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Abstract
The log-sum penalty is often adopted as a replacement for the �0 pseudo-norm in compressive
sensing and low-rank optimization. The proximity operator of the �0 penalty, i.e., the hard-
thresholding operator, plays an essential role in applications; similarly, we require an efficient
method for evaluating the proximity operator of the log-sum penalty. Due to the nonconvex-
ity of this function, its proximity operator is commonly computed through the iteratively
reweighted �1 method, which replaces the log-sum term with its first-order approximation.
This paper reports that the proximity operator of the log-sum penalty actually has an explicit
expression. With it, we show that the iteratively reweighted �1 solution disagrees with the
true proximity operator in certain regions. As a by-product, the iteratively reweighted �1
solution is precisely characterized in terms of the chosen initialization. We also give the
explicit form of the proximity operator for the composition of the log-sum penalty with the
singular value function, as seen in low-rank applications. These results should be useful in
the development of efficient and accurate algorithms for optimization problems involving
the log-sum penalty. We present applications to solving compressive sensing problems and
to mixed additive Gaussian white noise and impulse noise removal.
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reweighted �1 · Compressive sensing · Low-rank regularization

Lixin Shen and Erin E. Tripp have contributed equally to this work.

B Erin E. Tripp
erin.tripp.4@us.af.mil

Ashley Prater-Bennette
ashley.prater-bennette@us.af.mil

Lixin Shen
lshen03@syr.edu

1 Information Directorate, Air Force Research Laboratory, Rome, NY, USA

2 Department of Mathematics, Syracuse University, Syracuse, NY, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10915-022-02021-4&domain=pdf
http://orcid.org/0000-0002-5476-8213


67 Page 2 of 34 Journal of Scientific Computing (2022) 93 :67

1 Introduction

The log-sum penalty function is defined as

f (x) :=
n∑

i=1

log

(
1 + |xi |

ε

)
, (1)

where ε > 0 and x = (x1, x2, . . . , xn) ∈ R
n . This function is commonly used to bridge

the gap between the �0 and �1 norms in compressive sensing [6, 23] and as a nonconvex
surrogate function of the matrix rank function in the low-rank regularization [4, 11, 12, 15].
The parameter ε controls the slope of the cusp at the origin.More specifically, as ε approaches
0, the slope increases, as illustrated in Fig. 1.

Iterative methods for solving compressive sensing problems typically require solving a
subproblem of the form

min

{
1

2λ
‖x − z‖2 +

n∑

i=1

log

(
1 + |xi |

ε

)
: x ∈ R

n

}
, (P1)

where λ > 0 is a regularization parameter. In the language of convex analysis, the solu-
tion to (P1) is precisely the proximity operator of f with index λ at z (see, e.g., [2]). Due
to the nonconvexity of the objective, this problem is difficult to solve directly; instead, an
approximate solution is typically obtained through the iteratively reweighted �1 minimization
method, which sequentially linearizes f around the current iterate and solves the linearized
convex problem to obtain the next iterate [6]. It has been shown that the iteratively reweighted
�1 algorithm is an optimal majorization-minimization approach to log-sum regularized opti-
mization problems [21].

Similarly, an essential step in algorithms for low-rank optimization problems is solving

min

{
1

2λ
‖X − Z‖2F +

m∧n∑

i=1

log

(
1 + σi (X)

ε

)
: X ∈ R

m×n

}
, (P2)

where σi (X) is the i th singular value of X . Here, m ∧ n := min{m, n} and ‖ · ‖F denotes
the Frobenius norm.A similar strategy in solving (P1) is applied for solving (P2). The solution

Fig. 1 The graphs of a �0 (dot-dashed), �1 (dashed), and the log-sum function (solid) and b the log-sum
function with ε = 1 (solid), 0.5 (dot-dashed), and 0.25 (dashed)
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to (P2) is the proximity operator of f ◦ σ with index λ at Z , where σ : Rm×n → R
m∧n gives

all singular values of a matrix. The regularization term in (P2) is the Log-Det heuristic used
in [15]. In fact, if m ≤ n, then

m∧n∑

i=1

log

(
1 + σi (X)

ε

)
= log det

(
I + 1

ε
(XX�)1/2

)
.

If m > n, we simply replace XX� by X�X in the above equation.
Notice that the log-sum function is additively separable; that is,

f (x) =
n∑

i=1

g(xi ),

where g : R → R is defined by

g(w) = log

(
1 + |w|

ε

)
. (2)

As a result, the solutions to (P1) and (P2) can be given in terms of the proximity operator of g.
Throughout this paper, f and g always refer to the functions given in (1) and (2), respectively.

The purpose of this paper is to show that there exist closed-form solutions to (P1) and
(P2), and therefore time-consuming iterative procedures to approximate them can be avoided.
These expressions do not appear in the existing literature to the best of our knowledge and
should improve the efficiency and accuracy of algorithms in compressive sensing and low-
rank minimization where the function f is used. A recent paper [27] attempts to find the
proximity operator of f under the condition

√
λ > ε. However, the results reported in [27]

are inaccurate, as we show in Sect. 2.
We remark that since the objective functions in (P1) and (P2) are nonconvex, the sequences

generated by the iterative scheme described above may not converge to a global solution of
the corresponding optimization problem. In fact, we identify under what circumstances the
iteratively reweighted algorithm for problem (P1) does not produce an optimal solution.

The rest of the paper is outlined as follows: In the next section, we give an explicit
expression of the proximity operator of g, followed by an explicit expression of the solution to
(P1). With this, we show in Sect. 4 that the iteratively reweighted �1 solution to (P1) disagrees
with the true proximity operator of the log-sum penalty in certain regions. These regions are
completely determined by the chosen initial guess for the reweighted �1 algorithm. In Sect. 3,
we give an explicit expression of solutions to (P2). We take a closer look at the compressive
sensing problem in Sect. 5 with numerical experiments comparing the performance of several
algorithms. In Sect. 6, we present an application of the log-sum penalty in removing mixed
additive Gaussian white noise and impulse noise in noisy images. Our conclusions are drawn
in Sect. 7.

2 Solutions to Optimization Problem (P1)

We begin in Sect. 2.1 by collecting some lemmas related to the proximity operator of g. In
Sect. 2.2, we give the explicit expression of the proximity operator of g then use it to derive
the proximity operator of f . The main results of this section are summarized in Propositions
1–2 and Theorem 3.
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2.1 Fundamental Properties

The proximity operator of g at z ∈ R with index λ is defined by

proxλg(z) := argmin

{
1

2λ
(w − z)2 + g(w) : w ∈ R

}
.

The proximity operator is a possibly set-valued mapping from R → 2R, the power set of R.
Because g, as defined by (2), is continuous and coercive, the set proxλg(z) is not empty for
any λ > 0 and z ∈ R.

By definition, the elements of proxλg are solutions of an optimization problem, and in order
to characterize these solutions, we must understand the behavior of the objective function
around its critical points. Given λ and z, define qλ,z : R → R as follows

qλ,z(x) = 1

2λ
(x − z)2 + g(x).

Note that qλ,z is differentiable away from the origin with

d

dx
qλ,z(x) = 1

λ
(x − z) + 1

x + ε sgn(x)
, (3)

where sgn(x) is the sign function. Clearly,

proxλg(z) = argmin{qλ,z(x) : x ∈ R}.
A straightforward consequence of this definition is that proxλg is symmetric about the origin
and shrinks points towards the origin.

Lemma 1 (Symmetry and Shrinkage) Let z be nonzero. Then (i) proxλg(z) = − proxλg(−z),
and (ii) proxλg(z) ⊆ [0, z) if z is positive and proxλg(z) ⊆ (z, 0] if z is negative.
Proof (i) This follows directly from the fact that qλ,z(x) = qλ,−z(−x) for all x ∈ R.
(ii) First assume z > 0. One can check that qλ,z(x) < qλ,z(−x), for x > 0. Hence the

elements in proxλg(z) should be nonnegative. It can be verified from (3) that qλ,z(x) as
a function of x is increasing on [z,∞), which implies that proxλg(z) ⊆ [0, z]. By using
Taylor’s expansion for expanding qλ,z(x) at z, one has

qλ,z(x) = qλ,z(z) + 1

z + ε
(x − z) +

(
1

2λ
− 1

2(z + ε)2

)
(x − z)2 + o(|x − z|2).

From this expression, we see that qλ,z(x) < qλ,z(z) when x is sufficiently close to z from
below. We conclude that proxλg(z) ⊆ [0, z).

The above discussion, along with (i), implies that proxλg(z) ⊆ (z, 0] if z is negative. �

By item (i) of Lemma 1, it is sufficient to study the proximity operator proxλg(z) for all

non-negative z. Moreover, it follows immediately that for all λ > 0,

proxλg(0) = {0}. (4)

More generally, the proximity operator depends on the structure of the function qλ,z , which
depends both on the parameters λ and ε as well as the value of z.

Lemma 2 (Convexity of Objective) (i) If
√

λ ≤ ε, then qλ,z is strictly convex on (0,∞). (ii)
If

√
λ > ε, then qλ,z is concave on (0,

√
λ − ε] and convex on [√λ − ε,∞).
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Proof This follows immediately from the fact that d2

dx2
qλ,z(x) = 1

λ
− 1

(x+ε)2
for x ∈ (0,∞).

�

From Lemma 2, qλ,z has a unique minimizer for each z when

√
λ ≤ ε. In other words,

proxλg is single-valued in this case. To study proxλg when
√

λ > ε, we need the following
two lemmas. Note from the proof that Lemma 3 is independent of the monotonicity of g and
is instead an intrinsic quality of the proximity operator.

Lemma 3 (Order-preservation of prox) Let 0 ≤ u < v. If α ∈ proxλg(u) and β ∈ proxλg(v),
then 0 ≤ α ≤ β.

Proof By the definition of the proximity operator, one has qλ,u(α) ≤ qλ,u(β) and qλ,v(β) ≤
qλ,v(α). Then, qλ,u(α) + qλ,v(β) ≤ qλ,u(β) + qλ,v(α). After simplification, we have from
the previous inequality that (α − β)(u − v) ≥ 0. Hence, α ≤ β. �

Lemma 4 (Set-valued prox) If the set proxλg(z∗) at some z∗ > 0 contains zero and a positive
number, then proxλg(z) is a singleton for all |z| �= z∗. In particular, proxλg(z) = {0} for all
|z| < z∗ and proxλg(z) contains only one nonzero element for all |z| > z∗.

Proof By Lemma 1 and equation (4), we only need to consider proxλg(z) for z > 0. Since
0 ∈ proxλg(z∗), then proxλg(z) = {0} for all 0 ≤ z < z∗ by Lemma 3. Let α > 0 be an
element in proxλg(z∗). Then, by Lemma 3 again, all elements in proxλg(z) must greater than
or equal to α for all z > z∗.

Suppose that proxλg(z) for some z > z∗ has at least two nonzero elements, say β and γ .

Then, one should have qλ,z(β) = qλ,z(γ ) and d
dx qλ,z(β) = d

dx qλ,z(γ ) = 0. The intermediate
value theorem implies that there exists another point between β and γ , say τ , at which
d
dx qλ,z(τ ) = 0. However, d

dx qλ,z(x) = 1
λ
(x − z)+ 1

x+ε
has at most two roots on [0,∞). We

conclude that proxλg(z) is a singleton for all z > z∗. This completes the proof. �


2.2 The Proximity Operators of g and f

We are now prepared to compute the proximity operators of g and f . As above, the problem
is split between two cases:

√
λ ≤ ε and

√
λ > ε, i.e., the convex case and the nonconvex

case.
For the rest of this section,we consider only z > 0.With item (ii) of Lemma1,we therefore

only need to investigate the behavior of qλ,z(x) for x ≥ 0. In this case, the derivative of qλ,z

can be rewritten as

d

dx
qλ,z(x) = (x − 1

2 (z − ε))2 + λ − 1
4 (z + ε)2

λ(x + ε)
. (5)

Moreover, for z ≥ max{2√λ − ε, 0}, the expression above can be factored as

d

dx
qλ,z(x) = 1

λ(x + ε)
(x − r1(z))(x − r2(z)), (6)

where

r1(z) := 1

2
(z − ε) −

√
1

4
(z + ε)2 − λ (7)

and

r2(z) := 1

2
(z − ε) +

√
1

4
(z + ε)2 − λ. (8)
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First, a few remarks on the functions r1 and r2 which are central to the next lemmas.
Clearly r2(z) > r1(z) for all z ∈ [2√λ − ε,∞), and r1( λ

ε
) = 0, noting that

λ

ε
= (2

√
λ − ε) + (

√
ε − √

λ/ε)2 > 2
√

λ − ε.

These functions are differentiable themselves, with

r ′
1(z) =

√
(z + ε)2 − 4λ − (z + ε)

2
√

(z + ε)2 − 4λ
< 0

and

r ′
2(z) =

√
(z + ε)2 − 4λ + (z + ε)

2
√

(z + ε)2 − 4λ
> 0.

That is, r1 is strictly decreasing, while r2 is strictly increasing.
Due to Lemmas 1 and 2, proxλg is a single-valued operator when

√
λ ≤ ε. More precisely,

we have the following result.

Proposition 1 If
√

λ ≤ ε, then

proxλg(z) =
{ {0}, if|z| ≤ λ

ε
;

{sgn(z)r2(|z|)}, if|z| > λ
ε
,

(9)

where r2 is given in (8).

Proof From (3), d
dx qλ,z(x) > 0 when (x − z)(x +ε)+λ > 0. It can be verified directly that

this holds for every x for z ∈ [0, λ
ε
]. That is, qλ,z is increasing, and therefore the minimum

must occur at 0.
The factorization (6) is defined for z ∈ [ λ

ε
,∞). By the discussion above, r1(z) < 0 on this

interval, so d
dx qλ,z(x) is negative for x < r2(z) and positive for x > r2(z). Thus, x = r2(z)

is the minimizer. �

Recall fromLemma 4 that proxλg is single-valued except possibly at±z∗ for some z∗ ∈ R.

As we will see in the next result, the point z∗ does exist and can be efficiently located when√
λ > ε. In this scenario, proxλg is described in the following result.

Proposition 2 If
√

λ > ε, then for any given z ∈ R

proxλg(z) =
⎧
⎨

⎩

{0}, if|z| < z∗;
{0, sgn(z)r2(z∗)}, if|z| = z∗;
{sgn(z)r2(|z|)}, if|z| > z∗,

(10)

z∗ is the root of the function

r(z) := qλ,z(r2(z)) − qλ,z(0) (11)

on the interval [2√λ − ε, λ
ε
] and r2(z) is given in (8).

Proof From equation (5), we may directly verify that dq
dx > 0 for z ∈ (0, 2

√
λ − ε). This

implies that x = 0 is the unique minimizer for this range of z.
Next, we focus on the situation of z ∈ [2√λ−ε, λ

ε
]. In this case, the factorization (6) holds.

Furthermore, r1(2
√

λ − ε) = r2(2
√

λ − ε) = √
λ − ε. Because r1(z) is strictly decreasing,

x = r1(z) implies that x ≤ √
λ − ε. By Lemma 2, d2q

dx2
< 0 for x <

√
λ − ε, implying that

123
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x = r1(z) is a local maximum. By analogous reasoning, since r2(z) is increasing and q is
convex on (

√
λ − ε,∞), x = r2(z) must be a local minimum. Therefore the elements of

proxλg(z) must be 0, r2(z), or both.
To determine when the origin and/or r2 are the minimizers of qλ,z , we take a closer look

at the function r(z) in (11) for 2
√

λ − ε < z ≤ λ
ε
. One can check directly that

r(2
√

λ − ε) = − log

(
ε√
λ

)
+
(

ε2

2λ
+ 2ε√

λ
− 3

2

)
> 0

and

r

(
λ

ε

)
= ε2

2λ
+ log

(
λ

ε2

)
− λ

2ε2
< 0

whenever
√

λ > ε. Hence, the function r has at least one root z∗ ∈ (2
√

λ − ε, λ
ε
). This

means that {0, r2(z∗)} = proxλg(z∗). By Lemma 4, z∗ is the only root of r on the interval

[2√λ − ε, λ
ε
]. We conclude that proxλg(z) = {0} when z ∈ [2√λ − ε, z∗) and proxλg(z) =

{r2(z)} when z ∈ (z∗, λ
ε
].

Finally, we consider z ∈ ( λ
ε
,∞). Note that r1(z) < 0 on this interval, so by Lemma 1,

the proximity operator cannot be r1(z). By the previous discussion, we know that r(z) < 0
for z in this interval. Thus, proxλg(z) = {sgn(z)r2(z)}. �


From the above proof, we know that z∗ is the unique root of r on [2√λ−ε, λ
ε
] and depends

on parameters λ and ε only. Furthermore, from r(2
√

λ − ε)r( λ
ε
) < 0, z∗ can easily be found

by the bisection method. We further remark that the z∗ is simply given as 2
√

λ − ε in [27],
which clearly is incorrect.

Equation (10) for proxλg(z) in the case of
√

λ > ε will reduce to Equation (10) when√
λ − ε → 0+, since z∗ ∈ (2

√
λ − ε, λ

ε
) should converge to

√
λ = λ

ε
.

Figure 2 displays the proximity operator proxλg for two choices of (λ, ε). Figure2a depicts

proxλg for
√

λ ≤ ε with (λ, ε) = (2, 3) as in Proposition 1. Figure2b depicts proxλg for√
λ > ε with (λ, ε) = (3, 1), corresponding to Proposition 2. In both situations, proxλg(z) =

{0} for z in a neighborhood of the origin, thus g is a sparsity promoting function as defined
in [22].

Figure 3 illustrates the graph of proxλg(z) for fixed λ and z > 0 with respect to varying

ε (horizontal axis) in three situations. The symbol “◦” represents ε = √
λ while the symbol

“x” represents ε = λ
ε
. In the first situation, we assume that

√
λ < λ

z . If ε ∈ (0,
√

λ), we

have z <
√

λ < 2
√

λ − ε, therefore, proxλg(z) = 0 Proposition 2; If ε ∈ [√λ, λ
z ), we know√

λ ≤ ε and z < λ
ε
, hence proxλg(z) = 0 by Proposition 1; if ε ∈ [ λ

z ,∞), we get
√

λ ≤ ε

and z ≥ λ
ε
, hence proxλg(z) = r2(z) from Proposition 1. As shown in Fig. 3a, the value of

proxλg(z) continuously changes with respect to the parameter ε. In the second situation, we

assume that
√

λ = λ
z . Using the arguments in the first situation, we conclude that the value

of proxλg(z) continuously changes with respect to the parameter ε as displayed in Fig. 3b.

The behavior of proxλg(z) in the last situation of
√

λ > λ
z is quite different from the previous

ones. If ε ∈ (0, λ
z ), proxλg(z) will jump at, say ε∗, in (0, λ

z ); For all ε ∈ (ε∗,∞), we will
have proxλg(z) = r2(z) due to Propositions 1 and 2.
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(a) (b)

Fig. 2 The graphs (solid lines) of proxλg for a
√

λ ≤ ε with (λ, ε) = (2, 3) and b
√

λ > ε with (λ, ε) = (3, 1).
The dotted lines are the graph of the identity mapping

 prox  g(z)

1/2 /z

 prox  g(z)

1/2= /z

 prox  g(z)

1/2/z

(a) (b) (c)

Fig. 3 The graphs (dotted lines) of proxλg(z) with fixed λ and z > 0 with respect to varying ε (horizontal

axis) in the situation of a
√

λ < λ
z ; b

√
λ = λ

z ; and c
√

λ > λ
z

Both Propositions 1 and 2 show that for large enough |z|, r2(|z|) the absolute value of the
only element of proxλg(z) has

r2(|z|) ≈ |z| − λ

(|z| + ε)
− λ2

(|z| + ε)3

through Taylor’s expansion the term
√
1 − 4λ

(|z|+ε)2
in

√
1
4 (|z| + ε)2 − λ = 1

2 (|z| +
ε)
√
1 − 4λ

(|z|+ε)2
. This indicates that the operator proxλg is nearly unbiased for large val-

ues [14, 22], which supports the use of g in applications to replace the �0 norm. We are not
aware of any existing work quantitatively explaining it in this way. Figure2 further illustrates
this claim.

We are ready to present the solution to problem (P1).

Theorem 3 For each z ∈ R
n, ε > 0, and λ ≤ 0, and for f as defined by (1),

proxλ f (z) = proxλg(z1) × · · · × proxλg(zn), (12)

where proxλg is given by Proposition 1 or 2. Moreover, if x
 ∈ proxλ f (z), then x

i ∈

proxλg(zi ), i = 1, 2, . . . , n.
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Proof The results follow immediately from the relation (1) and the definition of proximity
operator. Since proxλg has an explicit expression, so does proxλ f . �


3 Solutions to Optimization Problem (P2)

In this section, we present the solution to log-sum penalized low-rank recovery problem.
Let Mm,n denote the Euclidean space of m × n real matrices, with inner product

〈X , Y 〉 = trX�Y . The Frobenius norm is denoted by ‖ · ‖F . For any matrix X ∈ Mm,n ,
let Xi j denote its (i, j)-th entry. For any vector x ∈ R

m∧n , let Diag(x) denote the m × n
matrix with (Diag(x))i i = xi for all i , and (Diag(x))i j = 0 for i �= j . For any X ∈ Mm,n ,
we define σ(X) := (σ1(X), σ2(X), . . . , σm∧n(X))�, where

σ1(X) ≥ σ2(X) ≥ . . . ≥ σm∧n(X)

are the ordered singular values of X . Denote by O(X) the set of all pairs (U , V ):

O(X) :=
{
(U , V ) ∈ Mm,m × Mn,n : U�U = I , V�V = I , X = UDiag(σ (X))V�} .

That is, for any pair (U , V ) ∈ O(X),UDiag(σ (X))V� is a singular value decomposition of
X .

As it will be useful in the proof of Theorem 4, we explicitly describe how the order-
preserving properties of proxλg extend to proxλ f in the following lemma.

Lemma 5 Define Rn↓ := {x ∈ R
n : x1 ≥ x2 ≥ · · · ≥ xn ≥ 0}. For any λ > 0 and ε > 0, if

x ∈ R
n↓, then proxλ f (x) ⊂ R

n↓.

Proof This is a direct consequence of Lemma 3 and the fact that proxλ f applies proxλg
coordinatewise as in (12). �


In general, it may not be possible to compute the proximity operator of a composition
of functions based on the proximity operators of the components. However, the following
theorem tells us that wemay compute proxλ( f ◦σ)(Z) from proxλ f (σ (Z)).While revising this
article, we became aware of a result giving this general form for select nonconvex functions
composed with the singular value mapping [26].

Theorem 4 For each Z ∈ Mm,n, ε > 0, and λ > 0, if X
 ∈ proxλ f ◦σ (Z), then there exist a
pair (U , V ) ∈ O(Z) and a vector d ∈ proxλ f (σ (Z)) such that

X
 = UDiag(d)V�. (13)

Proof We show that X
 in (13) indeed is a solution to problem (P2). Problem (P2) can be
equivalently reformulated as

min
d∈Rm∧n↓

{
min

X∈Mm,n ,Diag(σ (X))=d

{
1

2λ
‖X − Z‖2F +

m∧n∑

i=1

log

(
1 + di

ε

)}}
.

Note that

‖X − Z‖2F = tr(X�X) − 2tr(X�Z) + tr(Z�Z)

=
m∧n∑

i=1

d2i − 2tr(X�Z) +
m∧n∑

i=1

σi (Z)2

123
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≥
m∧n∑

i=1

d2i − 2σ(Z)�d +
m∧n∑

i=1

σi (Z)2.

The last inequality is due to von Neumann’s trace inequality (see [19]). Equality holds when
X admits the singular value decomposition X = UDiag(d)V�, where (U , V ) ∈ O(Z). Then
the optimization problem reduces to

min
d∈Rm∧n↓

{
m∧n∑

i=1

(
1

2λ
(di − σi (Z))2 + log

(
1 + di

ε

))}
.

The objective function is completely separable and is minimized only when di ∈
proxλg(σi (Z)). This is a feasible solution because σ(Z) ∈ R

m∧n↓ implies proxλ f (σ (Z)) ⊂
R
m∧n↓ by Lemma 5. This completes the proof. �


We remark that the main ideas in the above proof are from [9]. The result in Theorem 4 can
be applied, for example in [4, 11, 12, 15], to avoid an inner loop for evaluating proxλ f ◦σ .

4 Analysis of Majorization-Minimization Algorithms for Computing
prox�g

An iterative algorithm in the fashion of classical majorization-minimization procedure was
adopted in [12] to evaluate proxλg by generating and solving a sequence of convex optimiza-
tion problems. At each iteration, the non-convex function g is approximated by means of
a majorizing convex surrogate function. More precisely, if x (k) is the value of the current

solution, the chosen convex surrogate function of g is g(x (k)) + |x |−|x (k)|
ε+|x (k)| , the first-order

approximation of g(x) at x (k). With it, the next iteration x (k+1) from given z and x (k) is

x (k+1) = argmin

{
1

2λ
(x − z)2 + g(x (k)) + |x | − |x (k)|

ε + |x (k)| : x ∈ R

}
,

which can be written as

x (k+1) = prox λ

ε+|x(k) | |·|
(z) =

{
0, |z| ≤ λ

ε+|x (k)| ;
sgn(z)(|z| − λ

ε+|x (k)| ), |z| > λ

ε+|x (k)| .
(14)

By ignoring the terms which do not depend on x in the above optimization problem, the
resulting expression, called reweighted �1, was used in [6] to approximate the �0 norm.

The sequence {x (k)} generated by the iterative majorization-minimization procedure (14)
converges to a critical point of the objective function 1

2λ (· − z)2 + g(·), see, e.g., [3]. We go
one step further than the previous result and show that not only the sequence {x (k)} is always
convergent, but also its limit depends on the initialization x (0) and the relationship of z with
the parameters λ and ε. Lemmas 6 – 11 in the following describe the possible convergence
behavior of (14). This is then compared to the true solution in Theorems 5 and 6. In particular,
we identify the intervals where (14) will not achieve the true solution. These intervals are
explicitly determined in terms of the initial guess x (0) and parameters λ and ε.

The following two theorems summarize our main results. The proofs of these results as
well as relevant technical lemmas are given in Sect. 4.1.

Theorem 5 For
√

λ ≤ ε, the iteratively reweighted algorithm will converge to the accurate
solution to proxλg(z) for all z ∈ R.
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Fig. 4 Illustration of Theorem 6: the intervals on which the iteratively reweighted algorithm will fail. Here,
’×’, ’◦’, and ’�’ denote ± λ

ε , ±z∗, and ±(2
√

λ − ε), respectively. The left and right red curves are the graphs
of the function r1(−z) and r1(z), respectively

In the nonconvex setting,we see that the iteratively reweighted algorithmmaynot converge
to the true value of proxλg . In this case, the regions where the algorithm fails depend on the
root z∗ (as defined by (11)) and the function r1 (as defined by (7)). Note that when λ >

√
ε,

r1 is a bijection from [2√λ−ε,∞) to (−∞,
√

λ−ε]. Therefore, the function r−1
1 the inverse

of r1 exists and maps (−∞,
√

λ − ε] to [2√λ − ε,∞).

Theorem 6 For
√

λ > ε and an initial point x (0), the following statements hold for the
iteratively reweighted algorithm.

(i) If x (0) ≥ √
λ− ε, the iteratively reweighted algorithm will not converge to proxλg(z) for

z in (−z∗,−2
√

λ + ε] ∪ [2√λ − ε, z∗).
(ii) If

√
λ − ε > x (0) > r1(z∗), the iteratively reweighted algorithm will not converge to

proxλg(z) for z in (−z∗,−r−1
1 (x (0))] ∪ [r−1

1 (x (0)), z∗).
(iii) If x (0) = r1(z∗), the iteratively reweighted algorithm will not converge to proxλg(z) for

z in {−z∗, z∗}.
(iv) If r1(z∗) > x (0) ≥ 0, the iteratively reweighted algorithm will not converge to proxλg(z)

for z in [−r−1
1 (x (0)),−z∗) ∪ (z∗, r−1

1 (x (0))].
The results in Theorem 6 can be visualized through Fig.4. For each initial point x (0), the

intervals for which proxλg(z) disagrees with the reweighted �1 solution are represented by
the solid horizontal lines. For example, the top segment of the figure corresponds to item (i)
of the theorem.

4.1 Proofs of Theorems 5 and 6

We begin with several technical lemmas describing the convergence of the iteratively
reweighted algorithm. The limit points of this algorithm can then be compared to proxλg
directly.
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Lemma 6 Let the sequence {x (k)} be generated by the iterative scheme (14) for a given z > 0
and an initial guess x (0) ≥ 0. Suppose that x (k) > 0 for all k ≥ 1. Then the sequence {x (k)}
is increasing (resp. decreasing) if x (1) > x (0) (resp. x (1) < x (0)); this sequence is constant
if x (1) = x (0).

Proof Since x (k) > 0 for all k ≥ 1, one has from the iterative scheme (14) that x (k+1) =
z − λ

ε+x (k) for all k ≥ 0. Therefore,

x (k+1) − x (k) = λ(x (k) − x (k−1))

(ε + x (k))(ε + x (k−1))
= λk(x (1) − x (0))

�k
i=1((ε + x (i))(ε + x (i−1)))

.

All statements immediately follow from the above equation. �

Lemma 7 Let the sequence {x (k)} be generated by the iterative scheme (14) for a given z ≥ 0
and an initial guess x (0) ≥ 0. If there exists k0 ≥ 0, such that x (k0) = 0, then the sequence
{x (k)} converges to 0 if z ≤ λ

ε
and to r2(z) if z > λ

ε
.

Proof Without loss of generality, let us assume k0 = 0, i.e, x (0) = 0. We have

x (1) =
{
0, ifz ≤ λ

ε
;

z − λ
ε
, ifz > λ

ε
.

Obviously, if z ≤ λ
ε
, x (k) = 0 for all k ≥ 0, that is, {x (k)} converges to 0. If z > λ

ε
, then

x (1) > x (0) = 0, yielding x (k+1) = z − λ

ε+x (k) > 0 for all k ≥ 0. So {x (k)} is increasing by

Lemma 6 and converges, say to a positive number x (∞), due to 0 ≤ x (k) < z for all k ≥ 0.
We have x (∞) = z − λ

ε+x (∞) . So x (∞) must be r2(z) for z > λ
ε
. �


The next identity is useful in the following discussion. For given x (0) ≥ 0 and z > 0, if
x (1) = z − λ

ε+x (0) > 0, then

x (1) − x (0) =
{

− 1
ε+x (0) ((x

(0) − 1
2 (z − ε))2 + (λ − 1

4 (z + ε)2)), ifz < 2
√

λ − ε;
− 1

ε+x (0) (x
(0) − r1(z))(x (0) − r2(z)), ifz ≥ 2

√
λ − ε,

(15)

where r1(z) and r2(z) are given in (7) and (8), respectively.

Lemma 8 Let the sequence {x (k)} be generated by the iterative scheme (14) for a given z ≥ λ
ε

and an initial guess x (0) > 0. Then, x (k) > 0 for all k ≥ 0 and the sequence {x (k)} converges
to r2(z).

Proof For z ≥ λ
ε
and x (0) > 0, we know x (1) = z − λ

ε+x (0) > 0. As a consequence, it also

implies x (k) > 0 for all k ≥ 0. To show the convergence of the sequence {x (k)}, we compare
the values of x (0) and x (1) from (15) in order to infer the monotonicity of the sequence based
on Lemma 6. To this end, our discussion is conducted for two cases: (i) z > λ

ε
or z = λ

ε
and√

λ > ε; and (ii) z = λ
ε
and

√
λ ≤ ε. The following facts are useful: r1(z) < 0 < r2(z) for

all z > λ
ε
, and

r1

(
λ

ε

)
=
{

λ
ε

− ε, if
√

λ ≤ ε;
0, if

√
λ > ε

and r2

(
λ

ε

)
=
{
0, if

√
λ ≤ ε;

λ
ε

− ε, if
√

λ > ε.

Case (i): z > λ
ε
or z = λ

ε
and

√
λ > ε. Hence, r2(z) > 0 and r2(z) is the only positive

solution of x = z − λ
ε+x .
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• If x (0) ∈ (0, r2(z)), one has x (1) > x (0) from (15). We can conclude that x (k+1) > x (k)

for all k ≥ 0 and the sequence {x (k)} converges, say to x (∞), which is a positive number
satisfying x (∞) = z − λ

ε+x (∞) . So x (∞) = r2(z).

• If x (0) = r2(z) > 0, then x (k+1) = r2(z) for all k ≥ 0. Hence, the limit of the sequence
{x (k)} is r2(z).

• If x (0) ∈ (r2(z),∞), then x (1) < x (0) from (15). We conclude x (k+1) < x (k) for all
k ≥ 0 and the sequence {x (k)} converges, say to x (∞) ≥ 0, satisfying x (∞) = z− λ

ε+x (∞) .

Hence, x (∞) must be r2(z).

Case (ii): z = λ
ε
and

√
λ ≤ ε. If

√
λ ≤ ε, then r2(z) = 0, so x (1) < x (0) from (15). Then

x (k+1) < x (k) for all k ≥ 0 and the sequence {x (k)} converges, say to x (∞) ≥ 0, satisfying
x (∞) = z − λ

ε+x (∞) . Hence, x
(∞) must be r2(z) = 0.

From the discussion above, we know that the sequence {x (k)} converges to r2(z). �

It can be concluded from Lemmas 7 and 8 that the sequence {x (k)} always converges to

r2(z) for z > λ
ε
regardless of the initial guess x (0). The next lemma shows that the sequence

{x (k)} always converges to 0 for all z ∈ (0, 2
√

λ − ε) if 2
√

λ − ε > 0, independent of the
initial guess x (0).

Lemma 9 Suppose 2
√

λ−ε > 0. Let the sequence {x (k)} be generated by the iterative scheme
(14) for a given z ∈ (0, 2

√
λ − ε) and an initial guess x (0) ≥ 0. Then the sequence {x (k)}

converges to 0.

Proof Notice that 2
√

λ − ε ≤ λ
ε
for all positive λ and ε. If there exists k0 ≥ 0 such that

x (k0) = 0, by Lemma 7, the sequence {x (k)} converges to 0.
Now, assume that all elements x (k) are positive. By (15), we have x (1) < x (0) for all

z ∈ (0, 2
√

λ−ε) and an initial guess x (0) > 0. ByLemma 7, the sequence {x (k)} is decreasing
and convergent. Suppose that limk→∞ x (k) = x (∞) ≥ 0. Then, x (∞) = z − λ

ε+x (∞) due to

all x (k) > 0, but it is impossible for z ∈ (0, 2
√

λ − ε). We conclude that the sequence {x (k)}
converges to 0. �


The next two lemmas deal with the convergence of the sequence {x (k)} for z ∈ [2√λ −
ε, λ

ε
).

Lemma 10 Suppose parameters λ and ε satisfying conditions 2
√

λ−ε > 0 and
√

λ ≤ ε. Let
the sequence {x (k)} be generated by the iterative scheme (14) for a given z ∈ [2√λ − ε, λ

ε
)

and an initial guess x (0) ≥ 0. Then the sequence {x (k)} converges to 0.

Proof If there exists k0 ≥ 0 such that x (k0) = 0, by Lemma 7, the sequence {x (k)} converges
to 0.

Now, assume that all elements x (k) are positive. Since r1(z) < 0 and r2(z) < 0 for
z ∈ [2√λ − ε, λ

ε
), we know from (15) that x (1) < x (0) if x (0) ∈ (0,∞). Then, the sequence

{x (k)} is decreasing by Lemma 6, and therefore convergent. Suppose that limk→∞ x (k) =
x (∞) ≥ 0. One has x (∞) = z − λ

ε+x (∞) . Therefore, x
(∞) should be r1(z) or r2(z). However,

it is impossible due to both r1(z) and r2(z) are negative for z ∈ [2√λ − ε, λ
ε
). �


Lemma 11 Suppose
√

λ > ε. Let the sequence {x (k)} be generated by the iterative scheme
(14) for a given z ∈ [2√λ−ε, λ

ε
) and an initial guess x (0) ≥ 0. Then the following statements

hold
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(i) If x (0) ∈ (0, r1(z)), then the sequence {x (k)} converges to 0; If x (0) = r1(z), then the
sequence {x (k)} converges to r1(z).

(ii) If x (0) ∈ (r1(z),∞), then the sequence {x (k)} converges to r2(z).
Proof First, we show that

λ

z
− ε < r1(z) (16)

holds for all z ∈ [2√λ − ε, λ
ε
). Actually, by the definition of r1(z) in (7) and through some

manipulations, inequality (16) is equivalent to
√

(z + ε)2 − 4λ < (z + ε) − 2λ
z . Since the

expression (z + ε) − 2λ
z is positive for z ∈ [2√λ − ε, λ

ε
), squaring the previous inequality

followed by some simplifications yields z < λ
ε
, which is obviously true.

(i) If x (0) ≤ λ
z − ε, then x (1) = 0 from (14). By Lemma 7, the sequence {x (k)} converges

to 0. If x (0) > λ
z − ε, then 0 < x (1) ≤ x (0) from (15). Using a similar argument above, if

there exists k0 ≥ 0 such that x (k0)) = 0, by Lemma 7, the sequence {x (k)} converges to 0.
Now, assume that all elements x (k) are positive. Then the sequence {x (k)} is decreasing and
convergent by Lemma 6. Suppose that limk→∞ x (k) = x (∞) ≥ 0. Then, x (∞) must be strictly
less than r1(z) and x (∞) = z − λ

ε+x (∞) , which, however, contradict to each other. Hence, the

sequence {x (k)} converges to 0.
If x (0) = r1(z), so x (0) > λ

z − ε which implies that x (1) = x (0). In this case, {x (k)} is a
constant sequence and its limit is r1(z).

(ii) If x (0) ∈ (r1(z),∞), we have x (0) > λ
z − ε by (16). From (15), we have x (1) ≥ x (0)

if x (0) ∈ (r1(z), r2(z)]. So the sequence {x (k)} is increasing and must converge to r2(z).
From (15), we have x (1) < x (0) if x (0) ∈ (r2(z),∞). Further, we can show that x (1) >

r2(z). Indeed, from x (1) − r2(z) = z − λ

ε+x (0) − r2(z) and the definition of r2(z), we have
after some simplification

x (1) − r2(z) = 2(x (0) − r2(z))

(z + ε) + √
(z + ε)2 − 4λ

> 0

holds for z ∈ [2√λ − ε, λ
ε
) and x (0) ≥ r2(z). Hence, the sequence {x (k)} is decreasing

and limk→∞ x (k) = x (∞) ≥ r2(z). We further have x (∞) = z − λ

ε+x (∞) which implies

x (∞) = r2(z). �

Proof of Theorem 5 The result follows directly from Proposition 1 and Lemmas 7–10. �

Proof of Theorem 6 By Proposition 1, Lemmas 7, and 9, the iteratively reweighted algorithm
provides the accurate solution to proxλg(z) when |z| > λ

ε
or |z| < 2

√
λ − ε. The rest of the

proof will focus on the situation for z ∈ [2√λ − ε), λ
ε
] due to Lemma 1.

(i) We know that
√

λ− ε = r1(2
√

λ− ε) > r1(z) for all z ∈ (2
√

λ− ε, λ
ε
]. From Lemmas 8

and 11, the limit of the sequence generated by the algorithm is r2(z) for z ∈ [2√λ−ε), λ
ε
].

Hence, the limit does not match to the true solution proxλg(z) when z ∈ (−z∗,−2
√

λ +
ε] ∪ [2√λ − ε, z∗).

(ii) Notice that r1(z) is strictly decreasing on [2√λ− ε), λ
ε
]. From √

λ− ε > x (0) > r1(z∗),
we have 2

√
λ − ε < r−1

1 (x (0)) < z∗; x (0) < r1(z) for all z ∈ [2√λ − ε, r−1
1 (x (0))); and

x (0) > r1(z) for all z ∈ (r−1
1 (x (0)), λ

ε
]. Accordingly, by Lemma 11, the limit x (∞) of the
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sequence generated by the algorithm is

x (∞) =
⎧
⎨

⎩

0, ifz ∈ [2√λ − ε, r−1
1 (x (0)));

x (0), ifz = r−1
1 (x (0));

r2(z), ifz ∈ (r−1
1 (x (0)), λ

ε
].

(17)

Hence, the limit does notmatch to the true solutionproxλg(z)when z ∈ (−z∗,−r−1
1 (x (0))]

∪ [r−1
1 (x (0)), z∗).

(iii) It is directly from Lemma 11 and the fact of 0 < r1(z∗) < r2(z∗).
(iv) Using similar arguments in item (ii), from r1(z∗) > x (0) ≥ 0, we have z∗ <

r−1
1 (x (0)) ≤ λ

ε
; x (0) < r1(z) for all z ∈ [2√λ − ε, r−1

1 (x (0))); and x (0) > r1(z) for

all z ∈ (r−1
1 (x (0)), λ

ε
]. Accordingly, by Lemma 11, for r1(z∗) > x (0) > 0 the limit x (∞)

of the sequence generated by the algorithm is given in (17). Hence, the limit does not
match to the true solution proxλg(z) when z ∈ [−r−1

1 (x (0)), z∗) ∪ (z∗, r−1
1 (x (0))]. This

statement is also true for x (0) = 0 by Lemma 6.

�


5 An Application to Compressive Sensing

This section is devoted to showing the optimization algorithms and their numerical perfor-
mance of the log-sum penalization for compressive sensing. Compressive sensing provides
a method to reconstruct a sparse signal x ∈ R

n from linear measurements

b = Ax + noise, (18)

where A is a given m × n measurement with m < n and b ∈ R
m is the measurement

vector acquired. It was shown in [5] that under the sparsity assumption, the signal can be
exactly reconstructed from the given measurements and the chance of its being wrong is
infinitesimally small.

The basic principle in compressive sensing is that a sparse or compressible signal can be
reconstructed from a small number of measurements, measured through appropriate linear
combinations of signal values, via an optimization approach. The optimization model for
reconstruction of a sparse signal from model (18) is

min

{
1

2
‖Ax − b‖2 + 1

μ
S(x) : x ∈ R

n
}

, (19)

where S is a sparsity promoting function, such as, the �p norm (0 ≤ p ≤ 1) [5, 7, 8] and
the difference of the �1 and �2 norm [29]. In this section, we particularly choose S being the
log-sum function f given in (1), problem (19) becomes

min

{
1

2
‖Ax − b‖2 + 1

μ
f (x) : x ∈ R

n
}

. (20)

The solutions to problem (20) always exist since the objective function of the problem is
coercive.

In the next subsection, we will present four different methods for problem (20) based on
the structures of its objective function.
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5.1 Algorithms

The first method for solving problem (20), described in Algorithm 1, is based on the forward-
backward splitting approach in [1].

Algorithm 1 The forward-backward splitting algorithm for problem (20).

Input: Let x(0) ∈ R
n and 0 < L < 1

‖A�A‖F .

for k = 0, 1, . . . do

x(k+1) ∈ prox 1
μL f

(
x(k) − 1

L
A�(Ax(k) − b)

)

end for
Output: x(∞)

Notice that the objective function of problem (20) is nonnegative and coercive. Then
the sequence {x (k)} in the algorithm is bounded and converges to some critical point of
problem (20) ( [1, Theorem 5.1]), that is, towards a point x (∞) that satisfies

(A�Ax (∞))i + sgn(x (∞)
i )

|x (∞)
i | + ε

= (A�b)i

for i such that x (∞)
i �= 0.Moreover, the sequence {x (k)}has afinite length, i.e.∑∞

k=1 ‖x (k+1)−
x (k)‖2 < ∞. In the algorithm, the proximity operator prox 1

μL f is available fromProposition 1

if 1
μL ≤ ε2 or Proposition 2 if 1

μL > ε2.
By exploring properties of the log-sum function f , we are able to rewrite the objective

function 1
2‖Ax − b‖2 + 1

μ
f (x) of problem (20) as the sum of two or three terms with

special properties. The rest three algorithms are developed based on new formulations of the
objective function. The second method is for

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
‖Ax − b‖2 − ρ

2
‖x‖2

︸ ︷︷ ︸
P(x)

+ 1

μ
f (x) + ρ

2
‖x‖2

︸ ︷︷ ︸
Q(x)

: x ∈ R
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (21)

where the positive parameter ρ will be determined in the following lemma.

Lemma 12 Let the functions P and Q be given in (21). Then,

(i) Q is convex when ρ ≥ 1
με2

.

(ii) The gradient of P is L-smooth with L = max{‖A‖2 − ρ, ρ}.
By Lemma 12, when ρ ≥ 1

με2
, the objective function of (21) is the composition of a

differentiable function P and a convex function Q. Hence, the iPiano (Inertial Proximal
Algorithm for Nonconvex Optimization) algorithm developed in [20] can be adopted for
solving (21). The whole procedure is given in Algorithm 2.

For the sequence {x (k)} from Algorithm 2, it was shown that there exists a converging
subsequence, and any limit point of {x (k)} is a critical point of problem (21).
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Algorithm 2 The algorithm iPiano for problem (21)

Input: Given ρ ≥ 1
με2

; choose L = max{‖A‖2 − ρ, ρ}, β ∈ [0, 1), α <
2(1−β)

L ; choose x(0) = x(1) ∈ R
n .

for k = 1, 2, . . . do

x(k+1) = proxαQ(x(k) − α(A�(Ax(k) − b) − ρx(k)) + β(x(k) − x(k−1)))

end for
Output: x(∞)

By a simple manipulation, we know that

proxαQ(·) = prox α
μ(1+αρ)

f

(
1

1 + αρ
·
)

(22)

Since ρ ≥ 1
με2

, we know that

α

μ(1 + αρ)
< ε2.

Hence, proxαQ in (22) is available from Proposition 1.
The third method is for

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
‖Ax − b‖2 + 1

μ
f (x) + ρ

2
‖x‖2

︸ ︷︷ ︸
Q(x)

− ρ

2
‖x‖2

︸ ︷︷ ︸
P(x)

: x ∈ R
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
. (23)

The objective function of problem (23) is the sum of 1
2‖Ax−b‖2 the smooth convex function

with a Lipschitz continuous gradient, and the difference of two convex functions Q(x) =
1
μ
f (x) + ρ

2 ‖x‖2 and P(x) = ρ
2 ‖x‖2. For such a kind of objective function, the proximal

difference-of-convex algorithm with extrapolation approach proposed in [25] can be adopted
for solving problem (23). It is described as follows.

Algorithm 3 The proximal difference-of-convex algorithm with extrapolation for prob-
lem (23)

Input: Given ρ ≥ 1
με2

; choose α = 1/‖A‖2, {βk } ⊂ [0, 1) with supk βk < 1; set x(−1) = x(0) ∈ R
n .

for k = 1, 2, . . . do

y(k) = x(k) + βk (x
(k) − x(k−1))

x(k+1) = proxαQ(y(k) − α(A�(Ay(k) − b) − ρx(k)))

end for
Output: x(∞)

Let {x (k)} be a sequence generated by Algorithm 3 for solving problem (23). Then, this
sequence is bounded and any accumulation point of {x (k)} is a stationary point of 1

2‖Ax −
b‖2 + 1

μ
f (x), see [25, Theorem 4.1].
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The fourthmethod, also basedon theproximal difference-of-convex algorithmwith extrap-
olation approach, was proposed in [25]. To this end, we rewrite problem (20) as follows

min

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1

2
‖Ax − b‖2 + 1

με
‖x‖1

︸ ︷︷ ︸
Q(x)

−
(

1

με
‖x‖1 − 1

μ
f (x)

)

︸ ︷︷ ︸
P(x)

: x ∈ R
n

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
, (24)

In (24), the function P is differentiable and convex. Problem (24) is solved as described in
Algorithm 4. Similar to the conclusion made for Algorithm 3, the sequence {x (k)} is bounded
and any of its accumulation point is a stationary point of 1

2‖Ax − b‖2 + 1
μ
f (x). We remark

that proxαQ in Algorithm 4 is the well-known soft-thresholding operator with threshold α
με

.

Algorithm 4 The proximal difference-of-convex algorithm with extrapolation for prob-
lem (24)

Input: Given ρ ≥ 1
με2

; choose α = 1/‖A‖2, {βk } ⊂ [0, 1) with supk βk < 1; set x(−1) = x(0) ∈ R
n .

for k = 1, 2, . . . do

y(k) = x(k) + βk (x
(k) − x(k−1))

x(k+1) = proxαQ

(
y(k) − α(A�(Ay(k) − b) − 1

με

x(k)

|x(k)| + ε
)

)

end for
Output: x(∞)

5.2 Numerical Simulations

We now demonstrate the performance of the four algorithms developed in the previous
subsection for compressive sampling reconstruction in terms of efficacy and accuracy. At the
end of this section, we also provide an accelerated proximal point algorithm to improve the
performance of Algorithm 1.

Through this section, all random m × n matrices A and length-n, s-sparse vectors x are
generated based on the following assumption: entries of A and x on their support are i.i.d.
Gaussian random variables with zero mean and unit variances. The locations of the nonzero
entries (i.e., the support) of x are randomly permuted.We then generate the observation vector
b by (18). We obtain the reconstruction x (∞) from b by using the above four algorithms.

Threemetrics, the number of iterations, theCPU time consumed, and the value of objective
function, are used to evaluate the efficiency of the algorithms. The smaller the values of these
metrics are the better the performed algorithm will be. Another three metrics, the relative �2
error, the number of missing nonzero coefficients, and the number of misidentified nonzero
coefficients, are used to evaluate the quality of the reconstruction. More precisely, the relative

�2 error is ‖x (∞)−x‖2‖x‖2 , the number of missing nonzero coefficients refers to the number of
nonzero coefficients that an algorithm “misses,” i.e., determines to be zero; the number
of misidentified nonzero coefficients refers to the number of nonzero coefficients that are
“misidentified,” i.e., coefficients that are determined to be nonzero when they should be zero.
The last two metrics measure how well each algorithm finds the signal support, meaning the
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locations of the nonzero coefficients. The smaller the values of these metrics are the better the
reconstructed signals will be. The efficiency and accuracy of all test algorithms are measured
by the average of values of these six metrics over 30 trials.

In our numerical experiments below, three configurations for the n dimension of the signal,
m the number of measurements, and s the sparsity of the vector x , are considered, namely
(m, n, s) = (360i, 1280i, 40i) for i = 1, 2, 3. Each test algorithm is terminated when

‖x (k+1) − x (k)‖2
max{‖x (k)‖2, 1} < 10−5. (25)

The maximum number of iteration is set to be MAX = 10000.
We first look at the performance of all algorithms in noise-free case, i.e., b = Ax in (18).

For ε = 0.1 in (1) and various values of the regularization parameter μ, Table 1 reports the
efficiency of the test algorithms in terms of the metrics of the number of iterations, the CPU
time consumed, and the value of objective function while Table 2 reports the accuracy of the
test algorithms in terms of the metrics of the relative �2 error, the number of missing nonzero
coefficients, and the number of misidentified nonzero coefficients. Similarly, the results for
ε = 0.5 with various values of the regularization parameter μ are reported in Tables 3 and
4. From these tables, we clearly see that Algorithms 3 and 4 are comparable and are better
than Algorithms 1 and 2 in terms of all metrics.

Using publicly available code for the iteratively reweighted �1 (RW�1) algorithm, Table 5
reports the performance of RW�1 under the same settings in the above noise-free case. Note,
however, that the RW�1 algorithm is designed for the constrained problem, which results in
slightly higher accuracy in the noise free case. Algorithm 4with the log-sum penalty achieves
comparable accuracy but is more efficient.

Next, for the noisy case, we set the observation b in (18) as b = Ax + 0.01ξ , where
ξ ∈ R

m is a random vector with i.i.d. standard Gaussian entries. In our simulation, we set
ε = 0.5 andμ being 1000 and 2000. Similarly as we did in the noise-free case, the numerical
results are reported in Tables 6 and 7 for various metrics. Again, we have the same conclusion
that Algorithms 3 and 4 are comparable and are better than Algorithms 1 and 2 in terms of
all metrics.

To improve the performance of Algorithm 1, we adapt an accelerated proximal gradient
method in [17] for solving problem (20). The resulting procedure is described in Algorithm 5.
Under the same settings in the above for noise-free and noise cases, the numerical results
from Algorithm 5 are reported in Tables 1 and 4. We conclude that Algorithm 5 performs
better than Algorithm 1.

We plot in Fig. 5 the true signal and the estimated signals obtained by Algorithms 1–5 for
solving (18) with ε = 0.5 and μ = 2000 on a random instance (m, n, s) = (720, 2560, 80).
The true signal x is represented by circles while the estimated signals obtained by Algo-
rithms 1–4 are marked by pluses. To generate the results in Fig. 5, the numbers of iterations
used by Algorithms 1–5 are respectively 20000 (the maximum allowed number of iterations),
4464, 501, 501, and 8295 while the CPU times consumed are respectively 11.47, 3.16, 0.36,
0.30, and 18.60 s. The relative �2 errors of the recovered signals from Algorithms 1–5 are
0.6255, 0.0325, 0.0320, 0.0320, and 0.0321, respectively; the numbers of missing nonzero
coefficients of the recovered signals from Algorithms 1–5 are 10, 1, 1, 1, and 1, respectively;
and the number of misidentified nonzero coefficients of the recovered signals from Algo-
rithms 1–5 are 1164, 546, 524, 519, and 564, respectively. Correspondingly, the values of the
objective function at the recovered signals are 0.0897, 0.0377, 0.0377, 0.0377, and 0,0377.
We conclude that the estimated signals obtained by Algorithms 2–5 are close to the true
signal, but not the one by Algorithm 1. We conclude that Algorithm 5 performs better than
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Algorithm 5 The accelerated proximal gradient method for problem (20).

Input: Let z(1) = x(1) = x(0) ∈ R
n , t1 = 1, t0 = 0, αx < 1/‖A‖2, αy < 1/‖A‖2, and F(x) is the objective

function of problem (20).
for k = 1, 2, . . . do

y(k) = x(k) + tk−1

tk
(z(k) − x(k)) + tk−1 − 1

tk
(x(k) − x(k−1))

z(k+1) ∈ prox αy
μ f

(
y(k) − αy A

�(Ay(k) − b)
)

v(k+1) ∈ prox αx
μ f

(
x(k) − αx A

�(Ax(k) − b)
)

tk+1 =
√
4t2k + 1 + 1

2

x(k+1) =
{
z(k+1) ifF(z(k+1)) < F(v(k+1));
v(k+1), otherwise.

end for
Output: x(∞)

Algorithm 1. Although Algorithm 5 is still slower than both Algorithm 3 and Algorithm 4,
they are comparable in terms of other metrics.

5.3 Comparing Nonconvex Penalties for Sparse Recovery

In this subsection, we provide simulations to compare the log-sum penalty with two popular
nonconvex penalties: the minimax concave penalty (MCP) [30] and the �1 − �2 penalty [13]
for sparse recovery.

The optimization model with the MCP penalty for reconstruction of a sparse signal from
model (18) is

min

{
1

2
‖Ax − b‖2 + 1

μ
(‖x‖1 − envτ (‖ · ‖1)(x)) : x ∈ R

n
}

, (26)

where μ is a regularization parameter and envτ (‖ · ‖1) is the Moreau envelope of the �1 norm
with index α. A detailed discussion on the MCP penalty can be found in [22, 30]. Since
the envτ (‖ · ‖1) is differentiable and its gradient equals to 1

τ
(I − proxτ‖·‖1), we can adopt

the proximal difference-of-convex algorithm with extrapolation approach in [25] for solving
problem (26). The resulting algorithm is referred to as MCP-DCA for simplicity.

The optimization model with �1 − �2 penalty for reconstruction of a sparse signal from
model (18) is

min

{
1

2
‖Ax − b‖2 + 1

μ
(‖x‖1 − ‖x‖2) : x ∈ R

n
}

, (27)

whereμ is a regularization parameter. Various efficient algorithms for the optimization prob-
lem (27) have been developed in [18]. The accelerated forward-backward splitting (AFBS) is
chosen here.We refer to this algorithm applied to problem (27) as (�1−�2)-AFBS for clarity.
For the optimization problem (20) regularized by the log-sum penalty, we use Algorithm 4
to solve the problem.

In our numerical experiments, we set the observation b in (18) as b = Ax + 0.03ξ , where
ξ ∈ R

m is a random vector with i.i.d. standard Gaussian entries. In our simulations, we set
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Fig. 5 The true solution and the solution obtained by solving (18) with ε = 0.5 and μ = 2000 through
Algorithms 1–5

ε = 0.5 for the log-sum function and μ being 10, 100, and 1000 for both problems (20),
(26), and (27). For the MCP, we set τ = 0.5 in our simulation. For the AFBS algorithm,
the initial estimate is an �1 optimization problem as suggested in [18]. These algorithms are
terminated when either inequality (25) is satisfied or the number of iteration meets 10000.

Table 8 reports the numerical results, averaged over 50 realizations, from Algorithm 4,
MCP-DCA and (�1 − �2)-AFBS under various scenarios. Associated with each algorithm,
there are five columns representing the number of iterations, the CPU time consumed, the
relative �2 error, the number of missing nonzero coefficients, and the number of misiden-
tified nonzero coefficients, respectively. The rows of Table 8 are separated into three
blocks by horizontal lines, corresponding the configurations (m, n, s) being (360, 1280, 40),
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(720, 2560, 80), and (1440, 5120, 160), respectively. Each such block consists of three rows
which show numerical results corresponding to the regularization parameter μ being 10,
100, and 1000. From this table, we can conclude that overall the optimization model (20)
with Algorithm 4 can efficiently produce recovery results that are comparable to MCP and
AFBS with �1 −�2 penalty in terms of the metrics of the CPU time consumed, the relative �2
error, the number of missing nonzero coefficients, and the number of misidentified nonzero
coefficients.

6 An Application to Low-Rank Regularization for Image Denoising

In this section, we present an application of the log-sum penalty in removing mixed additive
Gaussian white noise and impulse noise in noisy images. Mathematically, a noisy image in
the presence of additive Gaussian white noise and impulse noise can be formulated as

y = Nimp(x + z), (28)

where x is the true image inRn0×m0 , y is the observed image, z is the additive Gaussian white
noise, Nimp : Rn0×m0 → R

n0×m0 represents impulse noise which assigns some pixels of
x+z in its dynamic range [0, 255]. Those pixels are called the outliers in y and the probability
of outliers is called the noise level of impulse noise in y. Assume that the original image x
in model (28) is indexed by � = {1, 2, . . . , n0} × {1, 2, . . . ,m0} and the outlier candidate
set Z is

Z = {(i, j) ∈ � : yi j �= xi j + zi j }.
The level of impulse noise refers to the ratio of the cardinalities of Z and �. Recently,
approaches based on low-rank regularization have been proposed, for example, in [16, 28].
In particular, since the log-sumpenaltywas adopted in [28] to promote low-rankness of a patch
formed from similar patches, we will demonstrate the usefulness of the results developed in
this paper.

Let us first briefly review theNLR-TP (nonlocal low-rank regularized two-phase) approach
developed in [28]. The NLR-TP has two basic phases: (i) detecting locations of outlier
candidates and (ii) solving an optimization problem with a content-driven fidelity term and
a nonlocal low-rank regularization term. Phase-I can be achieved by many existing impulse
noise removals, such as the adaptive median filter and the adaptive center-weighted median
filter. Phase-II is to approximate the ideal image x from the outlier-free data on � \ Z. To
this end, the counterpart of model (28) in patch format will be formed. For an image x of
size n0 × m0, a square patch of size

√
n × √

n centered at position (i, j) is denoted by x�,
where � = ( j − 1)n0 + i . Due to non-local self-similarity of natural images, we are able to
find patches {x�k }m−1

k=1 by a block-matching algorithm [10] that are similar to x�. With these
patches, we form an n×m matrix X�, called the �th patch matrix of the image x , as follows:

X� := [
x� x�1 · · · x�m−1

]
,

where x� and x�k are the vectorization of themselves. It is reasonable to assume that X� is
low-rank.

Now, let X ∈ R
n×m be a patch matrix of the image x . We form accordingly the matrices

Y and Z from the corresponding locations of y and z in model (28), respectively. Then,

Y = Nimp(X + Z), (29)
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Nimp : Rn×m → R
n×m represents impulse noise which assigns some pixels of X + Z in

its dynamic range [0, 255]. Here, we did not distinguish the operator Nimp used in between
(28) and (29). Moreover, we also use � and Z to represent the index set of X and the outlier
candidate set, respectively. With these preparations, the optimization problem in the second
phase of the NLR-TP is

min

{
J (X) = ∥∥ϕη(D � (X − Y ))

∥∥
1 + 1

μ
f (σ (X)) : X ∈ R

n×m
}

, (30)

where the positive parameter μ balances the importance between the content-dependent
fidelity term

∥∥ϕη(D � (X − Y ))
∥∥
1 and the low-rank regularization term f (σ (X)). Here,

ϕη(t) := ηt2

η+|t | with the parameter η determining the shape of ϕη, and ϕη(D � (X − Y )) is
viewed as an n×m matrix whose (i, j)th entry is ϕη(Di j (Xi j −Yi j )). Since the fidelity term
has the Lipschitz continuous gradient with Lipschitz constant 2 and the regularization term
is concave, it was proposed in [28] to approximate the fidelity term by a quadrature form and
the regularization term by its first-order expansion, therefore, leading a double-loop iterative
scheme for solving problem (30).

We now propose a new approach for solving problem (30) based on the discussion in the
previous sections. By viewing the fidelity term

∥∥ϕη(D � (X − Y ))
∥∥
1 and the regularization

term f (σ (X)) in (30) as the fidelity term 1
2‖Ax − b‖2 and regularization f (x) in (20)

respectively, an algorithm, which mimics Algorithm 1, can be developed for problem (30)
as described in

Algorithm 6 The forward-backward splitting algorithm for problem (30).

Input: Let X (0) ∈ R
n×m and 0 < L < 2.

for k = 0, 1, . . . do

X (k+1) ∈ prox 1
μL f ◦σ

(
X (k) − 1

L
D � ϕ′

η(D � (X (k) − Y ))

)
,

end for
Output: X (∞)

Now, we demonstrate the performance of Algorithm 6 for mixed noise removal. Two test
images of “Barbara” and “House” are shown in Fig. 6a1 and b1, respectively. The images
Fig. 6a2, b2 are corrupted images from Fig. 6a1, b1 by the salt-and-pepper noise used with
noise level 50 and theGaussianwith standard variation 10, respectively.Weuse the parameters
ε = 10−2 and μ = 10−4. The denoised images by the NLR-TP are displayed in Fig. 6a3,
b3 while the denoised images by Algorithm 6 are displayed in Fig. 6a4, b4. The quantitative
qualities of the denoised images can be measured by three metrics, namely, the peak signal-
to-noise ratio (PSNR), the structural similarity (SSIM) [24] and the feature similarity (FSIM)
[31]. The PSNRmainlymeasures the intensity similarity between an reconstructed image and
its reference image while the other two mainly measure the perceptual image quality of an
reconstructed image. Normally, the higher PSNR, SSIM, and FSIM scores are, the better the
quality of the reconstructed images is. The values of PSNR, SSIM, and FSIM for the image
in Fig. 6a3 are 31.92, 0.9563, and 0,9705 while those values for the image in Fig. 6a4 are
32.83, 0.9629, and 0.9742. The values of PSNR, SSIM, and FSIM for the image in Fig. 6b3
are 36.58, 0.9430, and 0.9704 while those values for the image in Fig. 6b4 are 37.31, 0.9410,
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Fig. 6 Salt-and-Pepper noise with noise level 50 plus Gaussian noise with σ = 10. The images from top to
bottom are the original images, noisy images, the denoised images by NLR-TP, and the denoised images by
proposed algorithm for the images of “Barbara” (left column) and “House” (right column)
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and 0.9677. Clearly, one can observe the improvement provided by Algorithm 6. We plan to
do more comprehensive study on optimization problem (30) for image processing

7 Conclusions

We presented the explicit expressions of the proximity operators of the log-sum penalty and
its composition with the singular value function. In the existing literature, these proxim-
ity operators were computed through iteratively reweighted �1 methods that are inefficient
and may sometimes give inaccurate results, as analyzed in Theorem 6 and demonstrated in
Fig. 4. By applying the results from this paper, one can avoid using iterative approaches to
compute the proximity operator of the log-sum penalty, and can prevent inaccurate solu-
tions from sub-optimal initial values. Moreover, we have characterized the behavior of the
proximity operator for the log-sum penalty, and further justified its use as a nonconvex sur-
rogate in �0 and �1 norm minimization problems. Several algorithms are provided for the
log-sum regularized compressed sensing problem (20) and their performance is compared.
We demonstrated numerically the log-sum regularized compressed sensing problem (20), the
MCP regularized compressed sensing problem (26) and the �1 − �2 regularized compressed
sensing problem (27). In addition, we provided an application of the log-sum function to
low-rank regularization for image denoising.
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