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Abstract—Cough is an important defense mechanism
of the respiratory system and is also a symptom of lung
diseases, such as asthma. Acoustic cough detection col-
lected by portable recording devices is a convenient way
totrack potential condition worsening for patients who have
asthma. However, the data used in building current cough
detection models are often clean, containing a limited set
of sound categories, and thus perform poorly when they
are exposed to a variety of real-world sounds which could
be picked up by portable recording devices. The sounds
that are not learned by the model are referred to as Out-
of-Distribution (OOD) data. In this work, we propose two
robust cough detection methods combined with an OOD
detection module, that removes OOD data without sacrific-
ing the cough detection performance of the original sys-
tem. These methods include adding a learning confidence
parameter and maximizing entropy loss. Our experiments
show that 1) the OOD system can produce dependable
In-Distribution (ID) and OOD results at a sampling rate
above 750 Hz; 2) the OOD sample detection tends to per-
form better for larger audio window sizes; 3) the model’s
overall accuracy and precision get better as the propor-
tion of OOD samples increase in the acoustic signals; 4) a
higher percentage of OOD data is needed to realize perfor-
mance gains at lower sampling rates. The incorporation of
OOD detection techniques improves cough detection per-
formance by a significant margin and provides a valuable
solution to real-world acoustic cough detection problems.
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I. INTRODUCTION

D ISEASES affecting the lung are among the most common
medical conditions and are associated with a high mor-

tality rate around the world [1]. Cough is a natural reflex of
the human body to clear airways, but chronic coughing is often
an indicator of lung diseases, such as asthma and bronchitis.
Diagnosis of these diseases is often incorrect, and only 25–50%
of these patients are known to their doctors [2]. Long-term
monitoring of the frequency and type of cough can help patients
track their chronic respiratory conditions and aid in the correct
diagnosis. However, the devices used for clinical diagnosis are
expensive. To reduce the financial burden on healthcare systems,
in-home wearable devices embedded with machine learning
models are designed to record and analyze biosignals including
cough sounds [3], [4]. Machine learning models are trained to
capture salient information from biosignals to use for medical
purposes. However, the reliability of these systems is highly
dependent on data quality which is not stable for data collected
by wearable systems and needs to be taken into consideration in
the system design.
One challenge is the lower performance expected for a ma-

chine learning model if it is applied to data that does not follow
the distribution of the target classes used for training. This
challenge happenswhen switching froma control setting for data
acquisition to less structured settings in real-world deployments.
Samples that do not follow the training distribution are often not
learned appropriately by the models, and they are referred to as
“Out-of-Distribution” (OOD) data. Data with the same distri-
bution as the training set are designated “In-Distribution” (ID)
data. Deep neural network classifiers can give high-confidence
predictions to OOD inputs and lead to suboptimal results [5],
[6], [7].

Most of the research related to cough detection focuses on
specific sound classification problems and assumes the data
are clean. However, low data quality caused by ambient en-
vironmental noise can complicate the ability of patients to
monitor coughing at home using sensors, limiting the useful-
ness of home-based cough detection for patient management.
Considering this limitation caused by sound diversity in the
environment, we introduce an OOD detection method to tackle
this issue. With the development of artificial intelligence, many
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cough detection algorithms are designed based on deep learning
algorithms. However, these algorithms tend to under-perform
when the distributions of training and testing data do not agree.
For cough detection,OOD inputs can include body sounds (more
prominent on wearable monitors) or environmental sounds that
are not included in the training process such as breathing, heart-
beats, dog barking, door opening, etc. False predictions in these
classifiers can cause issues, such as overestimating how often a
person coughs. For example, a model may falsely classify some
sounds (e.g., the sound of a lawn mower) as a cough instead of
flagging them as unknown sounds. Inaccurate data classification
may lead to inaccurate designation of disease severity and the
resulting treatment plan. Most existing neural network-based
models address the OOD problem for computer vision tasks,
with limited studies implementing OOD detection methods for
audio classification tasks [8]. To the best of our knowledge, this
study is the first of its kind to focus on using OOD detection
techniques to boost cough detection performance.
In this study, we introduced OOD technique to reduce the

effect caused by the environmental noise collected by wearable
devices. Experiments are designed to analyze how much OOD
can help in different settings. The main contributions of this
paper include:

� Using publicly available datasets including theMusan [9],
Coughvid [10], and FluSense [11] datasets to dynamically
evaluate OOD detection performance at various frequen-
cies of interest while balancing ID and OOD samples.

� Integrating OOD methodologies into the cough detection
task to solve low data quality issues.We treated cough and
speech as ID data because they compose the majority of
the data in available sources, and the rest of the sound cate-
gories as OOD data. We implemented two OOD detection
algorithms in this work; both give promising results in the
cough detection problem.

� Evaluating the dependency of the OOD cough detection
model to several parameters such as sampling rates and
window size for feature extraction. We showed that the
cough detection with OOD detection can produce reliable
results at above 750 Hz sampling rate at 1.5–10 sec-
onds window sizes. The lowest sampling rate to produce
promising results for ID classification and OOD detection
is 750Hz. Lower sampling rate are important because they
can save computational resources and protect user privacy.

� Demonstrating that models with OOD sample detection
techniques improve overall cough classification accuracy
as the percent ofOODsamples increase. The gains become
more prominent at higher sample rates and for higher
proportions of OOD samples in the input audio signals.

II. RELATED WORK

The ability to detect cough accurately has been well studied
by researchers for a long time using statistical cough detec-
tion methods [12], [13], [14] but, in recent years, researchers
have started to implement machine learning and deep learning
methods to analyze the most suitable signal features used in
these methods [15], [16]. These works investigated features
including Short-time Fourier transform (STFT), mel-frequency

cepstral coefficients (MFCC) and mel-scale filter banks (MFB)
and classifiers including logistic regression, feed-forward ar-
tificial neural network, support vector machine, and random
forest. Besides feature extractor and classifier, Monge-Alvarez
et al. [17] proposed a system enhancing the performance of
cough detection by adding high-level data representation steps,
and Lee et al. [18] improved a cough detection system by
adding data augmentation process. There are also some other
works dealing with hardware device issues, the cross-device
discrepancy, by using ensemble classifiers [19], [20]. In our prior
work, Mahmound et al. [21] demonstrated the effectiveness of a
logistic regression classifier withmel-spectrogram input applied
to cough and speech audio using various sampling frequencies
and window sizes. Our work builds on that approach, wherein
we use mel-spectrograms of audio signals as inputs to machine
learning models based on Resnet-50 architecture with custom
OOD detection modules to detect OOD samples in addition to
cough classification.
Several contributions focus on detectingOODdata in the field

of computer vision. [22], [23], [24], [25], [26], [27], [28], [29],
[30], [31]. Some methods do not change the underlying pre-
trained model architecture and use the maximum value of the
softmax function to separateOOD inputs [22], [23], while others
add an additional output indicating the confidence of the results
to identify OOD inputs [24], [25], [26]. Generative models, like
Variational Autoencoder (VAE), can also be used to do OOD
detection by analyzing in latent space [27]. We implemented
two approaches in our study. In the first approach we add a
learning confidence output [24] and in the second we replace
the SoftMax loss with IsoMaxPlus loss [32] to adhere with the
maximum entropy principle. Based on IsoMaxPlus loss, each
class has a prototype and the minimum distance of a sample to
the prototypes is used to detect OOD inputs.

III. PROPOSED METHODS

Based on the system in the prior work [21], we propose a
new pipeline that can address both cough detection and out-of-
distribution detection problems. The work flow of the proposed
pipeline is shown in Fig. 1. In our proposed pipeline, we use
Mel-spectrogram [33] as audio inputs to a Convolutional Neural
Network (CNN) based model to extract features for cough and
Out-Of-Distribution (OOD) detection tasks. We experimented
with different CNNsmodels as backbones alongwith two classi-
fiers that haveOODdetection capabilities. ForCNNs,we test the
Frequency Extraction Network (FENet) in [34], Residual Net-
work 18 (ResNet18) [35], and VGG16 [36].We test our pipeline
on two datasets. We used a dataset from our earlier pipeline [21]
to find the best CNN model and used newly generated datasets
to find out the best model (for cough classification and OOD
detection).Wealso investigatedhowdifferent sampling rates and
window sizes of the audio signals affect the results. Resources
and code for our research can be found in the GitHub repository:
https://github.com/ARoS-NCSU/OOD-CoughDet.

A. Preliminary Work

In the prior work, [21], Mahmound et al. developed a frame-
work for detecting cough among cough and speech audios. In
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Fig. 1. Work flow of the robust cough detection with out-of-distribution detection. We first converted audio signals into log mel-spectrograms
followed by a feature extraction network. Then, we used OOD detection to recognize ID and OOD data. The ID data is classified into cough and
speech. Note that we used the same network to do OOD detection and cough detection, so no additional computation is involved. This pipeline
produces robust cough detection by recognizing and removing unknown classes.

TABLE I
DATASET SUMMARY (THE NUMBER OF SEGMENTS OR THE RECORDING TIME

ARE SHOWN IN BRACKETS)

the study, we found that 1.5 seconds window size gives the
best performance on cough detection tasks and the model gives
92.5% accuracy even at very low sampling rate, 750 Hz. The
work, however, was limited to detection in cough mixed with
speech audio. In the real world, there will be other types of
sounds, i.e., OOD data, in the input audio. Our work address the
issue of identifying OOD data in input audio without affecting
cough classification abilities of the model.

B. Datasets

Twodatasets generated in differentways are used in this study.
Dataset A was used in [21] and Dataset B is our new dataset. In
Table I, the source data used for generating these two datasets are
included.More details can be found in the following subsections.

1) Dataset a: DatasetAwas collected from theESC-50 [37],
FSDKaggle2018 [38] and LibriSpeech [39]. All audio files are
converted and saved in WAV format. The length of audio files
varies from 5 to 30 seconds. We further extracted meaningful
1.5 seconds windows from these files, because 1.5 seconds is the
majority of the cough lengths, containing the main part of each
audio [21]. These 1.5-second clips were manually annotated for
cough signals by student assistants. Dataset A has 8,046 data
points labeled as “cough” augmented from both the ESC-50
and FSDKaggle2018 datasets, and 11,372 data points labeled
as “speech” augmented from the LibriSpeech dataset [21]. The
data was generated based on the manual annotations of the start
time and the end time of each cough in ID inputs in Table I.We
used a similar approach as [21] to extract data samples from
these intervals. The dataset was split into training (80%), val-
idation(10%), and testing (10%) subsets. Due to the manually

annotated high-quality data samples, this dataset was used to
select the best feature extraction algorithms.

2) Dataset b: Dataset B was generated from the Coughvid
dataset [10], the FluSense dataset [11], the Musan dataset [9],
and theLibriSpeechdataset [39].Wegenerated over 30,000 sam-
ples of 5 seconds cough segments fromCoughvid and FluSense,
and speech data from the Musan dataset and LibreSpeech as
in-distribution dataset. Speech audios in the Musan dataset are
used as in-distribution data, while music and noise are used to
generate out-of-distribution data. Multiple data points can be
generated automatically from each file using sliding windows.
The training, validation, and testing sets are generated as fol-
lows. Training and validation data are generated from ID inputs
datasets in Table I by using a sliding window with a specific
overlap size to control the number of samples. The training
data and the validation data have a proportion of approximately
4:1 containing only ID inputs. This simulates the real-world
situation where only ID data is accessible for building a model.
The testing data contains both ID and OOD data generated
from ID inputs and OOD input in Table.I using the same way
but with different overlap window sizes. The proportion of
ID and OOD test data is approximately 1:2 when we tested
the performance for different sampling rates. The final cough
detection performance could be affected by this ID and OOD
test data proportion which is tested in this work.We used dataset
B to test how different sampling rates and window sizes affect
the model’s final performance.

C. Feature Extraction Models

FENet [34], ResNet [35], and VGG [36] are three outstanding
neural network frames used to extract features from images and
signals. To design a better system, we used the original sys-
tem embedded with three models separately and compared the
performance. FENet is a CNN-based model, which can extract
different frequency features and is often used in audio data.
ResNet is also a CNN-based model adding residual blocks to
improve the training efficiency and avoid the gradient vanishing
problem. This architecture is commonly used in image models
with high performance. VGG Net also contains subsequent
convolutional layers with a pyramidal shape which achieves
promising results on computer vision tasks.
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Fig. 2. Adding Learning Confidence [24] into cough detection algo-
rithm. p represents the prediction probabilities of cough and speech,
and c represents a confidence estimate.

D. Out-of-Distribution Detection

Twoout-of-distribution architectureswere added to our cough
detection pipeline and we investigate how each performs on
data with different window sizes and different sampling rates.
The first system was adapted from the learning confidence
out-of-distribution detection model [24] which estimates learn-
ing confidence for neural networks and produces intuitively
interpretable outputs. The other approach incorporates an en-
tropic out-of-distribution detection model [40] which replaces
the SoftMax loss with a novel loss function dealing with the
weaknesses of SoftMax loss anisotropy and tends to produce
low entropy probability distributions which break the principle
of maximum entropy. In OOD detection problems, only ID data
is taken as training and validation dataset and combined ID and
OOD data is taken as testing dataset.

1) Confidence-Based Approach: Thismodel provides a con-
fidence value for each output predicted which specifies if this
data is in-distribution. The confidence value ranges from 0 to 1.
If the confidence value is close to 1, the data is more likely to be
an in-distribution sample, and vice versa. Learning confidence is
estimated by adding a confidence estimation branch along with
the original class prediction branch after the second to last layer
of the original network. In our case, we keep the same cough de-
tection algorithm architecture but replace the last layer with two
separated layers controlling the prediction task and confidence
estimation task respectively. Fig. 2 shows the pipeline applied to
our cough detection task. The logmel-spectrogramof each audio
clip is the input and the feature extractionmodel can be any of the
neural network architectures previously described. After feature
extraction, the output features are passed through the prediction
branch and confidence branch. For prediction logits, we apply a
linear layer to map the output to a two-length vector, and then
utilize a SoftMax function prediction to get cough and speech
prediction probabilities p. Similar to the prediction branch, a
linear layer, and a Sigmoid function is utilized in the confidence
branch with one learning confidence output c. This process can
be represented as:

p, c = fθ(x), pi, c ∈ [0, 1],

M=2∑
i=1

pi = 1. (1)

where x is the log-mel spectrogram input and θ represents the
parameters for the neural network fθ(·).
In this model, the target probability distribution y helps to

adjust the predict probability distribution from p to p′ under the

Fig. 3. Density Plots for Confidence-based OOD Detection and
Entropy-based OOD Detection generated from the best performance
settings with sampling frequency f = 4 kHz and f = 16 kHz respectively
for each model and window size τ = 5 s (Sections. IV-C and IV-D). The
left plot is the confidence density and the right is the minimum distance
score density.

confidence value c:

p′ = c · p+ (1− c)y. (2)

If c is close to 1, it means that the adjusted prediction is closer to
the prediction output. This indicates that the original prediction
results of this data are more convincing and the data is more
likely to be an in-distribution data point. When c is close to
0, then the model tends to output the ground truth distribution
which means that the original prediction of this data is suspi-
cious, in other words, data could be out-of-distribution data.
Since the prediction probability is modified, the task loss is

calculated using the adjusted distribution p′ now. We use the
negative log-likelihood as the classification loss and themodified
task loss can be represented as:

Lt = −
M=2∑
i=1

log (p′i) · yi. (3)

If we were to minimize only this loss, the model will tend to set
c to be zero. To solve this issue, we add a confidence loss, which
is a log penalty:

Lc = − log(c). (4)

Therefore, the total loss is the sum of the task loss and the
confidence loss with a hyper-parameter λ to balance two losses:

L = Lt + λLc. (5)

The hyper-parameter λ is adjusted by a budget parameter β
which is set to 0.3 according to [24]. During the training process,
λ is dynamically adjusted following the rule: if Lc > β, then
increase λ to λ/0.99, and if Lc < β then decrease λ to λ/1.01.
In order to recognize out-of-distribution data, we still need to

find a threshold value, which can be defined by finding the best
threshold producing the minimum detection error (the ratio of
misclassified samples) in the holdout/validation set based on the
conclusion in [24]. The left plot in Fig. 3 exhibits the density of
confidence in our data. Most of the ID sample confidences are
close to 1 and on the contrary, most of OOD sample confidences
are close to 0.

2) Entropy-Based Loss: The Entropic out-of-distribution
detection proposed by David et al. in [40] solves the SoftMax
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loss drawbacks by replacing it with the Isotropy Maximization
(IsoMax) loss. The proposed IsoMax loss is isotropic and fol-
lows the maximum entropy principle.
The IsoMax loss is designed to be a drop-in replacement

of the SoftMax loss. Therefore, the IsoMax loss LI has the
same structure of normalization, and cross-entropy (negative
logarithm) as the SoftMax loss:

LI = −
∑
i

log

⎛⎝ exp
(
−d

(
fθ(x), z

i
φ

))
∑

j exp
(
−d

(
fθ(x), z

j
φ

))
⎞⎠ · yi, (6)

where fθ(x) denotes the embedded high level features and zj
φ

denotes a learnable prototype of class j. These prototypes are
learned during training process by minimizing loss function.
The function d(., .) equals the non-squared Euclidean distance
between sample features and class prototypes, and y stands
for the correct class label. In the SoftMax loss, the part of
−d(fθ(x), z

i
φ) in (6) is replaced by the logits related to the

i-th class. Therefore, IsoMax can be implemented easily as a
replacement for SoftMax, and the inference probabilities can be
written as

pIi (x) =
exp (−Di(x))∑
j exp (−Dj(x))

, (7)

where Di(x) := d(fθ(x), z
i
φ).

In the training process, an entropic scale Es is added to
calibrate the IsoMax loss. The extended equation is:

d
(
fθ(x), z

i
φ

)
= Es ·Di (8)

= Es

∥∥fθ(x)− zi
φ

∥∥ (9)

= Es

√(
fθ(x)− ziφ

)
·
(
fθ(x)− ziφ

)
. (10)

Then the loss in training process can be represented as

LIM = −
∑
i

log

(
exp (−Es ·Di)∑
j exp (−Es ·Dj)

)
· yi. (11)

In [32], David Macêdo et. al. proposed an enhanced isotropy
maximization loss (IsoMax+) OOD detection method consider-
ing normalized zjφ. Thus, they replacedfθ(x)with its normalized

version given by f̂θ(x) = fθ(x)/‖fθ(x)‖ and replaced zjθ with
its normalized version given by ẑj

φ = zj
φ/‖zj

φ‖. Therefore, the
loss function and probabilities equation can be rewritten as

LIM+ = −
∑
i

log

⎛⎝ exp
(
−Esβ

∥∥∥f̂θ(x)− ẑk
φ

∥∥∥)∑
j exp

(
−Esβ

∥∥∥f̂θ(x)− ẑj
φ

∥∥∥)
⎞⎠ · yi

(12)

with inference probability

pIM+
i (x) =

exp
(
−β

∥∥∥f̂θ(x)− ẑi
φ

∥∥∥)∑
j exp

(
−β

∥∥∥f̂θ(x)− ẑj
φ

∥∥∥) , (13)

where β is the distance scale, which is a scalar learnable pa-
rameter which is optimized in the training process. The distance

scale is used to avoid the unreasonable restriction introduced
by the normalized version. All prototypes are initialized using a
normal distribution with a mean of zero and a standard deviation
of one and the distance scale is initialized to one.
To define the out-of-distribution data, the minimum distance

score is used as OOD score. The minimum distance score is
given by

MDS = min
j

(∥∥∥f̂θ(x)− ẑj
φ

∥∥∥) . (14)

This represents the minimum distance between the prediction
and one of the class prototypes which is also the predicted class.
In Fig. 3, the plot on the right shows the density of minimum
distance scores for the model trained on 16 kHz sampling rate
with 5 seconds window sizes. From the plot, only the tail of
ID sample minimum distance score overlaps with small part of
the OOD sample minimum distance score distribution. Thus, a
distance threshold could be used to distinguish OOD data.

E. Evaluation Metrics

To evaluate an OOD system, the results for not only OOD
detection task but also ID cough classification task need to be
measured. Typically speaking, a good OOD system can identify
OOD data without dropping the ID detection performance in
the meanwhile. Since OOD detection task can also be treated
as a binary classification of ID class versus OOD class, clas-
sical classification metrics are both used in ID task and OOD
task measurements. Other mainly used OOD metrics were also
implemented to further illustrate the performance.

1) In-Distribution Metrics: Let TP, FP, TN, and FN represent
the number of true positives, false positives, true negatives, and
false negatives, respectively. True or false means the detection
result and positive or negative means the class. For ID task, the
positive class is cough and the negative class is speech. We take
accuracy, precision, recall, F1-score, and AUROC as evaluation
metrics.

2) Out-of-Distribution Metrics: OOD detection can be taken
as a binary classification problem, therefore, all metrics for ID
detection can be used in OOD detection by taking ID and OOD
as two classes. In this case, we treated the ID class as the positive
class and the OOD class as the negative class. Additionally, two
more commonly used metrics proposed by Hendrycks et al. [22]
were used in the evaluation.
FPR at 95% TPR:We denote FPR α as the value of the false

positive rate atα% true positive rate [30]. Thismetric is designed
to test the detection performance at one strict threshold, which
is different from the aim of AUROC. We can compare strong
detectors clearly by evaluating performance at a certain strict
threshold. FPR α represents the probability of predicting an ID
example as anOODexamplewhen theOOD examples detection
achieves α% positive detection. Note that the results may vary.
It is possible that the rank of the detectors may be the same for
all α but at different levels, or the rank can change. Therefore,
the α in FPR α is problem-dependent and needs to be selected
carefully. We use α = 95%.
Detection Error: Detection Error, just as its name implies,

means the probability of error detection in an algorithm.DeVries
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el al. [24] defined it as

minδ{0.5Pin(f(x) ≤ δ) + 0.5Pout(f(x) > δ)}, (15)

where δ ∈ [0, 1] are all possible thresholds. f(x) is the score
assigned to the input sample x, which can be used to separate
OOD and ID examples. Pin and Pout are the classification
probability of ID and OOD examples respectively, and they are
equally weighted as 0.5.
For the OOD detection task, we use the following rules to

set any low confidence predictions as a negative detection (i.e.,
we prioritize OOD task AUROC value but other rules can be
selected): (1) For the Entropy-based model, OOD samples are
separated by a distance threshold which produces the high-
est OOD task AUROC on the test dataset [40]; (2) For the
Confidence-based model, we selected a confidence threshold
giving the highest OOD task AUROC on the test dataset. The
results for detection error, F1, precision, and recall come from
detection with these threshold selection rules.

3) Overall Performance: Theoverall performance evaluation
in experiment 4 treats cough as positive class and all other in-
stances including speech and OOD data as negative class. Based
on this setting, we calculated accuracy, F1 score, precision, and
recall values.

IV. EXPERIMENTS

To figure out the best cough detection pipeline and investigate
if OOD detection can help to improve the system, the experi-
ments in the following sections are designed. The first exper-
iment was designed to test different feature extraction models
to find out the best features for the system. Other experiments
were designed to investigate the effect of different window sizes
and different sampling rates. To further prove the validity of the
system,modelswith andwithoutOODdetectionwere compared
on different datasets consisting of different ratios of OOD data.

A. Feature Extractor Algorithm Comparison

To find out the most appropriate feature extractor structure,
three backbone networks (FENet, ResNet18 and VGG16) are
placed into the standard cough detection pipeline without OOD
structure, and the ID task performances for each system are
compared.Weuse data at 16 kHz sampling rate and 1.5 swindow
size with no overlap fromDataset A. The same optimization hy-
perparameterswere used for a fair comparison, e.g., randomseed
and learning rate of 0.0001. Accuracy, Precision, Recall, and F1
score are taken as evaluationmetrics for comparing three feature
extraction models. We found that ResNet18 achieves the perfect
performance (100% accuracy) implying that all clean samples
selected manually are classified correctly meaning that ResNet
has a strong ability to extract features fromMel-spectrogram im-
ages.We also notice that VGG16 gets a little higher performance
with 97.8% accuracy than FENet with 96.6% accuracy meaning
that image models are better than signal models when the input
is signal Mel-spectrogram. Compared to VGG16, ResNet18 has
a lighter structure size and better results. Based on these facts,
ResNet is chosen to be a system feature extraction method in
the following experiments. However, either one of these models
would be an appropriate choice.

TABLE II
NUMBER OF SAMPLES GENERATED WHILE VARYING THE WINDOW SIZE (τ )

B. ID Detection Performance for Different
Sampling Rates

In this experiment, ResNet50 was selected as backbone for
both baseline model and OOD incorporated models since it had
the best performance for feature extraction (as shown in the
previous section). For all models, we set the learning rate to
1e−4. For the confidence-based model, the initial confidence
parameter λ is 0.1 and a budget parameter is set to 0.3 [24]. For
the entropy-based model,Es is set to 10. To ensure the accuracy
of our models, we trained each model with a batch size of 16 for
a total of 5 epochs. The best model for each setting was selected
based on its performance on the validation set. These settings
are the same for the following experiments from Sections IV-C
to IV-E.
We use Dataset B for this analysis. Cough data are generated

using 5 s window sizes with 2.5 s overlap This setting is consis-
tent with the best window size in Section IV-D. Speech data and
OOD data are generated using 5 s window sizes without overlap
to keep the number of cough data close to the number of speech
data see Table II). In total there were 14150 training data sam-
ples, containing 7074 coughs and 7076 speech, 2449 validation
data samples containing 1224 coughs and 1225 speech samples.
In the test set, there were 1604 samples including 802 coughs,
802 speech, and 1604 OOD data samples.
By lowering the sampling rate, less information would need

to be transmitted / processed, which would lower the power
consumption in the case of a wearable device but it would make
recognitionmore challenging. This is a trade-off. In our previous
work [21], we showed that 750 Hz is the lowest sampling rate
for which we observe a significant drop of Virtual Speech Qual-
ity Objective Listener (ViSQOL), which compares the original
signal and target signal to provide a speech quality score using
the Mean Opinion Score (MOS) [41], on the “test-clean” set in
the LibriSpeech (with speech labels) [39]. Similarly, we further
analyze signal quality on the same dataset by using World
Error Rate (WER) [42], which is a common metric used in
speech recognition representing the difference between two text
sequences. WER can be represented as

WER =
S +D + I

N
=

S +D + I

S +D + C
, (16)

where S represents the number of substitutions; D represents
the number of deletions; I indicates the number of insertions;
C stands for the number of correctly placed words; and N
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Fig. 4. Comparison of Baseline and OOD Detection on Classification
Task for ID Samples using accuracy (top), precision (middle) and recall
(bottom) metrics.

represents the total number of words in the reference, which is
equal to the sum of substitutions, deletions, and correctly placed
words (N=S+D+C).
To investigate the consistency of sampling rate between

cough detection task and OOD task, we tested the system
detection performances and speech recognition performance
at the sampling ratesf ∈ {250, 400, 500, 750, 1k, 2k, 4k, 6k, 8k,
10k, 12k, 14k, 16k}. The reason why we consider the speech
recognition is that a lower sampling rate can also inhibit speech
recognition, which can ensure that privacy is maintained for the
users.
For our evaluation, we select the model with the best ID task

accuracy on the validation set during training, i.e., the epoch
that yielded the best accuracy. We do not include the OOD
task as part of the selection criteria, because we assume that
the OOD data is not available during training or validation. This
is to ensure generalization and to avoid ending up with a model
that is tailored to a specific OOD sample. The performances
reported below correspond to averages of 4 runs of training
with differential random seeds for each model in order to reduce
model variability.
We compared ID task results between the baseline model

and the two OOD detection approaches in Fig. 4. The curves
for all three models almost overlap on the three metrics. The
accuracy (topplot) of the baseline- and the entropy-basedmodels
are the closest over all sampling rates, while confidence-based
model is a slightly lower at some sampling rates, e.g. 750 Hz,
8 kHz, 14 kHz, and 16 kHz. In the precision (middle) plot,
the entropy-based model is slightly worse than the baseline
model at recognizing coughs at sampling rates lower than 4 kHz,
and the confidence-based model shows a more significant drop.
In the recall (bottom) plot, the entropy-based model got the
highest recall at a sampling rate of 750 Hz, and all models got

Fig. 5. Speech quality for different sampling rates.

similar recalls at higher frequencies. Overall, the OODdetection
models did not showany significant drop in ID task performance.
We observe a drop in performance from all approaches with
frequencies below 500 or 750 Hz, which is consistent with our
previous observations.
When it comes to the speech recognition, as seen in Fig. 5, the

WER is close to 100% at 750 Hz where the cough/speech classi-
fication performance remains relatively high.WER reaches 50%
at around 3 kHz giving us a range of 750 Hz–2 kHz to protect
user privacy while still correctly classifying cough and speech.

C. OOD Detection Performance for Different
Sampling Rates

In this section, we use the same setting for the models and
Dataset B for our analysis. Fig. 6 shows the results plots of mean
and standard deviation of 4 confidence-based and entropy-based
models separately, trained with different starting points.
From the plots in Fig. 6, we found that when the sampling rate

is 4 kHz, the confidence-model is able to achieve the best per-
formance and the model maintains relatively acceptable results
when the sampling rate is 750 Hz or higher. We could observe
that the model becomes less consistent at sampling rates higher
than 6 kHz and gets an outlier at 12 kHz sampling rate with high
standard deviation. This implies that the confidence model may
not be good at dealing with high-frequency information.
The entropy-basedmodel achieves the best performance at the

highest sampling rate 16 kHz and yields less consistent results
at rates higher than 4 kHz with larger standard deviation for
AUROC, FPR95, and detection error plots. When looking more
closely into F1, precision, and recall, we found that the model
keeps high recall from 2 kHz to 8 kHz and the results are less
consistent for precision which means that the models tend to
focus more on retrieving ID data.
Overall, 750 Hz is the lowest sampling rate with acceptable

results and 8 kHz is usually when results become less consis-
tent for both models. Compared to confidence-based models,
entropy-based models overall obtain better results at sampling
rates higher than 750 Hz. From Fig. 6, the AUROC value from
the entropy-based model at 16 kHz is slightly higher than the
confidence-based model at 4 kHz with lower standard deviation.
For FPR95, detection error and F1, the confidence-based model
at 4 kHz obtains better values than entropy-based model at
16 kHz but with higher standard deviations. In conclusion, 1)
OOD detection models give less consistent results at the high
frequency range from 4 kHz to 16 kHz; 2) the confidence-based
model at 4 kHz performs better than the entropy-based model

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on August 22,2023 at 13:12:35 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: ROBUST COUGH DETECTION WITH OUT-OF-DISTRIBUTION DETECTION 3217

Fig. 6. The Comparison of Learning Confidence-based OOD and Entropy-based OOD Over Variant Sampling Rates. Blue lines are average
results over 4 runs and gray lines are the corresponding standard deviation. The best performance over sampling rates is highlighted in red.

at 16 kHz; and 3) the entropy-based model is slightly better at
dealing with higher frequency information than the confidence-
based model.

D. Detection Performance for Different Window Sizes

The mean of a single cough instance is 1.5 s and larger win-
dow sizes usually contain more information producing a lower
performance which was shown in our previous research [21].
To further investigate the influence of window sizes, we tested

OOD models with variant window sizes τ = [1.5, 2, 3, 4, 5, 10]
seconds on f = [400, 750, 8k, 16k] Hz. The number of sam-
ples is listed in Table II. Different overlap sizes are used in
different window size settings to keep the fraction of cough
and speech as 1:1, and the fraction of ID data and OOD data
constant.
For ID task performance, OOD detection models tend to get

the best performance at 4 s or 5 s window size at all sampling
frequencies and the higher sampling frequency produces better
results as shown in Fig. 7. For the OOD task, Fig. 8 shows the
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Fig. 7. ID Task Results while Varying the Window Size.

Fig. 8. OOD Task Results for Varying Window Sizes. The results from
16 kHz are removed for clear visualization due to its inconsistency.

results for the OODmodels for twometrics as a function of win-
dow size that gave the most consistent results. That is, we only
show the plots for which a trend was observed in performance as
a function of window size. Overall, the models tend to get better
performance for greater window sizes. In general, the models in
Fig. 8 at 10 seconds window size achieve the highest AUROC
and the lowest FPR95. Results using a 5-second window are
comparable. When it comes to the comparison between the
confidence-based and entropy-basedmodels, there is no obvious
trend that shows that one is superior.

E. Detection for Different OOD Proportions

Up to this point,we have discussed performance separately for
ID and OOD tasks. However, in the real live setting, we would
expect to see data that is a mixture of ID and OOD samples.
Hence,we analyze the performance of allmodels as a function of
the proportion of the OOD data introduced. From this study, we
found that the baselinemodel performance is drastically reduced
byOODdata and theOODdetectionmodels surpass the baseline
model once a high enough proportion of OOD data is present.

TABLE III
RECALL VALUES (%) FOR EACH MODEL

The proportion at which this trade-off occurs varies depending
on the sampling rate.
Weuse thebest performingmodels forf = [400, 750, 16k]Hz

with τ = 5 s for this study and changed the proportion of OOD
data from 0% to 50% of the total test data set. We focus purely
on the detection of cough instances as our positive samples
and consider any other type of sample as negative. For OOD
detection, the same strategies are used to select confidence and
distance thresholds for confidence- and entropy-based models,
that is, using the threshold which produces the best performance
(the highest AUROC). Thus, thresholds are variant at different
OOD data proportions.
Fig. 9 shows the comparison between baseline and OOD

detection models. The x-axis represents OOD data proportion
ranging from 0% to 50%, where n% indicates the number
of OOD samples introduced in the test set. This quantity is
given by

n% =
The # of OOD Samples

The # of Samples in the Test Data
· 100%. (17)

In the accuracy plot, although the initial accuracy of base-
line model is higher than that of OOD detection models, the
baseline model accuracy keeps going down while the OOD
detection models increase slightly when adding more OOD
data. At 16 kHz sampling rate (left), OOD models surpass the
baseline model at an OOD proportion of around 10%, and the
initial accuracy of the baseline drops from 99.89% to around
90%. At 750 Hz (middle), our models outperform the baseline
at an OOD proportion of around 15%, and the accuracy of
the baseline drops from 98.44% to around 81%. At 400 Hz
(right), our models outperform the baseline at an OOD pro-
portion of around 22%, and the accuracy of the baseline drops
significantly to around 71%. On the other hand, we observe
for all sampling rates that the OOD approaches maintain a
consistent slightly increasing performance. Overall, we observe
decreases in all model for the F1 score and precision as OOD
data is introduced. However, the decay in performance for
F1 score and precision for the OOD models is less drastic.
Compared to confidence-based model, the entropy-based model
has an overall lower drop in performance in all metrics (except
for accuracy at 400 Hz). The entropy-based model seems to
be equipped with a stronger mechanism to deal with OOD
data.
Since we are using the same ID data in all these experiments,

the recall does not change for any of thesemodels. Table III sum-
marizes these values. For example, at 16 kHz, the baselinemodel
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Fig. 9. Comparison for three models with variant OOD Data proportion at 16 kHz, 750 Hz, and 400 Hz sampling rates.

can retrieve all cough samples while OOD detection models
retrieve 86.53% and 90.40% for confidence and entropy-based
models respectively. Note that there is a more significant drop
on the OOD models recall performance when going to lower
sampling rates. The lower performance in OOD models is due
to our choice on the rule for turning low confidence samples into
OOD samples. This can be tuned depending on the use case to
get higher recall with the trade-off of having a higher sensitivity
to higher proportions of outliers.

F. Discussion

To get convincing results, we use the following strategy to
ensure that the cough samples in the train, validation, and test sets
come from different individuals. We use all segments from the
same audio sample as either part of the train, validation, or test
sets. That is, there is no overlap of audio samples between these
sets. This a valid scheme for the Coughvid dataset [10] since the
author mentioned a diverse range of participant demographics in
the data collection process. Regarding the FluSense dataset [11],
this dataset was collected “in four public waiting rooms within
the university health service of the University of Massachusetts

Amherst, a research and land-grant university with more than
30,000 students.”. Even though it is hard to guarantee that each
cough audio comes fromunique individuals, given the collection
location and the large student population, the probability of the
same person’s coughs appearing in multiple sets is very low.
For hyper-parameters selection, specified hyper-parameters

for each model follow the work in which they were pro-
posed [24], [40]. The authors of [24] mentioned that the budget
hyper-parameter β will not affect results a lot, and the authors
of [40] observed stable improvement (but not significant) in
results when Es is equal to or higher than 10.

In Section IV-A, image feature extractionmodels, ResNet and
VGG, outperform frequency feature extraction model FENet
when the input is signal Mel-spectrogram. This indicates that
Mel-spectrogram can be a strong image feature representing
signal information. In this case,models used or pretrained on im-
age data have potential ability to deal with bio-signal processing
problems by transferring input signal intoMel-spectrogram. The
vision transformer is a popular topic in the computer vision area
and many transformer models are proven to be powerful [43],
[44], [45]. These models can embed input features into a latent
space where the OOD detection can be processed in a more
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interpretable way. Besides, the attentionmechanism in the trans-
former could be another potential tool to detect OOD data.
In Sections IV-B through IV-D, the OOD models are tested

on inputs with different sampling frequencies and audio window
sizes. Fig. 4 in Section IV-B proves that the ID performances
of OOD models are close to that of the baseline model. Even at
750Hzwhere the user privacy is protected by low speech quality
(Fig. 5),OODdetectionmodels achieve convincingperformance
and the entropy-based model reaches almost the same perfor-
mance as the model without OOD detection. Therefore, we can
infer that the OOD models are more stable than the baseline
system when the data is not ideal. Sections IV-C and IV-D
(Fig. 8) show that the confidence-based OOD model produced
the highest performance at 4 kHz and the entropy-based model
produced some of the highest performance at 16 kHz; however,
the results were less consistent (i.e., there was more variability)
at higher sampling rates. Not like ID performance, the higher
sampling, the better performance, OOD performance does not
rely on sampling rate indicating that different OODmodels have
different sampling rates to produce the best results. Based on
this fact, we can use different models while different sampling
frequencies to improve the overall results. From Section IV-D,
we learned that theOODprediction qualitywas betterwith larger
window sizes with little change observed between 5 and 10
seconds window sizes. The conjecture is that longer window
sizes may contain more cough instances leading to a more
recognizable spectrogram that is easier to separate from OOD
samples.
In Section IV-E, we investigated the limitation of OOD de-

tection models and Fig. 9 showed that the baseline model is
very sensitive to OOD data and the performance drops with the
increase of OOD data. We used the best window size setting
(5 s) in this experiment to better show the improvement and the
limitation of OOD - Cough Detection methods. The limitation
of the OOD method is that when there is not enough OOD
data, the detection accuracy is lower than the baseline detection
accuracy. As the proportion of OOD samples increases, this gap
is reduced andOODmodels endupperformingbetter. The points
at which OOD models become better than the baseline is at
OOD proportions of 10%, 15%, and 22% for 16 kHz, 750 Hz,
and 400Hz respectively. In our work, we only tested proportions
ranging from0% to 50%because 50% is enough to see the trends
in improvement, and the cough detection model had dropped
below 50% accuracy by then on the standard model.
In this paper, the strategy used to select the threshold for

OOD detection makes use of the test set. We use the test set
instead of the validation set because, for more general settings,
we may not have access to a representative sample of OOD
data for validation. For OOD problem, it is common to not use
OOD data during the training and fine-tuning process, which
is a simulation of real-world scenarios where only ID data
is available. Therefore, an optimal threshold is important for
OOD detection model to produce convincing results, however,
in the real-world problem, we only have the access to ID,
leading to threshold selection difficulty. To measure the overall
performance, we also used the AUROC metric, which is not
affected by the threshold selection. For the confidence-based

model, Terrance DeVries [24] has proved that “misclassified
in-distribution examples from a validation set can serve as a
conservative proxy for out-of-distribution examples when cali-
brating the detection threshold.” For the entropy-based method,
the density plot for the minimum distance between samples and
prototypes in Fig. 3 clearly shows that the tail of the ID distance
density overlaps with part of OOD distance density. Based on
this fact, a 95% single-sided confidence interval could be used
as a threshold.

V. CONCLUSION AND FUTURE WORK

We have presented a robust cough detection algorithm with
out-of-distribution detection. An image feature extractor was
embedded into the pipeline because it outperformed the fre-
quency feature extraction neural network. We proved that the
new algorithm is able to detect OOD samples without sacrificing
ID task performance. Awide range of experiments was designed
to analyze the performance of this new algorithm.We found that
the new algorithm produces trustful results when the sampling
rate is greater than 750 Hz and the window size is between 4–10
seconds. We also investigated the limitation of the OOD cough
detection algorithm. If there is virtually no OOD data present in
the test set, the baseline model performs slightly better than the
OOD models. In the best-case scenario (16 kHz sampling rate),
the OOD models perform better than the baseline once the test
set consists of more than 10% of OOD data. Cough detection
with OOD can be useful in the real world due to more noisy data
and more acoustic classes.
One main challenge is threshold selection for OOD detection.

In the future, we will investigate different methods to choose
thresholds including 95% confidence interval, clustering, and
the relation between ID task and OOD task. We also plan
to investigate other architectures such as vision transformers
to extract features that can capture attention while possibly
providing more explainability.
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