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Abstract—1In this paper, we study the impact of clock
offsets among different components of cyber-physical systems
on data-driven off-policy reinforcement learning (RL) for linear
quadratic regulation (LQR). Our results show that under
certain conditions the control policies generated by data-driven
off-policy RL with clock offsets are stabilizing policies. With
clock offsets what directly influences the learning behavior is not
only the values of clock offsets but also the dynamics change
caused by clock offsets. In particular, larger values of clock
offsets do not necessarily lead to non-stabilizing policies. The
proposed conclusions are illustrated by numerical simulations.

I. INTRODUCTION

Cyber-physical systems (CPS) are large-scale and highly
distributed systems with computer nodes and communica-
tion networks connecting various components. Efficient and
reliable operation of CPS requires precise timing of all
components sharing the same time. Thus, timing is of critical
importance to the flawless functionality and resilience of
CPS. However, clock asynchronization among components is
quite ubiquitous in these distributed systems [1]. Moreover,
accurate system models of large-scale CPS are difficult or
impossible to obtain, utilizing data generated by systems for
control synthesis is a tendency to go. Clock offsets among
different components may induce and propagate mismatched
signals in the system and thus negatively impact performance
[2], [3]. Thus, understanding the impact of asynchronous
clocks on data-driven control is an important research topic.

Recently much of the attention has been given to applying
data-driven methods for time-delayed systems [4]-[6], and
the robustness or resilience of RL under approximation
errors [7]-[10], system dynamics with noises [11], [12],
corrupted rewards under adversarial attacks [13], [14] and
perturbed rewards in noisy environments [15]. The focus of
the aforementioned works is mainly on learning algorithms
themselves, especially on the robustness of policy iteration
(PI) or value iteration (VI) in term of variations of the learn-
ing dynamics caused by approximation errors. Despite these
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significant works, the impact of clock asynchronization on
data-driven control is still missing. Though this consideration
is similar to time delays, it is noteworthy that clock offsets
and time delays are different in essence. Time delays are
represented within the system dynamics, usually incorporated
in state or control variables. With time delays, the system
propagation is changed and thus system trajectories gener-
ated by time delayed systems deviate from those without time
delays. Instead, clock offsets are reflected only on the data
transmitted in the communication channels between network
nodes while the system dynamics remain unchanged. In
addition, research works on time delays assume that values
of time delays are known when deriving stability conditions
or optimal control policies [4], [16], [17]. Motivated by this
gap, in this work we investigate the impact of clock offsets
on RL. Since off-policy RL is proved to be insensitive to
bias caused by the addition of probing noise [18], [19], we
focus on the impact of clock offsets among network nodes
on off-policy RL algorithms without the influence of probing
noise. The work of [10] studies the robustness of RL for LQR
to errors in the learning process due to inaccurate system
dynamics while this work investigates the impact of clock
offsets on the performance of data-driven RL. In addition,
while [20] studied the effect of clock offsets on data-driven
RL, only continuous-time systems were considered.

The contributions of the present paper are threefold. First,
we formulate the problem of RL for systems with clock dis-
crepancies among the learning component and other compo-
nents. Then, we derive a data-driven off-policy RL algorithm
under clock offsets. Finally, we analyze the relationship of
clock offset and off-policy RL performance. We begin by
formulating the problem of data-driven off-policy RL with
clock offsets in Section II. Impact of clock offsets on the
data-driven off-policy RL is shown in Section III. Section IV
presents numerical simulations. The last section concludes
and sketches about future work directions. Notation: N (Z)
is the natural number (integer) set. A(-) (A(-)) denotes the
maximum (minimum) eigenvalue of a matrix. [,, denotes the
identity matrix with dimension n. ® denotes the Kronecker
product. A > 0 (A > 0) denotes a symmetric positive
(non-negative) definite matrix. The matrix norm refers to
Frobenius norm.

II. PROBLEM FORMULATION
A. System Setup under Clock Offsets

Consider a discrete-time, linear time-invariant system:

Tpr1 = Ay + Buy, (D
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where k£ € N is the discrete time index, x; € R™ is the
state vector, ux € R is the control input, A € R™*™ and
B e R™™™ are the state matrix and input matrix, respectively.
The pair (A, B) is assumed to be stabilizable. The general
structure of a CPS that incorporates learning is shown in
Figure 1. Each system component is spatially distributed,
and all components have their own distinct clocks, which
ideally should be synchronized with one another. However,
imperfect communication channels and hardware might lead
to timing mismatches, which in turn leads to inconsistent
data propagation within the system. Such corrupted data
can jeopardize the functionality of the learning component,
which inherently assumes that all component clocks agree
with one another. The true state and control input at time step
k are ideally x; and wuy, respectively. But owing to timing
discrepancies between the learning component and other
components, the actual state and control input perceived by
the learning component at time step k are xi = Tpis,(k)
and ul, = w5, (1), respectively, where 6, : N — Z
and §, : N — Z are clock offsets for state and control
input signals, respectively. We are interested in the impact
of offsets between the actual states/control signals and the
perceived ones, particularly conditions of achieving tolerable
learning behavior under clock offsets for system (1).

Actuator . Sensor
@—{ Physical Plant ]—[ Node ]
%)) (O} C

Controller Node (§)

Learning component

Th = Ty, Q)

1
Up, = Uk+35,

Fig. 1.
B. Preliminaries: Optimal Control and Model-based RL

CPS structure with asynchronous clocks.

For a given stabilizing control policy p : R — R™,
define its corresponding performance criterion as J(xo; u) =
Yo (2 Qxy + p(zy)Ru(zy)), where @ € R™™ > 0
and R € R™*™ > (, and the pair (A, Q) is observable.
The value function V# corresponding to policy p denoted
by V#(-) := J(-; ) satisfies the Bellman equation, Vk € N:

Vi(xy) = 23 Quy + p" (xp) Ru(xy) + VH(zpy1).  (2)

The goal is to find a policy p* : R™ — R™ which minimizes
the performance cost and yields the optimal value, i.e.,
V*(zx) = miny, J(zx; n). Consider the linear state feedback
policy and its quadratic value function:

wlag) = =Kz, VF(xg) = x;fok, 3)

with P € R™*™ > (. Using (3), the Bellman equation (2)
can then be simplified to the Lyapunov equation:

(A-BK)'P(A-BK)+Q+K'RK =P. (4
Now define the Hamiltonian, Vg, u, k:

H; = ngxk + "Ry + IE+1P1'k+1 — x}sz. 5)

Then, the optimal control p*(x) = K*xj can be derived
by applying the stationarity condition on the Hamiltonian:

K*=(R+ BYP*B)"'BTP* A, (6)
where P* satisfies the algebraic Riccati equation (ARE):
0=ATP*A
—P*+Q—-A"P*B(R+B"P*B)"'BTP*A. (7)

The ARE (7) is a nonlinear function of P and thus is difficult
to solve directly. Combine (6) and (7) to get:

(A— BK)'P(A-BK)+Q+ (K)"RK = P. (8)

Equation (8) together with equation (6) lays the foundation
of model-based PI approach [21] to solving (7) iteratively.

C. Data-driven Off-policy RL without Clock Offsets

Consider off-policy RL [22] to solve (7) in a data-driven
manner, which begins by writing the original system (1) as:

Ty = Az + B(Kzg + uy), )

with A = A— BK. Here, u;, can be any policy rather than the
desired optimal one, hence justifying the “off-policy” label
of this algorithm. uy is generally set as up = up(xg) + €k,
where py, is a stabilizing behavioral policy, and e, € R™ is
an exploration noise added to meet the persistence excitation
(PE) condition. This control input is then applied to systems
to generate input-state data, which are used to express (8)
in a data-based manner. Manipulating (3), (8)-(9) yields the
off-policy Bellman equation of PI with iteration number j:

g PI g — ol Py
=kasz + IE(Kj)TRKjxk — (ug + K92)"BY P Agy,
— (up + Kzp)"'BTPI gy . (10)

With (9) and employing the property of Kronecker product,
ie., 2T Ay = (yT ® zT)vec(A), (10) can be rewritten as:

0 = — (f @ el)vec(PIHY) + (2, @ 2T, vec(PIH)
—2(xf @ (up, + Kap,)T)vec(BTPIT1A)
— ((up — K72)T ® (up + Ka)")vec(BT PITIB)
+ 2} Qg + 2 (KT REK .. (11)

Set With = pitl ¢ Rrxn, Wit = BTPitig e R™7™,
Wg“ = BTPi+*1B e R™*™ which can be solved by least
squares (LS) methods through (11). Thus, P/*! and Ki+!
can be solved simultaneously without knowing the dynamics.
There are n%-+m?+mn unknown parameters. So the window
size for collecting data is selected as s > n? + m? + mn.
Note that Wy and W3 are symmetric matrices with n x (n+
1)/2 and m x (m + 1)/2 independent elements, respectively.
Hence, only n x (n + 1)/2 and m x (m + 1)/2 number of
elements need to be computed for Wy and W3, respectively.
Algorithm 1 describes the data-driven off-policy RL.

Algorithm 1 Data-driven Off-policy RL
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Select a stabilizing control policy uy = up(zy) for data
collection. Set iteration number j = 0. Select an initial
controller gain K° and a proper window size s.

1. Solve for Wi*!, W%J“, WJ*" such that, Vk € N,
W [vec(Wi™™)T vec(Wi™HT ec(W”l) 1T = ¢7, where
i e ReX(*+m’+mn) ang i e RS are given by:

TE Quy + ‘7crkr(Kj)T_RK’dslC
5 $E+1Q$k+1 + LEEH(KJ)TRKJmkﬂ
Ths 1QThys—1 + Tyt (K)TRE 2y 51
Y HY HY
‘ HY  H3' H3
=1 . . s
H)S(X H;(U HUU
with, for 2 = 1, 2, ..., Hxx:a:ng@xkﬂl—
Ty @y HI _2[zk:+7, 1®(Uk+z 1+ K7 2p451)"], and
Huu = (Uk-H 1 — K]Ik+1l 1)T®(Uk+z 1+ K]'Ik+l 1)T-
2. Update policy by: Kit1 = (R + WitH)=twi*!,
3. Stop if || K7+t — KJ|| < & with a positive threshold &.
Otherwise let j = 7 + 1 and goes to step 1.

The convergence of Algorithm 1 is proved in [22] by
showing that the off-policy Bellman equation (10) is
equivalent to the model-based Bellman equation (4). So
as j goes to oo, PJ converges to the optimal kernel
matrix P*, ie., the solution of the ARE (7), and K’
converges to the optimal controller gain K™ given by
(6). The step 1 in Algorithm 1 is implemented by
the LS method (91 = (()Tp?)L(y7)T¢/ with
CItl = [vec(W{tHT vec(W]H)T vec(W7™HT T and
the window size s > n? + m? + mn. PE conditions are
required to guarantee v’ has full rank [22].

D. Data-driven Off-policy RL with Clock Offsets

Algorithm 1 shows clock offsets influence the matrices
¢ and . Under clock offsets, the state-input data actually
utilized by the learning component are xﬁc = Tpy5,(k) and
ufe = Up4s,(k)- Then the matrix formulations under clock
offsets are given by: (bj =

(xk)Tka + (]
(hy ) Qo yy + ()

)T (K9)T RK
)N EDTRK

(mgc-&-s—l)Tngc-&-s—l + (zvgc-k—s—l)T(Kj)TRKjxi:-&-s—l
(12)

Yo omye oy
P =1 . . I (13)

E[’XX IA{.xu EI.UU
with, fori =1, 2, ..., s,

l l 1
HXX (karz 1)T ® (karifl)T - (‘rk+i)T ® (xk+i)Ta

l i1l

qu _2[(xk+z 1)T ® (ukJrifl + K]xkﬁ'ifl)T]’

Hzpu :(uk+i—1 - Kjxgc-k—i—l)T ® (“2%-1 + Kjx5c+i—1)T-

Accordingly, Algorithm 1 is replaced by Algorithm 2.

Algorithm 2 Data-driven Off-policy RL with Clock Offsets

Select a stabilizing control policy ug = up(xy) for data
collection. Set iteration number j = 0. Select an initial
controller gain K° and a proper window size s.

1. Solve for Wf+1, Wjﬂ, I/Vj+1 such that, Vk € N,
wj [Vec(WjH) veC(I/iféJr )T Vec(WJH) 1T = ¢, with
@ € R® and )7 e Rs* (" +m*+mn) given by (12) and (13).

2. Update policy by:

K9t = (R+WiTH=twi*. (14)

3. Stop if | K7+ — K7|| < ¢ with a positive threshold €.
Otherwise let 5 = j + 1 and goes to step 1.

Let Wit Pt Wit BTPitlA, With =
BTPJ“B The LS estimation of ¢ with offsets is given by:

= ()T T (W) T (15)
III. MAIN RESULTS

Now we are interested in: with gZ;j and @Zj whether
Algorithm 1 still generates stabilizing control policies.

Lemma 1. Assume the PE condition is satisfied when collect-
ing data in Algorithm 2. Then the control policies generated
by Algorithm 2 are stabilizing policies given that the norm of
the learning gap |e|| = ||¢7 1 — (71| is sufficiently small.

Proof. Define the H operator as H(K, P, A, B,Q, R, z}) =
(z1)T[(A-BK)TP(A—BK)+Q+ KT RK|z!. By model-
based Bellman equation (4), H(K,P,A,B,Q,R,z!) =
(24)T Pzl In the j—th iteration during the learning process,
based on (8) from the model-based RL Algorithm 1, we have
H(KI, PITY A B,Q,R,zt) = (2})TPi+1al. Tt follows
from Rayleigh-Ritz inequality for symmetric matrlces that

AP PIY|ld 12 < () TP, — (ah) TPl <
A(Pi+L — Pith)|zL||2. Then we have:

(@) T PIH ), — (@) TP ] < e, (16)
with &1 = max(]A(P7T1 — PIFY)|[laf]?, [N(P7H! —
POz []?). Let VI*! = (A — BKI)"P/* (A ~
BKJ) + (K)TRKJ and Vi*+! = (A — BKH)TPi+1(A —

BKJ) + (Kj)TRkj. Following the same logic, we have
VI VI < H(KI,PI*1, 4, B.Q. R.a}) ~
H(KI, PITY A, B, Q, R, o)) S A(VIH = VIH)||ag |12,

|H(K?, PPt A B,Q, R, z})
—H(K’, PP A B,Q, R, k)| < &2,

with e < max((A(VIH=VIH) | [X(VITL-VIT1)|)||2L |1
According to (5)-(6), the wupdate control policy
(14) in each iteration of Algorithm 2 1is actually
the minimizer of H operator, ie., KJt! =
arg min H (K, Pi*' A, B,Q, R, z}). Given bounds ¢, and
K
e5 due to clock offsets, H(K/*+1, Pit1 A B, Q, R, zk) <
H(K]7PJ+1aA7B7Q7R?xk) <

7

2784

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on August 22,2023 at 15:25:58 UTC from IEEE Xplore. Restrictions apply.



H(KT, PI*Y A B, Q,R,x) + g2 = ()P a) +
€2 = (z)TPi*1al + e + &5 Then
H(KIT PIT1 A B,Q, R, 2!) = ()T -

BKj+1)TPj+1(A — BK”U +Q+ (IA{j“)TRIA(J‘“]gcﬁC <
(2t)TPI+1gl 4+ e) 4+ g5 With Q > 0 and R > 0, for
sufficiently small learning gap e and thus sufficiently small
1 and g9, (A — BKITHTPitl(A — BKItl) < pitl
which implies the largest absolute value of eigenvalues of
A— BKJ*! is smaller than 1. So K7+ is stabilizing.  m

Corollary 1. Given the bound &; described by (16) and
the bound ey described by (17) due to the learning gap
e from clock offsets, assume that e; + g2 < (2})T[Q +
(K7+1)TRK7+1]z} holds at each iteration of the learning
process. Then the control policies generated by Algorithm 2
with clock offsets are stabilizing policies.

Proof. 1t is shown in the proof of Lemma 1 that
(z)T[(A BRI+ T pitl(A BK*Y) + Q +
(K7*O)TREK 2l < (a)TPITal + & + e Tt
follows from & + £9 < () T[Q + (K7+1)TREKI 1]z}, that
(A — BKIi+)Tpitl(4 — BKI+1) < pitl, m

Based on Lemma 1, now we derive the direct relationship
between clock offsets and the performance of off-policy RL.

Theorem 1. Assume the PE condition is satisfied given the
collection of data for Algorithm 2. Then the control policies
generated by Algorithm 2 are stabilizing policies given that
| A%F) — I, ||X + ||E‘5 = (k)= ' AiB|U is sufficient small for
§.(k) > 0, or || A% UCLI & + |5, W= Aitoa () Bl is
sufficient small for J,(k) < 0, where X is the upper bound
of state norm and U/ is the upper bound of input norm.

Proof. Tt follows from ¢I¢it! = ¢/ and I(I+t = @
at the j-th iteration of Algorithm 1 and Algorithm 2 that
1;jejﬂ = AYICItl — AgJ with A¢f = ¢ — (;51’, Ayl =
i —qpd, I+l = I+ _ (3t1 ¢ i the learning gap which
is the difference between the real intermediate variable ¢
from Algorithm 1 and the corrupted one f from Algorithm
2 under clock offsets. Given that @Zj is invertible under
PE condition, if we could prove A¢J(7*! and A¢/ are
sufficiently small under certain conditions and so ||e/*1|
is, then based on Lemma 1 Algorithm 2 could generate
stabilizing control policies. Consider the difference of state-
input data generated with clock offsets and without clock
offsets first. Manipulating dynamics (1) recursively to get

xp = AFxg + 21 A'Buy_q_;. Accordingly, state data
with clock offset &, (k) are given by x} = x5 k) =
Ak+5z( )gj + Ek+6 x(k)— 1AZBUk+6w(k)—1—i-

For the case of §,(k) > 0, we have 2} — z;, = (A%*) —

I,)xy + Eé (k) 1AiBuk+5x(k)_1_i. The second term on the
right- hand 51de contains a summation of finite terms and thus
is bounded. So the norm of difference between state data with
clock offsets and those without clock offsets are bounded by:

), — all

0s(k)—1 44
< [|A%®) — Ll + 112287 A' Buyy s, k-1

< [|A%® — L& + =00 AT B, (18)

where X is upper bound of state norm, U is the u}))per bound

of input norm. Hence, if || A% (®) — T, ||X + ||E YA B|U

is sufficiently small, then ||z} — x| is sufﬁ01ently small.
Likewise, for the case of d,(k) < 0, we have:

Iz}, —

= [[(A%®) — L)z — 5 BT AW By )
< A% ) — Ll flag]] + 15525 ® 7 AT B By |
< [JA%® — I X + |5 Bt A BBy, (19)

Combine (18) and (19) to get:
2}, — x| < [|A%*) —1,, IIX

+ max (|5 4B, |25 BT AR B, (20)

For the stabilizing control policy up(-) during data col-
lection phase, let state corresponding to u% = Upts,(k) DE
Ty. Denote T, = ¥j4s, (), Where d5(k) is a function of
8. (k). According to Lipschitz continuity and (20), we have
lluk =l = [l (@k) = oo (@a) || < Lllwgess, vy —ll with L
a Lipschitz constant of the function ub( ). Thus, if || A%*(*) —
L]l X + max (|25t Ai By, |25 W A0 B s s
sufficiently small, then Juf, — uyl| is sufﬁc1ently small.

For the 4th row and 1st column term of
APICItL where 1 < i < s, we have (HX —
ﬁ;‘x)vec(leﬂ) = m;cr+i71W{+1$k+i—1 kaleHl’kH—
[(xﬁc-«-z‘—l)TWi?-,—lka 1 (mgc-t-z)TWlJ—i_lxch] =
(Thric1 — x§¢+z 1)TW]+ (mkﬂ 1+(-Tk+z 1)) +
(Trgi — @b )W (2 + (2,,)). Tt follows that
JCH — B eV | < 2(eprio — hyr )Tl +
(@pti — ka)TH)HWJHHX If ||z — x| is sufficiently
small, so (H* — H*)vec(W{ ™) is

For the 4th row and 2nd column term
of AYI(ITL where 1 < i < s |(HY —
myvee Wi = Rl W s -
(“2+¢—1)TW2]+15%+1 1] 2[xE+i—1(Kj)iW2j+1xk+ifl -
(@hyse) "B TWE el T < 2UWE - s a —
Thyiall + _2X||(W2J“)T|| lurrior = jp;yll
2X|[(K9) "W |- [ herioa =y [ 22| (WG T K-
@krio1 — ki q || I |2k — 2| is sufficiently small, then
(HX — HX)vec(W]™") is sufficiently small.

For the i-th row and 3rd column term of AwyJ(it!,
where 1 < i < s |(H — H%)vec(Wi™)]
H[Ugﬂqwgﬂukﬂq ‘ (i) "W gy y]
[ s (KT TWY T Ky g0 -
(kar’L 1) (KJ)TWJ+1K]xk+z 1] . B
[ KIwggion = ()W KR ]+
[‘rkJrz 1(KJ)TVVJJr Uk+i—1 4 —
(@hria)” (K])TWJH%H 1]”4< UWS | | (urior —
)| + 22 ()W s — ok, )]+
|| Wy K]Hl (ki1 — xk+z D+ 2 (K)TWE
|| (wgpi— 1= Up 1)|| If ||z} — x| is sufficiently small,
(H™ — H"Yvec(WI™!) is sufficiently small.
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For the i-th term of A(bj, where 1 < ¢ < s,
HA@” = ||xE+i—1ka;+i_l +33k+z 1(KJ)TRKJQ%+Z 1l =
(x§c+i—1)TQx§g+i—1 - ($§c+i—1) (Kj)TRKJka 1 S
2X[Q + (K)TRK oy = oyl + NQ +
(KNTREKT) || @pqim1 —ah ;1 ||2 I |2}, — 2| is sufficiently
small, each term in A¢’ is sufficiently small. ]

Remark 1. For the sufficient condition of generating stabiliz-
ing control policies by Theorem 1, the first term || A% (%)

I,]|X indicates the impact of clock offsets depends on the
deviation of dynamics change A% (%) from identity matrix
1,,. The second term ||E§ = (k) "AiB|ji{ implies the impact
depends on the control input during the duration of the non
synchronization. If the closed-loop dynamics do not change
too fast and clock offsets are small enough, the off-policy
RL with clock offsets could still generate stabilizing control
policies. The learning gap € reflects the combined effects of
system dynamics and clock offsets. O

To analyze the performance loss due to clock offsets,
denote the optimal value by V*(xx) = z} T P*z;, without
clock offsets and by V (z4) = (24)T Pzl with clock offsets.

Theorem 2. Given a linear state feedback behavior policy
Ky, and an invertible matrix (A — BK,), under clock
offsets 0, (k) and 6, (k), the performance loss is bounded

as |V*(xx) — V(mﬁg)| < €|z ||?, where € = = max(|A(P* —
P)|, AP — P)I) + max(A(P)], |A( )I) with P = P —
(A= BEy)*» )T P(A - BK;)*=®).

Proof. One can write \V*(xk) — V()| = |afPra), —
(xk)Tka\ < |zl Pray — af P:ck| + |x;£ka - (:I:k)Tka|
Given the behavior policy Ky, 2} = (A — BK})%Fxy,.

Denote P := P — ((A— BKb)‘sw(k))T P(A — BEy)%=(®),
Based on Rayleigh-Ritz inequality for symmetric
matrices that |V*(z) — V(ah)| < |afPayp —
x} Pyl |zF Pxy, — (ah)TPxl| = |x§P*mk -
x;gﬁg:k| + |ofPrx — o (A— BEKy)=®) P4 —
BK,)**®May| < max(|A(P* — P)|, [X(P* — P)|) |kl +
max(]A(P)[, N(P)]) [l . L]

IV. SIMULATION RESULTS
Consider the third-order F-16 autopilot aircraft plant [23]:

0.9065 0.0816 —0.0005 —0.0027
Tpe1 = |0.0743 09012  —0.0007 | 5, + | —0.0068 | ug,
0 0 0.1327 1

where the states are 7, = [, q,d.]T with a the angle of
attack, ¢ the pitch rate, and J. the elevator deflection angle,
and wu is the elevator actuator voltage. Let Q = I,,, R = I,,,,
the initial state o = [10, —10, —3]T and the behavior policy
Ky, = [00.12 1]. To ensure data richness, probing noise ej, =
sin?(0.5k) + sin(k) + cos(k) is added to the system for 50
time steps for data collection. Consider clock offsets between
the controller and the learning component. The control input
signals received by the learning component are actually
Uk, (k) at k with 6, = {—1,-2,-3, -4, -5, —6, —T}. The
data used for Algorithm 2 begin from the time step k = 8
with window size s = 16. The learning results under clock

offsets and state trajectories with learned policies are shown
in Figure 2 and Figure 3, respectively. Figure 2 shows that
all controller gains K’ and kernel matrices P/ converge
in the seven clock offset cases. However, in Figure 3 the
learned controller with clock offset 4,, = 1 makes the system
unstable and states explode while the learned controller gain
with bigger clock offset J,, = 7 stabilizes the system. As
implied from Theorem 1, bigger values of clock offsets do
not necessarily lead to generating non-stabilizing control
policies. Both system dynamics and clock offsets determine
the influence. Section III shows the learning gap e from
(15) directly determines the influence of clock offsets on
learning algorithms. Learning gaps for the seven clock offset
cases are presented in Table I. Note that the learning gap
for clock offset 0, = 1 is way much bigger than other
cases, which explains the stabilizing differences of learned
controller policies among these cases. According to (15),
which part of data used for the data-driven off-policy RL
Algorithm 2 has an impact on the learning gap e under
clock offsets. For example, if the data used for Algorithm
3 begin from £ = 8 with window size s = 40, then for
clock offset 6, = 1, the learned controller is a stabilizing
policy as shown in Figure 4, as implied by Theorem 1 that
both system dynamics and the magnitude of clock offsets
together influence the learning behavior.
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Fig. 2. Learning process of Algorithm 3 under various clock offsets. The
inner plots inside display magnified views of the initial iteration stage.
V. CONCLUSION AND FUTURE WORK

In this work, we investigate the impact of clock offsets
among different components of CPS on the data-driven
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