Program State Element Characterization

Enrico Armenio Deiana
Northwestern University, USA

Brian Homerding
Northwestern University, USA

Peter Dinda
Northwestern University, USA

Abstract

Modern programming languages offer abstractions that
simplify software development and allow hardware to reach
its full potential. These abstractions range from the well-
established OpenMP language extensions to newer C++ fea-
tures like smart pointers. To properly use these abstractions
in an existing codebase, programmers must determine how
a given source code region interacts with Program State
Elements (PSEs) (i.e., the program’s variables and memory
locations). We call this process Program State Element Char-
acterization (PSEC). Without tool support for PSEC, a pro-
grammer’s only option is to manually study the entire code-
base. We propose a profile-based approach that automates
PSEC and provides abstraction recommendations to pro-
grammers. Because a profile-based approach incurs an im-
practical overhead, we introduce the Compiler and Runtime
Memory Observation Tool (CARMOT), a PSEC-specific com-
piler co-designed with a parallel runtime. CARMOT reduces
the overhead of PSEC by two orders of magnitude, making
PSEC practical. We show that CARMOT’s recommendations
achieve the same speedup as hand-tuned OpenMP directives
and avoid memory leaks with C++ smart pointers. From
this, we argue that PSEC tools, such as CARMOT, can pro-
vide support for the rich ecosystem of modern programming
language abstractions.

CCS Concepts: « Software and its engineering — Com-
pilers; - Computing methodologies — Parallel program-
ming languages.

Keywords: code optimization, dynamic analysis, program
characterization

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
CGO ’23, February 25 — March 1, 2023, Montréal, QC, Canada

© 2023 Copyright held by the owner/author(s). Publication rights licensed
to ACM.

ACM ISBN 979-8-4007-0101-6/23/02...$15.00
https://doi.org/10.1145/3579990.3580011

Brian Suchy
Northwestern University, USA*

Tommy McMichen
Northwestern University, USA

Nikos Hardavellas
Northwestern University, USA

74

Michael Wilkins
Northwestern University, USA

Katarzyna Dunajewski
Northwestern University, USA

Simone Campanoni
Northwestern University, USA

ACM Reference Format:

Enrico Armenio Deiana, Brian Suchy, Michael Wilkins, Brian Home-
rding, Tommy McMichen, Katarzyna Dunajewski, Peter Dinda,
Nikos Hardavellas, and Simone Campanoni. 2023. Program State
Element Characterization . In Proceedings of the 21st ACM/IEEE In-
ternational Symposium on Code Generation and Optimization (CGO
’23), February 25 — March 1, 2023, Montréal, QC, Canada. ACM, New
York, NY, USA, 14 pages. https://doi.org/10.1145/3579990.3580011

1 Introduction

Programming languages evolve to give programmers pow-
erful abstractions that improve performance, energy savings,
and code clarity. For example, abstractions introduced by the
OpenMP language extensions enable programmers to obtain
additional performance by taking advantage of the multiple
cores available in a chip. Unfortunately, programmers often
struggle to use abstractions properly, which leads to per-
formance and correctness issues. The difficulty in using ab-
stractions lies in the implicit requirement that programmers
must be omniscient regarding the behavior of the whole pro-
gram. For example, wrapping a code region in an OpenMP
abstraction to express its parallelism requires programmers
to understand all possible data and control flows that connect
the outside code (potentially from anywhere in the program)
to the inside of the code. More generally, programmers need
to understand how variables and memory locations evolve as
the program executes from the point of view of a target code
region (e.g., a memory object is always written before being
read in a code region) to properly use modern programming
language abstractions. Variables and memory locations (i.e.,
globals, heap, and stack) form the state of a program. We
refer to them as Program State Elements (PSEs).

We observe that many abstractions rely on a common
piece of information related to the access pattern of PSEs.
Our approach studies this access pattern for the code re-
gion where the abstraction is to be applied. We define a
new concept that summarizes the impact of this access pat-
tern, which we call Program State Element Characterization
(PSEC). PSEC describes: (a) which, where, and how PSEs are
used in a code region, (b) how data of PSEs flows across code
region boundaries, and (c) the reachability relationships be-
tween different PSEs. Intuitively, the PSEC of a code region

* Now at Google.

https://doi.org/10.1145/3579990.3580011
https://doi.org/10.1145/3579990.3580011
https://www.acm.org/publications/policies/artifact-review-and-badging-current

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

assists programmers by formalizing their mental process
when thinking about abstractions. For example, when par-
allelizing a program’s loop using OpenMP, a programmer
needs to understand how PSEs are defined in the program,
which ones are only read, which are written, and in what
order. Programmers then use this information to identify
the PSEs that can be shared between threads, the PSEs that
need to be privatized, those that can be reduced, and the
code regions that have to become OpenMP critical sections
as they access the same PSEs in parallel. Only after gathering
all of this information can programmers build an OpenMP
pragma and the necessary preparation code that might come
with it; for example, the extra code needed to privatize (when
possible without changing the program’s semantics) PSEs
that reside in memory. PSEC presents this information to
programmers in human-readable form by reporting source
code level information as instances of the target abstraction.

Building a tool capable of automating PSEC is challenging
for two reasons. First, automating PSEC with only static code
analyses is a challenge due to potential memory aliasing and
caller-callee relations that are unknown at compile time. Sec-
ond, performing PSEC at run-time is challenging because of
its computation and memory requirements. This is because
PSEC requires tracking the whole memory of a program as
well as all variables and all their run-time accesses performed
within the abstraction’s code region. Notice that although
tools exist to track the memory of a program, such as Val-
grind [42] and AddressSanitizer [47], they cannot perform
PSEC because they only track memory accesses. In other
words, they ignore the vast bulk of PSE accesses (§2.3), those
to function’s variables (allowing them to operate with low
overhead). Further, existing tools have no need to integrate
information about accesses, which is required for PSEC, and
therefore they do not need to preserve such information,
allowing them to operate with low memory.

We are the first to automate PSEC. We do it with the
Compiler And Runtime Memory Observation Tool (CARMOT),
an open-source tool that includes three components: an
LLVM-based compiler with PSEC-specific optimizations, a
co-designed runtime that profiles how the target PSEs evolve,
and a custom Pintool that tracks PSEs in pre-compiled code.
A programmer invokes CARMOT with the abstraction they
would like to use on a given code region (e.g., OpenMP par-
allel for). CARMOT then generates abstraction recommen-
dations by synthesizing an instance of the target abstraction
using the PSEC of the target program.

To demonstrate the power and flexibility of PSEC, we
use CARMOT to generate recommendations for five impor-
tant abstractions ranging from traditional to emerging. The
abstractions are: OpenMP critical section, OpenMP paral-
lel for, OpenMP task, C++ smart pointers, and the Input-
Output-State abstraction needed by the STATS compiler for
non-deterministic programs [21]. We showcase the power
of CARMOT’s recommendations by automatically checking

75

Deiana et al.

int work(int a, int b){
int i, x, y;
y = 42;
for (i =0; 1 < 10; ++i){
#pragma carmot roif{
x = 1i/(a + b);
y /= a*x + b;
}
}

return y;

}

Figure 1. CARMOT automatically builds the PSEC contain-
ing the information to parallelize this for-loop.

for correctness of existing OpenMP pragmas, and generat-

ing new pragmas for benchmarks from PARSEC [17], SPEC

CPU 2017 [11], and NAS [16]. On average, the pragmas that

result from CARMOT’s recommendations speed up program

execution by 8X compared to the original, serial version, and
they match or outperform the manually (and labor-intensive)
parallelized version. We also show that CARMOT finds and
breaks cycles in reference counting garbage collection used
by C++ smart pointers so programmers can safely use this
abstraction without introducing memory leaks. For example,

CARMOT was able to easily discover a complex reference cy-

cle in the SPEC CPU 2017 benchmark nab that spans across

multiple files and functions. Finally, the STATS abstraction
automatically generated by CARMOT in a few minutes out-
performs those that the STATS authors manually defined
after years of work.

We summarize our contributions as follows:

e We observe that PSEC is the common information needed
to use numerous abstractions correctly and at their full
potential. We illustrate this need through an in-depth study
of five popular abstractions (§2).

o We formally define PSEC (§3).

e We make PSEC practical by introducing novel compiler
and runtime optimizations within CARMOT (§4).

o We evaluate CARMOT on a wide range of well-known
benchmark suites and illustrate its benefits in terms of
generating abstractions’ recommendations with reason-

able overhead (§5).
2 Background and Motivation

Using programming language abstractions in a large code-
base is challenging and error-prone due to the lack of tools to
assist programmers [48]. Here we describe three use cases ex-
ploring five different abstractions and how they support and
challenge programmers. We show how PSEC is the common
information necessary to build tools that help programmers
use these abstractions. Finally, we show that prior work is in-
sufficient as they use either static analysis only [1, 15, 18, 45]
or limited dynamic strategies [35, 39, 43, 51] that limit them
to a few simple abstractions.

2.1 Challenges in Adopting Abstractions

Program Parallelization/Synchronization. OpenMP
has high-level abstractions to parallelize loops (#pragma

Program State Element Characterization

omp parallel for), synchronize parallel accesses (#pragma
omp critical/ordered), and asynchronously execute units of
computation (#pragma omp task). Using these pragmas to
their full potential quickly becomes complex as they often
require both the specification of their attributes and extra
code to prepare the target code region for efficient parallel
execution. For example, #pragma omp parallel for requires
programmers to understand which PSE variable needs to be
privatized per thread (using the private attribute), which can
be shared (shared attribute), and which code statement uses
PSEs involved in true data dependencies that should be in
a #pragma omp critical/ordered section. Also, programmers
need to understand how a private PSE variable interacts with
the code outside the target loop. Variables that are written
before the loop and read inside need to be declared as first
private, while variables written inside the loop and read after
need to be last private. Furthermore, programmers might
have to write additional preparation code to, for example,
clone PSEs that are more complex than variables (e.g., ar-
rays, objects). This requires knowledge of where and how
these PSEs are allocated (e.g., their size, type, alignment).
Similarly, #pragma omp task requires an understanding of
which PSEs are consumed/produced by the task through the
depend(in/out) attribute. Failing to correctly classify PSEs or
their code statements results in invalid or inefficient code.
Managing Dynamic Memory. C++ programmers used to
manually manage the dynamic memory of a program. To
help with this task, modern C++ standards (as of C++11)
have added the smart pointer abstraction. Smart pointers
manage dynamic memory using reference counting, which
tracks the number of pointers to a dynamic PSE object and
deletes it when the count drops to zero. Unfortunately, using
smart pointers can lead to memory leaks when there are cy-
cles in the reference counting graph of PSEs. Programmers
have limited tool support to detect when cycles occur and
no support to identify and break them. This is particularly
challenging when reference cycles cross many functions and
source code files, making manual detection difficult.
Declaring State Dependences with STATS. STATS [21]
is a compiler for parallelizing non-deterministic programs.
STATS requires a programmer to follow a given code struc-
ture (i.e., the Input-Output-State abstraction of STATS), which
makes the compiler aware of the STATS state dependence
(i.e., a Read-After-Write (RAW) dependence that can be sat-
isfied in an alternative way following the STATS execution
model). To do so, a programmer needs to classify the PSEs
accessed by the code region where STATS operates into three
classes: 1) Input class (PSEs that are only read), 2) Output
class (PSEs that are written first), 3) State class (PSEs that are
read first and then written). Understanding which PSE goes
into which class often requires a programmer to understand
the behavior of the entire program. Misclassifications lead
to performance degradation or an incorrect program.

76

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

2.2 Benefits of PSEC

PSEC conveniently summarizes the knowledge of how the
program state is affected by a code region that abstractions
of §2.1 require. We now give an intuition about how to col-
lect and apply PSEC to use the abstractions #pragma omp
critical/ordered and #pragma omp parallel for. We formalize
this process for the other abstractions in §3.2. Consider the
loop in Figure 1 to be the code region where a programmer
wants to apply #pragma omp parallel for. PSEC would clas-
sify the PSEs affected by the loop’s body as follows: variables
a and b are only read, variables x and i are always written
before being read, and variable y is read and then written.
With this information, CARMOT generates the #pragma omp
parallel for with the correct attributes and critical section.
In more details, CARMOT lists variables a and b as shared
because they are only read, hence multiple threads can read
their value at the same time without making extra copies.
Variables x and i are instead declared as private because their
value changes throughout loop iterations, hence multiple
threads must have private copies to work on. Finally, vari-
able y introduces a RAW loop-carried data dependence and
cannot be put into a reduction clause because of the division
operation performed on it. So, CARMOT recommends wrap-
ping the statement that uses y (i.e., line 8) in #pragma omp
ordered because the division operation is not commutative,
hence the order of operations must be preserved.

2.3 Overhead of PSEC

On top of tracking memory accesses (i.e., reads and writes)
like other memory-tracking tools do [42, 47], PSEC needs to
track accesses to function variables for a target code region
to obtain complete information of the program state. We
measured the increase of accesses and observed 8x more
accesses on average that need to be tracked for PSEC. Other
tools do not have to track function variables because their
only goal is to validate memory accesses. Hence, these tools
are able to invoke many general-purpose compiler optimiza-
tions, which are not compatible with PSEC (e.g., mem2reg
disrupts the mapping between source code and IR variables).
This is why our approach requires a more involved compiler-
based solution including several PSEC-specific compiler and
runtime optimizations.

2.4 Limitations of Current Dynamic Analyses

As §2.1 shows, PSEs are explicitly used in many modern
programming language abstractions. Despite their impor-
tant role, this paper is the first one to consider PSEs as first
class citizens. Dynamic analyses of prior works [35, 43, 51]
are instead based on dependencies or memory footprint of
instructions. This limits prior work to imprecise and overly-
conservative information that can defeat the purpose of us-
ing an abstraction altogether. Figure 2 shows an example of
the fundamental limitations of such dynamic analyses. In
this example i spans from 0 to N-1, while j assumes the values
{1,0,0,2,3,...,.N-2J. The corresponding dependence graph and

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

with PSEC:
void func (int a[]){
// Generate OMP_NUM_THREADS copie
int **aCloned = {...};
#pragma omp parallel for
for (int i = @; i < N; ++i){
int j = {...};
if (1 == 1) || (5 == 1)){
#pragma omp critical
{
{0} =

void func (int a[]){ . with Dependence Graph
for (int i = 0; 1 < N; ++1){ and Memory Footprint info:

int § = {...};
(...} = a[i); void func (int a[]){
alil = (...} #ipragma omp parallel for
} for (int i = 0; i < Nj ++i){
} int j = {(...};
pragma omp critical
Dependence Graph:

{

{...} = alil; i
{...} Hot code i¢

parallel

2031 = alil;

WAR
Loop Carried }

RAW
Loop Carried

Hot code is
sequential

omp_get_thread_num();
= aCloned[threadID][i];

WAW
Loop Carried

Memory Footprint:)
: a[0),a[1],....a[N-1] ,
+a[0),a[1],....a[N-2])

Figure 2. State of the art dynamic analyses based on depen-
dence graph and/or memory footprint of instructions miss
important parallelization opportunities compared to PSEC.

memory footprint for the relevant instructions (i.e., 3 and 4)
are reported in Figure 2. If programmers want to parallelize
the for-loop in the example following the information pro-
vided by the dependence graph and memory footprint of the
program, they need to be conservative and assume that any
element of the memory object a can be involved in the loop-
carried RAW dependence. This results in placing the most
computationally intensive part of the loop body in a critical
section, which runs sequentially and defeats the purpose
of parallelizing the loop in the first place. This fundamen-
tal limitation becomes even more severe as the size of a[N]
grows. PSEC instead reports to the programmer that only a
small portion of a (a[1] in our example) is involved in the
loop-carried RAW dependence. Hence, the programmer can
considerably shrink the critical section and clone the rest of
a to remove the loop-carried WAR and WAW dependencies,
regaining parallelism.

3 Program State Element Characterization

The generation of abstractions of §2.1 requires three es-
sential pieces of information about PSEs: classification (e.g.,
only read PSEs), contextualization (when and where PSEs are
used in the program), and reachability (PSEs that reference
other PSEs). In this section we describe how PSEC provides
this information and how it is used to automatically generate
the abstractions we target.

3.1 Components of PSEC

PSEC has three components (Table 1): Sets to classify PSEs,
Use-callstacks to contextualize computation, Reachability
Graph to represent reachability relationships between PSEs.
Sets. We define Program State Elements as the set of memory
locations (stack and heap) and variables (local and global) of
a program at the source code level. Also, we define Region of
Interest (ROI) as a single-entry single-exit code region [28].
Examples of an ROI are a single statements, an if-then-else
code block, a loop, or a function. PSEC is related to an ROI
and contains information about how PSEs are read and/or
written by that ROL

PSEC classifies the ROI's access to PSEs into four Sets.
Each set indicates how an ROI in the source code interacts
with (i.e., reads/writes) PSEs. The sets that comprise a PSEC

77

Deiana et al.

for a dynamically invoked ROI Z are:

Input set: PSEs read by a dynamic invocation of Z before
being written by any invocation of Z. This set represents the
input of Z as these data are generated by the code outside Z
and consumed by Z.

Output set: PSEs written in a dynamic invocation of Z and
read outside Z. This set represents the output of Z as this
data is generated by Z and consumed by the code outside Z.
Cloneable set: PSEs written by more than one invocation of
Z where no subsequent invocation reads them before over-
writing them. This set represents data locations reused by
invocations of Z without triggering RAW data dependences.
Transfer set: PSEs written by an invocation of Z and then
read by a subsequent invocation of Z before any potential
overwrites. This set represents the data generated by an in-
vocation of Z and consumed by a subsequent invocation of
Z, triggering a RAW data dependence.

Three pieces of information are necessary to classify PSEs
in the correct set of a PSEC. First, we need to know where
PSEs are allocated in the source code. Second, we need the
context of such allocations. As context we use the callstacks
that lead to the code statements that performed such allo-
cations. The context of allocations is necessary because the
same static code statement that generates PSEs can be used
in different parts of the program, and the programmer must
be able to distinguish them. For example, custom allocators
are widely used in large codebases. Without knowing the
callstack all allocations would look like they are coming from
the allocation statement in the custom allocator, which is not
useful information. Third, we need to record reads and writes
the ROI performs on all PSEs to characterize them correctly.
We call these accesses uses of PSEs.

Use-Callstacks. The program statements in an ROI (i.e., the
uses of PSEs) can be executed multiple times from different
parts of a program. To take this into account, we record the
callstack of each statement invocation. We refer to these
statements and their recorded callstacks as Use-callstacks of
a PSEC. Knowing Use-callstacks enables us to disambiguate
a static statement when invoked from different parts of the
program, which can lead to a PSE being classified in different
Sets of a PSEC. This is useful, for example, to report precisely
which statement must be in a critical section.
Reachability Graph. PSEs can reference other PSEs in dif-
ferent points of a program. PSEC collects reference informa-
tion through its uses of PSEs. Specifically, recording pointer
escapes of PSEs. Escapes are recorded in the PSEC Reachabil-
ity Graph where nodes are PSEs allocated within the PSEC’s
ROI and edges are references that point to other PSEs. We
use this information to keep track of how PSEs reference
each other to, for example, identify reference cycles.

3.2 From PSEC to Abstractions

Programmers declare the abstraction to apply to a given
ROI to CARMOT. Then, CARMOT uses an ROI's PSEC to

Program State Element Characterization

Table 1. Different abstractions need different parts of PSEC.

Abstraction PSEC
Sets (1,0,C,T) | Use-callstacks | Reachability Graph
OMP parallel for
(and critical/ordered) / / X
OMP task v X X
Smart Pointers v X 4
STATS v X X

automatically generate new source code with the requested
abstraction in it and customizes it with the correct attributes
(Table 1 illustrates which parts of PSEC are necessary to
generate each abstraction). Next we describe the generation
of abstractions from PSEC.

Program Parallelization/Synchronization. To generate
a #pragma omp parallel for with the correct attributes CAR-
MOT uses the Sets of the PSEC as follows. For every PSE
e in the Cloneable set, CARMOT extracts the callstack for
the element’s allocation. These PSEs and their callstacks tell
us what needs to be cloned to remove WAR and WAW data
dependences between invocations of the related ROI (e.g.,
the body of a loop). If e is a variable, then CARMOT priva-
tizes it in the generated pragma. Variables that are also in
the Output set are declared as lastprivate, since they can be
read after the ROL Similarly, variables that are also in the
Input set are declared as firstprivate, since they were first
read inside the ROL If e is a memory location, then CAR-
MOT advises programmers to clone the PSE (CARMOT’s
output provides the allocation site and its callstack to help
programmers understanding how to perform the cloning)
and use the OpenMP API omp_get_thread_num() to access
the correct clone of that allocation in the ROI PSEs that
belong only to the Input set are declared as shared in the
pragma because they are only read. Finally, for each PSE e
in the Transfer set CARMOT retrieves its Use-callstacks. If
e is a variable, then CARMOT checks each use of e to un-
derstand if the computation performed on e is reducible (i.e.,
the statement uses one of the OpenMP-supported reduction
operators such as +). If the computation is reducible, then
CARMOT includes e and the supported operation in the
reduction(operator:variable) attribute. Otherwise, all state-
ments that access e are wrapped in a #pragma omp critical
or #pragma omp ordered section. Note that CARMOT leaves
the decision as to which abstraction to use, either critical or
ordered, to programmers as they know whether it is neces-
sary to preserve the loop iteration order. CARMOT generates
dependences for #pragma omp task as follows. The Input and
Output sets of a computational spoor are mapped to the de-
pend attribute of #pragma omp task. All PSEs e in the Input
set are declared as depend(in:e). Similarly, all PSEs e in the
Output set are declared as depend(out:e).

Managing Dynamic Memory. Cycles between PSEs allo-
cated in an ROI are detected using the PSEC Reachability
Graph, which tracks references between PSEs. CARMOT re-
ports detected reference cycles to programmers and can also

78

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

Rf, WE: first read/write of the memory location in a new ROl dynamic invocation
Rn, Wn: next read/write of the memory location in the same ROI dynamic invocatior

Rf o Wi

Rn = Wn
| (0]
R 4~ Wi

Rn, Wn o Rn, Wn o = Rn, Wn
Rf
10 CcO }—><TO
< Wi N Rf, Wf

Wi) Rf

Rn,
Wf RS

Figure 3. PSEC follows a Finite State Automaton (FSA).

suggest which reference should become a weak pointer! to
break a detected reference cycle. It does so by identifying
the node in that cycle that has the oldest access time. This
enables programmers to gradually port ROIs within a large
codebase to use smart pointers without introducing cycles.
Declaring State Dependences with STATS. The STATS
abstraction Input-Output-State can be mapped directly from
the Sets of an ROI’s PSEC. PSEs classified in the Input, Out-
put, or Transfer sets are respectively mapped to the Input,
Output, State classes of the STATS abstraction. The STATS
abstraction requires the target ROI to be explicitly moved
into a separate function; hence, PSEs in the Cloneable set are
declared locally in that function. This localization enables
the STATS compiler to spawn independent parallel threads
to execute the related ROL

4 CARMOT

Here we describe how CARMOT performs PSEC, its com-
piler, Pintool, runtime, and PSEC-specific optimizations.

4.1 PSEC with CARMOT

CARMOT performs PSEC of an ROI independently of
other ROIs. When a PSE (e.g., variable) is accessed within
an ROI, CARMOT classifies it into the Sets of that ROI's
PSEC following the Finite State Automaton (FSA) shown in
Figure 3. Each PSE has an instance of this FSA. PSEs start
in the ¢ state. A PSE is added to the PSEC of an ROI Z upon
its first access within Z. Subsequent accesses of a PSE in Z
might change its FSA’s state for Z. At the end of a program’s
execution, the final FSA state of a PSE for Z reflects the set (or
sets) that the PSE belongs to with respect to ROI Z. In more
detail, if the terminal FSA state includes an I, O, C, and/or T,
then the related PSE belongs to the Input, Output, Cloneable,
and/or Transfer set respectively. Note that a PSE can never
be both in the Cloneable and Transfer sets (CN T = 0).

Let us consider the loop in Figure 1 and the PSE variable y.
In the first dynamic invocation of ROI Z, PSE y is first read
and then written, hence y transitions from ¢ to I (Ry¢) and
then to I0 (W,). In the subsequent dynamic invocation of

1A weak pointer does not increment an allocation reference counter.

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

Z aread of y happens (Ry), which causes a trasition to TIO.
TIO is a sink state, so when the program finishes, CARMOT
classifies y in the Transfer, Input, and Output sets.

The FSA only operates on reads and writes that happen
within ROIs. This design decision enables CARMOT to avoid
profiling code outside ROIs, but it also makes the assumption
that PSEs written in an ROI will be read outside the ROI,
so they will be part of the Output set. This assumption is
conservative and does not affect the correctness of the PSEC.

4.2 Advantages of CARMOT’s Dynamic Approach

CARMOT performs PSEC by profiling a specific run of the
target program. We envision CARMOT users will perform
PSEC on a program multiple times to cover many program
inputs, and combine the generated PSEC. Combining PSECs
can be done through set union. For example, if PSE e is
classified in the Input and Output sets in the first run, and
in the Cloneable and Output sets in the second run, the
PSEC across runs classifies e in the Cloneable, Input, and
Output sets. The only exception to this union rule is when
e is in the Cloneable set for one run and in the Transfer
set for another run. In this case, the conservative answer
is to classify e in the Transfer set. Currently, and only for
engineering reasons, CARMOT’s users need to manually
apply these rules to merge multiple PSEC to gain a more
comprehensive understanding of the target program.

CARMOT’s dynamic approach goes beyond what can be
determined with static code analyses, and provides program-
mers recommendations and support for programming lan-
guage abstractions at the source code level for a specific
program execution. The advantage of providing recommen-
dations, as opposed to making automatic semantic changes
to the code that should not be modified by anyone but the
tool itself, is that it makes CARMOT more accessible to pro-
grammers. These recommendations allows for a better un-
derstanding of code behaviour and provide a starting point
to tune abstractions to the programmer’s needs. The disad-
vantage is that verifying the correctness of such recommen-
dations for all prossible program executions has to be done
manually. However, we argue that such process is more suit-
able for humans rather than tools. Programmers can leverage
domain specific knowledge about a program to make a de-
cision, while an automatic, semantic-changing tool has to
make conservative assumptions when trying to build an ab-
straction that is sound for all possible program executions.
This conservativeness hides the true behavior of the execu-
tion of a program, which prevents programmers to reason
about their programs and the abstractions they want to use.
4.3 CARMOT as a System

CARMOT implements the compilation flow in Figure 4.
CARMOT’s compiler (§4.4) generates a binary from C/C++
source files including code instrumentation. Complementar-
ily, CARMOT loads its Pintool (§4.5) into memory to cover
code that lacks available sources. CARMOT’s runtime (§4.6)

79

Deiana et al.

is embedded within the generated binary as a static library.
The runtime processes the reads and writes provided both
by the instrumentation generated by CARMOT’s compiler
and by its Pintool. This generates the PSEC of each ROI
specified by CARMOT’s pragma included in the program’s
source code (Figure 1). The PSEC is then translated into pro-
gramming language abstraction recommendations for the
abstraction chosen by the CARMOT user.

4.4 Compiler

CARMOT’s compiler uses clang with debugging symbols
enabled, but without optimizations, to translate a C/C++
program to LLVM’s IR and guarantee a reversible mapping
between source code and IR. The advantage of performing
PSEC at the IR level rather than at the binary level is two-fold.
First, we can easily implement precise and effective special-
ized code analyses and optimizations. Second, the amount of
instrumentation is considerably reduced compared to binary
instrumentation where spilling of variables onto memory
already occurred, generating extra memory loads and stores.
The disadvantage of performing PSEC on unoptimized IR is
the high overhead of the profiling phase, making PSEC infea-
sible for a large codebase. For this reason, CARMOT uses the
following PSEC-specific code analyses and optimizations.
1) Subsequent accesses. The FSA of Figure 3 shows that
transitions of PSEs to a different state happen only upon the
first read or write (Rr, Wr) of a new dynamic invocation of
an ROL The only exception is a subsequent write (W},) in
the same ROI dynamic invocation when the PSE is in the I
state. Following this observation, this optimization aims to
instrument only the first read and write of a PSE and avoid
instrumenting subsequent accesses that are proved to always
access the same PSE.

We developed a new intra-procedural data-flow analysis
to identify where a PSE must have been accessed already
since the beginning of an ROL. For this data-flow analysis,
predecessors and successors of basic blocks that are outside
or leave an ROI are not followed during the data-flow value
propagation as only instructions within an ROI need to be
considered. We do so by considering the entry point of an
ROI as the entry point for our analysis. Elements in the GEN,
IN, and OUT sets are the variables and memory locations
(i.e., PSEs) of the target program. Given an instruction i that is
either a load or a store, the sets for the data-flow analysis are
defined as follows. The GEN set of i is the PSE a that a load is
guaranteed to access or a store must write to (GEN [i] = {a}).
The IN set of i is first initialized to be the union of all PSEs,
and then refined to be IN[i] = Ny,epreas(iy OUT [p], where
p are the predecessors of i. The OUT set of i is initially empty,
and then refined to be OUT[i] = IN[i] UGEN{i]. This data-
flow analysis runs until a fixed point is reached for each ROL
Elements in the IN set of an instruction i are the PSEs that
must have been accessed between the entry of the ROI and
i. Hence, CARMOT reduces profiling overhead by avoiding

Program State Element Characterization

P
vSvtl)tgglaSCode | Front-end

Optimized IR w/
Instrumentation | > Back-end

= 4_,,J%@,////j
Program Input - - ,

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

IR = Middie-end [~ Source Code-IR
Mapping

|n“
Binary = Profiling

Programming

} e
ﬁECARMOT

PSEC > Abstraction

Generation

’

Figure 4. CARMOT produces the mapping between source/IR code and runs an instrumented binary to build the PSEC, which
is then used to generate the target abstraction information for the programmer at the source code level.

instrumenting instructions i where the PSE accessed by i
belongs to IN[i].

2) PSEs aggregation. Normally, uses of PSEs are instru-
mented singularly. However, contiguous PSEs that can be
indexed (e.g., arryas), for which the same operation is per-
formed at every ROI's dynamic invocation (e.g., they are
always only read or only written) are instrumented alto-
gether at once. Currently we limit this optimization on ROIs
that wrap the body of a loop for which the loop governing
induction variable indexes the contiguous PSEs.

3) Fixed setting of FSA state for PSEs. The FSA in Fig-
ure 3 shows that PSEs that are always only read will always
be classified as Input in the PSEC. Hence, PSEs that can be
verified to be only read at compile time can be instrumented
only once and still be correctly classified in the Input set. Al-
though an ROl is a general code region, we currently enable
this optimization only for ROIs that wrap the body of a loop.
We determine whether a PSE is only read by verifying that
the corresponding load instruction is loop invariant. Simi-
larly, the FSA classifies PSEs that are always only written as
Output or Cloneable. At compile time, we determine whether
a PSE is only written using the PDG. If the store instruction
that writes the PSE has no incoming memory dependence
edge where the source of the edge is an instruction in the
ROL we set the FSA state of that PSE to be Output. Then,
if the considered ROI wraps the body of a loop, we use the
loop governing induction variable to determine whether the
store to the PSE is executed more than once. If so, we set the
FSA state of that PSE to also be Cloneable.

4) Selective mem2reg. The mem2reg optimization is ex-
tremely beneficial for performance and to enable further
analysis and optimizations, but it cannot be generally ap-
plied when performing PSEC (Section 2.3). However, some
allocations of PSEs that are local variables can be promoted
to registers without affecting the correctness of PSEC. For ex-
ample, local variables that are never used in any ROIs can be
safely promoted to registers because they will not be part of
a PSEC, and instrumentation of such variables can be safely
removed. Also, local variables with a specific role in an ROI
have to be promoted to registers to be identified (e.g., loop
governing induction variables). We built a wrapper around
the LLVM mem?2reg optimization that allows the promotion
of specific local variables to registers only when it is safe to
do so.

80

5) Call graph-based optimization. This optimization aims
to select functions that can be optimized with conventional
transformations while preserving the aforementioned IR-to-
source-code mapping needed for PSEC. This optimization is
based on the observation that if a function f cannot be in the
callstack when any ROI starts, then f can be optimized with
conventional optimizations (such as -03) without breaking
the IR-to-source-code mapping. This is because any PSE al-
located in the stack by f will not be part of the PSEC of any
ROL This holds even if f is invoked within an ROI, as its
stack is freed before returning to its caller and therefore such
stack PSEs cannot be involved in any data dependences that
cross the boundaries of an ROL Therefore, only PSEs that are
heap allocated by f need to be tracked, which are preserved
by the optimizations included in -03 of clang.

To perform this optimization, CARMOT identifies the func-
tions that cannot be in the callstack when any ROI starts
by computing the complete callgraph of a program (i.e., a
callgraph where the lack of an edge (f;, fj) means f; cannot
invoke f;). Unfortunately, the callgraph provided by LLVM is
not complete. To generate the complete callgraph, CARMOT
computes the program dependence graph (PDG) to auto-
matically discover the possible callees to which a pointer
could refer. CARMOT uses the same memory alias analyses
used by the previous optimization. Armed with the complete
callgraph, CARMOT identifies the set of functions that can
be optimized. For every ROI, CARMOT takes the function
f where the ROI belongs to and traverses the edges of the
callgraph backwards from f and tags all functions reached,
including f. All functions in the program that are not tagged
are optimized by CARMOT invoking the -03 optimizations
of clang.

6) Reducing Pin instrumentation. CARMOT uses the call
graph to also reduce Pin instrumentation by enabling the
Pintool only when it cannot guarantee that a call will not
jump to precompiled code.

7) Callstack clustering. CARMOT needs to record the call-
stack of every PSE allocation. In a typical function, many
PSEs are allocated. In a naive implementation, every time an
allocation of a PSE occurs the callstack must be computed
and assigned to that PSE. However, allocations made within
the same invocation of a function share the same callstack.
To avoid recomputing the callstack for each PSE allocation
within a function, CARMOT computes the callstack only

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

Main Thread s Wk Batch]
* Batch Fills
Master/Shadow
Thread Filled Batches

Manages and
Schedules

|| Worker -
Thread(s)
D Program Thread

D Runtime Thread
D Runtime Data

Process Batch

U—] Processed Batches

|

= = = = Postprocess Batch

PSEC per ROI

D Runtime Function
D Runtime Output

Figure 5. The runtime utilizes batching, shadow profiling,
and pipeline parallelism to efficiently perform PSEC.

once at the beginning of the function. The instrumentation
that documents allocations can now collectively share the
computed callstack instead of producing redundant callstack
records that are clones of one another.

4.5 Pin Instrumentation

When the target program includes code outside the avail-
able sources (e.g. precompiled libraries), it is impossible to
track all PSEs information with a purely compiler-based
approach. However, the activity of PSEs outside the avail-
able sources must be tracked in order for the PSEC to be
correct and complete. To perform this tracking, CARMOT
uses dynamic binary instrumentation through a Pintool that
builds upon the Pinatrace memory access tracing tool from
Intel [10]. The key challenge is to efficiently communicate
between the Pintool and the compiler/runtime environment
of CARMOT. To overcome these challenges we use compiler
injected calls to invoke our Pintool, which tracks allocations
and accesses of PSEs in precompiled code and communicates
them to the CARMOT runtime. This is a costly operation,
but necessary to generate a correct PSEC.

4.6 Runtime

CARMOT’s runtime processes the uses of PSEs provided
by either compiler-injected instrumentation or the Pintool.
This information needs to be processed at run-time as the
large amount of data collected makes storage a bottleneck.

The primary structures the runtime builds are the Active
State Member Table (ASMT) and the ROIs’ PSEC. The ASMT
captures metadata about active PSEs such as the callstack of
their allocation and size in bytes. The runtime generates a
PSEC by enacting the FSA (§4.1) upon PSEs for each ROL

Figure 5 shows the components and the processing flow of
the runtime. The Main Thread runs the target program. The
compiler-injected instrumentation and Pintool push requests
into a batch. Once a batch fills, it is pushed into an ordered
queue of filled batches, and the instrumentation calls begin
filling a new batch. The Master/Shadow Thread schedules
filled batches for processing by Worker Threads. Each pro-
cessed batch is then added to a second ordered queue for

81

Deiana et al.

final processing. The results of processed batches are updates
to the ASMT and PSEC. The batches are processed following
a parallel pipeline:

Processing batches. This stage processes the instrumen-
tation calls to build the ROIs’ PSEC for all PSEs. It does so
by implementing the FSA in Figure 3 on active PSEs. Once
the batch has been processed, it is then queued to the next
pipeline stage and the next batch can be processed.
Postprocessing batches. This stage adds contextual infor-
mation to the ROIs’ PSEC and connects metadata to PSEs.
This includes the callstack, escaped pointers, source code
information for PSEs (file and line), and accesses.

5 Evaluation

To show the effectiveness of CARMOT, we evaluate 15
benchmarks from the SPEC CPU 2017, NAS [16], and PAR-
SEC (version 3.0) [17] benchmark suites. We include every
benchmark from all of these suites that already use, or are
well suited for, the abstractions that CARMOT currently sup-
ports. When evaluating the performance benefits of CAR-
MOT we used the “reference”, “class C”, and “native” inputs,
respectively. When evaluating the overhead of CARMOT we
used the “test”, “class A”, and “simsmall” inputs. The differ-
ence in inputs for performance and overhead results reflects
how we see CARMOT being used. The larger, production
level inputs are used for the performance results as this is in-
dicative of the actual speedup that programs developed with
CARMOT can attain. Smaller, representative inputs follow
CARMOT being used to determine the PSEC of the program
at development time.

Our evaluation is done on a dual socket server with two
Intel Xeon Silver 4116 CPU running at 2.1GHz. Each proces-
sor has 12 cores with 2-way hyper-threading, and 16.5 MB
of last level cache. The cores are supported by 125 GiB of
main memory at 2400 MHz. The OS is Red Hat Enterprise
Linux 8.2 (kernel 4.18.0-193.6.3). CARMOT is built on top
of LLVM 9.0.0 [34], Pin 3.13 [36], and NOELLE 9.3 [37]. The
baseline for both performance and overhead evaluation we
show is the sequential version of each benchmark, compiled
with clang -03 -march=native.

5.1 OpenMP Use Case

Using PSEC, CARMOT is able to automatically generate
#pragma omp parallel for, #pragma omp critical, #pragma
omp ordered, and #pragma omp task annotations, and can be
used by developers to verify the correctness and improve the
performance of existing pragmas for a specific program exe-
cution. Many of the benchmarks we consider for this use case
already use OpenMP pragmas. In this case, we choose as ROIs
for PSEC the code regions of the already present OpenMP
pragmas and we verified that CARMOT’s recommendations
matched the original pragmas and our understanding of the
parallelism in the benchmark. In cases where the benchmark
is parallelized using pthreads (e.g., swaptions from PARSEC
3), we use as ROI the entry point function of such threads to

Program State Element Characterization

EEm Original parallelism

Em CARMOT-induced parallelism

HFENNNW

Speedup
OPLONOOLRON

e

o 0(\?'3\
@ £«

e&‘d\“:aﬂ’{\o‘\s o @@ 02
B

Figure 6. CARMOT-generated OpenMP pragmas achieve the
same speedup of the original program parallelism manually
implemented by a programmer. These experiments use the
production-size inputs.

Hmm Naive approach mmm CARMOT

—
o
S

0w wmw W

Overhead (log1o)

«© eQ A O e® SR) 2 s a2 N
« ‘;d\o (,’o‘\“ e&(\\ a?‘\o w7 * . «®
v\a& S W Qeo

Figure 7. The CARMOT overhead to generate OpenMP
pragma information is two orders of magnitude less than a
naive approach.

build equivalent parallelism using CARMOT’s recommended
OpenMP pragmas. Furthermore, we use CARMOT to imple-
ment additional parallelization opportunities; for example,
we add some OpenMP task parallelism to mg from NAS.
Figure 6 shows the speedup benefits of automatic CARMOT-
generated pragmas (either verified pragmas or brand new
ones) versus the original (manually extracted by the bench-
marks’ authors) parallelism (either through omp pragmas
or pthread) for each benchmark we consider. This data shows
that with CARMOT-generated pragmas, we are able to achieve
speedups that are as good as or better than pragmas imple-
mented manually by a programmer. For benchmarks like
canneal and swaptions, where the only original source of
parallelism comes from pthreads, the new pragmas generated
by CARMOT match the performance of the labor-intensive
pthreads parallelism. The only exceptions are ep and nab
for which CARMOT was unable to extract all parallelism
potential. In both cases the main source of parallelism in
these benchmarks comes from general OpenMP #pragma
omp parallel sections that include synchronization mecha-
nisms such as #pragma omp barrier or #pragma omp master
that are abstractions currently not supported by CARMOT.
When designing new development tools, striking a bal-
ance between effectiveness and feasibility is paramount. The
feasibility of CARMOT as a tool is measured by the compu-
tational overhead required to perform PSEC. Figure 7 shows
the computational overhead of CARMOT when automati-
cally generating OpenMP pragmas information. We compare
the CARMOT overhead with a naive approach that does not
employ any PSEC-specific optimization, but can still generate
a correct PSEC. CARMOT outperforms the naive approach

82

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

B Reducing PIN instrumentation
Callstack clustering

Callgraph optimization (-03)
mmm Removing redundant instrumentation

Overhead reduction [%]

© «9 d\D\e"‘ o
NS &

) s
’6‘),{_\0“ 0@‘0 -
O oW
o°

Figure 8. Overhead reduction of Figure 7 characterized per
CARMOT optimization.

typedef struct atom_t{ I typedef struct t{ | typedef struct strand_t{ I typedef struct molecule_t{
struct residuc_t *a_residue;! struct st trand;! struct molecule_t *r_molecule;! STRAND_T *m_strands;
) ATOM_T; | ATOM_T *r_atoms; | RESIDUE_T *r_atoms; 1) MOLECULE_T;
1) RESIOVE_T; 1) STRAND_T; ' nabtypes.h
RESIDUE_T copyresidue(RESIDUE_T *res){ MOLECULE_T *newnolccule(void){
3 ((nress (RESIDUE_T*)malloc (sizeof (RESIOUE_T))) 4 ((mp= (MOLECULE_T*)malloc (sizeof (MOLECULE_T)))
1£((ap=(ATOM_T*)mal 10cTIGs->r_natons*sizeof (ATOM_T))
{2
reslib.c int addstrand(MOLECULfE_T *mp, char sname[)){
. . L)
mt““;“ fgetpdb(FILE *fp, char *options){ 1£((sp=(STRAND_T*)malloc (sizeof (STRAND_T))
sp->s_residuess) molutil.c
(RESIOUE_T**)malloc(sp->s_res_size*
sizeof (RESIDUE_T));
) {eed molio.c

Figure 9. CARMOT-identified reference cycle across files,
functions, and data structure in the nab benchmark.

by lowering the overhead of performing PSEC by two or-
ders of magnitude. In some cases the execution of the naive
approach required an excessive amount of memory and did
not complete, we mark the missing data with *.

To showcase the power of PSEC-specific optimizations,
Figure 8 shows the impact of the optimizations described
in §4.4. For the benchmarks where the naive approach fin-
ished successfully, we show in percentage the breakdown
of the delta between the black and red bars of Figure 7 for
every CARMOT optimization. The reduction of Pin instru-
mentation and the callgraph-based optimization, enabled by
the complete callgraph of NOELLE, have the highest impact.
Optimizations from 1) to 4) of §4.4 collaboratively enable
each other to remove redundant instrumentation, for this
reason we consider them together. Because they heavily rely
on alias analysis, they have the highest impact in the more
regular benchmarks from NAS.

5.2 Smart Pointers Use Case

Here we show the versatility of CARMOT on a use case
unrelated to parallelization: identifying reference cycles in
an ROL. In this use case we choose the ROI for PSEC to be
the entire program (i.e., the entire main() function), since we
are interested in any possible reference cycle in the program.

Figure 9 shows an example of a reference cycle that CAR-
MOT identified in the nab benchmark of the SPEC CPU 2017
suite. This cycle spans across several different files, func-
tions, and data structures and demonstrates the complexity
of porting an existing application to use smart pointers cor-
rectly. We measure the benefit that utilizing smart pointers
for this reference cycle would generate for the benchmark.
After correcting a naiveness in the original nab code which
over allocates memory, we measure the total bytes leaked by

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

S 0 A3 O ¢ 2 X« e 00 s 3 S N\
< e « 2 o Ca‘\(\e d\«\a«\ (,\\)9‘ \’o"‘f’\,\\ a\"\o“ 7 (@7 .4:L/o «\e@
A\ . @ .
9e° P & B o
&

Figure 10. The CARMOT overhead for identifying reference
cycles is two orders of magnitude less than a naive approach.

500 - HEM Naive approach -
E 400 | ==m CARMOT

X

xe e &€
2 & &
o &C\a"’c’

cﬂ“a&

©
eQQ\O(\
o0 B

=

o &2
A o 5

Figure 11. The CARMOT overhead to generate the STATS
abstraction is one order of magnitude less than a naive ap-
proach.

the application as 230,537 bytes. The total bytes leaked by
the application that would have been realized by correctly
porting this reference cycle to smart pointer is reduced to
127,633, a reduction of 44.6%.

Figure 10 shows the overhead of CARMOT when finding
reference cycles. In this use case CARMOT only needs to
track allocations of PSEs and the Reachability Graph of such
allocations. For this reason, CARMOT’s overhead is two
orders of magnitude smaller than a naive approach that lacks
PSEC-specific optimizations.

5.3 STATS Use Case

Here we show that CARMOT can be used to build the
Input, Output, and State classes required by the STATS ab-
straction. In the benchmarks considered we choose the ROI
for PSEC to be the code region of the STATS state dependence.
CARMOT is able to accurately generate the Input, Output,
State classes required by the STATS abstraction, such that
they match those manually implemented by the authors of
STATS. Furthermore, CARMOT was able to identify some
misclassifications of PSEs made by the authors of STATS.
While these misclassifications have no impact on correct-
ness, they lead to extra unnecessary copies of variables. In
this case, the misclassification does not lead to a noticeable
speedup. However, CARMOT’s ability to outperform the
manual and labor-intensive classification lends to its useful-
ness as a tool for abstractions that are difficult for developers
to use correctly.

Figure 11 shows CARMOT’s overhead for classifying PSEs
into STATS’s Input, Output, and State classes. We can see
that the CARMOT overhead is one order of magnitude lower
than a naive approach. This is due to the STATS abstraction
not requiring the tracking of all Use-callstacks, a very costly
operation, and the PSEC-specific optimizations of CARMOT.

83

Deiana et al.

6 Related Work

While CARMOT is the only tool capable of computing a
complete and correct PSEC, there are other tools that enable
programmers to better understand a program’s behavior and
how to improve it. Next, we compare CARMOT to these
tools with respect to their ability to track PSEs, build aspects
of the PSEC, and report back information to the user at the
source code level. We categorize these tools in three sets.

Memory analysis. These tools investigate memory cor-
rectness such as memory leaks, double frees, and buffer
over/underflow [2-10, 23, 42, 47] or memory bottlenecks [32,
38, 40, 44]. Some of these tools report some source-code level
information such as the callstack of the error site; however,
none of them track any aspect of PSEC. The most notable
tools that perform some tracking of PSEs are: AddressSani-
tizer [47], Valgrind [42], and the Pintool Pinatrace [10]. How-
ever, none of these tools track PSEs that are variables or are
able to distinguish between different stack locations or glob-
als. AddressSanitizer and Valgrind can detect memory leaks
due to reference cycles that should have been garbage col-
lected, but they cannot identify the actual cycles in the source
code responsible for the leak.

Parallelism discovery. These tools [13, 14, 19, 24-27, 29—
31, 33, 35, 39, 41, 43, 45, 46, 49-53] analyze the memory uti-
lization of a program to identify potential parallelization
opportunities using static [27, 49] and/or dynamic analy-
sis [14, 19, 41], and profiling techniques. Their objective is
orthogonal to CARMOT and its PSEC. Once potential par-
allel regions of a program are discovered, CARMOT can be
used on those regions to understand exactly how they can be
parallelized using the supported parallelism-related abstrac-
tions, verify the presence of actual parallelism, and improve
it if possible.

Reference cycle discovery. Only two approaches are
able to aid programmers in finding reference counting cy-
cles at the source code level: Xcode [12] and Distefano et
al. [22]. Xcode only works for swift and objective-c, but does
not currently handle C++ smart pointers. Distefano et al.
uses a static approach, which is limited by the accuracy of
memory analysis that is known to be challenging for unman-
aged languages. Neither of them can detect cycles formed in
precompiled libraries.

7 Conclusion

Programmers are left alone to understand how to use
modern programming language abstractions. We show that
understanding how to use many of these abstractions needs
the same fundamental knowledge: the PSEC of the ROI where
the abstraction is applied. We formalize PSEC and describe a
new open-source tool, CARMOT, capable to perform PSEC
with reasonable overhead. We hope that CARMOT will help
programmers to better understand their programs and to
properly use the abstractions that are becoming increasingly
prevalent and necessary in modern applications.

Program State Element Characterization

Acknowledgments

This project was supported by the U.S. National Science
Foundation via awards CCF-2107042, CCF-1908488, CCF-
2118708, CCF-2028851, CCF-2119069, CNS-1763743, by the
Exascale Computing Project (17-SC-20-SC), a collaborative
effort of the U.S. Department of Energy Office of Science and
the National Nuclear Security Administration, and by the
U.S. Department of Energy Office of Science under Contract
DE-AC02-06CH11357.

Data-Availability Statement

The artifact [20] to reproduce the results of this paper is
available here: https://doi.org/10.5281/zenodo.7374843.

A Artifact Appendix

A.1 Abstract

This artifact is a podman image containing the CARMOT
system and its dependencies, and it generates the main re-
sults of this paper in text format. All benchmark suites are
included in the artifact, except for SPEC CPU 2017, which we
cannot share directly (please refer to README . md in the arti-
fact on how to include SPEC CPU 2017 results). This artifact
requires podman (or docker) to load and run the image, and a
network connection to download additional dependencies of
the CARMOT system. The execution of this artifact requires
an Intel multicore processor with shared memory.

A.2 Artifact check-list (meta-information)

Algorithm: No

Program: NAS, PARSEC3

Compilation: LLVM9.0.0., included

Transformations: No

Binary: No

Data set: Included with the benchmark suites

Run-time environment: No

Hardware: No

Run-time state: Yes

Execution: Sole user

Metrics: Execution time

Output: Individual file output for each benchmark suite

Experiments: The experiments can be run using the

included bin/carmot_experiments script. Further infor-

mation on how to customize the execution of the ex-

periments can be found in the README.md of the run-

ning podman container.

e How much disk space required (approximately)?: 200GB

e How much time is needed to prepare workflow (ap-
proximately)?: Several hours

e How much time is needed to complete experiments

(approximately)?: 4 days

Publicly available?: Yes

Code licenses (if publicly available)?: MIT License

Data licenses (if publicly available)?: No

Workflow framework used?: Experiments are executed

by the bin/carmot_experiments script included in the

podman container. Refer to README.md in the podman

container for additional customization of experiments.

84

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

e Archived (provide DOI)?: 10.5281/zenodo.7374843

A.3 Description

A.3.1 How delivered

The artifact (i.e., podman image) can be downloaded through
the provided DOI.
A.3.2 Hardware dependencies

Intel multicore processor with shared memory. To reproduce
execution time results accurately frequency scaling mechanisms
(e.g., TurboBoost) have to be disabled. A minimum of 125 GiB of
main memory is required. The amount of disk space required by
the fully unpacked artifact is approximately 200 GB.
A.3.3 Software dependencies

To run the artifact a Linux-based system with podman (or docker)
installed is necessary.
The host machine /proc/sys/kernel/yama/ptrace_scope must
be set to 0 to ensure proper collection of Pin-related results. The
remaining dependencies are included in the podman image or in-
stalled when running the included scripts. The only exception is
SPEC CPU 2017, which we cannot include in the artifact because
of licensing. If reviewers would like to generate SPEC CPU 2017
results, they have to add the SPEC CPU 2017 benchmark suite man-
ually themselves (refer to README . md inside the artifact to know
how).
A.3.4 Data sets

The data sets are included in the podman image. The only ex-
ception is the SPEC CPU 2017 data set, which we cannot include in
the artifact because of licensing. If reviewers would like to gener-
ate SPEC CPU 2017 results, they have to add the SPEC CPU 2017
benchmark suite manually themselves (refer to README . md inside
the artifact to know how).
A.4 Installation

Download the artifact (i.e., podman image carmot. tar) follow-
ing the provided DOL
Load the image using:
podman load < carmot.tar
Run the image interactively using:
podman run --rm -it carmot /bin/bash

A.5 Experiment workflow

The following workflow is automatically executed when invok-
ing the bin/carmot_experiments script in the running podman
container.

1. The CARMOT system and all benchmark suites dependen-
cies (except for SPEC CPU 2017) are downloaded.

2. CARMOT and its dependencies (noelle, virgil runtime) are
compiled, the remaining dependencies (Intel tbb, boost, pin)
are already included in the podman image.

3. All baselines for Figures 6, 7, 10, 11 are compiled and execu-
tion time data are generated.

4. Execution time data of Figure 6 are generated.

5. Speedup of Figure 6 are computed and placed under
results/current_machine.

6. Execution time data of CARMOT for Figures 7, 10, 11 are
generated.

7. CARMOT overhead of Figures 7, 10, 11 are computed and
placed under results/current_machine.

https://doi.org/10.5281/zenodo.7374843

CGO 23, February 25 — March 1, 2023, Montréal, QC, Canada

Once the podman container is running interactively, please read
README . md:

vim README.md

Then, run the experiments using the bin/carmot_experiments
script, which can be executed in the background:
./bin/carmot_experiments &

Optionally, view the finer grain progress of the script:
tail -f carmot_experiments_output.txt
A.6 Evaluation and expected result

After loading and running the podman image, the entry point
to generate the Minimal set of results of the paper is the script
bin/carmot_experiments, which has to be invoked from the home
directory of the running podman container as follows:
./bin/carmot_experiments &

This script takes no arguments and follows the previously described
workflow. Generating the Minimal results takes approximately 2
days.

The generated results can be found in results/current_machine.
The authors’ results can be found in results/authors_machine.
We expect the generated results of the artifact to be in line with
the authors’ results.

A.7 Experiment customization

The Full set of results of the paper can be generated by setting
the environment variable CARMOT_FULL to 1:
export CARMOT_FULL=1 ; ./bin/carmot_experiments &
Generating the Full set of results takes approximately 4 days.
The number of runs of every data point can be customized by set-
ting the environment variable CARMOT_NUM_RUNS prior to running
bin/carmot_experiments:
export CARMOT_NUM_RUNS=5 ; ./bin/carmot_experiments &
The default is 3. Changing CARMOT_NUM_RUNS will affect the total
amount of time to generate the results.
Additionally, SPEC CPU 2017 results can be generated following
the instructions in the artifact README . md. Including the generation
of SPEC CPU 2017 results will also increase the amount of time
required to run the experiments.

A.8 Notes

More information can be found in the README . md of the artifact.
A.9 Methodology

Submission, reviewing and badging methodology:

e http://cTuning.org/ae/submission-20190109.html
e http://cTuning.org/ae/reviewing-20190109.html
e https://www.acm.org/publications/policies/artifact-review-

badging
References

[1] [n.d.]. Clang Tidy. https://clang.llvm.org/extra/clang-tidy/. Accessed:
2023-01-15.

[2] [n.d.]. dmalloc. https://dmalloc.com/. Accessed: 2023-01-15.

[3] [n.d.]. Duma. https://www.linuxlinks.com/duma/. Accessed:
2023-01-15.

[4] [n.d.]. Electric Fence. https://linux.die.net/man/3/efence. Accessed:
2023-01-15.

[5] [n.d.]. Intel Inspector. https://software.intel.com/en-us/inspector.
Accessed: 2023-01-15.

[6] [n.d.]. jemalloc. http://jemalloc.net/. Accessed: 2023-01-15.

85

Deiana et al.

[7] [n.d.]. MemWatch. https://www.linkdata.se/sourcecode/memwatch/.
Accessed: 2023-01-15.

[n.d.]. Mpatrol. http://mpatrol.sourceforge.net/. Accessed: 2023-01-15.
[n.d.]. Mtrace. http://man7.org/linux/man-pages/man3/mtrace.3.ht
ml. Accessed: 2023-01-15.

8
[9

—

[10] [n.d.]. Pinatrace. https://software.intel.com/sites/landingpage/pintoo
I/docs/71313/Pin/html/. Accessed: 2023-01-15.

[11] [n.d.]. SPEC CPU 2017. https://www.spec.org/cpu2017. Accessed:
2023-01-15.

[12] [n.d.]. Xcode. https://developer.apple.com/xcode/. Accessed:
2023-01-15.

[13] Frances Allen, Michael Burke, Ron Cytron, Jeanne Ferrante, and Wil-

son Hsieh. 1988. A framework for determining useful parallelism.
In Proceedings of the 2nd international conference on Supercomputing.
https://doi.org/10.1145/55364.55385

Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Greg Chan, Simone Cam-
panoni, and David I. August. 2020. SCAF: A Speculation-Aware Col-
laborative Dependence Analysis Framework. In Proceedings of the
41st ACM SIGPLAN Conference on Programming Language Design and
Implementation. https://doi.org/10.1145/3385412.3386028

Hamid Arabnejad, Joao Bispo, Jorge G. Barbosa, and Joao M.P. Car-
doso. 2019. An OpenMP based parallelization compiler for C appli-
cations. Proceedings - 16th IEEE International Symposium on Parallel
and Distributed Processing with Applications, 17th IEEE International
Conference on Ubiquitous Computing and Communications, 8th IEEE
International Conference on Big Data and Cloud Computing, 11t (2019).
https://doi.org/10.1109/BDCloud.2018.00135

David Bailey, E. Barszcz, Barton J.T, Browning D.S, Carter R.L, Dagum
D, Fatoohi R.A, Paul Frederickson, Lasinski T.A, Robert Schreiber,
Horst Simon, Venkat Venkatakrishnan, and Weeratunga K. 1991. The
Nas Parallel Benchmarks. International Journal of High Performance
Computing Applications (1991). https://doi.org/10.1177/109434209100
500306

Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques. https://doi.org/10.1
145/1454115.1454128

Uday Bondhugula, J. Ramanujam, and P. Sadayappan. 2008. PLuTo:
A Practical and Fully Automatic Polyhedral Program Optimization
System. PLDI 2008 - 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation (2008).

Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks.
2015. HELIX-UP: Relaxing Program Semantics to Unleash Paralleliza-
tion. In Proceedings of the 13th Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization. https://doi.org/10.1109/
CGO0.2015.7054203

Enrico Armenio Deiana. 2022. Program State Element Characterization.
https://doi.org/10.5281/zenodo.7374843

Enrico A. Deiana, Vincent St-Amour, Peter A. Dinda, Nikos Hardavel-
las, and Simone Campanoni. 2018. Unconventional Parallelization of
Nondeterministic Applications. In ASPLOS. https://doi.org/10.1145/
3173162.3173181

Dino Salvo Distefano, Cristiano Calcagno, and Dulma Churchill. 2019.
Detecting and remedying memory leaks caused by object reference
cycles. US Patent 10,296,314.

D. Evans and D. Larochelle. 2002. Improving security using extensible
lightweight static analysis. IEEE Software (2002). https://doi.org/10.1
109/52.976940

Saturnino Garcia, Donghwan Jeon, Christopher M Louie, and
Michael Bedford Taylor. 2011. Kremlin: rethinking and rebooting
gprof for the multicore age. ACM SIGPLAN Notices (2011). https:
//doi.org/10.1145/1993316.1993553

Clemens Hammacher, Kevin Streit, Sebastian Hack, and Andreas Zeller.
2009. Profiling java programs for parallelism. In 2009 ICSE Workshop

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

http://cTuning.org/ae/submission-20190109.html
http://cTuning.org/ae/reviewing-20190109.html
https://www.acm.org/publications/policies/artifact-review-badging
https://www.acm.org/publications/policies/artifact-review-badging
https://clang.llvm.org/extra/clang-tidy/
https://dmalloc.com/
https://www.linuxlinks.com/duma/
https://linux.die.net/man/3/efence
https://software.intel.com/en-us/inspector
http://jemalloc.net/
https://www.linkdata.se/sourcecode/memwatch/
http://mpatrol.sourceforge.net/
http://man7.org/linux/man-pages/man3/mtrace.3.html
http://man7.org/linux/man-pages/man3/mtrace.3.html
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/
https://www.spec.org/cpu2017
https://developer.apple.com/xcode/
https://doi.org/10.1145/55364.55385
https://doi.org/10.1145/3385412.3386028
https://doi.org/10.1109/BDCloud.2018.00135
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1177/109434209100500306
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1145/1454115.1454128
https://doi.org/10.1109/CGO.2015.7054203
https://doi.org/10.1109/CGO.2015.7054203
https://doi.org/10.5281/zenodo.7374843
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1145/3173162.3173181
https://doi.org/10.1109/52.976940
https://doi.org/10.1109/52.976940
https://doi.org/10.1145/1993316.1993553
https://doi.org/10.1145/1993316.1993553

Program State Element Characterization

[26

—

[27

—

[28

—

[29]

(30

=

(31

—

(32

—

(33

[t

(34

flan)

(35

[

(36

—

(37]

(38]

on Multicore Software Engineering. https://doi.org/10.1109/IWMSE.20
09.5071383

Yuxiong He, Charles E Leiserson, and William M Leiserson. 2010.
The Cilkview scalability analyzer. In Proceedings of the twenty-second
annual ACM symposium on Parallelism in algorithms and architectures.
https://doi.org/10.1145/1810479.1810509

Nick P Johnson, Jordan Fix, Stephen R Beard, Taewook Oh, Thomas B
Jablin, and David I August. 2017. A collaborative dependence analysis
framework. In 2017 IEEE/ACM International Symposium on Code Gen-
eration and Optimization (CGO). https://doi.org/10.1109/CG0.2017.7
863736

Richard Johnson, David Pearson, and Keshav Pingali. 1994. The Pro-
gram Structure Tree: Computing Control Regions in Linear Time. In
Proceedings of the ACM SIGPLAN 1994 Conference on Programming
Language Design and Implementation. https://doi.org/10.1145/773473
178258

Ken Kennedy, Kathryn S Mckinley, and Chau-Wen Tseng. 1991. In-
teractive parallel programming using the ParaScope Editor. IEEE
Transactions on Parallel & Distributed Systems (1991). https://doi.org/
10.1109/71.86108

Minjang Kim, Hyesoon Kim, and Chi-Keung Luk. 2010. SD3: A scalable
approach to dynamic data-dependence profiling. In 2010 43rd Annual
IEEE/ACM International Symposium on Microarchitecture. https://doi.
org/10.1109/MICRO.2010.49

Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali,
and Calin Cascaval. 2009. How much parallelism is there in irregular
applications? ACM sigplan notices (2009). https://doi.org/10.1145/15
94835.1504181

Renaud Lachaize, Baptiste Lepers, and Vivien Quéma. 2012. MemProf:
A Memory Profiler for NUMA Multicore Systems. In Proceedings of
the 2012 USENIX Conference on Annual Technical Conference. https:
//doi.org/10.5555/2342821.2342826

James R Larus. 1993. Loop-level parallelism in numeric and symbolic
programs. IEEE Transactions on Parallel and Distributed Systems (1993).
https://doi.org/10.1109/71.238302

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation frame-
work for lifelong program analysis & transformation. In International
Symposium on Code Generation and Optimization, 2004. CGO 2004.
https://doi.org/10.1109/CG0.2004.1281665

Zhen Li, Rohit Atre, Zia Huda, Ali Jannesari, and Felix Wolf. 2016.
Unveiling parallelization opportunities in sequential programs. Journal
of Systems and Software (2016). https://doi.org/10.1016/j.jss.2016.03.04
5

Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazel-
wood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. Acm sigplan notices (2005). https:
//doi.org/10.1145/1064978.1065034

Angelo Matni, Enrico Armenio Deiana, Yian Su, Lukas Gross, Souradip
Ghosh, Sotiris Apostolakis, Ziyang Xu, Zujun Tan, Ishita Chaturvedi,
David I. August, and Simone Campanoni. 2022. NOELLE Offers Em-
powering LLVM Extensions. In International Symposium on Code Gen-
eration and Optimization, 2022. CGO 2022. https://doi.org/10.1109/CG
053902.2022.9741276

C. McCurdy and J. Vetter. 2010. Mempbhis: Finding and fixing NUMA-
related performance problems on multi-core platforms. In 2010 IEEE
International Symposium on Performance Analysis of Systems Software
(ISPASS). https://doi.org/10.1109/ISPASS.2010.5452060

86

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

CGO 23, February 25 - March 1, 2023, Montréal, QC, Canada

Sasa Misailovic, Deokhwan Kim, and Martin Rinard. 2013. Parallelizing
Sequential Programs with Statistical Accuracy Tests. ACM Trans.
Embed. Comput. Syst. (2013). https://doi.org/10.1145/2465787.2465790
Svetozar Miucin, Conor Brady, and Alexandra Fedorova. 2016. End-to-
End Memory Behavior Profiling with DINAMITE. In Proceedings of

the 2016 24th ACM SIGSOFT International Symposium on Foundations
of Software Engineering. https://doi.org/10.1145/2950290.2983941

Niall Murphy, Timothy Jones, Robert Mullins, and Simone Cam-
panoni. 2016. Performance Implications of Transient Loop-carried
Data Dependences in Automatically Parallelized Loops. In Proceed-
ings of the 25th International Conference on Compiler Construction.
https://doi.org/10.1145/2892208.2892214

Nicholas Nethercote and Julian Seward. 2007. Valgrind: A framework
for heavyweight dynamic binary instrumentation. ACM SIGPLAN
Notices (2007). https://doi.org/10.1145/1273442.1250746

Mohammad Norouzi, Felix Wolf, and Ali Jannesari. 2019. Automatic
construct selection and variable classification in OpenMP. Proceedings
of the International Conference on Supercomputing (2019). https:
//doi.org/10.1145/3330345.3330375

Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. 2010.
Locating Cache Performance Bottlenecks Using Data Profiling. In
Proceedings of the 5th European Conference on Computer Systems.
https://doi.org/10.1145/1755913.1755947

Aloor Raghesh. 2011. A Framework for Automatic OpenMP Code
Generation. M. Tech thesis, Indian Institute of Technology, Madras, India
(2011).

Atanas Rountev, Kevin Van Valkenburgh, Dacong Yan, and P Sadayap-
pan. 2010. Understanding parallelism-inhibiting dependences in se-
quential Java programs. In 2010 IEEE International Conference on Soft-
ware Maintenance. https://doi.org/10.1109/ICSM.2010.5609588
Konstantin Serebryany, Derek Bruening, Alexander Potapenko, and
Dmitry Vyukov. 2012. AddressSanitizer: A fast address sanity checker.
Proceedings of the 2012 USENIX Annual Technical Conference, USENLX
ATC 2012 (2012). https://doi.org/10.5555/2342821.2342849

Scott D. Stoller, Michael Carbin, Sarita V. Adve, Kunal Agrawal, Guy E.
Blelloch, Dan, Stanzione, Katherine A. Yelick, and Matei A. Zaharia.
2019. Future Directions for Parallel and Distributed Computing: SPX
2019 Workshop Report. In NSF Workshop Reports.

Yulei Sui and Jingling Xue. 2016. SVF: interprocedural static value-flow
analysis in LLVM. In Proceedings of the 25th international conference
on compiler construction. https://doi.org/10.1145/2892208.2892235
Christoph von Praun, Rajesh Bordawekar, and Calin Cascaval. 2008.
Modeling optimistic concurrency using quantitative dependence anal-
ysis. In Proceedings of the 13th ACM SIGPLAN Symposium on Principles
and practice of parallel programming. https://doi.org/10.1145/1345206.
1345234

Zheng Wang, Georgios Tournavitis, Bjérn Franke, and Michael F. P.
O’boyle. 2014. Integrating profile-driven parallelism detection and
machine-learning-based mapping. ACM Transactions on Architecture
and Code Optimization (2014). https://doi.org/10.1145/2579561

Peng Wu, Arun Kejariwal, and Calin Cascaval. 2008. Compiler-driven
dependence profiling to guide program parallelization. In International
Workshop on Languages and Compilers for Parallel Computing. https:
//doi.org/10.1007/978-3-540-89740-8_16

Xiangyu Zhang, Armand Navabi, and Suresh Jagannathan. 2009. Al-
chemist: A transparent dependence distance profiling infrastructure.
In 2009 International Symposium on Code Generation and Optimization.
https://doi.org/10.1109/CG0.2009.15

Received 2022-09-02; accepted 2022-11-07

https://doi.org/10.1109/IWMSE.2009.5071383
https://doi.org/10.1109/IWMSE.2009.5071383
https://doi.org/10.1145/1810479.1810509
https://doi.org/10.1109/CGO.2017.7863736
https://doi.org/10.1109/CGO.2017.7863736
https://doi.org/10.1145/773473.178258
https://doi.org/10.1145/773473.178258
https://doi.org/10.1109/71.86108
https://doi.org/10.1109/71.86108
https://doi.org/10.1109/MICRO.2010.49
https://doi.org/10.1109/MICRO.2010.49
https://doi.org/10.1145/1594835.1504181
https://doi.org/10.1145/1594835.1504181
https://doi.org/10.5555/2342821.2342826
https://doi.org/10.5555/2342821.2342826
https://doi.org/10.1109/71.238302
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1016/j.jss.2016.03.045
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1145/1064978.1065034
https://doi.org/10.1109/CGO53902.2022.9741276
https://doi.org/10.1109/CGO53902.2022.9741276
https://doi.org/10.1109/ISPASS.2010.5452060
https://doi.org/10.1145/2465787.2465790
https://doi.org/10.1145/2950290.2983941
https://doi.org/10.1145/2892208.2892214
https://doi.org/10.1145/1273442.1250746
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/3330345.3330375
https://doi.org/10.1145/1755913.1755947
https://doi.org/10.1109/ICSM.2010.5609588
https://doi.org/10.5555/2342821.2342849
https://doi.org/10.1145/2892208.2892235
https://doi.org/10.1145/1345206.1345234
https://doi.org/10.1145/1345206.1345234
https://doi.org/10.1145/2579561
https://doi.org/10.1007/978-3-540-89740-8_16
https://doi.org/10.1007/978-3-540-89740-8_16
https://doi.org/10.1109/CGO.2009.15

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Challenges in Adopting Abstractions
	2.2 Benefits of PSEC
	2.3 Overhead of PSEC
	2.4 Limitations of Current Dynamic Analyses

	3 Program State Element Characterization
	3.1 Components of PSEC
	3.2 From PSEC to Abstractions

	4 CARMOT
	4.1 PSEC with CARMOT
	4.2 Advantages of CARMOT's Dynamic Approach
	4.3 CARMOT as a System
	4.4 Compiler
	4.5 Pin Instrumentation
	4.6 Runtime

	5 Evaluation
	5.1 OpenMP Use Case
	5.2 Smart Pointers Use Case
	5.3 STATS Use Case

	6 Related Work
	7 Conclusion
	A Artifact Appendix
	A.1 Abstract
	A.2 Artifact check-list (meta-information)
	A.3 Description
	A.4 Installation
	A.5 Experiment workflow
	A.6 Evaluation and expected result
	A.7 Experiment customization
	A.8 Notes
	A.9 Methodology

	References

