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Abstract—Recent Internet-of-Things (IoT) networks span
across a multitude of stationary and robotic devices, namely
unmanned ground vehicles, surface vessels, and aerial drones,
to carry out mission-critical services such as search and rescue
operations, wildfire monitoring, and flood/hurricane impact as-
sessment. Achieving communication synchrony, reliability, and
minimal communication jitter among these devices is a key chal-
lenge both at the simulation and system levels of implementation
due to the underpinning differences between a physics-based
robot operating system (ROS) simulator that is time-based and a
network-based wireless simulator that is event-based, in addition
to the complex dynamics of mobile and heterogeneous IoT devices
deployed in a real environment. Nevertheless, synchronization
between physics (robotics) and network simulators is one of the
most difficult issues to address in simulating a heterogeneous
multi-robot system before transitioning it into practice. The
existing TCP/IP communication protocol-based synchronizing
middleware mostly relied on Robot Operating System 1 (ROS1),
which expends a significant portion of communication bandwidth
and time due to its master-based architecture. To address these
issues, we design a novel synchronizing middleware between
robotics and traditional wireless network simulators, relying on
the newly released real-time ROS2 architecture with a masterless
packet discovery mechanism. Additionally, we propose a ground
and aerial agents’ velocity-aware customized QoS policy for
Data Distribution Service (DDS) to minimize the packet loss and
transmission latency between a diverse set of robotic agents, and
we offer the theoretical guarantee of our proposed QoS policy. We
performed extensive network performance evaluations both at the
simulation and system levels in terms of packet loss probability
and average latency with line-of-sight (LOS) and non-line-of-
sight (NLOS) and TCP/UDP communication protocols over our
proposed ROS2-based synchronization middleware. Moreover,
for a comparative study, we presented a detailed ablation study
replacing NS-3 with a real-time wireless network simulator,
EMANE, and masterless ROS2 with master-based ROS1. Our
proposed middleware attests to the promise of building a large-
scale IoT infrastructure with a diverse set of stationary and
robotic devices that achieve low-latency communications (12%
and 11% reduction in simulation and reality, respectively) while
satisfying the reliability (10% and 15% packet loss reduction
in simulation and reality, respectively) and high-fidelity require-
ments of mission-critical applications.

Index Terms—IoT, Heterogeneous multi-robot systems,
Gazebo, NS-3, EMANE, TCP, UDP, Synchronization

I. INTRODUCTION

In the field of robotics and wireless sensor networks, multi-
agent dynamic systems play a vital role due to their ability

in forming large, interconnected networks with coordination
among agents that make them an integral part of a variety
of robotic and smart city IoT applications [1], [2]. For ex-
ample, Unmanned Aerial Vehicle (UAV) systems are being
increasingly used in a broad range of applications requiring
extensive communications, either to collaborate with other
UAVs [3], [4] or with Unmanned Ground Vehicles (UGV) [5]
and WSNs [6], [7]. Particularly in a smart city environment,
the presence of heterogeneous wireless sensor networks, aerial
and ground vehicles coordinating with each other is going to
be an essential feature in the future. The mutual information
transfer between mobile aerial drones, ground robots through
IoT networks can help to make intelligent decisions in a
disaster-prone area in critical time.

Synchronized communications across UAVs, UGVs, and
IoT networks can let each deployed robotic asset and IoT de-
vice gain situation awareness in smart environments, smoothly
execute civilian commands, and meet QoS requirements for
high-fidelity military applications. Due to algorithm param-
eter fine-tuning, deploying such systems directly in the real
world may have negative effects [8]. Thus, to identify and
resolve research and implementation issues, a cross-cutting
robotic and IoT system must be simulated beforehand using
appropriate modeling toolkits. Existing research [8] has mainly
simulated such an environment among numerous agents, such
as two aerial systems, to pose communication issues between
homogeneous robots employing Robot Operating Systems 1
(ROS1). While ROS1 was the defacto standard for robotics
middleware, to meet the requirements of real-time distributed
embedded systems, ROS2 has been recently introduced with
its Data Distribution Service (DDS) capability [9], [10]. DDS,
an industry-standard real-time communication system, meets
distributed system resilience, fault-tolerance, security, and
scalability requirements [11], [12]. DDS with underlying mas-
terless publish-subscribe data transport architecture in ROS2
meets real-time distributed embedded system requirements by
being scalable to various operating systems and adaptable to
transport layer configurations like deadline, fault-tolerance,
and process synchronization [13].

Besides ROS1’s master-based publish-subscribe architec-
ture, which contrasts with ROS2’s masterless packet discovery
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mechanism for real-time distributed embedded systems, the
main challenge is synchronizing two simulators with dif-
ferent operating principles [14], [15]. A physics simulator
simulates physical robots’ interactions with their environs.
Network simulators estimate deployed agent wireless network
communication performance. Thus, one of our main goals
is to discover and assess the communication issues between
a Physics-based ROS simulator toolkit that is time-based
and a Network-based event-based simulator. We can create a
robust perception-action-communication framework that sim-
ulates physical surroundings and network traffic by integrating
ROS2’s real-time characteristics with a masterless packet
discovery approach. Representing robotic asset interactions
with physical environments and synchronizing packet-level
communications amongst numerous agents are the biggest
hurdles to creating a seamless networking architecture between
robotics platforms and the IoT. These features are needed to
accurately imitate reality and fulfill high-fidelity robotic and
IoT applications in demanding conditions.

Needless to say, building multi-agent systems is stren-
uous. Therefore, resilient and coordinated communications
across heterogeneous simulated and real systems can make
our proposed middleware framework less error-prone and
more accurate, reliable, fault tolerant and inter-operable. For
example, SynchroSim [16], FlyNetSim [17], ROS-NetSim
[18], CORNET [19], CPS-Sim [20], and RoboNetSim [3] are
some of such kinds of works in existing literature that have
been implemented in ROS1 using AirSim [21], ARGoS [22],
Gazebo [23] as physics simulators and OMNeT++ [24], NS-
2 [25], NS-3 [26] as network simulators. Nonetheless, some
of the major drawbacks that exist in those works are: (i)
the proposed systems are compatible with either UAVs or
UGVs, but not with heterogeneous agents such as a mix of
both UAVs and UGVs under the same network, (ii) suffer
from low co-simulation speed, (iii) give rise to floating-point
arithmetic error during the time synchronization, (iv) difficult
to set up proper window size for reliable packet transmissions
in presence of diverse agents with different velocities. (v) lose
synchronization when the relative speed varies between the
simulators, and (vi) the network does not self-heal or recon-
figure to maintain seamless and uninterrupted connections in
presence of node loss or adversarial attacks.

Notably there are real-time network emulators, for example,
EMANE [27] which can help solve some of the aforemen-
tioned issues, but we empirically observed that it has a compar-
atively higher packet delay and is not quite matured enough to
be integrated with Robot Operating Systems (ROS). Motivated
by this, we propose a novel synchronizing middleware1 that
follows the Data Distribution Service (DDS) architecture [13]
and the TCP/IP protocol in order to facilitate the development
of an appropriate ROS2-compatible synchronizing middle-
ware. To the best of our knowledge, it is the first endeavor
to develop a synchronizing middleware for a real-time mas-
terless ROS2 environment. We postulate a dynamic sliding

1https://github.com/Emon-dey/RobSenCom

window-based QoS policy for ROS2 to minimize the average
packet loss and latency in presence of heterogeneous ground
and aerial agents with disparate velocities. We evaluate the
performance of our proposed algorithm after deploying it on
a cluster that is comprised of real-world UAVs – Duckiedrone
and UGVs – TurtleBot. The specific research contributions are
summarized below.

• Reliable and faster synchronization middleware for co-
simulation of multi-agent systems: We design a robotic
and wireless network simulators agnostic co-simulation mid-
dleware for heterogeneous multi-agent communications. We
integrate a customized QoS policy for Data Distribution
Service (DDS) on Transmission Control Protocol (TCP)
within the synchronization middleware. We implement our
algorithm on real-time robotic operating system 2 (ROS2),
namely, Foxy. We leverage the low latency virtue of ROS2
along with the TCP/IP protocol to improve the reliability
of multi-agent communication paradigm with our proposed
customized sliding window-based TCP algorithm. Our pro-
posed QoS policy can vary the window size dynamically
while considering the velocity differences between the
ground and aerial agents in a heterogeneous setting to
minimize the process synchronization and communication
delays.

• System implementation using off-the-shelf real robotic
devices: We extend our simulation based synchronization
middleware framework into the real world robots to witness
the various network performance metrics such as probability
of packet loss and average network latency in case of actual
deployment. We assemble commercially available UASs and
UGVs robots – Duckiedrone and TurtleBot3 Burger and
form a cluster using one UAS and two UGVs to imple-
ment our proposed multi-agent synchronizing middleware
and evaluate the communication performance. In particular,
we record ROSbag of uniform size containing information
regarding the physical robot states in the wild and send
it between the other robotic agents to record the network
performance metrics.

• Empirical evaluation considering different communica-
tion scenarios: We perform extensive performance eval-
uations, taking into account both line-of-sight (LOS) and
non-line-of-sight (NLOS) communication scenarios on the
basis of probability of packet loss, and average packet
delay. We employ Gazebo as Physics simulator and NS-
3 as network simulator at the simulation level to report
the network synchronization and performance results. We
also perform an ablation study with a real-time network
simulator EMANE and compare our proposed masterless
ROS2 synchronization middleware with master-based ROS1
synchronization middleware. Experimental results both at
the simulation and system levels attest that our proposed
synchronizing middleware in ROS2 integrated with Trans-
mission Control protocol (TCP) outperforms the traditional
ROS1 systems in terms of ensuring fewer packet losses
(10% reduction in simulation and 15% in real) and faster
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data transmissions rates (12% increase in simulation and
11% in real).

II. CHALLENGES

Implementation of a multi-agent heterogeneous system
raises a number of challenges due to its inherent nature. The
need for prior simulation to get an estimation of the actual
performance adds specific software-centric challenges along
with deployment issues. The challenges we have addressed in
this works are categorized into two sub-modules and illustrated
in figure 1. The left side of the figure signifies the simulation
level challenges. The two segments inside of it are the two
most fundamental research questions in simulating multi-agent
systems and working with simulators with different paradigms.
When measuring the communication performance among the
agents in a simulated environment, the integration of a physics
simulator and a network simulator is necessary. However,
the issue is that the physics simulator gets updated over
time, and the network simulator works based on available
events. So, to run those two simulators synchronously (co-
simulation), a synchronizing middleware is needed. Also, if
heterogeneity exists among the robotic agents, it becomes even
more complex to simulate such a scenario. The specification
disparity and different capabilities of data packet handling
are some of the major reasons for that. Additionally, during

Physics Simulator Network Simulator

Synchronization issue
Middleware

Device Heterogeneity 
in ROS simulation

Simulation level challenges

Different communication schemes

Packet loss due to 
Velocity difference

V1 V2

V3 (V1	≠V2	≠V3)

System level challenges

Figure 1. Illustration of the possible hardware and software centric issues
while working with multi-agent robotic implementation.

the deployment with actual robotic agents, if the velocity
difference between agents exceeds a certain threshold, it can
cause severe degradation in the communication performance.
Also, the presence of obstacles between the communicating
agents (non-line-of-sight scenario) can be considered as an-
other hindrance for the deployment point-of-view.

III. BACKGROUND AND RELATED WORK

In this section, we will provide a brief summary of the
strategies and choice of simulators from the previous works
that have explored this synchronizing issue.

A. Simulation Tools

Among the robotic simulators, AirSim [21], and ANVEL
[15], [28] provides such a toolkit by combining popular
graphical representation methods. While both AirSim and
ANVEL have significant simulation capabilities, they struggle
to create large-scale complex visually rich environments that
are more realistic in their representation of the real world,
and they have fallen behind various advancements in rendering
techniques made by platforms such as Unreal Engine or Unity
[29]. Another such stable simulator is Gazebo [14] has a
modular design that allows for the implementation of various
physics engines, sensor models, and the development of 3D
worlds.
From network simulators point-of-view, OMNeT++ [24] is an
object-oriented and modular discrete event network simulation
framework. OMNeT++ also supports parallel distributed sim-
ulation, and inter-participant communications can be achieved
via a variety of approaches. However, we chose to utilize
event-based simulator, NS- 3 [26], in which the scheduler
normally runs the events sequentially without synchronization
with an external clock. The NS-3 simulator shows all of
the network models that make up a computer network and
also the features offered by this simulator greatly overlaps
with our requirement. In contrast of the prior works, we
target a special communication scenario for dynamic multi-
agents systems where the velocity differences of the agents
may impact the performance. Simulating such scenario require
high-fidelity physics simulator and a network simulator with
flexible network topology design capability.

B. Synchronization Middleware

The working principles of existing middleware for the
synchronization purpose varies from time-stepped to sliding
window based protocol. In some works, a scheduler was also
introduced to decrease latency and a improved version of
it named variable-stepped was adopted. In table I, we have
summarized such existing approaches along with the probable
issues may arise if we choose to utilize them in our use
case. Another aspect in this topic is the choice of commu-
nication protocol for middleware testing. RUDP [30] provides
a solution for real-time embedded systems with transmission
speed and reliability criteria that TCP and UDP have not been
able to achieve. In a real-world demonstration, the claim that
the suggested technique can give a faster throughput than
TCP without experiencing packet loss has been validated.
But the issue with RUDP is that, Robot Operating System
hasn’t yet finalized the compatibility test with it. In this work,
UAV and UGV components are being simulated with 3D
visualization using Gazebo, while the network infrastructure
is being provided by NS-3 and middleware is being developed
for the creation of an inter-simulation data-path with time and
position synchronization at both ends using our co-Simulation
of robotic networks. The whole operation will be conducted
under a ROS2 environment.
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Table I
SUMMARY OF PRIOR WORKS ON DEVELOPING SYNCHRONIZING MIDDLEWARE BETWEEN PHYSICS AND NETWORK SIMULATORS.

Synchronization Method Working Procedure Issues

Time-stepped [3], [31]
Used advanced network simulation tools together with robotic simulators.
At predefined thresholds, the simulators halt their individual simulations
to share data with each other.

The network simulator isn’t capable to take into
account the presence of obstacles.
Data exchange issues.

Time-stepped with scheduler [17] Common sampling period to be used by both simulators.

If the network simulator runs faster than the
physics simulator, the network events must be
buffered in a cache and wait to be processed until
the next sampling time.

Variable-stepped [19]
A global event scheduler keeps track of all the events from both
simulators and schedules based on their timestamps,
allowing only one event process to operate at a time.

Float-point arithmetic error.

Global event driven [20] The server is forced to reproduce the exact same time-steps. Higher latency during co-simulation.

Sliding window [8], [16] Capture and track network events over the window period and allow the
network simulator to step up to the end of the window.

Difficulty in maintaining performance for
multi-agent system with disparate velocity.

IV. METHODOLOGY

The design basics of our proposed synchronizing middle-
ware, modification of conventional TCP/IP architecture, inte-
gration procedure with masterless DDS approach are described
in the section.

A. Synchronization Middleware Design through Modifying the
TCP/IP Architecture

The sliding window-based synchronization strategy [16]
is the foundation of our algorithm design for the master-
less multi-agent scenario. When dealing with a multi-agent
system, the choice of window size is the most important design
parameter that you can choose. In such a case, a fixed window
size at all points will not be relevant since different agents may
perform better with different radio frequencies, and there may
also be differences in terms of the hardware specifications.
Moreover, there may be differences in the amount of available
memory. Our system begins with a value for the window
size w that has been manually initiated and then takes into
account the total number of agents T that are present for a
particular scenario. It chooses the appropriate publisher (P )
and subscriber (S) for the data transfer event based on the
information provided by both parties. After that, it performs
a stringent check on the difference in velocity between the
participating agents in order to accurately calculate an appro-
priate window size for a particular communication event. The
process of velocity difference calculation can be found in 1.
When it comes to the transmission scenario between a ground
vehicle and an aerial vehicle, this technique becomes more
apparent. We decided to use the packet loss probability (Lp),
and average delay (PDa), which are two of the most important
parameters to monitor while sending valuable information, in
the operating moment of the middleware in order to keep the
level of information that is transmitted at an acceptable point.
This was done in order to keep the level of information that
is transmitted at a satisfactory point. In order to inherently
determine the likelihood of packet loss as well as the average
delay and report it within a synchronization window, the
following equations are used:
Packet loss probability,

i
nLp = 1−

i
nDs

i
nDp

(1)

Here, i
nDs is the number of data packets delivered to the total

number of subscribers and i
nDp is the number of data packets

transmitted from the publishers. The average value is reported
after the data transmission is complete between each publisher-
subscriber pair.

Average packet delay,

PDa = Dpr +Dt +Dpg +Dq (2)

Here, Dpr is processing delay Dt is transmission Delay, and
Dpg , Dq represent propagation, and queuing delay respec-
tively.

Algorithm 1 Pseudo-code for Integrating Proposed QoS Pol-
icy into Synchronizing Middleware

1: Input: Data packets D, Total number of agents N , Win-
dow size w, Velocity of agents V , Packet loss threshold
QT , Packet loss value for each event Q

2: Output: Packet loss probability Lp, and average delay
PDa

3: Simulation Initialization: Publisher P and subscriber
S agents ip are determined where P, S ∈ N , initialize
physics simulator time = 0, window size w

4: Data transmission and Update co-simulation: Select
topic of interest and transmit data packets from publisher

5: Update the timestamp t = t
6: if there is a network event then
7: Calculate Q for the event using equation 1
8: if Q > QT then
9: Adapt the window size for that event until Q ≤ QT

10: Sliding Window adaptation: Acquire the velocity
of Publisher Vp and Subscriber Vs in meters/sec

11: Calculate the required adaptation of sliding window,

wa = w ± ⌈|(Vp − Vs)|/1000⌉ (3)

12: end if
13: Report PDa and Lp upon synchronization: Cal-

culate average delay and packet loss probability for the
synchronized event using equation 2 and 1 respectively

14: Timestamp update: Update t = t + wa and request
for next window to iterate the process

15: end if
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Updating the co-simulation steps. Another essential part
of our process is the development of a mutual information
update method for both the physics simulator and the network
simulator. At the outset of the simulation, the Physics simula-
tor establishes two essential characteristics of the agents that
will be employed for a particular communication round. These
characteristics are the velocity of the agents and the distance
that separates them as determined by positional coordinates.
The information that the network simulator stores includes the
communication scheme that will be used (for reasons related
to reliability, we have decided to use a TCP/IP-based approach
rather than an UDP-based approach), the number of packets,
the length of each packet, and the IP addresses of both the
publisher and subscriber agents.

After that, the Physics simulator and the network simu-
lator are iterated upon while using a single initially fixed
window size. When the simulation is advanced, the Physics
simulator sends the information about distance and velocity
to the network simulator, and the network simulator uses that
information to compute the chance of packet loss. When the
value of the loss is compared to a predetermined threshold,
the result is sent to the display. In the event that this is not
the case, the information is sent back to the synchronizing
module, where it is processed, and the initial window size is
modified in accordance with the method 1. This process will
continue until a result is obtained for this particular round
that is deemed to be satisfactory, after which the initialization
procedure will begin once again with a fresh group of agents.

B. Theoretical Analysis of QoS Policy Design

We design a mathematical analysis to demonstrate how the
varying window size is going to impact latency, packet loss
when there is a velocity difference among the agents. The
three major assumptions for our analysis are given below:

• Steady-state approximation [32]
• Packet transmission follows Little’s Law
• Data transmission rate can be varied with the velocity

difference between the robotic agents
We consider a well-defined communication channel with
known characteristics, such as bandwidth, packet size to be
transmitted. Let L(t) denote the latency of data transmission
at time t. Assuming that the network is in a steady-state and
the number of nodes is large, we can use the steady-state
approximation to derive L(t). Using probability theory, the
latency of data transmission can be derived as follows:

L(t) =
E(Wi)

µi
(4)

where E is the expected value, Wi is the transmission window
of node i, and µi is the transmission rate of node i. The
transmission rate is given by:

µi = Wi∆Vi (5)
where ∆Vi is the velocity difference between the sender and
receiver nodes for node i. The expected transmission window
size can be written as:

E(Wi) = λiE(Ti) (6)

where λi is the data generation rate of node i, and E(Ti) is
the expected time it takes for node i to send a packet. Using
Little’s Law, we can write:

E(Ti) = L(t) + Si (7)
where Si is the expected time it takes for node i to process
a packet. The expected latency of data transmission can then
be written as:

L(t) =
E(Wi)

µi
=

λi(L(t) + Si)

Wi∆Vi
(8)

Rearranging the terms, we obtain:

L(t) =
λiSi

Wi∆Vi − λi
(9)

To minimize the latency of data transmission, we need to
find the optimal transmission window size for each node.
This can be done by minimizing the expected latency of
data transmission subject to the constraint that the probability
of packet loss is below a certain threshold. Let QT denote
the threshold probability of packet loss. We need to find the
transmission window size Wi that minimizes the expected
latency of data transmission subject to the constraint:

P (t) ≤ QT

where P (t) is the packet loss probability of time t Using
Lagrange multipliers (λL), we can write the objective function
as:

L =
λiSi

Wi∆Vi − λi
+ λL(P (t)−QT ) (10)

Solving this inequality constraint based Lagrange equation
using partial differentiation we find a valid solution at Wi =

Si

∆Viλi
for the condition Si >

λ2
i

λ2
i−1

∆Vi. We have performed
a partial second derivative test to confirm the solution corre-
sponds to the local minima not a saddle point.

V. SIMULATION SETUP

As stated in earlier sections, we have chosen Gazebo and
NS-3 as physics and network simulators respectively for our
experimentation. Here, we provide the brief description of
the simulators, detailed simulation setup and analysis on the
achieved simulation results.

A. Deploying Synchronization Middleware on DDS using
ROSbridge

We use the ROSbridge idea to combine the functionali-
ties of Data Distribution Service (DDS) with our suggested
middleware solution. To ensure speedier data transmission,
the communication sockets are developed in C, which, unlike
ROS1, is a well-supported platform in the ROS2 environment.
Some of the operational robots in our configuration do not
have ROS2 functionality by default. To prevent the time-
consuming re-installation, we built a bridge between two ROS
versions to exchange rostopics. The subject flow of ROSbridge
is depicted in figure 3. We used DDS to further process the ros-
topics from a communication standpoint. DDS uses a publish-
subscribe framework to send and receive data, events, and
commands between nodes. Nodes that generate information
(publishers) generate “topics” and “samples”. DDS delivers
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samples to subscribers who express an interest. DDS is in
charge of message addressing, delivery, and flow control. Any
node has the ability to publish, subscribe, or both. We were
able to simplify distributed application network programming
thanks to the DDS publish-subscribe idea. DDS requires less
design time for interactions between nodes. It can also add
another essential security feature because applications do not
require knowledge about the existence or location of other
participants. DDS allows users to configure discovery and
behavior approaches based on QoS factors. By permitting
anonymous message interchange, DDS promotes modular,
well-structured programs. Figure 2 depicts the functionality
of DDS within the ROS2 architecture and its differences from
the ROS1 design. The specific ROS2 settings we have used
for this work are highlighted in red.

App layer Master User node User node

Client layer roscpp rospy C++ API Python API C API

Middleware TCPROS UDPROS
ROS Middleware (RMW) API

RTPS DDS

OS layer Linux Linux Windows Mac

ROS1 ROS2

Figure 2. Comparison between the two ROS versions.

cNode 1 Node 2Topic ROS 
Bridge Topic

ROS1 ROS2

Figure 3. ROSbridge implementation to import the ROS1 topics to ROS2
environment.

B. Selected Simulation Tools

Keeping our specific simulation requirements in mind, we
have chosen Gazebo and NS-3 as physics and network simu-
lators respectively.

Gazebo. The fully open-source physics simulator Gazebo is
often nicknamed a robotics simulator due to its vast libraries
of robot models, sensors, and compatibility with ROS. Being
integrated with the ODE physics engine and its ability to be
integrated with several other physics engines, allows users to
create virtual environments with accurate real-world properties
such as: gravity, friction and drag. To aid in generating such
an environment, Gazebo provides a GUI alongside hundreds
of object models (trees, rocks, buildings, etc) for creating
complex indoor/outdoor terrain on which virtual robots can
be placed. Once a robot model is placed and integrated with
ROS, the robot can move around the virtual terrain and receive
sensor data.

NS-3. Using the discrete event network simulator NS-3, it is
possible to create an accurate prediction of how a network will
perform given a specific network topology. The simulator de-
scribes each of the devices in the simulated network as nodes
which each have their own network properties. It can then
analyzing the distance, interference and individual properties

between each of the nodes to predict network performance
using metrics such as: packet loss probability and packet delay.

Simulation environment design. We generated simulated
scenarios for both LOS and NLOS channels to demonstrate
that our technique is capable of executing its intended function.
The environments are rendered on Gazebo (Baylands environ-
ment), which in our case, hosts the physics simulator. The
designed environmental setting has dimensions of one hundred
by one hundred meters, as seen in the figure 4. And each
grid symbolizes a square with a side length of 20 meters.
The environment was designed to accommodate both LOS
and NLOS scenarios, and the majority of the environment is
populated with trees, house model, wooden case, and elevated
land to support the NLOS abstraction. A range of robotic
agents, including UGVs and UAVs, have been chosen for
use in this task. The UAV was chosen to be an Iris drone,
while the UGV was chosen to be two Husky robots. We
have used the MAVROS package for the connection between
the Iris drone and the ROS environment. Also, the data

(a) (b) (c)

Figure 4. The Gazebo simulation interface of our system. We have used (a)
the Baylands terrain as our base environment. The next two images are (b)
LOS, (c) NLOS communication scenario respectively. We have introduced
trees, dense forest, wooden box, and house model for NLOS abstraction.

packets captured from the drone are published as MAVLINK
messages. Considering the masterless scenario, each robotic
agent is equipped with its own network. The IEEE 802.11
(Wi-Fi) interface has been used as our wireless communication
medium. All the deployed agents are aware of the IPs of all the
agents present in the simulation, and the agents themselves are
configured to communicate data points across TCP/IP lines.
We have captured ROSbag containing the accelerometric data
of the robotic agents for a fixed 10 seconds every time we
create a running event. In order to analyze the performance
of the communication, we have opted to utilize one of the
most advanced network simulators available, NS-3, which is
also compatible with the wireless stack that we have chosen.
In order to integrate Gazebo with NS-3, we deployed our
technique as a synchronizing middleware. When employing
our technique, the velocity difference between the agents were
calculated from the data of the /gazebo states/twist topic
to adjust the window size. The velocity of the agents is
modified in line with the circumstances in order to carry out
this scenario. The algorithm changes the initial window size,
which is set to 1 millisecond (mS).

The agents in the line of sight scenario are put in an
environment devoid of any barriers, as shown in the figure
4. The ability to test communication performance while main-
taining LOS abstraction is enabled by simulating the UGVs
and the UAV traveling at different speeds. The performance
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matrices, according to the information in this section, include
the average delay and the proportion of missed packets.
The results are shown together with the resulting shift in
the distance between the agents. For NLOS implementation,
we have introduced dense forest and also elevated surfaces
between agents when transmitting data.

C. Simulation Results

We investigate two unique communication scenarios: com-
munication between UGVs and communication between UAVs
and UGVs. The agents in the case of NLOS abstraction
are programmed to operate in an object-populated environ-
ment. The signal’s strength is likely to be reduced under
these conditions. In this scenario, the reporting paradigm and
communication conditions are identical to those used in the
preceding case. When communicating between two UGVs, it

Table II
SIMULATION RESULTS FOR OUR MASTERLESS SYNCHRONIZING

MIDDLEWARE ON BOTH LOS, AND NLOS COMMUNICATION SCHEME
USING AVERAGE DELAY (PDa) (S) AND PACKET LOSS PROBABILITY (Lp)

(%) MATRICES CONSIDERING A UGV TO UGV COMMUNICATION
SCENARIO.

Distance (m) LOS NLOS
PDa (s) Lp (%) PDa (s) Lp (%)

20 0.01 0 0.2 0
40 0.1 0 0.5 10
60 0.4 0 0.8 10
80 0.4 10 1 20
100 0.6 10 1 30

has been shown that when the difference in relative velocity
between the two vehicles is lower, the agents retain the data
quantity during transmission for around 40 meters, as reported
at table II. In this case, the average delay (the sum of all
delays experienced during the transmission of 10 seconds
of accelerometric data) is also less than 0.1 second. Up to
this point, the proposed alternative, which uses an adjustable
window under masterless environment, perform well for line-
of-sight communication. The master-based technique without
window adjustment V, on the other hand, begins to lose es-
sential information significantly after this point, resulting in a
delay. When the agents in this simulation are the furthest apart
from one another, a relatively small adjustment to the sliding
window value (0.1 milliseconds in this case) is observed to
contribute to a nearly 20% improvement in LOS retrieval and
at least a 10% improvement in NLOS retrieval (100m).

Non-line-of-sight (NLOS) communication performance was
significantly reduced during testing with UGVs to UAVs, as
seen in the table III. To be more specific, when employing
the masterless strategy with a distance of 100 meters or more
separates each pair of agents, nearly all of the data is lost. This
circumstance has an effect on the proposed adjustable window
technique, which results in a 0.3 millisecond increase and
leaves space for future advancement. Aside from this one is-
sue, the redesigned window improves both line-of-sight (LOS)
and non-line-of-sight (NLOS) communication significantly. In
summary, we achieved an improvement of 40% and 20% in

terms of average delay and packet loss probability respectively
for NLOS scenario in comparison with master-based approach.
For LOS, the margins are 20% and 10% respectively.

Table III
SIMULATION RESULTS FOR OUR MASTERLESS SYNCHRONIZING

MIDDLEWARE ON BOTH LOS, AND NLOS COMMUNICATION SCHEME
USING AVERAGE DELAY (PDa) (S) AND PACKET LOSS PROBABILITY (Lp)

(%) MATRICES CONSIDERING A UGV TO UAV COMMUNICATION
SCENARIO.

Distance (m) LOS NLOS
PDa (s) Lp (%) PDa (s) Lp (%)

20 0.1 0 0.5 0
40 0.2 10 0.7 20
60 0.2 10 0.8 20
80 0.5 20 1.3 60
100 0.6 30 1.6 90

D. Baseline Comparison Results for the Proposed QoS Policy

When developing real-time robotic systems, Quality of
Service (QoS) policies play a crucial role in determining
how data is transmitted and processed. The Robot Operating
System 2 (ROS2) provides a set of QoS policies that can
be used to customize the behavior of data transmission and
processing. In this work, we will compare three of the most
commonly used ROS2 QoS policies varying their ‘Reliability’
parameter: ‘Best effort’, ‘Reliable’ and our proposed one.

The ‘Best effort’ policy is the default policy used by ROS2
when creating a publisher or subscriber. This policy provides
best-effort reliability, meaning that there is no guarantee that
all messages will be received by the subscriber. This policy
also sets the deadline period to 100ms, which means that
if a subscriber does not receive a message within 100ms of
the publisher sending it, the message will be considered lost.
On the other hand, the ‘Reliable’ policy provides a higher
level of reliability. This means that all messages sent by the
publisher will be received by the subscriber, provided that they
are subscribed at the time the message is sent. This policy also
sets the deadline period to infinite, meaning that there is no
time limit for a message to be received by the subscriber.

Our proposed QoS policy is suitable for applications where
message loss is undesirable and higher reliability is required at
the cost of a considerable trade-off with latency. Our proposed
QoS policy is suitable for applications where message loss is
unacceptable and higher reliability is required at the cost of
a considerable trade-off with latency. Analyzing the detailed
results in IV, we can observe that even keeping the agents 100
meters apart, we can preserve 90% of the data. There is a 0.3s
of increase in the latency compared to the ‘Reliable‘ policy
due to the iteration needed in our case to select the proper
window size. However, we record an improvement of 10%
and 30% respectively, compared to the default ‘Best effort’
and ‘Reliable’ baselines. If we vary the ‘Depth’ parameter,
we can see an increase in both PDa and Lp due to the higher
volume of data being transferred.

7



Table IV
COMPARISON OF OUR PROPOSED QOS POLICY WITH TWO OF THE

BASELINE ROS2 QOS POLICIES IN TERMS OF ‘RELIABILITY’ PARAMETER

Depth Distance
(m)

Best Effort Reliable Proposed
PDa (s) Lp (%) PDa (s) Lp (%) PDa (s) Lp (%)

5

20 0.01 0 0.01 0 0.03 0
40 0.08 0 0.1 0 0.24 0
60 0.42 10 0.48 10 0.82 0
80 0.46 30 0.6 10 1.08 10

100 0.5 40 0.8 20 1.27 10

10

20 0.18 10 0.2 10 0.32 0
40 0.4 30 0.5 10 0.56 10
60 0.54 50 0.8 30 1.1 20
80 0.96 60 1 40 1.6 20

100 1 60 1.4 50 2.1 30

VI. SYSTEM IMPLEMENTATION

To compare the results from the simulated environment, we
conducted experiments to emulate master (ROS1) and master-
less (ROS2) architectures in the real world. However, the
robotic agents are controlled manually and distances are far
closer to avoid damaging equipment.

A. Hardware

The hardware used for this experiment are: two Turtlebot3
Burgers and a Duckiedrone.

Duckiedrone. This UAV is developed by Duckietown, a
company known for its open source and differential robots.
The drone is equipped with a Raspberry Pi 3b that we will
use to produce the wifi signal, which can reach a distance of
about 30 meters at 59/97.67 Mbps. ROS Kinetic and several
other packages are installed on the drone to enable the use
of positional control. This is where the drone automatically
shifts its position to maintain a static image from the Arducam,
which is faced directly toward the ground.

Turtlebot3 Burger. This UGV is manufactured by Robotis,
which focuses on its compatibility with ROS and its available
versions. This is exemplified by many ROS developers (such
as the developers of [8]) using the robot to demonstrate newly
released packages. The robot is equipped with a LIDAR for
object detection and two wheels controlled by an OpenCR
board for movement.

B. Experimentation Flow

The experimentation is categorized into two main sections:
master-based and master-less approaches. Each approach is
then tested using TCP and UDP in line-of-sight (LOS) and
non-line-of-sight (NLOS) situations. The overall process can
be summarized as follows:

1) On the sender (Turtlebot) generate a ROSbag.
2) Open filters to detect the amount of packets being sent

and received. Then send the ROSbag.
3) Use ping to determine the average delay.
4) Repeat for an increased distance.

This experimentation is repeated 20 times to generate an
average packet loss and delay.

To Acheive LOS, Turtlebot(s) are placed in direct line-of-
sight of the Duckiedrone. During NLOS we placed several
chairs and a foam box obstructing line-of-sight. A sample

Figure 5. Sample implementation of LOS (image on the left), and NLOS
(image on the right) communication scenario with a Duckiedrone and two
turtlebots.

illustration of the implementation scenario is provided in figure
5. However, this scenario did not create any visible changes
in the results. Therefore NLOS results are generated with the
Turtlebot sender placed on the other side of a wall.

ROSbag Formation The file to be sent across agents was
generated by using ROSbag through subscribing to the /odom
topic of a Turtlebot for 15 seconds. In this experiment, the
generated file reached a size of 293797 bytes.

Communication Scheme For evaluating network perfor-
mance, we used Netcat traditional as it allows to send files
using both UDP and TCP protocols and TCPdump to evaluate
the performance metrics. Similar to the receiver, a filter
is set on the sender for TCPdump to capture any packets
coming from the sender ip. Netcat then sends file to the
receiver. While conducting the experiment using the rosbag
file. TCPdump detected an average of 207− 502 byte packets
sent using TCP. While for UDP an average of 36− 8192 byte
packets were detected. The window size of each protocol will
be used with ping, to approximate delay and time to send the
file.

C. System Results

In a Master-less system all robotic agents are connected
to each other and communication doesn’t flow through a
single point. This testing represents a single branch in a
master-less system using two robots as a full system. To
emulate that branch, a Turtlebot connects to the Duckiedrone’s
network, and the procedure begins between the Turtlebot and
Duckiedrone. UDP shows an initial packet loss of 35%, which
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Figure 6. A comparison of TCP and UDP is based on packet loss probability
trends that vary with agent distance in a multi-agent environment. This system
uses a master-based (ROS1) architecture.

steadily increases as the robots are moved further away. When
the sending Turtlebot is placed behind a wall, this shifts the
packet loss by 5%. At first glance of the TCP plot, it seems
that NLOS is more efficient than LOS. However, the scale
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of the plots shows overall packet loss is less than 0.25%
meaning it is almost negligible. The detailed results can be
found in figure 6. In terms of latency, when completing the
experiment up to a maximum distance of 55 feet between
the Turtlebot and Duckiedrone, the delay of UDP averaged
at about 13ms (file transferred in 468ms) and the delay of
TCP averaged at 4.5ms (file transferred in 931.5ms). Notably,
for master-based (ROS1) architecture, the delay would reach
approximately 16ms for UDP (file transferred in 576ms) and
5ms for TCP (file transferred in 1035ms).

VII. ABLATION STUDY

In this section we present some baseline studies with ROS1
implementation of our proposed synchronizing middleware
and experimentation using both TCP and UDP transmission
protocols. Also, we present the analysis on real-time network
simulator, EMANE along with some possible future research
directions.
A. Varying Transmission Protocol within a Master-based Sys-
tem

We have implemented our middleware on a master-based
environment for both TCP and UDP to present a comparative
analysis of our proposed masterless system with the ROS1
architecture. For both cases, the same Gazebo environment
was chosen. The steps required for to transform our proposed
algorithm into UDP are described in 2. As soon we imple-
ment those steps, we can run the example simulation and
communicate between agents in UDP mode. After running

Algorithm 2 Conversion of TCP to UDP pseudocode
Require: socketType = DGRAM
Ensure: socketDomain = INET

remove listen and accept
if Send then

sendAll← size of message
sendAll← message

else if Recv then
recvAll ← size of message
recvAll ← message
connect← address ▷ address returned from recvall

end if

the simulation, the results are shown in table V. From LOS
situations, we can observe that UDP communication has
an overall higher packet loss probability but lower packet
delay. However, at low distances, the performance of UDP is
competitive to our proposed TCP-based architecture. On the
other hand, in NLOS situations, the results were somewhat
self-explanatory. Similarly to LOS situations, there was little
difference in packet delay, but, for the most part, delay was
less in comparison to TCP. Packet loss probability, however,
showed a more accurate comparison, showing that the packet
loss probability for UDP was much higher than TCP. Another
simulation to consider is testing a more congested NLOS
environment, introducing more obstacles and observing their
change to the results. Introducing obstacles between the agents

Table V
RESULT COMPARISON BETWEEN TCP AND UDP TRANSMISSION

PROTOCOL FOR MASTER-BASED (ROS1) SYSTEM CONSIDERING BOTH
LOS AND NLOS UNDER A UGV TO UGV COMMUNICATION SCENARIO.

Distance
(m)

LOS NLOS
Average
Delay (s)

Packet Loss
Probability (%)

Average
Delay (s)

Packet Loss
Probability (%)

UDP TCP UDP TCP UDP TCP UDP TCP

20 0.01 0.01 0 0 0.18 0.2 10 10

40 0.08 0.1 0 0 0.4 0.5 30 10

60 0.42 0.48 10 10 0.54 0.8 50 30

80 0.46 0.6 30 10 0.96 1 60 40

100 0.5 0.8 40 20 1 1.4 60 50

would cause the aspects of UDP to increase. As TCP delay
increases, UDP delay increases as well, albeit by a smaller
amount. On the other hand, as packet loss in TCP increases,
UDP packet loss also increases greatly. This means that when
an NLOS environment is simulated for UDP, both the benefits
of lower latency and the drawback of less reliability are
made worse. To state the comparative margins between our
technique and master-based: we improved average delay and
packet loss probability by 40% and 20% for NLOS against
the master-based technique. LOS margins are 20% and 10%,
respectively.

B. Experimentation with a Real-time Network Simulator

We have chosen the EMANE emulator to focus on real-time
modeling of network configurations. This experimentation is
conducted to counter the need for synchronizing middleware
and check whether a real-time network emulator is sufficient
to replace our proposed middleware along with the advantages
we are offering. The integration of EMANE with ROS is still
not officially included. As a result, it is not possible to replicate
the same experimental setting as we did for our middleware.
Instead, we have designed a similar data transmission envi-
ronment inside of EMANE, utilizing its emulator mode to
measure the same performance metrics we have used for our
synchronizing middleware.

We have designed a 10 node mesh network working on
the TCP/IP transfer protocol. The default conditions create a
0% packet loss with an average delay of 5.377ms using 100
pings of 64 bytes. With the increase in the longitude, latitude,
and altitude of node 10 by 100, the packet delay increases to
54.309ms. This is with pinging from node 1 to node 10 without
any hops. The takeaway from this experiment is that although
EMANE ensures the receipt of all the packets between nodes
(TCP/IP mode), the packet delay is almost 10 times greater
than our method. Moreover, the scenario was relatively less
congested and NLOS was not present in EMANE. Creating
the right ROS packages for integrating EMANE with a physics
simulator could be an interesting area of research for analyzing
masterless systems in depth.
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VIII. CONCLUSION

In this work, we have questioned the communication over-
head issue of the master-based ROS1 system while developing
a synchronizing middleware for co-simulation of physics and
network simulator. Our middleware uses a customized QoS
policy which works on a masterless (ROS2) system and
is capable of handling the heterogeneity in a multi-robot
environment. Additionally, to increase reliability in terms of
minimizing packet loss probability, the QoS policy is inte-
grated with a dynamic adjustment strategy within the TCP/IP
sliding window. This algorithm can change the size of the
window based on how fast the agents are moving so that they
can work better together and communicate. We have designed
extensive empirical analysis for both simulation and real robot
deployment to showcase the efficacy of our proposed system.
Even in difficult non-line-of-sight (NLOS) environments with
heterogeneous agents, experimental data shows that our so-
lution outperforms the standard fixed window-based strategy
in terms of ensuring fewer packet losses (on average 10%
improvement) and faster transmission (about 12% improve-
ment). Experimental results also show that our synchronizing
middleware can outperform the real-time network simulator,
i.e., EMANE, in terms of efficient communication, which
validates the necessity of such middleware.
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