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A method is presented which allows for the numerical computation of the stress-energy

tensor for a quantized massless minimally coupled scalar field in the region outside the

event horizon of a 4D Schwarzschild black hole that forms from the collapse of a null shell.
This method involves taking the difference between the stress-energy tensor for the in

state in the collapsing null shell spacetime and that for the Unruh state in Schwarzschild

spacetime. The construction of the modes for the in vacuum state and the Unruh state
is discussed. Applying the method, the renormalized stress-energy tensor in the 2D case

has been computed numerically and shown to be in agreement with the known analytic

solution. In 4D, the presence of an effective potential in the mode equation causes
scattering effects that make the the construction of the in modes more complicated. The

numerical computation of the in modes in this case is given.
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1. Introduction

The expectation value of the renormalized stress-energy tensor operator for a quan-

tized field is a useful way to study quantum effects curved space. It can also be used

in the context of semiclassical gravity to compute the backreaction of the quantum

field on the background geometry. In the case of four-dimensional, 4D, black holes,

this quantity has to date only been computed for static black holes 1–4,6–15 and

Kerr black holes 16,17. However, to our knowledge, a full numerical computation of

this quantity has not been done for a quantized field in a 4D spacetime in which

a black hole forms from the collapse of a null shell, which is probably the simplest

model for the formation of a black hole.

In Ref. 18, we developed a method to numerically compute the full renormalized

stress-energy tensor for a massless minimally coupled scalar field in the case of a

spherically symmetric black hole in 4D that forms from the collapse of a null shell.

This method can be used in the region outside the null shell and future horizon,

where by Birkhoff’s theorem, the geometry is described by the Schwarzschild metric.

In this proceeding, we review this method with a focus on the computation
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of a complete set of in modes that can be used to construct the quantum field

in the region outside the null shell. We also present new numerical results for a

low frequency in mode on the future horizon and for a mode with relatively high

frequency on the part of the future horizon close to the null shell trajectory.

In Sec. 2, we review the null shell spacetime and the metrics describing the

geometry inside and outside of the null shell. In Sec. 3, we discuss the quantization

of the massless minimally coupled scalar field in the null shell spacetime. In Sec.

4, we present our method to expand the in modes in terms of a complete set of

modes in pure Schwarzschild spacetime and present our numerical results for the

high and low frequency modes on the future horizon. In Sec. 5, a proper method

for the renormalization of the stress-energy tensor is given. In this section, we

summarize the application of our method in Ref. 18 to the case of a collapsing null

shell spacetime which has a perfectly reflecting mirror at the spatial origin.

2. Collapsing null shell

The model we consider is a spherically symmetric null shell whose collapse results

in the formation of a black hole. The Penrose diagram of the spacetime is depicted

in Fig. 1 The spacetime inside the null shell is described by the flat metric

ds2 = −dt2 + dr2 + r2dΩ2 ,

and from Birkhoff’s theorem, the metric outside the shell is the Schwarzschild metric

ds2 = −
(
1− 2M

r

)
dt2s +

(
1− 2M

r

)−1

dr2 + r2dΩ2

with dΩ2 = dθ2 + sin2 θdϕ2. It is more convenient to use radial null coordinates to

match the geometries inside and outside of the shell. In the interior,

u = t− r , v = t+ r .

and in the exterior region,

us = ts − r∗ , v = ts + r∗ ,

where r∗ = r + 2M ln
(
r−2M
2M

)
is the tortoise coordinate in Schwarzschild space-

time. The null shell trajectory is v = v0. We match the two spacetimes so that

the v coordinate and the angular coordinates are continuous across the null shell

trajectory. Applying this condition gives the following relation between the u an us
coordinates19,20

us = u− 4M log(
vH − u

4M
),

where vH = v0 − 4M .
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v= v0

v= vH

H+

I −

I +

Fig. 1. Penrose diagram for a spacetime in which a null shell collapses to form a spherically
symmetric black hole. The vertical line on the left corresponds to the surface r = 0 which is also

the surface where u = v. The dashed red line on v = v0 is the trajectory of the null shell. The

horizon, H+ is the dotted blue curve. Inside the shell trajectory H+ corresponds to the surface
u = vH and outside the shell trajectory it corresponds to us = ∞. A Cauchy surface is shown by

the dashed line. It is the union of the surface v = v0 with the part of I − with v > v0.

3. Massless minimally coupled scalar field

We consider a massless minimally coupled scalar field in the null shell spacetime. In

a general static spherically symmetric spacetime, it can be expanded in the following

way,

ϕ =

∞∑
ℓ=0

ℓ∑
m=−ℓ

∫ ∞

0

[aωℓmfωℓm + a†ωℓmf
∗
ωℓm]

with □ fωℓm = 0. In the region inside the null shell, v < v0, separation of variables

gives

fωℓm =
Yℓm(θ, ϕ)

r
√
4πω

ψωℓ(t, r) =
Yℓm(θ, ϕ)

r
√
4πω

e−iωtχωℓ(r), (1)

while in the region outside the null shell, v > v0, it gives

fωℓm =
Yℓm(θ, ϕ)

r
√
4πω

ψωℓ(ts, r) =
Yℓm(θ, ϕ)

r
√
4πω

e−iωtsχωℓ(r). (2)

In the regions v < v0 and v > v0 respectively, the radial parts of the mode functions

satisfy the differential equations

d2χωℓ
dr2

= −
[
ω2 − ℓ(ℓ+ 1)

r2

]
χωℓ. (3)

d2χωℓ
dr2∗

= −
[
ω2 −

(
1− 2M

r

)(
2M

r3
+
ℓ(ℓ+ 1)

r2

)]
χωℓ . (4)
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The in state is fixed by requiring that ψωℓ = e−iωv on past null infinity and it

vanishes at r = 0. The solution with these properties has the form

ψinωℓ(r, t) = Cℓe
iωtωrjℓ(ωr) (5)

inside the null shell, where Cℓ is fixed by the aforementioned condition on past null

infinity. Here jℓ is a spherical bessel function of the first kind. It is not possible for

this solution to have the form e−iωtsχωℓ(r) outside the null shell. The solution in

this region is more complicated.

4. Computation of f in
ωℓm

We can compute f inωℓm outside the null shell and the event horizon by expanding it

in terms of a complete set of modes since the geometry here is the Schwarzschild

geometry. This problem can be mapped to the shaded part of pure Schwarzschild

spacetime shown in Fig. 2. We choose a complete sets of modes that consists of the

III

III

IV

i+

i−

i0

H
+ J +

J−H −

r = 0

r = 0

v = v0

fH+

, fI +

Fig. 2. Penrose diagram for Schwarzschild spacetime showing the Cauchy surface used for match-
ing the in modes in the null shell spacetime to a complete set of modes in Schwarzschild spacetime

in the region outside the past and future horizons. The Cauchy surface is denoted by the dashed

red curve

union of the modes fH
+

ωℓm that are positive frequency on future horizon and zero on

future null infinity, and the modes fI +

ωℓm that are positive frequency on the future

null infinity and zero on the future horizon, i.e.,

f inωℓm =
∞∑
ℓ′=0

ℓ′∑
m′=−ℓ′

∫ ∞

0

dω′
[
AI +

ωℓmω′ℓ′m′ fI +

ω′ℓ′m′ +BI +

ωℓmω′ℓ′m′ (fI +

ω′ℓ′m′)∗

+AH
+

ωℓmω′ℓ′m′ fH
+

ω′ℓ′m′ +BH
+

ωℓmω′ℓ′m′ (fH
+

ω′ℓ′m′)∗
]
. (6)

The matching coefficients AI +

ωℓmω′ℓ′m′ , BI +

ωℓmω′ℓ′m′ , AH
+

ωℓmω′ℓ′m′ , and BH
+

ωℓmω′ℓ′m′ can

be found using the following scalar products on the Cauchy surface shown in Fig.

2.

A
(I +,H+)
ωℓmω′ℓ′m′ = (f inωℓm, f

(I +,H+)
ω′ℓ′m′ ), (7)

B
(I +,H+)
ωℓmω′ℓ′m′ = −(f inωℓm, (f

(I +,H+)
ω′ℓ′m′ )∗). (8)
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The reason one can expand the in modes in this way is that the same differential

equations govern the evolution of the in modes in the shaded region in Fig. 1 and

the shaded region in Fig. 2 because the metric is the same in both regions. However,

one may notice that the union of the part of past null infinity with v > v0 and the

null shell surface does not form a Cauchy surface in pure Schwarzschild spacetime.

We resolve this issue by adding the part of the future horizon with −∞ < v < v0
to the union of I − with v > v0 and the null shell surface v = v0, as shown in

Fig. 2. We also need to specifity ψinωℓ on the Cauchy surface to evaluate the scalar

products in Eqs. 7 and 8. On the part of the Cauchy surface with v > v0 on past

null infinity, ψinωℓ = e−iωv and on the part where v = v0 , ψinωℓ is given by Eq. 5. For

the part with v < v0 on the future horizon, we can specify ψinωℓ any way we like so

long as it is continuous at v = v0.

Before computing the matching coefficients, we introduce a different complete

set of modes that are defined by two linearly independent solutions to the radial

mode equation in Schwarzschild spacetime with the following properties

χ∞
R → eiωr∗ , r∗ → ∞, (9)

χ∞
L → e−iωr∗ , r∗ → ∞. (10)

Near the horizon, they have the behaviors 21

χ∞
R → ER(ω)e

iωr∗ + FR(ω)e
−iωr∗ , r∗ → −∞, (11)

χ∞
L → EL(ω)e

iωr∗ + FL(ω)e
−iωr∗ , r∗ → −∞. (12)

where ER, EL, FR, and FL are scattering parameters that can be determined nu-

merically.

Evaluating the scalar products in Eqs. 7 and 8 gives the following results for

the matching coefficients 18

AH
+

ωω′l = − i

2π

√
ω′

ω

eiω
′v0

ω′ − iϵ
ψin
ωℓ(vH , v0) +

i

2π

√
ω′

ω

1

F ∗
L(ω

′, ℓ)
ei(ω

′−ω)v0

ω′ − ω + iϵ

+
i

2π
√
ωω′

∫ vH

−∞
du

[
∂uψ

in
ωℓ(u, v0)

]
ψH

+∗
ω′ℓ (us(u), v0), (13)

BH
+

ωω′l =
i

2π

√
ω′

ω

e−iω
′v0

ω′ + iϵ
ψin
ωℓ(vH , v0)−

i

2π

√
ω′

ω

1

FL(ω′, ℓ)
e−i(ω+ω

′)v0

ω′ + ω − iϵ

− i

2π
√
ωω′

∫ vH

−∞
du

[
∂uψ

in
ωℓ(u, v0)

]
ψH

+

ω′ℓ (us(u), v0). (14)
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AI +

ωω′l = − i

2π

√
ω′

ω

F ∗
R(ω

′, ℓ)
F ∗
L(ω

′, ℓ)
e−i(ω−ω

′)v0

ω′ − ω + iϵ

− i

2π
√
ωω′

∫ vH

−∞
du

[
ψin
ωℓ(u, v0)− e−iωv0

]
∂uψ

I +∗
ω′ℓ (us(u), v0), (15)

BI +

ωω′l =
i

2π

√
ω′

ω

FR(ω
′, ℓ)

FL(ω′, ℓ)
e−i(ω+ω

′)v0

ω′ + ω − iϵ

+
i

2π
√
ωω′

∫ vH

−∞
du

[
ψin
ωℓ(u, v0)− e−iωv0

]
∂uψ

I +

ω′ℓ (us(u), v0). (16)

In the case ℓ = 0, the in mode functions have the form f inω00 =
ψin

ω00

r
√
4πω

where

ψinω0 = e−iωv − e−iωu for v ≤ v0. Note that the terms with closed form in Eqs.

13 - 16 (v-dependent terms) are the only terms that contribute to the v-dependent

part of f inω00 and the integral terms contribute to the u-dependent part of f inω00.

We used the v-dependent terms in the matching coefficients to construct f inω00 on

H+. The numerical results are shown in Fig. 3 and Fig. 4. In Fig. 3, the

real and imaginary parts of the v-dependent part of the in mode function have been

numerically computed on H+. The results show that in mode function is continuous

across the null shell as expected. For large values of ω, the effective potential in the

20 40 60 80 100
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-0.5

0.0

0.5

1.0

1.5

2.0

v

M

20 40 60 80 100
-0.4

-0.3

-0.2

-0.1

0.0

v

M

Fig. 3. Real part (left) and imaginary part (right) of ψin
ω00(v) on H+ for v > v0.

v0
M

= 3 and
Mω = 0.02. The dashed lines and solid lines correspond to the in modes in the 2D and the 4D

cases respectively.

mode equation is always small compared to ω2 and one can ignore the scattering

effects. Hence, one should expect to see the same behaviour as in the 2D case where

there are no scattering effects. This is shown to be correct in Fig. 4. where the real

and imaginary parts of f inω00 are plotted for Mω = 9.

5. Stress-energy tensor and renormalization

One can renormalize the stress-energy tensor by subtracting from the unrenormal-

ized expression for the stress-energy tensor for the in vacuum state, the unrenor-
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Fig. 4. Real part (left) and imaginary part (right) of ψin
ω00(v) on H+ for v > v0.

v0
M

= 3 and
Mω = 9. The dashed blue lines and solid yellow lines correspond to the in modes in the 2D and

the 4D cases respectively.

malized stress-energy tensor for the Unruh state. Since the renormalization coun-

terterms are local and thus do not depend on the state of the quantum field, this

quantity will be finite. Then one can add back the unrenormalized stress-energy

tensor for the Unruh state and subtract from it the renormalization counter terms.

Schematically one can write

⟨in|Tab|in⟩ren = ∆⟨Tab⟩+ ⟨U |Tab|U⟩ren, (17)

where ∆⟨Tab⟩ = ⟨in|Tab|in⟩unren − ⟨U |Tab|U⟩unren. Note that the Unruh state is

defined by a set of modes that are positive frequency on the past horizon with respect

to the Kruskal time coordinate and the set of modes that have the form ψωℓ = e−iωv

on past null infinity. The quantity ⟨U |Tab|U⟩ren has been numerically computed for

a massless minimally coupled scalar field in Schwarzschild spacetime. Thus what

remains is to compute the difference between the unrenormalized expressions.

The unrenormalized stress-energy tensor can be computed by taking derivatives

of the Hadamard Green’s function as follows 22,

⟨Tab⟩unren =
1

4
lim
x′→x

[(
gc

′

a G
(1)
;c′;b(x, x

′) + gc
′

b G
(1)
;a;c′(x, x

′)
)
− gab g

cd′G
(1)
;c;d′(x, x

′)
]
,

(18)

where the quantity gb
′

a parallel transports a vector from x′ to x and is called the

bivector of parallel transport.

5.1. Stress-energy tensor in 2D

In this section, we show how our method can be applied to the case of a 2D null shell

spacetime which has a perfectly reflecting mirror at r = 0. There is no scattering
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that means ER = FL = 1 and EL = FR = 0. The matching coefficients are 18,

AI +

ωω′ = − 1

2π

√
ω

ω′ (4M)i4Mω′
e−i(ω−ω

′)vH
Γ(1− i4Mω′)

[−i(ω − ω′) + ϵ]1−i4Mω′ , (19)

BI +

ωω′ =
1

2π

√
ω

ω′ (4M)−i4Mω′
e−i(ω+ω

′)vH
Γ(1 + i4Mω′)

[−i(ω + ω′) + ϵ]1+i4Mω′ . (20)

The expression for f inω can be obtained by substituting Eqs. 19 and 20 into Eq. 6.

Those for fUnruh
ω can be obtained using similar expressions. See Ref. 18 for more

details. Next, we construct the Hadamard form of the Green’s function which in

2D is

G
(1)
in (x, x′) =

∫ ∞

0

dω [f inω (x)f in ∗
ω (x′) + f in ∗

ω (x)f inω (x′)] . (21)

We subtract off the corresponding expression for the Unruh state to obtain

∆G(x, x′) = G
(1)
in (x, x′)−G

(1)
Unruh(x, x

′)

. which gives

∆⟨Ttt⟩ = −(1− 2M

r
) lim
x′→x

1

4
(∆G;t′;r +∆G;t;r′). (22)

Our method results in a complicated operation for ∆⟨Ttt⟩ which initially contains a

triple integral. One of the integrals can be computed in closed form with the result
18

∆⟨Ttt⟩ = R

{
i

8π3

∫ ∞

0

dω1

∫ ∞

0

dω2 e
−2πM(ω1+ω2)

×
{
ei(ω2−ω1)us

(4Mω1e
vH
4M )4iMω1

(4Mω2e
vH
4M )4iMω2

Γ(1− 4iMω1)Γ(1 + 4iMω2)

4M(ω1 − ω2 − iϵ)

+ e−i(ω2+ω1)us(4Mω1e
vH
4M )4iMω1(4Mω2e

vH
4M )4iMω2

× Γ(1− 4iMω1)Γ(1− 4iMω2)

4M(ω1 + ω2)

}}
. (23)

This quantity has been computed numerically and the results are shown in Fig.

5. The stress-energy tensor for a massless minimally coupled scalar field in the 2D

collapsing null shell spacetime has been previously computed analytically using a

different method 19,20,23–25 and the stress-energy tensor for the Unruh state has

also been computed analytically 19,20,23–30 . Our results are shown with the dots

in Fig. 5 and the result found by using previous methods is shown with a solid

curve . They agree to more than ten digits. It is worth mentioning that in 2D, once

∆⟨Ttt⟩is numerically computed, ∆⟨Trr⟩ and ∆⟨Trt⟩ can be easily determined 18.
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0
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us

Fig. 5. The quantity 104M2⟨Ttt⟩is plotted for the massless minimally coupled scalar field in the
region exterior to the null shell and to the event horizon. The dots correspond to the results of

the numerical computations. The solid curve represents the analytic results in (reference)

6. Summary

We have reviewed a method of computing the stress-energy tensor for a massless

minimally-coupled scalar field in a spacetime in which a spherically symmetric black

hole is formed by the collapse of a null shell. This method primarily involves two

parts. One part is the expansion of the in mode functions in terms of a complete set

of modes in the part of a Schwarzschild black hole that is outside the event horizon.

The matching coefficients of the expansion have been found in terms of the integrals

of the mode functions and closed form terms. These matching coefficents have been

used to numerically compute part of the in mode function on the future horizon of

the black hoe.

The second part of the method is the renormalization of the stress-energy tensor

which involves taking the difference between the stress-energy tensor for the ”in”

state in the collapsing null shell spacetime and that for the Unruh state in the

Schwarzschild spacetime. Finally, we reviewed the computation of the stress-energy

tensor in the corresponding 2D case using aformentioned method.
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