, Fo(m) for w € {0,1}% is a means to providing
a bound for Eq. (31).

Proposition 2: Let G be a nonlocal game, and let Ng be
the MAC obtained from this nonlocal game. Let w denote a
winning vector as defined in Eq. (23), such that w; € {0,1}
for all ¢ € [d]. Let ., denote mutual information between
input and outputs of Ng, as defined in Eq. (29). Let K =
{i € [d] | w; = 1} denote the set of questions for which the
strategy gives a correct answer. Denoting K = || and Ay to
be the (d — 1)-dimensional standard simplex, we have

0 K=0
max Fw(m) =1 5% 0<K<d (32)

’ Ind K =d.

The quantity .#} is given by the expression
7% =1n (K+ (d— K)d_ﬁ). (33)
Proof: See Appendix A. O

Observe that the maximum only depends on the total
number d of questions, as well as the number K of questions
that can be answered correctly using the deterministic strategy.

Case 2: Bounding max,ca, %o (7) for fixed w € W
When we work with arbitrary winning vectors, it is more chal-
lenging to maximize the mutual information over distributions
on the questions. To make this maximization easier, we first
show that the maximum mutual information .#; ; correspond-
ing to a winning vector that can answer exactly d—1 questions
correctly will always be larger than the maximum mutual
information max e, % (7) for any winning vector w that
answers no more than d — 1 questions correctly. We therefore
turn our attention to w that doesn’t necessarily do worse than
this case, and obtain an expression for the maximum mutual
information in terms of such w.

Proposition 3: Let G be a nonlocal game, and let Ng be
the MAC obtained from this nonlocal game. Suppose that the
senders of Mg share a set of correlations C. Let w € 20 be
any winning vector allowed by the correlations C as defined in
Eq. 24). Let K = {i € [d] | w; # 0} be the set of questions
with non-zero probability of winning the game using this
strategy, and denote K = |K|. Then, the following statements
hold.

1) Suppose that max e, -Z () is achieved at 7*. Denote
K* = {i € [d] | wim} # 0} and K* = |K*| (we have
K* C K). Then, if K* < d, we have max ea, Sa (1) <
S 1, where Z] , is given by Eq. (33).

2) As a consequence of the above result, we restrict our
attention to strategies with K* = K = d. In that case,
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we have
max I(m) = I (w)
a 1
=In Zexp {dweﬁlnd (1 - )]
i=1 Wi
(34
where
d -1
Weff = (Z ) (35)
=1 Wi
Proof: See Appendix A. O

Owing to the above result, we only need to focus on
maximizing #*(w) for those w € We with w; > 0 for all
i € [d]. This is done in the next step.

Step 2: Bounding the outer optimization over winning
vectors: As noted in the previous step, our goal is to maximize
4 *(w) with respect to the feasible winning vectors w € 20¢
with w; > 0 for all ¢ € [d]. The set of (feasible) winning
vectors - was defined in Eq. (24). Note that 2. depends
on the winning condition W of the game as well as the set
of correlations C shared by the senders. Since we make no
assumptions about the game or the set of correlations, it is
difficult to optimize over 2. For this reason, we obtain a
relaxation of the set e, over which we optimize #*(w).
We will do this in two steps: (1) relate w to the winning
probability when the questions are drawn uniformly, and (2)
use the maximum winning probability w®¢(G) of the game
(assumed to be known) corresponding to the strategies G
when the questions are drawn uniformly in order to obtain a
convex set containing 2We¢.

(1) From the definition of winning vector given in Eq. (23),
we know that

wi= Y Dyx(ylz).

y:z;yew

Recall that the winning probability of the game can be written
as pwy = Z?Il m;w; when the questions are drawn as per
probability @ € Ag4. If the questions are drawn uniformly,
then 7y (z) = 1/d for all questions z1,...,z4. Therefore,
pw = »_;_, w;/d is the winning probability determined by
the winning vector w when the questions are drawn uniformly.

(2) We now look for a convex relaxation 2. of 2Uc.
We want to make 20¢ fairly independent of the winning set,
except for dependence on w®¢ (G) and the number of question
tuples d in the game.

Since w®¢(@G) is the maximum winning probability using
the set of strategies G under consideration, we must have

d
é > wi <wSe (@) (36)
i=1

where w € 20c. Now we make the relaxation that we
allow any winning vector that satisfies Eq. (36). Consequently,
we define

We = {w el0,1)? ‘ éz; w; < wGC(G)}. (37)
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Since any w € 20 will satisfy Eq. (36), we have 20c C 20c,
confirming that 2. is a relaxation of We. Such a relaxation
may allow for strategies not described by &¢. Note that ¢
is a compact and convex set, and it depends only on the
maximum winning probability and the number of questions
in the game. Using this relaxation, we compute an upper
bound on .#*(w) maximized over w € W satisfying w >
0 componentwise.

Proposition 4: Let G be a nonlocal game and let N be the
NG-MAC constructed from G, as defined in Eq. (9). Suppose
that the senders share the set of correlations C, and let 20,
be the corresponding set of winning vectors as defined in
Eq. (24). Let 20¢ be the convex relaxation of 20 defined in
Eq. (37) that depends only on the number of question tuples
d in the game and the maximum winning probability w®¢ (G)
when the questions are drawn uniformly and answers given
using strategies in G¢. Let #*(w) be the function defined in
Eq. (34). Then the maximum of .#*(w) over winning vectors
w > 0 in We is bounded from above by

sup S (w)<In (d -1+ d*(lf“’ec(G))d) (38)
weWe,w>0
Proof: See Appendix A. |

Bound on the correlation-assisted achievable sum rate: We
put all the above steps together to obtain a bound on S¢(Ng).

Theorem 5: Let G be an N-player promise-free nonlocal
game with d question tuples, and let Az be the MAC obtained
from G as defined in Eq. (9). Suppose that the senders share a
set of correlations C. Let G be the set of strategies induced by
the correlations as defined in Eq. (14). Let w®¢(G) denote the
maximum winning probability of the game when the questions
are drawn uniformly and answers are obtained using strategies
in &¢. Let S¢(Ng) denote the C-assisted achievable sum rate
of the NG-MAC MN¢ as defined in Eq. (17). Then, we have

S

Se(Ne) <ln(d—14+d-0="¢@) 39
with entropy measured in nats.

Proof: To obtain an upper bound on S¢(N¢), we start with
Eq. (21). The RHS of Eq. (21) can be bounded by performing
the maximization Sup,,coy. MaXrea, Fw(T), Where S, (1)
is the mutual information defined in Eq. (29). The set Ay
denote the (d — 1)-dimensional standard simple, while 20,
denotes the set of winning vectors induced by the correlations
C as defined in Eq. (24).

In Prop. 3, we show that if w € 2. has one or more
zero entries, then max eca, Fop () < S5 4, where J7 | is
given by Eq. (33). Therefore, we only maximize .#*(w) =
maxyea, Ja(m) over winning vectors w € 2We satisfying
w > 0. The expression for #*(w) in this case is given by
Eq. (34). We relax the set 20¢ to the compact and convex set
W defined in Eq. (37). Then, we give an upper bound on
SUP et aws0 7 (W) in Eq. (38).

By preceding remarks, we have

Sc(Ne) < max {jd*—lv In (d -1+ d_(l_w%(c))d>} ’
(40)
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while from Eq. (33) we have
S i=In(d-1+d 7).

Using In <Ed -1+ d’(lf“’bc(G))d) > 47 4 in Eq. (40),
we obtain Eq. (39). 0

Corollary 6: Let G be an N-player promise-free nonlocal
game with d question tuples, and let NV be the MAC obtained
from G as defined in Eq. (9). Let w'(G) denote the maximum
winning probability of the game when the questions are drawn
uniformly and answers are obtained using classical strategies.
Let S(Ng) denote the sum capacity of the NG-MAC M.
Then, we have

S(Ng) < In <d 14 d‘(l“”d(G))d) (41)

with entropy measured in nats.
Proof: From Eq. (18), we know that S(Ng) < Sa(Ng).
Then, using Thm. 5, we obtain Eq. (41). O

Note that the bounds on S¢(Ng) and S(Ng) given by
Eq. (39) and Eq. (41), respectively, lie between In(d — 1) and
In(d). For sufficiently large d, when w®¢(G) is not close to
1, the sum capacity is bounded above by =z In(d — 1). On the
other hand, for w®¢(G) = 1, we obtain an upper bound of
In(d), which can be achieved by w = (1,...,1)T as seen
from Prop. 2. Using this, we can obtain separations between
the correlation-assisted achievable sum rate corresponding to
two different sets of correlations.

3) Separation Between Sum Rates With Assistance From
Different Sets of Correlations: If C; and Cy are two sets of
correlations such that w®¢1 (G) < 1 while w®e2 (G) = 1, then
Se, (Ng) < Se,(Ng) = In(d). We use this idea to provide
separations of correlation-assisted achievable sum rate using
classical, quantum and no-signalling correlations.

Separating Sq(Ng) from S(Ng) for two-sender MACs:
Consider the Magic Square Game, Gys, used previously
in [19], [20], [21], and [15] to obtain a separation between
S(Ng) and Sq(Ng). In this game, the referee selects a row
r € {1,2,3} and column ¢ € {1,2,3} from a 3 x 3 grid
uniformly at random. The row is handed over to Alice while
the column is given to Bob. Without communicating with each
other, Alice & Bob need to fill bits in the given row and
column such that the total parity of bits in the row is even,
total parity of bits in the column is odd, and the bit at the
intersection of the given row and column match.

There are d = 9 possible question pairs corresponding to
the indices (r, ¢). Classically, Alice & Bob can win the game
at least 8 out of 9 times by implementing for example the
following strategy:

110
111]0
10

where the entry in each box indicates bits filled by Alice and
Bob. It can be shown that this strategy is optimal, therefore
wd(gms) == 8/9 [15]

On the other hand, if Alice & Bob are allowed to use
a quantum strategy, then they can share two copies of a
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TABLE I
MEASUREMENT TABLE
o Q1 0r Qog I®ox
—0x Q02 oy oy —0z R0z
I®o. 0. R0 0, QI
maximally entangled Bell state,
1 0 01
_1{0o 000
PBell = 5lo 00 ol
1 0 0 1

and submit answers to the referee based on a set of mea-
surements given in Table I. Alice and Bob answer 0 if their
measurement yields an eigenvector with eigenvalue 1, else they
answer 1. Answers obtained this way can be shown to always
satisfy the winning condition of the magic square game, i.e.,
w?(Gus) =1 [19], [20].

As the MAC obtained from the Magic Square Game has
received attention in a previous study, we summarize the
separation between sum capacity and entanglement-assisted
sum rate given by our method in the following corollary.

Corollary 7: Let Ng,, denote the MAC obtained from the
magic square game. Then, the sum capacity of this MAC is
bounded above as

S(Nays) < 3.02 bits.

On the other hand, using assistance from quantum correlations,
we obtain Sq(Ng,s) = 3.17 bits. This gives a separation
of at least 0.15 bits between sum rate with and without
entanglement assistance.

Proof: Since w(Gys) = 8/9, we may use Cor. (6) to
obtain a bound S(Ng,s) < 3.02 bits. At the same time,
a perfect quantum strategy is available, i.e., w?(Gys) = 1,
and thus So(Ng,s) = 3.17 bits [11]. O
Our bound of 3.02 bits on the sum capacity of the NG-
MAC Ng, is tighter than the previously reported bound of
3.14 bits [11]. Thus, our bound shows that entanglement assis-
tance increases the sum rate by at least 4.7%, in comparison
with the previously known result of 0.9%.

Since every quantum strategy is also a no-signalling strat-
egy, we automatically obtain a separation between S(Ng,)
and Sns(Ngys). However, Sns(Nays) = So(Nays)- In the
following section, we use a game different from Gys to obtain
a separation between the quantum and no-signalling assisted
sum rates.

Separating Sxs(Ng) from S(Ng) and So(Ng) for two-
sender MACs: In order to obtain a separation between the
quantum-assisted sum rate and the no-signalling assisted sum
rate, we consider the Clauser-Horne-Shimony-Holt (CHSH)
game Gcysy [22], [23]. In this game, a referee selects bits
21,22 € {0,1} uniformly at random, and gives them to
Alice and Bob, respectively. Upon receiving these question
bits, Alice answers with the bit y; € {0,1} and Bob with
y2 € {0,1}. Alice and Bob chose their answers without
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communicating with each other. They win the game if
T ANT2 = Y1 D Yo,

where A and & represent logical AND and bitwise addition
modulo 2. This game has a total of d = 4 question pairs.

It is known that the best classical strategy can answer only
3 out of the 4 question pairs correctly, i.e., w(Gcusn) =
3/4 [23]. The optimal quantum strategy achieves a winning
probability of w?(Gensn) = (1 + 1/v/2)/2 ~ 85.4% [23].
While there is no classical or quantum strategy that can always
win the game, one can construct a no-signalling distribution,

1

Por(y1, Y271, 72) = 551‘1/\582,yl®y27

usually called the Popescu-Rohrlich (PR) box [24], which
represents a perfect strategy for winning the CHSH game.
Therefore w™S(Gepsn) = 1.

Using w"(Gepsu) = 3/4 in Cor. (6) gives S(Ngeys) <
1.7 in the classical case. On the other hand, using
wQ(Gepsn) = (14+1/+/2)/2 in Thm. 5, gives an upper bound,
SQ(Neeusn) < 1.78 bits, in the quantum case. In the case of
no-signalling, a perfect strategy is possible and thus we have
SNs(NGewsy) = 2 bits. In this way, we obtain a separation
between the quantum and no-signalling assisted achievable
sum rate.

Separating Sq(Ng) from S(Ng) for N-sender MACs: We
now consider a game Gypp that we call the multiparty parity
game, which was first introduced by Brassard et al. [25]. In this
game, N players are each handed a bit and they each answer
by returning a bit. The players have a promise: the total number
of ones in the N-bit string handed to them is even. If this even
number is divisible by 4, then the winning condition is that the
total bit string returned by the players have an even number
of ones. Otherwise, the winning condition is to return a string
with an odd number of ones.

Formally, we have X; = {0,1} and ); = {0, 1} for i € [N].
As before, we denote X' = X X- - -x X as the set of questions
and Y = )i X---x Yy as the set of answers for the N players.
The promise,

P:{weX\Zixi:O(mod%}

is a subset of X from which the questions are draw. The
winning condition for the game can be described by the set

WP = {(m,y) EPxY| Zyzfézu@l =0 (mod 2)}

Brassard et al. [25] demonstrated that classical strategies can
win this game with a probability of at most w" (Gypp) =
1/2 + 27 N/21 when the questions are drawn uniformly from
the promise set. In contrast, a perfect quantum strategy is
possible [25].

Now we consider the following promise-free version of
this game. Herein, the question and answer set remain the
same, but the winning condition is defined as the set W =
WP U (P¢ x ). That is, the players win automatically if a
question from outside the promise set is presented to them.
To apply the bound obtained in Thm. 5, we need to compute
the maximum classical winning probability w(Gypp) for
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the promise-free case when questions are drawn uniformly.
To that end, we show how to compute the maximum winning
probability w® (G) when we convert any game with a promise
P to a promise-free game, assuming that the questions are
drawn uniformly and answers are given using strategies in .
Since WP N (P¢ x V) = @, we have

S e+ S ple)

(zy)EWP ] zEPe

Pl p ( 7’I)
=h +(1-2).
[ X

Since the set of strategies & chosen by the players have a
maximum probability w7 (G) of winning when the questions
are drawn uniformly from P, we can infer that

& _ @wep Pl
<O =7 (®+G w)

For the multiparty parity game, since half the /V-bit strings
are in P and the other half are in P¢, we get

3 -
W (Gwpp) = 1 + 27 (IN/214),

bw =

(42)

Then, by Cor. (6), we find that the sum capacity for the
MAC obtained from the multiparty parity game is bounded
above as S(Ngy) < log(d — 1 + 2*(1*W°I(G))d) bits, where
d = 2V and w(G) is given by Eq. (42). In particular,
S(NGye) < log(d). In contrast, since a perfect quantum strat-
egy is available, we have S (Ngy,) = log(d), thus giving a
separation between the sum capacity and the quantum-assisted
sum rate for N-sender MACs. For example, when we have
N = 3 senders, we obtain S(Ng,,,) < 2.84 bits. In contrast,
SQ(NGye) = 3 bits in the quantum case.

B. Looseness of Convex Relaxation of the Sum Capacity

In the previous section, we looked at separations between
the sum rates with assistance from classical, quantum and no-
signalling strategies. In this section, we construct a game such
that one can obtain an arbitrarily large separation between
the sum capacity and the relaxed sum capacity. Recall that
the relaxed sum capacity corresponds to dropping the product
distribution constraint in the maximization problem:

C(Ng) le(’lix)f(yl,?h...,YN,?N;Z),
p(zy

where X1,Y,..., Xy, Y y are random variables describing
the input to the NG-MAC N, while Z is the random variable
describing the output. We maximize over all possible input
probability distributions p, so that the resulting quantity is the
capacity of N when we think of it as a single-input single-
output channel. As noted in Sec. III-A.1, we have S(Ng) <
Se(Ng) < C(Ng) for any set of correlations C. Indeed, since
we maximize over all probability distributions over the input
to Ng, we can write the relaxed sum capacity as
C(Ng) = EYI‘I}(aéXGuufnéi)i I(X1,Y1,....,.XN,YN; 2)

where S, denotes the set of all possible strategies that the
players can use to play the game. In particular, this amounts to
allowing the players to communicate after the questions have
been handed over to them.

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

To analyze C'(Ng), we study some properties of G. It can
be verified that G, is a convex set. The extreme points of
this set correspond to deterministic strategies f: X — ) that
allow for communication between the players (see Prop. 13 in
App. B). This implies that the maximum winning probability
of the game w®#' (@), when the questions are drawn uniformly
and answers are obtained using the strategies in Gy, is always
achieved by a deterministic strategy of the form mentioned
above. We now give an explicit description of a deterministic
strategy (not necessarily unique) achieving the maximum
winning probability.

The best deterministic strategy f(P): X — ) can be written
as

(43)

O (z) = {y Jy € 3/. such that (z,y) € W
Yy, otherwise,

where y, € ) is an arbitrary element chosen beforehand.
We note that for each € X, some element y € ) satisfying
(z,y) € W is chosen apriori (if it exists), so that the function
is well-defined, though not necessarily unique. In other words,
fP) gives the correct answer if a correct answer for the given
question exists, and if not, it gives an arbitrary answer that
is necessarily incorrect. It can, therefore, be inferred that the
maximum winning probability can be written as

= € X |y €Y such that (x,y) € W}

w@an (G) y

(44)

This is the best that one can do given any nonlocal game G.
Note also that w®# (@) can be directly computed from the
winning condition W.

The above observation directly leads to upper and lower
bounds on C(Ng). The upper bound is obtained by using
WS (@) from Eq. (44) in Thm. 5. Here, we implicitly use the
fact that our upper bound is valid even when the questions are
drawn arbitrarily. Let w(P) € {0,1}% be the winning vector
corresponding to the best deterministic strategy f(°) given in
Eq. (43). Note that we maximize over all distributions over the
questions when computing C'(Ng). Therefore, using w®) in
Prop. 2, we obtain a lower bound on C(Ng). In particular,
if there is at least one correct answer for every question, then
fP) is a perfect strategy and C(Ng) = In(d).

Now, we obtain a separation between C(Ng) and S(Ng).
To that end, we construct a game called the signalling game.

1) Signalling Game G and separation of C(Ng,) from
S(Ng,) and Sxs(Ng,): Consider a game where Alice & Bob
are each given a question from some set of questions. They
win the game if they can correctly guess the question handed
over to the other person. Since the game can be won if Alice
& Bob “signal” their question to each other, we call this the
signalling game G.

Formally, we consider question sets &, X> and answer sets
Y1 = X5 and Yo = X, and the winning condition is defined
as

W = {(z1,72,y1,92) € (X1 x X)x (V1 x V) |

Y1 = X2, Y2 = 561}-
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Note that there is exactly one correct answer for each question
pair (Il,SCQ) S Xl X XQ.

Since we bound the sum capacity of the NG-MAC Ng,
obtained from the signaling game Gy using the maximum
winning probability, we analyze the winning strategies for this
game. To that end, consider some set of strategies G that Alice
and Bob use to play the game. For simplicity, we assume
that this is a compact set (thinking of strategies as vectors
as in Prop. 13), which holds, for example, when & is the
set of no-signalling strategies (see Prop. 14). Suppose that
w®(@) = 1 corresponding to this set of strategies, and let
Dy x be the strategy that achieves this maximum winning
probability. When the questions are drawn uniformly, the
winning probability for strategy p*Y| x 1s given by py, =
(>, wr)/d, where w* = (w7, ..., w}) is the winning vector
corresponding to pi,‘ x» as defined in Eq. (23). Since pj, =
w®(G) = 1 by assumption and w* € [0,1]¢, we must have
wi =1 for all i € [d].

For convenience, denote X = AX; x X5 as the set of
questions. Using Def. 23, we can write the winning vector

w* as
wi= 3 pyix(yle)
y: zyew

where we label the components of w* using the questions
xz € X. Since w}, = 1 for all x € X and because there is
exactly one correct answer for each question x, we can infer
that p;‘ x Mmust be a deterministic strategy. Written explicitly,
we have

p;’\X (y1,y2|21, 22) = 5y1,125y2,r1~

Note that p;‘ x cannot be a no-signalling strategy. Indeed,

p§,|X(y1\m1,x2) = Z p;’|X(y17y2|x17x2) = 6y1,w2'
Y2€YV2
45)

This  cannot  satisfy the no-signalling  condition
p’{,lX(y1|x1,x2) = p}lx(yﬂxl) given in Eq. (4) because
the RHS in Eq. (45) depends on x3. In other words,
we cannot have w, = 1 for any question x € X using a
no-signalling strategy. In particular, the perfect strategy is not
no-signalling, and therefore, wNS(GS) < 1 for no-signalling
strategies. Subsequently, we also have w?(G) < 1 and
w(Gs) < 1, because the set of classical and quantum
strategies are contained in the set of no-signalling strategies.
It then follows from Thm. 5 and Cor. 6 that each of
S(Na,), SoNe,), Sns(Ng,) s strictly less than In(d).
On the other hand, since a perfect strategy is possible
allowing communication between Alice & Bob, we have
C(Ng,) = In(d). Therefore, we have obtained a separation
between C'(Ng,) and S(Ng,), So(Ng,), Sns(Na,)-

Below, we argue that this separation becomes arbitrarily
large as the number of questions increases. To that end,
we compute w (Gy). Since the maximum winning probability
obtained using classical strategies when questions are drawn
uniformly is achieved by a deterministic strategy, it is sufficient
to restrict our attention to classical deterministic strategies
chosen by Alice & Bob. Recall that a classical deterministic
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strategy corresponds to two functions fi: X7 — ); and
2: Xo — Yo chosen by Alice & Bob, respectively. This
translates to the probability distribution p(}f)l )X (y1, yo|x1, 2) =
Oyy.f1(x)0ys, f2()- Then, the winning probability using a clas-
sical deterministic strategy when the questions are drawn
uniformly is given by
(o) _ 1

pW_E Z

T1E€X1,22€X

51?27f1(061)611,f2(132) (46)

where we used the fact that the signalling game has only
one correct answer (z2,21) corresponding to each question
(z1,22). It can be seen from Eq. (46) that, for achieving
maximum winning probability, the function f; must be able
to invert the action of the function f5 or vice-versa.

If |X5| < |X}], then the set fo(Xs) can cover at most |Xs]
elements of Xj. Subsequently, 0z, £, (z,) 7 O for at most [Xs]
elements of X;. We can then infer from Eq. (46) that

(D) _ X[ _ 1

W= d

A
since d = |X;||Xs|. Using a similar reasoning when |X;| <
| Xzl .

max (| X, |X2D.

In particular, we have d — oo if either of |X;]| or |X>| diverges,
while the winning probability w®(G) — 0. Subsequently,
C(Ng,) — oo but S(Ng,) — 0. Therefore, we get an
arbitrarily large separation between C'(Ng,) and S(Ng,).

In fact, we verify through numerical simulations that the
situation is equally bad for the no-signalling assisted sum rate.
To that end, we compute the maximum winning probability
wNS(Gy) numerically. We show in Prop. 14 that the set of
no-signalling strategies for N-player games is a compact and
convex set (specifically, a convex polytope). Therefore, com-
puting w™S(G) amounts to solving a linear program (this fact
is well-known for 2-player games [26]). For 2 < |A]], |Xs] <
10, we verify that the numerically computed value for wNS(Gy)
matches w(Ng,) = 1/max(|X1],|Xz2|). Thus, we expect
wI(Ng,) = w(Ng,) = WNS(Ng,) for the signalling game.
This would imply that Sq(N¢,), Sns(Ne,) — 0 as d — oo
but C(Ng,) — oo. In other words, even with quantum or no-
signalling assistance, the sum rate is far lower than the bound
given by the relaxed sum capacity.

This example highlights the importance of finding better
methods to upper bound the sum capacity of MACs. In the next
part, we take a step in this direction by defining and studying
a class of global optimization problems with relevance in
information theory. This class of optimization problems is
motivated from the non-convex problem encountered in sum
capacity computation. In the third part of this study, we will
show how to apply these algorithms for computing the sum
capacity of arbitrary two-sender MACs.

WCI(GS) —

IV. OPTIMIZATION OF LIPSCHITZ-LIKE FUNCTIONS
A. Lipschitz-Like Functions

The main object of our study is a Lipschitz-like function.
Such functions are a generalization of Lipschitz-continuous
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and Holder continuous functions. Recall that a function
f: D — & between two subsets of normed vector spaces
is said to be Lipschitz continuous if for all z,2’ € D,
we have || f(z) — f(2')||¢ < L|lxz —2'||p for some constant
L > 0. The function f is said to be Holder continuous if
| f(z)— f(2")||¢ < L|jz—2'||, for some constants L, >
0 [27]. Holder continuity is a more general notion than Lips-
chitz continuity since v = 1 gives the definition of Lipschitz
continuity. Even so, this definition is not general enough
to capture the continuity properties of entropic quantities.
Shannon and von Neumann entropies, for example, satisfy
a different continuity bound. Specifically, if p,q € Ay are
discrete probability distributions, then the Shannon entropy
satisfies

1 1
1)~ H)] < Jlogtd— ) lp—all +1 (5 =l )
47)

where h(xz) = —zlog(z) — (1 — ) log(l — x) is the binary
entropy function [28]. Similarly, von Neumann entropy sat-
isfies the Fannes-Audenaert inequality [29]. To encapsulate
such behaviour of entropic quantities, we define Lipschitz-like
functions as follows.

Definition 8 (Lipschitz-Like Function): Let §: R; — R be
a non-negative, continuous, monotonically increasing function
such that 3(0) = 0. Let D and £ be subsets of a normed vector
space. Then a function f: D — E is said to be Lipschitz-like
or 3-Lipschitz-like if it satisfies

1f(z) = f@)e < B(lx—2'[lp) V2" €D.

Some remarks about this definition are in order. The
definition of Lipschitz-like functions can be generalized to
metric spaces in a straightforward manner. The reason we
require  to be monotonically increasing is because it makes
Lipschitz-like functions behave similar to Lipschitz continuous
functions in the sense that the bound on ||f(z) — f(z')||¢
tightens or loosens with the value of |z — 2’||,. Moreover,
this assumption helps with optimization of Lipschitz-like
functions. Similarly, we require continuity of 3 for simplicity,
but this can be relaxed to right-continuity at 0. Since [ is
(right-)continuous at 0, it follows from Eq. (48) that f is a
continuous function. If 5(x) = La for some L > 0, then f
is a Lipschitz continuous function with Lipschitz constant L,
and if B(x) = Lz for L,y > 0, then f is a Holder con-
tinuous function with constant L. Lipschitz-like functions are
therefore a generalization of Lipschitz and Holder continuous
functions.

With a slight modification of the right-hand side of Eq. (47),
we can show that entropy is a Lipschitz-like function. To that
end, we define the modified binary entropy as follows.

= ) —zlog(z) — (1 —x)log(l —x)
"= {1og<2>

(48)

if x <

49
if x> “49)

NN

Observe that h is a non-negative, continugus, and mono-
tonically increasing function that satisfies h(0) = 0, and
furthermore, we have h(z) < h(zx) for all € [0,1]. Thus,
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defining By (x) = log(d — 1)x/2 + h(z/2), we obtain
|H(p) — H(q)| < Bu (Ip—all,) -

From this, we can conclude that Shannon entropy (and simi-
larly, von Neumann entropy) is a Lipschitz-like function.

Moreover, linear combinations and compositions of
Lipschitz-like functions is again a Lipschitz-like function.
We summarize this observation in the following result.

Proposition 9: 1) If f1: D — & and fo: D —

&€ are f;-Lipschitz-like and [s-Lipschitz-like func-
tions respectively, then the linear combination o f; +
as fo is a (g |81 +]|az|B2)-Lipschitz-like function, where
1, g are scalars.

) If f1: D — &£ and fo: &€ — F are [i-Lipschitz-
like and (32-Lipschitz-like functions respectively, then the
composition fyo fy is a (32 o B1)-Lipschitz-like function.

Proof: 1. The function ¢ = a1f1 + asfs sat-
isfies lg(z) —g(Wlle < lealllfile) = AW +
laa| || f2(x) — fo(y)||¢ for x,y € D by triangle inequality.
Then, using the fact that f;, fo are Lipschitz-like, we obtain
lo(@) — g)lle < lonlBi(llz - yllp) + lazlBallz - yllp).
Since § = |a1|B1 + |@z2|B2 is non-negative, continuous and
monotonically increasing with 5(0) = 0, we can conclude
that g is B-Lipschitz-like.

2. The function g = fy o fi satisfies [|g(z) — g(y)||z <
Ba(|| f1(z) — fi(y)||¢) for z,y € D by using the fact that
fa is Bo-Lipschitz-like. Then, since f; is 31-Lipschitz-like and
B2 is monotonically increasing, we obtain ||g(z) — g(y)|| <
B2(B1(llx — yllp)). Since B = [ o 1 is non-negative, con-
tinuous and monotonically increasing with 3(0) = 0, we can
conclude that g is B-Lipschitz-like. O

In light of the above result, we can conclude that several
entropic quantities derived from Shannon entropy and von
Neumann entropy are Lipschitz-like functions. This lends
support to our claim that the techniques developed in this
section can potentially be useful for non-convex optimization
problems in information theory.

For the purposes of optimization, we take the co-domain to
be the real line, i.e., £ = R with the usual norm. Motivated by
applications in information theory, we will mainly be focusing
on the case where the domain D = Ay is the standard simplex
in R? and |-, = [|-||;- Nevertheless, our techniques work
more generally with any norm (for example, using equivalence
of norms in finite dimensions).

In this section, we will develop algorithms for optimiz-
ing Lipschitz-like functions over a closed interval and a
standard simplex. We also discuss techniques for optimizing
Lipschitz-like functions over arbitrary compact and convex
domains in App. C-D. We approach this problem by showing
how to extend a Lipschitz-like function from a compact and
convex domain to all of Euclidean space such that the global
optimum is not affected, which may be of independent interest.
Some of these algorithms we discuss are generalizations of
existing algorithms for optimization of Lipschitz continuous
functions. For this reason, we present a brief overview of
some existing algorithms and our approach to generalizing
them. In the next section, we focus on outlining the high-level
ideas without delving into the technical details. Subsequently,
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we will give detailed results on the optimization algorithms,
along with some numerical examples.

B. Overview of the Optimization Algorithms

All the algorithms we propose in this study are designed
to optimize any (-Lipschitz-like function f. The function 3
is assumed to be known beforehand, but the function f is
unknown and we can only query it at a specified point. The
algorithms can then use the knowledge of the domain, the
function [, the queried points and corresponding values of
the objective function f to approximate the maximum of f to
an additive precision € > 0. Such a setting is commonly used
to study the performance of optimization algorithms [27].

In order to make concrete statements about the complexity
of optimization, we will assume that 5 does not explicitly
depend on the dimension. Our algorithms and convergence
analysis are valid even if this assumption does not hold. By an
efficient algorithm for optimization, we mean an algorithm that
computes the optimum of f to a given additive precision € >
0 in time polynomial in the dimension and inverse precision
1/e. We sometimes informally use the phrase “practically
efficient” and variations thereof to mean that the algorithm
runs reasonably fast in practice, e.g., to exclude situations
where the scaling of runtime with dimension is too large (for
example, O(d'?)).

Before discussing technical details of the algorithms pre-
sented in this study, we give a high-level overview of the main
ideas. We begin by presenting an algorithm that can optimize
any (-Lipschitz-like function f when the domain D = [a, b]
is a closed interval. Our algorithm is a generalization of
the Piyavskii-Shubert algorithm [30], [31], and it focuses
on constructing successively better upper-bounding functions
by using the Lipschitz-like property of the objective func-
tion. At each iteration, the maximum of the upper-bounding
function is computed, which is an easier problem because
we only need to maximize the function § that is known
to be monotonically increasing. The computed maximum
of the upper-bounding function at each iteration generates
a sequence of points that partitions the interval. When the
distance between any two of these points becomes sufficiently
small, one can show that the maximum of the upper-bounding
function is close to the maximum of the original objective
function. Our algorithm is guaranteed to converge to the
optimal solution within a precision of € > 0 in [(b — a)/d]
time steps in the worst-case, where § > 0 is the largest
number satisfying 5(J) < /2 (see Prop. 15). We refer to this
algorithm as modified Piyavskii-Shubert algorithm. We remark
that several extensions of the Piyavskii-Shubert algorithm have
been presented in the literature (see, for example, Ref. [32],
[33], [34], [35]). It would be interesting to undertake a more
detailed study comparing such algorithms with our method in
the future.

In higher dimensions, we focus on the case where the
objective f is a [-Lipschitz-like function over the standard
simplex D = Ay. For this case, we present two algorithms
for finding the global optimum of f. For the first algorithm,
we resort to a straightforward grid search. Using the results of
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Ref. [36], one can show that a grid of size O(d'/%°1) suffices
to converge to a specified precision of € > 0, where ¢ is the
largest number satisfying 3(8) < ¢/2 (see Prop. 17).* These
results stand to demonstrate that one can, in principle, compute
the maximum of f in polynomial time for a fixed precision.
Moreover, a simple observation about ordering the elements
of the grid allows for efficient construction of the grid, along
with the possibility of parallelizing the grid search. Despite
the possibility of polynomial complexity (in dimension) and
numerical improvements, grid search is still too inefficient to
be of practical use except for very small dimensions.

Another strategy we propose is to construct a “dense”
Lipschitz continuous curve that gets close to each point of
D to within some specified distance. Such a strategy was
adopted by Ref. [37] for optimizing Lipschitz continuous
functions over a hypercube, and is referred to as Alienor
method in the literature. When D is the standard simplex in
d dimensions, we give a time and memory efficient algorithm
to construct such a curve. This allows us to reduce the d-
dimensional problem of optimizing f over D to the one-
dimensional problem of optimizing it over an interval using
the generated curve. If a > 0 is the largest number satisfying
B(a) < €/2, this method takes O(a'~?/d) iterations in the
worst case for large dimensions. While this is much worse
than a grid search in large dimensions, in small dimensions
this takes fewer iterations to converge than grid search when
the tolerance € is small. The dense curve algorithm also has the
advantage that we can find an upper bound on the maximum
by running the algorithm for a fixed number of time steps.
Furthermore, similar to grid search, the dense curve algorithm
can be parallelized. Nevertheless, we remark that both the grid
search and dense curve algorithms are impractical for even
moderately large dimensions. We detail these methods here in
the hope that these engender the development of more practical
algorithms for optimizing Lipschitz-like functions over the
standard simplex in higher dimensions.

We also study the more general case when D is a compact
and convex set in R?. To handle optimization in this general
case, we seek to reduce it to a case that can be solved using
known techniques. To that end, we show how to extend the
objective function f from the domain D to the full Euclidean
space R? while retaining the Lipschitz-like property when £ is
itself Lipschitz-like (see Def. 19 and Prop. 20). The extended
function f has the property that its optimum coincides with
the optimum of f when optimized over any set containing D.
Since we have the freedom to choose which set to optimize f
over, there are different algorithms one can potentially use
for this optimization. In this study, we find the maximum
value of f by optimizing its extension f over a hypercube
containing D. To perform this optimization, we resort to using
dense curves because the convergence analysis is very similar
to the case of the standard simplex D = Ay. The effective
problem, as before, is one-dimensional and can be solved
using the modified Piyavskii-Shubert algorithm. In general,
this algorithm needs exponentially many iterations (with the

“4Note the different scaling in & in Prop. 17 compared to that of O(dfl/ V3 )
mentioned in [36], which we believe to be erroneous.
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dimension) to find the optimal solution to within a specified
precision of ¢ > 0 (see Prop. 21 for a precise statement).
This exponential scaling with the dimension stems from the
fact that we do not use any structure of D to construct the
dense curve and instead rely on a curve generated for a
hypercube. The O(1/e?) complexity cannot be improved in
general without additional assumptions on D or the class of
functions we optimize (see Prop. 21). However, it might be
possible to improve the other factors that scale exponentially in
the algorithm as noted in App. C-D. An advantage of using this
algorithm is that one can specify a fixed number of iterations to
obtain an upper bound on the maximum. Because optimizing
f over an arbitrary compact and convex domain is not directly
relevant to our study of MACs, we relegate this discussion to
App. C-D.
We now dive into details of the proposed algorithms.

C. Optimizing Lipschitz-Like Functions Over an Interval
Using Modified Piyavskii-Shubert Algorithm

We begin our study by presenting an algorithm for comput-
ing the maximum of any [-Lipschitz-like function f over a
closed interval D = [a, b]. A pseudocode for this algorithm is
given in Alg. 1.

Algorithm 1 Computing the Maximum of a Function f
Satisfying Eq. (48) for D = [a, b], Given € > 0
1: function
MAXIMIZE_LIPSCHITZ-LIKE_FUNCTION_1D(e)

2. Initialize ¢(©) = a

3 Set Folq) = f(¢9) + B(lg — ¢'V|) for q € [a,b]

4: Set F'«— Fp and g* < b

5: Set ¢ — ¢, k1

6: while F(¢*) — f(q¢*) > ¢ do

7: Sort {¢(@,...,¢®} from smallest to largest
and relabel the points in ascending order.

8: Define F;(q) = f(¢'?) + B(lq — ¢V
for0 <i<k

9: fori=0,....,k—1do

10: Set gi(q) = Fi(q) — Fi+1(q)

11: Find ¥ € [¢(, ¢tV such that

(@) = 0 using any root finding method.
12: end for

13: Pick an index m € argmax,;.;_, Fi(g")
and set ¢* = g\"™).

14: Update F' — I},

15: Set ¢t — ¢* bk — k+1

16: end while

17: return f(q*)
18: end function

We refer to the function F; defined in line 8 of Alg. 1 as
a bounding function, since f(q) < F;(q) for all ¢ € [a,b] and
all i. Note that F;(¢®)) = f(¢?) for all i. The bounding
function F; depends non-trivially on the argument ¢ only
through the function 3(|q—q(¥|). We compute the optimum of
the function f by maximizing these bounding functions, which
is an easier problem because (3 is continuous and monotonic.
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Essentially, the algorithm does the following. Suppose that

at the Kth time step, we have the iterates ¢(©), .. ¢)
sorted in the ascending order a = q(O) < q(l) < ... <
¢®) = b. Then in each of the intervals [¢(¥), ¢(*+1)] for

k € {0,...,K — 1} we compute the point g'*) attaining
the maximum of the bounding function min{Fy, Fi 11} (see
lines 10, 11 in Alg. 1). Our next iterate ¢/ *1) is chosen
to be in argmax{g(?,...,g®~V}. In the next iterate, since
Fri1(qE*Y) = f(¢5+1D), we have essentially tightened
the upper bound on the function f. Proceeding this way,
one can verify that the algorithm eventually approximates
the function f from above well enough. A schematic of this
procedure is shown in Fig. 2.

Indeed, we show in Prop. 15 that Alg. 1 is guaranteed to
converge to the global maximum within an error of e. This
convergence takes at most [(b—a)/d] in the worst-case, where
d > 0 is the largest number satisfying 5(0) < €/2. Since we
find successively better upper bounds on the objective, Alg. 1
can be modified so that it accepts a fixed number of iterations
instead of a precision, and outputs the upper bound F'(g*) on
the maximum of f. This upper bound has an error of at most
F(q*) = f(a").

When the domain D = A; is the standard simplex in 2-
dimensions, we can parameterize any © € Ay as ¢ = (¢,1—q)
with ¢ € [0, 1]. Furthermore, we have ||z — y||; = 2|p—¢| for
x,y € Ay parametrized as x = (¢,1 — ¢) and y = (p, 1 — p).
Thus, taking a = 0, b = 1, and replacing |¢ — ¢'¥)| with
2lg — ¢ in Alg. 1, we get an algorithm for optimizing f
over As.

Next, we present algorithms to optimize Lipschitz-like
functions in higher dimensions. Our main focus will be on
optimizing Lipschitz-like functions over the standard simplex
Ay for d > 3.

D. Optimizing Lipschitz-Like Function Over the Standard
Simplex

We present two algorithms to optimize Lipschitz-like func-
tions over D = Ay. The first algorithm is a simple grid
search, whereas the second algorithm uses dense curves to fill
D. We describe these algorithms, corresponding convergence
guarantees and practical implementation in detail.

1) Optimization Using Grid Search: Our goal in this section
is to optimize a (-Lipschitz-like function f over the standard
simplex D = A,. Based on the results of Ref. [36], we present
a grid search method for finding the maximum of f over D.
We begin by defining the integer grid

d
Id,N:{neNﬂZni:N},

i=1

(50)

where d € N denotes the dimension and N € N_ denotes
the size of the integer grid. This grid has

N+d-1
Ngig =
grid ( d—1 )
elements because each element of Z;nx can be
obtained by arranging N ones into d coordinates. From

(D
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o

Fig. 2. A schematic of iterations of Alg. 1 for optimizing a Lipschitz-like function f.

Z4,n, we obtain the grid

n
Ad,N = {N | n GId,N}

for the standard simplex A4. Note that Ay y is just a rescaled
version of Zy v, ie., Agn =Zgn/N.

The authors of Ref. [36] propose to search the grid Ay n
in order to optimize Holder continuous functions over the
standard simplex. Their results are based on approximations
of the function f using Bernstein polynomials, and are in fact
general enough to handle the optimization of Lipschitz-like
functions (see Prop. 17 for details). Such an approach to
compute the maximum of f to a specified precision € > 0 is
summarized in Alg. 2.

(52)

Algorithm 2 Computing the Maximum of a Function f
Satistying Eq. (48) for D = Ag4, Given € > 0
1: function

MAXIMIZE_LIPSCHITZ-LIKE_FUNC_SIMPLEX(d, f3, €)
Set N = [1/62], where § is the
largest number satisfying 3(0) < €/2

3: Construct the grid Ag n

4 return f* = max{f(z) |z € Agn}

5: end function

»

In Prop. 17, we show that Alg. 2 computes the maximum
of f to a precision € > 0 in Ngig = (N:l'_dl_ 1) time steps,
where N = [1/62] and § is the largest number satisfying
B(0) < €/2. For fixed ¢ > 0 and d > N, this amounts to
o(d/ 521) iterations. In other words, we can find the optimum
of f in polynomial time for a fixed precision. We note that if
0 achieves the value €/2, we can obtain 0 by solving 5(d) =
€/2 using bisection (or any other root finding method) because
[ is continuous and monotonically increasing.

The crucial step in implementing the above algorithm is
computing the grid Ay y efficiently. For that purpose, note that
we can write any element z € Ay v as ¢ = (N—ng_1,nq-1—
ng—2y...,Ng — Tlhﬂl)/N, where 0 S n; S Ni+1 S N for
i € [d — 2] (see Prop. 16 for a proof). Thus, the elements
of Ay can be computed iteratively, with the total number
of iterations equalling Ng;q. This also allows for parallelizing

the search over the grid. The exact algorithm we use to query
the elements of the grid orders the elements such that every
consecutive element is equidistant with respect to [;-norm.
This approach is explained in the next section and allows for
easy parallelization.

2) Optimization Using Dense Curves: Next, we outline a
method to optimize Lipschitz-like functions over D = A,
by filling D with an a-dense Lipschitz curve. We propose
this method as a way to reduce the total number of iterations
required for finding the optimum to a small additive error in
practice compared to grid search. Such a strategy of using
dense curves was outlined in Ref. [37] to optimize Lipschitz
continuous functions over a hypercube.

Definition 10 (a-Dense Curve): Given a number o > 0,
numbers a,b € R, and a nonempty set S C R", a function
v: [a,b] — S is said to be an a-dense curve in the norm
|I|| if for any = € S, we can find some 6 € [a,b] such that
I7(6) — all < o 1371,

The curve v is said to be 3,-Lipschitz-like if there is some
non-negative, continuous, monotonically increasing function
By: Ry — R with 3,(0) = 0 such that for any 6,6’ € [a, b],
we have [|7(6) — 1(8")]| < 8, (16 — ¢')).

The numbers a,b € R are the end points of the interval
over which the curve is defined. In this section, we will focus
on constructing an a-dense curve for the standard simplex
S = Ay in ly-norm, where o = 2(d — 1)/N. Here, d is the
dimension and N is a positive integer that controls the value
of a. We achieve this by finding a way to efficiently connect
the points of the grid Zy n defined in Eq. (50) in the previous
section. Towards this end, we define the following ordering of
the grid Zy .

Definition 11 (Equidistant Ordering of 1gn): Given
d,N € Ni with d > 2, let Zy y be the grid defined in
Eq. (52). For d = 2, define the forward ordering 7o y =
{(N,0),(N = 1,1),...,(1, N = 1),(0,N)} and the reverse
ordering Zo y = {(0,N), (1, N —1),...,(N —1,1),(N,0)}.
For d > 3, define the forward ordering inductively as follows.
Start with Z; v = @. For each ng_; € [N], forward order
the elements of Zy_1 ,, , if n4—1 is odd, and reverse order
them if ny_; is even. Append the elements (N —ng_1,n4-1—
Ng—2,...,N2 —n1,n1) With (ng_1 —ng_2,...,M2 —niny) €
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4. as ordered above to the (ordered) set Z, . Reverse
ordering of Z; n corresponds to writing the forward ordered
set in the reverse order.

We remark that d = 2 is just a special case of the
definition showing the basis step for induction. It can be
seen that the first element of Zy n is (NV,0,...,0) and the
last element is (0,...,0, N) if Zg n is forward ordered (and
the opposite is true if the elements are reverse ordered).
In Prop. 16, we show that Zy x can be ordered in this manner
and the distance between any two consecutive elements of
Z4,n according to this ordering is 2 measured in [;-norm.
By default, we work with forward ordering unless specified
otherwise. As an example, the (forward) ordering of Zs3 3 is
given by

33 =1{(3,0,0),(2,1,0),(2,0,1),(1,0,2),(1,1,1),
(1,2,0),(0,3,0),(0,2,1),(0,1,2),(0,0,3)}.

It can be seen that any two consecutive elements have an /;-
norm distance of 2. Since the grid Ay n defined in Eq. (52)
is just a scaled version of Z; y, this ordering also applies to
AgnN.

To generate a dense curve filling Ay, we make use of the
grid Ay n along with the ordering described above. However,
Ay n has Ngig = (N ;lr_d; 1) elements, and therefore, it can get
very expensive to store this grid in memory even if N and d are
only moderately large (for example, N = d = 20 gives Ngiq ~
7 x 10'9). For this purpose, we develop an algorithm that
can efficiently query the elements of ordered A4 without
explicitly constructing the set. We skip the details of this
algorithm in the study, but include an implementation of
the algorithm on Github (see Sec. E-B). Owing to such an
approach, the resulting construction is both time and memory
efficient, i.e., y(#) can be computed efficiently for a curve 7.
We describe the construction of the curve below.

Id—l,n

Algorithm 3 Construct an «-Dense Curve That Fills the
Simplex Ay for « = 2(d—1)/N, N € N and 6 € [0, Leyrve)
Where Lgywe Is Given in Eq. (53)
1: function
CONSTRUCT_DENSE_CURVE_STD_SIMPLEX(d, N, 0)
2: Compute the index k = [N/2]
3: Compute t =1+ k — ON/2

4: Obtain the grid points zj, xy41 € Ag n, Where
the elements of Ay n are ordered as per Def. (11)
5: return txy + (1 — t)zp11

6: end function

We now explain the reasoning behind Alg. 3. We construct
the (2(d — 1)/N)-dense curve 7 by joining the consecutive
points of the ordered grid Ag n. Since every two consecutive
points in the ordered grid Ay are 2/N distance apart in
l1-norm, the total length of this curve measured in /;-norm is

2 2 (N+d-1
Leurve = NNgrid = ( )

N\ d-1 43

In order to obtain v(6) efficiently for a given 8 € [0, Leyrve)
we first compute the grid points xy, and 241 for which v(6) €
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[k, Zg41]. In particular, we have v(0) = txg + (1 — t)zp41
for some ¢t € [0,1]. In order to compute ¢, we note that
l7(0) — xk|l; = 6—2k/N, where the RHS is the length of the
curve at # minus the length of the curve at grid point x; (which
is 2k/N). Since |[v(0) —zi|; = (1 — t) |Tpyr —2kll; =
2(1—1t)/N, we obtain t = 1+ k — ON/2. Since ON/2 —1 <
k < ON/2, we have 0 < t < 1. In Prop. 18, we show that
the curve constructed using Alg. 3 is (2(d —1)/N)-dense and
satisfies the property

1v(0) = (8", < minf|6 — 6", 2}.

That is, the curve 7 is [,-Lipschitz-like with G,(z) =
min{z, 2}. In particular, 7 is Lipschitz continuous with Lips-
chitz constant 1.

The essential idea behind the optimization of Lipschitz-like
functions using an a-dense curve is as follows. If the objective
function f: D — R is Lipschitz-like and ~: [a,b] — D is an
a-dense Lipschitz-like curve, then the function fo-y: [a,b] —
R is also Lipschitz-like. Therefore, one can optimize the
function fo~y using Alg. 1. In order to converge to the optimum
within a precision of € > 0, the constant o must be chosen
appropriately. The exact procedure is outlined in Alg. 4.

(54)

Algorithm 4 Computing the Maximum of a (3-Lipschitz-Like
Function f Satisfying Eq. (48) for D = Ay, Given € > 0
1: function
MAXIMIZE_LIPSCHITZ-LIKE_FUNC_SIMPLEX(d, 3, €)
2: Compute the largest number o > 0 such that
Bla) < /2
3: Set N =[2(d—1)/a]
: Construct the (2(d — 1)/N)-dense curve
~: [0, Leurve) — D as per Alg. 3

5: Compute the maximum g* of g = f o~ over [0, Leyrve)
to a precision of ¢/2 using Alg. 1
6: return g*

7: end function

In Prop. 18, we show that Alg. 4 is guaranteed to converge
to the maximum of f to within a precision of ¢ > 0.
This takes [Q(N ;_dl_ 1) /N iterations in the worst case. For
large dimensions and fixed precision, this number scales as
O(a'~4/d) with the dimension.

One can parallelize the above algorithm by breaking the
interval [0, Leyrve] into finitely many sub-intervals and opti-
mizing the function over each interval separately. The final
maximum can be obtained by taking the maximum of the
maximum values computed for each sub-interval. Since we
only break the interval into finitely many sub-intervals, the
guarantees given by Prop. 18 remain valid.

3) Numerical Examples: For verifying the performance of
the grid search algorithm (Alg. 2) and the algorithm based on
dense curves (Alg. 4), we present two numerical examples in
Tab. II where the maximum over the simplex can be computed
exactly. The functions considered in both these examples are
Lipschitz continuous with respect to the [;-norm. It can be seen
that both these methods compute the maximum to within the
specified precision. For small dimensions and small values of
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tolerance ¢, we find that the algorithm based on dense curves
requires far fewer iterations than grid search. As a result, the
dense curve algorithm converges much faster than grid search
for the examples presented in Tab. II. On the other hand, for
larger values of tolerance and higher dimensions, grid search
can converge faster since its complexity scales polynomially
with the dimension whereas the complexity of dense curve
algorithm scales exponentially in the worst case. Even so, the
power of the polynomial in complexity of grid search can
be large. Therefore, as the dimension d increases, both these
algorithms become infeasible to implement in practice.

Details on how one can use c-dense curves to optimize a
Lipschitz-like function over any compact and convex domain
is given in App. C-D.

V. SuM CAPACITY COMPUTATION OF TWO-SENDER
MACS

A. Sum Capacity Computation as Optimization of a
Lipschitz-Like Function

Our focus in this part is computing the sum capacity of arbi-
trary 2-sender MACs. As noted in the preliminary Sec. II-C,
the optimization involved in computing the sum capacity is
non-convex. Unfortunately, the approach via convex relax-
ation commonly pursued is, in general, not a viable strategy
for bounding the sum capacity of MACs. The family of
two-sender MACs constructed in Sec. III-B provides a striking
example of this claim, where we show that the difference
between the convex relaxation and the actual sum capacity
can be made arbitrarily large. In light of this result, developing
algorithms to compute, or at least better approximate, the sum
capacity becomes important, and we undertake this task here.

As discussed in Sec. II-C, a two-sender MAC with input
alphabets B, and By and output alphabet Z is described by
a transition matrix A. Each entry of this matrix, A/ (z]by, ba),
where z € Z,b; € By, and by € By, represents the probability
that the channel output takes a value z when the first and
second channel inputs take values b; and bs, respectively.
We introduce new notation for this sub-section. Let dq, ds, and
d, denote |B1|,|Bz|, and |Z| respectively. We write p(b1) €
Ay,, but refer to p(bs) by ¢q(bs) where g(b2) € Ay,. In this
notation, the sum capacity (7) of the two-sender MAC N takes
the form

S(N) = max I(Bl,BQ;Z)

such that p(b1,b2) = p(b1)q(b2),
p(b1,b2)

(55)

where Bi, By, and Z are random variables that describe the
channel’s first input, second input, and output respectively.
For fixed NV (z|b1,b2), the mutual information I(Bj, Ba; Z)
function is concave in the argument p(by,bs). On the other
hand, the set of joint distributions which satisfy the product
constraint, p(by, ba) = p(b1)p(bs), is not convex. This lack of
convexity turns the maximization in Eq. (55) into a non-convex
problem.

Our approach to solving the non-convex problem (55) is to
move the non-convexity from the constraint to the objective
function. Instead of maximizing over the set of product dis-
tributions, p(b1,b2) = p(b1)q(b2), we maximize sequentially,
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that is, we write

S(N) = max max I(Bi, Bs; Z).

56
q€Aq, PEAG, (56)

Now, both the inner and outer maximization in Eq. (56)
are carried out over convex sets Ay, and Ag,, respectively.
To carry out these optimizations we derive certain convenient
expressions. The output probability distribution pZ over Z can
be written as

p?(z) = > Ag(z,b1)p(b1) (57)
b1€B,
where
Ag(z,b1) = > N(z[b1,ba)q(bs) (58)

ba€B2

for z € Z and b; € B;. Note that A, can be considered as
a left stochastic matrix of size d, X dj, i.e., every entry of
A, is non-negative and the columns sum to 1. One can view
Eq. (57) as a vector equation p? = Agp, where p € Ay,
and p? € A,,. The mutual information I(By, By; Z) can be
written as

I(By, By; Z)=H(Z)=Y _ p(b1)q(b2)H(Z| By =by, By=by).
b1,bo

To express the mutual information in terms of vectors
and matrices, we define a d;-dimensional vector b, with

non-negative components b,(by) for by =1,...,d;, where
bo(br) = — Y q(b2) > N(z[b1,bs) log(N (2]by, b2)).
ba€Bo z2€EZ
(59)

This allows us to express the mutual information compactly
as

and the sum capacity as
S(N) = max max {H(Ap) — (byp)}.  (61)

q€Aa, PEAG,

The inner optimization over p € A4, is a convex optimization
problem because I(p,q) is a concave function of p for fixed
q. Since I(p, q) is not jointly concave over (p, q), the function

I"(q) = max (H(Agp) — (bg, 1)) (62)

is not concave in general. Therefore, the outer optimization
of I*(q) over ¢ € Ag,, ie., S(N) = maxgea,, 1*(¢), is in
general a nonconvex problem.

Nevertheless, we show that the non-concave function 7*(gq)
is a Lipschitz-like function as defined in Eq. (48). To elaborate,
this means there is some real-valued function 3; that is
non-negative, continuous, and monotonically increasing with
B1(0) = 0, such that |I*(q) — I*(¢)| < Bi(la—dl,).
We show that I*(q) indeed satisfies such a property by proving
an appropriate continuity bound for 7*(q). This is summarized
in the following result.

Proposition 12: Let N be any two-sender MAC with input
alphabets By, Bs of size di, ds, and output alphabet Z of
size d,. Assume that di,ds,d, > 2. Given input probability
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TABLE I

COMPUTING THE MAXIMUM OF LIPSCHITZ-CONTINUOUS FUNCTIONS f OVER THE STANDARD SIMPLEX A4 C R% IN DIMENSION d = 3 TO A PRECISION
OF € = 0.15. GRID SEARCH (ALG. 2) AND THE ALGORITHM BASED ON DENSE CURVES (ALG. 4) ARE USED TO COMPUTE THE MAXIMUM
NUMERICALLY. NUMERICAL VALUES ARE ROUNDED TO THREE DECIMAL PLACES

function algorithm true maximum computed maximum iterations
o grid search 0.841 0.841 16290
f(@) = sin(llzll;) dense curve 0.841 0.836 155
fl@) =752+ = 5% dense curve 0.033 0.033 480

distributions p over By and g over By, the mutual information
between the inputs and the output of the MAC can be written
as

I(p,q) = H(Agp) — (bq, p)

where the matrix A, and the vector b, are defined in Eq. (58)
and Eq. (59) respectively. Define the function

I*(q) = I .
(q) o (p,q)
Then, for any p € Ay4,, and any q,q" € Ag,, we have
[I(p,q) — I(p, )| < Br (llg—d'll,)

and subsequently,

I (q) = I*(¢") < Br (la = d'lly) - (63)
The function Gy is defined as
1 max N E
Bi(z) = (210g(d0—1)+HN >x+h(2)7 (64)

where

I = max_ {_ ;N(dal,ag) log(N (z|az, &2))} ,
(65)
and
Rx) = {mlog(x) —(1-2)log(l—a) ife< %
log(2) if x> 3
is the modified binary entropy defined in Eq. (49).
Proof: See Appendix D. O

This observation is important in the sense that it allows
for off-the-shelf use of algorithms developed in Sec. IV for
optimizing any Lipschitz-like function in order to compute
the sum capacity of two-sender MACs. Following this line of
approach, we will begin by developing an efficient algorithm
for computing the sum capacity of any two-sender MAC
where one of the input alphabets is of size 2. As a result,
we can efficiently compute the sum capacity of a large family
of MACs that includes all binary MACs. Next, we will
develop two algorithms for computing the sum capacity of
an arbitrary two-sender MAC. The first algorithm is important
from a theoretical standpoint, and shows that sum capacity
of an arbitrary two-sender MAC can be computed in quasi-
polynomial time. However, it can be costly to implement in
practice. Our second algorithm can be faster to run in practice,
at least when one of the MAC input alphabet sizes is small,
but it suffers from exponential complexity in the worst case.

B. Computing the Sum Capacity of a Two-Sender MAC With
One Input Alphabet of Size 2

As before, we take N to be a two-sender MAC with input
alphabets 31, Bs of sizes di, d2 and an output alphabet Z of
size d,. In this section, we focus on the case where at least
one of d; or ds is equal to 2. For concreteness, take do = 2
(this choice is inconsequential for the algorithm).

For this case, any probability distribution g, € Ay, can be
expressed as ¢; = (s,1 — s) for some 0 < s < 1. Thus, the
maximization over g; € As in computing the sum capacity
S(N) = maxgen,, I*(gs) is essentially one-dimensional.
In other words, considering the objective I*(s) := I*(gs) as
a function of s, we can write the sum capacity for any MAC
N with dy = 2 as

SWN) = Jél[%fi I*(s).

We will show that the mutual information I*(s) considered as
a function of s is still a Lipschitz-like function. First, observe
that for ¢; = (s, 1—s), we have ||¢s — ¢«||; = 2|s—5'|. Then,
1*(s) - I"(s))| = |I*(q.) — I*(g)] < Br(lgs —avll) =
B1(2|s—s'|). Therefore, taking 3(z) = (87(2x), we find that [*
as a function of s is $-Lipschitz-like. Subsequently, we can use
modified Piyavskii-Shubert algorithm developed in Sec. IV-
C to compute the maximum max,c[o,1] [*(s) to any given
precision.

For the convenience of the reader, we rewrite Alg. 1
specifically for the purpose of computing the sum capacity
of a two-sender MAC Nwhen d = 2. This sum capacity
computation algorithm is summarized in Alg. 5 below. We note
that similar to Alg. 1, one can modify Alg. 5 so that it accepts a
fixed number of iterations and outputs the value F'(s*), which
is an upper bound on the sum capacity. This upper bound
exceeds the sum capacity by at most F'(s*) — I*(s*).

We make a technical remark that is important to perform the
optimization as per Alg. 5. The objective function /* appearing
in the optimization S(N') = max,¢jo,1) I*(z) is non-trivial to
compute. More precisely, in order to compute the value of
I*(s) for any given s, we need to solve another optimization
problem. This follows from the definition of I* given in
Eq. (62). Fortunately, this optimization problem is convex,
and hence, it can be solved by standard convex optimization
techniques.

In Prop. 22, we show that the number of iterations required
by the while loop in Alg. 5 to converge to the sum capacity
within a tolerance of 0 < ¢ < 3 is bounded above as
O(log(d,)/€), where d, > 2 is the size of the output alphabet
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Algorithm 5 Computing the Sum Capacity of a Two-Sender
MAC N to a Precision ¢ > 0, When One of the Input
Alphabets has Size 2
1: function COMPUTE_SUM_CAPACITY(N, d1, €)
2: Initialize s =0
3: Define Fy(s) = I*(s(9) + 3;(2|s — s(9])
for s € [0, 1]

4: Set F' +— Fj and s* «— 1

5: Set s «— s*, k1

6: while F(s*) — I*(s*) > ¢ do

7: Sort {5 ... s} from smallest to largest and
relabel the points in ascending order.

8: Set Fi(s) = I*(s®) + B1(2|s — s|)
for0<i<k

9: fori=0,...,k—1do

10: Set gl(S) = Fi(S) — Fi+1(5)

11: Find 5; € [s), s(T1)] such that g;(5;) = 0

using any root finding method.

12: end for

13: Pick an index m € argmax,,;.,_, F;(5;) and
set s* =5,,. o

14: Update F' — I},

15: Set s+l  o* kb k41

16: end while

17: return I*(s*)

18: end function

and e is a fixed constant. Note that this bound does not account
for the number of iterations required to compute I*, for sorting
or for root-finding. We show in Prop. 22 that the total cost
involved is at most polynomial in di, d,, and 1/e.

Next, we show how to compute the sum capacity of any
two-sender MAC.

C. Computing the Sum Capacity of Any Two-Sender MAC

Let an arbitrary two-sender MAC A with input alphabet
sizes dj,d, and output alphabet size d,. Without loss of
generality, we assume that do < d;. Then, the sum capacity
computation can be expressed as S(N) = maxzen,, I*(q).
This amounts to optimizing the Lipschitz-like function I*(q)
over the standard simplex A,,. As a result, the algorithms
developed in Sec. IV-D.1 and Sec. IV-D.2 can both be used
to compute the sum capacity of N. For the convenience of
the reader, we present these algorithms here again adapted
specifically for sum capacity computation.

The first algorithm that we discuss is grid search. This
algorithm is helpful in proving complexity results, but not as
helpful from a practical implementation standpoint.

1) Sum Capacity Computation Using Grid Search: Our
goal is to perform the optimization of I*(g) over the simplex
g € Ag,. We perform this optimization by computing the
maximum over the grid

n
Agn = {N | n GId,N}

defined in Eq. (52). Thus, the grid search algorithm can be
described as follows.

Algorithm 6 Computing the Sum Capacity of a Two-Sender

MAC N to a Precision ¢ > 0 Using Grid Search. dy, dy Are

Input Alphabet Sizes With dy < d; and d, Is the Output

Alphabet Size. The Function g3; Is Defined in Eq. (64)

1: function

COMPUTE_SUM_CAP_GRID_SEARCH(N, di, da, do, €)
Set N = [1/62], where § is the largest number
satisfying 3;(0) < €/2

3: Construct the grid Ag, n

4: return S* = max{I*(q) | ¢ € A4, N}

5: end function

»

As noted in Sec. IV-D.1, optimization of a 3-Lipschitz-like
functions using grid search can be done in polynomial time
if the function 3 does not depend on the dimension. For the
case of sum capacity computation, the function 3 is 3; given
in Eq. (64). 8; depends on the size of the output alphabet
of the MAC, and therefore, the complexity analysis is more
involved. Furthermore, for any given ¢ € Ay,, the function
I*(q) needs to be computed using convex optimization. Thus,
the cost of computing [* also needs to be included in the
complexity analysis.

In Prop. 23, we show that the total cost of computing the
sum capacity to a fixed precision 0 < € < 1 is roughly
bounded above by poly(dy,d 1/6)O(d961°g2(do)/62+2) (see

Yy polyldz, do, 2

Eq. (113) for a more precise statement). Therefore, the sum
capacity can be computed to a fixed precision € > 0 in quasi-
polynomial time. This quasi-polynomial behaviour comes
from the fact that 3; depends on log(d,). From the proof of
Prop. 23, we can also infer that if one fixes the output alphabet
size d,, then the sum capacity can be computed in polynomial
time.

While these results are useful from a theoretical standpoint,
grid search can be slow in practice. The reason is two-
fold. One, the power of the polynomial appearing in time
complexity can be large even for moderately small precision
and dimensions (i.e., the size of the grid becomes fairly large).
Two, for each point in the grid, we need to solve a convex
optimization problem for computing I*. Together, these factors
make grid search not ideal for practical implementations.
We note that one can nevertheless parallelize grid search to
get some improvements in the speed, though eventually even
this will be too costly. With this in mind, we study another
algorithm to compute the sum capacity using dense curves.

2) Sum Capacity Computation Using Dense Curves: In this
section, we will study the application of algorithm developed
in Sec. IV-D.2 for computing the sum capacity. The idea
is to fill the simplex with a curve that comes within a
distance of o to any given point on the simplex. Such a
curve is therefore called an a-dense curve. Using such a
curve, we reduce a high-dimensional optimization problem to
a one-dimensional optimization problem over an interval. The
one-dimensional optimization problem can be solved using the
modified Piyavskii-Shubert algorithm that underlies Alg. 5.

We refer the reader to Alg. 3 which shows how to construct
an a-dense curve for filling the standard simplex for a =
2(da — 1)/N, where N is a positive integer that controls the
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value of a. Below, we show how to use Alg. 4 to compute
the sum capacity of a two-sender MAC.

Algorithm 7 Computing the Sum Capacity of a Two-Sender
MAC N to a Precision € > 0 Using a Dense Curve. d1, ds
Are Input Alphabet Sizes With ds < d; and d, Is the Output
Alphabet Size. The Function §; Is Defined in Eq. (64)
1: function
COMPUTE_SUM_CAP_DENSE_CURVEW, di, da, d,, €)
2: Compute the largest number o > 0 such that
Br(a) < ¢/2
3: Set N = [2(d2 — 1) /]
: Construct the (2(dy — 1)/N)-dense curve
~: [0, Leurve] — D as per Alg. 3
5: Compute the maximum S* of the function I* o~y over
[0, Leuve) to a precision of €/2 using Alg. 1
6: return S*
7: end function

From Prop. 18, we can infer that the above algorithm is
guaranteed to compute the sum capacity to within a precision
of € > 0. Prop. 18 shows that the dense curve algorithm can
take an exponential time in the worst case to converge. For this
reason, we avoid doing a detailed complexity analysis of this
algorithm for sum capacity computation, as better theoretical
guarantees can be obtained using grid search. Instead, we focus
on more practical gains that may be obtained using Alg. 7 over
Alg. 6.

Using Alg. 7 gives another advantage. Instead of computing
the sum capacity to a given precision, one can run Alg. 7 for
a fixed number of time steps to get an upper bound on the
sum capacity. Thus, it can also be used for bounding the sum
capacity instead of computing it to a good precision.

3) Comparing Grid Search and Dense Curve Algorithm
Performance: We compare the performance of the grid search
algorithm and the dense curve algorithm for computing the
sum capacity. For this purpose, we will consider a ran-
domly constructed two-sender MAC with input alphabet sizes
dy,dy and output alphabet size d,. We fix d; = 10 and d, =
20 and consider the cases do = 2 and dy = 3. Note that the
smaller dimension do determines the dimension for the non-
convex optimization. Hence, the value of d effectively decides
the overall computation time. The numerical simulations are
run on single core of a personal computer, and the code is
implemented in Python (see Sec. E-B for more details). All the
run times reported are average time taken over three repetitions
of the simulation.

For dy = 2, the dense curve algorithm can be simplified to
modified Piyavskii-Shubert algorithm, as noted in Sec. V-B.
Thus, for do = 2, we compare the performance of modified
Piyavskii-Shubert Alg. 5 with that of grid search Alg. 6 for
computing the sum capacity to a tolerance of ¢ = 0.15. For
the example we consider, we find that Alg. 5 takes about
0.34 s to run, whereas Alg. 6 takes about 1.51 mins to run.
Thus, for this example, modified Piyavskii-Shubert algorithm
is more than 250 times faster than grid search. For a tolerance
of € = 0.65, the run time of grid search Alg. 2 improves
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greatly to 1.06 s, whereas the run time of modified Piyavskii-
Shubert Alg. 5 improves to 0.11 s. In this case, the modified
Piyavskii-Shubert algorithm is almost 10 ten times faster than
grid search. We remark that a tolerance of ¢ = 0.65 is not
acceptable in practice because the computed sum capacity is
about 0.19 nats. We therefore use such a large value of € only
for benchmarking purposes.

Next, we consider the higher dimensional case of dy = 3.
For this case, we compare the dense curve Alg. 7 with grid
search Alg. 6. For a tolerance of ¢ = 0.65, we find that the
dense curve Alg. 7 takes 3.55 s whereas grid search Alg. 6
takes 3.65 min. In this case, dense curve algorithm is about
65 times faster, though as noted previously, a tolerance of € =
0.65 cannot be used in practice. For € = 0.15, the dense curve
Alg. 7 takes about 1.72 mins, whereas grid search takes too
long to complete. We estimate that our current implementation
of grid search algorithm will take more than 3 days to complete
for ¢ = 0.15 on the hardware the code was executed. This
shows that for the example under consideration, grid search is
not a practical option.

We remark that there can be some cases where grid search
performs as good as or better than the dense curve algo-
rithm. For small dimensions, grid search scales poorly with
the tolerance in comparison with dense curve and modified
Piyavskii-Shubert algorithms, as evidenced from the above
numerical simulations. As the dimension dy becomes large
and dy,d,, and € are fixed, the grid search algorithm scales
polynomially with ds whereas dense curve algorithm scales
exponentially. Despite this, the polynomial power can be so
large in practice that grid search is still impractical. Thus,
our numerical simulations suggest that for small dimensions
and small tolerance, modified Piyavskii-Shubert algorithm (for
ds = 2) and the dense curve algorithm (for dy > 2) perform
better than the grid search algorithm in practice.

As noted previously, both the grid search algorithm and the
dense curve algorithm (as well as modified Piyavskii-Shubert
algorithm) can be parallelized to get better performance.
It remains to see if these algorithms can be improved further
so as to make them practical for larger values of ds. Finally,
we show how our algorithms compare with the relaxed sum
capacity.

D. Comparison With Relaxed Sum Capacity

In order to compare our algorithms for computing the
sum capacity with the relaxed sum capacity, we construct a
family of binary MACs parametrized by a tunable parameter
t € [0,1]. These MACs have the property that for ¢ = 0,
the relaxed sum capacity is equal to the actual sum capacity,
whereas for ¢ = 1, the relaxed sum capacity is twice the
actual sum capacity. By computing the sum capacity using
our algorithms as well as the relaxed sum capacity for as a
function of ¢, we can compare how well our algorithms do in
relation to the convex relaxation approach.

For generating examples of such binary MACs, we construct
a family of MACs that we call the noise-free subspace MAC.
To that end, let A and B be input alphabets and let Z
be the output alphabet of the noise-free subspace MAC.
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We assume that A, B and Z are finite sets. The noise-free
subspace corresponds to a set YW C A x B. Consider the
mapping nr: W — Z that determines the symbol that is
deterministically output by the channel when the input is in the
noise-free subspace. Then, given the tuple (A, B, Z, W, np),
the MAC Nr has the probability transition matrix

6277/ a (a7b)6W
Np(zla,b) = { 5mr@?
plele) {gl (a,) ¢ W

When the input is in the noise-free subspace, the channel
deterministically outputs the symbol selected by nr. On the
other hand, when the input is not in the noise-free subspace,
the channel outputs a symbol uniformly at random. Therefore,
a noise-free subspace MAC can be thought of as a generaliza-
tion of nonlocal games MAC studied in Part I (see Eq. (9)).

Now, for constructing the parametrized family of binary
MACSs mentioned at the beginning of the section, we construct
two examples of the MAC N corresponding to the “extrem-
ities” of the parametrized family. For both of these examples,
we consider the alphabets A = {a1,a2}, B = {b1,b2}, and
Z = {z1,22}. The examples are labelled 0 and 1.

For the first example, we take W = {(a1,b1)} and
np(a,b1) = z1. That is, only a single input (aj,b;) is
transmitted noise-free. For this example, we can write the
probability transition matrix as

o (1 05 0.5 0.5
N _(O 0.5 0.5 0.5

where the rows correspond to z € Z, while the columns
correspond to (a,b) € A x B. In App. E, we show that the
sum capacity in nats is

(66)

SN = (:) - %m(g) ~0.223
where h is the binary entropy measured in nats. We further-
more show that the relaxed sum capacity in this case is also
equal to C (N, I(;O)) = 0.223 nats. Thus, for our first example,
we have C(/\/’}O)) = S(Ng))).

For the second example, we take W = {(a1, 1), (a2,b2)}
as well as np(ay,b1) = 21 and ng(ag,by) = 29. That is,
the inputs (a1, b1) and (as, be) are transmitted noise-free. The
probability transition matrix in this case can be written as

v (1 05 05 0
N _<0 05 05 1

where the rows correspond to z € Z, while the columns
correspond to (a,b) € A x B. In App. E, we show that the
sum capacity of the MAC W, ;,1) in nats is equal to

SVEY) = 0.51n(2) ~ 0.3466.

On the other hand, we show that in this example the relaxed
sum capacity takes the maximum possible value C(N, 15“1)) =
In(2) nats, thus significantly overestimating the sum capacity.
For this example, we have C(Nl(pl)) =2 S(N}l)).

Using these examples, we construct the parametric family
of binary MACs as a convex combination of the MACs in
above examples. That is,

NE = (1 =N + v
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0 0.5 0.5 0.5(1+1) 67

where ¢t € [0,1]. Observe that for ¢ = 0, we get the first
example N/ (0), whereas for ¢ = 1, we get the second example
NP, From the above results, we know that C(NY)) =
SN) whereas C(NE) = 2 SW). The MAC NV
basically interpolates between these two cases.

In Fig. 3, we plot S(./\/(t)) and C’(Nl(pt)) as a function of t.
The sum capacity S(N, fJ ) is computed using Alg. 5 with a
tolerance of € = 0.01, whereas relaxed sum capacity C' (N, l(f))
is computed using standard techniques in convex optimization.
We can see from the figure that at ¢ = 0 and ¢ = 1,
the numerically computed values agree with the analytical
results. Furthermore, we observe that C'(N, éf)) becomes a
progressively worse bound on S(N };)) as ¢ ranges from 0 to
1. Thus, we demonstrate that our algorithm for computing the
sum capacity does better than the relaxed sum capacity.

:(1 0.5 0.5 0.5(1—t))

VI. CONCLUSION AND FUTURE DIRECTIONS OF
RESEARCH

Computing the sum capacity of a multiple access channel is
a nonconvex optimization problem. For MACs obtained from
nonlocal games, we obtained an analytical upper bound on
the sum capacity that depends only on the number of question
tuples in the game and the maximum winning probability of
the game when the questions are drawn uniformly at random.
Our formula is an upper bound on the achievable sum rate
even when the senders of the MAC can share an arbitrary
set of correlations. Using this formula, we found a separation
between the sum capacity and the entanglement-assisted sum
rate for the 2-sender MAC obtained from the Magic Square
game that is larger than the previously reported value. We also
obtained separations in some other relevant scenarios using the
CHSH game and multiparty parity game.

Furthermore, we studied the performance of the upper
bound on the sum capacity obtained by relaxing the nonconvex
problem to a convex optimization problem. By constructing the
signalling game, we showed that one can obtain an arbitrarily
large separation between the sum capacity and the relaxed sum
capacity. With the help of numerical simulations, we argued
that this separation holds even when the senders are allowed to
share no-signalling correlations. These results indicate that the
relaxed sum capacity can be a very poor upper bound on the
sum capacity. In a recent work, Fawzi & Fermé [38] compute
the no-signalling assisted sum rate for MACs, allowing feed-
back. In their study, they pose the question as to whether the
no-signalling assisted sum rate (allowing feedback) is equal
to the relaxed sum capacity. It would be interesting to see if
the MAC obtained from the signalling game can be used to
answer this question in the negative.

In response to the above observations, we studied algorithms
to compute the sum capacity. First, we identified that the
mutual information occurring in the computation of the sum
capacity satisfies a Lipschitz-like property. We subsequently
proposed a few algorithms one can use to optimize such
functions, by appropriately modifying and generalizing exist-
ing algorithms for optimizing Lipschitz-continuous functions.
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Fig. 3. Plot of the sum capacity S (N ;f >) (in nats) and the relaxed sum capacity C'(NV I(f)) (in nats) as a function of the tunable parameter ¢. The parameterized

family of binary MACs N I(;t) is defined in Eq. (67). The sum capacity is computed to within a tolerance of ¢ = 0.01 using Alg. 5. We find that the relaxed

sum capacity gives a progressively worse bound on the actual sum capacity. We also find that the analytically computed values of SN/ I(,t)) and C'(V, I(;t)) for

t =0 and t = 1 show good agreement with the numerically computed values.

Using this, we were able to show that the sum capacity of
any two-sender MAC can be computed to a fixed precision in
quasi-polynomial time. Our algorithms are practically efficient
for computing the sum capacity of a family of two-sender
MAC:s that have at least one input alphabet of size two.

We remark that some other entropic quantities also satisfy
a Lipschitz-like property. This is also true in the quantum
setting, for example for the von Neumann entropy. There-
fore, further investigation of algorithms to optimize such
Lipschitz-like functions might be helpful in solving nonconvex
problems in both classical and quantum information theory.
In particular, it would be interesting to see if there are other
practically relevant problems in information theory which
would benefit from such an approach. In any case, the algo-
rithms we present in this study for optimizing Lipschitz-like
functions over the standard simplex suffer from the drawback
that they are not scalable, i.e., the optimization is very costly
to perform in practice as the dimension increases. Therefore,
finding more practical algorithms to perform this optimization
is an interesting direction for future research. In particular, the
algorithm for optimization using dense curves has a scope for
improvement because we only prove sub-optimal convergence
guarantees.

Another avenue for performing such nonconvex optimiza-
tion is to devise randomized algorithms, which might allow
for faster convergence (with high probability). We remark
that using randomized algorithms to optimize Lipschitz-like
functions over an arbitrary compact and convex domain is not
expected to give significant improvements over the determin-
istic algorithm we presented in this study. This is because
the number of iterations needed for convergence will scale
exponentially with the dimension in both the deterministic and
stochastic setting [39]. It is therefore important to use infor-
mation about the domain (for example, standard simplex) or
impose some additional restrictions on the objective functions
while designing such algorithms. It would also be interesting
to see if there is a general method to determine a priori if

the convex relaxation gives a good or a bad bound on the
optimum of the non-convex problem. This would allow one
to use the more efficiently computable convex relaxation in
relevant scenarios.

APPENDIX A
BOUNDING THE CORRELATION-ASSISTED ACHIEVABLE
SUM RATE OF MACS FROM NONLOCAL GAMES

Proof of Proposition 2: We solve the minimization prob-
lem mingea, —F,(7), which is equivalent to the given
maximization problem. Note that since the entries of w are
either 0 or 1, we can write KK = {i € [d] | w; # 0}. Then we

can write the Lagrangian for this minimization problem as

d
L(m A\ V) = —Ip(m) — (N, 7m) + v Zm -1
i=1

d
= Zpllnpl — Zﬂ'jwj 11’1d—|—h’1d

i=1 ickC

d d
72)\17‘%4’1/ Zﬂlfl 3
i=1 i=1

(68)
where
_ 1 1¢
pi = (Wn)i = mwi + ~ — - ;ijj. (69)

The expression for the probability distribution p, which is the
output of the channel Ng, is obtained from Egs. (26) and (27).
The variables Ay, ..., \; are the dual variables corresponding
to the inequality constraint m; > 0 for all ¢ € [d], and v
is the dual variable corresponding to the equality constraint
Z?:l m; = 1. We also write K = |K|.

Case 1: 0< K <d

We can write

11 .
B 7ri+3—32j€,c7rj fori e K

Pi= 1 fori ¢ K.

(70)
17 d ek T
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Since p; > 0 for all 2, we must have

Z’/Tj S 13

jex
Then, we can consider two sub-cases: either (a) )

Lor (b) ) ;exmj <1 at the optimum.
(a) If Zj cx ™ = 1 at the optimum, then from Egq. (70),

we get
P 7T7;
bi 0

Furthermore, since Zje,c m; = 1, we also have m; = 0 for
i ¢ K. It follows from Eq. (29) and Eq. (71) that %, (%) =
H(p), where p is as given in Eq. (71). Thus, p can be taken as
a probability distribution on the indices /C, and subsequently,
we obtain

ek T

fori e KC

for ¢ ¢ K. 70

max S, (7) = In K. (72)

(b) If > jex ™ < 1 at the optimum, we can infer from
Eq. (70) that p; > O for all ¢ € [d] at the optimum.
Thus, the entropy H (p) is differentiable at the optimum, and
consequently, we can differentiate the Lagrangian given in

Eq. (69). The gradient of the Lagrangian is given as

oL  [Inp;—13% np
871'] A +v

—Ind—-X;j+v forjek
for j ¢ K.

Note that we are solving a convex optimization problem
and Slater’s condition holds because the constraint set is a
simplex [40]. Therefore, the KKT conditions are necessary
and sufficient for optimality (see Ch. 5.5 in Ref. [40]).
Subsequently, the optimal distribution 7 satisfies [40]
(Primal feasibility) m € Ay,
(Dual feasibility) A; > 0 for all ¢ € [d],
(Complementary slackness) \;m; = 0 for all ¢ € [d], and
(Stationarity) VL = 0.
For j ¢ IC, the condition V£ = 0 gives

A= (73)

Since Zje)c m; < 1 by assumption and m € A4, we must have
mj» > 0 for some j' ¢ K. Then, by complementary slackness,
we obtain A; = 0. Using this in Eq. (73), we get v = 0.

On the other hand, for j € K the condition VL = 0 gives

d
1
Inp; — aZmpi = \; +1Ind,

i=1
where we used the fact that v = 0. To simplify this equation
further, we make the observation that

) mi+ B foric K
Pi= BL fori ¢ KK
with pr, > 0, which follows from Eq. (25) and Eq. (70).
Therefore,

d
Zlnpl Zlnpl (d—
i=1

e

K)In(pL/d),
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where d—K = |[d] \ K|. Thus, for j € K, we obtain

1 K PL
SN g = At Ind+ (1— 2 ) mPE
d2p= it (1-g)m

Inp; —

If we label the indices in K as ji,...,jx, we can write the
above as the following matrix equation:

o i ST At
i i 1—* Inpjj.
Aj, +1nd Jr —) In 2
(74)
Ajg +Ind+ 1——)ln”
Let 0o = ) denote the vector of ones. Then, the

matrix appearlng in the LHS of (74) can be expressed as
I—o00” /d. By the matrix determinant lemma (see Cor. (18.1.3)
in Ref. [41]), we know that this matrix is invertible iff
1 —o%o/d = 1-K/d # 0, which is always true by our
assumption that K < d. Its inverse is given by the Sherman-
Morrison formula [42], [43] as follows:

1 -t 1
(H—d00T> =1+ d_KOOT.

Using this inverse in Eq. (74), for j € K, we obtain

pL
Dj :Ejgy
where
1 d
E; =exp (AJ+HZ/\1+d_KIHd>
i€C

Since A; > 0 for all ¢ € [d] due to dual feasibility, we have
E; > 1 forall j € K.
Using p; = m; + pr./d for j € K, we obtain
7Tj - (Ej - 1)%
Because E; > 1, we have m; > 0 for each j € K. Then,
by complementary slackness, we have A\; = 0 for all j € K.
Therefore, we obtain

E; = dTF Vj € K.

(75)

(76)

Now, we will solve for 7r; for j € K. For this purpose, note

that
et = d
i B -1

is a positive number for all j € K. Then, using pr, = 1 —
Y icx ™ and m; = e;py for j € K (see Eq. (75)), we can

write
—1 _ 1
€; T+ =1,
ek

which can be written in matrix form as
-1

€, + L1 1 Tj1 1

1 1 - el+1

K Tjx 1
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The matrix appearing in the LHS of the above equation can
be written as diag(ej_l) + 00T, which is invertible iff 1 +
> jex € # 0. This condition always holds because e; > 0 for
each j € K. Denoting A = diag(e;), we can use the Sherman-
Morrison formula [42], [43] to write

€i1
T oT Ao 4> ex €
=Ao—— 22 Ao= 77
0 o Ao i a7
Tk T+ ek €

Then, using e; = (E; — 1)/d for j € K along with Eq. (76)
and Eq. (77), we obtain
d
di-x —1
= r Viek
d+ K(d&=x —1)

T

and
d

L = < :
d+ K(d&=x —1)
Subsequently, we obtain

S = max S, (m)

TEAy

While the expression for .#}; looks complicated, it can be
greatly simplified. Denoting

d— K

d
da-K

o =

)

one can rearrange terms in .#; to obtain
F =In(K + k). (79)

From Eq. (72) and Eq. (78) and the fact that 0 > 0 for
0 < K < d, we can infer that

max I () =I5
Case 2: K =0o0or K =d

K = 0 implies w; = 0 for all ¢ € [d]. Thus, (7, w) = 0 for
all m € Ay, i.e., we will always lose the game. In that case,
it can be verified that we must have .%,(7w) = 0 for all 7 €
Ag.

On the other hand, K = d implies w; = 1 for all ¢ € [d],
meaning that the strategy is perfect. In particular, we have
(m,w) =1 for all m € Ay, ie., pr = 0 for any distribution
on questions. It can be verified that ., (7y) = Ind for the
uniform distribution 7y € Ag. O

Proof of Proposition 3: 1) Let w®) € {0,1}? denote
a binary deterministic strategy that can answer d — 1 of
the d questions correctly. Then, there is exactly one index
k € [d] such that w,(CD) = 0. We show that we can achieve
maxy, S (m) using the deterministic strategy .Z,,(p)(7) for
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some appropriate distribution 7 € A,4. Note that the winning
vector w(P) may not be permitted by the game, but it still
gives an upper bound on max, S, ().

Since by assumption K* < d, we can find an injective
function o: £* — [d] \ {k}. The map o will be used to label
the indices. We construct the distribution 7 € A, as follows:

for i € o(K*)
for i ¢ o(K*) \ {k}

~ _ *
T = wa'*l(i)ﬂ-g-—l(i)a
=0,

e =1-— Z .

i€o(K*)

(80)

Since o is an injective function on C*, it is invertible when
its co-domain is restricted to its range o(K*). Thus, o= (4) is
well-defined for ¢ € o(K*).

Since w§D) =1 for j € [d]\ {k} and w,gD) = 0, we have

<’LU(D),%>: Z wafl(i)’n—;—l(i): Z ’U.)j’lT;v< = (w,w*) .

i€o(K*) JjEK*
(1)

That is, the winning probabilities obtained from w, n* and
w®), ¥ are the same.

Next, we will look at the output probability of the channel
in the two cases. For w, 7*, the output probability is given as
(see Eq. (27))

e 1_ 1 Lk . *
Wi + g — g Xjex- wim; fori€ K
E3
pb; =

1_

1 * . *
7 EZje/C* w;T; for i ¢ K*,

whereas for w(?), 7, the output probability is given as

_ Wo1 (i) T+ 3~ q Ljers Wiy for i € o(K*)

pi =
i 2 jeke Wi
Here we used Eq. (81) to obtain the expression for p. Since
|K*| = |o(K*)|, the probability p is just a permutation
of p*. Furthermore, because Shannon entropy is invariant
under permutation of the entries of the probability distribution,
we have H(p) = H(p*). Then from Eq. (27), Eq. (29), and
Eq. (81), we have

for i ¢ o(K*).

max I, () = Joy (1) = Fp(0) (T) < Max Jy o) (1) = I4y

where .#; | is given by Eq.(33).

2) We focus on the case where K* = K = d. This implies
w; # 0 and 7} # 0 for all ¢ € [d]. Our goal is to solve the
optimization problem max,eca, -Z (7). Following Eq. (69),
we write the Lagrangian for the problem

d d
L(m; A\ v) = Zpi Inp; — ijwj Ind+Ind
i=1 i=1
d d
—ZAﬂﬁu(qu), (82)
i=1 i=1
where
11
pizﬂiwi+E—E;W.jwj- (83)
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Since K* = d, the probabilities p; are non-zero at the
optimum, and hence we can differentiate the entropy at the
optimum.

Note that we are solving a convex optimization problem
and Slater’s condition holds [40]. Therefore, KKT conditions
are necessary and sufficient for optimality [40]. From KKT
conditions, it follows that V£ = 0, which gives

d
1 )\j v .
lnpj—g;:llnpi—w—j—w—j—i—lnd7 J € [d].

Since by assumption 7; # 0 at the optimum for all i € [d],
we have \; = 0 by complementary slackness. This gives

p 1/d
14

pj=d (Hm) exp (—)
i=1 wj

for j € [d]. By multiplying Eq. (84) for j = 1,...,d, we can
infer that

(84)

V= dweff Ind (85)

since p; # 0 at the optimum. Next, summing over j € [d] in
Eq. (84), we obtain

4 1/d
1
d <Hpi> = — . (86)
=1 Zj:l exp (_wLJ)
Combining this with Eq. (84) and Eq. (85), we obtain
exp (7 dwzi}n d)
pi = - (87)

d dwerlnd )
Zj:l exXp (—7%,

Therefore, at the optimum, we have a Boltzmann distribution
for the probability of outcomes of the channel.

Now, instead of solving for 7 from Eq. (87), we find a
suitable expression for the objective function .#,,(7) in terms
of p and w (instead of 7w and w). To this end, subtracting
Eq. (83) corresponding to two different indices ¢ and j and
summing over the index ¢, we obtain

d
mei =1+ d(ﬂ'j’ll)j —pj).

i=1

Dividing this equation by w; and summing over j, we get

1 1 Dj
YYo=y (132
Jj=1 J =1 j=1 J j=1 J

d d ]

> miw; = 1—dwer a1,
; - w;y
=1 j=1

where wegr is as defined in Eq. (35). Substituting this in
Eq. (29), we find that the mutual information .#, () can be
written as a function of the outcome probability p as follows:

d
I(7) = H(p)—dwer | S 2L —1
=1 Wi

Ind. (88)
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To obtain the value of %, (7) at the optimum, we substitute
Eq. (87) in Eq. (88). Denoting max e, S (1) = I*(w),
one can rearrange terms to obtain

d
I (w) = dwerInd + 1In Zexp (—dwefflnd> (89)
W

j=1 J

d
1
=1In E exp [dwefflnd <1 - )] , (90)
W
j=1 ’

where we get the last equation by noting that dweglnd =

In exp(dwes In d). O
Proof of Proposition 4: To obtain an upper bound on
sup  SH(w)
weWe,w>0

given in Eq. (38), we solve a relaxation of this optimization
problem. For this purpose, note that the set over which we

optimize can be written as
d
We. = {w (0,17 [w >0, 2=t ng(G)}.

d
Let HM(ws,...,wg) be the harmonic mean and
AM(wy,...,wq) be the arithmetic mean of ws,...,wq,
respectively. Observe that
dwess = HM(wy, . . ., wq).
Then, since HM(ws,...,wq) < AM(wi,...,wy) for
wy, ..., wg > 0 (with equality iff w; = --- = wy), we have
d
duwes < 221 < 8 (), 1)

d <
With this in mind, we define the set
Weer = {w € [0, 14w >0, dwey < WGC(G)}-

Then, from Eq. (91), it follows that ﬁc> - chff. Therefore,
we have

sup SH(w) < sup F£H(w).
wEFC> weWe .o
Subsequently, we solve the optimization problem
SUP,,capg,, 7 (w). To that end, we make the change
of variables 1
= —
w;
for i € [d]. The optimization problem then becomes
d d
sup In <Z exp [d Ind (1- tl)]>
i=1 Zj:l t)
s.t. t>1
Z(‘i—l ti 1
= > . 92
FRICATE) ©2)

We solve Eq. (92) by splitting it into two maximizations.

To that end, define
d

Zi:l ti

S=—,

d 93)
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so that the objective of the optimization in Eq. (92) can be
written as
Ind ) Ind
) ——t + )
s S

(94)

f@@:f@@:Lm<_i%M”

where LSE(y1,...,yd) = 1n(2?:1 e¥i) is the log-sum-exp
function. Since LSE is a convex function, we can conclude
that f(t, s) is convex in ¢t for a fixed s. Then, Eq. (92) can be
expressed as

sup f(t) =

teWe ot

sup max f(¢,s),
s2(w€(G)) 1 teTWely

where
Weey =t € R Luimit
Ceff - 6 R ‘ t 2 ].,

is a translated and scaled simplex. The extreme points of
aniﬁf) are given as

= (1 ... 1, 1+s-Dd)",  ©9)

and its permutations are denoted by tgz), c. ,tgd). Note that
the constraints in Eq. (92) imply s > 1.

Now, we are seeking to maximize the convex function
f(t,s) over the set @CS}) (for a fixed s). However, since
f is convex and any point t € ﬁc;‘? can be written as
t= Z?zl )\itgi), we have

d
F(t.s) <D Nf(ED,s).
1=1

Then, because f(t,s) is invariant under the permutation of
the components of ¢, we have f(t" s) = f(t),s) for any

1,7 € [d]. Therefore,
max f(t.5) = f(£).5

temc;{
1
—In <d 1+ exp [dlnd (5 >D
S

where we substituted Eq. (95) in Eq. (94) in the last equation.
Then, since f (t(l), s) is a decreasing function of s, we can
infer that

sup max f(t,s)=f (th 1)

s>(wSe(G))~1 teWe TwSe(G)
—Tn (d —14 d*<1*wGC<G>>d) :

giving the desired bound. O

APPENDIX B
SOME NOTES ON STRATEGIES FOR NONLOCAL GAMES

We begin by characterizing the extreme points of the set of
conditional distributions (over finite sets).

Proposition 13: Let X and )Y be finite sets, and let C denote
the set of conditional probability distributions on ) given
X. Then, the extreme points of C correspond to conditional

e f B . .
probabilities py, x (Ylx) = 0y f(x) obtained from functions
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f: X — Y. In particular, any conditional probability distri-
bution py|x € C can be written as a convex combination of
prl x corresponding to functions f.

Proof:  For convenience, let us denote |X| = m and
|Y| = n for some m,n € N. We also fix a labelling of
elements X = {x1,...,2,,} and Y = {y1,...,yn}. The set
of conditional probability distributions C can be thought of as
the set of functions from X — A,,. That is, for each x € X,
we have a probability distribution over ). Thus, we identify
C with the set (A,)™.

Since A, is a simplex in R™, its extreme points are
ei,...,e,, where e; is the standard Euclidean basis vector
for the ith coordinate. Therefore, the extreme points of C =
(A,)™ are (e;,,...,e;, ) foriy, ... i, € [n]. We argue that
such extreme points can be obtained from functions f: X —
Y.

To that end, given an extreme point (e;,,..
construct the function

.,e; ) of C,

f®5) =y, Gelm]

Observe that the conditional probability distribution deter-
mined by the function f is

Prix (%) =0 s = 0.9, = e,

for j € [m]. Since there are a total of ||!*! extreme points
of C, and just as many functions from X to ), the above
construction gives a bijective mapping between the extreme
points and these functions. Since C is a compact and convex
set with a finite number of extreme points, it is generated as
the convex hull of its extreme points by the Krein-Milman
theorem [44]. O

In the following proposition, we show that the set of
no-signalling strategies is a compact and convex set. The proof
of this proposition is constructive, and it can therefore be used
to construct the set of no-signalling distributions numerically.

Proposition 14: Let Xy, ..., Xn denote the question set for
N players, and let )y, ..., Yy denote the answer set. Let Gysg
denote the set of no-signalling strategies used by the players.
That is, Py|x € G iff

TN) =Dy, x, (VilTi) Vor € Xy, E€[N]\ {i}
(96)

me(yi|$17~-~7

for all y; € Vi, z; € X;, i € [N]. Then, Gys is a compact and
convex set. Specifically, Gys is a convex polytope obtained as
the intersection of hyperplanes and halfspaces.

Proof: For convenience, we denote X = X} X --- x Xy
as the question set and Y = ); X --- X Yy as the answer set.
The set of all strategies py|x (y1,--.,y~|T1,...,TN) can be
written as a product of simplices (AM)'X | (see Prop. 13),
and is therefore a compact set. Also note that we can write
the no-signalling condition given in Eq. (96) as

Z pY|X(y1a"'ayiv"'7yN|x17"'7xi7"'7IN)

Yi €Y;

JFi

= Z pY|X(y15'"7yi7"'7yN|x/17"'7xi7"'vIEV)
yjeyj
J#i
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Vag,x) € Xk, k€ [N]\ {i} (97)

for all y; € V;, z; € X;, i € [N]. In the above equation,
the sum over y; € J; is a shorthand for the sum over y; €
Vi, YN € IN.

We will show that the set of no-signalling strategies Gys
is a closed set. First, note that Gyg C (AW‘)‘X‘, ie., the
set of no-signalling strategies is contained in the set of all
strategies. Thus, we can write the elements of Gyg as vectors
v = (v, .. 0*D), where v € A}y, is a probability
vector. Note that v(*) is a |J/|-dimensional vector whereas v is a
|X||)V|-dimensional vector. Essentially, the vector v() denotes
a probability distribution py|x (y|z(V) over Y for a fixed
() € X. Using this vectorial representation of a strategy,
we will write the no-signalling condition given in Eq. (97) in
matrix form.

To that end, fix an ordering for the elements of ).
Then, we can index the elements of v as ”81.... ) for
(y1,...,yn) € Y corresponding to that ordering. For each
y; € Vi (i € [d]), let s,, denote the |)|-dimensional vector
with 1 at each index (v),...,yy) € Y with ¥/ = y; and
0 elsewhere. For example, if )}y = {a,b} and Yy = {c,d}
and we write the elements of ) = {(a, ¢), (a, d), (b, c), (b,d)}
in that order, then, s, = (1,1,0,0)7, s. = (1,0,1,0)7, and
so forth. Observe also that, for each k € [|X]],

ngjl-v(k) = E pY|X(y1aayHayN|x(k))
Yi €V;
J#i

Similarly, fix an ordering for X'. For each x; € &; with i €
[N, let Z,, be the set that contains the indices (z],...,zy) €
X with 2} = x;. Then, define the |Z,,| x |X||)| matrix
S(z;,y;) in block form as follows. Imagine each row of
S\(x:,y:) being split into |X'| blocks of |V|-dimensional vectors,
ie., (b1 by X‘) with b; a |Y|-dimensional (row) vector.
We label the rows of S(,, ,,) with Z,,,. Define the row k € Z,,

to be the block (le‘y| sfl 01x|y|) with Sg,; in
the k-th block.

Let us label the blocks o(® of the vector
v o= (W, 00Dy e (Ay)IF as vEeTN) - for
(z1,...,xn) € X using the ordering of X that we have

fixed. Then, we have (S(z, ) V) (a1,....on) = S 01 *N) for
(1,...,2N) € Iy, That is, S(,, ,.)v is a |Z,,|-dimensional
vector with the entries

(S($i7yi)v)($1;~~-~,IN)

= Z pY|X(y17"'7yi7"'7yN“r17"'7xi7"'7xN)
Yi €Y;
J#i
for (z1,...,2n) € Z,,. Since the i-th component of

(x1,...,2n) € I, is fixed to be z;, the no-signalling
condition given in Eq. (97) says that all the components of
S(z;,y:)v are equal.
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Therefore, we enforce the no-signalling condition as fol-

lows. Define a (|Z,,| — 1) x |Z,,| matrix
1 -1 0 0 O
0 1 -1 0 O
D:L’i = )
0 0 0 1 -1
and observe that if r = (7 r‘IIi|)T is any |Z,|-

dimensional vector, then D,,r is the (|Z,,| — 1)-dimensional
T

vector (r1 — 7y T\Z,, -1 — lemi\) . Then, by the pre-

ceding remarks, the no-signalling condition can be written as

Dy, Sz, yyv =0 forall z; € Xj, y; € Vy, i € [N]. (98)

Since Dy, Sz, y,) is a (|Zz,| — 1) x |X||Y| matrix and v
is a |X||Y|-dimensional vector, the equation D, S, 4.)v =
0 encodes (|Z,,|—1) hyperplanes (thinking of v as an arbitrary
| X'||V|-dimensional vector). Therefore, the set of no-signalling
strategies can be written as

Gns = {v € (M) [Ds, oy v =0

Vo, € X, yi € Vi, i € [N]}. (99)

This is the intersection of the compact set (A(y)!*! with the
hyperplanes defined by Dy, S(,, 4, v = 0. Since hyperplanes
are closed, the set ©yg is closed as well.

Since (Am)'){' is bounded, Gyg is also bounded, so that
Gns is compact. The convexity of Gygs follows from the fact
that (Am)'X |'and hyperplanes are convex. O

APPENDIX C
ANALYSIS OF ALGORITHMS FOR OPTIMIZATION OF
LIpSCHITZ-LIKE FUNCTION

In this section, we present convergence analysis for algo-
rithms used for Lipschitz-like optimization. We also present
an algorithm for performing optimization of Lipschitz-like
functions over an arbitrary compact & convex domain.

A. Optimizing Lipschitz-Like Functions Over an Interval
Using Modified Piyavskii-Shubert Algorithm

We first present a convergence analysis for modified
Piyavskii-Shubert algorithm that finds the global maximum
of Lipschitz-like functions over a closed interval.

Proposition 15: Let 8: R, — R be a non-negative, con-
tinuous, monotonically increasing function with 3(0) = 0. Let
D = [a, b] be a closed interval, where a,b € R. Let f: D — R
be a real-valued function satisfying

|f(q) = f(d)] < B(lg—d'])

Then, for each choice of tolerance € > 0, Alg. 1 terminates
in a finite number of time steps. If f(¢*) denotes the output
of Alg. 1 corresponding to a tolerance of ¢ > (0, we have
maxgep f(g) — f(¢*) < e. The number of time steps required
to converge with a tolerance of ¢ > 0 is bounded above by
[(b—a)/d], where 6 =sup{d’ > 0] f(z) <e/2V0<z<
5}
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Proof: Let i € N be a natural number. Given any ¢(*) €
[a, b], define the function

Fi(q) = f(d) + B(la — ¢7]) (100)

for ¢ € [a,b]. Since f(¢') — f(q) > —B(lg — ¢"]) by
assumption, we have f(q) < F;(q) for all ¢ € [a,b]. Given
that we initialize ¢(*) = @, the maximum of Fy(q) occurs
at b because 3 is a monotonically increasing function with
(0) = 0. This justifies the assignment ¢(!) = b at the start of
the algorithm.

Now, suppose that Alg. 1 terminates at the K'th time step.
Then, the algorithm has generated points ¢(?),... ¢F) e
[a,b] and a point ¢* € [a,b] satisfying F(¢*) — f(¢*) < e.
The function F' and the point ¢* are obtained as follows.
The points ¢(©, ..., ¢) are sorted at the beginning of the
Kth iteration, so that a = ¢(© < ¢ < ... < ¢(F) =,
Then, points §*) € argmax ¢ (i q(i+1] min{ F;(q), Fi4+1(q)}
are obtained through root finding for 0 < ¢ < K — 1.
We choose m € argmax;.x_; F;(g") and set ¢* = g™
and F' = F,,. o

Next, we elaborate on how
argmax ¢, q6+n] Mn{F5(q), Fit1(q)} is computed
using root finding. First, consider the function
9i(q) = Fi(q) — Fi+1(q). From the non-negativity and
monotonicity of 3, it follows that F;(¢q) is a monotonically
increasing function in the interval ¢ € [¢(V, ¢("+1)], whereas
Fi11(g) is a monotonically decreasing function in the
interval ¢ € [¢),q*+D]. Therefore, g;(q) is a continuous
and monotonically increasing function in the interval
q € ¢, qU"+1)], where the continuity of g; follows from that
of F; and F; 1. Since (0) =0and f < F; forall0 <i < K,
we have g;(¢®) < 0 and g;(¢"t")) > 0. Therefore, the
function g; has a root g¥) in the interval [¢(*), ¢(t1)], and
since g; = F; — Fy,1, we have F;(g") = F;,1(g"). From
the monotonicity properties of F; and F;.;, we can infer
that §*) maximizes the bounding function min{ F;, F; 11} in
the interval [¢(*), ¢"*1)], and this maximum value is equal to
Fi(@") = Fipa(@?).

Then, because m € argmax,,, ; F;(@?), ¢* = g™
and F = F,,, we can infer that for all ¢ € [¢?,q(*D)],
we have

f(q) < min{Fy(q), Fix1(q)} < Fi(@") < F(q*) < f(g")+e

Since the above equation holds for every 0 < i < K — 1, and
the intervals [¢(*), (], ..., [¢E=1), ¢)] cover [a, b], we can
infer that

g(i) c

max f(q) < f(q") +e¢
q€la,b]

It remains to show that Alg. 1 terminates in a finite number
of time steps. To that end, note that 3(x) is a continuous
function of x € Ry with 8(0) = 0. Therefore, for any given
€ > 0, we can find a § > 0 such that 5(x) < ¢/2 whenever
0 <z < 4. Let K € N denote the current time step. For
0<i< K-1,let q(“ denote a root of F;— F;; in the interval
(¢, qUHD]. Let m € argmaxy.;x_; F3(@?), ¢* = g™
and F = F,, as before. Since f(¢"™) — f(¢*) < B(l¢* —
q"™1), we have F(q¢*) — f(q*) < 28(l¢* — ¢'"™|). Therefore,
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when |¢* — ¢("™)| < 6, we have F(q*) — f(q*) < e. Since
F(q*) = F(q*) = Fiut1(¢*), we can similarly infer that
F(q*) — f(q*) < e whenever |¢g* — ¢(™*V| < §. Therefore,
the algorithm terminates if either |¢* — ¢(™)| < § or |¢* —
q(m+1)| < §, where g € [q(m),q(m—‘rl)].

As per the procedure outlined in Alg. 1, the point ¢* will
join the iterates ¢(?),...,¢") at the (K + 1)th time step.
When this new iterate ¢* is added, the updated intervals
include [¢("), ¢*] and [¢*, ¢ D]. Since ¢* € [¢(™), ¢(™+V)],
we either have |¢* — ¢("™)| < |¢g™*tD) — ¢(™)|/2 or |¢* —
gt < g+ — ¢(™)| /2. Since there are only a finite
number of intervals at each time step and the length of one of
the sides of the interval where the new iterate falls is at least
halved at each time step, at some large enough time step K,
we will have |¢* — ¢™)| < § or |¢* — ¢(™*1| < 4. Thus, the
algorithm terminates in a finite number of time steps.

The worst case scenario corresponds to the situation where
l¢) — ¢+ = § for all 0 < i < K — 1. In this case, the
algorithm terminates at the K'th time step, wherein ¢* falls
within one of these intervals. Taking § = sup{d’ > 0 | 5(¢) <
€/2}, there is a sequence ¢/, — § with 3(8!) < €/2 Vn, so that
by continuity of 8, we have (0) = lim, . 3(d},) < €/2.
Therefore, the number of time steps required for the algorithm
to terminate is bounded above by the number [(b — a)/d],
where 6 > 0 can be taken as the largest number that satisfies
B(x) <e/2 for 0 < x <4. O

Next, we present details of constructing and searching over
the grid for Lipschitz-like optimization.

B. Lipschitz-Like Optimization Over the Standard Simplex
Using Grid Search

We make the following observations about the integer grid
defined in Eq. (50). For the grid Ag n defined in Eq. (52) over
the standard simplex, we have Ay ny = Zgn/N := {n/N |
n € Zy v }. Therefore, the observations noted below also apply
to Ay y with appropriate modifications.

Proposition 16: Given d,N € N_, let Z; ; denote the
integer grid defined in Eq. (50). Then the following hold.

1) Any element n € Z, y can be written as n = (N —
Lag—1,8g—1—Lg_2,...,0o— L1, 1) for some integers 0 <
;<tliy1 <N,iel[d-2]

2) The elements of Z,, n can be ordered such that any two
consecutive elements are distance 2 apart in [;-norm.
This ordering is constructive and can be implemented
algorithmically.

3) The grid A4 n defined in Eq. (52) is a (2(d —1)/N)-net
in the [y-norm for the standard simplex in dimension d.
That is, given any x € Ay, there is some z € Ay n such
that ||z — z[|; <2(d —1)/N.

Proof: 1) We prove this statement by induction on the
dimension. For d = 2, any n € Z4 ) satisfies ny +no = M,
and therefore, n = (M —ny,ny) holds for all M € N, . Now,
assume that for any M € N, we can write each m € Zy_1 »s
in dimension d—1 as m = (M —s4_2, ..., 82— 81, 51), where
S1y..+,84—2 € N satisfy 0 < s; < 8,41 < M for i € [d — 3.
Then, given any n € Zy n, we can write ng + Zztll n; =
N. Denote ¢;_1 = Z?;ll n;, so that ng = N — ¢4_; and
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0 </¢4_1 < N. Then, since Z?:_ll = {4_1, we can find some
numbers fq,...,0q_o such that 0 < ¢; < ¥;41 < fly3_1 < N
fori € [d—3] and (n1,...,n4-1) = (bg—1 — La—2,..., 02 —
¢4, 1) by assumption. Subsequently, we can write n = (N —
li_1,...,85—L1,£1). Thus, by induction, the statement holds
for all dimensions.

2) We explicitly construct an ordering to prove the asser-
tion. The proof uses induction to obtain the desired result.
Suppose that for dimension d € Ny and any N € N, the
elements of Z;  can be arranged such that the first element
is (N,0,...,0), the last element is (0,...,0,N), and the
l;-norm distance between any two consecutive elements is
2. We call this forward ordering of elements. Writing the
elements of a forward ordered set gives us reverse ordering,
i.e., the first element is (0,...,0,N), the last element is
(N,0,...,0), and the l;-norm distance between any two
consecutive elements is 2.

For d = 2, the elements of Z3  can be ordered as either
{(N,0),(N—-1,1),...,(1,N—1),(0,N)} (forward ordering)
or {(0,N), (1, N—1),...,(N—1,1),(N,0)} (reverse order-
ing), so that 1-norm distance between any two consecutive
elements is 2.

Assuming that this statement (induction hypothesis) holds
for dimension d, we show that it also holds for d + 1. To that
end, we note using the previous result that every element
of Tgy1,n can be written as (N — sg4,...,82 — s1,51) with
0 < s; < 841 < N fori € [d— 1]. Then, we (forward)
order the elements of Z; 1 ny as follows. Let the first element
be (N,0,...,0). Choose the next sequence of elements as
follows. For elements of the form (N — 1,1 —s4-1,..
s1,81) arrange the elements (1 — sg—1,...,82 — 81,81) in
forward order, which is possible by assumption. For elements
of the form (N —2,2—s4_1, ..., So—s1) arrange the elements

.y 89 —

(2—84-1,-..,52 — s1) in reverse order. Continuing this way,
given elements of the form (N —s4, Sq4—S4—1,-..,52—S1, 1)
for fixed s4, arrange the elements (sq — Sg—1,. .., S2 — S1, 1)

in forward order if s; is odd, and in reverse order if sg is
even.
Then, for a fixed 0 < sg4 < N, if (N — 84,84 —

sh_1,...,81) is the element after (N — sg,5¢ —
Sd—1,-.-,51) as per the above ordering, we have
||(N—sd,sd—s&_1,...,sﬁ)—(N—sd,sd—s(H,...,sl)Hl =
||(sd—s&71,...,s’1)—(sd—s:iil,...,s’l)Hl = 2 by

induction hypothesis. Next, we consider the case when
sq increases by 1. In this case, the last element of
(N—54,...,82—51)is (N —54, 84,0, ...,0)if s4 is even and
itis (N —54,0,...,0,8q) if sq is odd. Then, the first element
of the next sequence (N — sq — 1,89 +1 — S4—1,...,81)
is (N —sq — 1,84 +1,0,...,0) if s4 is even and it is
(N —sq—1,0,...,0,8q + 1) if sq is odd. Therefore, the
{1-norm distance between consecutive elements when sy
increases by 1 is equal to 2. Therefore, the elements of
Zi+1,n can be ordered as described above. By induction, the
result holds for any dimension.

3) We prove this by induction. Given dimension d € N,
assume that for every € Ay, there is some z € Ay such
that ||z — z||; < 2(d —1)/N for all N € N,. For d = 2,
we can write any x € Ay as = (1 — x1,x1) for some z1 €
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[0,1]. Let ny € argmin{|zy —my/N| |0 <m; < N}, so that
have |21 —n1/N| < 1/2N. Choosing z = (1—n1/N,ny/N),
we obtain ||z — z||; < 1/N <2/N.

Now, suppose that the assumption holds for dimension d.
We show that it also holds for dimension d + 1. To that end,
let x € Agyq be written as x = (1 — s, 2, ..., Z441), Where
s = Zf;l x;. If s =0, then x = (1,0,...,0) and the result
follows. Therefore, let s > 0 and consider the vector 2’ =
(x2,...,2441)/8, so that 2’ € Ay Let M = [sN], and by
assumption, there is some 2z’ € Ag s such that ||z' — 2|, <
2(d—1)/M. Denote 2z’ = (ng,...,ng+1)/M and define n; =
N -1 n; = N— M. Then, |(1 — ) —ny/N| = [sN —
M|/N < 1/N since sN < M < sN + 1. Then, denoting

z=(n1,...,nq+1)/N, we have
nq / /
o= 2ll, = |(1 = 5) = 22| +llsa’ — M/,
1 M
< 5 +oll =l [s - 5|1,
2 S
<—4+2d-1)—
,N+( )M
2d
< —
- N

where we used the fact the s/M < 1/N. Thus, the statement
holds by induction. O

Prop. 16.1 helps in iterative construction of the grid, while
Prop. 16.2,3 will be used in construction of dense curve.
In practice, the ordering of elements given in Prop. 16.2 can
be done efficiently for moderately small dimensions. We use
this ordering in practice to generate the grid, and this allows
for easy parallelization.

Next, based on the results of Ref. [36], we calculate the
value of NV that needs to be used in the grid search to converge
to a precision of € > 0.

Proposition 17: Let f: D — R be a [-Lipschitz-like
function satisfying Eq. (48), where D = A, is the standard
simplex in RY. Let N = [1/6%], where § = sup{dé’ > 0 |
B(8") < €/2}. Let Ay n be the grid defined in Eq. (52),
and let f* = max{f(z) | z € Agn}. Then, we have
maxzen, f(x) — f* <e

Proof: This result is implied by techniques developed in
Ref. [36]. For the sake of completeness, we give a proof here
for the specific case of Lipschitz-like functions.

Given f: D — R, the Bernstein polynomial approximation
of f of order V € N is defined as

Bu(N@ = 3 7 (%) e

n€ly N

for x € A4, where we use the multi-index notation n! =
ni!l-ongl, 2™ =2t - x? forn € Iy v [36]. The sup-norm
of a continuous function f: D — R is given by | f||,, =
max,ep | f(z)], where we use the fact that D is compact.
Next, given a continuous function f: D — R, the modulus of
continuity of f is defined as

w(f,d) = |f(z) — f(y)

max
z,yeD
le—yll<o
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with respect to a suitable norm |-|| on R™ [36]. If f is
Lipschitz-like, then we use the norm with respect to which
f satisfies the Lipschitz-like property. For a (3-Lipschitz-like
function f, using Eq. (48), we have

w(f,8) < B(6),

where we used the fact that 3 is a monotonically increasing
function.

Then, given a (-Lipschitz-like function f: D — R, using
Thm. (3.2) of Ref. [36], we have

IBw(1) = fll <20 (1.2 ) <26 ()

where we used Eq. (101) to obtain the last inequality. In par-
ticular, this implies that max,ep By (f) > maxgep f(z) —
26(1/+/N). Using this result along with Lemma (3.1) of
Ref. [36], we obtain

1
VN

Therefore, choosing

(101)

gggf0w<—26< )zsgggBN<fxx>s max f(z).

IEAdyN

(&)<

<
max f(z) < L flx)+e

we obtain

giving us the desired result. In other words, to compute the
maximum of f to within a precision of € > 0, it suffices to
search the grid A4y with N = [1/6%], where § is the largest
number satisfying 3(8) < /2. O

C. Lipschitz-Like Optimization Over the Standard Simplex
Using Dense Curves

We show how to optimize Lipschitz-like functions over the
standard simplex using a-dense curves. Such curves get within
a distance « of all points in the simplex (see Def. (10)). As we
show below, by appropriately choosing «, one can perform a
one-dimensional optimization to obtain the maximum of f to
the desired precision.

Proposition 18: Suppose that f: Ay — R is a B-Lipschitz-
like function satisfying Eq. (48). Then the following hold.

1) Given N € N)i, let v: [0,Leyve] — Ay be a
Lipschitz-like curve constructed as per Alg. 3. Then the
curve 7y is (2(d — 1)/N)-dense in the simplex A, and
satisfies Eq. (54).

2) Alg. 4 computes the maximum of f to within a precision
of € > 0 for any (,-Lipschitz-like, (2(d — 1)/N)-dense
curve 7. Here, N = [2(d — 1)/a] with o = sup{a’ >
0| B(a’) < €/2} as noted in Alg. 4. In the worst case,
the algorithm takes

2 (N+d-1
N§ d—1
time steps to converge to the maximum within a precision

of € > 0, where 6 = sup{d’ > 0| 5(3,(0")) < €¢/2}.
When + is the curve generated by Alg. 3, < 1 and

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 69, NO. 9, SEPTEMBER 2023

d > 1, this amounts to O(a!~%/d) time steps in the
worst case.

Proof: 1. From Prop. 16, we know that Ay x is a (2(d —
1)/N)-net. Since Ay ny C Range(v), for any x € Ay, there
is some z € Range(y) such that ||z — z||; < 2(d — 1)/N.
In other words, ~y is a (2(d —1)/N)-dense curve in A,. Next,
we show that v is Lipschitz-like function. To that end, given
0,0 € R, let k = [#N/2] and k' = [0’ N/2]. Without loss
of generality, take 6 < 6. Given i € [Ngiq], where Nyg is
defined in Eq. (51), denote z; € Ay n to be the ith element
of Ag n ordered as per Eq. (11). Now, if k = k', then we can
write y(0) = txg+(1—t)zgy1 and y(0) = Yap+(1—t )xg41,
where t = 1+k—0N/2and t' = 14+ k—0'N/2 (see Alg. 3).
Therefore, [v(6") = v(O)ll, < [t — ' lzgra —xlly = 10" -
6], where we used the fact that |z — 2|, = 2/N (see
Prop. 16). Thus, consider the case k¥’ > k, so that

I7(0) = (Ol <[7(0) — 2wl
k'—1
+ Y i —@illy + lee — Ol
i=k+1
=10 -0

where in the last line we used the fact that 6 (and 0’) is
defined as the length along obtained by joining consecutive
points of the grid until we reach 0 (and €’ respectively). Since
|z —y|l, <2 forall z,y € Ag, Eq. (54) follows.

2. Consider the real-valued function ¢ = f o -y defined
on the interval [0, Leyve]. Here, v is a (2(d — 1)/N)-dense
B,-Lipschitz-like curve with N = [2(d — 1)/« and a =
sup{a’ > 0 | B(a) < €/2}. Since 2(d — 1)/N < a, v
is also an a-dense curve. Let 6* € argmax{g(d) | 6 €
[0, Leurve] }» and let 0% € [0, Leyve] be the point output by
Alg. 1. Since f is B-Lipschitz-like and -y is 3,-Lipschitz-like,
g = fonis 8o f,-Lipschitz-like, so by Prop. 15, we know
that g(0*) — g(0%) < ¢/2. Let 2* € argmax{f(z) | x € A4}
denote a point achieving the maximum of f. Then, since ~y
is an a-dense curve, there is some point 8y € [0, Leyrve] such
that ||z* — v(6o)|l; < . Noting that g(6y) < g(6*), we have

Fa*) - g(67) < ) — g(07) +

2
< J(@") —g(00) + 5
< B(ll* = (80) ) + 5

<e€

To obtain the penultimate inequality we used the Lipschitz-like
property of f along with the fact that g(6y) = f(v(6o)). The
last inequality follows by noting that S(||z* —~v(6o)|l;) <
B(a) < €/2. The number of iterations needed to compute
0% in the worst-case is given by

Lcurve _ 2 N + d—1
Nmaxiler - ’V 5 -‘ - "ZV(S< d—1 )-‘
where § = sup{d’ > 0 | B3(8,(")) < ¢/2}, which follows

from Prop. 15. Using the fact that (n/k)* < (V) < (en/k)*
and 2(d—1)/a < N < 2(d—1)/a+1, the number of iterations
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is bounded as

o 2d—1)/a+d—1)\""
(d—l)(S( d—1 )

a e(2d—1)/a+d)\**
SNmaxiterS(d_l)(S( d—1 ) .

Thus, assuming o < 1 and d > 1, we need O(a?~4571/d)
time steps for convergence. For the case when ~ is the curve
generated by Alg. 3, we can take (3, (x) = x owing to Eq. (54),
and therefore, the statement of the proposition follows. |

D. Lipschitz-Like Optimization Over a Compact & Convex
Domain

We now consider the general problem of optimizing a -
Lipschitz-like function f: D — R satisfying Eq. (48), where
D C R? is a nonempty compact and convex domain. Many
techniques have been developed for optimizing Lipschitz or
Holder continuous functions when D is a specific set such as
hypercube, simplex or is the full Euclidean space R™ as noted
in Sec. IV. However, when dealing with an arbitrary compact
and convex domain, it is not always obvious how to encode
the constraints defining the domain in the algorithm.

We circumvent this problem by looking for a function
f: R? — R satisfying the following properties:

1) The function f is an extension of f in the sense that f

is Lipschitz-like and f|p = f.

2) The maximum of f and f coincide. More specifically,

sup,cx f = maxgep f for every set D C K C R<.

3) The function f can be efficiently computed whenever f

and [ can be efficiently computed.

The first property ensures that we are able to use existing
Lipschitz-like optimization algorithms. The second property
ensures that we can compute the maximum of f by computing
the maximum of f over a convenient set }C containing the
domain D. The choice of the set I will usually depend on
the actual algorithm used to perform the optimization. The
last property ensures that the function f can be efficiently
evaluated in practice.

We show that one can construct a function f satisfying all
the above properties for the case when [ is itself a Lipschitz-
like function. That is, there is some non-negative, continuous,
monotonically increasing function x: Ry — R with x(0) =
0 such that, for all z,y € Ry,

18(z) = BW)| < K|z —yl).

This assumption is not too restrictive for our purposes because
Lipschitz continuous functions (i.e., 3(x) = z), and functions
[ relevant to entropic quantities like the one in Eq. (64) satisfy
Eq. (102) (see Prop. 20). In this case, we can define the
extension of f as follows.

Definition 19 (Lipschitz-Like Extension): Let f: D — R
be a (-Lipschitz-like function over a compact and convex
domain D C RY. Let ||-|| be the norm on R¢ with respect to
which Eq. (48) holds. Suppose that 3 is x-Lipschitz-like. Then,
the Lipschitz-like extension of f is the function f: R? — R
defined as

(102)

f(z) = f(lp(z)) = B(||z — p(2)]), (103)
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where IIp = argmin__p, ||z — ||, is the projection of z onto
D with respect to the Euclidean norm.

We remark that the choice of norm in Eq. (48), and
subsequently in Eq. (103), is flexible. Moreover, because all
norms on R? are equivalent, one can change the function ( so
as to get a Lipschitz-like property with respect to a different
norm. Recall that two norms ||-||, and [-||, on R? are said
to be equivalent if there exist constants c1,ca > 0 (possibly
dimension dependent) such that ¢ [|-||, < |||, < e,
The caveat of using equivalence of norms to change the
function (3 is that the modified 5 might end up depending on
the dimension. This could negatively impact the convergence
rate (for example, polynomial time convergence guarantee for
optimization over the simplex using grid search might be lost
if 0 depends on the dimension). This observation is also of
relevance in Def. 19 because we define the projection with
respect to the Euclidean norm, while allow an arbitrary choice
of norm in Eq. (103) (also see Prop. 20).

Note that IIp is well-defined since D is compact and
convex (see Thm. (2.5) in Ref. [44]). Since IIp(z) = =z
for x € D, we can see that f is indeed an extension of f.
Roughly speaking, the extension is also Lipschitz-like because
both f and (8 are Lipschitz-like. Furthermore, since [ is a
non-negative monotonically increasing function, the value of
? decreases as we move away from D. Thus, the maximum
of f occurs over D. Finally, so long as the projection IIp
can be efficiently computed, the function f can be efficiently
computed (assuming f and 3 can be efficiently computed).

We formalize the observations made above in the following
proposition.

Proposition 20: Let 8: R, — R be a non-negative, con-
tinuous, monotonically increasing function with 3(0) = 0.
Suppose that 3 is x-Lipschitz-like in the sense of Eq. (102)
for some appropriate x. Let f: D — R be a -Lipschitz-like
function over some compact and convex domain D C R, Let
f be the extension of f as defined in Eq. (103). Then the
following statements hold.

1) Define the constant C' = c¢y/c1, where ¢j,co > 0 are

obtained from equivalence of |-||,|[, on R ie.,
e |l < |Illy € e2||-||- Then, the extension f is a j3-
Lipschitz-like function, where

B(z) = B(Cz) + k((C + 1)z).

2) Given any set D C K C R? we have sup,cx f(z) =
maxgep f(x). Moreover, any point achieving the maxi-
mum of f achieves the maximum of f.

3) The modified binary entropy h defined in Eq. (49) is an
E—Lipschitz-like function, that is,

[h(x) = h(y)| < h(lz —y|)

for all z,y € Ry. Subsequently, 3; defined in Eq. (64)
is a [r-Lipschitz-like function.

Proof: 1. We first note that IIp is a non-expansive
mapping on R?, ie, for all =,y € R% we have
[Ip(z) —Ip(y)ll, < [lz—yll, [45]. By equivalence of
norms, we can find a (possibly dimension-dependent) constant
C > 0 noted in the statement of the proposition, such that

(104)
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|[Tp(x) — p(y)|| < C'||lz — y||. From this, we can infer the
following list of inequalities:

[F(z) = f(y)]
< [f(Ip(z) — f(IlIp(y))|
+16(|lz — Hp(2)[]) = B(lly — T (y)|)]
< B(|Mp(z) — Tp(y))
+ (| |z = Tp(z)|| — [ly — Tp(y)l |)
< B(Cllz —yl) + k(llz—y + p(y) — p(2))
< B(Clz = yll) + s(llz =yl + [[Tp () — Tp(y)|)
< B(Cllz —yll) + £((C +1) [z —yl|)
= B(ll=z - yll)

To obtain the second inequality, we use the fact that f is (3-
Lipschitz-like and 3 is k-Lipschitz-like. To obtain the third
inequality, we use the reverse triangle inequality, the fact that
IIp is non-expansive, and that § and x are monotonically
increasing functions. The last two inequalities follow from
similar observations. Finally, we note that 3(z) = B(Cx) +
k((C + 1)x) is a non-negative, continuous, monotonically
increasing function with 3(0) = 0.

2. Since (3 is a non-negative function, we have f(z)
f(Op(z)) for all x € RY. Therefore, given any set D
K C RY we have sup,cx f(z) < supyex f(IIp())
maxep f(x). The last equality follows by noting that
p(z) € D for all z € R f is continuous and D is
compact. If z* € D achieves the maximum of f, then

sup,cx f(r) = maxgep f(z) = f(z*) = f(x*), where in
the last step, we used the fact that f = f on D.

3. Let h be the modified binary entropy defined in Eq. (49).
If © € [0,1/2] then, h(z) = h(x). Furthermore, we have
h(z) = H((xz,1—x)) for « € [0, 1], where H is the Shannon
entropy. Therefore, given z,y € [0,1/2], we have |h(z) —
h(y)| = [h(z) = h(y)| = [H((z,1 —x)) = H((y, 1 —y))| <
h(lz — y|) = h(|z — y|), where the inequality follows from
the results of Ref. [28]. Here, we used the fact that |z — y| <
1/2 when x,y € [0,1/2]. For z,y > 1/2, we have h(x) =
h(y) = In(2), and thus, |h(x) — h(y)| < h(Jz — y|). Finally,
we consider the case when x € [0,1/2] and y > 1/2. Here,
we have |h(z) — h(y)| = In(2) — h(x) = h(1/2) — h(z) <
h(|1/2 — z|) = h(|1/2 — z|) < h(|ly — z|). In the last step,
we used the fact that |1/2—x| < |y—x| and h is monotonically
increasing. Therefore, we have |h(z) — h(y)| < h(|z —y]|) for
all z,y € R, O

The above extension gives some freedom in determining
what algorithm to use to perform the maximization of f,
especially for the case when f is Lipschitz or Holder con-
tinuous. One can, for example, use an unconstrained opti-
mization method developed for optimization of Lipschitz or
Holder continuous function. Alternatively, one can embed D
inside a hypercube K, and use an algorithm that can perform
global Lipschitz optimization [37], [46], [47]. In this study,
we generalize the method used in Ref. [37] using dense curves
because the proof of convergence essentially follows Prop. 18.
In practice, one might get faster convergence by generalizing
the global optimization method using Hilbert space-filling
curves studied in Ref. [46].

1N IA
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We use the a-dense curve for filling the hypercube K =
Hle [a;, b;] used in Ref. [37], which we reproduce below for
convenience. Let d > 2, n > 0, 71 = 1 and define

n i—1 ¢ 1
n (O it
™ j[[g |aj| + |b;]
fori=2,...,d. Then, the curve y: [0, 7/ng] — K defined as
ai — b ai + b
2 2

for i € [d] is a (v/d — 1n)-dense curve with respect to the
Euclidean norm [37]. Furthermore, v is Lipschitz continuous
(with respect to the Euclidean norm) with Lipschitz constant

n 1/2
1
Ly=3 (Z(Iail + bi)%?) :

i=1

(105)

cos(n;0) + (106)

(107)

Algorithm 8 Computing the Maximum of a (3-Lipschitz-Like
Function f Satistfying Eq. (48) for D = Ag4, Given € > 0
1: function
MAXIMIZE_LIPSCHITZ-LIKE_FUNC
_COMPACT_CONVEX_DOMAIN(d, (3, €)
: Find K = H?Zl[ai, b;] € R? such that D C K
3: Find ¢; > 0 such that ¢q ||-]| < ||-]],
Construct the curve «y as per Eq. (106) for
n = cia/v/d—1, where
a=sup{a’ > 0] B(c') < ¢/2}
Construct the extension f as per Eq. (103)
Compute the maximum g* of g = fo~ over [0, 7/nq4]
to a precision of €/2 using Alg. 1
7: return g*
8: end function

Below, we show that the above algorithm will converge to
the maximum within precision € > 0. The proof essentially
adapts the ideas used to prove Prop. 18.

Proposition 21: Let f: D — R be a (-Lipschitz-like
function with respect to the norm ||-|| on R%, where D C R¢
is a compact & convex set. Suppose that (3 is k-Lipschitz-
like. Let X € R? be a bounded set containing D. Let v be
any a-dense, [,-Lipschitz-like curve from the interval [a, D]
into the set K. Let f be a (-Lipschitz-like extension of f
defined in Eq. (103), where (3 is given in Eq. (104). Suppose
that we compute the maximum of f using an appropriate
generalization of Alg. 8 with the curve ~. Then, for a =
sup{a’ > 0 | B(a’) < €/2}, the algorithm computes the
maximum of f to within a precision of ¢ > 0. In the worst
case, this algorithm takes [(b — a)/J] time steps to converge,
where & = sup{¢’ > 0| B(8,(0")) < €¢/2}.

In particular, if C is a hypercube containing D and - is the
curve generated as per Eq. (106), a value of n = c;a/+/d — 1
suffices to converge to the maximum of f within a precision
of € > 0. Here, « is as defined above and c¢; > 0 is a (possibly
dimension dependent) constant satisfying ¢; ||| < ||||,. The
algorithm takes f%} time steps to converge in the worst
case, where 7y is defined in Eq. (105) and § is as defined
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above. For the case when f is a Lipschitz continuous function
with Lipschitz constant L with respect to the Euclidean norm,
Alg. 8 takes O((6wL+/d/e)?) iterations to converge to a
precision of ¢ > 0. The exponential scaling with L and e
cannot be improved without additional assumptions on the
functions or the domain.

Proof: Since D C RY is compact, it is bounded, and can
therefore be embedded into a bounded set X C R?. Let f be
the 3-Lipschitz-like extension of f defined in Eq. (103), where
3 is given in Eq. (104). Let 7: [a,b] — K be an a-dense, 3,-
Lipschitz-like curve, where o = sup{a’ > 0 | B(a’) < €/2}.
Consider the real-valued function § = f o+ defined on the
interval [a, b]. Let 8* € argmax{g(0) | 6 € [a,b]}, and let 8} €
[a, b] be the point output by Alg. 1. Since f is B-Lipschitz-like
and v is (3-Lipschitz-like, g = forisBo B3,-Lipschitz-like.
So, by Prop. 15, we know that g(6*) — g(0F) < €/2.

Let 2* € argmax{f(x) | z € Ay} denote a point achieving
the maximum of f. From Prop. 20, we know that f(z*) =
sup,cx f(x) =sup,ep f(x) = f(z*). Then, since 7 is an a-
dense curve and D C K, there is some point 8y € [a,b] such
that ||z* — v(0)||; < «. Noting that g(6y) < g(6*), we have

@) =300 < Fla™) ~5(07) + 5

fz*) —g(6o) + 5

Bllla" = 1(Eo)l,) + 5

€

IN - IA

IN

To obtain the penultimate inequality we used the Lipschitz-like
property of f along with the fact that g(6p) = f(7(6o)). The
last inequality follows by noting that 3(||z* —~(6)|,) <
B(a) < ¢/2. The number of iterations needed to compute
0* in the worst-case is given by

b—a
Nmaxiler = ’7 —‘

J

where § = sup{¢’ > 0 | 3(3,(8")) < €/2}, which follows
from Prop. 15.

Now suppose that C is a hypercube containing D and v
is the curve given in Eq. (106). By equivalence of norms
on R%, we have ¢ ||-|| < |||, < ez ||| for some (possibly
dimension dependent) constants ci,ce > 0. Therefore, v is
(vVd —1n/c1)-dense and (L,/cq)-Lipschitz continuous with
respect to the norm |-||, where L, is given in Eq. (107).
By the above results, we can choose n = cja/v/d—1 for
convergence, where o = {o/ > 0 | B(a/) < ¢/2}. In this
worst case, this algorithm takes [7/(140)], where 74 is defined
in Eq. (105) and § = sup{d’ > 0| 3(L,d¢") < ¢/2}.

Consider the case when d > 2, D = [0, 1]d, K =D,and fis
Lipschitz continuous with Lipschitz constant L (independent
of the dimension) with respect to the Euclidean norm ||-|,.
Then, ¢; = ¢ = 1 as defined above, and subsequently, C'
defined in Prop. 20 is equal to 1. Then, since k(z) = B(x) =
Lx, we have 3(z) = 3 Lx. Subsequently, we have a = ¢/6L,
and for ¢ < 6L, we have o« < 1. For the curve v, we have

n=a/Vd—1=¢/6LvVd—1,n4= (n/m) ", 6§ =¢/6LL,,
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and L, < v/d/2 assuming that o < 1. Thus, the Alg. 8 takes
[GWdLLﬂ - ’V(GWL\/E)CI-‘

ni—Te ed

iterations to converge. It is known that any algorithm (in
the sense of a black box model) needs at least O((L/2¢))
iterations to compute the optimum of a L-Lipschitz function
over the unit hypercube to a precision of € > 0 (see Ref. [27]
for details). Thus, one cannot, in general improve the 1/ €
scaling for Alg. 8 without additional assumptions on D or the
class of functions that are optimized by the algorithm. O

The above result shows that the exponential scaling with the
dimension cannot be improved without additional assumptions
on the functions or the domain. It is likely the case that the v/d
factor is sub-optimal and comes from the choice of the curve
v in Eq. (106), so one might be able to improve that factor
by using better constructions for the curve or by resorting to
a different approach altogether.

We remark that the above algorithm will perform worse
than Alg. 2 and Alg. 4 in practice when D is the standard
simplex. This is because we essentially use no information
about the domain except for the projection IIp in constructing
the extension f (see Eq. (103)). Indeed, when using grid
search specially designed for D = A,4, we can get polynomial
scaling with the dimension for a fixed precision (see Prop. 17).
Thus, it might be preferable to resort to methods designed
specifically for the particular domain and function class of
interest, as opposed to general algorithms like Alg. 8. That
said, an advantage of Alg. 8 is that the maximum is computed
by finding successively better approximations. Therefore, one
can decide to terminate the computation after some fixed
number of iterations in order to obtain an upper bound on
the maximum.

APPENDIX D
ANALYSIS OF ALGORITHMS FOR COMPUTING THE SUM
CAPACITY FOR TWO-SENDER MACS

Proof of Prop. 12: For any probability distributions
pY,p3 € Ag,, we have |H (p{) — H(p5 )| < 0log(do — 1) +
h(6), where 0 = ||pZ — pZ||, /2 and h is the binary entropy
function [28]. In particular, if we define h as in Eq. (49), then
we have

|H(pf) — H(p7)| < 5 log(do — 1) ||pf — p7 |,

— /1
+7 (508 -1, )

because h(z) < h(z) for all x € [0, 1].

Now, note that using the same ideas employed in obtaining
I(p,q) given in Eq. (60), we can interchange the roles of p €
Ag4, and g € Ay, to obtain

I(p,q) = H(Apq) — (bp,q)

(108)

where

Ap(z,b2) = > N(2[b1, b2)p(b)

bi1€BL
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and

bp(b2) = — Y p(b1) Y N(z[bs,bs) log(N (z[by, b))

bi1€B; z€Z

Then, for any ¢,q' € Ay, and a fixed p € Ay, , we have

(p.q) —I(p,q)|
< |H(Apq) — H(Apd)| 4 | (bp,q — ') |

1
< 5 log(do —1) | Apq — Apd' |y

—(1
#7514 = A1) + Bl Nl = o1
(109)

N

where in the second step, we used Eq. (108) and Holder’s
inequality.

Now, we note that || A,q — A,q'l, < [ Ayl g — 'l
where ||A,||,_,, is the induced matrix norm with respect to
l1-norm on the domain and the co-domain of A,. This norm
is equal to the maximum (absolute value) column sum of
Ayp. Since A, is a left stochastic matrix, all of its entries are
non-negative and all of its columns sum to 1, and therefore,
| Apll, ; = 1. Similarly, we have 0 < b,(b2) < H}* for all
by € Ba (see Eq. (65) for definition of H}}**). Therefore,
we have [|b,||. < HJP. Then, since h a monotonically
increasing function, from Eq. (109), we obtain

1 — (1
1)~ < 3 08(da=1) = +7 (5 ha—'1s
+H lg = d'lly
~ 1 (la =)

Since Eq. (110) holds for every p € Ay4,, we have for fixed
7,4 € Ag,

(110)

max I(p,q) < max I(p,q’) + —q
max (p q)_peAdl (p.q') + Br (g —d'lly)

and

/ /
ax I(p,q') < ngx I(p,q) + Br (lla —d'll,)
Since I*(q) = maxyen,, I(p,q), we obtain [I*(q)—1*(¢')| <
81 (lg—d'l,). 0

Proposition 22: Let N be any two-sender MAC with input
alphabets of size dj, ds, and output alphabet of size d,.
Suppose that that dy,d, > 2 and dy = 2. Then, for 0 < € <
3log(d,), the number of iterations required by the while
loop in Alg. 5 to compute the sum capacity of the MAC N
to a precision € > 0 is bounded above by

2(p* +4)
(e +4) — /16 + Bep — 4e?

where © = 3log(d,). In particular, for a precision 0 <
€ < 3 chosen independent of d,, the number of iterations
is bounded above by O(log(d,)/€) for log(d,) > 1.

The total cost of computing the sum capacity to a precision
e > 0, including the costs of performing intermediate steps
such as computing [*, sorting and root-finding, is at most
polynomial in d;,d, and 1/e.

(111)
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Proof: To compute the total number of iterations required
to compute the sum capacity to a precision € > 0, we break
the analysis into the following steps.

1) Number of iterations required for the while loop to
converge in Alg. 5.
2) Cost of computing I*(s) in Alg. 5 to a precision €¢; > 0.
3) Cost of sorting the points s(9, ... s(*) in Alg. 5.
4) Cost for finding a root of g;(s) in Alg. 5 to a precision
€. > 0.
From these, we can compute the total cost of converging to a
precision € > 0.

1. We begin by computing the number of iterations required
for Alg. 5 to converge to a precision € > 0. To that end, note
that for obtaining Alg. 5 from Alg. 1, we used the fact that
llgs — gsl; = 2|s — s'|, where given any s € [0,1], we define
gs = (s,1—s). Therefore, we have an additional factor of 2 in
Br(2|s — §'|) in Alg. 5. Therefore, to make Alg. 5 the same
as Alg. 1, we define S(x) = (;(2z). Then, from Prop. 15,
we know that the number of iterations required to converge
to the maximum within an error of € > 0 is bounded above
by [1/d], where we used the fact that D = [0,1] for the
optimization. The number § > 0 is chosen such that 8(z) <
€/2 whenever 0 < x < 4.

In the following analysis, we measure entropy in bits.
To proceed, we note that the binary entropy h satisfies the
inequality h(x) < 24/x(1 — z) [48]. Further, for any probabil-
ity transition matrix \, the quantity H}3}** defined in Eq. (65)
is bounded above by log(d,), where d, is the size of the output
alphabet. For z < 1/2, we have h(x) = h(z), where h is the
modified binary entropy function defined in Eq. (49). Then,
from Eq. (64) and the definition 5(x) = (;(2x), it follows
that

Bx) < pr +2y/z(l - x)
for x < 1/2, where ;1 = 3log(d,). Then, solving the inequality

px + 24/x(1 — z) < €/2, we obtain
_ — 12
o< (epn +4) — /16 + 8ep — 4e

- 2(p? +4)

which holds whenever € < . Therefore, we choose

5= (e +4) — /16 + 8ep — 4e?
a 2(p? +4)
which is a positive number for 0 < € < p. Then, from

Prop. 15, we know that the number of iterations to converge
to a precision € > (0 is bounded above by

2(p* +4)
Kps =
(e +4) — /16 + 8ep — 4e?

where the subscript PS stands for Piyavskii-Shubert.

2. Next, we calculate the cost of computing I*(s) to
a precision €; > 0. This is a non-trivial cost because is
obtained by solving a convex optimization problem. Specif-
ically, I*(s) = maxpea,, H(Aqp) — (by,,p), where ¢5s =
(s,1 — s). This cost depends on the algorithm one uses to
solve the optimization problem. For example, if one uses an
interior point method based on the log-barrier, then one needs
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at most O(d3+/dy + dylog((dy +d,)/er) flops to converge to
the optimum within a precision of €; > 0 (see Ch. (11.5) in
Ref. [40]). We denote the cost of computing [* as K.

3. If we use quicksort to sort the numbers sO s
then in the worst case, one needs O(k?) operations to perform
this sorting.

4. If we compute the root to a precision €, > 0 using
bisection, then one needs at most O(log(1/e,)) iterations to
find this root.

The total cost of sorting (including all Kps iterations) is
bounded above by O(Kp). The number of times the root
needs to be computed is bounded above by O(KZ) and
the number of times the function [* is calculated in the
algorithm is O(Kp2slog(1/€,)). Since we can only compute
I* to a precision €; and find the root to a precision e,,
we need to choose these small enough so that the total
error is below e. In particular, if we choose €; = ¢, such
that O(K3glog(1/er))er = €/2, then using the fact that
—xIn(z) > o — 2% for & > 0, we can infer that it is sufficient
to choose €; = O(e/KZ). Then running the while loop in
Alg. 5 to a precision €/2 so that the total error is within a
tolerance of €, we can infer that the total number of iterations
needed is bounded above by

k)

O(K1Kps log(Kgs/€))

where we used the fact that K is at least as large as Kpg.
Therefore, the total cost to converge to the optimum is at most
polynomial in dy, d,, and 1/e. O

Next, we obtain an upper bound on the number of iterations
needed to compute the sum capacity of an arbitrary two-sender
MAC to a fixed precision. The algorithm we use to analyze
this is grid search explained in Sec. IV-D.1, and many of the
calculations follow the ideas given in Prop. 22.

Proposition 23: Let N be any two-sender MAC with input
alphabets of size dj, di, and output alphabet of size d,.
Suppose that that d, do, d, > 2 with d; > ds. Suppose that all
the entropies are measured in bits and denote p = 3log(d,).
Then, for a fixed 0 < ¢ < 3, the number of iterations required
by the grid search in Alg. 5 to compute the sum capacity of
the MAC N to a precision € > 0 is bounded above by

4.2
2 2 +1
(66 ds + e)
e

when p > max{(8/¢) + 2/(16/€?) — 1,¢/2}.
The total cost of computing the sum capacity to a precision
€ > 0, including the cost of computing I*, is at most

1 662 d2
ly(dy,do, =) [ oo —2
p"y( v ) (36 (og(do))? €

for 0 < e <3 and pu > max{(16/¢) + 21/(64/€?) — 1,¢/4}.

Proof: The sum capacity of a two sender MAC can be
expressed as S(N) = maxzen,, [*(q), where I* is defined
in Eq. (62). Note that I* is [;-Lipschitz-like, where J; is
defined in Eq. (64). By Prop. 17, we know that the number
of iterations needed for the grid search algorithm to compute

(112)

2
QG(IOgédo)) +2
€

(113)
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the sum capacity is equal to

N+dy,—1
Kes = < dy— 1 >a
where N = [1/6%] and § = sup{d’ > 0| B;(¢8') < ¢/2}.
In particular, the number 6 > 0 can be chosen such that
Br(x) < €/2 whenever 0 < zz < § to obtain an upper bound
on the number of iterations.

As noted in the proof of Prop. 22, the binary entropy
h (measured in bits) satisfies the inequality h(z) <
2\/x(1 —x) [48]. Further, the quantity H}}** defined in
Egq. (65) is bounded above by log(d,). For < 1/2, we have
h(z) = h(z), where h is the modified binary entropy function
defined in Eq. (49). Then, from Eq. (64), it follows that

Br(z) < %x—i— z(2 — )

for x < 1/2, where u = 3log(d,). Then, solving the inequality

(1/2)x + \/x(2 — ) < €/2, we obtain
(e +4) —2y/4+ 2ep — €2
w?+4
which holds whenever € < u. Therefore, we choose
5— (e +4) — 2y/4 4 2ep — €2
B pr 44

which is a positive number for 0 < € < p. For a fixed 0 <
e <min{16, u} and p > max{(8/€) + 2+/(16/€2) — 1,¢/2},
it can be verified that

21

<-<—
€

o=
S

Further, since (}) < (en/k)", we can write (thd_zf 1)

(NJF]%,TI) < (e(N +dy —1)/N)™. Then, noting that 1/
N <1/ 4% 41, the number of iterations needed for grid search
to converge to a precision 0 < ¢ < min{u, 16} is bounded

above by
ee? %ZH
Kgs < (szz + 6)

when g > max{(8/¢) + 21/(16/€?) — 1,€¢/2}. In order to
avoid specifying simultaneous conditions on both € and p,
we note that 4 = 3log(d,) > 3 for d, > 2. Therefore, we can
simply assume 0 < € < 3 in the above equations.

Next, as noted in the proof of Prop. 22, the cost of
computing I* to a precision of e; > 0 is at most
O(d3+/dy + dylog((dy + dy)/er). Choosing €; = €/2Kgs,
we can ensure that after Kgg calls to I*, the error is at most
€/2. Then, solving the grid search to a precision of €/2, we can
infer that the total cost of computing the sum capacity is at
most

16p2
K, 2 A
(d34 [dy + do log (dﬁ'd)GS)> (4ud2 + e)
€

3212 42

(d1+d, ee? <?
< vV d1+d IOg < ! )>> <Zm2d2+€>
when 0 < € < 6 and p > max{(16/e)+2\/(64/e2) —1,e/4}.

To obtain the last inequality, we used the fact that log(Kgs) <
Kgs for Kgs > 0. O

IN
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APPENDIX E
NOISE-FREE SUBSPACE MAC

We compute the sum capacity and the relaxed sum capacity
for the examples constructed using the noise-free subspace
MAC defined in Eq. (66). For both the examples, we consider
the input alphabets A = {a, a2}, B = {b1, b2} and the output
alphabet Z = {z1, 20}.

A. Example 1

For the first example, the MAC N, }0) has the probability
transition matrix

©o (1 05 05 0.5
Nr _(0 0.5 05 0.5)°

Let us denote the input probability distribution of sender A
as (p, 1 —p) corresponding to the symbols (a1, as). Similarly,
denote the input probability distribution of sender B as (g, 1 —
q) corresponding to the symbols (by,b2). When the input
to the MAC is a product distribution, the output probability
distribution determined by the channel is

+ g z 1 —pq
——— and = .

J2 and p(20) = —
The mutual information I(A, B; Z) between the senders and
the receiver is given by

I(A, B; Z) :—Hpqln(Hpq)

“(

p 21):

2 2
l—pg., (1—-pq
=250 (52 - 1 togt2)
We wish to compute the sum capacity
(0)y _ )
SNE )7()%2,&}1};11(14’3’2)'
For (p,q) € {(0,0),(0,1),(1,0),(1,1)}, we have

I(A,B;Z) = 0, and hence we can focus on the interior of
the domain. For maximization over p for a fixed ¢, by com-
plementary slackness (Lagrangian not written here), we can
simply set the derivative of I(A, B; Z) with respect to p equal
to 0. The derivative is given as

(1- pq))

ol ¢

—==In(4

op 2 ( (14 pq)
Setting this equal to zero gives pg = 3/5. In this case,
no maximization over q is necessary, and subsequently, we find
that S(N}O)) = h(4/5) — (2/5)In(2), where h is the binary
entropy function.

For computing C(N }0)), we maximize over all probability
distributions over the inputs. For an arbitrary input probability
distribution p(a,b), we can write the mutual information
between the inputs and the output as

I(A,B; 2) = —Hp(z““bl) 1n<1+p(2“17b1)>
~ 1—p(as,b1) In (1 —P(ahbl))
2 2

— (1 —=p(a1,b1))log(2).
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In this case, we again find that the maximum is attained at
p(a1,b1) = 3/5, and subsequently, the maximum value of the
mutual information is equal to h(4/5) — (2/5) In(2) as before.
Thus, the capacity corresponding to the relaxed sum region
matches the actual sum capacity.

B. Example 2

For the second example, the probability transition matrix is

given as
a (1 05 05 0
N (0 05 05 1)°

As before, denote the input probability distribution of sender
A as (p,1—p) and that of sender B as (g, 1 —q). Then, given
an input probability distribution to the MAC A", the output
probability distribution is given by

+q (p+q).

2

Then, the mutual information I(A, B; Z) between the senders
and the receiver can be written as

I(A,B; Z) = —Z% In (p‘;q)

3 (1_ (%;@)hl (1_ (p;rq)>

— (p+q—2pq) In(2).

p(z1) =222 and p(z) =1 -

We wish to compute the sum capacity S(N, l(wl)) =
maxo<p,q<1 1 (A, B; Z). The edge cases (p,¢q = 0,1) will be
handled separately. First, we perform the maximization over
p for each fixed g,

I"(q) = max I(A, B; Z).

0<p<1
We look for maxima in the interior (0,1), which can be
obtained through 6%[ (A,B;Z) = 0. Note that the out-
put probability is (1,0) or (0,1) only when (p,q) €
{(0,0),(1,1)}, and therefore, the derivative of I(A, B; Z) is
well-defined in the interior. This derivative is given as

ol 1 2 —

—=-In 2=+a)) _ (1 —2¢)In(2).
dp 2 p+q

Setting the derivative to zero, we find that p + ¢ = 2/(k, +

1), where k, = 22744, Therefore, the function I*(q) can be

written as

Fla)=h (ﬁq1+1><nq2+1 —2 (nqi 1 q) q> In(2),

where h is the binary entropy. Now, to compute the sum
capacity, we wish to perform the maximization S(N, I(;l) ) =
maxo<q<1 1*(¢). Since I*(g) is a continuous function of ¢, the
maximum is either attained at the interior or at the boundaries.
The maxima in the interior can be found via 8%] *(¢) =0:

In <qu> = In(2) [(4(1 ~9)
“i () 0 0)
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1
kg+ 1

:}q:

It can be verified that ¢ = 1/2 is a solution to the above equa-
tion, corresponding to which we have p = 1/2. Furthermore,
this solution is unique. Thus, in the interior of the domain,
the maximum occurs at p = 1/2, ¢ = 1/2. Correspondingly,
the maximum value of I(A, B; Z) in the interior is equal to
0.51n(2).

Now, we check the edge cases. For p = 0, we need to
maximize g(q) = I(p = 0,q) = h(q/2) — qIn(2) over q.
At ¢ = 0,1, we have g(0) = g(1) = 0. Then, the maximum
in the interior can be obtained by setting the derivative with
respect to ¢ to zero. This gives ¢ = 2/5, and since g(2/5) ~
0.223 < 0.5log(2), this is not the global maximum. On the
other hand, for p = 1, we need to maximize g(q) = I(p =
L,q) = h((1 +¢)/2) — (1 — ¢)In(2). At ¢ = 0,1, we have
9(0) = g(1) = 0. The maximum in the interior can be obtained
by setting the derivative of ¢g(g) with respect to ¢ equal to
zero. This gives ¢ = 3/5, and correspondingly, we have
g(3/5) = 0.223 < 0.51n(2). Since I(p, q) is symmetric under
interchange of p and ¢, the same results will be obtained
when beginning with ¢ = 0 or ¢ = 1 and then maximizing
over p. Therefore, we find that the sum capacity is equal to
SWP) =0.51n(2).

Now, we compute the relaxed sum capacity. For this, note
that output probability distribution of the MAC N, 181) when
using an arbitrary input probability distribution p(a, b) is given
as

1 b)) — b
p(Z1) _ §+p(al, 1) 21’(@2, 2)

and

plz) = % _ (p(a1,b1) ;p(ag,bg)).

Correspondingly, the mutual information between the senders
and the receivers is given by

I(A,B;Z) = h (; J plan,by ;P(azabz)>

— (1 = p(a,b1) — p(az, b2)) In(2).

It can be verified that for p(a1,b1) = p(az,ba) = 1/2 we have
I(A, B; Z) = In(2), which is the maximum possible value for
the mutual information. Therefore, C' (N, 1(;1)) = In(2).
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CODE AVAILABLILITY

An open source implementation of the codes used in this
study can be found at https://github.com/akshayseshadri/sum-
capacity-computation.

This repository contains code to perform the following
tasks: 1) Maximize Lipschitz-like functions over the interval
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(Alg. 1) and standard simplex using grid search (Alg. 2)
and dense curves (Alg. 4), 2) Compute the sum capacity
of two-sender MACs by implementing the aforementioned
algorithms, and 3) Find the maximum winning probability of
an N-player non-local game using no-signalling strategies and
a corresponding optimal NS strategy.
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