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Abstract
We use global sensitivity analysis (specifically, Partial Rank Correlation Coefficients)
to explore the roles of ecological and epidemiological processes in shaping the
temporal dynamics of a parameterized SIR-type model of two host species and an
environmentally transmitted pathogen. We compute the sensitivities of disease preva-
lence in each host species to model parameters. Sensitivity rankings are calculated,
interpreted biologically, and contrasted for cases where the pathogen is introduced into
a disease-free community and cases where a second host species is introduced into an
endemic single-host community. In some cases the magnitudes and dynamics of the
sensitivities can be predicted only by knowing the host species’ characteristics (i.e.,
their competitive abilities and disease competence) whereas in other cases they can be
predicted by factors independent of the species’ characteristics (specifically, intraspe-
cific versus interspecific processes or a species’ roles of invader versus resident). For
example, when a pathogen is initially introduced into a disease-free community, dis-
ease prevalence in both hosts is more sensitive to the burst size of the first host than
the second host. In comparison, disease prevalence in each host is more sensitive to its
own infection rate than the infection rate of the other host species. In total, this study
illustrates that global sensitivity analysis can provide useful insight into how eco-
logical and epidemiological processes shape disease dynamics and how those effects
vary across time and system conditions. Our results show that sensitivity analysis can
provide quantification and direction when exploring biological hypotheses.
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1 Introduction

Many empirical studies have shown that the absence or presence of a second host
species can increase or decrease levels of disease in a focal host species (Dizney and
Ruedas 2009; Hydeman et al. 2017; Levine et al. 2017; Luis et al. 2018; Searle et al.
2016; Telfer et al. 2005; Zimmermann et al. 2017). This empirical work is comple-
mented by modeling studies exploring how specific processes shape disease dynamics
in two-host communities (Cortez and Duffy 2021; O’Regan et al. 2015; Roberts and
Heesterbeek 2018; Rudolf and Antonovics 2005; Searle et al. 2016). Combined, these
studies indicate that changes in focal host disease levels depend on both ecological
processes (such as intraspecific and interspecific competition between host species
for resources) and epidemiological processes (such as transmission, recovery, and
disease-induced mortality). For example, disease levels in a focal host often increase
when the second host has high competence (i.e., a high ability to transmit the dis-
ease), however disease levels in the focal host can instead decrease if interspecific
competition between the host species is sufficiently strong (Cortez and Duffy 2021;
O’Regan et al. 2015; Searle et al. 2016). In combination with empirical and theoretical
work on communities with more than two host species (Cortez 2021; Dobson 2004;
Faust et al. 2017; Joseph et al. 2013; Mihaljevic et al. 2014; Roche et al. 2012), this
suggests that the effects of host species richness of disease dynamics are likely to be
context-dependent and depend on the specific characteristics of the species present in
the community (Halliday et al. 2020; LoGiudice et al. 2008; Randolph and Dobson
2012; Rohr et al. 2020). This study uses global sensitivity analysis to investigate the
roles of ecological and epidemiological processes in shaping the temporal dynamics
of a two-host epidemiological model.

The existing body of theory on multi-host communities has been fruitful in iden-
tifying some of the ways in which ecological and epidemiological processes shape
disease-dynamics in multi-host communities. However, a key limitation of nearly
every study is that they focus on asymptotic regimes of the models. In particular, many
studies (e.g., Dobson 2004; O’Regan et al. 2015; Roberts andHeesterbeek 2018) focus
on the pathogen basic reproduction number (R0), which is a measure of how fast the
density or proportion of infected hosts in a population will increase in the limit where
the pathogen is rare. Many other studies (e.g., Cortez and Duffy 2021; Cortez 2021;
Roberts and Heesterbeek 2018; Rudolf and Antonovics 2005) focus on the density
or the proportion of infected individuals in a focal host at equilibrium; these studies
focus on disease dynamics in the limitwhere time is unbounded (t → ∞). Importantly,
these metrics can disagree (Cortez and Duffy 2021; Roche et al. 2012; Roberts and
Heesterbeek 2018). For example, increased transmission by a second host can increase
R0 while also decreasing the proportion of infected individuals at equilibrium (Cortez
and Duffy 2021). The disagreement between metrics implies that the effects of at least
one ecological or epidemiological process must differ in sign or magnitude between
the two asymptotic regimes. Unfortunately, because current theory only focuses on
asymptotic regimes of multi-host models, it is limited in its ability to predict when
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and why the effects of specific ecological or evolutionary processes change over time.
Thus, new theory is needed to help explain the different ways in which ecological and
epidemiological processes shape disease dynamics over different time scales.

From a mathematical perspective, understanding the mechanisms or characteristics
that have the most influence on specific outcomes (such as the proportion of infected
individuals or other measures of disease dynamics) requires insight into the roles
of specific parameters within a predictive model—for which sensitivity analysis is
precisely designed. In this regard we can interpret a deterministic model with uncer-
tain parameter inputs as a form of stochasticity and quantify how uncertainty in the
parameters propagates through the model and affects model dynamics.

The ingredients for sensitivity analysis are:

• Input parameters (γi )—these may be considered as stochastic parameters with a
given distribution.

• A model—some relationship between input parameters and an output. Generally
we consider a system of differential equations

d �y
dt

= F(t, �y; �γ )

�y(0) = �y0

where �y is a vector of state variables, �γ is the vector of parameters, and �y0 are the
initial conditions of the system.

• Quantities of Interest (QoIs; Qi ) that are functions of the state variables and model
parameters,

Qi = f (�y, �q).

In total, sensitivity analysis assesses and quantifies the relationship between individual
input parameters (qi ) and the quantities of interest (QoIs; Qi ). This in turn allows one
to identify influential parameters and how input perturbations affect output uncertainty.

There are a variety of sensitivity measures that have been introduced. One measure
is local sensitivity, which yields a linear relationship between a parameter, γi , and a
QoI, Q j , via the derivative,

∂Q j
∂γi

(�̄q). This type of sensitivity analysis is referred to as
‘local’ in the sense that one parameter is varied at a time. Other widely used ‘global’
measures (which simultaneously vary multiple parameters) include Partial Rank Cor-
relation Coefficient, Sobol’ measures, importance measures and screening methods
(HanthananArachchilage andHussaini 2021; Jansen 1999; Jarrett et al. 2017a;Marino
et al. 2008; Salelli et al. 2004; Saltelli et al. 2019; Sobol 2001). Global approaches
rely on quantifying the relationship between parameter and the QoI based on sta-
tistical relationships. They tend to be computationally expensive which is a major
difficulty, especially as the number of evaluations increases with the dimensionality
of the problem of interest. However, the benefit of global methods is that they can rank
the parameters in terms of the magnitudes of their effects while varying all parame-
ters simultaneously. This lowers the chance that the estimated sensitivity indices miss
specific contours of the QoI as the parameter landscape changes.
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We note that all sensitivity measures depend on where in parameter space we are
evaluating the model. Therefore, any rankings of the parameters in terms of the mag-
nitudes of their effects on quantities of interest depends on the location in parameter
space. Additionally, local analysis almost always misses important aspects of sen-
sitivity (Saltelli et al. 2019) and a ‘global’ method, where all parameters are varied
simultaneous, is preferred (Salelli et al. 2004; Saltelli et al. 2019).

We use Partial Rank Correlation Coefficients (PRCC) (Marino et al. 2008) to quan-
tify the sensitivity analysis. We use PRCC because relationships between parameters
and QoIs can be nonlinear and PRCC extends the method to nonlinear relations
between parameters and QoIs by focusing on ranked-transformed data. Specifically,
PRCC uses rank transformation to transform (potentially nonlinear) monotonic rela-
tionships into linear relationships. In the context of noisy observations, where the
relationship is not strictly monotonic, more robust conclusions can be made for rela-
tionships whose rank transform is approximately linear.

In this manuscript, we use global sensitivity analysis to explore how ecological and
epidemiological processes shape the temporal dynamics of a two-host, one pathogen
community. The correlation between the parameters and the QoI provides insight
into the relationship between biological processes (as reflected in parameter values)
and specific outcome measures. In particular a strong, positive correlation implies
that small increases in the parameter value lead to qualitatively large changes in the
QoI. We use this analysis to identify when and why the magnitudes and signs of the
effects of specific ecological and epidemiological parameters on disease dynamics
change over time. This in turn yields insight into how the corresponding ecological
and epidemiological processes shape disease dynamics, and how those effects depend
on the roles and identities of host species. In the following, we define the mathematical
model, first developed in Searle et al. (2016), and the biological questions we address.
The results section builds intuition using local sensitivities at equilibrium and then
analyzes the qualitative and quantitative dynamics of the PRCC indices in multiple
scenarios.

2 Mathematical model

The focal SI-type model describes the dynamics of two-host species and an environ-
mentally transmitted pathogen. In the model, infected individuals release infectious
propagules (spores) into the environment when they die and susceptible individu-
als become infected when they come in contact with the spores. The model was
used previously (Searle et al. 2016) to model a laboratory system made up of two
water flea species (Daphnia dentifera and D. lumholtzi) and a shared fungal pathogen
(Metschnikowia bicuspidata). Tomatch the biology of the empirical system, themodel
assumes individuals cannot recover from infection (meaning infection is always lethal),
infected individuals release spores only when they die, and individuals in both species
contribute to and are exposed to the same pool of spores because they share the same
habitat.

The dynamics of the densities of susceptible (Si ) and infected (Ii ) individuals in
each population and the density of spores (P) are defined by a system of ordinary
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differential equations:

dS1
dt

=

reproduction
︷ ︸︸ ︷

r1(S1 + c1 I1)

(

1 − α11

[

(S1 + I1e11) + α12(S2 + I2e12)

])

−
infection

︷ ︸︸ ︷

p1 fS1S1P −
destructive sampling

︷︸︸︷

δS1 (1)

dS2
dt

=

reproduction
︷ ︸︸ ︷

r2(S2 + c2 I2)

(

1 − α22

[

(S2 + I2e22) + α21(S1 + I1e21)

])

−
infection

︷ ︸︸ ︷

p2 fS2S2P −
destructive sampling

︷︸︸︷

δS2 (2)

d I1
dt

=
infection

︷ ︸︸ ︷

fS1 p1PS1 −
destructive sampling

︷︸︸︷

δ I1 −
disease-induced mortality

︷︸︸︷

m1 I1 (3)

d I2
dt

=
infection

︷ ︸︸ ︷

fS2 p2PS2 −
destructive sampling

︷︸︸︷

δ I2 −
disease-induced mortality

︷︸︸︷

m2 I2 (4)

dP

dt
=

release upon host death
︷ ︸︸ ︷

χ1m1 I1 + χ2m2 I2 −
uptake

︷ ︸︸ ︷

( fS1S1 + fS2S2 + f I1 I1 + f I2 I2)P

−
degradation

︷︸︸︷

μP −
destructive sampling

︷︸︸︷

δP (5)

The definitions for all variables and parameters are shown in Table 1. Throughout,
we refer to parameters affecting reproduction and competition as ecological parameters
(ri , ci , αi j , ei j , δ) and all other parameters as epidemiological parameters ( fSi , pi ,mi ,
χi ,μ). This distinction facilitates the interpretation of the results, butwe note that some
parameters could be classified in both categories. For example, the filtering rates, fSi
and f Ii , affect both the uptake of infection propagules (an epidemiological process)
and uptake of resources (an ecological process).

The terms in Eqs. (1) and (2) define for each species (in order) the total reproduction
rates, infection rates, and rates of mortality due to destructive sampling. For host
species i , ri and ri ci are the maximum exponential growth rates of susceptible and
infected individuals, respectively; αi i is the intraspecific competition parameter for
susceptible individuals; αi j is the relative effect of interspecific competition of species
j on species i ; and ei j is the competitive effect of infected individuals of species j
relative to the competitive effect of susceptible individuals of species j . When written
in the traditional Lotka-Volterra form, the intraspecific competition coefficient for
susceptible individuals for host i is αi i , the intraspecific competition coefficient for
infected individuals of host i is αi i eii , and the analogous interspecific competition
coefficients are αi iαi j and αi iαi j ei j . The infection rates are the product of the per
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Table 1 Definitions and nominal values of model parameters and variables

Definition Nominal value Units

Variables

Si Susceptible density for species i Variable Indiv./L

Ii Infected density for species i Variable Indiv./L

Ni Total density for species i Variable Indiv./L

Yi Proportion infected for species i Variable Unitless

P Spore density Variable Spore/L

Ecological parameters

r1 Exponential growth rate of host 1 0.206 1/day

r2 Exponential growth rate of host 2 0.246 1/day

c1, c2 proportional reduction in growth rate for Ii 0.75 Unitless

α11 Intraspecific competition coefficient for host 1 1/97.5 1/indiv

α22 Intraspecific competition coefficient for host 2 1/12.8 1/indiv

α12 Interspecific competition coefficient for effect of host 2 on 1 2.63 Unitless

α21 Interspecific competition coefficient for effect of host 1 on 2 0.01 Unitless

ei j Reduction in competitive ability of infected individuals 1 Unitless

δ Average removal rate due to destructive sampling 0.013 1/day

Epidemiological parameters

p1 Per spore probability of infection for host 1 1.45 × 10−5 1/spore

p2 Per spore probability of infection for host 2 4.87 × 10−5 1/spore

fS1 Filtering rate for susceptible individuals of host 1 0.0348 1/L/day

fS2 Filtering rate for susceptible individuals of host 2 0.0361 1/L/day

f I1 Filtering rate for infected individuals of host 1 0.0186 1/L/day

f I2 Filtering rate for infected individuals of host 2 0.0171 1/L/day

m1,m2 Disease induced mortality rate 0.05 1/day

χ1 Spore burst size for host 1 120,000 spore/indiv

χ2 Spore burst size for host 2 124,000 spore/indiv

μ Spore degradation rate 0.5 1/day

All parameter estimates are taken from Searle et al. (2016)

spore probability of infection (pi ), the filtering rate of susceptible individuals ( fSi ),
and the densities of susceptible individuals and spores.

The terms in Eqs. (3) and (4) define for each species, the rates of infection
( fSi pi PSi ) and mortality due to destructive sampling (δ Ii ) and infection (mi Ii ). In
Eq. (5), the terms define rates of release of spores by infected individuals when they
die (χimi Ii ), uptake of spores by susceptible ( fSi Si P) and infected ( f Ii Ii P) individ-
uals in each population, and loss of spores due to degradation (−μP) and destructive
sampling (δP).

The quantities of interest (QoIs) in this study are the proportion of infected individ-
uals in each population (i.e., infection prevalence), defined by Yi = Ii/Ni where the
total density of each population is Ni = Si + Ii . It is useful to write down the system
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of equations for the dynamics of the total density and infection prevalence for each
population,

dNi

dt
= ri Ni (1 − Yi +ci Yi )

(

1−αi i

[

(1 − Yi )Ni + eii Yi Ni +αi j N j (1 − Y j + ei j Y j )

])

− δNi − miYi Ni (6)
dYi
dt

= fSi pi (1 − Yi )P − (δ + mi )Yi − Yi
Ni

dNi

dt
(7)

dP

dt
=

∑

j

χ jm j Y j N j −
∑

j

[

fS j (1 − Y j ) + f I j Y j
]

N j P − μP − δP (8)

The terms in Eq. (6) define how the total density of each population changes due to
reproduction and mortality. The terms in Eq. (7) define how the disease prevalence
increases due to transmission, decreases due to mortality, and changes as the density
of susceptible individuals increases or decreases. Equation (8) is identical to Eq. (5).

The nominal values for all parameters are shown in Table 1 and were taken from
Searle et al. (2016). Briefly, the parameters were estimated in Searle et al. (2016)
in the following way. The epidemiological parameter values (e.g., probabilities of
infection, spore burst sizes, and mortality rates) were estimated using individual-level
experiments where individual daphniids were exposed to fungal spores and disease-
related characteristics were measured. The ecological parameter values (exponential
growth rates and competition coefficients) were estimated by fitting Eqs. (1) and (2)
to time series data where one or both host species were present and the pathogen was
absent. The value for the spore degradation rate (μ = 0.5) was taken from a range
of values (0 ≤ μ ≤ 0.75) within which there was qualitative agreement between
the model predictions and experiments where both host species were present with the
pathogen.

The models have a unique coexistence equilibrium where all state variables are
positive. We refer to this equilibrium as the endemic equilibrium and denote its values
using S∗

i , I
∗
i , N

∗
i , Y

∗
i , and P∗.

3 Problem statement and cases

The goal of this study is to use sensitivity analysis to explore how ecological and
epidemiological processes shape the temporal dynamics of disease prevalence in
model (1)–(5). Our metric for computing global sensitivities is Partial Rank Correla-
tion Coefficients (PRCC) (Blower and Dowlatabadi 1994; Hamby 1995; Hanthanan
Arachchilage and Hussaini 2021; Jarrett et al. 2017b; Marino et al. 2008; Wentworth
et al. 2016). PRCC quantifies how the variations in the model parameters affect the
values of the quantities of interest (QoIs); an overview of the method is provided
in Appendix A. We note that PRCC requires a monotonic relationship between the
parameter and QoI. The monotonicity condition was satisfied by all of the parameters
and QoIs considered in this study.

We focus on answering the following questions.
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1. How do the magnitudes and signs of the sensitivities of host prevalence to model
parameters change over time?

2. When the pathogen is introduced into a disease-free two-host community, how do
the temporal patterns depend on the identities of the host species?

3. When a second host species is introduced into a single-host community with an
endemic pathogen, how do the temporal patterns depend on which host species is
the resident and which is the invader?

We answer these questions by applying sensitivity analysis to simulations of the
model in three cases:

Case 1: A moderate amount of spores is added to a disease-free two-host commu-
nity at equilibrium.
Case 2: Host 2 is introduced at low densities to the single-host endemic equilibrium
for host 1. Here, host 1 is the resident and host 2 is invader.
Case 3: Host 1 is introduced at low densities to the single-host endemic equilibrium
for host 2. Here, host 2 is the resident and host 1 is invader.

Case 1 identifies if and how the specific characteristics of each host species affect
disease dynamics when the pathogen is introduced into the community. Comparing
Cases 2 and 3 identifies how the identities of the resident and invader hosts influence
disease dynamics.

Specific details about the simulations are the following. In case 1, the initial con-
ditions for the simulations are

S1(0) = r1 − δ

r1α11(1 − α12α21)
− (r2 − δ)α12

r2α22(1 − α12α21)
(9)

S2(0) = r2 − δ

r2α22(1 − α12α21)
− (r1 − δ)α21

r1α11(1 − α12α21)
. (10)

with I1(0) = 0, I2(0) = 0, and P(0) = 25000. In cases 2 and 3, the system is
initiated with nonzero densities for the resident host and spores and the model is run
for 2000 days to ensure convergence to the single-host endemic equilibrium. Day 0 is
defined as the day the invading host is introduced. The invading host is introduced at
1% of the susceptible density of the resident host (e.g., if host 2 is the invader, then
S2(0) = 0.01 × S1(0)).

4 Results

The results are organized as follows. Section4.1 builds intuition about the expected
signs of the PRCC sensitivity indices using the differential equations in the model
(Sect. 4.1.1) and local sensitivities evaluated at the two-host endemic equilibrium
(Sect. 4.1.2). Section4.2 compares those expected signs with the signs of the PRCC
sensitivities computed for Cases 1–3 and focuses on explaining when and why the
signs of the global sensitivities agree and disagree with the expected signs. Section4.3
focuses on the magnitudes of the PRCC sensitivities. That section explores the quan-
titative dynamics of the PRCC sensitivities and explains the biological insight that is

123



Exploring how ecological and epidemiological processes... Page 9 of 30    83 

gained by analyzing the temporal dynamics in Case 1 (Sect. 4.3.1) and by comparing
temporal dynamics of Cases 2 and 3 (Sect. 4.3.2).

4.1 Building intuition about the expected signs of the global sensitivities

4.1.1 Expected signs based onmodel equations

One way to build intuition about the signs of the global sensitivities is to compute
the partial derivatives of the growth rates for disease prevalence (dYi/dt) and spore
density (dP/dt) with respect to the model parameters. The mathematical reasoning
for considering how parameter values affect the derivative of a state variable is the
following. For one-dimensional systems, changes in parameter values have effects
of the same sign on the state variable and its derivative at all points in time and
at equilibrium. Specifically, let Qγ1(t) denote the solution to the autonomous ODE
dQ/dt = F(Q, γ ) with parameter γ and initial condition Q(0) = Q0. If F is an
increasing function of γ , i.e., ∂F/∂γ > 0, then Qγ1(t) > Qγ2(t) for all γ1 > γ2 for
all time and if F is a decreasing function of γ , i.e., ∂F/∂γ < 0, then Qγ1(t) < Qγ2(t)
for all γ1 > γ2 for all time. In addition, at a stable equilibrium, Q∗, of the ODE, which
must satisfy ∂F/∂Q|Q∗ < 0, we get that ∂Q∗/∂γ |N∗ = −(∂F/∂γ )/(∂F/∂Q)|Q∗ ,
which has the same sign as ∂F/∂γ . For higher dimension systems, changes in param-
eter values have effects of the same sign on the state variable and its derivative over
sufficiently short time scales. However, over longer time scales and at equilibrium,
the effects can be of opposite signs due to the feedbacks between all state variables.
Thus, the effects of changes in parameter values on the derivative of a state variable
yield insight into how changes in parameter values affect the value of a state variable
over short time scales and they can, but do not always, yield insight into how changes
in parameter values affect the value of a state variable over long time scales.

Based on the above, the intuition is that disease prevalence in host i (Yi = Ii/Ni )
will increase anddecreasewith variation in a parameter based onwhether the parameter
causes the growth rates of disease prevalence and spore density to increase or decrease,
respectively. In particular, onemight expect that prevalence in host i and a parameter γ
are (a) positively correlated if the partial derivatives of dYi/dt or dP/dt with respect
to γ are positive (i.e, [∂/∂γ ][dYi/dt] > 0 or [∂/∂γ ][dP/dt] > 0), (b) negatively
correlated if the partial derivatives of dYi/dt or dP/dt with respect to γ are negative
(i.e, [∂/∂γ ][dY1/dt] < 0 or [∂/∂γ ][dP/dt] < 0), and (c) uncorrelated if dYi/dt and
dP/dt do not depend on γ (i.e, [∂/∂γ ][dY1/dt] = 0 and [∂/∂γ ][dP/dt] = 0).

The signs of the derivatives of the growth rates are summarized in the columns
labeled “Model Eqns.” in Table 2. We note two issues with the intuition gained from
this approach. First, in general, this approach is unlikely to predict the signs of the
global sensitivities in all cases because it ignores feedbacks between the variables.
For example, dYi/dt does not depend on probability of infection for the other host
species (p j , i �= j), but the value of p j will have an indirect effect on the magnitude of
dYi/dt because the differential equations are coupled. Second, for some parameters
the signs of the derivatives of the dYi/dt and dP/dt equations differ, which makes it
difficult to predict the sign of the correlation between prevalence and the parameter.
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For example, dY1/dt is an increasing function of the host filtering rate ( fS1 ) whereas
dP/dt is a decreasing function.

4.1.2 Signs of local sensitivities computed at equilibrium

Another way to build intuition about the signs of global sensitivities is to compute
local sensitivities at equilibrium. While global sensitivities are often better to use than
local sensitivities (as discussed in the Introduction), we compute the local sensitivities
at equilibrium for two reasons. First, the local sensitivity of the equilibrium value of
a QoI, Q∗, to a parameter, γ , can be computed analytically via the partial derivatives
∂Q∗/∂γ ; see appendixB.1 for details. In addition, Cortez andDuffy (2021) andCortez
(2021) analyzed generalized versions of models (1)-5) and (6)–(7) and showed that the
analytical formulas can be interpreted in terms of indirect feedbacks between variables.
Thus, the local sensitivities at equilibrium allow us to connect biological mechanism
with computed signs of the local sensitivities. Second, when the parameters are set
to the nominal values, the simulations for Cases 1, 2, and 3 converge to the (unique)
endemic equilibrium used to compute the local sensitivities. Combined, this suggests
that insight gained about themechanisms determining the signs of the local sensitivities
at equilibrium may also yield insight into the mechanisms determining the signs of
the global sensitivities at sufficiently large time scales. Moreover, if the signs of the
local sensitivities at equilibrium and the signs of the global sensitivities at shorter time
scales agree, then the mechanistic insight gained from the local sensitivities provides
a good starting point for understanding the mechanisms driving the signs of the global
sensitivities at short time scales. In total, studying the local sensitivities at equilibrium
is useful because they provide a good starting point when trying to connect biological
mechanism with observed patterns in the global sensitivities.

The signs of the local sensitivities for the nominal parameter values are given in
the columns labeled “Eq. Local Sensitivity” in Table 2; see appendix B.2 for details
about each individual parameter. The overall patterns are that infectious prevalence in
either host increases with higher host reproduction rates (larger ri and ci and smaller
αi j and ei j ), higher rates of infection (larger pi and fSi ), higher spore release rates
(larger χi and mi ), and lower loss rates of spores (smaller f Ii , μ, and δ). The intuition
is that higher host densities, higher transmission rates, and greater spore density lead
to greater contact between susceptible individuals and spores, which leads to more
infections and higher prevalence. The only exception is that the local sensitivity for
infection prevalence in host 2 (I2/N2) is negative for its own mortality rate (m2). The
reason is that host 2 density is very low and while increased mortality leads to greater
release rates of spores, it also reduces the population size of the second host, which
leads to fewer infected individuals of host 2.

4.1.3 Comparisons and limitations of predicted signs

The intuition gained from the previous two approaches agrees for some parameters
and disagrees for others; see appendix B.3 for discussions about why disagreement
occurs for specific parameters. Agreement and disagreement both provide useful bio-
logical insight because they identify ecological and epidemiological processes whose
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influence on disease prevalence may or may not vary over time. Cases of agreement
could suggest that the signs of the global sensitivities are the same at all points in time,
which would mean that the corresponding biological processes have effects of the
same sign on infection prevalence at all time scales. Applying this logic to Table 2, we
predict that infection probabilities (pi ) and spore burst sizes (χi ) have positive effects
at all time scales and filtering by infected individuals ( f Ii ), spore degradation (μ), and
destructive sampling (δ) have negative effects at all time scales. In comparison, cases
of disagreement suggest that the signs of the global sensitivities are likely to differ
over time, which would mean that the corresponding biological processes can have
effects of different signs on infection prevalence at different points in time. Applying
this to Table 2, we predict that host reproduction (ri , ci ), host competition (αi j , ei j ),
host mortality (mi ), and filtering by susceptible individuals ( fSi ) could have positive
and negative effects on infection prevalence.

We note three things about the predictions. First, in general, the predictions from the
two approaches differ because the local sensitivities account for all direct and indirect
effects between the model variables whereas the derivatives of the model equations
only account for direct effects. Second, as explained above, the predictions from each
approach have the potential to identify the mechanisms determining the signs of the
global sensitivities. However, an important limitation is that local sensitivities at equi-
librium and the derivatives of the model equations do not account for variation in the
initial state of the system, i.e., the initial conditions of the model. In particular, the
initial conditions in Cases 1–3 are defined by equilibria of the system, whose locations
in phase space depend on the model parameters (e.g., the location of the disease-free
two-host equilibrium depends on the competition coefficients αi j ). Thus, the signs and
magnitudes of the global sensitivities could be influenced by the initial conditions of
the system. Third, while local sensitivity accounts for feedbacks between variables,
it only provides a limited exploration of parameter space and phase space. Specifi-
cally, the local sensitivity calculations only compute infinitesimal variations in one
parameter at a time (and implicitly assumes the gradients stay the same throughout
the entire parameter space), which provides a very limited exploration of parameter
space, and they are only evaluated at the endemic equilibrium, which provides a very
limited exploration of phase space. Consequently, while the local sensitivities have the
potential to explain some mechanisms determining the signs of the global sensitivities
(as explained above), those predictions may be inaccurate as parameters are varied
over large ranges and state variables vary over time.

4.2 Analysis of temporal changes in the signs of global sensitivities

We now analyze the temporal changes in the signs of the global sensitivities for
disease prevalence in each host species. We focus on parameters whose global
sensitivities differ in sign at some time point from the local sensitivities at equi-
librium. This helps identify the general mechanisms explaining why the effects of
specific ecological and epidemiological processes on disease prevalence can differ
in sign over different time scales. To avoid analyzing every parameter and to reduce
length, we focus on the most sensitive parameters, which we define as the parame-
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ters whose PRCC values exceed 0.6 for at least one host at some point in time (i.e,
max |PRCC(t)| ≥ 0.6). The main text focuses on parameters whose PRCC values
exceed 0.75 (i.e, max |PRCC(t)| ≥ 0.75) and we refer the reader to appendix C for
discussion about the other parameters whose PRCC values exceed 0.6. The temporal
dynamics for the most sensitive parameters are plotted in Figs. 1, 2, 3. Table 2 roughly
summarizes the trends. In particular, for each entry in Table 2, the first symbol is the
sign at t ≈ 0, the third symbol is the sign at t = 3000, and the middle symbol shows
whether the PRCCvalue increasesmonotonically (up arrow), decreasesmonotonically
(down arrow) or changes in a non-monotonic way (up-down arrow).

There are three takeaways from Figs. 1, 2 and 3 and Table 2. First, in many instances
there is agreement between the signs of the global sensitivities and the signs of the
local sensitivities at equilibrium. Specifically, there is agreement (i) for all parameters
in all cases at sufficiently large time (i.e., third symbol for each case agrees with the
symbol in “LSA Eq.” column); (ii) for each parameter there is agreement for all time
points in at least one of the three cases (e.g., signs for r1 agree for cases 2 and 3, but
not case 1); and (iii) for a few parameters (χi , δ, μ) there is agreement for all time
points in all three cases. These instances of agreement suggest that, for the range of
variation used in the global sensitivity calculations, the signs of the global sensitivities
are likely driven by the samemechanisms that explain the signs of the local sensitivities
at equilibrium. For example, positive global sensitivities for χ1 and χ2 for δ and μ are
likely due to those parameters increasing spore density, which leads to higher contact
rates between susceptible individuals and spores and ultimately, more infections and
higher infection prevalence. Similarly, negative global sensitivities for δ and μ are
likely due to those parameters decreasing the spore densities, which ultimately leads
to fewer infections and lower infection prevalence.

Second, for nearly all parameters, there exists at least one case where the signs
of the global sensitivities and local sensitivities disagree for finite periods of time.
This means that for almost every ecological or epidemiological process, the sign of
the effect of that process on infection prevalence in one or both host species changes
sign. The sign change is important biologically because it shows that most ecological
and epidemiological processes can facilitate disease spread over some time scales and
impede it over other time scales.

Third, the specific conditions under which the sign changes occur identify when
and how nonlinear interactions between multiple processes lead to unexpected effects
of a process on infection prevalence. Our numerical results show that sign changes in
the most sensitive parameters occur because of how host reproduction and production
of spores influence infection prevalence. Brief explanations for the sign changes for
the most sensitive parameters in each case are provided below; see appendix C for
additional details.

In Case 1, the sensitivities of host 1 prevalence (I1/N1) and host 2 prevalence
(I2/N2) to the intraspecific competition coefficient for host 1 (α11) change from posi-
tive to negative (red plus signs in Fig. 1a, b) and the sensitivities of prevalence in both
host species to the filtering rate of host 1 ( fS1 ) change from positive to negative to pos-
itive (red diamonds in Fig. 1a, b). The reason for all sign changes is that spore density
is initially very low and host 2 produces more spores per infected individual than host
1. Consequently, reduced density and filtering by host 1 results in faster increases in
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Fig. 1 Temporal patterns in the global sensitivities for Case 1. In Case 1, the pathogen is introduced into
the two-host community at equilibrium. Each panel shows the global sensitivities for parameters satisfying
max(|PRCC(t)| ≥ 0.75 for (top) disease prevalence in host 1, I1/N1, and (bottom) disease prevalence in
host 2, I2/N2. The specific parameter associated with each curve is given in the legend; red corresponds to
parameter values for host 1 and blue corresponds to parameter values for host 2 (colour figure online)
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Fig. 2 Temporal patterns in the global sensitivities for Case 2. In Case 2, host 2 is introduced into the
endemic community made up of host 1 and the pathogen. Each panel shows the global sensitivities for
parameters satisfying max(|PRCC(t)| ≥ 0.75 for (top) disease prevalence in host 1, I1/N1, and (bottom)
disease prevalence in host 2, I2/N2. The specific parameter associated with each curve is given in the
legend; red corresponds to parameter values for host 1 (the resident), blue corresponds to parameter values
for host 2 (the invader), and green corresponds to parameter values for the pathogen (colour figure online)
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Fig. 3 Temporal patterns in the global sensitivities for Case 3. In Case 3, host 1 is introduced into the
endemic community made up of host 2 and the pathogen. Each panel shows the global sensitivities for
parameters satisfying max(|PRCC(t)| ≥ 0.75 for (top) disease prevalence in host 1, I1/N1, and (bottom)
disease prevalence in host 2, I2/N2. The specific parameter associated with each curve is given in the
legend; red corresponds to parameter values for host 1 (the invader) and blue corresponds to parameter
values for host 2 (the resident) (colour figure online)
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spore density, and thus more infections in both hosts. However, later in time greater
density and filtering in host 1 yields higher spore density and more infections in both
hosts.

In Case 2 (Fig. 2), the signs of the global sensitivities for the most sensitive param-
eters do not change sign.

In Case 3, the sensitivities of host 1 prevalence (I1/N1) and host 2 prevalence
(I2/N2) to the reproduction rate of host 1 (r1) exhibit substantial change in both
sign and magnitude (red circles in Fig. 3a, b). Early in time (day 0 to 75), host 1 is
increasing from low densities. Increased reproduction of host 1 causes the density
of susceptible individuals of host 1 to increase faster than the density of infected
individuals. The sensitivity for host 1 prevalence is negative because faster growth of
susceptible individuals than infected individuals necessarily causes host 1 prevalence
to decrease. The sensitivity for host 2 prevalence is negative because greater host 1
density results in great uptake of spores, which decreases the infection rate for host
2 and decreases host 2 prevalence. Both global sensitivities are large in magnitude
because variation in the growth rate of host 1 has a large effect on how fast host
population 1 exponentially grows. Later in time (day 75–150), susceptible density of
host 1 overshoots its equilibrium value (see Figure B9), which results in susceptible
density of host 1 decreasing over time. This reverses the signs of the global sensitivities
because greater reproduction by host 1 means there are more susceptible individuals
who can subsequently become infected. As a result, increased reproduction of host 1
yields higher prevalence in host 1, and because higher host 1 prevalence yields greater
spore densities, higher prevalence in host 2 as well. Both global sensitivities are large
inmagnitude because variation in the growth rate of host 1 has a large effect on how the
rate of production of susceptible individuals (who can subsequently become infected).
As the system converges to equilibrium (day 150 and later), the global sensitivities of
both prevalence monotonically decrease to small positive values. The values are small
in magnitude because the host growth rates have a small effect on the densities and
prevalences at equilibrium. The values are positive because increased reproduction
by host 1 leads to greater densities of host 1, which increases host 1 prevalence. In
addition, increased host 1 prevalence yields greater spore densities, which results in
increased host 2 prevalence.

4.3 Comparisons of global sensitivities across cases

Here, we compare the temporal dynamics of the PRCC sensitivity indices across
the three cases in order to answer questions two and three posed in Sect. 3. The first
subsection compares the temporal dynamics of the sensitivities for the two host species
in Case 1. The second subsection compares the temporal dynamics for the two host
species across Cases 2 and 3. We do not compare the temporal dynamics of Case 1
with those of Cases 2 and 3 because the differences in initial conditionsmake it unclear
what biological insight can be gained. As in Sect. 4.2, we provide brief explanations
for parameters whose PRCC values exceed 0.75 at some point in time (Table 3) and
refer the reader to appendix D for detailed explanations of all parameters whose PRCC
values exceed 0.6.
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Table 3 Comparison of parameters satisfying max |PRCC(t)| ≥ 0.75 in each case

Parameter Case 1 Case 2 Case 3

QoI 1 QoI 2 QoI 1 QoI 2 QoI 1 QoI 2
Y1 = I1/N1 Y2 = I2/N2 Y1 = I1/N1 Y2 = I2/N2 Y1 = I1/N1 Y2 = I2/N2

r1 � �
α11 � �
α22 � � � �
p1 � � � � � �
p2 � � � � �
fS1 � � � �
fS2 � � �
m1 � � �
m2 �
χ1 � � � � � �
χ2 � � � �
μ � �

Figures 4, 5 and 6 show the sensitivities to parameters for host species 1 (blue
curves) and host species 2 (red curves) in Case 1 (circles), Case 2 (squares), and Case
3 (triangles). For Figs. 5 and 6 solid curves with filled symbols denote the resident’s
parameters and dashed curves with open symbols denote the invader’s parameters.
Our comparisons focus on identifying when the magnitudes and dynamics of the sen-
sitivities are driven by (i) intraspecific versus interspecific processes, (ii) the species’
roles of invader versus resident, or (iii) the species’ identities; see below for details
about each.

First, we say themagnitudes and dynamics of the sensitivities are driven by intraspe-
cific versus interspecific processes, if the sensitivities of each quantity of interest to
its own parameters are qualitatively similar and the sensitivities of each quantity of
interest to the other species’ parameter values are qualitatively similar. That is, the
sensitivities of Ii/Ni (i = 1, 2) to parameter γi are qualitatively similar and the
sensitivities of Ii/Ni (i = 1, 2) to parameter γ j ( j �= i) are qualitatively similar.
Biologically, this means the effects of a biological process on disease prevalence can
be predicted independent of specific characteristics (e.g., competitive ability or com-
petence) or roles (invader vs. resident) of the two host species. This suggests that the
effects of that biological process are the same in all systems, regardless of which host
species are present. In Figs. 4, 5 and 6, this means blue curves in the top panel are
qualitatively similar to red curves in the bottom panel and red curves in the top panel
are qualitatively similar to blue curves in the bottom panel. For example, early in time
in Case 1, prevalence in host i is more sensitive to its own probability of infection
(pi ; intraspecific parameter) than the probability of infection of the other host (p j ,
j �= i ; interspecific parameter) (for small t , solid blue curve above solid red curve in
top panel of column 2 in Fig. 4 and solid red curve above solid blue curve in bottom
panel of column 2 in Fig. 4). As another example, early in time in Case 1, prevalence
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in host i is more sensitive to the other host’s mortality rate (m j , i �= j ; interspecific
parameter) than its own mortality rate (mi ; intraspecific parameter) (for small t , solid
red curve above solid blue curve in top panel of column 4 in Fig. 4 and solid blue curve
above solid red curve in bottom panel of column 4 in Fig. 4).

Second, we say the magnitudes and dynamics of the sensitivities are determined
by the species’ roles of invader versus resident, if the sensitivities of I1/N1 and I2/N2
to the resident’s parameter values are qualitatively similar and the sensitivities to
the invader’s parameter values are qualitatively similar. Biologically, this means the
effects of the biological process on disease prevalence can be predicted solely by
the species’ role (invader vs. resident) and independent of the specific characteristics
(e.g., competitive ability or competence) of the two host species. This suggests that
the effects of that biological processes are the same in all systems, regardless of
which host species is the resident or invader. In Figs. 5 and 6, this means solid curves
with filled symbols are qualitatively similar and dashed curves with open symbols are
qualitatively similar. For example, early in time in Cases 2 and 3, I1/N1 and I2/N2 are
both more sensitive to the resident’s intraspecific competition coefficient (αi i ) than the
invader’s competition coefficient. Specifically, for small t in both panels of column 2
of Fig. 6, the solid blue curve with filled squares is larger in magnitude than the dashed
red curve with open squares (i.e., Case 2) and the solid red curve with filled triangles
is larger in magnitude than the dashed blue curve with open triangles (i.e., Case 3).

Third, we say the magnitudes and dynamics of the sensitivities are predicted by
species’ identities, if the sensitivities of I1/N1 and I2/N2 to host species 1’s parameter
values are qualitatively similar and the sensitivities to host species 2’s parameter values
are qualitatively similar. Biologically, this means the effects of the biological process
on disease prevalence can be predicted only when the specific characteristics of the
host species are known. This suggests that the biological process can have different
effects in systems where different host species are present. In Figs. 4, 5 and 6, this
means blue curves in the top panel are qualitatively similar to red curves in the bottom
panel and red curves in the top panel are qualitatively similar to blue curves in the
bottom panel. For example, in Case 1, prevalence in both species is more sensitive to
the burst size of host 1 (χ1) than host 2 (χ2) at all points in time (solid blue curves
above solid red curves for all time points in both panels in the fifth column of Fig. 4).
Thus, the relative magnitudes of the sensitivities can be predicted only by knowing
which burst size corresponds to which host species.

Note that whether the magnitudes and dynamics of the sensitivities are driven by
intraspecific versus interspecific processes, the species’ roles, or the species’ identities
can change over time. This information is useful because it yields insight about how
the effects of processes on disease prevalence vary as conditions within the system
change.

4.3.1 Analysis of Case 1: Do temporal patterns differ between host species when the
pathogen is introduced into the community?

Here we analyze the temporal dynamics of the PRCC sensitivity indices when the
pathogen is introduced into a disease-free two-host community. We compare the tem-
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Fig. 4 Comparison of the global sensitivities to all ecological parameters in Case 1. Row 1 shows the
sensitivities for disease prevalence in host 1 (I1/N1) and row 2 shows the sensitivities for disease prevalence
in host 2 (I2/N2). In each panel, solid blue circles denote the sensitivity to a parameter for host 1 (e.g., α11
or p1) and the solid red circles denote the sensitivity to a parameter for host 2 (e.g., α22 or p2). The solid
black line denotes a PRCC value of 0. When comparing panels in the same column, we say the magnitudes
and temporal patterns of the sensitivities are driven by (i) intraspecific vs. interspecific processes if the solid
blue curve in the top panel qualitatively matches the solid red curve in the bottom panel and the solid red
curve in the top panel qualitatively matches the solid blue curve in the bottom panel or (ii) species’ identities
if the solid blue curves in the top and bottom panels qualitatively match and the solid red curves in the top
and bottom panels qualitatively match. See Sect. 4.3 for additional details (colour figure online)

poral dynamics of the sensitivities for host species 1 (top row in Fig. 4) and host species
2 (bottom row in Fig. 4).

Sensitivities to epidemiological parameters First consider the temporal dynamics
of the PRCC values for the most sensitive epidemiological parameters (pi , fSi , χi ,mi ;
columns 2–5 in Fig. 4). Early in time (left side of each panel), the magnitudes of the
sensitivities are driven by intraspecific versus interspecific processes for pi , fSi , and
mi and by the species’ identities forχi . Specifically, prevalence in each species is more
sensitive to the intraspecific probability of infection (pi ; column 2), the intraspecific
filtering rate ( fSi ; column 3), and the interspecific mortality rate (m j , j �= i ; column
4), but prevalence in both species is more sensitive to the burst size of host 1 (χ1;
column 5). Over time, the sensitivities transition to being driven by intraspecific versus
interspecific processes for fSi and mi and being driven by species’ identities for χi

and pi . Specifically, at the end of the simulations (right side of each panel), each host
is more sensitive to its own filtering rate ( fSi ; column 3) and the mortality rate of
the other host (m j ; column 4), and both hosts are more sensitive to the probability of
infection for host 1 (p1; column 2) and the burst size of host 1 (χ1; column 5). Many
of these transitions are non-monotonic, with each parameter having some period of
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Fig. 5 Comparison of the global sensitivities to all epidemiological parameters in Cases 2 and 3. Row 1
shows the sensitivities for disease prevalence in host 1 (I1/N1) and row 2 shows the sensitivities for disease
prevalence in host 2 (I2/N2). In each panel, blue denotes parameters for host 1, red denotes parameters for
host 2, squares denote sensitivities for Case 2, triangles denote sensitivities for Case 3, solid lines with filled
symbols denote parameters for the resident host (host 1 in case 2 and host 2 in case 3), and dashed lines
with open symbols denote parameters for the invading host (host 2 in case 2 and host 1 in case 3). The solid
black line denotes a PRCC value of 0. When comparing panels in the same column, we say the magnitudes
and temporal patterns of the sensitivities are driven by (i) intraspecific vs. interspecific processes if the solid
blue curve with a filled shape in the top panel qualitatively matches the dashed red curve with the same
open shape in the bottom panel, and the dashed blue curve with an open shape in the top panel qualitatively
matches the solid red curve with the same filled shape in the bottom panel; (ii) the species’ roles of invader
vs. resident if the solid blue curve with a filled shape in the top panel qualitatively matches the solid red
curve with the same filled shape in the bottom panel, and the dashed blue curve with an open shape in the
top panel qualitatively matches the dashed red curve with the same open shape in the bottom panel; and (iii)
species’ identities if solid curves with filled symbols of one color in the top panel qualitatively match solid
curves with filled symbols of the same color in the bottom panel, or if dashed curves with open symbols
of one color in the top panel qualitatively match dashed curves with open symbols of the same color in the
bottom panel. See Sect. 4.3 for additional details (colour figure online)

time when the relative magnitudes are determined by the species’ identify (e.g., both
hosts are more sensitive to the filtering rate of host 2 near t = 200; red curves are
larger in magnitude than blue curves in column 3 of Fig. 4). In addition, prevalence is
both species is always more sensitive to χ1 than χ2 (blue curves above red curves in
column 5).

One biological insight from the above is that host competence is an important
quantity to estimate in order to understand how each species will affect the spread of a
pathogen across the community. Here, host competence is the ability of a host species
to transmit the pathogen to conspecifics and for model (1)–(5) it is χi pi (Cortez 2021).
Estimating competence is important because at all time points infection prevalence
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Fig. 6 Comparison of the global sensitivities to all ecological parameters in Cases 2 and 3. Row 1 shows
the sensitivities for disease prevalence in host 1 (I1/N1) and row 2 shows the sensitivities for disease
prevalence in host 2 (I2/N2). In each panel, blue denotes parameters for host 1, red denotes parameters for
host 2, squares denote sensitivities for Case 2, triangles denote sensitivities for Case 3, solid lines with filled
symbols denote parameters for the resident host (host 1 in case 2 and host 2 in case 3), and dashed lines
with open symbols denote parameters for the invading host (host 2 in case 2 and host 1 in case 3). The solid
black line denotes a PRCC value of 0. When comparing panels in the same column, we say the magnitudes
and temporal patterns of the sensitivities are driven by (i) intraspecific vs. interspecific processes if the solid
blue curve with a filled shape in the top panel qualitatively matches the dashed red curve with the same
open shape in the bottom panel, and the dashed blue curve with an open shape in the top panel qualitatively
matches the solid red curve with the same filled shape in the bottom panel; (ii) the species’ roles of invader
vs. resident if the solid blue curve with a filled shape in the top panel qualitatively matches the solid red
curve with the same filled shape in the bottom panel, and the dashed blue curve with an open shape in the
top panel qualitatively matches the dashed red curve with the same open shape in the bottom panel; and (iii)
species’ identities if solid curves with filled symbols of one color in the top panel qualitatively match solid
curves with filled symbols of the same color in the bottom panel, or if dashed curves with open symbols
of one color in the top panel qualitatively match dashed curves with open symbols of the same color in the
bottom panel. See Sect. 4.3 for additional details (colour figure online)

is highly sensitive to the spore burst sizes (χi ) and infection probabilities (pi ) of
both species. A second biological insight is that species removal can have counter-
intuitive effects on infection prevalence. Specifically, increasedmortality of host 1 (m1)
increases infection prevalence in both species at all time points (blue circles in column
4of Fig. 4). Increasedmortality of host 2 (m2) also increases host 1 infection prevalence
at all points in time and it increases host 2 infection prevalence at intermediate time
scales (red circles in column 4). These counter-intuitive responses are due to the host
shedding rates (χimi ) being products of their burst sizes and mortality rates. Our
results suggest that removal-based disease control measures (e.g., increased mortality
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caused by culling) potentially can be counterproductive and lead to increased levels
of disease in one or both species.

Sensitivities to ecological parameters Now consider the temporal dynamics of the
PRCC values for the most sensitive ecological parameters (αi i ; column 1 of Fig. 4).
The dynamics of the sensitivities are predicted by host identity. In particular, the
sensitivities to the competition parameter for host 1 (α11)monotonically decrease from
large positive values to small negative values (blue curves in column 1 of Fig. 4). In
comparison, the sensitivities to the competition parameter for host 2 (α22) are negative
for all time, but transiently increase in magnitude before ultimately decreasing in
magnitude (red curves in column 1 of Fig. 4). This contrasting pattern is due to host
2 having higher competence than host 1 (i.e., χ2 p2 > χ1 p1). Specifically, slower
growth of host 2 (larger α22) and faster growth of host 1 (smaller α22) both cause
slower increases in spore density, which leads to fewer infections in both host species.

A biological insight from the above is that accurate prediction of the effects of host
densities on outbreak dynamics early in time requires accurate knowledge about host
competence. Early in time, the total density for each species is primarily determined
by the intraspecific competition coefficients (α11, α22). Because the effects of reduced
host density (i.e., higher αi i ) are driven by species identity, predicting whether the
reduced density of host i increases or decreases infection prevalence in both host
species at short time scales requires accurate knowledge about host competence.

4.3.2 Analysis of Cases 2 and 3: How do temporal patterns depend on which host
species is the resident versus invader?

Here we focus on similarities and differences in the temporal dynamics of the PRCC
values when one host species is the resident and the other host species is the invader.
We focus on (i) comparing the temporal dynamics of the sensitivities for the invading
species (solid curves with filled symbols in Figs. 5 and 6) and (ii) comparing the
temporal dynamics of the sensitivities for the resident species (dashed curves with
open symbols in Figs. 5 and 6).

Sensitivities to epidemiological parameters First consider the temporal dynamics of
the PRCC values for the most sensitive epidemiological parameters (pi , fSi , χi , mi );
see Fig. 5. Early in time in both cases 2 and 3, the species’ roles (i.e., invader versus
resident) determine if prevalence in each species is more sensitive to the resident’s
or invader’s parameters. Specifically, both hosts are more sensitive to the resident’s
epidemiological parameters than the invader’s parameters (solid curve larger inmagni-
tude than dashed curves early in time in Fig. 5); the only exception is that the invading
host is more sensitive to its filtering rate ( fSi ) than the filtering rate of the resident host
species (blue curves above red curves in top panel of column 2 in Fig. 5 and red curves
above blue curves in bottom panel of column 2). Over time, the sensitivities transition
to being predicted by intraspecific versus interspecific processes for fSi and mi and
being predicted by species’ identities for χi and pi . Many of these transitions are
monotonic (e.g., columns 1 and 4 in Fig. 5), however non-monotonic changes occur
for the filtering rates ( fSi ; column 2 of Fig. 5) and mortality rates (mi ; column 3 in
Fig. 5).

123



Exploring how ecological and epidemiological processes... Page 25 of 30    83 

Sensitivities to ecological parameters Now consider the temporal dynamics of the
PRCC values for the most sensitive ecological parameters (αi j , ri ); see Fig. 6. Early in
time in both cases 2 and 3, the species’ roles (i.e., invader versus resident) determine if
prevalence in each species is more sensitive to the resident’s or invader’s parameters.
Specifically, both hosts aremore sensitive to the resident’s competition parameters than
the invader’s (solid curves with filled symbols are larger in magnitude than dashed
curves with the same open symbol and the opposite color early in time in Fig. 6).
Later in time, the magnitudes of the sensitivities are driven by the species’ identities.
When host 1 is the resident (Case 2), the sensitivities for all competition parameters
are below the 0.6 threshold for all time (all curves with squares in Fig. 6 are less than
0.6 in magnitude for all time). In comparison, when host 2 is the resident (Case 3),
the sensitivities to the exponential growth rate of host 1 (r1) and both intraspecific
competition parameters (α11, α22) are above the threshold for some period of time
(curves with triangles in columns 1 and 2 of Fig. 6 are greater than 0.6 in magnitude).
In addition, the sensitivities to the interspecific competition parameters (α12, α21)
are often larger in Case 3 than Case 2 (curves with triangles are typically greater in
magnitude than curves with squares in column 3 of Fig. 6). Interestingly, this pattern
is the opposite of what one might expect given that host 2 is the stronger intraspecific
and interspecific competitor (αi2 larger than αi1). We suspect that it is due to host 2
being at lower densities than host 1, which results in competition having a relatively
larger effect on the disease dynamics of the system.

Combined, the above yields two pieces of biological insight. First, our results sug-
gest that it is more important to accurately estimate the ecological and epidemiological
trait values for resident host species than invading host species in order to accurately
predict the short-term dynamics immediately after an invasion. This is because the
dynamics are more sensitive to the resident’s trait values early in time. Second, our
results suggest accurate prediction of the long-term dynamics after an invasion is likely
to require accurate estimates of both the resident’s and the invader’s epidemiological
trait values. This is because at longer time scales the dynamics can be highly sensitive
to both the resident’s and invader’s epidemiological trait values.

5 Discussion and conclusions

In this study we used global sensitivity analysis to gain insight into how ecological and
epidemiological processes shape the temporal dynamics of a two-host-one-pathogen
community. This study demonstrates that the temporal patterns of the sensitivities can
yield insight into how specific processes are affecting quantities of interest at different
points in time. In particular, comparing the temporal dynamics of the sensitivities of
the two host species identifies when the effects of a process are driven by the specific
characteristics of each species (i.e., species’ identities) versus properties of the system
that are independent of the species’ identities (i.e., intraspecific versus interspecific
processes and the species’ roles of invader versus resident). Biologically, this is useful
because it helps determine what information is needed to make predictions about
how a specific process shapes disease dynamics. For example, when a pathogen is
introduced into a disease-free community (Case 1), one must know the competitive
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abilities of each host species (e.g., αi j ) in order to predict how host competition affects
disease dynamics at all points time. In contrast, when a second host is introduced into
an endemic single-host community, only knowledge of the competitive ability of the
resident host is needed to predict how host competition affects disease dynamics over
short time scales.

Sensitivity analysis can also help one predict if the dynamics of the system are likely
to be altered by temporal changes in the signs of the effects of specific processes. If
a quantity of interest is weakly sensitive to a specific parameter or process, then sign
changes in the sensitivity for that parameter are less likely to have a measurable effect
on the system dynamics. More generally, ranking the sensitivities of all parameters
allows one to identify the most sensitive parameters and reduce the number of param-
eters that need to be considered. For example, in Cases 2 and 3, the sensitivity of
prevalence in host 1 (N1/I1) to host 2’s filtering rate ( fS2 ) is below our threshold for
all points in time (red curves below 0.6 in top panel of column 2 of Fig. 5). If the
goal is to predict how host 2 affects host 1 infection prevalence, then host 2’s filtering
rate is less important to accurately measure than host 2’s shedding rate (χ2), whose
sensitivities are above the threshold for sufficiently large time points (red curves above
0.6 in top panel of column 4 of Fig. 6).

5.1 Implications for host species richness-disease relationships

Many prior studies have argued that the relationships species richness (i.e., the number
of host species) and disease levels in a focal host are likely to be context dependent
(Halliday et al. 2020; LoGiudice et al. 2008; Randolph and Dobson 2012; Rohr et al.
2020). This is supported by previous empirical studies (Dizney and Ruedas 2009;
Hydeman et al. 2017; Levine et al. 2017; Luis et al. 2018; Searle et al. 2016; Telfer
et al. 2005; Zimmermann et al. 2017) and theoretical studies (Cortez and Duffy 2021;
Cortez 2021; Dobson 2004; Faust et al. 2017; Joseph et al. 2013; Mihaljevic et al.
2014; O’Regan et al. 2015; Roberts and Heesterbeek 2018; Rudolf and Antonovics
2005; Searle et al. 2016) showing that the effects of host additions on focal host dis-
ease levels depend on the specific characteristics of the host species (e.g., competitive
ability and disease competence) that are present in the community and added to the
community. The global sensitivity results in this study suggest that the context depen-
dent relationships also depends on the time scale of interest. Thus, addition of a host
species could initially decrease disease, but ultimately increase disease.

One particular example of this issue is the interpretation of short-term exposure
experiments. Prior empirical studies (Becker et al. 2014; Evans and Entwistle 1987;
Hopkins et al. 2020; Johnson et al. 2008; Orlofske et al. 2012; Searle et al. 2011;
Venesky et al. 2014) have used short-term exposure experiments to infer how the
presence or absence of alternative host species affect disease levels in a focal host
species. The intuition is that higher (lower) prevalence in a short term experiment
will translate to higher (lower) prevalence over the long term. The sensitivities for
the host filtering rates ( fSi ) in Case 1 suggest that this intuition may be incorrect.
Specifically, introduction of a host with a higher filtering rate could lead to lower
infection prevalence over the short term (because the sensitivity of Ii/Ni to fS j for
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i �= j is negative for small t) but positive over the long term (because the sensitivity
of Ii/Ni to fS j for i �= j is positive for small t); see Table 2. The difference arises
because the short-term dynamics do not account for indirect effects between species
that become larger inmagnitude over time. In particular, increased uptake leads tomore
infections in host j , which leads to greater release of spores by infected individuals
of host j and ultimately increased infection rates in host i . Our results also show that
for some processes the effects on disease prevalence have effects of constant sign.
For example, increased burst sizes for either host (larger χi ) has a positive effect on
disease prevalence in both host species at all time points. Thus, while our results
suggest caution when making inferences about long term disease levels from short-
term experiments, they also illustrate that global sensitivity analysis can be used to
make predictions about when processes may potentially have effects of different signs
on system dynamics.

5.2 Directions of future work

This study has focused on applying global sensitivity analysis to a specific region of
parameter space in order to study the effects of ecological and epidemiological pro-
cesses on a particular disease metric (infection prevalence). Previous studies (Cortez
and Duffy 2021; Cortez 2021; Roberts and Heesterbeek 2018) have shown that the
signs of local sensitivities at equilibrium can differ across parameter space. Exploring
how the temporal patterns of the sensitivities vary across parameter space is likely to
yield insight about if and when patterns can be generally explained by the species’
identities or by other factors (e.g., invader versus resident or intraspecific versus inter-
specific processes). In addition, prior studies (Cortez and Duffy 2021; Roche et al.
2012; Roberts and Heesterbeek 2018) have shown that predictions from local sensi-
tivities can differ depending on whether the metric of disease is infection prevalence,
infected density, or pathogen’s basic reproduction number (R0). Applying global sen-
sitivity analysis to other metrics could yield insight into why those metrics respond
differently to ecological and epidemiological processes and how that depends on the
time scale of interest. Furthermore, by partitioning into different kinds of ecological
and epidemiological processes, global sensitivity analysis may also yield additional
insight about how other kinds of interspecific interactions between species in a com-
munity (e.g., predation) affect disease dynamics.

Additional insight also could be gained by using alternative global sensitivity mea-
sures. One alternative is Sobol’ sensitivity indices, where the first order Sobol’ index
(Si ) estimates the reduction in variance in the quantity of interest that occurs when
parameter qi is held fixed. We estimated the Sobol’ first order indices for the quan-
tities of interest and region of parameter space analyzed in this study and found that
∑

i Si ≈ 1 (by definition
∑

i Si ≤ 1). This suggests that higher order interactions
between parameters only have small effects on the quantities of interest. Because
PRCC and Sobol’ first order indices provide similar parameter rankings, our results
from the Sobol’ sensitivity indices suggest that the PRCC indices are sufficient to
explore the dynamics of the system completely.However, in systemswhere

∑

i Si 
 1
(e.g., the epidemiological system in Hanthanan Arachchilage and Hussaini (2021)),
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higher order sensitivity indices can provide new insight into how interactions between
processes influence system behavior.

Other alternatives that can be used with correlated parameters such as moment
independent measures such as those in Kucherenko et al. (2012), Xu et al. (2022) and
Mara and Tarantola (2012). PRCC and Sobol’ sensitivity indices assume that the input
parameters, qi , are statistically uncorrelated, but correlations between parameters can
arise in many systems. For example, in this system susceptible individual filtering
rates, infected individual filtering rates, and the competition coefficients are all likely
to be positively correlated. Approaches based on moment independent measures can
account for correlated parameters, and those approaches may yield additional insight
about the sensitivities to specific processes and the relationships between first and
higher order indices.

In closing, this study illustrates how GSA methodology can provide useful insight
into the ecological and epidemiological processes that are modeled using mathemat-
ics. Understanding the details of specific quantities of interest, time-evolution, and
interpretation of the GSA rankings requires an understanding of the underlying math-
ematics, modeling, and biology, and the synthesis provides more information than
each aspect alone.
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