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Abstract—In this article, we propose a way to enhance the
learning framework for zero-sum games with dynamics evolving
in continuous time. In contrast to the conventional centralized
actor—critic learning, a novel cooperative finitely excited learning
approach is developed to combine the online recorded data with
instantaneous data for efficiency. By using an experience replay
technique for each agent and distributed interaction amongst
agents, we are able to replace the classical persistent excitation
condition with an easy-to-check cooperative excitation condition.
This approach also guarantees the consensus of the distributed
actor—critic learning on the solution to the Hamilton-Jacobi-
Isaacs (HJI) equation. It is shown that both the closed-loop
stability of the equilibrium point and convergence to the Nash
equilibrium can be guaranteed. Simulation results demonstrate
the efficacy of this approach compared to previous methods.

Index Terms—Cooperative finite excitation (cFE), distributed
actor—critic, Hamilton-Jacobi-Isaacs (HJI) equation, Nash equi-
librium, zero-sum game.

I. INTRODUCTION

ECENT years have witnessed remarkable progress in the
Rgame-theoretical development and application advance-
ment of distributed large-scale multiagent systems, such as
pursuit-evasion games [1] and graphical games [2]. As a supe-
rior alternative to the fully connected one-to-all communica-
tion network in the centralized strategy, the distributed protocol
design depends on local interaction through a sparse com-
munication network consisting of node-to-node information
propagation. Distributed synchronization protocols have been
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successfully designed for engineering systems, including
wireless sensor networks [3] and vehicle networks [4]. As
a computationally efficient alternative to centralized learning
algorithms, cooperative distributed learning mechanisms bene-
fit from the efficiency, flexibility, and scalability of distributed
protocols [5].

A. Related Work

Game theory is a powerful framework for modeling
decision-making problems that involve multiple strategic play-
ers. It allows us to analyze the collaborative behavior of all
players and find strategies that benefit everyone [6]. A cen-
terpiece in game theory is Nash equilibrium, which refers to
the set of strategies where no player can improve their gain by
unilaterally changing their strategy. H, control problems with
sensitivity reduction [7] and disturbance rejection [8] can be
effectively addressed within the zero-sum game framework by
considering the controller and the disturbance as minimizing
and maximizing players, respectively, [9]. The Hamilton—
Jacobi—Isaacs (HJI) equation for nonlinear systems [10], [11]
and the game algebraic Riccati equation for linear quadratic
games [12] play an important role in finding the Nash equilib-
rium [13]. Unfortunately, it is difficult to obtain an analytical
solution to the HJI equation even for simple cases due to the
intrinsic nonlinearity [14], [15]. Therefore, many efforts have
been developed to approximate the Nash equilibrium for zero-
sum games, such as Newton-like iterations [16] and Galerkin
approximations [17].

Reinforcement learning (RL) and adaptive dynamic pro-
gramming (ADP) bring together adaptive critic design [18]
with dynamic programming [19] to assist the agent in optimiz-
ing a long-term reward through interaction with the environ-
ment [20]. Iterative ADP algorithms have been successfully
employed to find the Nash equilibrium of zero-sum games
for the Hy, problems [21], [22], [23]. Online synchronous
actor—critic learning algorithms [24], [25] have been success-
fully used to solve the HII equations derived from zero-sum
games [26]. Several recent developments can be found in [27]
and [28] that consider finite-time optimal control problems as
well as an output feedback design. Existing ADP/RL meth-
ods for zero-sum games are mainly based on centralized
online synchronous learning and offline asynchronous learn-
ing, where the convergence to the Nash equilibrium can be
ensured provided that a persistent excitation (PE) condition
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is satisfied [26], [29]. However, the satisfaction of such a PE
condition is a stringent requirement and challenging to be ver-
ifiable online due to dependence on future time instants. In
addition, to enforce the PE condition in the entire time hori-
zon, probing signals are commonly added and preserved in
the control input to enrich the excitation level [30]. Although
such a strategy contributes to the satisfaction of the PE con-
dition, the inclusion of a probing signal with frequency-rich
information might also degrade the smooth operation during
transient.

There have been many efforts to relax the PE condition
in adaptive learning and control. In the concurrent learning
technique, a data memory matrix with a rank-oriented cri-
terion is introduced to update the historical data record for
online learning [31]. The concurrent learning is combined
with an experience-replay-based RL for zero-sum games [32],
non-zero-sum games [33], and optimal tracking/regulation
problems [34]. However, the update of the singular value for
the recorded data [35] and the state derivative information [36]
increase the computational cost. In contrast to the data memory
matrix in concurrent learning [35], composite learning [37]
utilizes a moving window integral to record the online his-
torical data to avoid the singular value calculation and state
derivative differentiation. For efficient implementation pur-
poses, it is desired to further avoid the requirement of a
moving window integral, as indicated by the online filter
design with a finite excitation (FE) condition [38], [39].

Contributions: Motivated by the above limitations, the con-
tributions of the present work are as follows. In contrast to
actor—critic learning for zero-sum game problems utilizing
only current data [26], a novel composite learning error is
defined to take the effect of both current and online histori-
cal data into account. Based on the composite critic learning
error, the cooperative adaptive critic design can be imple-
mented with online filters instead of a data matrix stack or
moving window integral. To relax the requirement of the PE
condition for the performance optimization convergence [12],
[33], a cooperative distributed adaptive critic learning mecha-
nism is designed with a novel cooperative FE (cFE) condition.
It is shown that the cFE condition on the online historical
data is sufficient to guarantee the stability and boundedness
of signals of the closed-loop system, and the convergence
of cooperative adaptive actor—critic learning to the optimal
policy.

Notation: Denote 1y = [1, ..., 11" € RV, Let Amin()
and Amax(-) be the minimum and maximum eigenvalue of
a matrix, respectively. I, € RP*P stands for the identity
matrix. ||.|| denotes the Euclidean norm for a vector and the
Frobenius norm for a matrix. diag[-] denotes a diagonal matrix.
The Kronecker product is represented by ®. The minimum
and maximum operators are denoted as min(-) and max(-),
respectively. R, R*, R”, and R denote the spaces of real
numbers, positive real numbers, real n-vectors, and real n x m-
matrices, respectively, where n and m are positive integers. L,
and L., denote the spaces of square-integrable and bounded
signals, respectively. vec(-) : R™" — R™><1 is a mapping
by stacking the columns of a m x n matrix, and vec,;gln(-) is
the corresponding inverse mapping.
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II. PRELIMINARIES
A. Zero-Sum Game With Finite Ly-Gain

Consider the nonlinear time-invariant nonlinear dynamics
evolving in continuous time as follows:

X1 =f(x(8) + gx(®)u(t) + h(x(®)v(t) (D

where x € R” denotes the state vector, u € R™ denotes the
control input, v € R? denotes the disturbance input, and the
initial condition x(0) = xp is given. In addition, f(-) : R" —
R™, g(-) : R* — R and h(-) : R" — R™Y are system
dynamics. On a compact set Q2 C R”, the functions f(-), g(-),
and h(-) are locally Lipschitz functions and satisfy ||f(-)] <
nll- 1 18O < ng. 1AC) | < na with positive constants 7, 17,
and 1. Moreover, it is assumed that f(0) = 0, which implies
that the origin is an equilibrium of the system.

The infinite-horizon cost functional with a minimizing
player u and a maximizing player v is defined as follows:

J(xp, u,v) = /00 r(x(t), u(t), v(r))dr 2)
0

with an instantaneous reward function given by r(x, u,v) =
Q) + u"Ru — y||v||?, where Q(-) = 0, R = RT > 0, and
y > 0 is the disturbance attenuation level.

Assumption 1: The pair {f(x), g(x)} is stabilizable and
{f(x), O(x)} is zero-state detectable (ZSD) [40] with v(¢) =0
for all £ > 0.

The system (1) has a finite L,-gain if

/ (0(x(v)) + u" (v)Ru(r))dr < y? / Iv(m)lI*dr (3)
t

t

for all v € L,[0, +00) [9]. In addition, it is assumed that y
satisfies y > y* > 0 with y* being the smallest disturbance
attenuation level for which the system is stabilized [10].

Given feedback policy w(-) : R® — R™ and disturbance
policy v(-) : R* — RY, that is, u = p(x) and v = v(x), the
value function for system (1) is defined as follows:

V(x(1) = / r(x(t), u(x(t)), v(x(r)))dr Vx e 2. (4)
t

Note that the value function mapping is determined based on
the policy pair {u(-), v(-)} given the dynamical system (1).
Given that the value function is finite on €2, the value function
can be obtained by solving the following equation:

0=H(, VV&), n(x),v(x), V) =0Vxe Q (5

where VV(x) = 0V (x)/dx € R”" is the value gradient, and the
Hamiltonian is defined as follows:

H(x, VV(x), 1 (x), v(x))
= [VV@OI [f&) + g0nx) + hx)v@)]
+ r(x, n(x), vx)). (6)

The zero-sum differential game is defined as follows:

V*(x0) = minmax J(xq, u, v). 7
u v
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Assumption 2: The zero-sum differential game has a unique
solution, that is, the saddle point exists and satisfies

min max J(xg, #, v) = max minJ(xo, u, v).
u v v u
By applying the stationarity conditions [12]

0= %H(x, VV*(x), u(x), v(x))

ad
= F(X)H(x, VV*(x), u(x), v(x))
one can obtain the Nash equilibrium policies {u*(-), v*(-)}
as [13] and [41]

* 1 -1 T *
wix) = _ER g OVVi(x)

V*(x) = 217hT(x)VV*(x) Vx € Q. (8)

Substituting the Nash policies (8) into the Bellman (5) yields
the HJI equation as follows [41]:

1
0= m[vv*(x)]Th(x)hT(x)vv*(x)

1
- Z[VV*(X)]Tg(X)R_IgT(X)VV*(X)
+ 0 + VYV Of(x)  Vx )

with V*(0) = 0. The zero-sum game Nash equilibrium poli-
cies (8) for system (1) can be derived by the HJI (9). However,
the HJI (9) is a nonlinear partial differential equation, which
is difficult to be solved analytically.

B. Cooperative Finite Excitation

Existing RL and ADP methods aim to approximate the solu-
tion to nonlinear HJI equation using centralized learning [26],
where the PE condition, as in Definition 1, plays an important
role in the Nash equilibrium learning convergence.

Definition 1 (Persistent Excitation [42]): A vector signal
y(t) € RP satisfies the PE condition if

t+T
f Y (r)dr > al, (10)
¢
for all ¢ > 0 with constants 7 > 0 and « > 0.

To relax the PE condition, two types of relaxed condition
are developed as follows.

Definition 2 (Finite Excitation [38]): A bounded signal
y(t) € RP satisfies the FE condition over [7g, t;] if there exists
a constant « > 0 such that f;;s y(r)yT(r)dr > alp.

Definition 3 (Cooperative PE [5]): Consider a group of sig-
nals {f;(n}Y., with f; : [tg, c0) — RP. Then, {fi(}Y, is said
to satisfy the cPE condition if there exists « > 0 and T > 0
such that [*7 N, AT (0)de = al, Vi > 1.

Even the cPE condition is weaker than the PE condition, but
it is still defined over the infinite horizon and not verifiable
online. In [43], the cPE concept is further relaxed as cFE
condition as follows.

Definition 4 (Type-I cFE): Consider a group of signals
(O}, with f;() € RP. Then, {fi(}Y, satisfy the cFE
condition over the interval [0, #;] with degree o« > O if

e YN foff(0de > al,.

In this article, we extend the cFE condition as follows.
Definition 5 (Type-1l cFE): For t < ¢, consider a group
of signals {fi(z, t)}f.\/:l with fi(z,t) € RP. Then, {fi(z, t)}ﬁ\':1
satisfy the cFE condition over [fg, #;] with degree o« > 0O if
there exist t; > 0 such that F() > al, Vt > t;, where
t N T
F@) = fto Yoo fitt, 0f (T, ndr.

The property of cFE-type conditions can be summarized as

follows.

Lemma 1: For the Type-I and Type-II cFE conditions, the

following hold.

1) For a group of signals {ﬁ(t)}f.\’:1 with fi(t) € RP*1
Suppose that there exist « > 0 and #, > 0 such that
SN o fiOff(v)dt > al, Vt> 1, Then, there exists
a positive constant & such that F(r) + (L ® 1,) > alyp
for all ¢t > t,, where F(t) = diag[ F1(¥) --- Fy(¢)] and
Fi(t) = [ofiff (de.

2) For a group of signals {g;(t, t)}f.\’:l with g;(-,-) : R x
R — RP*!. Suppose that there exist 8 > 0 and #, > 0
such that

N o
> / gi(r,0g] (v, ndr = I, V=1, (1)
i=1 70

Then, there exists a positive constant B such that
G(t) + (L®1,) > Bl for all t > 1, where G(r) =
diag[ G1(t) -+ Gn(t)] and G;(t) = [, gi(r. Dg! (v, Hd.
Proof: See Appendix A. |

C. Value Function Approximation

1) Value Function Approximation for Bellman Equation:
Using the function approximator, the value function associ-
ated with {u(-), v(-)} can be denoted as V(x) = W7 ¢ (x) +€(x)
and VV(x) = [Vo@)]TW + Ve(x) for all x € Q, where
W = argmin,,cgp{Sup,cq IV (x) — WT¢(x)||} is the ideal critic
weight vector and ¢ (-) : R" — RP is the critic basis function.
According to the universal approximation theorem [44], given
the approximation level € > 0, there exists an approximator
with sufficient large basis function dimension p, such that the
value function approximation residual €(x) = V(x) — WT¢ (x)
can be bounded on the compact set 2 as sup,.q |le(x)|| < €.

Given the value function approximation, the Bellman (5)
for each agent can be expressed as follows:

— VeI [f(x) + g@u(x) + h(x)v(x)]
= WIVo@[f(x) + g@u) + h(x)v(x)]
+ r(x, u(x), v(x)). (12)

Denote ¢ (x) = Vo ()[f(x) + gx)u(x)+h(x)v(x)] and o (x) =
—[VeTTf(x) + g(x)u(x) + h(x)v(x)]. Then, the residual for
Bellman (5) resulting from the value function approximation
can be written as follows:

o(x) = r(x, u(x), v(x)) + WTI//()C) Vx € Q. (13)

Assumption 3: Given the value function approximation, the
following conditions hold.
1) The basis function and its gradient are bounded on €2,
that is, |¢()l < 1. VOO < 1ap with positive
constants 7y and 74¢.
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2) The value function approximation residual is bounded
on €2, that is, sup,q lle(x)|| < € for all x € Q with
constant € > 0. In addition, the Bellman residual o (x)
is bounded on €2, that is, sup,.q [lo(x)|| < o for all
x € Q with constant ¢ > 0.

3) The ideal critic weight W is a bounded vector and
uniquely exists.

2) Value Function Approximation for HJI Equation: Using
the function approximator, the optimal value function can
be denoted as V*(x) = W*T¢>(x) + €*(x) and VV*(x) =
[Vo )W, + Ve*(x) with the optimal critic weight as W, =
arg miny cpp {SUP,cq | Va(x) — WT¢ (x) I}, the critic basis func-
tion ¢(-) : R* — RP, and the value function approximation
residual €*¢(-) : R” — R defined as €*(x) = V,(x) — Wl (x).

The following assumption about the value function approx-
imation for the optimal value function V*(x) is required for
the subsequent derivations.

Assumption 4: Given the value function approximation for
V*(x), the following conditions hold.

1) The value function approximation residual and its gra-
dient are bounded on €2, that is, |[e*(:)|| < n. and
IVe* ()|l < nge with positive constants 7. and 7g.

2) The optimal weight W, is a bounded vector in the sense
that ||W,|| < nw with a constant nw > O.

Accordingly, the HJI (9) can be expressed as follows:

* T 1 T
o7 (x) = 0(x) + W, o(x) — ZW* 'x)W,

1 T
+ —WIE@W,

pe (14)
with T(x) = Vo@g®R 'gTW[VowIT, Ex) =
VoA )[VH)IT, and o) = VoFX).

Denote y*(x) = (1/2)y*Vé@hx)h' 0)[Vo @)W, —
(1/2)Vp(x)g@R " @[V W, + Ve)f(x) and
then one has WIy*(x) = Wl w(x) — (1/2)WIT ()W, +
(1/2)y*WIE(x)W,. Inserting the fact into (14), one
can obtain the residual for the HIJI equation as
o*(x) = WIy* () +0x)+1/4WIT ()W, —1 /4y WIE () W,.
We will aim to solve the HJI equation (9) to find the Nash
equilibrium policies {u*(-),v*(-)} for the zero-sum game
without the requirement of the PE/FE/cPE condition.

III. PROBLEM FORMULATION

Consider a group of agents indexed as {1,...,N}. The
communication topology among all agents is captured by a
graph. The adjacency matrix of the communication graph is
denoted as A, of which the entry is represented as a;; with
i,j e {l,...,N}. For the ith agent, the in-degree d; is defined
as d; = Zj a;j. The Laplacian matrix is defined as £ =D — A
with in-degree matrix D = diag{dy, ..., dy}. The group of
agents have homogeneous nonlinear time-invariant dynamics
given by

X = () + gxui + h(xp)vi, x:(0) = xj0 (15)

fori=1,...,N and ¢t > 0, where x; € R"” denotes the state,
u; € R™ denotes the control input, v; € RY denotes the dis-
turbance input, and the initial condition x;9 can be distinct for
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each agent. The functions f(-), g(-), and &(-) have been defined
in (1).

In the following, the cooperative actor—critic learning
algorithm is designed based on the local interaction graph
among the agents. Given the communication topology, the
group of agents exchange the local actor—critic information
to reach consensus on the Nash equilibrium given the exis-
tence of a spanning tree, that is, a tree consists of graph edges
that connects all the nodes in the graph, which implies that
the communication graph is connected [45]. For the subse-
quent discussions, the communication topology among all the
agents under consideration in this article satisfies the following
assumption.

Assumption 5: The communication topology amongst the
agents is undirected and connected.

The problem of interest can be described as follows.

Problem 1: Consider the zero-sum game (7) with the Nash
equilibrium (8) over the infinite-horizon. Design the coopera-
tive learning algorithm with a group of agents (15) such that
the following can be achieved without the requirement of the
PE/FE/cPE condition.

1) Given the policy pair {u(-), v(-)} for each agent, that
is, {uj = u(x),vi = v(x;)} with i = 1,..., N, design
the distributed critic learning to learn the value function
such that W;(t) — W as t — oo.

2) For the zero-sum game, design the distributed actor—
critic learning algorithm for each agent in (15) with critic
weight W,-,C and actor weights VAV,-,M, VAV,',V to learn the
optimal value function and the Nash equilibrium such
that W; (1) — W,, Wi, (t) — W,, and W;,.(t) — W,
ast—>oofori=1,...,N.

IV. COOPERATIVE CRITIC LEARNING FOR
PoLIiCY EVALUATION

As discussed in Section II-A, the evaluation of given policy
pair {(u(-), v(-))} results in solving the Bellman (5). In this
section, we consider the first subproblem in Problem 1 with
given policy pair {(u(-), v(-)} and {u; = wu(x;),vi = v(x;)}
for the distributed systems (15). Based on the value function
approximation in Section II-C, we employ the Type-I cFE
condition in Definition 4 to construct the cooperative critic
learning algorithm such that the distributed systems (15) could
achieve consensus on the evaluation of the given admissible

policy pair {(u(-), v(-)}.

A. Composite Critic Design
Define the following filtered signals:

iif (1) = —k - rif () + r(xi(@), u(xi (), v(xi(t)))
Vif(t) = —k - Yip() + Y (xi(0)
Gip(H) = —k - (1) + 0 (x:(1))

with ¥; £(0) = 0;#(0) = r; r(0) = 0 and « > O being the fil-
ter design parameter. The above signals r(x; r(2)), ¥ (xif(?)),
and o (x; £(#)) can be interpreted as frequency domain repre-
sentation of the signals r(x;(t)), ¥ (x;(¢)), and o (x;(¢)) passing
through the filter 1/s + «.

(16)
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Then, the fact in (13) implies that

aif (1) = rig (O + Wi (0). (17)
In [26], the critic error is considered based on the
instantaneous data as e¢;(1) = r(x;(@), u(x;(t)), vix;(1)) +
W'y (xi(t)), where W;(r) is the adaptive critic weight with
learning error Wi(t) = W — W,-(t). In contrast, we propose
the composite critic learning error as e;¢(t,1) = rif(r) +
Wl-T(t) Vi r(T), where Wi(t) represents the current critic weight
estimation and {r;s(t), ¥is(zr)} denote the stored system
information with 0 < 7 < ¢. Based on the composite critic
error design, the critic learning objective for each agent is
considered as follows:

T (W) = o, (W) + 71, (Wito))

Bi(r) = 1 4+ i@ ¥is(o), J,{](t) =
1/2fy leig (e DI/Bi)Pdr, and  J,00 = (1/2)
Z/GM a,-j||wi,j(t)||2, and ZD',"J'(I) = VVJ(I) — Wi(t) is the
discrepancy of the critic weights between agents i and j.

Applying the chain rule, the critic learning objective gradi-
ent for each agent can be obtained as follows:

where

aJ,-,f(W,-(r)) B o 1(W,-(r)) N o 2(W,-(t))

AWi (1) IWi (1) aWi(0)
_ llﬂi,f(f)-ri,f(f)dr
0o [Bi(0)?
t . . T
b [ bl
0 [Bi(7)]

with 7, (W) /aWi(t) =[5 vy () - iy (x.0)/1Bi(x)Pde
and 3]{-,2(W,'(t))/8W,'(l) = _ZjeM al;,'w,‘,j(t). To obtain
an efficient online implementation of the objective gradient
8]{ 1 (Wi(8))/dW;(1), we further design the following filters as:

t Yir(T)oif(T)
%= / : 5dt
0 {1 + [Wi,f(‘f)]T‘ﬁi,f(‘c)}
t _ _
Fiy(h) = /0 '”hf(f)rzi(r) ar
{1 + [Vis (0] ’ﬁi,f(t)}
t ) ' T
Eif(t) = /0 I/fz,f(f)[llf,,,;(r)] 2dr.
{1 + [Vir (0] Wi,f(r)}

Then, (17) further implies that
Sif() = Fip() + Eip(t) - W. (18)

Then, the gradient 8]{ 1(Vi/i(z‘))/EWAVi(t) can be rewritten as
follows:

o7, (W) .
L Fip() + Eip (1) - Wila). 19
W) SO+ Eip(@) - Wi 19

Therefore, one has

oy (Wi(f)) N
= ~ - Zaijwi,j(f)
aW; IW; (1)

j=1

N
= Fig(t) + Eif (1) - Wit) = Y ayij(0).  (20)
j=1

To this end, the distributed critic learning can be designed as
follows:

. N
Wit) = —)/[Fi,f(t) + Eif (@) - Wi(t) — Zaijwi,j(t):|~ 1)
j=1

Theorem 1: Suppose that V() = Yis(v)/d
+ [wi,f(t)]Twitf(t)) satisfies the type-I cFE condition
in the sense that there exists o > 0 such that

N t _
Ef() =) /0 Vig@[Pip@)] dr = al, Vi > 1. (22)
i=1

Given the critic design (21), one has the following.
1) There exists a positive constant «. such that Ef(¢) +
(L®I,) > acdyy YVt > t;, where Ef(t) = diag(Ey (1),
o Eng(@).
2) All the closed-loop signals for each agent are Ly,-stable
and the state of each agent asymptotically converges to
a small neighborhood of the origin on ¢ € [0, +00).
3) The critic weight error W; of each agent exponentially
converge to small neighborhoods of the origin on ¢ €
[t5, +00).
Proof: See Appendix B. |
Remark 1: For the existing adaptive optimal learning con-
trol with relaxed excitation [34], [46], [47], the critic learning
involves a singular-value-based condition on the collected
data matrix, where the time complexity for computing the
data matrix singular value is O(p®) with p being the dimen-
sion of the basis function for value function approximation.
In contrast, for the presented cooperative critic learning, the
data matrix singular value calculation can be avoided. As
shown in (21), the critic learning depends on the filters
design (16) with time complexity being O(p?), which is simi-
lar to least-squares temporal difference (LSTD) algorithm [48]
and more efficient than the existing relaxed excited critic
learning design [34], [46], [47].

V. COOPERATIVE ACTOR—CRITIC LEARNING
FOR POLICY OPTIMIZATION

In the following, based on the value function representa-
tion using function approximators in Section II-C, we will
employ the Type-II cFE condition in Definition 5 to construct
the distributed actor—critic learning algorithm to learn the solu-
tion to the HJI equation (9). As investigated in Theorem 2,
the distributed actor—critic learning algorithm would converge
toward the Nash equilibrium without the requirement of the
PE/FE/cPE condition.
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A. Composite Actor—Critic Design

In this section, we design two types of filters, as shown
in (23), to collect the online data. On this basis, a novel cooper-
ative critic learning algorithm is constructed to learn the Nash
feedback equilibrium for each agent.

1) Online Filters Design: Define the filtered signals

0if(1) = —k - Qif(1) + Q(xi(1)
i f(t) = —k - wi () + ox(1))
Fif() = =« - Tip(t) + T (xi(t))

Bif(t) = —k - Eif (1) + E(xi(1))

Lo (1) + 0 (1)

with zero initial conditions. The signals Q; (1), w; (1), T'i (D),
8i (1), and o; (?) can be interpreted as frequency domain rep-
resentation of the signals Q(x;()), w(x;(¥)), I'(x;(t)), E(x;(¥)),
and o (x;(¢)) passing through the filter 1/s + «.

For the subsequent designs, we denote aj,w(f) =
Jowif@ol,(de, aior@ = [jTif(®) @ wig(t)dr,
aire(t) = [yoif(t) ® Tif()dr, airr@ = [yTip(r)
®Tif(1)dr, diwz(®) = [y Eif(r) ® wip()dr, aizu() =
Jowip(@) ® Bip(r)dr, airs(t) = [jEBif(t) ® Tip(r)dr,

6p(1) = —« (23)

aizr(® = [iTif(0)®Eif(n)dr, aizz() =
fo Bif(@) ® Eip(n)dr, digw® = [y 0is(D)wis(v)dr,
dior( = [y Qif(@Tif(D)dr, digz(t) = [5Qis(v)
Eif(D)dr, biwe (O = féwiTj(T)wi,f(f)dT’ birr(t) =
JoTif(@ Tig(dr, bire(® = [foTif(Dwis(r)dr,
bior(t) = [ool(t) Tip(@dr, bies®) = [yol (1)
8if(v)dr, birs(® = f()tri,f(f)aif(f)df, bizo(® =

Jo B0 @i (0dv, biar(®) = [y Eis(@Tig(r)dr, and
bize(t) = [y Bif(1)8is(r)dr.
Given the fact in (14), one has
R 1
ol (D) = Qig () + Wwig(t) — TWITig(OW,s
L
+ mW* Eif(OWi.
Denote ¥7:(1) = wip(t) — (1/2)Tip(OW. + 1/2y2Eif(OW,
and rzf(t) = Qif(0) + 1/4W;FF,~,f(t)W,,. Then, (24) can be
rewritten in a compact form as follows:
ol () = WPk (1) + 17 ().

2) Distributed Critic Learning: First, with the notations
in (23), define

(24)

(25)

1 A
Vil 1) = 01y () = STif (@O Wi
1 .
+ Z—Jﬂai,f(f)wi,v(f)
1. .
it T) = Qig(©) + Wi, Oy (Wi ()

WZV(I)Ei,f(T)Wi,v(I)- (26)

— m
Then, the composite critic learning error with online actors
u;(t) and v;(t) is considered as follows:

eic(t, 1) = ch(z)w;ff(t, T) + 1, ). (27)
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The critic learning objective for each agent is considered as
follows:

Jie(Wie®) =610 +J550

with J () = JS(Wie@)/[Bic@P, TS (Wic) =
(1/2) [y leic(t, DIPdT, TS0 = (1/2) Yoy, aglm 017,
the normalization term B;.(f) = 1 + fé I (e, 7)[?dr and
@ = We(t) = Wi c(0).

The distributed critic learning for each agent is designed as
follows:

1 a5 (W)

v;i/i,c(t) = Yc ~
5 [Bic]”  3Wic®
N
7 Y ag[Wiew = Wic]. @8)
j=1

In the following, the filters design are employed to online
implement the above adaptive critic learning algorithm as:

1. A
Bio(®) = 1+ 2 Wi, (0birr (OWiu(1)
1. 1 A
+ biww® = S Wi Obiro(® = Sbiwr OWiu(®)
1 A 1 . o
+ 3,2tz @OWis () = 5 Wi, Obira (Wi
1y 1. R
+ 2—)/2Wi,v(t)bi,aw(t) - mWi,v(t)bi,El"(t)Wi,u(t)
1 . o
- mWZv(r)b,-,aaa)wi,v(z).
Next, the objective gradient can be further expressed
as OJ; (Wic(@)/oWic(t) = Ajc(®) - Wic(®) + Dic()

with Ai.(1) = [y & O, )1'dr and D; (1) =
f Y, T, Tyde.

With the Kronecker product property, one has fé w; f(T)
W, (OTip(mdr = vecyy(@iwr (1) vec(W], (). [y iy
Wil (Ddr = veey!ylairo® - vec  (Wiu(d)],

JoTig@ Wia@W], OTip(@)dr = vecyly (airr()
veeWiu W/, 0D, [yois@W,(0-  Eig(mdr =

vecy y (@iozOWin (), [o Bif(OWin()  wip(n)dr =
vecy, (@i, 20 OWin (). fo Tip(DWiu(®) WE(0) Big(r)dr =
vecy, y(aira®Ovec[Wi () WILOD. [y Bip(t) Wiy
WI (OTip(0)dr = vecyy (aizr(®vec [Wiy() WL, 0.
Jo Bis@Win (- WLOEiy(mydt = vecy'y (aizz()
vec[W; (1) VAVZV (H]). Therefore, A; (f) can be further rewritten
as follows:

1 A
Aie0) = 0 (0) = 3vecy !y (aror 0 - Wi(0)
| A
- EVGCM}M(ai,Fw(t) : Wi,u(t)>
| " X
+ gvecsy (airr (@) - vee(Wiu W], 1))

1 _ ~
+ 2—)/2VCCM}M<ai,a)E(t) . Wi,v(ﬂ)
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T ziyzvec,;,},v, (e,20 0 Win))

o)
L)
o))

— 4)1/2V6CM1M<al re() - Vec[ i, u(t)
— #Vec;,,}M@l gr() - VGC[ i, VOW,
+ #Vec;,,},w (ai g(®) - vec[ (W,
Similarly, using the Kronecker product, one has
D; (1) = dj pu(t) —

_dz or (I)Wz u(t) + i Qu(t)Wl (D)

1
+ 4VCCM1M (al ol (t)Wl u(t)) i, u(?)

1 _ o o
- 4__)/2V6CM%M (ai,wE (t)Wi,v(t)> Wi,v(t)

1.0)) Wi
L.0)) Wi

+8)1/2vechM<a,r (t)vec( Wi (OW, V(I))) Wi (0

1
- gvechM(a, rr(t)VeC( L OW,

1 _
+ 8_7/2VCCM3M<ai Er (l‘)VeC( zv(t)

814vecM‘M(a, (t)vec( Wi (W V(t))) Win(0).

3) Distributed Actor Learning: The online actors for the
min—max players are designed as follows:

1 R

ui(r) = —ER‘lng)[V¢(x,->]TWi,u<r> (29)
| e

vi(t) = 2_)/2h @)Vl Wi () (30)

with the adaptive learning for the minimizing player u; and
the maximizing player v; as follows:

v;i/i,u(t) = Yu _Ki,uuWi,u(t) + ( )Kl CuFl c(t)
1 Moo .
+ ——Fi,u(t) + aijj W',u(t) - Wi,u(t)
41Bic 0]’ ,:ZI [ ]
(31)
and
X ~ 1
Wiv(@) = VV{_Ki,vv i,v(t) + ( )Kz chz ()
- ———=Fi,®)
472 [Bie (0]
N A A
+ Y a[ W - W]t 32
j=1

where Fi () = [y lf<r>W,u(r> [ (1, D1 Wi (e,

tv(t) = fo ulf(T)le(t) [1// (2, T)] Wta(t)df and
Fi.t) = fo (Wi, )] TW, o(ndr. From the definition of
,(t T) in (26) the terms F;.(t), F;,(t), and F;,(t)
can be equivalently obtained as F;.(f) = fé a)in(r)

Cooperative Actor-Critic Learning

! (== eritic ! |
OO - /
i

2 1 . - 1
an !l ' an- '

L. !

ol

;. acgor actor

1

Fig. 1. Cooperative actor—critic learning for Hoo control problem.

diWie() — A/DWLO [yTip@dtWie@ + (1/2)y>
wio [, Ei,f(wdrw,,c(r), and  F,(t) = vecy,')(airo(t):
Wia(®) Wic(t) — (1/2)vecy,y (airr(t)vec(W (VW (1))
Wi + (1/2)y2vecy (@i re®vee(W; (VWL () Wi (1),
and F;,(t) = vecy,'y(ai 2o OWin(O) Wi — (1/2)vecy)!y,
(ai,zr (Ovec(Wi (OWE, () Wic(t) + (1/2)y vecy, ) (aizz ()
vec(Wiy (VWS (D) Wi (1)

Theorem 2: Suppose that the signal 1//“ (t, 7) defined
in (26) satisfies the type-II cFE condition in the sense that
there exists @ > 0 such that

LY
Z/ i, r)[wi‘ff(t, t)]TdrzaJp Vi1, (33)
i=1 70 ‘

Consider the zero-sum game with performance (2) and dynam-
ics (1). Design the critic learning (28), and actor learn-
ing (31) and (32) with K¢y, Kiwu, Kicv. Kiy satisfying
Kicu < Kiyy and K; oy < Kj,y. Then, one has the following
conclusions.

1) Denote A.(f) = diag[A1 (?) --- An,c(¥)]. Then, there
exists a positive constant o such that A.() > aly, for
t> t.

2) All the closed-loop signals for each agent are Ly,-stable
and the state of each agent asymptotically converges to
a small neighborhood of the origin on ¢ € [0, +00).

3) For each agent, the state x;, the critic weight error VNV,',C,
the actor weight errors W;, and Wi,v are uniformly
ultimately bounded (UUB).!

Proof: See Appendix C. |

The overall design framework for the cooperative actor—

critic algorithm can be summarized as in Fig. 1. Each
agent implements its own composite actor—critic learning,
where the local interaction of the actor—critic information

among agents is considered. This corresponds to the
terms 37 al W) = Wie (). 4 aglWu(®) = Wiu (),

and ijl aiil ],V(t) ,,V(t)] in the cooperative actor—critic
learning design (28), (31), and (32), which captures the
interaction between agent i and agent j through the communi-
cation topology.

Remark 2: As shown in the proof of Theorems 1 and 2,
the convergence rate of the critic learning depends on
the excitation degree of Zl 1/0 Vi (O Wi ()] "dr and

IThe concept of UUB is defined in [49].
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Time/second

Fig. 2. Policy evaluation with gradient descent learning [26].

Zf-vzl fot 1//ff(t, r)[wi‘ff(t, 7)]7dr. Therefore, with sufficient
excited historical data, the critic learning could converge with
satisfactory speed. In addition, as the function approximator
dimension increases, the value function approximation resid-
ual would decrease accordingly, which could further improve
the performance of critic learning.

Remark 3: As shown in the filters design (16) and (23), the
distributed critic learning requires the knowledge of system
dynamics because f(-), g(-), and h(-) are involved. Therefore,
the presented distributed critic learning relies on the system
model. Model-free extension of the distributed critic learn-
ing can be established by utilizing additional learning-based
identifier as investigated in [36] and [50].

VI. SIMULATIONS

In this section, we apply the cooperative composite actor—
critic design to the zero-sum game with two cases.

Case 1: In this example, we consider the dynamical systems
in the form of (1) as follows:

HEERNE R

where x = [x1 X2 ]T is the system state, u is the maximiz-
ing player, and v is the minimizing player. For the min—max
zero-sum differential game, the reward function of interest is
considered as r(x, u, v) = xXQx+uTRu—y?2||v||* with Q = b,
R=0.5,and y =0.2.

In this example, we investigate the policy evaluation
problem to solve the Bellman equation (5) with a given
pair of policies {u, v}. The policy pair under consideration is
u=1185 -38]|"" |andv=[-22 06]"" | Based

X2 X2

on the linear optimal control theory [16], the corresponding
value function can be explicitly expressed as V(x) = xT Px with
p_ |: 0.4638 —0.9918

—0.9918 3.1090
basis function ¢ (x) = [x% X1X2 x% 1T, the value function
V(x) = xTPx can be equivalently expressed as V(x) = WT¢ (x)
with W =[0.4638 —1.9836 3.1090]".

As shown in Fig. 2, one can observe that, with the con-
ventional critic learning [26], the critic weight vector could
not converge to the desired values because the PE condi-
tion is not satisfied. In contrast, to implement the presented
cooperative critic learning, the interaction among the multiple
agents are shown in Fig. 3, from which one can observe

i|. In addition, with the polynomial

IEEE TRANSACTIONS ON CYBERNETICS

Fig. 3. Communication topology that dictates the information exchange
between the agents.

Fig. 4. Policy evaluation with the proposed cooperative critic learning.

that the multiple agents learn to solve the Bellman equation
through local interaction, which is different from the central-
ized learning mechanism. The evolution of multiple agents
states with the cooperative critic learning start from distinct
initial conditions, as shown in the top of Fig. 4. With the value
function parameterization using polynomial basis function, the
group of multiple agents learn the desired critic weight vector
W =1[0.4638 —1.9836 3.1090]" in a distributed fashion
through local interaction. The cooperative critic learning pro-
cess is shown in the bottom of Fig. 4, where the cooperative
critic learning achieve consensus on the desired weight vector
W =1[04638 —1.9836 3.1090]7 within 5 s.

Collecting the results in Figs. 2 and 4, the strict PE condi-
tion for convergence of conventional critic learning with single
agent [26] can be relaxed by the cooperative critic learning
with multiple agents. In addition, with the presented coop-
erative critic learning design, the probing noise to guarantee
the PE condition is also avoided to maintain smooth system
operation.

Case 2: In this case, we consider an affine nonlinear
dynamical system in the form (1) with

B 2
f(x)z[ xl_*;z’%},g(x):[fl],h(ac)z[ﬂ.

For the zero-sum differential game, the reward function of
interest is considered as r(x, u,v) = x2Qx + uTRu — y2||v|?
with minimizing player u, maximizing player v, Q = 2I,
R = 0.4902, and y = 5. With the inverse optimal design
procedure investigated in [S1], the optimal value function is
V¥(x) = x%—}— x%, and the optimal control policy and worst-case
disturbance policy are u* = —2.04x;x; and v* = —0.04xx7,
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—(1)

-——Wlj=12

[e—T)
—_—20)
= = =Wwlj=12

Fig. 5. Evolution of system state and actor—critic learning with conventional
design [26] for nonlinear Hso control.

Wa(t)

Fig. 6. Evolution of system state and actor—critic learning with presented
design for nonlinear Hso control.

respectively. In addition, the optimal value function can be
parameterized using the polynomial basis function ¢(x) =
[x% x% 1T as V*(x) = W*T¢ (x) with the ideal weight vector
We=1[1 11N

We first apply the conventional actor—critic learning [26],
where the results are shown in Fig. 5, from which one can
observe that the conventional actor—critic learning does not
converge to the desired optimal weight vectors because the PE
condition is not satisfied during the online learning process.

As a comparison, we then apply the presented cooperative
actor—critic learning with multiple learning agents discussed
in Section V, where the communication topology among the
agents is the same as in Fig. 3. As shown in the top of

Fig. 6, the multiple states evolution starts from distinct initial
conditions. The critic learning process of the cooperative critic
learning is illustrated in the second row of Fig. 6, where the
adaptive critic weights of each agent reach consensus on the
desired critic weight vector W, = [1 11T, Under the cFE
condition, the online learning of the maximizing player u; and
the minimizing player v; for each agent is depicted in the third
and fourth row in Fig. 6, respectively. From Fig. 6, the actor
weights of all the agents could be synchronized to the Nash
equilibrium policies {u*, v*}.

VII. CONCLUSION

A novel actor—critic learning algorithm is developed to find
the Nash equilibrium of the Hy, zero-sum game of systems
evolving in continuous time. The online critic learning is
designed based on the experience replay method by the com-
bination of historical and current data. In the cooperative
actor—critic leaning, the local interaction among agents con-
tributes to relax the stringent PE condition, which is difficult
to be satisfied and verified. In contrast, in the distributed
actor—critic learning, the relaxed cooperative excitation con-
dition can be verified during online learning and ensure the
exponent convergence to the Nash equilibrium of zero-sum
games. Theoretical analysis is investigated about the stability
for the adaptive learning system and the convergence of the
actor—critic networks to the solution of the HJI equation for
the Hy control problem. Application of the presented coop-
erative actor—critic learning to the policy evaluation problem
and policy optimization are conducted in the simulation
study.

Future work will extend the presented design to non-zero-
sum games.

APPENDIX A
PROOF OF LEMMA 1

1) The first proposition can be referred to [43].

2) First, denote X; with A; < A;y; as the eigenvalues of
L®1,, and w; as the unit eigenvectors of L&®1I, corresponding
to eigenvalue A;, for i = 1, ..., Np. In addition, ¢; represents
the ith column of /, fori =1, ..., p. From Assumption 3 and
the property of the Laplacian matrix £, one has A; = 0 and
w; satisfies w; = 1/\/N1N®§,~ fori=1,...,p.Fori>p+1,
one has A; > 0. In addition, any nonzero vector £ € RM
can be expressed as & = ZNP | ciwi, with ¢; being constants
satisfying » .7 Np e c > 0. In the following, we investigate two
different cases

Case 1 (Z i=p 1 cl. > 0): For the matrix G(1)+(L ® I ) one
has £7[G(r) + (L®1,,)]g = eTGWE + Y10 ) cawlw; >
Z?ﬁ’ h— czk w w; > 0 Vr > t;, which implies that the matrix
G+ (E ® I, is pos1t1ve definite Vr > f,.

Case 2 (Z_pﬂ = 0): For £ # 0, the fact ) ;7 Mo s o
implies that Zp 1c > 0. Denote ¢ = [cl, T]T
W=lwi, ..., wpl = 1N®I Then, &7 [G(t)+(L®Ip) S =
TWIGnWe = 1/NT YN Gihe > 0 Vi > t;, where
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the inequality is guaranteed by condition (11). Therefore, the
matrix G(t) + (L ® I,) > 0 for all ¢ > ¢, in the second case.

To further show that there exists a positive constant B such
that G() + (L ®1,) > Bl Yt > 1, it is referred to [43].
This completes the proof.

APPENDIX B
PROOF OF THEOREM 1

1) The condition (22) is the Type-I cFE condition and the
first conclusion can be referred to the first proposition in
Lemma 1.

2) This conclusion is a standard result in adaptive control
and can be referred to [52].

3) From the facts in (18) and (19), one has
W () = —y{[8iy(t) — Eiy(t) - W] — Z ay[W(l) - W01}
Consider the Lyapunov candidate as V(W(7)) =

(1/2) SN, WI @)y ~'Wi(r). Differentiating V(W (2)) yields

V(W) = =W O[F 0+ Lol |Wo
+W)sr (1) (34)
where af(t) = [§,0 85,01 and W@ =
[WI@). - .WE®1". From Assumption 3, the filtered

signal Sf(t) is bounded in the sense that ||8f(t)|| < 8f with
constant 8¢ > 0. From the first proposition, V(W(t)) further
satisfies

V(W) < 5| Wo| e W0’

s 02 s 02
= —(1 = Bac|[W®)|" = Bac|W() |
15w 65)
with 8 € (0, 1). With Young’s ineq%ality 2ab — b? < a%, one
has —Ba. W) |48 |W(@) || < (5)° /4Bac. Then, Y(‘Z’V(t)) <
—a:V(W(®)+b. with a. = (1 — B)acy and be = (§r)" /4o
Based on the standard Lyapunov extension theorem [49], the
conclusion holds. This completes the proof.

APPENDIX C
PROOF OF THEOREM 2

1) This can be referred to the second proposition in
Lemma 1.

2) This conclusion is a standard result in adaptive control
and can be referred to [52].

3) Consider the Lyapunov candidate for all the agents as
V(X) = Zz 1L(Xt) with L(Xl) = L. (Wl ¢) + L (Wl u) +
L,(Wi,) + V*(x), Where L(Wio) = (1/2)W, ,CJQ Wi,
LyWi) = (1/2W] v Wi, LiWi) = /W]y Wi,

=[x} Wgc VNViTM va 1T, and x = [x{ - XN]T. First, the
agent dynamics with distributed online actors can be denoted
as follows:

1 n
X = fx) — ER‘lgT(xa[V¢(xi>]TWi,u<r>

1 -
+ 5—5h CD)[Vex)] Wiy (). (36)
2y
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With the fact in (14), differentiating V*(x;) along above
dynamics yields

Vad 1 T 1 T
Vi) = —0x) — i FE)We + —— W, ()W,

4y
WIg:(t)W; (1)
(37)

2
+ 0% () + &

1 -
+ S WITOWia(®) = 5

with
1 .
G = [V6*<xi>]T{f<xi> — 3R g7 @IV i) Wi (o)

1 . -
+ s—h ()[Ve(x)] Wi,v(t)}~ (38)
2y

According to Assumption 4, the term ¢; satisfies

1 -
6l < aetny - il + 5 e g domin (R) [ W

1 i 1
3,2 minds|| Wi | + 5 e N dg W hmin(R)

1
+ =5 Nde My g MW (39)

2y

and the fact that
Wic(®) + Dic(r), one

Recall the crjtic learning  (28)
W7 (Wie)/OWic(®) = Ajc(t) -
has
Wielt) = —ye / Wit Dei(t, T)dT
[Bic)]
N
70 Y ay| Wie) = Wic) .

j=1

(40)

From the definitions 1// (t, t) and r¢ f(t 7) and the fact in (25),
one has

—Wi OV (. T) + 07 (7)

1
+ WL OT iy (Wi (0

el‘,c(t? T)

1 - -
— — WL OBir (Wi ().

1y (41)

Then, taking e; (¢, T) into the critic weight update (40) yields

N

";Vi,c(t) =Y Z%/[W/,c(l) - Wi,c(f)]
j=11 z . )
e /0 {x/f,-“,f(r, v 0] }drw,-,cm
R
AT /O [0 0 Jazary )
- yzm f [0 WO (Wi ]an
Ye

+—/ e, W (D8 (1) W (1)
4y7[Bic)] Vi Jr
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- - - T
Therefore, differentiating L.(W; .) = (1 /2)WZC)/C’] Wi . yields 5 [ fot i, T)df] WI (O)F; . (D)
N — W, (0K cu W —
Lo(t) = —WT (1) Za[W " — W, (t)] [Bi.c0] 4Bic®]
c ic o gl e Le (43)
f a a T .. .
Jo\vis@ T)[W[ (2, T)] dr Similarly, for the maximizing player v;, one has
— Wl —— — Wie()
[Bi.c(0)] N
) fé[ e, f)]df Ly(Wiv) = W0 D ay[Wn () — Wiy ()]
+ W () —————0](1) j=1
) [B,-,c(t)l Y + W (0K Wy — W (0K o Wi (1)
iu i,v T
— t o a
2 2 a4 (t,t)d ]
A[Bie]”  4y?[Bic®)] + Wi (OKi v oy T)z L
i,v ) »
where A;, and A; () are defined in (42), at the bottom of the [Bi.c(D]
page. Considering the actor learning (31) for the minimizing [ ft @ (1. 1) ]T
player u;, differentiating L, (W; ) = (1/2)W] y, "W, yields W : o Vigh, DAt
’ ’ ’ - i,v(t)Kz,cv [B ( )]2
N i,clf
1 i,v 5 2"
g ! g - 4y [Bi,c(t)]
+ Wi,u(t)Ki,uuW* - Wi’u(t)Ki,uuWi,u(t)
T .
t o a Collecting (37), (47), (43), and (44), one has
at dr] . .
i , [fo Vit o v L(xi) = —x'Pixi + x'pi + ¢ + di with
+ W,,u(t)Kt,cu B Wl,(,‘(t) = ~ L =T N
[B,',C(t)] di = Wl-’c(l) Zj:l aij[ij,c(t) - Wi,c(t)] + Wi,u(t) Zj:l

o T o T .
Nt = = [ WL oW [vy 0] W+ [ WL0r 0w [ve 0] B
0 . ) , 0 )
+ [ WLOr W0 e 0] Wdr+ TL0F.0
0

t T o T .
Aiat) = — fo WL 0B @W v 0] Wadr + /O WL 0B W[ vt 0] Wicdr

t - N T "
+ fo WO @ Wi v 0 | Wadt + WL OF.0 (42)
t a T t a T t a T
JyTig @i 0] wade fit@wugeo]d [ v o]
Pi,uu = Ki,uu - > s Pi,uc = P[ﬁcu = - B — D cu >
4[Bi.(n] 8[Bi.c(1)] 2[Bi.c(0)]
T T T
s E,;f(z)[ 4., z)] W,dr ok Eimf(z)W*[wgf(z, r)] dr [ Jawds, t)dt]
Pi,vv — B yy > s Live = Loy = B - Ki,cv )
4y2(Bi(1)] 8y2[Bi.c(t)] 2[Bi (1]
T
o [way 0o ity o w0, 0] oo
Pix = NdeTlf> Pi,c = —Zaitf(t)y Pixx = qlnxn, Picc = )
4[Bi,c(t)] [Bi,c(t)]
T T

| L vy o Jy T @Wa w0 | Wade

Piu = Ki,uuW* + Eri(t)wk + Endengndqb)‘min(R) - Ki,cu ) W, — 3
[Bi.c(n)] 4[Bj (0]
T T
P I i . [fo’ e t)dr] N s E,,f(r)W*[ e r)] W,dr

Diyv = KjywWx — _ZEi HW, + 57 NdeNMpNdy — Bicy ) «+ )

2y 2y [Bic(®)] 4y2[Bic(1)]

1 1 1 1

¢ = =7 WIT o) Wi + WW*T B Wi + 0 () + 3 e g g Amin (R) + 52 Me Nadg W (46)
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aglWi.u(®) — Wiu 1+ W (6) I agl W, (1) — Wiy(1)] and
qlyxn 0 0 0 Pix
0 Pice Picu Picv Pi.c
P, = ’ ’ ’ ,PDi = ’ 45
! 0 Piuwe Piuw 0 bi Piu (“45)
0 Pi‘vc 0 Pi,vv Piyv

with notations in (46), at the bottom of the previous page.
Denote

~ ~ T
0 =W W0 ]
~ ~ T
0 =W, W]
~ - T
W0 = [ WL - Wh 0 ]
=T - Fo ] @7)
Note that 2?’:1 di = —WILRL)W, — WHL®IL,)W,
WL ® Ip)Wv < 0. Therefore
ZL(xz) < Z (—x! Pixi + x'pi + ci). (48)

i=1

Finally, one has V(x) < —x TPy + xTp + ¢, where

P = diag( iccr - PN,cc)
Py = diag(Piuus - - - » PN,uu)
Py, = dlag(P, VW e e PN,W)
Pey = diag(Picus - - - Pn,cu)
Py = diag(Piuc, ..., PN,uc)
Py = dlag(Pl Vs e ey PN,CV)
N
ve = dlag(P, VCs e e PN,VC), c= Zci

pu=[0l, Pk e =[p], PR ]
qIannN 0 0 0 Px
pP= 0 Pee  Pew Pey _ | Pe
0 Pye P 0 Pu
0 Py 0 Pyy Pv

Note that the matrix P can be rewritten in a block-wise form
as follows:

qlunxnN 0 0

P = 0 P.e P (49)
O Pac Paa
with Py, = diag[Puy, Pwl, Pea = PL. = [Pey Pev]. Since

Zfilfot L O )] 17dt > & - Iyxuy, the matrix Pec
is positive deﬁmte In addition, the Shur complement of
P.. is positive definite, that is, P, — PcaPa_alPaC > 0, pro-
vided that K¢y < Kjuw and K; ¢y < K;yy. Combined with
the facts that ¢ > O, then, the matrix P > 0, that is,
Amin(P) > 0. From Assumption 4, one has ||p|| < pmax and
llell < cmax. Therefore, one has V(x) < —Amin(P) - Ix 11> +
Pmax - | X || +cmax and V( x) is negative if the augment variable

x exceeds the set {x|ll x|l > b,.} with b, épmax/kain(P) +
VPmax2 /4 max2 (P) + Cmax/Amin (P). According to the standard

IEEE TRANSACTIONS ON CYBERNETICS

Lyapunov extension theorem [49], the agents’ states x;(r) and
the actor—critic weights learning error W”(t) W,u(t) and
W(t) are UUB. This completes the proof.

REFERENCES

[11 V. G. Lopez, F. L. Lewis, Y. Wan, E. N. Sanchez, and L. Fan, “Solutions
for multiagent pursuit-evasion games on communication graphs: Finite-
time capture and asymptotic behaviors,” IEEE Trans. Autom. Control,
vol. 65, no. 5, pp. 1911-1923, May 2020.

[2] K. G. Vamvoudakis, F. L. Lewis, and G. R. Hudas, “Multi-agent differ-
ential graphical games: Online adaptive learning solution for synchro-
nization with optimality,” Automatica, vol. 48, no. 8, pp. 1598-1611,
2012.

[3] S. Manfredi, “Design of a multi-hop dynamic consensus algorithm
over wireless sensor networks,” Control Eng. Pract., vol. 21, no. 4,
pp. 381-394, 2013.

[4] R. M. Murray, “Recent research in cooperative control of multivehicle
systems,” J. Dyn. Syst. Meas. Control, vol. 129, no. 5, pp. 571-583,
May 2007.

[51 W. Chen, C. Wen, S. Hua, and C. Sun, “Distributed cooperative adaptive
identification and control for a group of continuous-time systems with a
cooperative PE condition via consensus,” IEEE Trans. Autom. Control,
vol. 59, no. 1, pp. 91-106, Jan. 2014.

[6] H. Zhang, H. Su, K. Zhang, and Y. Luo, “Event-triggered adaptive
dynamic programming for non-zero-sum games of unknown nonlinear
systems via generalized fuzzy hyperbolic models,” IEEE Trans. Fuzzy
Syst., vol. 27, no. 11, pp. 2202-2214, Nov. 2019.

[71 G. Zames, “Feedback and optimal sensitivity: Model refer-
ence transformations, multiplicative seminorms, and approximate
inverses,” IEEE Trans. Autom. Control, vol. 26, no. 2, pp. 301-320,
Apr. 1981.

[8] A. Isidori and A. Astolfi, “Disturbance attenuation and Hxo-control
via measurement feedback in nonlinear systems,” IEEE Trans. Autom.
Control, vol. 37, no. 9, pp. 1283-1293, Sep. 1992.

[9] T. Basar and P. Bernhard, H-Infinity Optimal Control and Related

Minimax Design Problems: A Dynamic Game Approach. Boston, MA,

USA: Springer, 2008.

A. J. Van Der Schaft, “Ly-gain analysis of nonlinear systems and non-

linear state feedback Hno control,” IEEE Trans. Autom. Control, vol. 37,

no. 6, pp. 770-784, Jun. 1992.

[11] X. Zhong, H. He, D. Wang, and Z. Ni, “Model-free adaptive control for

unknown nonlinear zero-sum differential game,” IEEE Trans. Cybern.,

vol. 48, no. 5, pp. 1633-1646, May 2018.

Y. Yang, K. G. Vamvoudakis, H. Ferraz, and H. Modares, “Dynamic

intermittent Q-learning-based model-free suboptimal co-design of

Ly-stabilization,” Int. J. Robust Nonlinear Control, vol. 29, no. 9,

pp. 2673-2694, 2019.

M. Abu-Khalaf, J. Huang, and F. L. Lewis, Nonlinear Hy/Hxo

Constrained Feedback Control: A Practical Design Approach Using

Neural Networks. London, U.K.: Springer, 2006.

B. Luo, Y. Yang, and D. Liu, “Policy iteration Q-learning for data-based

two-player zero-sum game of linear discrete-time systems,” IEEE Trans.

Cybern., vol. 51, no. 7, pp. 3630-3640, Jul. 2021.

H. Zhang, C. Qin, B. Jiang, and Y. Luo, “Online adaptive policy

learning algorithm for Hso state feedback control of unknown affine

nonlinear discrete-time systems,” IEEE Trans. Cybern., vol. 44, no. 12,

pp. 2706-2718, Dec. 2014.

M. Abu-Khalaf, F. L. Lewis, and J. Huang, “Policy iterations on

the Hamilton-Jacobi-Isaacs equation for Hso state feedback control

with input saturation,” IEEE Trans. Autom. Control, vol. 51, no. 12,

pp. 1989-1995, Dec. 2006.

R. W. Bea, “Successive Galerkin approximation algorithms for nonlinear

optimal and robust control,” Int. J. Control, vol. 71, no. 5, pp. 717-743,

1998.

D. Prokhorov and D. Wunsch, “Adaptive critic designs,

Neural Netw., vol. 8, no. 5, pp. 997-1007, Sep. 1997.

D. P. Bertsekas, Dynamic Programming and Optimal Control, 4th ed.

Belmont, MA, USA: Athena Sci., 2011.

F. L. Lewis and D. Liu, Reinforcement Learning and Approximate

Dynamic Programming for Feedback Control. Hoboken, NJ, USA:

Wiley, 2012.

X. Yang and H. He,

adaptive critic learning,” IEEE Trans.

pp. 4860-4872, Oct. 2021.

[10]

[12]

[13]

[14]

[15]

[16]

(17]

[18] > IEEE Trans.
[19]

[20]

[21] “Event-driven Hnso-constrained control using

Cybern., vol. 51, no. 10,

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 22,2023 at 15:09:45 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

YANG et al.: COOPERATIVE FINITELY EXCITED LEARNING FOR DYNAMICAL GAMES 13
[22] Y. Lv and X. Ren, “Approximate Nash solutions for multi- [45] F. L. Lewis, H. Zhang, K. Hengster-Movric, and A. Das, Cooperative
player mixed-zero-sum game with reinforcement learning,” [EEE Control of Multi-Agent Systems: Optimal and Adaptive Design
Trans. Syst., Man, Cybern., Syst., vol. 49, no. 12, pp. 2739-2750, Approaches. London, U.K.: Springer, 2013.
Dec. 2019. [46] R. Kamalapurkar, J. A. Rosenfeld, and W. E. Dixon, “Efficient model-

[23] J. Zhao, Y. Lv, and Z. Zhao, “Adaptive learning based output- based reinforcement learning for approximate online optimal control,”
feedback optimal control of CT two-player zero-sum games,” [EEE Automatica, vol. 74, pp. 247-258, Dec. 2016.

Trans. Circuits Syst. II, Exp. Briefs, vol. 69, no. 3, pp. 1437-1441, [47] K. G. Vamvoudakis, M. F. Miranda, and J. P. Hespanha, “Asymptotically
Mar. 2022. stable adaptive—optimal control algorithm with saturating actuators and

[24] K. G. Vamvoudakis and F. L. Lewis, “Online actor-critic algorithm to relaxed persistence of excitation,” IEEE Trans. Neural Netw. Learn.
solve the continuous-time infinite horizon optimal control problem,” Syst., vol. 27, no. 11, pp. 2386-2398, Nov. 2016.

Automatica, vol. 46, no. 5, pp. 878-888, 2010. [48] S. J. Bradtke and A. G. Barto, “Linear least-squares algorithms for

[25] Y. Yang, W. Gao, H. Modares, and C.-Z. Xu, “Robust actor- temporal difference learning,” Mach. Learn., vol. 22, no. 1, pp. 33-57,
critic learning for continuous-time nonlinear systems with unmodeled 1996.
dynamics,” [EEE Trans. Fuzzy Syst., vol. 30, no. 6, pp. 2101-2112, [49] E L. Lewis, S. Jagannathan, and A. Yesildirak, Neural Network Control
Jun. 2022. of Robot Manipulators and Non-Linear Systems. Boca Raton, FL, USA:

[26] K. G. Vamvoudakis and F. Lewis, “Online solution of nonlinear CRC Press, 1999.
two-player zero-sum games using synchronous policy iteration,” /nt.  [50] S. Bhasin, R. Kamalapurkar, M. Johnson, K. G. Vamvoudakis,
J. Robust Nonlinear Control, vol. 22, no. 13, pp. 1460-1483, 2012. F. L. Lewis, and W. E. Dixon, “A novel actor-critic-identifier architec-

[27] Y. Li, T. Yang, and S. Tong, “Adaptive neural networks finite-time ture for approximate optimal control of uncertain nonlinear systems,”
optimal control for a class of nonlinear systems,” IEEE Trans. Neural Automatica, vol. 49, no. 1, pp. 82-92, 2013.

Netw. Learn. Syst., vol. 31, no. 11, pp. 4451-4460, Nov. 2020. [51] W. Haddad and V. Chellaboina, Nonlinear Dynamical Systems and

[28] Y. Li, X. Min, and S. Tong, “Observer-based fuzzy adaptive inverse Control: A Lyapunov-Based Approach. Princeton, NJ, USA: Princeton
optimal output feedback control for uncertain nonlinear systems,” IEEE Univ. Press, 2008.

Trans. Fuzzy Syst., vol. 29, no. 6, pp. 1484-1495, Jun. 2021. [52] Y. Pan and H. Yu, “Composite learning robot control with guaranteed

[29] H. Su, H. Zhang, H. Jiang, and Y. Wen, “Decentralized event-triggered parameter convergence,” Automatica, vol. 89, pp. 398-406, Mar. 2018.
adaptive control of discrete-time nonzero-sum games over wireless
sensor-actuator networks with input constraints,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 31, no. 10, pp. 4254-4266, Oct. 2020.

[30] Y. Yang, H. Modares, K. G. Vamvoudakis, W. He, C.-Z. Xu, and Yongliang Yang (Member, IEEE) received the
D. C. Wunsch, “Hamiltonian-driven adaptive dynamic programming B.S. degree in electrical engineering from Hebei
with approximation errors,” IEEE Trans. Cybern., vol. 52, no. 12, University, Baoding, China, in 2011, and the Ph.D.
pp. 13762-13773, Dec. 2022. degree in control theory and control engineering

[31] G. Chowdhary, T. Yucelen, M. Miihlegg, and E. N. Johnson, “Concurrent from the University of Science and Technology
learning adaptive control of linear systems with exponentially conver- Beijing (USTB), Beijing, China, in 2018.
gent bounds,” Int. J. Adapt. Control Signal Process., vol. 27, no. 4, From 2015 to 2017, he was a Visiting Scholar with
pp. 280-301, 2013. the Missouri University of Science and Technology,

[32] Y. Yang, D.-W. Ding, H. Xiong, Y. Yin, and D. C. Wunsch, “Online Rolla, MO, USA, sponsored by China Scholarship
barrier-actor-critic learning for Hoo control with full-state constraints Council. He was an Assistant Professor with USTB
and input saturation,” J. Franklin Inst., vol. 357, no. 6, pp. 3316-3344, from 2018 to 2020. From 2020 to 2021, he
2020. was an independent Postdoctoral Research Fellow with the State Key

[33] Y. Yang, K. G. Vamvoudakis, and H. Modares, “Safe reinforcement Laboratory of Internet of Things for Smart City, Faculty of Science and
learning for dynamical games,” Int. J. Robust Nonlinear Control, vol. 30,  Technology, University of Macau, Macau, China. He is currently an Associate
no. 9, pp. 3706-3726, 2020. Professor with USTB. His research interests include reinforcement learn-

[34] R. Kamalapurkar, P. Walters, and W. E. Dixon, “Model-based reinforce-  ing theory, robotics, distributed optimization and control for cyber—physical
ment learning for approximate optimal regulation,” Automatica, vol. 64,  systems.
pp. 94-104, Feb. 2016. Dr. Yang was a recipient of the Best Ph.D. Dissertation of the China

[35] G. Chowdhary and E. Johnson, “A singular value maximizing data  Association of Artificial Intelligence, the Best Ph.D. Dissertation of USTB,
recording algorithm for concurrent learning,” in Proc. Amer. Control  the Chancellor’s Scholarship in USTB, the Excellent Graduates Awards in
Conf., 2011, pp. 3547-3552. Beijing, and the UM Macao Talent Program in Macau. He is an Associate

[36] R. Kamalapurkar, B. Reish, G. Chowdhary, and W. E. Dixon, Editor for IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING
“Concurrent learning for parameter estimation using dynamic state- SYSTEMS.
derivative estimators,” IEEE Trans. Autom. Control, vol. 62, no. 7,
pp. 3594-3601, Jul. 2017.

[37] Y. Pan and H. Yu, “Composite learning from adaptive dynamic surface
control,” IEEE Trans. Autom. Control, vol. 61, no. 9, pp. 2603-2609,

Sep. 2016.

[38] N. Cho, H. Shin, Y. Kim, and A. Tsourdos, “Composite model reference
adaptive control with parameter convergence under finite excitation,” Hamidreza Modares (Senior Member, IEEE)
IEEE Trans. Autom. Control, vol. 63, no. 3, pp. 811-818, Mar. 2018. received the B.S. degree in electrical engineering

[39] Y. Yang, Y. Pan, C.-Z. Xu, and D. C. Wunsch, “Hamiltonian- from the University of Tehran, Tehran, Iran, in 2004,
driven adaptive dynamic programming with efficient experience replay,” the M.S. degree in electrical engineering from the
IEEE Trans. Neural Netw. Learn. Syst., early access, Oct. 25, 2022, Shahrood University of Technology, Shahrood, Iran,
doi: 10.1109/TNNLS.2022.3213566 in 2006, and the Ph.D. degree in electrical engi-

[40] A. Van der Schaft, Ly-Gain and Passivity Techniques in Nonlinear neering from The University of Texas at Arlington,
Control. Cham, Switzerland: Springer, 2000. Arlington, TX, USA, in 2015.

[41] D. Vrabie, K. G. Vamvoudakis, and F. L. Lewis, Optimal Adaptive He was a Senior Lecturer with the Shahrood
Control and Differential Games by Reinforcement Learning Principles. University of Technology from 2006 to 2009, and a
Stevenage, U.K.: Inst. Eng. Technol., 2012. Faculty Research Associate with The University of

[42] P. Ioannou and J. Sun, Robust Adaptive Control. Hoboken, NJ, USA:  Texas at Arlington from 2015 to 2016. He is currently an Assistant Professor
Prentice-Hall, 1995. with the Mechanical Engineering Department, Michigan State University,

[43] C. Yuan, P. Stegagno, H. He, and W. Ren, “Cooperative adaptive con-  East Lansing, MI, USA. His current research interests include cyber—physical
tainment control with parameter convergence via cooperative finite-time  systems, reinforcement learning, distributed control, robotics, and machine
excitation,” IEEE Trans. Autom. Control, vol. 66, no. 11, pp. 5612-5618,  learning.

Nov. 2021. Dr. Modares was the recipient of the Best Paper Award from the 2015

[44] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward IEEE International Symposium on Resilient Control Systems. He is an

networks are universal approximators,” Neural Netw., vol. 2, no. 5,
pp- 359-366, 1989.

Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND
LEARNING SYSTEMS.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 22,2023 at 15:09:45 UTC from IEEE Xplore. Restrictions apply.



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Kyriakos G. Vamvoudakis (Senior Member, IEEE)
received the Diploma degree in electronic and com-
puter engineering from the Technical University of
Crete, Chania, Greece, in 2006, and the M.S. and
Ph.D. degrees in electrical engineering from The
University of Texas at Arlington, Arlington, TX,
USA, in 2008 and 2011, respectively.

From 2012 to 2016, he was a Project Research
Scientist with the Center for Control, Dynamical
Systems and Computation, University of California
at Santa Barbara, Santa Barbara, CA, USA. He was
an Assistant Professor with the Kevin T. Crofton Department of Aerospace
and Ocean Engineering, Virginia Tech, Blacksburg, VA, USA, until 2018.
He currently serves as an Assistant Professor with The Daniel Guggenheim
School of Aerospace Engineering, Georgia Institute of Technology (Georgia
Tech), Atlanta, GA, USA. His research interests include approximate dynamic
programming, game theory, cyber—physical security, networked control, smart
grid, and safe autonomy.

Dr. Vamvoudakis was a recipient of the 2019 ARO YIP Award and the 2018
NSF CAREER Award. He is currently an Associate Editor of Automatica and
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS: SYSTEMS.

IEEE TRANSACTIONS ON CYBERNETICS

Frank L. Lewis (Life Fellow, IEEE) received
the bachelor’s degree in physics/electrical engineer-
ing and the M.E.E. degree from Rice University,
Houston, TX, USA, in 1971 and 1971, respectively,
the M.S. degree in aeronautical engineering from the
University of West Florida, Pensacola, FL, USA,
in 1977, and the Ph.D. degree from the Georgia
Institute of Technology, Atlanta, GA, USA, in 1988.

He is the UTA Distinguished Scholar Professor,
the UTA Distinguished Teaching Professor, and the
Moncrief-O’Donnell Chair with The University of
Texas at Arlington Research Institute, Arlington, TX, USA. He has seven
U.S. patents, numerous journal special issues, numerous journal articles, and
20 books. He is involved in feedback control, reinforcement learning, intelli-
gent systems, and distributed control systems.

Dr. Lewis is the PE Texas, the U.K. Chartered Engineer, a member of the
National Academy of Inventors and Fellow Institute Measurement Control,
and an IFAC Fellow.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 22,2023 at 15:09:45 UTC from IEEE Xplore. Restrictions apply.



