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Abstract. While Nesterov’s algorithm for computing the minimum of a convex function is now over forty
years old, it is rarely presented in texts for a first course in optimization. This is unfortunate since for many
problems this algorithm is superior to the ubiquitous steepest descent algorithm, and equally simple to implement.
This article presents an elementary analysis of Nesterov’s algorithm that parallels that of steepest descent. It is
envisioned that this presentation of Nesterov’s algorithm could easily be covered in a few lectures following the
introductory material on convex functions and steepest descent included in every course on optimization.
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1. Introduction. Given a closed convex subset U ⊂ X of a Hilbert1 space X and a convex
function f : X → R, this article considers algorithms for solving the problem,

x∗ ∈ U, f(x∗) ≤ f(x), x ∈ U. (1.1)

The unconstrained problem, U = X, is first considered, and the latter sections consider the
situation where

U = {x ∈ X | φi(x) ≤ 0, 1 ≤ i ≤ m},
where φi : X → R is convex, 1 ≤ i ≤ m.

This article considers first order algorithms for the solution of (1.1); that is, algorithms which
only require f(x) and the gradient ∇f(x) to be evaluated. This class of algorithm is useful when
evaluation of higher order derivatives is not tractable; for example, if the dimension of X is large
storing the matrix of second derivatives may exceed the available memory. First order methods
are robust in the presence of degeneracy; for example, whenD2f(x) is singular and when solutions
of the optimization problem are not unique. In this context the most direct approach to finding
a minimum of f is to repeatably step in the direction of steepest descent; that is, given x0 ∈ X,
let

xi+1 = xi − τi∇f(xi), i = 0, 1, 2, . . . ,

where τi > 0 are step sizes. Specification of the step sizes, the Armijo rule in particular, is
discussed below in Section 3. For unconstrained optimization, U = X, this rule becomes [2]

f(xi+1) ≤ f(xi)− (τi/2)∥∇f(xi)∥2.

The following modification of the steepest descent algorithm was introduced by Nesterov in 1983;
given x0 = y0 ∈ X, let

xi+1 = yi − τi∇f(yi), yi+1 = xi+1 +
λi − 1

λi+1
(xi+1 − xi), i = 0, 1, 2, . . . , (1.2)
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1Prototypically X = R
n; however, finite dimensionality is never required.
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Fig. 1.1. Function values for steepest descent and Nesterov algorithms for Example 1.2.

where τi > 0 is the step size and {λi}∞i=0 is the sequence, with

λ0 = 0, and λi+1 =
1 +

√

1 + 4λ2
i

2
. i = 0, 1, 2, . . . (1.3)

Example 1.1. When X = R
n and f(x) = (1/2)x⊤Ax− b.x with A ∈ R

n×n a symmetric positive
definite (SPD) matrix and b ∈ R

n, the method of steepest decent

xi+1 = xi − τ(Axi − b),

is Richardson iteration [17, 24] for the solution of the linear system Ax = b with step sizes τi = τ .
This algorithm will converge if (and only if) τ < 1/λmax where λmax is the maximum eigenvalue
of A.

Nesterov algorithm becomes

xi+1 = yi − τ(Ayi − b), yi+1 = xi+1 +
λi − 1

λi+1
(xi+1 − xi).

This scheme is similar in spirit to the “successively over relaxed” (SOR) variant of Richardson
iteration, the difference being that SOR has yi instead of xi in the update formula for yi+1.

When f is smooth, the sequence generated by the method of steepest descent will satisfy f(xn)−
f(x∗) ≤ O(1/n), and in his groundbreaking paper [16] Nesterov proved that f(xn) − f(x∗) ≤
O(1/n2) for his algorithm. In situations where these rates are optimal, this is a dramatic im-
provement over steepest descent.

Example 1.2. The function f(x, y) = log(1+ x2)2 +10y2 is convex on [−2.9, 2.9]×R and has a
unique minimum 0 = f(0, 0) at which both the gradient and determinant of the Hessian vanish.
Figure 1.1 plots the function values generated by the steepest descent and Nesterov algorithms with
initial data (x, y) = (1, 1) and the step sizes determined with the Armijo rule given in Lemma
3.2. The stopping criterion |f(xn) − f(xn−1)| < 10−8 results in the following approximations of
the minimum.

Scheme Iterations Min value Norm of gradient

Steepest Descent 384 3.529730e− 06 3.380372e− 04
Nesterov 47 1.006851e− 08 2.334551e− 06
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Fig. 1.2. Discrete approximation of u(x)

Figure 1.1 shows that initially the function values for method of steepest descent decreased more
rapidly than those for Nesterov’s algorithm. This is due to the fact that the Nesterov step sizes
are required to satisfy τi ≤ τi−1 in addition to the Armijo rule, while for the method of steepest
descent step sizes may increase.

In the absence of degeneracy steepest descent will give a linear rate of convergence, f(xn) −
f(x∗) ≤ (1 − 1/κ)(f(xn−1) − f(x∗)) where κ > 1 is the condition number (κ = L/α below), so
may perform better than the original Nesterov algorithm if κ is modest. If an estimate of κ is
available, Nesterov’s algorithm with fixed parameter λn = (

√
κ+1)/2 will converge linearly with

f(xn)− f(x∗) ≤ (1− 1/
√
κ)(f(xn−1)− f(x∗)); the proof of this is given in Section 3.3.

Example 1.3. Given noisy signal or image, û : [0, 1] → R, variational techniques to recover the
underlying signal construct minima of the function

f(u) =

ˆ 1

0

(

(1/2)(u− û)2 + (α/β)|u′|β
)

,

where β ∈ [1,∞) and α > 0 are parameters of the method [1, 20]. When β = 2 f is quadratic
so the minima satisfies a linear equation. Discrete approximations construct a uniform partition
xi = ih of [0, 1], with i = 0, 1, . . . , N and h = 1/N . Writing ûi = û(ih) and letting ui be an
approximation of u(ih) and u = {ui}Ni=0, the natural approximation of f is (see Figure 1.2)

f(u) = (h/4)
(

(u0 − û0)
2 + (uN − ûN )2

)

+ (h/2)
N−1
∑

i=1

(ui − ûi)
2 + (α/β)

N
∑

i=1

h1−β |ui − ui−1|β .

Figure 1.3 plots f(un) for the steepest descent, Nesterov, Nesterov with fixed parameter, and
conjugate gradient, methods with parameters α = 0.001 and β = 2, and N = 50 and N = 100,
when û is a random perturbation of the “ground truth” signal

ũ(x) =

{ √
x 0 ≤ x < 1/2

(1/2) + 2|x− 3/4| 1/2 ≤ x ≤ 1.

The step sizes were computed using the Armijo rule for the steepest descent and Nesterov schemes
with the additional restriction τi ≤ τi−1 for the Nesterov scheme, and stopping criteria ∥∇f(un)∥ <
10−4.
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Fig. 1.3. Function values for N = 50, N = 500 and solution for Example 1.2.

N = 50 N = 500
Scheme Iterations Norm of gradient Iterations Norm of gradient

Steepest Descent 18 8.832316e− 05 431 9.913039e− 05
Nesterov 21 8.527445e− 05 177 9.970484e− 05
Nesterov Fixed 31 9.700755e− 05 216 9.951276e− 05
CG 10 5.826981e− 05 84 9.852721e− 05

This variational problem is well studied [17, 22] and it is known that the condition number κ =
λmax/λmin = O(αN2) and this estimate was used for the Nesterov scheme with fixed parameter.
The following trends are well illustrated by this example.

• When the condition number is modest, N = 50, steepest descent exhibits a linear rate of
convergence and can be competitive with the Nesterov scheme.

• When the condition number is large, N = 500, the linear rate of convergence for the
method of steepest descent becomes negligible and the algebraic rate O(1/n) is observed.
In this situation the Nesterov scheme with rate of O(1/n2) is superior.

• The sequence {f(un)}∞n=0 is not monotone decreasing for the Nesterov scheme.
• The Nesterov scheme with judiciously chosen fixed parameter does exhibit a linear rate of
convergence with constant smaller than steepest descent. However, it is quite sensitive to
the choice of parameter.

• When β = 2 the minima are smooth and well approximate the original signal where it
is smooth; however, the approximation is poor elsewhere. Since jumps in contrast are
essential features of images, β = 2 is a poor choice for debluring images. In Section 4.1
this example is considered with β = 1 which is known to capture such features with better
fidelity [7, 20].

1.1. Outline. The next section reviews the elementary properties of linear spaces and convex
functions, and the notation, used in the sequel. Most of this material will be covered in any course
on optimization, and may be skipped upon first reading. Section 3 considers the unconstrained
optimization of smooth objective functions, and is the nucleus of the manuscript.

• This section begins with a discussion elucidating the interplay between convexity and
descent criteria, and the Armijo rule in particular. The two lemmas, Lemma 3.1 and
Lemma 3.2, establish the essential properties of first order algorithms used in the conver-
gence proofs.

• Section 3.1 gives a proof of convergence for the method of steepest descent. The properties
of the descent step established in the two lemmas provide a very succinct proof which
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provides a “blue print” for the convergence proofs of the Nesterov schemes.
• Section 3.2 establishes the convergence properties of Nesterov’s method. The proof closely
follows that in Nesterov’s original manuscript [16].

• Section 3.3 considers Nesterov’s scheme with a fixed, but judiciously chosen, parameter.
The convergence proof follows the same line of argument used for the steepest descent and
original Nesterov algorithm and, granted the identity introduced in Exercise 3.8, could
easily be posed as an exercise. The proof given here closely follows that in [6], and is
substantially simpler than those appearing in [18, 5, 15].

Section 4 considers problems where the objective function f : X → R ∪ {∞} my take extended
values and/or may not be smooth. This provides the mathematical setting for problems involv-
ing L1 minimization and/or constraints. This section starts with the analog of Lemma 3.1 which
elucidates the interplay between convexity and descent criteria in the non–smooth setting. Upon
substituting “Lemma 4.3” for “Lemma 3.1”, proofs of convergence for the steepest descent, Nes-
terov, and fixed parameter Nesterov algorithms are then verbatim copies of the proofs for the
unconstrained/smooth case, so are omitted. It is envisioned that this economy of presentation
will accord discussion of structure over technical detail.

Section 4 finishes with two applications of the theory. Section 4.1 considers to the signal recovery
problem of Example 1.3 with L1 regularization (β = 1). Upon posing the problem in a “mixed
formulation”, and passing to the dual, convergence of the three algorithms then follow for this
problem. Section 4.2 reviews Uzawa’s algorithm for computing minima on convex sets of the
form U = {x ∈ X | φi(x) ≤ 0, 1 ≤ i ≤ m} for which the projection PU : X → R may not be
computable.

The first order methods considered in this manuscript can be interpreted as explicit time stepping
schemes to approximating the solution of related differential equations. This connection is briefly
presented in the Appendix, and the descent properties of the discrete algorithms and solutions of
the differential equations compared.

1.2. Pedagogy. Optimization is a core component of essentially every discipline, and for this
reason courses with this title range from pure application to pure analysis. Due to this breadth,
and the relative infancy of [16], an otherwise ideal text for a course may not cover Nesterov’s
algorithm; in fact, very few texts include it. For example, the classical texts by Dennis and
Schnabel [10] and Ciarlet [8, 9] were written before 1983, and many more recent texts still do not
discuss Nesterov’s algorithm [4, 12, 14]. This note provides a concise introduction to Nesterov’s
algorithm that could supplement such texts.

In the following an effort has been made to stage the level of technical detail. For example,
essentially no background beyond calculus and linear algebra is required for Section 3. If a
discussion of non–smooth functions is beyond the scope of a course, proofs of convergence for
the projected algorithms are obtained by replacing the operators (I + τ∂f0)−1 in Section 4 with
the projections onto convex sets and sub–gradients with gradients. Similarly, the discussion of
L1 optimization in Section 4.1 and Uzawa’s algorithm in Section 4.2 are the only places where
duality is used, and the sub–gradient calculus is not required to follow this material.

2. Convex Optimization. The material in this section reviews the essential properties of
convex functions that enter into the analysis of algorithms to compute their minima. Throughout
this manuscript X will denote a Hilbert space and f : X → R will be a convex function to be
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minimized; minimizers will be denoted as x∗ ∈ X.

2.1. Convex Functions. A function f : X → R defined on (a convex subset of) a linear
space is convex if

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y), x, y ∈ X, λ ∈ [0, 1].

First order methods for finding minima of f assume that the derivative is readily computable;
that is, for each x ∈ X there exists f ′(x) ∈ X ′ (the dual of X) for which

f(y) = f(x) + f ′(x)(y − x) + o(∥y − x∥).

Below X will always be a Hilbert space with inner product (., .), in which case there exists
∇f(x) ∈ X (the gradient) such that f ′(x)(y) = (∇f(x), y). When X = R

n it is traditional to
let (., .) be the canonical dot product; however, in many applications it is advantageous to use
a different inner product (preconditioning). If (x, y) = x⊤Ay with A ∈ R

n×n SPD, computing
∇f(x) involves solving a system the linear equations A∇f(x) = f ′(x), in which case a Cholesky
decomposition would be pre–computed for efficiency.

Lemma 2.1. If f : X → R is differentiable then the following are equivalent. For all x, y ∈ X,

1. f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y) for all λ ∈ [0, 1].
2. (∇f(x), y − x) ≤ f(y)− f(x).
3. (∇f(y)−∇f(x), y − x) ≥ 0.

All of the convergence results will require the gradient of f to be Lipschitz; that is, there exists
L ≥ 0 such that

∥∇f(y)−∇f(x)∥ ≤ L∥y − x∥, x, y ∈ X.

If f is twice differentiable this is equivalent to2 D2f(x) ≤ LI, and if f is convex the first order
Taylor expansion is bounded on both sides,

f(x) + (∇f(x), y − x) ≤ f(y) ≤ f(x) + (∇f(x), y − x) + (L/2)∥y − x∥2.

A differentiable function f is strongly convex with parameter α ≥ 0 if the function x 7→ f(x) −
(α/2)∥x∥2 is convex. If f is twice differentiable this is equivalent to αI ≤ D2f(x). Strong
convexity strengthens the convexity inequalities of Lemma 2.1.

Lemma 2.2. If f is differentiable and α ≥ 0 the following are equivalent. For all x, y ∈ X,

• f
(

λx+ (1− λ)y
)

≤ λf(x) + (1− λ)f(y)− (α/2)λ(1− λ)∥y − x∥2 for all λ ∈ [0, 1].
•

(

∇f(x), y − x
)

≤ f(y)− f(x)− (α/2)∥y − x∥2.
•

(

∇f(y)−∇f(x), y − x
)

≥ α∥y − x∥2.
A strongly convex function f with Lipschitz gradient is bounded above and below by quadratic
functions,

f(x) + (∇f(x), y − x) + (α/2)∥y − x∥2 ≤ f(y) ≤ f(x) + (∇f(x), y − x) + (L/2)∥y − x∥2;

in particular, these functions have unique minima.

2If A, B ∈ R
n×n are symmetric, we write A ≤ B if x⊤Ax ≤ x⊤Bx for all x ∈ R

n
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Functions such as f(x) = |x|β for 1 < β < ∞ will not simultaneously have Lipschitz gradients
and be strongly convex (unless β = 2). However, function values {f(xn)}∞m=0 computed with the
steepest descent and Nesterov algorithms with the Armijo rule will always be bounded. In this
situation assumptions on Lipschitz continuity of the derivative or strong convexity of f appearing
in the statements of the theorems need only hold on sub–level sets of f ; that is sets of the form
{x ∈ X | f(x) ≤ C}.
Convex functions lacking gradients, such as the absolute value f(x) = |x|, and functions f : X →
R ∪ {∞} taking extended values, such as the indicator function of a convex set U ⊂ X,

IU (x) =

{

0 x ∈ U
∞ x ̸∈ U

,

arise frequently in applications. The domain of a function f : X → R ∪ {∞} is D(f) = {x ∈ X |
f(x) < ∞}, and f is proper if D(f) ̸= ∅. Many of the usual results from calculus are available
for these functions when sub–differentials

∂f(x) = {z ∈ X | (z, y − x) ≤ f(y)− f(x), y ∈ X} ⊂ X,

are substituted for gradients. If f is differentiable at x then the sub–gradient is the singleton
set containing ∇f(x). The calculus for sub–differentials of convex functions is presented in
[11, 19, 21]. The following lemma will be used in Section 4 below.

Lemma 2.3. Let X be a Hilbert space and f : X → R ∪ {∞} be convex, proper, and lower
semi–continuous. Then (I + τ∂f) : X → X is surjective for all τ > 0, and the inverse is a
contraction.

2.2. Constraints & Duality. If U ⊂ X is a closed convex subset of the Hilbert space X,
the projection PU : X → U is the function satisfying

PU (x) ∈ U, ∥x− PU (x)∥ ≤ ∥x− y∥, y ∈ U,

or equivalently
PU (x) ∈ U, (PU (x)− x, y − PU (x)) ≥ 0, y ∈ U.

The projection and indicator of U are related through

x ∈ (I + τ∂IU )(z) ⇔ z = PU (x), τ > 0.

Formulae for the projections onto simple sets such as half spaces, hyperplanes, cubes, and balls
are available; however, explicit formula are not available for projections onto sets of the form
U = {x ∈ X | φi(x) ≤ 0, 1 ≤ i ≤ m}. Duality theory can be utilized to circumvent this
difficulty. Given f : X → R, the Lagrangian L : X × [0,∞)m → R associated with problem (1.1)
is3

L(x, µ) = f(x) + µ.φ(x), where φ(x) =
(

φ1(x), . . . , φm(x)
)

∈ R
m.

A saddle point of L is a point (x∗, µ∗) ∈ X × [0,∞)m for which

sup
µ∈[0,∞)m

inf
x∈X

L(x, µ) = L(x∗, µ∗) = inf
x∈X

sup
µ∈[0,∞)m

L(x, µ).

3The inner product of a, b ∈ R
m is denoted a.b.
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Under appropriate hypotheses on the functions f and φi (see Theorem 4.9), saddle points exist
and satisfy µ∗.φ(x∗) = 0,

x∗ ∈ U, f(x∗) ≤ f(y) y ∈ U, and 0 ∈ ∂f(x∗) +

m
∑

i=1

µi∇φi(x∗).

The dual variables µi are generalized Lagrange, or KKT, multipliers. If φ = (a, x) + α is affine,
then both ±φ are convex, so affine equality constraints are can be implemented as φ(x) ≤ 0
and −φ(x) ≤ 0 in which case the corresponding KKT multipliers combine to form a Lagrange
multiplier,

µ+∇φ(x) + µ−∇(−φ)(x) = (µ+ − µ−)∇φ(x) ≡ λ∇φ(x), λ ∈ R.

The dual function

g(µ) = inf
x∈X

L(x, µ) = inf
x∈X

(

f(x) + µ.φ(x)
)

, g : [0,∞)m → R ∪ {−∞},

is concave. Since projections onto P+ : Rm → [0,∞)m are easily evaluated, one strategy (Uzawa’s
algorithm) for solving (1.1) is to find a maximizer µ∗ of g, using, for example, projected steepest
descent, and to then compute an (unconstrained) minimizer of x 7→ f(x) + µ∗.φ(x).

If x = argminx f(x) + µ.φ(x) and (µ∗, x∗) a saddle point then

g(µ) = f(x) + µ.φ(x) ≤ g(µ∗) = f(x∗) + µ∗.φ(x∗) = f(x∗),

so that f(x) − f(x∗) = −µ.φ(x). The right hand side is the duality gap and in a computational
context is an explicitly computable error indicator.

2.3. First Order Methods & Complexity. We finish this overview with a summary of
the complexity of first order schemes. These results highlight the essential role of the smoothness
properties introduced above. Proofs of the following theorem can be found in [5, 15].

Theorem 2.4. Let X be an infinite dimensional Hilbert space and set x0 = 0.

• There exists a convex function f : X → R with Lipschitz gradient and minima f(x∗) >
−∞ such that for any sequence satisfying

xi+1 ∈ Span{∇f(x0),∇f(x1), . . .∇f(xi)}, i = 0, 1, 2, . . . .

there holds

min
1≤i≤n

f(xi)− f(x∗) ≥
3L

32

∥x1 − x∗∥2
(n+ 1)2

,

where L is the Lipschitz constant of the gradient.
• There exists a strongly convex function f : X → R with constant α > 0 having Lipschitz

gradient and minima f(x∗) > −∞ such that for any sequence satisfying

xi+1 ∈ Span{∇f(x0),∇f(x1), . . .∇f(xi)}, i = 0, 1, 2, . . . .

there holds

min
1≤i≤n

f(xi)− f(x∗) ≥
α

2

(√
κ− 1√
κ+ 1

)2(n−1)

∥x1 − x∗∥2,

where κ = L/α and L is the Lipschitz constant of the gradient.

8



3. Unconstrained Problem. Given a convex function f : X → R defined on a Hilbert
space X, this section considers the unconstrained minimization problem:

x∗ ∈ X, f(x∗) ≤ f(x), x ∈ X.

Both the steepest descent and Nesterov’s algorithm involve updates of the form x = y − τ∇f(y)
in combination with a descent criteria. The essential estimate in the convergence proofs uses the
following amalgamation of these two ingredients.

Lemma 3.1. Let X be a Hilbert space and f : X → R be differentiable, strongly convex with
parameter α ≥ 0, and let x, y ∈ X, and τ > 0. If

x = y − τ∇f(y) and f(x) ≤ f(y) + (∇f(y), x− y) +
1

2τ
∥y − x∥2,

then

2τf(x) + ∥x− z∥2 ≤ 2τf(z) + (1− ατ)∥y − z∥2, z ∈ X. (3.1)

Writing x− y = −τ∇f(y) in the descent condition gives the equivalence,

f(x) ≤ f(y) + (∇f(y), x− y) +
1

2τ
∥y − x∥2 ⇔ (τ/2)∥∇f(y)∥2 ≤ f(y)− f(x). (3.2)

Proof. Subtracting z from both sides of the equation for x and taking the inner product with
x− z gives

∥x− z∥2 = (y − z, x− z) + τ
(

∇f(y), z − x
)

,

and using the identity 2(a, b) = ∥a∥2 − ∥b− a∥2 + ∥b∥2 shows

∥x− z∥2 + ∥y − x∥2 = ∥y − z∥2 + 2τ
(

∇f(y), z − x
)

.

To estimate the last term, write z − x = (z − y) + (y − x) and bound each summand separately,

• Strong convexity of f shows
(

∇f(y), z − y
)

≤ f(z)− f(y)− (α/2)∥z − y∥2.
• The descent condition gives

(

∇f(y), y − x
)

≤ f(y)− f(x) + (1/2τ)∥y − x∥2.
The lemma follows upon substituting these bounds into the above.

The following lemma shows that step sizes satisfying the descent condition can be computed using
bisection (backtracking) with a guaranteed lower bound.

Lemma 3.2 (Armijo Rule). Let f : X → R have Lipschitz gradient with constant L > 0, then
the descent condition

f(x) ≤ f(y) + (∇f(y), x− y) +
1

2τ
∥y − x∥2 (3.3)

is satisfied whenever τ ≤ 1/L. In particular, if τ = 1/2m where m is the smallest integer for
which the descent condition is satisfied then 1/2L ≤ τ .

Proof. When the gradient of f is Lipschitz, the fundamental theorem of calculus gives

f(x) ≤ f(y) + (∇f(y), x− y) + (L/2)∥y − x∥2. (3.4)

Then,
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• The descent criteria is satisfied if L ≤ 1/τ ; that is, τ ≤ 1/L.
• If τ = 1/2m where m is the smallest integer for which the descent condition holds, then
doubling τ violates the descent criteria in which case L ≥ 1/2τ ; that is, τ > 1/2L.

Exercise 3.3. Starting with the calculation,

f(x) = f(y) +

ˆ 1

0

(

∇f((1− t)x+ ty), y − x
)

dt

= f(y) +
(

∇f(y), y − x
)

+

ˆ 1

0

(

∇f((1− t)x+ ty)−∇f(x), y − x
)

dt,

verify that equation (3.4) holds when the gradient of f satisfies ∥∇f(z)−∇f(x)∥ ≤ L∥z − x∥.

3.1. Steepest Descent. We provide a proof of convergence of the steepest descent method
for finding a minima of f which is both simple and naturally extends to proof of convergence of
Nesterov’s method.

Theorem 3.4. Let X be a Hilbert space and f : X → R be convex with Lipschitz gradient with
constant L > 0 and strongly convex with constant α ≥ 0. Let x0 ∈ X and

xi+1 = xi − τi∇f(xi), i = 0, 1, 2, . . . ,

where the step size τi > 0 is determined by the Armijo rule (3.3). Assume there exists x∗ ∈ X
for which f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X. Then

f(xn)− f(x∗) ≤
L∥x0 − x∗∥2

n
and ∥xn − x∗∥2 ≤ (1− α/2L)n∥x0 − x∗∥2.

In addition, ∥∇f(xn)∥2 ≤ 4L
(

f(xn)− f∗
)

and f(xn)− f∗ ≤ (L/2)∥xn − x∗∥2.
Proof. Setting (x, y, z) = (xi+1, xi, xi) in Lemma 3.1 shows f(xi+1) ≤ f(xi).

Next, set (x, y, z) = (xi+1, xi, x∗) to get

2τif(xi+1) + ∥xi+1 − x∗∥2 ≤ 2τif(x∗) + (1− ατi)∥xi − x∗∥2.
The bounds on f(xn) − f∗ and ∥xn − x∗∥ follow since Lemma 3.2 guarantees τi ≥ 1/2L. The
bound on the gradient follows from the descent condition (3.2), and the additional bound on
f(xn)− f∗ follows from (3.4) (with y = x∗) since ∇f(x∗) = 0.

Commentary: When used in combination with the Armijo rule the method of steepest descent is
parameter free in the sense that no knowledge of the strong convexity or Lipschitz constants are
required as input. In particular, the algorithm will converge at a linear rate if the f is strongly
convex, and algebraically if it is not.

3.2. Nesterov’s Algorithm. This section considers Nesterov’s scheme (1.2) with step sizes
τi > 0 determined by the Armijo rule (3.3) with the additional requirement that τi+1 ≤ τi. Note
that this additional condition does not alter the lower bound 1/2L ≤ τi in Lemma 3.2.

If f is convex, but not strongly convex, the essential inequality to be satisfied by the sequence
{λi}∞i=0 is λi(λi − 1) ≤ λ2

i−1. The sequence in equation (1.3) satisfies this relation with equality,
so is optimal in the sense that λi is as large as possible.

Exercise 3.5. Let {λi}∞i=0 be the sequence in equation (1.3).
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1. For i ≥ 1 show that

λi ≥ 1, λ2
i−1 = (λi − 1)λi, and i/2 ≤ λi−1 ≤ i− 1.

2. Show that the ratio (λi − 1)/λi+1 is monotone increasing and converges to 1.
3. Show that the same properties hold for the sequence λ0 = 0 and λi = (i+ 1)/2 for i ≥ 1.

Frequently Nestorov’s method is presented with this choice of parameters since (λi −
1)/λi+1 = (i− 1)/(i+ 2) is explicitly computable.

To establish convergence we mimic the proof presented for the steepest descent method.

Theorem 3.6. Let X be a Hilbert space and f : X → R be convex with Lipschitz gradient with
constant L > 0. Let x0 = y0 ∈ X and

xi+1 = yi − τi∇f(yi), yi+1 = xi+1 +
λi − 1

λi+1
(xi+1 − xi), i = 0, 1, 2, . . . ,

where the step size τi > 0 is determined by the Armijo rule (3.3) with the additional requirement
that τi ≤ τi−1. Assume that the parameters {λi}∞i=0 satisfy

λ0 = 0, and λi ≥ 1, λi(λi − 1) ≤ λ2
i−1, i = 1, 2, . . . .

and that there exists x∗ ∈ X for which f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X. Then

f(xn)− f∗ ≤ L
∥x0 − x∗∥2

λ2
n−1

, and ∥∇f(yn)∥ ≤ 4L∥x0 − x∗∥
λn

;

in addtion, ∥λnyn − (λn − 1)xn − x∗∥ ≤ ∥x0 − x∗∥.
Proof. Set (x, y, z) =

(

xi+1, yi, (1− 1/λi)xi + (1/λi)x∗
)

in Lemma 3.1 with α = 0, to get

2τif(xi+1) + (1/λi)
2∥zi+1∥2 ≤ 2τif

(

(1− 1/λi)xi + (1/λi)x∗
)

+ (1/λ2
i )∥zi∥2,

where zi ≡ λiyi − (λi − 1)xi − x∗, and the update formula for yi+1 was used to get the formula
for zi+1,

zi+1 ≡ λi+1yi+1 − (λi+1 − 1)xi+1 − x∗ = λixi+1 − (λi − 1)xi − x∗.

From the convexity of f it follows that

2τif(xi+1) + (1/λi)
2∥zi+1∥2 ≤ 2τi

(

(1− 1/λi)f(xi) + (1/λi)f(x∗)
)

+ (1/λ2
i )∥zi∥2,

which can be rearranged to give

2τiλ
2
i

(

f(xi+1)− f(x∗)
)

+ ∥zi+1∥2 ≤ 2τiλi(λi − 1)
(

f(xi)− f(x∗)
)

+ ∥zi∥2. (3.5)

The hypotheses guarantee that τiλi(λi − 1) ≤ τi−1λ
2
i−1, and λ0 = 0, so the recursion telescopes

to give
2τnλ

2
n

(

f(xn+1)− f(x∗)
)

+ ∥zn+1∥2 ≤ ∥z0∥2 = ∥x0 − x∗∥2.
The bound upon zn is direct, and the bound upon f(xn+1) − f(x∗) follows since Lemma 3.2
guarantees τn ≥ 1/2L. The gradient bound follows from the identity zn − zn+1 = λnτn∇f(yn).

11



Exercise 3.7. If a ≥ 2 show that the sequence with λ0 = 0 and λi = (i + a − 1)/a for i ≥ 1
satisfies

λ2
i−1 − λi(λi − 1) ≥

(

a− 2

a2

)

i.

If a > 2 and this sequence is used for the Nesterov scheme, show
∑∞

i=1 i
(

f(xi)− f(x∗)
)

< ∞.
Conclude that lim infn→∞ n2 log(n)

(

f(xn)− f(x∗)
)

= 0.

Commentary: When paired with the Armijo rule Nesterov’s algorithm is parameter free, and
is optimal in the absence of strong convexity assumptions. It is natural to ask if, like steepest
descent, a better rate of convergence is achieved when f is strongly convex. This does not appear
to be the case. If f is strongly convex with parameter α > 0, the recurrence relation in the proof
becomes

2τiλ
2
i

(

f(xi+1)− f(x∗)
)

+ ∥zi+1∥2

≤ 2τiλi(λi − 1)
(

f(xi)− f(x∗)
)

+ (1− ατi)∥zi∥2 − ατi(λi − 1)∥xi − x∗∥2.

In general λi(λi − 1) ̸≤ (1 − ατi)λ
2
i−1, so linear convergence does not follow. Note though, this

inequality does hold if λi−1 = λi ≤ 1/ατi. Thus if an estimate of α is available it may be
advantageous to fix λi to be constant once it attains this value. The next section shows that this
is the case; in fact, a linear rate with constant (1−√

ατi) is possible.

3.3. Nesterov’s Algorithm with Fixed Parameter. We consider the Nesterov scheme

xi+1 = yi − τi∇f(yi), yi+1 = xi+1 +
λ− 1

λ+ 1
(xi+1 − xi), i = 1, 2, . . . ,

with fixed parameter4. Letting

ẑ = (λ+ 1)y − λx− x∗ and z = λy − (λ− 1)x− x∗,

the convergence proof uses the following identity relating these two quantities,

(1− 1/λ2)∥z∥2 = (1− 1/λ)∥ẑ∥2 + (1/λ2)(λ− 1)∥x− x∗∥2 − (λ− 1/λ)∥y − x∥2. (3.6)

Exercise 3.8. Figure 3.1 shows the results of a Maple calculation. Show that identities involv-
ing scalars and the squares of norms in a real Hilbert space can be validated using the corresponding
identities for polynomials. In particular, the Maple calculation proves identity (3.6).

Theorem 3.9. Let X be a Hilbert space and let f : X → R be strongly convex with constant
α > 0 and have Lipschitz gradient with constant L > 0 and fix λ ≥

√

2L/α > 1. Let x0 = y0 ∈ X
and

xi+1 = yi − τi∇f(yi), yi+1 = xi+1 +
λ− 1

λ+ 1
(xi+1 − xi), i = 0, 1, 2, . . . ,

where the step size τi > 0 is determined by the Armijo rule (3.3) with the additional requirement
that τi ≤ τi−1.

4Setting λ = (λ̃ + 1)/2 in equation (1.3) gives (λ − 1)/λ = (λ̃ − 1)/(λ̃ + 1). This change of variable simplifies
some of the formula in the convergence proof.

12



>  >  r e s t a r t :
zha t  :=  ( l ambda+1 ) *y  -  l ambda*x  -  xs ta r ;
z z  : =  l a m b d a * y  -  ( l a m b d a - 1 ) * x  -  x s t a r ;
fac tor ( (1 -1 / lambda^2) *zz^2  -  (1 -1 / lambda) * (zhat^2+(1 / lambda) * (x -xs tar )^2 ) ) ;

Fig. 3.1. Proof of the identity (3.6).

Let x∗ ∈ X satisfy f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X, then

(λ2/L)(f(xn)− f∗) + ∥(λ+ 1)yn − λxn − x∗∥2 ≤ (1− 1/λ)n
(

2τ0λ
2(f(x0)− f∗) + ∥x0 − x∗∥2

)

.

In addition,

∥xn − x∗∥2 ≤ (2/α)(f(xn)− f∗), and ∥∇f(yn)∥2 ≤ (8L2/α)(f(xn+1)− f∗).

Proof. Set (x, y, z) =
(

xi+1, yi, (1− 1/λ)xi + (1/λ)x∗
)

in Lemma 3.1, to get

2τif(xi+1) + (1/λ)2∥ẑi+1∥2 ≤ 2τif
(

(1− 1/λ)xi + (1/λ)x∗
)

+ (1/λ2)(1− ατi)∥zi∥2,

where
ẑi ≡ (λ+ 1)yi − λxi − x∗ and zi ≡ λyi − (λ− 1)xi − x∗.

The update formula for yi+1 was used to get the alternative formula for ẑi+1,

ẑi+1 ≡ (λ+ 1)yi+1 − λxi+1 − x∗ = λxi+1 − (λ− 1)xi − x∗.

From the strong convexity of f it follows that

2τiλ
2f(xi+1) + ∥ẑi+1∥2 ≤ 2τiλ(λ− 1)f(xi) + 2τiλf(x∗)− ατi(λ− 1)∥xi − x∗∥2 + (1− ατi)∥zi∥2,

which can be rearranged to give

2τiλ
2
(

f(xi+1)− f(x∗)
)

+∥ẑi+1∥2 ≤ 2τiλ(λ−1)
(

f(xi)− f(x∗)
)

−ατi(λ−1)∥xi − x∗∥2+(1−ατi)∥zi∥2.

Writing the last term as (1/λ2 − ατi)∥zi∥2 + (1 − 1/λ2)∥zi∥2 and using identity (3.6) to bound
the second summand shows

2τiλ
2
(

f(xi+1)− f(x∗)
)

+ ∥ẑi+1∥2 ≤ 2τiλ(λ− 1)
(

f(xi)− f(x∗)
)

+ (1− 1/λ)∥ẑi∥2 − (λ− 1/λ)∥yi − xi∥2
+(1/λ2 − ατi)(λ− 1)

(

∥xi − x∗∥2 + ∥zi∥2
)

. (3.7)

By hypothesis 1/λ2 ≤ α/2L ≤ ατi, the latter following from Lemma 3.2, and τi ≤ τi−1, so

2τiλ
2
(

f(xi+1)− f(x∗)
)

+∥ẑi+1∥2+(λ−1/λ)∥yi − xi∥2 ≤ (1−1/λ)
(

2τi−1λ
2
(

f(xi)− f(x∗)
)

+∥ẑi∥2
)

.

The bound on ∥xn − x∗∥2 follow from strong convexity,

0 =
(

∇f(x∗), xn − x∗
)

≤ f(xn)−f(x∗)−(α/2)∥xn − x∗∥2, so ∥xn − x∗∥2 ≤ (2/α)
(

f(xn)− f(x∗)
)

.
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Fig. 4.1. I + τ∂|.| and its inverse.

Next, monotonicity of the gradient shows

0 ≤
(

∇f(yn)−∇f(x∗), yn − x∗
)

so that
(

∇f(yn), yn − xn+1

)

≤
(

∇f(yn), x∗ − xn+1

)

.

The update formula, τn∇f(yn) = yn − xn+1, and Cauchy Schwarz inequality give

τn∥∇f(yn)∥ ≤ ∥xn+1 − x∗∥ ≤
(

(2/α)(f(xn+1)− f(x∗))
)1/2

,

and the gradient bound follows since τn ≥ 1/2L.

Commentary: Computational examples show that the hypothesis λ ≥
√

2L/α is essential. The
development of parameter free modifications of Nesterov’s algorithm exhibiting linear convergence
when α > 0, and rate O(1/n2) otherwise, is still an active area of investigation [13].

4. Constrained and Non–Smooth Optimization. The objective function f : X → R ∪
{∞} is often the sum f = f0 + f1 of a smooth convex function f1 and non–smooth convex part
f0 for which the inverse of (I + τ∂f0) : X → X can be readily evaluated. It is then possible to
treat the non–smooth part implicitly; that is, replacing the descent step

x = y − τ∇f(y) ≃ y − τ
(

∇f0(y) +∇f1(y)
)

with x ∈ y − τ
(

∂f0(x) +∇f1(y)
)

.

This may be alternatively expressed as

(I + τ∂f0)(x) ∋ y − τ∇f1(y), or x = (I + τ∂f0)−1
(

y − τ∇f1(y)
)

,

or equivalently,
x = argmin

x∈X

{

τf0(x) + τ
(

∇f1(y), x
)

+ (1/2)∥x− y∥2
}

.

Exercise 4.1. (Constrained Optimization) If U ⊂ X is a closed convex subset of the Hilbert space
X, let IU : X → R∪{∞} denote the indicator function of U . Show that (I+τ∂IU )

−1(z) = PU (z)
where PU : X → U is the projection.

Exercise 4.2. (L1 Minimization)

1. If X = R and f(x) = |x| and τ > 0, show that (see Figure 4.1)

(I + τ∂f)(x) =







x+ τ 0 < x
[−τ, τ ] x = 0
x− τ x < 0

and (I + τ∂f)−1(y) =







y − τ 0 ≤ y
0 −τ ≤ y ≤ τ

y + τ y ≤ 0
14



2. If X = R
n and f(x) = |x|ℓ1 ≡ ∑n

i=1 |xi|, show that (I + τ∂f)−1(y)i = (I + τ∂|.|)−1(yi);
that is, the inverse of I + τ∂f can be computed compoentwise.

3. If X = L2(Ω) and f(x) = ∥x∥L1(Ω) if x ∈ L2(Ω)∩L1(Ω) and infinity otherwise, show that
(I + τ∂f0)−1(y)(ω) = (I + τ∂|.|)−1(y(ω)) for ω ∈ Ω.

The convergence proofs of the steepest descent and Nesterov algorithms in the previous section
each started by invoking an instance of Lemma 3.1, and the remainder of the proof involved
routine convexity arguments. Using the following analog of Lemma 3.1, proofs of convergence in
the current context are identical to those in the previous section.

Lemma 4.3. Let X be a Hilbert space and f : X → R ∪ {∞} be the sum of two convex functions
f = f0+f1 with f0 proper, convex, and lower semi–continuous, and f1 differentiable and strongly
convex with constant α ≥ 0. For y ∈ X and τ > 0 set

x = (I+τ∂f0)−1
(

y − τ∇f1(y)
)

, and suppose f1(x) ≤ f1(y)+
(

∇f1(y), x− y
)

+1/(2τ)∥x− y∥2,

then
2τf(x) + ∥x− z∥2 ≤ 2τf(z) + (1− ατ)∥y − z∥2, z ∈ X.

Proof. The function Φ(z) = τf0(z) + τ
(

∇f1(y), z
)

+ (1/2)∥z − y∥2 is strongly convex with unit
parameter, and since x minimizes Φ it follows that

Φ(x) + (1/2)∥x− z∥2 ≤ Φ(z), z ∈ X.

Expanding this shows

τf0(x)+τ
(

∇f1(y), x
)

+(1/2)∥x− y∥2+(1/2)∥x− z∥2 ≤ τf0(z)+τ
(

∇f1(y), z
)

+(1/2)∥y − z∥2,

and rearranging this gives

2τf0(x) + ∥x− y∥2 + ∥x− z∥2 ≤ 2τf0(z) + 2τ
(

∇f1(y), z − x
)

+ ∥y − z∥2.

Writing z − x = (z − y) + (y − x) the corresponding terms in the inner product are bounded via

• Strong convexity of f1:
(

∇f1(y), z − y
)

≤ f1(z)− f1(y)− (α/2)∥y − z∥2.

• The descent criteria:
(

∇f1(y), y − x
)

≤ f1(y)− f1(x) + (1/2τ)∥x− y∥2.

Combining the above completes the proof.

Using this lemma in place of Lemma 3.1, convergence proofs for the steepest descent and Nesterov
algorithms in this context follow mutatis mutandis as in the smooth case. Note though that the
equivalence (3.2) no longer holds, so bounds upon ∇f(y) (which need not exist) no longer follow
from the descent condition (3.3); putting z = y in the Lemma shows ∥y − x∥2 ≤ 2τ

(

f(y)− f(x)
)

instead.

Theorem 4.4. Let X be a Hilbert space and f : X → R∪{∞} be the sum of two convex functions
f = f0+f1 with f0 proper, convex, and lower semi–continuous, and f1 having Lipschitz gradient
with constant L > 0 and strongly convex with constant α ≥ 0 on D(f0). Let x0 ∈ X and

xi+1 + τi∂f
0(xi+1) ∋ xi − τi∇f1(xi), i = 0, 1, 2, . . . .
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with step size τi = 1/2m where m is the smallest integer for which

f1(xi+1) ≤ f1(xi) +
(

∇f1(xi), xi+1 − xi
)

+ 1/(2τi)∥xi+1 − xi∥2.

Assume there exists x∗ ∈ X for which f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X. Then

f(xn)− f(x∗) ≤
L∥x0 − x∗∥2

n
, and ∥xn − x∗∥2 ≤ (1− α/2L)n∥x0 − x∗∥2.

In addition, ∥xn+1 − xn∥2 ≤ 2τn
(

f(xn+1)− f(x∗)
)

.

One difference between the method of steepest descent and the Nesterov algorithm is that in the
former the gradient of f1 is always evaluated at points xi ∈ D(f0); however, the extrapolation
step of the Nesterov algorithm may produce points yi ̸∈ D(f0), so we assume D(f1) = X.

Theorem 4.5. Let X be a Hilbert space and f : X → R∪{∞} be the sum of two convex functions
f = f0+f1 with f0 proper, convex, and lower semi–continuous, and f1 : X → R having Lipschitz
gradient with constant L > 0. Let x0 = y0 ∈ X and

xi+1 + τi∂f
0(xi+1) ∋ yi − τi∇f1(yi), yi+1 = xi+1 +

λi − 1

λi+1
(xi+1 − xi), i = 0, 1, 2, . . . ,

where τi = min(τi−1, 1/2
m) with m the smallest integer for which

f1(xi+1) ≤ f1(yi) +
(

∇f1(yi), xi+1 − yi
)

+ 1/(2τi)∥xi+1 − yi∥2,

and {λi}∞i=0 is a sequence satisfying

λ0 = 0, λ1 = 1, λi(λi − 1) ≤ λ2
i−1, i = 1, 2, . . .

Assume there exists x∗ ∈ X for which f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X. Then

f(xn+1)− f(x∗) ≤
L∥x0 − x∗∥2

λ2
n

, and ∥λnyn − (λn − 1)xn − x∗∥ ≤ ∥x0 − x∗∥.

Theorem 4.6. Let X be a Hilbert space and f : X → R∪{∞} be the sum of two convex functions
f = f0+f1 with f0 proper, convex, and lower semi–continuous, and f1, having Lipschitz gradient
with constant L > 0 and strongly convex with constant α ≥ 0, and fix λ ≥

√

2L/α > 1. Let
x0 = y0 ∈ X and

xi+1 + τi∂f
0(xi+1) ∋ yi − τi∇f1(yi), yi+1 = xi+1 +

λ− 1

λ+ 1
(xi+1 − xi), i = 0, 1, 2, . . . ,

where τi = min(τi−1, 1/2
m) with m the smallest integer for which

f1(xi+1) ≤ f1(yi) +
(

∇f1(yi), xi+1 − yi
)

+ 1/(2τi)∥xi+1 − yi∥2.

Let x∗ ∈ X satisfy f∗ ≡ f(x∗) ≤ f(x) for all x ∈ X, then

(λ2/L)(f(xn)− f∗) + ∥(λ+ 1)yn − λxn − x∗∥2 ≤ (1− 1/λ)n
(

2τ0λ
2(f0 − f∗) + ∥x0 − x∗∥2

)

.

In addition, ∥xn − x∗∥2 ≤ (2/α)(f(xn)− f∗).
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4.1. L1 Minimization. To illustrate the interplay between constraints and duality we con-
sider the signal reconstruction problem from Example 1.3 with parameter β = 1,

f(u) =

ˆ 1

0

(

(1/2)(u− û)2 + α|u′|
)

.

The discrete approximation this problem is

f(u) = (h/4)
(

(u0 − û0)
2 + (uN − ûN )2

)

+
N−1
∑

i=1

(h/2)(ui − ûi)
2 + α

N
∑

i=1

|ui − ui−1|.

While the sub-gradient of the last term is readily computable, it’s inverse is not, which motivates
the following “mixed” formulation. Set pi = ui − ui−1 and U = {(u,p) | pi − ui + ui−1 = 0} ⊂
R
2N+1, and find

(u,p) ∈ U such that f1(u) + f0(p) ≤ f1(v) + f0(q), (v,q) ∈ U,

where

f1(u) = (1/2)(u− û)⊤D(u− û), and f0(p) = α
N
∑

i=1

|pi|,

with D = diag(h/2, h, h, . . . , h, h/2) ∈ R
(N+1)×(N+1).

Writing the constraint as p = Cu with C ∈ R
N×(N+1), the Lagrangian for the mixed formulation

is

L
(

(u,p),λ
)

= f1(u) + f0(p) + λ.
(

p− Cu
)

.

For this problem the dual g(λ) = inf(u,p) L
(

(u,p),λ
)

can be computed explicitly,

g(λ) = −(1/2)λ⊤(CD−1C⊤)λ− Cû.λ− I[−α,α]N (λ) ≡ g1(λ) + g0(λ),

where I[−α,α]N : RN → R ∪ {∞} is the indicator for the cube. To verify this note that

• infp∈R(α|p|+ λp) = −∞ if λ ̸∈ [−α, α] and is zero otherwise.
• ∂

∂uL
(

(u,p),λ
)

= D(u − û) − C⊤
λ. Equating this to zero gives u = û +D−1C⊤

λ, and
evaluating the Lagrangian at this minima gives the formula for g1(λ).

Since the projection P[−α,α]N : R
N → [−α, α]N is trivial to compute, the projected steepest

descent or projected Nesterov algorithms may can be used to find λ = argmax g(λ). The update
step for these algorithms is

λ 7→ P[−α,α]N

(

λ− τC(D−1C⊤ + û)λ
)

,

where τ > 0 is the step size. The solution of the primal problem is then u = û+D−1C⊤
λ. For

this example rank(C) = N , so g1(λ) is strongly convex. It follows that the Lagrange multiplier
is unique, and if an estimate of the condition number is available Nesterov’s algorithm with fixed
parameter can be utilized.

Exercise 4.7. Show that (N+1)−2|λ|2 ≤ |C⊤
λ
2| ≤ 2|λ|2, and use this to estimate the condition

number of CD−1C⊤.

17



0 2 4 6 8 10
10 7

10 6

10 5

10 4

g(un) gmin

Steepest Descent
Nesterov
Nesterov Fixed

0 20 40 60 80 100 120 140

10 5

10 4

10 3

g(un) gmin

Steepest Descent
Nesterov
Nesterov Fixed

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8

1.0

Noisey Signal u
Clean  Signal u
Denoised Signal

Fig. 4.2. Dual function values with N = 50, N = 500 and solution for Example 4.8.
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Fig. 4.3. Function values for N = 50, N = 500 computed using the primal formulation of Example 4.8.

Example 4.8. Figure 4.2 plots the values of the dual function gmax − g(λn) computed with
the steepest descent, Nesterov, and fixed parameter Nesterov algorithms with for N = 50 and
N = 500, and the solution for the latter. The Armijo rule was used to compute the step sizes,
and the estimate for the square root of the condition number for the fixed parameter Nesterov
scheme was taken to be N/4. The stopping criteria was |g(λn+1) − g(λn)| ≤ 10−6, and the
estimate of gmax was found by setting the tolerance to 10−12. It is clear that the solution with L1

regularization of the gradient captures the discontinuities much better than the L2 regularization
in Example 1.3, which just smooths the whole signal.

N = 50 N = 500
Scheme Iterations Duality Gap Iterations Duality Gap

Steepest Descent 10 1.1800e− 05 149 2.4068e− 04
Nesterov 10 2.4549e− 05 90 5.0773e− 04
Nesterov Fixed 12 3.8914e− 05 59 1.1047e− 03

The figures and table show that the method of steepest descent is competitive with Nesterov’s algo-
rithm when the condition number is small but when the condition number is large the contraction
factor for the linear rate of convergence of steepest descent becomes negligible.

For comparison, Figure 4.3 shows the results of the three algorithms for the primal problem with
selection 0 ∈ ∂|.|(0) used for the gradient calculation. The stopping criteria was |f(xn+1 − fn| ≤
10−6, and the square root of the condition number for the fixed parameter Nesterov scheme was
taken to be

√
αN .
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4.2. Uzawa’s Algorithm. Frequently the constraints take the form φi(x) ≤ 0 for 1 ≤ i ≤
m, where φi : X → R are convex functions, so that the feasible set takes the form

U = {x ∈ X | φi(x) ≤ 0, 1 ≤ i ≤ m}.

In this situation the projection PU : X → U is not readily computable; however, the dual variable
takes values in [0,∞)m ⊂ R

m, and the projection onto this set is easily computed component
wise as max(0, µi). The following theorem summarizes the duality theory needed to utilize this
property.

Theorem 4.9. Let X be a Hilbert space and f : X → R be strongly convex with parameter α > 0.
Let φ : X → R

m be convex, differentiable, and Lipschitz, and assume that there exists a point
x̂ ∈ X where

φi(x̂) ≤ 0, 1 ≤ i ≤ m, and φi(x̂) < 0, if φi is not affine.

Define the Lagrangian L : X×[0,∞)m → R to be L(x, µ) = f(x)+µ.φ(x), and dual g : [0,∞)m →
R to be g(µ) = infx∈X L(x, µ). Then

• g : [0,∞)m → R is concave, and ∇g(µ) = φ(xµ) where xµ = argminx L(x, µ).
• ∇g is Lipschitz on [0,∞)m with constant L2

ϕ/α, where Lϕ is the Lipschitz constant of φ.
• Saddle points (x∗, µ∗) ∈ X × [0,∞)m exist and satisfy

– g(µ∗) ≥ g(µ) for all µ ∈ [0,∞)m.
– µ∗.φ(x∗) = 0.
– The set U ≡ {x ∈ X | φi(x) ≤ 0, 1 ≤ i ≤ m} is non–empty,

x∗ ∈ U, f(x∗) ≤ f(x) x ∈ U, and 0 ∈ ∂f(x∗) +
m
∑

i=1

µ∗i∇φi(µ∗).

Uzawa’s algorithm is the projected gradient method applied to the dual variable, thereby re-
ducing an intractable constrained optimization problem to a sequence of tractable unconstrained
problems. Let µ0 ∈ [0,∞)m and

xn = argmin
y∈X

(

f(y) + µn.φ(y)
)

, µn+1 = P+

(

µn + τnφ(xn)
)

, n = 0, 1, 2, . . . , (4.1)

where P+ : Rm → [0,∞)m is the projection, and τn > 0.

• In general, the function y 7→ f(y) + µ.φ(y) is convex provided µ ∈ [0,∞)m, so it is
necessary to use the projected steepest descent algorithm to guarantee µn ∈ [0,∞)m.
Nesterov’s algorithm can then be used to compute xn.
However, if constraint functions φi : X → R are affine, then y 7→ f(y) + ν.φ(y) is convex
for ν ∈ R

m, so the projected Nesterov scheme can be used for the dual variable

µn+1 = P+

(

νn + φ(νn)
)

, νn+1 = µn+1 +
λi − 1

λi+1

(

µn+1 − µn

)

.

• The Armijo rule can be used to compute the step sizes; this may involve multiple evalua-
tions of g(µ) = miny f(y) + µ.φ(y). Theorem 4.4 then shows g(µ∗)− g(µn) = O(1/n); in
addition, the duality gap is explicitly computable, f(xn)− f(x∗) ≤ −µn.φ(xn).

19



• In general, g may not be strongly concave, so {µn}∞n=1 may not converge. However, strong
convexity of f guarantees uniqueness of the primal minima x∗, and the next theorem shows
that if the step sizes satisfy τn ≤ α/L2

ϕ, then xn → x∗.

Theorem 4.10. Adopting the notation and hypotheses of Theorem 4.9, assume that the step size
in Uzawa’s algorithm (4.1) satisfies 0 < τ ≤ α/L2

ϕ. Then

g(µ∗)− g(µn) ≤
∥µ0 − µ∗∥2

2nτ
, and ∥xn − x∗∥2 ≤

2∥µ0 − µ∗∥2
ατ

√
n

.

Proof. Since τ ≤ α/L2
ϕ ≤ 1/|∇g|Lip it follows from Lemma 3.2 (Amiljo rule) that the descent

condition is always satisfied. Theorem 4.4 then gives

g(µ∗)− g(µn) ≤
∥µ0 − µ∗∥2

2nτ
and ∥µn+1 − µn∥ ≤ ∥µ0 − µ∗∥√

n
.

• Consistency of the algorithm follows from the property that saddle points (x∗, µ∗) satisfy
P+(µ∗ + τφ(x∗)) = µ∗ for all τ ≥ 0.
To verify this, let µ ∈ [0,∞)m and compute

∥µ∗ + τφ(x∗)− µ∥2 = ∥µ∗ − µ∥2 + 2τ(φ(x∗), µ∗ − µ) + τ2∥φ(x∗)∥2 ≥ ∥µ∗ − µ∥2.

The inequality holds since µ∗.φ(x∗) = 0 and φi(x∗) ≤ 0. Then µ∗ is the closest point in
[0,∞)m to µ∗ + τφ(x∗), so is the projection.

• We next show that

α∥xn − x∗∥2 ≤ (µ∗ − µn).(φ(xn)− φ(x∗)). (4.2)

The necessary conditions for optimality of the primal problems are

0 ∈ ∂f(xn) +
m
∑

i=1

µni∇φi(xn), and 0 ∈ ∂f(x∗) +
m
∑

i=1

µ∗i∇φi(x∗).

Subtracting and and using the convexity of φ gives (a selection of the sub-gradients for
which)

(

∂f(xn)− ∂f(x∗), xn − x∗
)

=

m
∑

i=1

µ∗i

(

∇φi(x∗), xn − x∗
)

+ µni

(

∇φi(xn), x∗ − xn
)

≤ (µ∗ − µn).(φ(xn)− φ(x∗)),

the inequality following since the components of µn and µ∗ are non–negative. Equation
(4.2) then follows from strong convexity of f .

• Convergence of the primal variable will follow from the estimate

τ(2α− τL2
ϕ)∥xn − x∗∥2 ≤ ∥µn − µ∗∥2 − ∥µn+1 − µ∗∥2. (4.3)

Granted this, the the difference of the squares can be factored to give

τ(2α− τL2
ϕ)∥xn − x∗∥2 ≤ 2∥µ0 − µ∗∥∥µn+1 − µn∥ ≤ 2∥µ0 − µ∗∥2/

√
n.
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The theorem then follows from since 0 < τ ≤ α/L2
ϕ.

Equation (4.3) results upon writing the update step of the dual variable as

µn+1 − µ∗ = P+(µn + τφ(xn))− µ∗ = P+(µn + τφ(xn))− P+(µ∗ + τφ(x∗)).

Taking the norm of both sides and recalling that P+ : X → [0,∞)m is a contraction gives

∥µn+1 − µ∗∥2 = ∥P+(µn + τφ(xn))− P+(µ∗ + τφ(x∗))∥2
≤ ∥(µn + τφ(xn))− (µ∗ + τφ(x∗))∥2
= ∥µn − µ∗∥2 + 2τ(µn − µ∗).(φ(xn)− φ(x∗)) + τ2∥φ(xn)− φ(x∗)∥2
≤ ∥µn − µ∗∥2 + 2τ(µn − µ∗).(φ(xn)− φ(x∗)) + τ2L2

ϕ∥xn − x∗∥2,

and (4.3) follows upon using equation (4.2) to bound the cross term.

Appendix A. Discrete and Differential Equations. Convergence properties of the method
of steepest descent are frequently motivated by identifying it with a discrete approximation of
the differential equation,

x′(t) +∇f(x(t)) = 0, x(0) = x0.

If f is strongly convex with parameter α ≥ 0, a calculation shows

d

dt

(

t(f(t)− f(x∗)) + (1/2)∥x(t)− x∗∥2
)

≤ −(α/2)∥x(t)− x∗∥2.

It follows that

f(x(t))− f(x∗) ≤
∥x0 − x∗∥2

2t
, and ∥x(t)− x∗∥2 ≤ ∥x0 − x∗∥2 exp(−αt).

A discrete version of this appears in the convergence proof of steepest descent in Section 3.1.
When the gradient of f is Lipschitz with constant L,

f(x(t))− f(x∗) ≤ (L/2)∥x(t)− x∗∥2 ≤ (L/2)∥x0 − x∗∥2 exp(−αt),

which is an asymptotically better than O(1/t) when α > 0.

Nesterov’s original manuscript was succinct; the scheme was not introduced as either an extrapo-
lation (SOR variant) of steepest descent, or as a discrete approximation of a differential equation.
However, writing the Nesterov scheme as the three term recurrence,

λi+1(yi+1−2yi+yi−1)+(λi+1−λi+1)(yi−yi−1)+(λi+1+λi−1)τi∇f(yi)−(λi−1)τi−1∇f(yi−1) = 0,

motivates formal connections with second order differential equations.

In [23] the authors substituted the asymptotic approximation λi ≃ (i − 1)/2 and terminal step
size τ = τi = τi−1 = s2 into the three term recurrence to get

i(yi+1 − 2yi + yi−1) + 3(yi − yi−1) + s2(2i− 3)∇f(yi)− s2(i− 3)∇f(yi−1) ≃ 0.

Rewriting this as

yi+1 − 2yi + yi−1

s2
+

3

is

yi − yi−1

s
+ (2− 3/i)∇f(yi)− (1− 3/i)∇f(yi−1) ≃ 0,
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(1)(1)

>  >  r e s t a r t :
e e  : =  t ^ 2 * ( f ( y ( t ) )  -  f s t a r )  +  2 * ( y ( t )  -  x s t a r  +  ( t / 2 ) * d i f f ( y ( t ) , t ) ) ^ 2 ;

d 2 y d t  : =  - D ( f ) ( y ( t ) )  -  ( 3 / t ) * d i f f ( y ( t ) , t ) ;

s i m p l i f y (  s u b s ( d i f f ( y ( t ) , t , t ) = d 2 y d t ,  d i f f ( e e , t ) )  ) ;

Fig. A.1. Derivation of the dissipation relation (A.1).

and identifying s as a time step motivates the differential equation

y′′(t) + (3/t)y′(t) +∇f(y(t)) = 0, y(0) = y0, y′(0) = 0.

Solutions of this equation satisfy

d

dt

(

t2
(

f(y(t))− f(x∗)
)

+ 2∥y(t)− x∗ + (t/2)y′(t)∥2
)

≤ 0. (A.1)

The analog of (3.5) is then immediate

t2
(

f(y(t))− f(x∗)
)

+ 2∥y(t)− x∗ + (t/2)y′(t)∥2 ≤ 2∥y0 − x∗∥2.

Exercise A.1. Figure A.1 shows the results of a Maple calculation. If f is strongly convex
with parameter α ≥ 0 show that a sharper statement of equation (A.1) is

d

dt

(

t2
(

f(y(t))− f(x∗)
)

+ 2∥y(t)− x∗ + (t/2)y′(t)∥2
)

≤ −tα∥y(t)− x∗∥2.

In [18] the authors considered the three term recurrence for Nesterov’s algorithm with λ fixed
and terminal step size τ = τi = τi−1 = s2,

yi+1 − 2yi + yi−1

s2
+

1

λs

yi − yi−1

s
+ (2− 1/λ)∇f(yi)− (1− 1/λ)∇f(yi−1) = 0.

Setting λ =
√

L/α ≡ √
κ and step size τ = s2 = 1/L gives

yi+1 − 2yi + yi−1

s2
+
√
α
yi − yi−1

s
+ (2− s

√
α)∇f(yi)− (1− s

√
α)∇f(yi−1) = 0,

which motivates the differential equation

y′′(t) +
√
α y′(t) +∇f(y(t)) = 0, y(0) = y0, y′(0) = 0.

When f is strongly convex with parameter α ≥ 0, solutions of this differential equation satisfy

d

dt
exp(

√
αt)

(

f(y(t))− f(x∗) + (1/2)∥√α(y(t)− x∗) + y′(t)∥2
)

≤ 0.
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Integrating this gives the analog of the descent rate in Theorem 3.9,

f(y(t))− f(x∗) + (1/2)∥√α(y(t)− x∗) + y′(t)∥2 ≤ exp(−√
αt)

(

f(y0)− f(x∗) + (α/2)∥y0 − x∗∥2
)

.

These differential equations provide some insight into the descent properties of the associated
scheme. While differential equations with better descent properties are known, [3], the develop-
ment of explicit time stepping schemes to approximate their solutions which inherit their descent
(i.e. stability) properties is difficult. Note that Lipschitz continuity of ∇f is not required to es-
tablish descent of solutions to the differential equations, this is a required in the discrete setting
to establish stability of explicit schemes.
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