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ABSTRACT

Manually writing parallel programs is difficult and error-prone.
Automatic parallelization could address this issue, but profitability
can be limited by not having facts known only to programmers.
A parallelizing compiler that collaborates with the programmer
can increase the coverage and performance of parallelization while
reducing the errors and overhead associated with manual paral-
lelization. Unlike collaboration involving analysis tools that re-
port program properties or make parallelization suggestions to
programmers, decompiler-based collaboration could leverage the
strength of existing parallelizing compilers to provide program-
mers with a natural compiler-parallelized starting point for further
parallelization or refinement. Despite this potential, existing de-
compilers fail to achieve this goal because they do not generate
portable parallel source code compatible with any compiler of the
source language. This paper presents SPLENDID, an LLVM-IR to
C/OpenMP decompiler that enables collaborative parallelization by
producing standard parallel OpenMP code. Using published manual
parallelization of the PolyBench benchmark suite as a reference,
SPLENDID’s collaborative approach produces programs twice as
fast as either Polly-based automatic parallelization or manual par-
allelization alone. SPLENDID’s portable parallel code is also more
natural than what existing decompilers generate, obtaining a 39x
higher average BLEU score.
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1 INTRODUCTION

The demand for performance and efficiency drives research to
find better program parallelization methods. While recent break-
throughs [3, 4, 37] demonstrate the promising future of automatic
parallelization, programmers will always play a role in paralleliza-
tion. This is because, unlike a programmer, the compiler cannot
expand the set of valid outputs of a program, even if such additional
outputs would produce much better performance and be accepted
as valid by the programmer [6, 48, 50]. For example, while the pro-
grammer may find the out-of-order printing of diagnostic messages
acceptable for some level of performance, the compiler does not
know this and cannot unilaterally make this change [48]. Addition-
ally, the programmer may find lower precision for floating-point
operations acceptable. The compiler, however, cannot relax the
precision of output without the programmer playing a role. For this
fundamental reason and other practical reasons, such as the current
limits of parallelizing compilers, parallelization will always benefit
from the programmer and compiler working together (collaborative
parallelization).

Most parallelizations are, to some degree, a collaboration be-
tween the programmer and a compiler. First, the programmer can
parallelize the program using a parallel programming language [8,
42, 57], parallel extensions to sequential languages [18, 40, 44], or
by expressing code properties that enable inherent parallelism (i.e.,
implicit parallel programming [6, 7, 23, 25, 48, 61]). Then, the com-
piler maps this programmer-expressed parallelism to utilize parallel
resources of the hardware. However, the degree of collaboration
is limited in this way, either because the compiler performs only
a translation of programmer-expressed parallelism or because the
compiler disregards the work of the programmer and parallelizes
the code itself (e.g., Polly [21]). In either case, only the program-
mer or the compiler is ultimately responsible for the parallelization
choices. Alternatively, the compiler can collaborate with the pro-
grammer in parallelization by first presenting its parallelization
to the programmer. It can do so in various ways. First, the com-
piler can present to the programmer assembly code, but this is too
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obfuscated to find parallelism. Alternatively, many analysis tools
assist manual parallelization by suggesting actions desired from
the programmer (e.g., dependences to remove [24, 31, 62]). Unfor-
tunately, collaboration based on analysis tools does not reduce the
work of a programmer because the programmer must consider and
make each change suggested by the tool. Moreover, requesting
improvements for only some code regions limits the impact of the
programmer since the compiler assumes that other regions can no
longer be manually improved.

Another way to present compiler parallelization to a program-
mer is through decompilation. Decompilers [1, 10, 12, 14, 17, 22, 33,
53, 63, 64] have great potential to enable collaboration in which
better performance can be obtained with less manual effort. Better
performance can be achieved by making the work of one paral-
lelizing compiler recompilable universally using any host compiler
(portability). Ideally, to practically reduce manual effort, the style
of the decompiled code should comply with contemporary coding
practices, such as using a modern parallel programming model
(naturalness). Natural code is informative about what and how a
compiler parallelizes, enabling the programmer to improve program
performance in any desired workflow.

When it comes to parallel programs, state-of-the-art decompilers
cannot produce portable code. Translating parallel IR to portable
parallel source code is not a trivial task. First, most parallel program-
ming models impose strict requirements for loop structures. For
example, the OpenMP [44] omp for construct requires syntactically
canonical for loops with no additional code between the pragma and
the loop. However, most decompilers end up translating low-level
parallelized loops into do-while loops. This is because parallelization
often relies on loop rotation for canonicalization, which converts all
loops into do-while form. Furthermore, parallelism in the IR is often
expressed using parallel runtime library calls. For reverse engineer-
ing purposes, code decompiled by previous decompilers exposes
these library calls, making the decompiled code not recompilable
with compilers using another runtime library.

Additionally, since code produced by state-of-the-art decompil-
ers is not portable, it is also not natural. A do-while loop compared
with a for loop is less natural without features like induction vari-
ables. Low-level runtime-specific details of parallelization also ob-
fuscate previously decompiled code. While making the decompiled
code portable helps with naturalness, code decompiled in previ-
ous approaches assigns variables with names corresponding to
physical registers. The lack of informative variable names intrudes
significant overhead in understanding code semantics.

To overcome the obstacles mentioned above and practically en-
able collaborative parallelization, this work proposes SPLENDID,
the first LLVM-to-C/OpenMP decompiler that provides portable
natural translation from parallel LLVM-IR to OpenMP-parallel
source code. SPLENDID explicitly represents parallelism through
the widely used parallel programming model, OpenMP [44]. Since
using OpenMP directives eliminates compiler-specific implemen-
tations of parallel constructs and requires for-loops, SPLENDID-
produced parallel code is portable and more natural. Moreover,
code generated by SPLENDID preserves variable names and is thus
closer to manually written code. With variable names that are repre-
sentative of semantics, SPLENDID significantly reduces the manual
effort of interpreting code semantics.
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SPLENDID is designed with the careful consideration of what to
de-transform so that key optimizations, such as parallelizations and
loop optimizations, are made evident to the programmer. While the
goal of this paper is to enable better collaborative parallelization,
readers may find the results useful to other tasks that may benefit
from more natural reverse engineering, such as debugging. For
example, SPLENDID may be used in debugging and performance
tuning of computational kernels automatically parallelized using
Polly [21], an LLVM-based parallelizing compiler.

The primary contributions of this paper are:

o Presenting the first decompiler targeting OpenMP-parallel
IR, SPLENDID. SPLENDID-produced code makes the output
of a parallelizing compiler portable, recompilable with any
host compiler, and natural for easy programmer involve-
ment.

e A novel pass that restores source variable names by elim-
inating virtual register to variable naming conflicts and by
inferring variable names from another function through in-
lining.

o Realizing a smarter trade-off between how close the decom-
piled code is to the original source code and how instructive
it is to compiler parallelization.

e When SPLENDID-decompiled code is recompiled using GCC,
an average speedup of 11x of 16 PolyBench benchmarks is
made available universally outside LLVM. The same bench-
marks demonstrate an average of 39x improvement on the
BLEU score (i.e., a widely-used naturalness metric [45]) over
the best prior work. With an average of 3 lines of manual
change on top of SPLENDID-generated code, the speedup
is doubled relative to both manual and compiler paralleliza-
tion alone on 7 PolyBench benchmarks, programs simple
enough that either the compiler or the programmer should
have easily been able to deliver maximal performance but
did not.

2 MOTIVATION

Decompilation has great potential to lower the manual effort of
parallelizing programs. Portions of what otherwise be manual par-
allelization can be replaced by compiler parallelization if the decom-
piled parallel code is portable. The decompiled parallel code can
then be maintained in place of the original sequential code. After
seeing what the compiler parallelizes in the decompiled source code,
the programmer can focus primarily on the loops that have not
been parallelized. Moreover, after seeing how the compiler paral-
lelizes, the programmer can improve upon the parallelization of the
compiler. Unfortunately, code produced by previous decompilers is
neither portable beyond the parallelizing compiler nor sufficiently
natural for understanding parallelism, as shown in Table 1. This
is because the primary goals of previous decompilers, including
reverse engineering and analysis, do not rely on decompiled code
being syntactically correct, recompilable, or natural.

We have identified three core areas that prevent decompilation
from enabling collaborative parallelization: lack of explicit par-
allelism, unnatural control flow translation, and use of artificial
variable names. The rest of this section further describes these three
roadblocks.
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Table 1: Comparison with prior decompiler frameworks. As the first decompiler for collaborative parallelization, SPLENDID
emphasizes portability and naturalness for translating parallel code.

Explicit Parallelism Translation

Control Flow Translation Variable Translation

Decompiler Decompilation Primary Goal Parallel Runtime Parallel Parallel . Source
Level . Pragma For-Loop Loop Rotation SSA .
Library Call Loop Code . . . . Variable
LT . L Generation  Construction De-transformation ~De-transformation .
Elimination Restoration Inlining Renaming
Ghidra [1] binary Reverse Engineering X X X X 4 v n/a X
Gussoni et al. [22] binary Security X X X X X X n/a X
Chen et al. [12] binary Software Maintainance X X X X X X n/a X
SmartDec [17] binary Reverse Engineering X X X X X X n/a X
Phoenix [10] binary Security X X X X v X n/a X
Hex-rays IDA Pro [53] binary Software Validation X X X X 4 v n/a X
Relyze [33] binary Binary Analysis X X X X X X n/a X
Rellic [63, 64] LLVM-IR Security X X X X v X v X
LLVM CBackend [14] LLVM-IR Reverse Engineering X X X X X X X X
SPLENDID (This Work) LLVM-IR Collaborative Parallelization v v v v v v v v

2.1 Lack of Explicit Parallelism

The broad use of OpenMP [44] suggests that it is easier for a pro-
grammer to express explicit parallelism through pragmas than con-

trolling threads through calling runtime functions (e.g., pthreads [40]).

Prior work lacks the support to encode IR-level parallelism explic-
itly at the source code level. As a motivating example, Rellic pro-
duces code filled with parallelization setup instructions, namely
instructions generated to enable parallel execution at lines 3, 7 to 24,
and 38 in Figure 1. Some of these parallelization setup instructions
are runtime-specific. For example, line 3 of the Rellic-generated
code shows the runtime fork call from the LLVM/OpenMP run-
time [35], __kmpc_fork_call, brought directly from the IR to C.
Bringing runtime-specific instructions to the source code restricts
portability since the decompiled code can now only be compiled
with that specific runtime (e.g., libomp [35] in the motivating ex-
ample). Moreover, these parallelization setup instructions make
produced code unreadable. While the fork call suggests some paral-
lelism, it is not explicit. Without specific knowledge of the OpenMP
runtime library designed for LLVM, it can be difficult for a pro-
grammer to interpret this line. SPLENDID, however, is designed to
produce semantic and portable parallelism.

2.2 Obfuscated Control Flow Translation

Many parallel programming models constrain the structure of the
control flow. For example, OpenMP loop-related pragmas only ac-
cept loops in canonical for-loop format. Thus, failing to produce
a canonical Control Flow Graph (CFG) required by the selected
parallel programming model for source-level parallelism will result
in syntactic errors in the source code. For example, it is syntactically
wrong to apply omp for to a do-while loop.

For parallel programs, loops generated by previous decompil-
ers are often do-while loops. This is because loop rotation [34] is
a normalization pass that is commonly applied before optimiza-
tions (e.g., LLVM -O1 or higher, and parallelizing compilers such as
NOELLE [37] and Polly [21]). Loop rotation transforms each loop
into its rotated form in which the exit condition succeeds the loop
body. Without further analysis, rotated loops are, at best, decom-
piled as do-while loops with a guard check, as shown in line 25.
The guard check did not exist in the original program; it was cre-
ated by loop rotation to prevent entry to the loop when the initial
state of the loop satisfies the exit condition before rotation. This
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leads to loop-related OpenMP pragmas being unable to be gener-
ated because the original for loop has been replaced with a loop
that OpenMP does not support. SPLENDID instead fully recovers
OpenMP-compatible canonical for loops.

2.3 Variable Names Irrelevant to Semantics

Prior work produces source code where variable names have no as-
sociation with the original program semantics [55]. While binaries
may still contain debug information that theoretically helps to re-
construct variable names, binary decompilers such as Ghidra were
designed for published executables with such data stripped. Even
though the IR maps a source code variable to a virtual register with
debugging intrinsics, as shown in line 1 of the Paralle]l LLVM-IR,
even fundamental compiler transformations such as Single Static
Assignment (SSA) dramatically change the nature of variables in
the IR.

First, the number of mappings from a source code variable to
virtual registers grows dramatically. This is because promoting a
memory reference to a register reference (as done by memz2reg in
LLVM) may split a single source code variable into multiple in-
structions connected by a phi instruction to satisfy the SSA form.
Moreover, once split, virtual registers may have an overlapping
lifetime. That is, one of two virtual registers mapped to the same
source code variable may still be alive after the definition of the
other (conflict). Two conflicting virtual registers cannot be mapped
back to the same source code variable. Additionally, heavily opti-
mized code regions lose such debugging intrinsics because compiler
optimizations are performance-driven, lacking the intention to pre-
serve source information which is thought to be unnecessary for
improving performance. SPLENDID introduces a new technique to
recover the majority of the source code variable names.

3 SPLENDID OVERVIEW

This work introduces SPLENDID, a decompiler framework that pro-
duces portable OpenMP code natural for programmer involvement.
As shown in Table 2, SPLENDID includes all features necessary
for producing portable code. Loop-related transformations, such as
Loop Rotation De-transformation, restore loops in IR to canonical
for loops in source code. Features related to transforming runtime
library calls, such as Parallel Runtime Elimination, remove runtime-
specific constructs and explicitly express parallelism as OpenMP
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Figure 1: A comparison of code decompiled using Rellic [63, 64] and SPLENDID. The motivating example is a simplified hot
loop from jacobi-1d-imper in PolyBench [46]. The original sequential code is compiled into LLVM-IR, optimized by LLVM -02,
and parallelized using Polly [21]. The resulting parallel LLVM-IR then serves as the input for decompilation. Compared to code
produced by Rellic, code produced by SPLENDID is portable to any host compiler and natural.

Table 2: Techniques of SPLENDID to produce portable code
that is also natural for manual improvement.

Techniques Portability | Naturalness ‘

Parallel Runtime Elimination

Loop Parameter Restoration
Loop Rotation
De-transformation

For Loop Construction
Parallel Code Inlining
Pragma Generation

SSA Detransformation
Source Variable Renaming

pragmas at the source level. Together, these techniques enable
SPLENDID to produce code not only syntactically correct but also
compilable universally with any runtime library. In addition to
being portable, the same set of techniques also makes SPLENDID-
produced OpenMP code more natural, because they restrict code
structures (e.g., making loops more natural), and represent paral-
lelism using OpenMP (e.g., eliminating obfuscated runtime function
calls). Moreover, SPLENDID chooses variable names that reflect
code semantics. The more natural the decompiled code is, the less
effort is required from a programmer to understand what and how a
compiler parallelizes, and the better chance of additional profitable
collaborative parallelization.

By using SPLENDID, a programmer i) is freed from parallelizing
that which the compiler is capable of parallelizing, ii) can make in-
cremental improvements to what the compiler can parallelize, and
iii) can focus on parallelizing what the compiler cannot parallelize.
The rest of this section starts by describing techniques developed to
overcome each hindrance identified in Section §2. Then, we present
an example demonstrating how each technique in SPLENDID con-
tributes to producing portable and natural source code. Lastly, we
present case studies to show how i) SPLENDID successfully sup-
ports collaborative parallelization, a promising direction in bringing
performance in the post-Moore’s Law era, and ii) despite the en-
abling power of collaborative parallelization, SPLENDID advances
the state of decompilation by making critical optimizations clearer
to programmers.

3.1 Explicit Parallel Translation using OpenMP

As far as we know, SPLENDID is the first decompiler that translates
parallel IR into portable OpenMP code [44]. This is achieved by
first finding loops parallelized from a parallel code region with
extraneous parallel execution setup code. Then, the parallel exe-
cution setup is removed, namely, instructions that enable a code
region to run in parallel, including parallel runtime function calls.
With no implementation-specific code at the source code, the de-
compiled code is portable to any compiler and more natural. After
that, SPLENDID generates OpenMP pragmas to replace IR-level
parallelism since OpenMP is widely accepted and can be easily
understood by developers. Lastly, since the parameters of a par-
allel loop (e.g., loop bounds and step sizes) are thread-local, loop
parameters are restored to the original sequential loop parameters.
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3.2 Enhanced Natural Control Flow Translation

Unlike many loop optimizations that bring considerable perfor-
mance gain, loop rotation, though critical for loop normalization,
does by itself not improve program performance but simplifies
the implementation of other loop optimizations. Thus, SPLENDID
is designed to de-transform rotated counted loops to for loops.
SPLENDID-generated loops are much more comprehensible since
the loop structure is closer to the original source code. Moreover,
the well-structured loops generated by SPLENDID make pragma
selection easier. As depicted in the motivating example, when the
loop is restored to a DOALL for loop (with no dependence across
iterations), simply applying #pragma omp for parallelizes the loop.
However, SPLENDID intentionally does not de-transform optimiza-
tions other than loop rotation as they do not hinder portability and
are critical to performance.

3.3 Natural Variable Reconstruction

Since SSA separates what was originally one source variable into
multiple virtual registers (instructions), SPLENDID collapses in-
structions connected through a phi instruction into one variable.
Further, SPLENDID beautifies variables by assigning names to them
that are indicative of code semantics. This work proposes relating
each instruction with a source variable through mappings extracted
from debug information. Unfortunately, because of conflicts, map-
pings of virtual registers to source variables cannot be directly used
to assign variable names. SPLENDID provides a novel verification
module that detects and removes conflicts. Details about conflict
elimination are described in Section §4.3.2.

If debug information is missing for an instruction, SPLENDID
takes one step further and attempts to associate this instruction with
debug information from another code region. Specifically, while
debug information is preserved throughout transformations to the
compiler backend in LLVM, optimizations such as automatic par-
allelization [3, 21, 37] developed on top of LLVM are not designed
with decompilation in mind. Thus, when these optimizations insert
new instructions, they may not have precise debug information. To
overcome this constraint, SPLENDID assigns source variables to a
code region without source information by relating it to a region
where source information is present through inlining.

3.4 SPLENDID in Action

Figure 1 shows how each aforementioned technique contributes
to the final translation of the example loop. First, all the parallel
runtime setup instructions, which are at lines 2-12 and 22 in the
parallel LLVM-IR, are used to i) restore the parallelized loops to a
sequential loop and ii) generate OpenMP pragmas for the sequential
loop. The parallel code region and its input are some of the inputs
to one of the runtime calls, __kmpc_fork_call at line 2, through
which multiple workers are spawned to execute the parallel region
specified as inputs. Parallel regions are functions containing the
outlined and parallelized loops from the original code. By recog-
nizing inputs to a fork call, the loops that are parallelized and the
original sequential loop parameters are recognized by SPLENDID.
The parallelized loop from lines 15 to 20 is then found between the
runtime initialization call at line 9 and the finish call at line 22. Since
each instance of the parallel region only executes a portion of the
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parallelized loop, loop parameters such as loop bounds are unique to
each worker and are calculated using the original loop parameters
as inputs to the initialization call. To restore each parallelized loop
to the combined iteration space of all threads, SPLENDID replaces
the loop parameters with the values before the initialization call.
For example, the lower bound at line 12 is replaced with its original
value of 0 at line 7. Once the parallel region is transformed into
a sequential loop with OpenMP pragmas, SPLENDID removes all
parallelization setup instructions as depicted in gray and inlines
the outlined parallel region into the sequential code region.

At this point, the inlined loop is still rotated, and SPLENDID,
after verifying the loop is counted by finding the induction variable
at line 15, transforms the sequential rotated loop into the for loop
shown at lines 4 to 6 in the final produced code in Figure 1. Note
that SPLENDID removes the guard check at lines 13 and 14 in the
paralle]l LLVM-IR by proving that it is equivalent to the initial exit
condition of the transformed for loop. Constructing the for loop not
only improves naturalness but also validates the use of the #pragma
omp for at line 3, as the pragma can only be used on a for loop.

Lastly, SPLENDID collapses and renames virtual registers. SPLEN-
DID removes each phi instruction by replacing its inputs with it-
self or an expression containing itself. In the motivating example,
iv.next is replaced with iv, the name of the phi instruction, which
is then detected as an induction variable and generated as the vari-
able i at lines 4 and 5 in the produced code. As the final step, if
there is debug metadata relating a source variable name to a vir-
tual register, an instruction, SPLENDID assigns each instruction
the source variable name it is related to unless there is a lifetime
overlap (such a conflict is described in Section §4.3.2). When an
instruction has no debug metadata, such as argB from the parallel
region at line 16, it can indirectly relate to a source variable through
inlining in the following way. First, the sequential code region con-
tains debug metadata that maps instruction B.addr to variable B
at line 1. Meanwhile, since the parallelized loop is inlined, argB is
replaced by the input to the parallel region at line 2, which is B.addr.
Thus, as B.addr is mapped to the source variable B, so does argB
after inlining. As SPLENDID finds no conflict with this mapping,
variable B can safely replace argB as the generated variable name
at line 5 in the produced code.

3.5 Case Studies

This section presents case studies to demonstrate two use cases of
SPLENDID. First, SPLENDID enables compiler-programmer collab-
orative parallelization, as shown in Table 3 and Figure 2. Second,
SPLENDID advances the state of decompilation by presenting nat-
ural code in the presence of aggressive compiler transformations,
as shown in Figure 3.

3.5.1 Compiler-Programmer Collaboration. Instead of letting the
programmer try to optimize the whole program, we propose an
alternative approach. That is, before any manual optimization, let
the compiler present its parallelization plan to the programmer
through SPLENDID.

As shown in Table 3, there is a large overlap between what
the compiler and the programmer alone can parallelize. By first
letting SPLENDID produce parallel code that is portable to any
compiler, programmers are freed from parallelizing loops that are
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Table 3: SPLENDID enables the parallelization of all loops
that the compiler and programmer can parallelize alone, with
reduced manual effort.
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Parallelizable
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Parallelization
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parallelizable by a compiler. By knowing what the compiler can
parallelize, a programmer can focus on parallelizing loops that the
compiler could not parallelize. This way, SPLENDID enables the
parallelization of all loops proposed by the programmer and the
compiler.

Moreover, whatever is already parallelizable by the compiler may
also benefit from the knowledge of a programmer. As shown in
Figure 2, the example loop can be conditionally parallelized by the
compiler (e.g., Polly [21]) when A and B do not alias. Thus, an alias-
ing check is injected to provide a fallback to the sequential version
of the code when A and B alias. The compiler can emit such aliasing
check because i) alias analysis is limited (e.g., because it is limited
to intra-procedural analysis) to proving that A and B do not alias
even if the programmer has only called MayAlias with separately
allocated units, or ii) alias may indeed occur at runtime as the pro-
grammer may pass the same pointer to both arguments A and B, as
in the case of line 12 in the original code. In the first scenario, a pro-
grammer, knowing A and B cannot alias, can remove the sequential
version of the code, eliminating the computational overhead from
the aliasing check. If the programmer is a compiler writer, he/she
no longer needs to search in IR to be informed of the limitation in
its compiler analysis. The alias analysis can be improved by looking
at decompiled source code. In the second scenario, the programmer,
after knowing that the compiler can parallelize the cases when A
and B do not alias, can improve the original code by simply re-
stricting the accessing of example code to only when A and B do
not alias (i.e., line 1 in (c)) and focus on optimizing cases when A
and B must alias in a separate function (i.e., line 6 in (c)). In both
scenarios, the programmer is freed from manually parallelizing the
example loop under the condition that A and B do not alias. More
importantly, such interaction greatly improves the final produced
code in both naturalness and performance. Such interaction is only
enabled through SPLENDID, as any unnaturalness introduced at
the assembly level or by other decompilers can make finding the
aliasing check extremely difficult.
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(a) Original Code
1 void MayAlias(doublex A, doublex B, double *C) {
2 //... initializations
3 for (i = 0; i < N-1; i++){
4 A[i+1] = M_PI*B[i] + exp(C[il);
5 }
6 }
7 void main(...){
8 double *A = (doublex) malloc(n * sizeof (double));
9 double *B = (doublex) malloc(n * sizeof (double));
10 double *C = (doublex) malloc(n * sizeof (double));
11 MayAlias(A, B, C);
12 MayAlias(A, A, C);
13}
(b) SPLENDID Output

1 void MayAlias(doublex A, doublex B, double *C) {
2 if ((A+1000) <= B | (B+999) <= (A+1) & (A+1000) <= C | (C+999) <

= (A+1)) {//Aliasing check
3 #pragma omp parallel
4 {
5 #pragma omp for schedule(static) nowait
6 for(uint64_t i = 0; i<=998; i = i + 1){
7 ALi+1] = (exp(C[il) + B[i] * 3.1415926535897931);
8 }
9 )
10 } else {
11 for(uint64_t i = 1; i < 999; i=1+ 1){
12 AL(i+1)] = (exp(CLil) + B[il * 3.1415926535897931);
13
14 }
15 3

(c) Specialized Optimization by Programmer

1 void NoAlias(doublex restrict A, doublex restrict B, doublex C) {
2 for (i = 0; 1 < N-1; i++){
3 ALi+1] = M_PIxB[i] + exp(CL[il);
4 }
5
6 void <func>_InPlace(doublex A, doublex C);
7
8 NoAlias(A, B, C);
9 <func>_InPlace(A, C);

Figure 2: An example of the programmer removing compiler
generated aliasing checks.

<«—— Original Code ——, Compiler  ______ SPLENDID Output ——»,

Ovtimization "z iit6a £ 1 = 0; i < 1000; 1 = 1 + 4)
for (i = 0; i<1000; i++) | A[i] = (B[i] + C[i]); .
A[i] = B[] + C[i]; A[i | 1] = (B[i | 1] +C[i | 1]);
Loop Al | 2] = (B[ | 2] +C[i 2])3
Unrolling )A[l 3] = (B{i | 3] + C[i | 31);
for(wint6d £ 1=0; 1<99 i=1+1){ |
— : for(wintbd t § = 0; 3 < 100; J =3 + 1){ |
for(i=1; i<100; i++){ : N ..
for(3=0; 3<100; 3+){ AL+ LI =341+ |
Afi)I1=1i+3 | )
B[i][3] = i*j Loop " for(uint64 ti=0; i<99; i=i+1){ |
- A[i-11[]1; sotriba gt for(uint64 t j =0; j <100; j =3+ 1){,
Distribution |53 + 11531 = (@ + 1) * 3 - AIGD; |
‘
‘

} i

Figure 3: Decompiling loop optimizations using SPLENDID.

3.5.2  Advancement in Decompilation. Natural decompilation goes
beyond producing code identical to the original source code. An ad-
vanced decompiler should present performance-enabling optimiza-
tions the compiler applies in a human-readable way. SPLENDID
achieves this by making a trade-off of what to de-transform. Figure 1
has already shown the natural representation of the parallelization
of SPLENDID. Instead of aggressively applying de-transformations
to all compiler optimizations, SPLENDID chooses to de-transform
only peep-hole optimizations that intrude unnaturalness while
having little or no influence on performance (e.g., SSA and loop
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rotation). This design choice results in aggressive optimizations,
such as loop transformations, remaining untouched and presented
to the programmer, as shown in Figure 3. Performance engineers
can then read the output of SPLENDID and quickly find relevant
code properties, such as unrolling factors.

[
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Figure 4: The design and workflow of SPLENDID.

4 DESIGN AND IMPLEMENTATION

This section describes how SPLENDID obtains the features de-
scribed in Section §3.

4.1 Parallel Source Code Generation

SPLENDID explicitly represents parallel code regions using OpenMP,
which consists of the OpenMP pragmas and sequential code regions

to which the pragmas are applied. OpenMP requires loops to be

strictly structured in counted for-loop fashion with no loop-carried

dependences. However, beyond the fact that LLVM loops vastly

differ from OpenMP-compatible loops, parallel IR contains a large

body of low-level OpenMP runtime setup code, making it extremely

difficult to extract the parallelized loop. Nevertheless, SPLENDID

transforms highly obfuscated IR into portable and natural parallel

C code. It starts with the OpenMP Semantic Analyzer.

4.1.1  Parallel Semantic Analyzer. Parallel Semantic Analyzer first
collects the runtime calls and then extracts the parallel code regions
from the runtime fork calls: __kmpc_fork_call. The fork function
gets an outlined function as an argument, and when it is called, it
creates multiple workers to work on the outlined function simulta-
neously. The Parallel Analyzer then finds the parallel code region
through the outlined function.
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4.1.2  Parallel Region Detransformer. Parallelized Region Detrans-
former i) extracts each parallelized loop from the parallel code
region, ii) restores loop parameters, and iii) removes all the par-
allelization setup instructions such that the output only contains
the original loop. To detect a parallelized loop, the Parallelized Re-
gion Detransformer searches for loops between a pair of runtime
function calls that initializes and ends a parallelized region, such
as __kmpc_for_static_init_8 and __kmpc_for_static_fini in Figure 1.
Then, loop parameters are restored by replacing them with those
used as arguments for the initialization call. Since extraneous in-
structions can cause an error when placed between #pragma omp
for and the parallelized loop, the parallelization-related instructions
are removed.

The loop is then inlined into the sequential code region. Since
the runtime fork call indirectly calls the outlined function, inlining
requires that the Loop Inliner replaces arguments passed into the
runtime fork call with their corresponding arguments of the out-
lined function. Lastly, the Loop Inliner replaces the runtime fork
call in the sequential region with the transformed sequential loop,
eliminating the last runtime-dependent instruction.

4.1.3  Pragma Generator. Explicit parallelism is presented using
sequential loops with OpenMP directives. Pragmas are generated
from runtime function calls through one-to-one or many-to-one
mappings or from static analysis (e.g., private clause). Scheduling
policy and chunk size are determined by extracting and interpret-
ing parameters of runtime initialization calls. When more than one
correct translation exists, the Pragma Generator uses the most per-
forming pragmas. For example, a pair of __kmpc_static_for_init_8
and __kmpc_for_static_fini with no barrier calls can be transformed
into both #pragma omp for schedule(static) and #pragma omp for
schedule(static) nowait. The Pragma Extractor, in this case, produces
the latter since there is no implicit barrier.

While most pragmas are generated through runtime calls, the
Pragma Generator minimizes the use of clauses to reduce the knowl-
edge required for programmers to interpret code produced by
SPLENDID. For example, if the earliest definition of a variable
is inside the parallel region, declaring it inside the parallel region
by default makes the variable private, thus eliminating the need of
using the private clause.

4.2 Natural Control-Flow Generation

SPLENDID generates for loops which OpenMP requires through
de-transforming loop rotation. The Loop Rotate Detransformer first
attempts to produce a for loop from a well-structured rotated loop
by searching for loop parameters, including the induction variable
and loop upper and lower bounds. Traditionally, inverting a rotated
loop is done by loop peeling, which separates the first iteration
from the rest of the loop so that the exit condition can be moved
before the loop body. A loop initially rotated from a for loop is
counted and thus can omit loop peeling by directly changing the
upper bound to allow execution of one more iteration since the exit
condition is checked before executing the loop body. Inverting the
rotated loop creates a for loop, but within a guard check created
by loop rotation to ensure that if the exit condition before loop
rotation fails, the loop is not executed once by mistake. This guard
check can be removed if it is verified to be equivalent to the initial
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exit condition of the transformed for-loop. For example, in Figure 1,
the guard check prevents entering the loop if the lower bound
is greater than the upper bound in line 13 in the IR. The rotated
loop exits if the induction variable initialized with the lower bound
incremented by one is greater than the upper bound in line 19. Since
loop rotation examines the exit condition one iteration later than
the original loop, transforming this exit condition to be used for a
for loop will make it equivalent to the guard check. Therefore, the
guard check in the motivating example can be safely removed by
the Loop-Rotate Detransformer.

4.3 Variable Generation

This section describes how variables are generated by combining
phi instructions, detecting and utilizing conflict-free debug infor-
mation, and inlining parallel code regions.

4.3.1 Variable Proposer. Variable generation starts by proposing
to replace instructions with variables that reflect original code se-
mantics. The incoming values of phi instructions are proposed to
be combined and named with the phi instruction itself. The Meta-
data Interpreter leverages LLVM-IR metadata containing source
variable debug information. The relationship between an IR and a
source variable is contained in debug intrinsics encoded as LLVM
metadata. As shown in Figure 5, %1 and %2 are both associated
with the variable var through a debug intrinsic function containing
metadata !30. While debug information can be invalidated as opti-
mizations are applied, LLVM guarantees that debug information
are correct throughout all the mid-level and backend passes [49],
including mem2reg. Thus, the Metadata Interpreter can safely rely
on debug information. A Metadata Extraction table is built with the
debug information, as shown in Figure 5. Since a phi instruction
may also be mapped to a source variable when the incoming values
are combined for a phi instruction, they are mapped together to
the associated source variable.

4.3.2  Variable Generator. While many instructions can be mapped
to the same variable, mappings are invalid if instructions mapped
to the same variable have a conflict. A conflict in variable naming
occurs when a pair of instructions have overlapping lifetimes. For
example, a conflict exists between %1 and %2 in Figure 5 since
they map to the same variable var, and instruction F uses %1 after
%2 is defined. Renaming them with the same variable results in
incorrect execution, as %1 will wrongfully use the value of %2. Thus,
the Conlflicting Definition Detection module inside the Variable
Generator is designed to remove such conflicting mappings. The
module detects the most recent variable definitions at every point in
the program, as described in Algorithm 1. This is a forward data flow
analysis in which a most recent variable to an instruction mapping
is generated at this instruction if metadata containing a source
variable is available, indicating that the most recent definition of the
variable is the current instruction. Simultaneously, the old definition
of the variable to which a new definition is generated is killed
(i.e., their lifetime ends), as depicted in the Most Recent Variable
Definition table in Figure 5.

Once the most up-to-date variable definitions are established
at each point of the program, the module then uses it to remove
conflicting definitions from the proposed instruction-to-variable
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Algorithm 1: Most Recent Variable Definitions

Input: IR Variable Proposal - Proposed instruction to variable mappings

Result: MR _Var_IR_Maps - Most recent variable definitions at each
instruction

Var « getVariable(I, IR Variable_ Proposal);

GEN[I] « (Var, I);

Kill[I] « (Var, I_old);

IN[1] < Uprepred(r) OUT[PI];

OUT[I] — GEN[IJU(IN[I]-Kill[I]);

MR_Var_IR_Maps « OUT;

return MR_Var_IR_Maps;

Algorithm 2: Conflicting Definition Removal

Input: IR Variable Proposal - proposed instruction to variable mappings
MR _Var_IR_Maps - Output of Algorithm 1
Result: IR_Variable_Map - validated mappings with conflicting definitions
removed
for Instruction I in F do
for Operand op in LOperands() do
var «— getVariableName(op);
if op /= MR_Variable_IR_Maps[I][var] then
IR_Variable_Proposal.erase(pair(op, var)) ;

end
end
IR_Variable_Map « IR_Variable_Proposal;
return IR_Variable_Map;

map, as described in Algorithm 2. At each use of a proposed variable
definition, the algorithm checks if the most up-to-date definition of
the proposed variable is indeed the used definition. If not, a conflict
is detected, and SPLENDID chooses to remove the most recent map-
ping to eliminate the conflict arbitrarily. For example, at instruction
F, the definition at use, %1, is mapped to variable var according
to the Metadata Extraction Table generated by the Variable Pro-
poser. However, according to the Most Recent Variable Definition
table, the most recent definition for var is %2 at instruction F. Thus,
only the %1-to-var mapping is valid, and the %2-to-var mapping
is removed. After Conflicting Definition Detection, the rest of the
instruction-to-variable mappings are valid for generating variable
names. For example, %3, which also maps to var, is not defined
before any use of 1 or 2, so it can also be mapped to var.

The Variable Generator then generates declarations using the re-
sulting mappings. At the definition or use of a variable, the Variable
Generator returns the same value as its declaration by referring to
the exact IR-variable mapping shown in Figure 5. As for variables
without a mapping, such as %2, they are given the virtual register
name as it is unique and somewhat meaningful (e.g., indvar tells
the programmer this variable is an induction variable).

5 EVALUATION

This section evaluates the effectiveness of SPLENDID in its claim
to produce portable and natural code.

5.1 Experiment Setup

SPLENDID relies on the LLVM Compiler Infrastructure [49] (ver-
sion 10.0.1) and is built upon the LLVM C Backend [14]. The C
backend provides basic support for decompiling C syntax. The pro-
gram produced by the LLVM C Backend is close to a one-to-one
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Input Program

2 31 = ..
: call void @llvm.dbg.value(metadata i8* %1, metadata !30,..
: _func(%1)

$2 = ..
: call void @llvm.dbg.value(metadata i8* %2, metadata !30,..
: func(31)
2 %3 = ..
: call void @llvm.dbg.value(metadata i8* %3, metadata !30,..
: func(%3)
/ no more use of %1 or %2

: 130 = !DILocalVariable(name: “var”..

IR _Variable_Map

! Most Recent Variable Definition (§4.3.2) |

Tt T TITas 7!R71{qriablerfringsiqlr‘ Instruction| Most Recent Var-IR Pairs
Metadata Extraction (§ I
Instruction|Definition| |D&! Variable A (var, %1)
A %1 var | c (R 7
D %2 var /! D (var, %2)
G %3 var! | LF (D 72
LG (var, %3)
"""""""""""""""""""""" il (var, %3)
J IR Variable Map Instruction | Operand; | Ayaiiable TVos V{gﬂg ?e[
Definition | Variable c %1 N var i %f
%1 var  fe— F %1
%3 var | %3 var %3

Conflicting Variable Detection (§4.3.2)

VTRV TR ED |
Figure 5: An example of how SPLENDID associates an IR to a
source variable (Final IR-Variable Map) through the Metadata
Interpreter and Conflicting Definition Detection.

translation from IR instructions to C statements where IR branch in-
structions translate to C goto statements. All the modules described
in Section §4 are developed in-house for SPLENDID. The following
setups are used for evaluating SPLENDID.

5.1.1 Decompilation Input and Baselines. SPLENDID is evaluated
using 16 benchmarks from PolyBench benchmark suite [46]. Other
benchmarks in PolyBench are excluded due to the lack of industrial-
level robustness in CFG transformations implemented in SPLENDID.
To generate parallel IR (i.e., the input to SPLENDID), a benchmark
is first compiled to LLVM-IR, optimized with LLVM -02, and paral-
lelized using Polly [21].

Rellic, the state-of-the-art LLVM-to-C decompiler, and Ghidra, a
widely used binary-to-C decompiler, are used as baselines. Rellic
is the fairest comparison since its input is at the same level as
SPLENDID, while the input of Ghidra is binary. Nevertheless, we
found Ghidra to be a competitive baseline as it is an industrial
standard.

5.1.2  Reference Code. Comparing original sequential code to par-
allel code generated from parallel LLVM-IR is counter-intuitive
when evaluating code naturalness since even manually parallelized
code should look different from the sequential code. Thus, we define
code naturalness to be how close the decompiled parallel code is to
a piece of semantically equivalent hand-written parallel code. To
obtain reference code fair for comparison, OpenMP pragmas are
manually added into the original sequential source code according
to how they are parallelized by Polly to simulate the most natural
parallel code that a decompiler can generate using OpenMP without
divergence in semantics.

5.1.3 Hardware for Performance Measurement. Performance of all
programs are evaluated on a commodity shared-memory machine
with two 14-core Intel Xeon CPU E5-2697 v3 processors (28 cores

687

ASPLOS ’23, March 25-29, 2023, Vancouver, BC, Canada

total) running at 2.60GHz (turbo-boost disabled) with 250GB of
memory. The operating system is 64-bit Ubuntu 20.04 LTS with
GCC 9.4.0.

5.1.4  Metrics. The first metric used is speedup, which shows that
SPLENDID-produced code is portable to other host compilers. Then,
several naturalness metrics are used to evaluate the claim that since
explicit parallelism is expressed through OpenMP directives in
SPLENDID, it also brings naturalness on top of portability. First,
naturalness is measured using the number of code lines (LoC) since
eliminating low-level parallel implementation dramatically reduces
LoC. Then, the percentage of variable names restored to the source
is provided to show the effectiveness of the variable renaming of
SPLENDID (Section §3.3).

Lastly, the BLEU score (BiLingual Evaluation Understudy) [45] is
used to measure overall code naturalness. The BLEU score measures
the similarity between a reference text to a set of manual transla-
tions of the same text. It correlates highly with the human-evaluated
quality of natural-language translations [45], which also has been
explored recently to evaluate programming languages, specifically
in machine learning-based code migration (e.g., source-to-source
compilers [2, 16, 28—30]). The use of the BLEU score for formal
languages is well established in the literature. CodeXGLUE [36]
project developed by Microsoft, for example, uses it to evaluate ev-
ery source-to-source compiler infrastructure submitted for testing.
As in this paper, others [52, 58] use BLEU as the gold standard. How-
ever, no other proposed metrics have been found to be practically
better. For example, codeBLEU [52] by design is biased towards
longer inputs because it can find more matches from the reference.
Originally, BLEU score ranges from 0 to 1 with 1 the translated
text being identical to a reference. To conform with other literature,
this paper uses BLEU-4 score with the score also reported on a
scale between 0 and 100. §A illustrates in detail how BLEU-4 score
is calculated and its capability in measuring code naturalness. As
already pointed out by Tran et al. (in [58]), BLEU does not enforce
rigorous word ordering following the syntactic rules of a program-
ming language and thus does not evaluate the correctness of code.
Whether code emitted by SPLENDID is syntactically and seman-
tically correct by construction is confirmed by showing a similar
speedup to the parallelizing compiler.

5.2 Portability

SPLENDID practically reduces the involvement of programmer in
parallelization by replacing original sequential source code with
portable parallel source code. Since previous compilers, such as
Ghidra and Rellic emit low-level runtime-specific code, the work of
a parallelizing compiler, such as Polly, cannot be automatically made
available at the source level. Figure 6 shows the result of compar-
ing speedup obtained by Polly-generated binaries and SPLENDID-
generated OpenMP code recompiled using Clang and GCC. All
binaries were produced with the same optimization level (-O3) and
were run 5 times on an near-idle machine. The result shows that
SPLENDID-generated code produces identical speedup as Polly, in-
dicating SPLENDID faithfully represents the complete work of Polly.
A similar average speedup is obtained when recompiled using GCC
and its standard runtime library for OpenMP, libgomp [19], indicat-
ing SPLENDID-generated code is compiler-independent. Through
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Figure 6: Performance of code decompiled from benchmarks automatically parallelized by Polly using SPLENDID. SPLENDID
allows parallelization of Polly to be used by GCC. Polly achieves a geomean speedup of 10.7x on 28 cores. With SPLENDID,

GCC also achieves a 11.3x geomean speedup.

SPLENDID, the programmer is freed from parallelizing what a par-
allelizing compiler like Polly can parallelize, and an average of 11x
speedup is made universally available outside of LLVM. The pro-
grammer can then choose a compiler with optimizations capable
of achieving the best performance. For example, for benchmarks
such as mvt, GCC produces a noticeable speedup over Clang on the
decompiled code.

5.3 Naturalness

The use of OpenMP directives for explicit parallelism brings natu-
ralness to SPLENDID-generated code. On top of that, SPLENDID
assigns intuitive variable names to further assist collaborative par-
allelization.

5.3.1 Naturalness through Explicit Parallelism. Table 4 shows that,
by eliminating low-level run-time specific code, parallel representa-
tion in SPLENDID-produced code uses less than 13 lines of OpenMP
pragmas, including brackets, at least 35x less than naively decom-
piling parallel execution setup instructions to the source level. The
LoC produced by SPLENDID is within 18 LoC difference from the
reference code for every benchmark, almost identical to LoC in total
with only 0.1x difference, 45x less than the better of the baselines.

The BLEU scores presented in Figure 7 evaluate the overall code
naturalness as described in §5.1.4. Using the generated code as
the translation under evaluation and the reference code as an in-
stance of natural translation, the BLEU score indicates how close
the parallel translation is to manual translation.

We create two variants of SPLENDID to quantify explicit paral-
lelism for naturalness. The first variant, SPLENDID v1, only enables
the natural control-flow construction, which contains basic CFG
analysis and the novel Loop-Rotation Detransformer proposed in
§4.2. On top of natural control-flow construction, SPLENDID v2
enables explicit parallelism translation, representing parallel code
regions using inlined sequential loops applied with OpenMP prag-
mas. Thus, SPLENDID v2 produces code recompilable with any
host compiler. All counted loops are generated as for loops using
SPLENDID v1, yielding an average BLEU score of 1.4, 3.4x higher
than the best prior approach in terms of BLEU score, Ghidra. The
improvement is not significant because BLEU score focuses on word
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Table 4: Comparison of LoC similarity to reference code. Pro-
grams decompiled by SPLENDID contain LoC highly similar
to the reference code.

LoC Parallel Representation (LoC)
Benchmark
Ghidra Rellic SPLENDID Ref Ghidra Rellic = SPLENDID

2mm 534 (8.1x) 381(5.8x) 74 (1.1x) 66| 343 171 4
3mm 813 (9.0x) 624 (6.9x) 105 (1.2x) 90| 620 425 12
adi 311 (5.0x) 371(6.0x) 70 (L1x) 62| 120 122 4
atax 155 (3.7x) 173 (4.1x) 41 (1.0x) 42| 46 49 2
bicg 154 (3.0x) 202 (4.0x) 52 (1.0x) 51| 53 52 2
doitgen | 442 (9.6x) 307 (6.7x) 58 (1.3x) 46| 296 123 2
fdtd-2d | 405 (6.8x) 322(5.4x) 67 (1.1x) 60| 132 118 4
floyd-

worchall | 153 (48%) 150 (47%) 33(L0x) 32| 48 49 2
gemm 455 (7.7x) 373 (6.3x) 63 (1.1x) 59| 362 262 8
gemver | 433 (5.8x) 410 (5.5x) 81 (1.1x) 75| 295 275 4
gesummv | 130 (2.6x) 155 (3.1x) 41(0.8x) 50| 57 59 2
jacobi-

1dimper | 153 (3.8x) 217 (5.4x) 58(1.4x) 40| 70 92 4
jacobi-

pimper |60 (10.7%) 276 (64%) 53(12x) 43| 361 142 4
mvt 229 (4.5x) 258 (5.1x) 54 (1.1x) 51| 166 185 6
syrzk 458 (7.6x) 379 (6.3x) 62 (1.0x) 60| 369 278 8
syrk 400 (7.5x) 357 (6.7x) 59 (1.1x) 53| 324 261 8
Total 5685 (6.5%) 4955 (5.6x) 971 (1.1x) 880| 3671 2663 76

matching and any improvement in control flow only results in a
few keyword differences. SPLENDID v2, however, achieves a much
higher BLEU score, indicating that what comes with portability
is the massive benefit of naturalness. Code produced by portable
SPLENDID scores 21x higher than Ghidra and 43x higher than
Rellic due to removing a considerable amount of parallel execution
setup code unrelated to original code semantics.
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Figure 8: Percentage of variables whose names are recon-
structed by SPLENDID.

5.3.2  Naturalness through Variable Renaming. SPLENDID-generated
code is much more readable because of intuitive variable names. In
more detail, Figure 8 shows that, on average, 87.3% of variables are
either reconstructed from metadata or inferred through inlining
using source variables. Variables that are not reconstructed are
because of the loss of source information even before paralleliza-
tion during the optimization pipeline, such as loop invariant code
motion promoting registers and hoisting memory accesses out of
the loop. This code hoisting creates an intermediate instruction
not associated with any source variable. Since neither Rellic nor
Ghidra creates intuitive variable names related to original code
semantics, no numbers are provided for prior work. With variable
renaming enabled on top of control flow and parallel translation,
SPLENDID-generated code achieves an average of 16.4 in BLEU
score, 39x times higher than Ghidra and 82x times higher than
Rellic.

5.4 Collaborative Parallelization

Portability automatically frees the programmer from parallelizing
what Polly can parallelize. As shown in Table 3, among the loops
parallelizable by Polly, 60% of what a compiler parallelizes is what
the programmer can also parallelize but is freed from doing so. An
additional 40% of what Polly parallelizes is beyond the original
plan of the programmer and is made available universally for free
through SPLENDID.

We found 7 benchmarks among the 16 simple and highly paral-
lelizable PolyBench benchmarks where, surprisingly, neither the
programmer nor the compiler achieved the best result, as shown in
Figure 9. The manually parallelized PolyBench benchmarks were
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Figure 9: Performance of code with additional manual par-
allelization after decompiling Polly-parallelized IR using
SPLENDID. The numbers represent LoC used to manually
parallelize SPLENDID-generated code.

found on Github by the Cavazos Lab [20]. SPLENDID restores all
counted affine for-loops, enabling simple manual parallelization on
top of SPLENDID-generated parallel code. By simply applying loop
distribution (in the case of bicg and atax) and DOALL parallelism
to loops that Polly does not parallelize, the speedup is doubled
compared to both the compiler and programmer parallelization on
its own. This collaborative parallelization is only made practical
with SPLENDID.

6 RELATED WORK

Existing tools [13, 26, 48] provide insights into and suggestions
from the compiler to the programmer. Intel Advisor, for example,
informs the programmer of memory or computation bottlenecks
and insights into whether and how to offline code to GPUs. Im-
plicit programming tools, such as COMMSET, provide programmer
dependences preventing parallelization. None of these suggestion-
based tools have practically reduced the work of a programmer
while enabling more parallelism like SPLENDID.

Many advancements in decompilation [22, 39, 53, 54, 63, 64]
have greatly improved code naturalness by reducing the usage of
goto statements. For example, eliminating irreducible graphs [39],
diamond-shaped CFGs [22], and many more transformations sig-
nificantly reduce the number of goto statements. However, with
loop rotation, loops generated by previous decompilers are often
do-while loops. For portability, SPLENDID instead de-transforms
loop rotation to produce for-loops.
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Existing LLVM-to-C decompilers [14, 39, 63, 64] produce code
that is unnatural. LLVM C Backend [14], the LLVM-to-C decom-
piler that SPLENDID is built upon, produces assembly-like code
with most branches emitted as goto statements. Rellic shows no
indication of using variable names representative of the code se-
mantics. The C Backend emits source file names and line numbers
in its decompiled code using #line, a debugging directive. Prior
research [15, 32] in debugging has primarily focused on validat-
ing debug information instead of using it for variable renaming.
SPLENDID, however, directly generates variable names using origi-
nal source variables.

More work has been devoted to binary-to-C decompilers [12,
17, 22, 39, 54], some of which are integrated into IDEs as part
of the debugger (e.g., Ghidra [1], Hex-Rays Decompiler [53], and
Relyze [33]). An IDE often has a graphical interface that enables
some level of interaction with programmers. Ghidra, for example,
allows programmers to rename variables to assist in interpreting
code semantics. Likewise, rellic-xref [43], a web interface for Rellic,
allows programmers to selectively run some transforms in a user-
defined order. However, the kind of interaction is not comparable
to the interactive development for parallelization that SPLENDID
enables.

Another line of work [16, 29, 30] adopts self-supervised meth-
ods in Natural Language Processing using deep learning models.
Models are trained using obfuscated source code at a similar level
of abstraction to improve code naturalness. Code produced in this
approach cannot guarantee correctness and thus requires a manual
inspection from programmers. SPLENDID, however, produces code
that is semantically correct, portable, and with speedup identical
to the underlying automatically parallelized code.

Parallelizing compilers such as QuickStep [38] and Alter [59] in-
sert OpenMP pragmas directly into the original input C code. Quick-
Step cannot preserve program semantics since it trades accuracy
for more parallelism. SPLENDID preserves code semantics in de-
compilation. Alter requires manual annotations for parallelization
and is limited to its own analysis and transformations. SPLENDID,
however, is a decompiler that does not target a specific parallelizing
compiler. Thus, the performance of SPLENDID-generated code will
not be limited by analysis within a single parallelizing compiler.

Source-to-source compilers [5, 27, 41] were designed for code
migrations due to naturalness preserved from not lowering to
assembly-like IRs. Thus, source-to-source compilers are limited
to transformations that do not go beyond the AST level. Some [9,
47, 60] use polyhedral transformations to parallelize code with poly-
hedral loops. However, parallelization near the source level is not
scalable with front-end languages, breaking the ideal source-target
independent IR model. Moreover, unlike LLVM IR, rarely is there
a community interest in the continued development and mainte-
nance of source-to-source compilers. SPLENDID is easily scalable
to other front-end languages as it targets LLVM IR. For the same
reason, SPLENDID can be easily supported and maintained within
the LLVM community. Furthermore, SPLENDID produces code that
is natural and easy for manual code investigation.
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7 FUTURE WORK

SPLENDID is the first step in the promising future of practically
enabling programmer and compiler collaborative parallelization.
As a prototype, SPLENDID only supports OpenMP semantics nec-
essary for Polly, including parallel, for, nowait, private, barrier, and
static schedule, while many other essential features in OpenMP are
not supported, such as dynamic scheduling and reduction. Gener-
ally speaking, many OpenMP features, such as dynamic schedul-
ing, are lowered into similar constructs involving similar engineer-
ing efforts. Clauses such as reduction are non-trivial to decompile.
However, we see a similar design principle in decompiling paral-
lel regions that can be used to decompile clauses like reduction.
Moreover, SPLENDID does not preserve comments or handle array
flattening when arrays are passed as an argument into a function in
LLVM. Future work includes expanding coverage in this way and to
handle more sophisticated parallelization, such as speculation [3],
PS-DSWP [51], and HELIX [11].

8 CONCLUSION

This work presents SPLENDID, an OpenMP/C decompiler that pro-
duces portable and natural code. SPLENDID’s naturalness is due, in
part, to a novel technique that materializes variable names inferred
from the original source code. SPLENDID-produced code achieves
a 39x higher average BLEU score than the best prior approach. A
decompiler that produces natural parallelized code can enable a
more efficient collaborative parallelization effort between the com-
piler and the programmer. This paper has shown that SPLENDID
makes the work of the parallelizing compiler more available to the
programmer and frees the programmer from work that can be done
automatically. For 7 simple and easily parallelizable programs, in
a collaboration enabled by SPLENDID, the compiler and program-
mer produce code that runs twice as fast as either the compiler or
programmer working alone.

9 DATA AVAILABILITY STATEMENT

SPLENDID’s artifact evaluation is publicly available and can be
downloaded from Zenodo [56].
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A BLEU FOR FORMAL LANGUAGES

Figure 10 illustrates the calculation of the BLEU score. The under-
lying idea is to build a set of all sub-sequences of length n of a
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Figure 10: BLUE score calculation

Reference Program

Pfor(i=1; ien-1; i++)
H B[i] = (A[i-1] + A[i] + A[i+1]) / 3;

(a) Obfuscated Variable Names
' BLEU Score: 0.3730

Efor(vax0=l; var0 < N - 1; varO+)
\  varl[var0] = (var2[var0-1] + var2[varO] + var2[varO+1]) / 3;

! (b) Unnatural Control Flow !
' BLEU Score: 0.5928 |
Vif (N -1 > 0) { '
oi=1; '
i do { i
, i+=1; '
B[i] = (A[i-1] + A[i] + A[i+1])
!} while (i < N - 1); !

/ 3;

! (c) No Explicit Parallelism
1 BLEU Score: 0.3600

__kmpc_fork_call(paraml, param2, param3, kmp_int32
4, forked_function, param5, A, B, &lb, &ub);

void forked_function(Typel argl, Type2 arg2, E
double *A, double *B, int *1lb, int *ub)({ .
__kmpc_for_static_init_8(argl, arg2, 33, i
lb, ub, 1, 1); :

for (i=+*lb; i<*ub; i++) 5
B[i] = (A[i-1] + A[i] + A[i+1]) / 3; '
__kmpc_for_static_fini(argl, arg2); !

Figure 11: A hand-crafted example of BLEU scores reflecting
each area of unnaturalness in Section §2.

candidate phrase, called n-grams, and see whether they also occur
in a reference phrase. In the case of formal languages, a phrase is a
sequence of tokens as detected by the language lexer. The BLEU
score is a percentage of matched n-grams relative to the theoretical
maximum number of matches (i.e., if the candidate and reference
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are identical):

Y, Clsy)

Number of matches _ s€Gn(9)
Theoretical max number of matches Z C(s,7)
s€Gn (1Y)

A candidate n-gram can occur more times in the reference that in
itself; to ensure that the score is in the range [0, 1], the number
number of matches that are counted is bounded:

Z min(C(s, 9), C(s,y))

s€Gn(9)

>, €9

s€Gn(9)

@)

The final BLEU-4 score is the geometric mean of the n-gram scores
ofn =1,...,4.If the candidate phrase is very short, then the denom-
inator will be small and fewer matches be needed to reach a high
BLEU score. Therefore, when the candidate phrase is shorter than
the reference, an additional brevity penalty is applied!. Typically,
the final score is presented as a percentage, i.e. multiplied by 100.

The BLEU score for natural languages also allows comparison
multiple reference phrases, in which case for each n-gram, the
reference phrase with the most matches is used.

This work measures code naturalness using the BLEU-4 score
since it is also used in other literature [16, 30] to evaluate formal
language naturalness. As shown in Figure 11, unnatural variable
names, control flow, and parallelism representation all degrade
the BLEU score from 1 (identical to the reference program). While
program (a) has a higher 1-gram score with better word-by-word
matching, program (b) contains at least an identical loop body to
the reference code, resulting in higher 2-gram to 4-gram scores.
Thus, programs (b) have shown higher BLEU-4 scores. This means
that variable renaming described in Section §3.3] has a significant
influence on improving the BLEU score. To show that BLEU scores
still reflect improvement in naturalness by constructing natural
control flow and explicit parallelism, we thus reported the BLEU
score of SPLENDID with variable renaming turned off, namely
SPLENDID v1 and Portable SPLENDID, as shown in Figure 7. Over-
all, the BLEU score of Rellic-produced code in Figure 1 is 0.0035,
and SPLENDID-produced code instead scores 0.2932.
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