
Optimization Techniques for Chlorine Dosage Scheduling in Water Distribution Networks: 
A Comparative Analysis 

 
Mohammadreza Moeini1; Lina Sela2; Ahmad F. Taha3; and Ahmed A. Abokifa4 

 
1Ph.D. Student, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois 
Chicago, Chicago, IL. Email: mmoein2@uic.edu 
2Associate Professor, Dept. of Civil, Architectural, and Environmental Engineering, Univ. of 
Texas at Austin, Austin, TX. Email: linasela@utexas.edu 
3Associate Professor, Dept. of Civil and Environmental Engineering, Vanderbilt Univ., 
Nashville, TN. Email: ahmad.taha@vanderbilt.edu 
4Assistant Professor, Dept. of Civil, Materials, and Environmental Engineering, Univ. of Illinois 
Chicago, Chicago, IL (corresponding author). Email: abokifa@uic.edu 
 
ABSTRACT 

 
A sufficient dose of disinfectant needs to be applied to maintain a minimum residual 

throughout drinking water distribution systems (WDSs). Yet, excessive dosing of chlorine-based 
disinfectants leads to the formation of hazardous disinfection byproducts. Several frameworks 
have been proposed in previous literature to optimize chlorine dosing schedules by minimizing 
the total dose while maintaining evenly distributed residuals throughout the WDS. Many of these 
studies relied on evolutionary algorithms (EAs), such as the genetic algorithm (GA) and particle 
swarm optimization (PSO). EAs are known to require numerous evaluations of computationally 
expensive water quality (WQ) models and typically feature many parameters that require careful 
tuning. Recently, Bayesian optimization (BO) has been proposed as an alternative to EAs for the 
optimization of water quality in WDSs. To speed up convergence, BO builds a probabilistic 
surrogate model (e.g., Gaussian process) in place of the original black-box model and then 
leverages the predictions to explicitly control the exploration/exploitation trade-off. Yet, it is still 
unclear how BO’s performance compares against EA’s for the optimization of WDSs. This study 
aims to fill this knowledge gap by conducting a systematic comparison between the performance 
of BO, GA, and PSO for the optimization of chlorine dosage schedules. To that end, a 
comprehensive sensitivity analysis is conducted on each optimization approach to understand 
how different optimization parameters influence their performance. The results revealed that BO 
requires significantly fewer evaluations than GA and PSO to converge to high-quality solutions. 
On the other hand, GA displayed lower sensitivity to the change in the optimization parameters 
compared to BO and PSO. 

 
INTRODUCTION 
 

Reliable supply of safe drinking water is faced with a multitude of challenges, one of which 
is the deterioration of water quality (WQ) in drinking water distribution systems (WDSs). The 
latter takes place as a result of a number of physical, chemical, and microbiological processes 
that occur in the pipes transporting water from treatment to consumption locations. To suppress 
the growth of microbiological species in the WDS and prevent microbial recontamination of the 
treated drinking water, chlorine disinfectant residuals need to be maintained at all points 
throughout the distribution network. This requires careful adjustment of disinfectant injection 
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into the WDS to ensure that the applied chlorine dose can sufficiently overcome the decay of 
chlorine by side reactions within the bulk flow and at the pipe walls.  

Optimizing the dosage scheduling (i.e., the injection rates) of chlorine sources in WDSs has 
been attempted by numerous studies, in which a wide range of optimization methods, including 
both linear and nonlinear optimization techniques, were implemented. Among these techniques, 
evolutionary optimization algorithms, such as the Genetic Algorithm (GA) and Particle Swarm 
Optimization (PSO), were widely implemented. For instance, Munavalli and Kumar (2003) used 
GA to determine the chlorine dosage at the sources subject to minimum and maximum 
constraints on chlorine concentrations at all monitoring nodes. Ostfeld and Salomons (2006) 
used GA to optimize the scheduling of pumping units in conjunction with the design and 
operation of booster chlorination stations by minimizing the costs of pumping and the chlorine 
booster design and operation. Ayvaz and Kentel (2014) developed a hybrid GA–linear 
programming optimization approach to determine the best booster station network for a WDS by 
minimizing total chlorine injection dosage and the number of booster stations while maintaining 
residual chlorine concentrations within desired limits. Ohar and Ostfeld (2014) developed a GA-
based framework to set the required chlorination dose of the boosters for delivering water at 
acceptable residual chlorine and disinfection byproduct concentrations for minimizing the overall 
cost of booster placement, construction, and operation. Kang and Lansey (2010) implemented 
GA to find optimal valve operation and booster disinfection scheduling to minimize chlorine 
injection mass at sources or to minimize excessive chlorine concentrations at withdrawal points 
while maintaining minimum chlorine concentrations and pressures throughout the system. Wang 
et al. (2010) proposed a hybrid PSO-GA framework for optimizing the locations of booster 
chlorination stations. Goyal and Patel (2018) implemented PSO to optimize the location of 
booster stations while minimizing the total mass rate of chlorine injection.  

Despite their popularity, evolutionary optimization techniques are known to be 
computationally expensive since they typically involve conducting numerous evaluations of the 
objective function(s). The latter usually includes running a black-box model, such as EPANET, 
in which the partial differential equation(s) governing the transport and decay of chlorine, and 
potentially other species, in the distribution system are numerically solved. The high 
computational cost involved in evaluating such black-box numerical models limits the 
applicability of evolutionary optimization algorithms to real-time WQ regulation applications. 

Bayesian Optimization (BO) has been recently gaining significant popularity due to its high 
efficiency in optimizing computationally expensive black-box functions (Gelbart et al., 2014; 
Wu et al., 2017). Instead of directly optimizing the black-box objective function, BO builds a 
probabilistic model of the objective function (known as the surrogate model) that is sequentially 
updated by sampling the underlying numerical model. The sequential sampling process aims to 
balance exploration and exploitation, which is done by using an explicit acquisition function that 
guides the search towards the most promising solutions with potentially high values of the 
objective function and/or high uncertainty. 

In a recent study, we proposed a novel framework for implementing BO for the optimization 
of booster chlorination scheduling in WDSs (Moeini et al., 2022). The framework showed robust 
performance and fast convergence, yet the results revealed substantial variability in the 
performance of different BO methods. More importantly, it remains unclear how the 
performance of BO compares to the more popular evolutionary algorithms. The objectives of this 
study are (1) to conduct a systematic comparison between the performance of BO against 
popular EAs, namely GA and PSO, for the optimization of chlorine dosage scheduling in WDSs, 
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and (2) to perform a comprehensive sensitivity analysis on each of the three optimization 
approaches to understand how different optimization parameters influence their performance and 
to select the best parameters for each optimization technique. 

METHODOLOGY 

In this study, we developed a simulation-optimization framework that integrates water 
quality simulation using EPANET, with either one of the three optimization techniques (BO, 
GA, and PSO) to optimize the scheduling of chlorine dosing stations in WDSs.  
 
Optimization Model Formulation 
 

The objective of the optimization process is to minimize the total cost of chlorine injection 
while simultaneously ensuring that the chlorine concentrations remain within an acceptable 
range at all consumption nodes in the WDS. The objective function is computed as the total cost 
of chlorine injection, which includes the operational cost of booster chlorine injection (BCI) as 
well as the capital cost of the booster system design (BCD) (Abokifa et al., 2019; Ostfeld and 
Salomons, 2006):  

 

𝐵𝐶𝐼 = 𝜆 ∑ ∑ 𝐶𝑏,𝑖 × ∆𝑡𝑖

𝑛𝑖

𝑖=1

𝑛𝑏

𝑏=1

 (1) 

 

𝐵𝐶𝐷 = 𝐷𝑅𝑉(𝐴𝐼, 𝐵𝐿𝐷) [∑ 𝛼(𝐶𝑏
𝑚𝑎𝑥)𝛽 + 𝛾𝑉𝑏

𝑛𝑏

𝑏=1

] (2) 

 
Where 𝐶𝑏,𝑖 is the chlorine mass injection rate of booster “𝑏” during injection event “𝑖” 

(𝑘𝑔𝐶𝑙/𝑚𝑖𝑛); 𝑛𝑏 is the number of chlorine boosters in the WDS; 𝑛𝑖  is the number of injection 
events in one day (𝑒𝑣𝑒𝑛𝑡𝑠/𝑑𝑎𝑦); ∆𝑡𝑖 is the length of the injection event “𝑖” in minutes (𝑚𝑖𝑛/
𝑒𝑣𝑒𝑛𝑡); 𝜆 is the chlorine injection cost per unit mass of chlorine ($/𝑘𝑔𝐶𝑙); 𝐷𝑅𝑉 is the daily 
return value coefficient (day-1), which is a function of the annual interest rate 𝐴𝐼 (%) and booster 
design lifetime 𝐵𝐿𝐷 (years); 𝐶𝑏

𝑚𝑎𝑥 is the maximum injection rate booster station 𝑏 can produce 
(𝑚𝑔𝐶𝑙/𝑚𝑖𝑛); 𝑉𝑏 is the total injected mass of chlorine by booster station 𝑏 (𝑚𝑔𝐶𝑙); and 𝛼, 𝛽, and 
𝛾 are empirical booster chlorination capital cost coefficients. 

To maintain chlorine concentrations between a minimum (𝑐𝑚𝑖𝑛) and maximum (𝑐𝑚𝑎𝑥) 
concentration at all network junctions at all times, a penalty function (PEN) is constructed to 
account for violations of the upper and lower concentration bounds:  

 

𝑃𝐸𝑁 = 𝛿 × ∑ (∑ max(𝑐𝑡,𝑗 − 𝑐𝑚𝑎𝑥 , 0)

𝑛𝑡

𝑡=1

+ ∑ max (𝑐𝑚𝑖𝑛 − 𝑐𝑡,𝑗 , 0)

𝑛𝑡

𝑡=1

)

𝑛𝑗

𝑗=1

 (3) 

 
where, 𝛿 is a constraint violation penalty coefficient; and 𝑐𝑗,𝑡 is the residual concentration at 
junction “𝑗” during time-step “𝑡” (𝑚𝑔/𝐿). The objective function to be minimized is the 
summation of the cost and penalty terms: 
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𝑂𝐵𝐽 = 𝐵𝐶𝐼 + 𝐵𝐶𝐷 + 𝑃𝐸𝑁 (4) 
 

Water Quality Simulation 
 

In this study, chlorine transport and decay in the WDS were simulated using EPANET’s 
water quality module, which features the dynamic 1-D advection-reaction equation with first-
order decay kinetics through the bulk flow and at the pipe wall (Rossman et al., 1994): 

 
𝜕𝑐

𝜕𝑡
= −𝑢

𝜕𝑐

𝜕𝑥
− (𝑘𝑏 +

𝑘𝑤𝑘𝑓

𝑟ℎ(𝑘𝑤 + 𝑘𝑓)
) 𝑐 (5) 

 
where c is the chlorine concentration (mg/L); 𝑡 is the time (s); 𝑢 is the flow velocity (m/s); 𝑥 is 
the distance along the pipe (m); 𝑘𝑏 is the bulk decay rate constant (s-1); 𝑘𝑓 is the mass-transfer 
coefficient (m/s); 𝑟ℎ is the hydraulic radius (m); 𝑐𝑤 is the pipe wall chlorine concentration 
(mg/L). EPANET simulation results were implemented by means of the Water Network Tool for 
Resilience (WNTR) Python package (Klise et al., 2017).  
 
Sensitivity Analysis of Optimization Parameters 
 

The developed simulation-optimization framework is implemented to conduct a systematic 
sensitivity analysis of the parameters of each of the three optimization methods to understand the 
influence of the different optimization parameters on the performance of each of the optimization 
techniques and to select the best parameters for each optimization technique. 

Bayesian Optimization (BO) 

BO builds a probabilistic model to act as a surrogate for the objective function in the 
optimization process. The surrogate model is constructed and sequentially updated by sampling 
the underlying numerical model with each iteration. At each iteration, the surrogate model 
provides predictions on the mean and variance of the objective function, which are then 
propagated into an acquisition function that guides the search toward the most promising 
solutions. The acquisition function is optimized to balance exploration (i.e., sampling areas with 
the highest uncertainty) and exploitation (i.e., sampling areas with the fittest solutions). In this 
study, we tested the sensitivity of BO to the choice of the acquisition function as well as the 
choice of the covariance kernel of the Gaussian Process (GP) surrogate model. Three different 
acquisition functions were tested, namely expected improvement (EI), probability of 
improvement (PI), and upper confidence bound (UCB). Each acquisition function provides a 
different formulation for the trade-off between exploration and exploitation. Furthermore, four 
different GP covariance kernels were tested, namely Matérn (MA), squared-exponential (SE), 
gamma-exponential (GE), and rational quadratic (RQ). The covariance kernel function controls 
the statistical relationship between any two points in the solution space.  

Genetic Algorithm (GA) 

GA is a metaheuristic, population-based evolutionary optimization method inspired by the 
Darwinian evolutionary theory. In this study, we tested the sensitivity of GA to three of the most 
important parameters that control its performance, namely population size, mutation probability, 
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and crossover probability. Typically, the larger and more diverse the population, the better the 
range of potential candidate solutions the GA can explore. Yet, a larger population generally 
leads to slower iterations. Thus, the population size needs to be carefully selected to produce the 
best performance at the lowest computational cost. Mutation is the process in which GA applies 
random changes to the individual solutions in the current generation to add to the diversity of the 
following population. Crossover is the process through which GA extracts the best genes from 
different individuals and recombines them into potentially superior children. The rates of cross-
over and mutation need to be adjusted to maximize the likelihood that the algorithm will 
generate individuals with better fitness values for every new generation. 
 
Particle Swarm Optimization (PSO) 
 

PSO is a population-based stochastic algorithm that simulates the optimization process by 
mimicking the navigation of entities (swarm theory), such as a flock of birds or fishes (Kennedy 
and Eberhart, 1995). PSO utilizes the velocity vector to update the particles' location based on 
the social behavior of each individual in the swarm and knowledge obtained by considering the 
swarm as a whole. In this study, we tested the sensitivity of the PSO results to three of the most 
important parameters, namely the cognitive parameter, social parameter, and inertia parameter. 
The inertia parameter regulates the balance between exploration and exploitation. The cognitive 
parameter controls the confidence of each particle in learning from its own experience (i.e., 
distance from the best position obtained in previous steps). The social parameter represents how 
much confidence each particle has in learning from the social interaction with the rest of the 
swarm (i.e., the best position obtained with respect to other particles).  

Case Study WDS 

The Net 2 benchmark WDS was adopted to conduct the analyses in this study (Fig. 1). The 
network comprises of 46 links, 41 nodes, one pumping station, and one reservoir (i.e., source). 
Chlorine is assumed to follow first-order decay kinetics at both the pipe wall (𝑘𝑤 =
−0.55 𝑚/𝑑𝑎𝑦−1) and in the bulk flow (𝑘𝑏 = −0.3 𝑑𝑎𝑦−1) (Rossman et al., 1994). A 7-day 
simulation is implemented in this study, and the last 24 hours of chlorine residual concentrations 
are used to compare the performance of the optimization methods, consistent with previous 
studies (Abokifa et al., 2019; Ostfeld and Salomons, 2006). The chlorine concentration is limited 
to minimum and maximum bounds of 0.2 𝑚𝑔/𝐿 and 4 𝑚𝑔/𝐿, respectively (Abokifa et al., 2019; 
US EPA, 1998). 

RESULTS AND DISCUSSION 

The developed framework was used to first conduct an independent sensitivity analysis for 
each of the three optimization techniques to better understand the influence of the key parameters 
on the performance of each technique and to find the parameter settings that would produce the 
best performance. Then, the three optimized techniques were compared to understand how their 
performance compares in optimizing the scheduling of chlorine dosage in WDSs. 

Bayesian Optimization  

BO comprises of two main components, namely the surrogate function and the acquisition 
function. Twelve different combinations of these two functions were tested and the optimization 
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results are depicted in Fig. 2. The results revealed that the performance of BO appears to be more 
sensitive to the choice of the acquisition function than that of the covariance kernel. This can be 
seen by comparing the variability in the final objective function values produced by the different 
BO methods in Fig. 2-b, d, and f. For instance, Fig. 2-d shows that the final value of the 
objective function is the same for all four covariance kernels when used in conjunction with the 
PI acquisition function. On the other hand, the performance of the MA kernel varies significantly 
when combined with each of the three different acquisition functions (EI, PI, and UCB). These 
results indicate that the influence of the acquisition function on the performance of BO is more 
profound than that of the choice of the surrogate model covariance kernel. 

 

 
 

Fig 1. Net 2 benchmark WDS 
 

Generally, the UCB acquisition function showed the best performance among all three 
acquisition functions tested in this study, followed by EI. This can be seen from the convergence 
profiles of the different BO methods as shown in Fig. 2-a, c, and d. As can be seen in the figures, 
UCB achieved faster convergence when combined with all four covariance kernels compared to 
the other acquisition functions tested in this study. Overall, the combination of the UCB 
acquisition function with both the RQ and SE covariance kernels produced the best performance 
for BO. 
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Fig 2. Performance of different Bayesian Optimization (BO) acquisition functions and 
covariance kernels. 

 
Genetic Algorithm  
 

Sensitivity of the performance of GA to the population size, mutation probability, and 
crossover probability was examined. The framework was evaluated using a range of different 
values for the population size (25, 50, 100, 125, and 150), mutation rate (0.1, 0.15, 0.2, 0.25, and 
0.3), and crossover probability rate (0.1, 0.15, 0.2, 0.25, and 0.3). The results are depicted in Fig. 
3. Generally, the results revealed that GA is less sensitive to the variability in optimization 
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parameters compared to the sensitivity of BO. This can be seen from the lower variability in the 
final objective obtained for GA using different parameters (Fig. 3-b, d, and f) compared to BO 
(Fig. 2-b, d, and f). Surprisingly, no particular relationship was observed between the population 
size and the performance of GA. Yet, a population size of 100 was found to produce the best 
performance in terms of both the final objective (Fig. 3-a) and convergence speed (Fig. 3-b). The 
results also revealed that the performance of GA generally improved with decreasing the 
mutation rate. This can be seen from the consistent increase in convergence speed (Fig. 3-c) and 
decrease in the final objective (Fig. 3-d) with decreasing the mutation rate from 0.3 to 0.1. 
Moreover, GA showed little variability with the different values of the crossover rate (Fig. 3-e, 
and f) and was found to be significantly less sensitive toward the crossover rate compared to the 
mutation rate.  

 

 
 

Fig 3. Sensitivity analysis of different Genetic Algorithm (GA) parameters. 
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Particle Swarm Optimization  
 

The sensitivity of PSO towards three key parameters was investigated, namely, the cognitive, 
social and inertia parameters, and the results are displayed in Fig. 4. Overall, PSO showed little 
sensitivity towards both the cognitive and social parameters. Nevertheless, a clear trend was 
observed for both parameters, where the final value of the objective function was found to 
decrease as both parameters increased from 0.3 to 0.5, after which the performance of PSO 
started to consistently decrease (Fig. 4-b, and d). On the other hand, PSO showed significant 
sensitivity to the choice of the inertia parameter, and the performance of PSO appeared to 
consistently decrease as the value of the inertia parameter increased from 0.3 to 0.7 as evidenced 
by the decrease in the final objective (Fig. 4-f) and increase in convergence speed (Fig. 4-e). 

 

 
 

Fig 4. Sensitivity analysis of different Particle Swarm Optimization (PSO) parameters. 
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Comparison of Optimization Methods  
 

After conducting a sensitivity analysis for each of the three optimization approaches 
independently, the performance of the three methods was compared. For this comparison, the 
best set of parameters for each method was implemented. Figs. 5-a, b, and c show the 
convergence profile of each of the three approaches. The results showed that all three approaches 
displayed somewhat comparable performance in terms of the final value of the objective 
function. However, it is crucial to note that the x-axis represents different metrics for each 
method. For GA (Fig. 5-a), the x-axis represents the number of generations, where each 
generation is comprised of 100 individuals (i.e., the population size). Each individual requires 
evaluating the objective function, which involves conducting a full water quality simulation of 
the WDS. Similarly, for PSO (Fig. 5-b), the x-axis represents the number of swarms, where each 
swarm consists of 150 particles. On the other hand, for BO (Fig. 5-c), the x-axis represents the 
number of sequential iterations. Each BO iteration requires only one evaluation of the objective 
function. Therefore, BO appears to achieve convergence using significantly fewer evaluations of 
the objective function, i.e., fewer WQ simulations, compared to both GA and PSO. Figure 5-d 
shows a comparison of the objective function achieved by each of the three methods after 500 
evaluations of the objective function. For BO, this corresponds to the final value of the objective 
function of 11.9 achieved after 500 sequential iterations. On the other hand, the corresponding 
objective function value achieved after 5 generations of GA (i.e., 500 individuals) is 41.7, while 
that achieved after 3 swarms of PSO (i.e., 450 particles) is 42.4. Taken together, these results 
indicate that BO is significantly more computationally efficient than EAs, especially for the 
optimization of expensive black-box models. 

 

 
 

Figure 5. Comparison between the performance of Bayesian Optimization (BO), Genetic 
Algorithm (GA), and Particle Swarm Optimization (PSO). 
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CONCLUSIONS 
 

In this study, we performed a comparative analysis of the performance of three different 
optimization techniques, namely, Bayesian optimization (BO), genetic algorithm (GA), and 
particle swarm optimization (PSO), for optimizing the scheduling of chlorine injection sources in 
drinking water distribution systems. A comprehensive sensitivity analysis was conducted to 
understand the role of different optimization parameters in controlling the performance of the 
three optimization techniques and to identify the best set of parameters for each technique. The 
performance of BO was significantly dependent on the choice of the acquisition function, where 
the upper confidence bound (UCB) acquisition function showed considerably better performance 
than expected improvement (EI) and probability of improvement (PI). GA showed the least 
sensitivity towards different optimization parameters (population size, mutation, and crossover 
probability), while PSO showed significant dependence on the choice of the inertia parameter. 
Overall, the results revealed that the convergence of BO requires significantly fewer evaluations 
of the objective function than both GA and PSO. Yet, BO was found to be more sensitive to the 
choice of the optimization parameters than both evolutionary optimization methods. 
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