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Abstract. Models of dilute systems of bacteria swimming in a nematic liquid crystal
are developed and analyzed. The motion and orientation of the bacteria are simulated
using ordinary differential equations coupled with the partial differential equations mod-
eling the nematic liquid crystal (Ericksen Leslie equations). The analysis and numerical
simulations of this system are shown to predict interesting phenomena observed experi-
mentally.

1. Introduction. This work is motivated by the experimental observation that, in
certain configurations, the motion of bacteria swimming in a nematic liquid crystal is
strongly influenced by the nematic configuration [11]. In these experiments bacteria were
swimming in a liquid crystal medium “sandwiched” between glass plates coated with a
spiral pattern as illustrated in Figure 1.2. Since the nematic configuration of liquid
crystals can be controlled through boundary conditions and electric fields, and swim-
ming activity by oxygen concentration, this offers the possibility of controlling bacteria
transport.

The concentration of bacteria in the experiments in [11] was low enough to record
the motion of individual bacteria; Figure 1.1 illustrates this!. In this dilute limit we
model the experimental configuration as a finite number of active particles in a nematic
liquid crystal. The model presented below is an extension of the one presented in [8],
and much of the analysis presented below extends directly to the latter. While the
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Fic. 1.1. Trajectories of bacteria swimming in a nematic liquid crystal.

A
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Fic. 1.2. Experimental configuration.

equations modeling this system hold in both two and three dimensions, we focus on the
two dimensional configuration illustrated in Figure 1.2 where the region between the glass
plates is thin. The inner surfaces of the glass plates are coated with organic dye molecules
that are photoaligned to form a spiral pattern [16]. Surface anchoring and elasticity of
the nematic filling the space between the glass plates causes the nematic director to follow
the patterned spirals. A detailed description of the experimental configuration can be
found in [11,26,27]

When the boundary conditions in the third dimension dominate, the fluid velocity is
negligible and the nematic orientation is fixed. In this situation the motion of the bacte-
ria is modeled by a pair of ODE’s for their position and orientation. In Section 2 we show
that solutions of these ODE’s can exhibit some of the richness of properties reported in
the experiments. For various spiral configurations and initial conditions, solutions with
circular orbits are shown to exist and their stability is investigated. In Section 3 the
dynamics for swimming particles is coupled with the Ericksen Leslie equations which
model the hydrodynamics of a nematic liquid crystal. Weak statements of the coupled
system are formulated for which Galerkin (numerical) approximations inherit the natural
energy estimates. Numerical simulations are presented in Section 5 to illustrate the prop-
erties of the solutions and comparison with experimental results and other approaches is
considered.
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1.1. Models of swimming. There is a large body of work focusing on mathematical
modeling of swimming. Essentially all of this work considers the fluid medium to be a
Newtonian fluid which is typically incompressible. For small swimmers, such as bacteria,
the inertial forces are negligible and the motion of a Newtonian fluid is governed by linear
(Stokes’) equations. In this situation the models can generally be classified according to
the length scale being resolved.

e At the finest length scale, the geometry of the swimmer is parameterized and
deformations which result in net motion are investigated [1,4,5]. In these models
the Dirichlet—to—Neumann map for Stokes’ equations is used on the boundary to
determine the traction due to the fluid.

e Mesoscale models utilize a Boltzman approach with Jeffery’s ODE’s [2,10] for
the motion of an ellipsoid in a Newtonian fluid modeling the particle kinematics.
The particle density is then transported (pushed forward) by the corresponding
flow [3,18]. The density is defined on the phase space which is high dimensional
(position and velocity), so closure models are required to render the problem
computationally tractable.

e Macroscopic models typically represent the particle kinematics as a diffusion due
to the swimming action superimposed upon a drift given by the underlying fluid
velocity. The balance of mass then gives an equation for the concentration of
the bacteria. The momentum equation for the fluid is then augmented with an
additional stress to simulate the momentum transfer due to the swimming action
[13,15,20-22, 25].

In addition to the usual viscous stresses, nematic fluids also support elastic stresses
which renders their equations of motion intrinsically nonlinear. In this situation Green’s
function techniques are not available; in particular, analogs of Jeffery’s equations for the
motion of ellipsoids in a liquid crystal are not available [24].

2. Modeling bacterial motion. In this section we develop a system of ODE’s to
model the position and orientation a particles in a nematic liquid crystal under the
influence of a propulsive force, as illustrated in Figure 1.3.

ASSUMPTION 2.1. Let y(t) and m(t), with |m(¢)| = 1, denote the position and ori-
entation of a bacterium in a nematic liquid crystal with velocity and director fields
(v(t,z),n(t,z)). Typically |n| ~ 1; however, this can not hold near singularities.

(1) The concentration of bacteria is sufficiently low so that the interaction of the
bacteria with each other is mediated through the liquid crystal medium.

fom n

Fic. 1.3. Particle in a nematic with a body force.
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Viscous and elastic forces on the bacteria dominate the inertial forces, so the
latter can be neglected.

Translation and rotation of the bacterial give rise to viscous dissipation of the
form

Ry = (ce/2)[y(t) = v(t, ()] + (e;/2)[m(t) = W (v(t, y(t)) m(t)]?,

where W (v) = (1/2) (Vv — (Vv)T), and ¢, ¢, > 0 are viscous coefficients.
The elastic energy due to local alignment of the nematic with the bacteria takes
the form Wy(m(t),n(t,y(t))). Prototypically

Wy (m,n) = (ky/2)|m x nf* = (ky/2)(|n* — (m.n)?); (2.1)

in particular, the elastic energy vanishes when the bacteria aligns with the ne-
matic.

The propulsive force due to the flagellum is of the form f,m, where f; is a con-
stant. This constant may take either sign depending upon whether the bacteria
is a “pusher” or “puller” [13]

To simplify the notation we write v(y) for v(¢,y(t)) and W(v(y)) for the skew part
of Vv(t,y(t)) when the context is clear.

REMARK 2.2. The viscous dissipation and elastic energies in the above can be iden-
tified with the first order terms in any expansion of these quantities in the following

sense.

e Viscous dissipation must depend upon differences (or gradients) of velocities and

vanish when the velocities are zero. The motion of a short rigid rod in a shear
flow [2,10] is given by y = v and mh = W (v)m. Deviation from these relations
gives rise to dissipation.

The ratio of length to diameter of the bacteria in [8,9,28] is O(10:1), so they

are almost rod-like. If they were more elliptical (or disk shaped), the orientation
would evolve according to an equation of the form m = (a(Vv) — b(Vv)")m
(assuming the fluid is incompressible).
Independence of observer requires Wp,(Qm, Qn) = W,(m,n) for @ orthogonal,
in which case Wy(m, n) = Wj(|n|, m.n). Equation (2.1) is the first order term
in an expansion of a non-negative energy which vanishes when the orientations
align or n = 0.

In the absence of inertia, Hamilton’s principle for the motion of a particle states that
for all times t; < to and variations (y,m) — (y + dy,m + dm) with m.0m = 0 and
compact support in (¢1,%2) must satisfy

t2 b2 IRy IR,
) b ( (¥)) \ fom.dy oy Y~ o

The variation of the elastic energy with respect to y is computed as

W, oW,

dyWy(m,n) = n Oyn(y) o

(Vn)dy,
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so that the equations of motion for a single bacteria take the form

T% = fym, and ¢ (th—W(v(y))m)+ ilda +Am =0, (2.2)

Ay —v) +(Vn) o

where A is the Lagrange multiplier dual to the constraint jm| = 1.

2.1. Spiral director with negligible hydrodynamics. In this section the experimental
configuration in [11] is modeled as a two dimensional domain with planar bacteria orien-
tation and liquid crystal director, and consider the situation where boundary conditions
(v,n) = (0,n4(z)) in the third dimension are sufficiently strong to render the distur-
bance of the nematic due to bacterial action negligible. Solutions of the equations (2.2)
then satisfy

AW . . .
Tb + iy + ¢ jmf? = fym.y.

The experiments reported in [11] had a spiral pattern on the glass plates of the form

Rz cos(¢) —sin(¢)

n(r) = —— where R=

TPt sin(9)  cos(@) |

¢ € [0,7/2] is the spiral angle, as in Figure 1.2, and the parameter ¢ > 0 parameterizes
the size of the “core” of the singularity.
In this situation it is possible to express equations (2.2) in polar coordinates. Letting

y(t) =r(t) (cos(6(t)),sin(0(t))), and  m(t) = (cos(¥(t)),sin((1))) ,

a calculation shows

(2.3)

ar = fycos(yp —0) — (Tf%l)z sin(f — 1 + ¢)%e
ard = f sin(¢) — 0) — % sin(2(60 — ¥ + ¢)) (2.4)
c w = kb—ﬂ sin(2(60 — ¢ + ¢))

T 2(r2 4 e) '

when the elastic energy is given by equation (2.1).

This formulation of the equations is used to compute numerical solutions presented
below. However, for their analysis it is convenient to consider a combination of angles
which reduces the size of the system from three to two unknowns. Specifically, letting
n(t) = 0(t) — (t) + ¢ gives the pair of equations for (r(t),n(t)),

kb’l”

ro= ‘z—:COS(Gﬁ —-n) - a2+ o2 sin(n)e, (2.5)
k 1 72
0= o - gt (55 ) e

2.2. Invariant region & long time behavior. We show that there is an invariant region
of equations (2.5) in the (r, ) plane for which the radius of all solutions diverge to infinity
(see Figure 2.1).
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F1G. 2.1. Invariant region and plot of a solution in the (n,7) plane.

LEMMA 2.3. Let ¢ € (—n/2,7/2) and 0 < g < 7/2 — |¢| and R(n) = K/sin(n). Then
Z=A{(r,n) | Inl <no, R(no) <r < R(n)}, (2.6)

is an invariant region of the differential equations (2.5) whenever

om0 (0T () (aterin) o)

If (r,n) € Z then |n| < 1, and if e = 0,

= (fo/ct) cos(¢ —n) = (fo/cr) cos(m/2 =) >0 so,  r(t) = o0,
and since R(|n|) > r for (r,n) € Z,
K
|sin (n(t)) |
Proof. Writing the differential equation (2.5) as (#,7) = F(r,n), it suffices to show
that F(r,n).N(r,n) < 0 at each point (r,n) € 0Z, where N(r,n)

normal to Z.
Write the boundary as the union of the bottom, left, and right hand sides,

0L = R(no) x (=no,m0) U {(R(n);n) | n € (0,m0)} U {(R(n),—n) | n € (0,n0)}

=R (In®)]) > r(t) = S0, n(t) — 0.

denotes an outward

Licensed to Carnegie Mellon Univ. Prepared on Tue Aug 22 13:10:22 EDT 2023 for download from IP 128.2.114.249.
License or copyright restrictions may apply to redistribution; see https://www.ams.org/license/jour-dist-license.pdf



MODELS OF BACTERIA SWIMMING IN A NEMATIC LIQUID CRYSTAL 701

Bottom: The outward normal at the bottom is N = (—1,0) " so that
ky — R(mo)e

F(n,r)N = —cos(¢—n)+ o (RUp)2 o2 sin(r)?
< _COS(W/2_|¢|)+2_QW
< —cos(m/2 —[¢]) + ﬁSiH(HO)Z Ve

2Ct K2
Left and Right Hand Sides: Since sin(n) is an odd function it suffices to consider the
right hand side. At a boundary point (R(n),n) with 7 > 0 an outward normal is

N(n) = (_ Rl/(n)) = <Kcos(17)1/ sinQ(n)) B <R(77) C0857)/ Sin(n)> '

Writing R = R(n) and N = N(n) we have
kyR

F(n,R).N = ]Cc—:cos(qb —-n) — (B2 1 o)? sin(n)2e
1o ky 1 ky R? . Rcos(n)
(ﬁ sin(¢ —n) — 4o (C_t + . > cos(n) sm(n)> ()
|.fo] |.fo! ky R cos(n)
< e (B g oK)

In the second step the cosine and sine of ¢ — 1 were bounded by unity, and the identity
Rsin(n) = K was used. Continuing,

| ol cos(n) kyR*  cos®(n)
F(n,R).N < 1 — K
(n, ) e + sin(n) cr(R? + €) sin(n)
k R?
_ Al (Sln( n) I R L ! 0s(0) K )cos(n)
e\ cos(n) crlfol (R? + 6) sin(n)
|fb| ( ciky  R(mo)? ) cos(n)
< tan +1- cos K| —
)+ = TR @ +9 ) )
< 0,
where the last lines follows since 0 < n < 1y < 7/2 and K is sufficiently large. QED

2.3. Radial solution. Setting ¢ = 0 gives the hedgehog director ny(z) = z//|z|? + ¢,
and 7 vanishes when sin(n) = 0. Then 6 = ¢ or § = ¢ + 7 are constant so m is parallel
toy and r(t) = r(0) £ fpt.

2.4. Clircular trajectories. When ¢ = 0 explicit solutions of the stationary values of
(2.5) are available. In this case 1 = 0 requires cos(¢ — 1) = 0 so that n(t) = ¢ £ 7/2 is
constant. The equation for 7 = 0 then reduces to a quadratic equation for the radius,

Ct 2 f _
(;) r? 4+ <7kbsm(2¢)) r+1=0.

Selecting the sign so that the roots are non—negative gives solutions with circular trajec-

tories at radii
_ CT|fb| + Crfb 2 . C_r
ciky sin(2¢) ciky sin(2¢) e
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Then

WO—W®+;%(M¢—%$M%Om and mw:¢my-hsm@@t

2c
2.4.1. Stability. When e = 0 the formula for the Jacobian of the right hand side of
(2.5) is

— Ct

0 _fe
T ey — By g cos (20) (s + L) |

cyr? cyr?

[8%/8r 8%/8n}
on/or  on/on

and the eigenvalues can be written as

bV 4

2¢,c12

A . with b= kycos (2¢)(cir® + ¢,) and ¢ = 42 fyr(ky sin(2¢) — fyr),
The salient features of these expressions for the circular orbits with prototypical physical
parameters are:

e b < 0 when ¢ > 7/4 and typically ¢ < 0 for the larger radius and ¢ > 0 for the
smaller radius, so the former is stable and latter unstable.

e b >0 when ¢ < 7/4, and solutions are unstable; prototypically r(t) — oo.

e b =0 when ¢ = 7/4, and the sign of the expression under the radical is deter-
mined by k,— fpr. For the larger radius +4/c are imaginary and the corresponding
solution is marginally stable. For the smaller radius ++/c are real so this solution
is unstable.

2.4.2. Finite core (¢ > 0). When € > 0 formulae for the roots of the stationary
solutions of equations (2.5) are not available; however, for 0 < ¢ << 1 solution branches
emanate from the two solutions with e = 0. In addition, a third solution may branch
from r = 0 which is a singular point when € = 0.

0.0002+

-0.0002

-0.0004

-0.0006

-0.0008

-0.0010+

-0.0012-

FiG. 2.2. Plots of r(r? 4+ €)n with ¢ = 7/4, n = 37/4 and ¢ €
{0,0.0005,0.001} (top, middle, bottom). Roots are radii of solutions
with circular orbits.
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EXAMPLE 2.4. If ¢ = w/4 and ) = 37 /4 the right hand side of (2.5); vanishes. With e
fixed, roots of (2.5)5 plotted as a function of r give the radii of the solutions with circular
orbits.

This is illustrated in Figure 2.2 with &k, = 0.1, f, = 2 ¢, = 0.25 and ¢, = 20. If
0 < € < 0.0007 a third solution bifurcating from r = 0 is present. As € increases this
solution merges second solution when € ~ 0.0007. For € 2 0.0007 only one solution exists.
When e = 0.1, the radii for circular trajectories is 0.61, and in this case, the Jacobian of
the right hand side of (2.5) has eigenvalues 0.0029 + 0.18874, and the small positive real
part renders the corresponding solutions slightly unstable.

2.5. Constant speed model. Motivated by the experimental observation that there was
very little variation in the speed of the bacteria, the following pair of equations was
proposed in [11] to model their motion,

y— vV =uym, and o (m—W(v(y))) + % + Am = 0.
Here v, = fp/c: is the speed of the bacteria relative to the fluid, and is constant when
the elastic forces are neglected.

With v = 0 and the spiral director pattern and polar coordinates introduced in Section
2.1, these equations become

. : . ; kyr?
ar = fpcos(—0), cr = fpsin(y—0), RVIES 0210 sin(2(0—y+¢)). (2.7)
Setting 7 = 6 — 1) + ¢, equations (2.7) combine to give
. R kyr? .
r= cos(n — @) and nm=— sin(n — @) (21O sin(2n).  (2.8)

A solution with (r,n) constant has n — ¢ = £7/2, so that

ok

0= —
ar  2c.(r2+e)

sin(2¢), or 0= cikysin(20)r® — 2¢, fur? — 2¢, fye.

The discriminant? of this cubic equation is negative since the linear coefficient vanishes
and the the quadratic and constant coefficients have the same sign. It follows that there
are two complex conjugate roots and one real root with expansion

cr 2fp ¢t Ky sin(2¢) ¢ kpsin(2¢) 5 5 3
== & _ (2P .
¢t kpsin(2¢) ¢ 2fp ¢ (cr 21 )7+ 0(e)
2.5.1. Stability. Equation (2.8) has Jacobian matrix
0 —(fo/cr)sin(n — ¢)

P2\ (ofer®) sin(n — 0)—B2<mED (£ Jeyr) cos(n — &) — (kur?/e, (2 + ) cos(2n) |

2Recall that the discriminant of the cubic ar34+br2+cr4dis A = 18abcd—4b3d+b?c? —4ac® —27a2d?,
which reduces to A = —4b3d — 27a2d? when ¢ = 0.
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The Jacobian at the stationary point becomes

0 (fo/ct)
(a — %a% +0(€?))  (kp/cy) cos(2¢)(1 — %%ae) + 0(€?)

=

F(r,¢) = [_

where a = (¢, sin(2¢)2k2)/(c2f,). When ¢ = /4 this becomes

0 (fo/ct)
F(r,m/4) = l‘i(a— fa’e +O()) 0 ] ,

which has purely imaginary eigenvalues, so the solutions with constant radii are
“marginally” stable.

3. Hydrodynamic interaction. Letting y(t) € R? denote the position of a bac-
terium with orientation m(t) € S and ns(z) denote the spiral pattern on the glass
plates, we postulate energy and dissipation functions of the liquid crystal medium and
bacterium between two glass plates of the form?

W(n,Vn,y, m) = /QWOF(H(év% Vn(z)) + (k3/2)[n(z) — ny(2)[? de + Wy(m, n(y)),
(3.1)

R(v,Vv,n,y,m;n,m) = A ReL(Vv(z),n(x),n(x)) + (c3/2)|v(x)|* dx

+(ct/2)ly = v(¥)I* + (er/2) i — W (v(y)m|*.

In these expressions Wor(n, Vn) and Rgr(Vv,n,n) are the Oseen-Frank elastic energy
and the Ericksen—Leslie dissipation functions of the nematic [6,7,12,14, 19];

Wor(n,Vn) = = (k div(n)? + ka(n.curl(n) + q)* + ks|n x curl(n)|?)

DN =

1
+ 5(}{32 — ks) (JVn]* = div(n)® — |curl(n)]?),
and writing n =n — W(v)n

RpL(n, i, Vv) = DA + 307 Dv)n+ 2 (D(v)n)? + T (n" D(v)n)? + 2DV
The terms with coefficients k3 and c3 model the influence of boundary conditions in the
third dimension. The elastic constant 3 is a measure of the “anchoring strength”, and
c3 quantifies the dissipation due to shear in the third dimension due to the fluid sticking
to the plates.

3For clarity of exposition W and R are written with a single bacterium with position and orientation
(y, m). If multiple bacteria are present then YW and R contain the sum of their elastic energies and rates
of dissipation.
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Inactive Bacteria: If inactive bacteria are acted upon by an external body force, fj,
and moment, gy, the dynamics would be determined by Hamilton’s principle:
2 / (8R OR OR OR OR )
ty

— 2 _ _ R _ R
5t1(W (p/2)|v]*) + 8y5+8 6+8V6+8v V6+a n

t2
= / (fb.éy + gp.0m + f.02 + g.én) .
t1

As in Section 2, variations of y and m give the equations (2.2) for of motion for the
bacteria. Variations of x and n give the linear and angular momentum balances for the
liquid crystal which we assume to be incompressible,

OREL +Wor
ovVv 0Vn
—fy0y — ¢, W* (m — W(v(y))m)) ® m) = f,

pv +czv — div {—p[ + — (Vn) + k3(Vn) " (n — ny) (3.2)

8REL 8W0F . ow aWb
— div | 222 s(n—n,) + =28y + An =
R A R e
Here d,, and W*(.) are distributions which act on scalar and vector valued test functions

respectively as 6y (¢) = ¢(¢,y(t)) and
W*(A)(@) = A: (1/2) (Vo(t,y(t) = Vo(t,y(t)") = A: W((y)).

Active Bacteria: When the motion of the bacteria is due to their swimming action,
and the bacteria have negligible inertia, the active force generated by the flagellum and
the drag on the body of the bacteria are equal in magnitude and opposite in direction
as illustrated in Figure 3.1. However, their action on the fluid is displaced by a distance,
£, comparable to the length of the bacteria which is small. In this situation the active
forces on the fluid can be approximated by a dipole [3]; specifically, if ¢ is a vector valued
test function, then (see Figure 3.1)

£, (y + (¢/2)m) — f.¢ (y — (£/2)m) ~ £(f, ® m) : Vo(y) = div* (¢F, © m)(e).

The linear momentum equation for the active system is then obtained by substituting
this distribution in place of the inactive force £,y in (3.2). Since f, = f,m, the dipole
f,@m = ({f,)m®m is symmetric so does not couple to the angular momentum equation.

F1G. 3.1. Forces on the tail (active), head (drag), and fluid (dipole).
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Collecting the above gives the following set of equations for the coupled system,

oy =)+ (V)T O
erlah = W (v(y))m) + 2%+ Ay =0,
gt cav — div | —p -+ G = ()T OROE ] (V)T m) (3
—div*(fyfm ® m) — ¢, W* (h — W(v(y))m)) ® m) = f,
87;§L + ngF — div [%} + k3(n—ng) + %@ +An=g.

The variables (A, p, A) are Lagrange multipliers dual to the constraints |m| = 1, div(v) =
0 and |n| = 1 respectively.
3.1. Weak statement & energy estimate. The (Ericksen) identity [19]

T+ Wor Wor Wor )

div {(Vn) 0Vn on  dVn

} = VWor — (Vn)'" (
is used to formulate a weak statement of the system for which Galerkin approximations
inherit the natural energy estimates. Using this identity, and writing m = a—W (v(y))m
and p = p + Wor, we have

) _ e 0 _ 0 _ _
/Q{ (pv + c3v, v)—(p, le(V))—I—(%, Vv)_|_( ?EL , (Vn)v)} :/Q (f—i—(Vn)Tg’ V)
W
on

8REL 8WOF _ 8WOF _ / _ aWb _
—_— n—n An, n ,Vn}: ,n)— (——,n .
G+ 52 ran =)+ dn ) + (02 V) ) = [ ()= (i)
Here v and n are test functions and homogeneous boundary conditions have been as-
sumed. The energy estimate follows upon multiplying the equations for y and m by
y — v and m respectively, and selecting the test functions in this weak statement

(v,n) = (v,n;) to get

d OR OR .
(W+/<p/2)|vl2)+/ ( PL ny 2L :(Vv>)+c3|v2+ctly—v(y)l2+crlm2
Q Q

+ fil(m@m,Vv(y)) — (5=, Vn(y)v(y)) + ¢ (th @ m, W(v(y))), (3.4)

dt on ovVv

= /Q (fv+gn)+ fim.(y —v(y)) + fil(m®@m) : (Vv(y)).

3.2. Scaling. To render equations (3.3) dimensionless, we scale them using typical
values of mass, length, and time present in the experiments reported in [11, 26, 27].
e M = 10"%kg, the mass of fluid in the experiment.
e L = 10"3m, the size of the cell.
e T = 10s, experimental data was recorded for approximately 10 minutes.
Table 3.1 lists the physical parameters and scaled values of the coefficients appearing in
equations (3.3).
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TABLE 3.1. Scale factors for non—dimensionalization.

Coefficient Unit  Scale Factor Value Scaled Value
Mass M 107 1pg 1
Length L 10° 1mm 1

Time T 1071 10s 1
Bacteria Dynamics

c¢ Transnational Viscosity % 1010 2x 1077 20

cr Rotational Viscosity M%’Q 1016 2.5 x 10717 0.25

fv Active Force % 1014 2 x 10714 2

ks Elastic Constant ML2 107 1x 10718 0.1
Nematic Hydrodynamics

p Density % 1 1000 1000

k; Elastic Coefficients ML 104 [7.5,0.6,21,0] x 10~ '° [0.75,0.06,2.1,0]
v; Viscous Coefficients M 107 [0.15,0.35,1.75,0.1,1] x 10~7  [0.15,0.35,1.75,0.1, 1]
k3 Anchoring Strength % 108 2x 1077 20

c3 Shear Viscosity % 10 5 50

4. Numerical approximation. The ODE’s for the bacteria positions and orien-
tations were solved using the classical fourth order Runge-Kutta algorithm with the
equations (2.2) formulated as
O g, and (- w(y)/2)+ Bt =0,
where m = (cos(¢),sin(¢)), w = curl(v) is the vorticity, and W(1,n) = W(m(1)), n);
specifically,

She s Bl = . ()

W= 8.131 81‘2 ’ W

The equations for the nematic were approximated using the numerical scheme in [23].
This is a Galerkin approximation of equations (3.4) with discontinuous Galerkin time
stepping for the linear momentum equation and continuous Galerkin time stepping for
the angular momentum equation. The constraint |n| = 1 is approximated by includ-
ing a penalty term (1/¢)(|n|? — 1)? into the energy W. This scheme was coded using
the Firedrake finite element package [17]. The distributions on the right hand side of
equations (3.4) were approximated using a Gaussian mollifier of the form dy (¢, ) ~
exp (—|z — y(t)|?/€) /(er); for example

(m(t) @ m(t), Vv(t,y(t))) ~ /Q (m(t) @ m(t), Vv(t,z)) exp (—|z — y(t)|?/€) /(em) da.

c(y —v)+(Vn)

When y(t) and m(¢) are specified, Firedrake can evaluate the right hand side of this
expression but not the left. Anisotropic Gaussian’s with (z —y)" M(z — y) in place of
|z —y|* were considered in [8] with M = gj(m®m)+ g, (/ —m®m); however, numerical
solutions were essentially identical for the isotropic and anisotropic Gaussian’s.

Being a finite element package, Firedrake can only approximate solutions of the PDE’s
for v and n so it is necessary to utilize a partitioned time stepping scheme to solve the
coupled system. Writing X = (y,m) and ¥ = (v, n), the time stepping in the following
lemma was utilized.
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LEMMA 4.1. Let [tF,#* + 7] C R with 7 > 0,
F:[th t* + 7] xR™ x R" — R™ and G:[tht* + 7] x R™ x R™ — R",
and (X,Y) : [tF, t* + 7] — R™ x R" satisfy
X=F(,X)Y), Y=G(,X,Y), with (X,Y)(tF) = (X*, Y*) e R™ x R™.
Let
X, =F(,X,Y"), Y1 =G(,X,1), with (X1, Y)(t*) = (X, vF)
Xy = F(, X0, Y1), Ya=G(,Xo,Ya), with (Xo, Yo)(t%) = (X*,YF).

Then the scheme (X**1 Y +1) = (X5 (t+7), Ya(t+7)) is third order with local truncation
error

| X — X (t+7)
YR v (t 4 7)

< (1/4!)L%LgLYeT(LG+2LF)7-4,

< (1/5Y) L3 LE Ly e*(Ertlc) s,
where L, Lg, Lx, and Ly denote the Lipschitz constants of the indicated functions.

Identifying X = F(., X,Y) as the system of ODE’s for the bacteriaand Y = G(., X,Y)
as the Galerkin approximation of the PDE’s modeling the nematic, this scheme requires
two decoupled Runge Kutta solves and finite element solutions per time step.

5. Numerical results. The domain and parameters were selected to model the ex-
perimental configuration in [11,26,27], and non-dimensionalized as in Section 3.2.

e Domain: Q = [-1,1]%

e Constraint: The constraint |n| = 1 was approximated by adding (1/¢)(|n|? —1)2
to the bulk term of the elastic energy in equation (3.1). The penalty parameter
was set to be e = 0.01.

e Spiral Pattern: ng(z) is given in equation (2.3). Unless noted otherwise, the
parameter characterizing the size of the core of the singularity was set to be
e=0.1.

e Boundary Data: v|pq = 0 and n(t, z)|sq = ns(z).

e Initial Data:

— Velocity: v(0,2) =0

— Director: For the hydrodynamic simulations n(0, z) was set to be a (numer-
ically computed) minimizer of the elastic energy given by the bulk term in
equation (3.1) augmented with the penalty term to approximate the con-
straint |n| = 1.
Note that the spiral pattern ng(x) is not a minimizer of the Oseen Frank
energy Wor. Selecting the initial value to be a minimizer of (3.1) rather
than n,(z) eliminates an initial transient.
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— Bacteria Orientation: Unless otherwise noted, the bacteria are initially (in-
wardly) aligned with the spiral, m(0) = —n;(y(0)); specifically, ¥(0) =
m— ¢ —60(0).
Solutions of the ODE’s (2.4) with initial angles outwardly aligned with the
spiral, ¥(0) € (¢ +6(0) — /2, ¢ + 0(0) + 7/2), directly exit the domain.
o Mollifier: The parameter in the Gaussian mollifier of d, was € = 0.24.
e Physical Parameters: The elastic and viscous parameters are listed in Table 3.1.
5.1. ODE system. The position and orientation of active bacteria were simulated by
solving the ODE system with initial values y(0) = (0.67,0) and ¢(0) = —7n/2, so that
m(0) is tangential to the circular solutions. The radii 7(¢) of the solutions with circular
orbits are

r(7/6) = 0.682, r(n/4) = 0.613, r(n/3) = 0.672.

Figure 5.1 plots numerical solutions for Equation 2.2 with spiral angles ¢ = 7/6, w/4
and 7/3 to illustrate the unstable, marginally stale, and stable cases respectively. With
¢ = m/6 and initial position and orientation close to a point on the circular solution of
Equation (2.2), the bacteria makes one orbit of the circular equilibrium and then enters
the invariant region in which the radius increases monotonically. The middle panels
illustrate the solution with spiral angle ¢ = 7/4 which is the configuration considered
in Example 2.4. The circular solution is marginally stable when ¢ = 0, and is slightly
unstable for for e = 0.1. The latter situation is illustrated in Figure 5.1 where the bacteria
traverse a spiral with slowly increasing radius. When the spiral angle is 7/3, the bacteria
travel in a circular motion with a fixed radius and the trajectory converges to the stable
equilibrium in the phase plane.
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Fic. 5.1. Orbits and phase plots for single bacteria with spiral angles
w/6, /4, and /3.
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Fic. 5.2. Multiple initial angles for a single bacteria: Trajectories
with spiral angle /6, /4, and 7/3.

To illustrate how the trajectories depend up the initial orientations Figure 5.2 plots
multiple solutions with multiple initial orientations emanating from a fixed point for
three spiral angles.

e ¢ = 7/6: All trajectories eventually exit the domain following the spiral director
pattern.
¢ = w/4: The bacteria initially move towards the equilibrium circle before spi-
raling out of the domain with the number circular orbits traversed depending
upon their initial angle. Experimental observation of bacteria motion with this
spiral angle exhibit a similar range of outcomes.
¢ = m/3: The circular solution is stable and attracts most of the solutions.

T=0 T=5 T=10
1.00 1.00 1.00
0.75 5% N 0.754 0.75 b p
N - N -
P ~ ; Al RN .5 B et
0.50 et R N 0.50 FE e \\\.~ 0.50 ’\/ 3‘} S / 1.0
/ N, o N, b
025 < 7= N RS s y //;/‘7 %\\‘z\ ) 0.25 V. # S “
PV A e A AV A - 7 ALY X \ v >
0.00 ! 0.00 XIS 57 0.00 I )
AR AVET I Bl g P ,\:" ‘}V”" - M
/ h 5\ o
A B N L ‘:\\:g 4 vl o 0251, N P s s
b ¢l e e =YL RN o
050 P X > -0.50 e -0.50 P S 2t
I T TR T . ' ~
0.75 R By, i, -0.754 0.75 ' -
-1.00, -1.00 . _1.00
-1.00 0775 -0:500.25 0.00 0.25 0.50 0.75 1.00"-1.00 -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00 "-1.00 -0.75 -0.50-0.25 0.00 0.25 0.50 0.75 1.00
0.6
T=17 T=22 T=26
100 7—== T 1.00 Y PR 1.00
\ s y P I
0.75 \ 0757 / - 0.75
A -
0.50 foemmTam e - 504 f el ] ] Jp—— N
% t 2 W - |0.50 \ - . N 0.50 - . od
N 4 - . \ p “
0.25 ) \ 0.251 / \ 0.25 / \
~ g ! ‘.\ —| ki \ / \
i ~
0.00 ol N 0.00{ " i ) 0.00 { ]
A N N \ ! ~ v '
[ A NY / \ / \ /
-0.25 N A 10.254 . / | -0-254 N\, /,’
- R e ~ - N s N g P 0.2
-0.50 4 - = I Y { L0.504« e - \ -0.504- TSea__- -~ &
-— = 4 \ .
0.754, Lo.75 L, - vy f N[0
P \ 7
-1.00 : ——*1.00 = \ -1.00
~1.00 -0.75 -0.50 -0.25 0.00 0.25 0.50 0.75 1.00" -1.00 -0.75 -0.50 -0.25 0.00 0.25 050 0.75 1.00 ~-1.00 -0775 -0.50 -025 0.00 0.25 0.50 0.75 1.00

F1G. 5.3. Time slices of solutions of the ODE’s with spiral angle 7/4
and bacteria initially on a 10 x 10 grid.
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To simulate the patterns that may be observed when bacteria are uniformly dis-
tributed, solutions of the ODE with bacteria initially on a 10 x 10 grid are shown in
Figure 5.3. The bacteria were initially aligned inwardly with the spiral having angle
¢ = w/4, and colored by the radius of their initial positions. The bacteria exhibit tran-
sient behavior; traveling in a circular motion, they first concentrate on a circle with radius
less than the stationary value. The radius of the circle where they concentrate slowly
increases, and after reaching the stationary radius spiral outwards to exit the domain
with bacteria initially at smaller radii exiting first.

5.2. Partial hydrodynamics (v = 0). The gap between the glass plates in the exper-
iments in [11] was small, and since the fluid sticks to the plates the the velocity was
observed to be very small, v ~ 0. This section considers the solution of equations (3.3)
with v = 0, in which case the hydrodynamic interaction only involves the elastic inter-
action with the nematic. With this ansatz equations (3.3) reduce to a system of vector
valued ODE’s for the bacteria positions and orientations coupled to the angular momen-
tum equation for the nematic. Solutions of these equations were approximated using
the classical fourth order Runge Kutta scheme for the ODE’s and finite elements for the
angular momentum equation with quadratic bilinear elements on a 32 x 32 grid with time
step At = 0.01. The qualitative behavior of the solutions reported here did not change
under further refinement of the mesh or time step.

The experimental observations in [11] indicated that in low concentrations the bacteria
tended to simply follow the spiral pattern, while at higher concentration they were more
likely to swim in circular orbits. In the current context we illustrate similar trends
when “concentration” is identified with with hydrodynamic interaction which depends
primarily upon the active force f, and elastic constant k;,. Another possible consequence
of increased bacteria concentration is that, being rod like, they will tend to align with
each other. In this situation their initial orientation may not be aligned with the spiral
pattern, and this can also result in more bacteria swimming in circular trajectories.

Figures 5.4-5.6 illustrate these trends. Figure 5.4 shows the numerical solution of the
configuration shown in Figure 5.3 when the hydrodynamic interaction is included. The
hydrodynamics results in a dramatic difference to the long time behavior of the system.
Absent the hydrodynamics, all of the bacteria eventually exit the domain; however,
Figure 5.4 clearly shows that approximately half of the bacteria remain and swim in
circular orbits with a time periodic radius [11].

Figure 5.5 illustrates the role of both hydrodynamics and influence of initial bacteria
orientation on the solutions. The spiral angle was set to ¢ = 7/6 so that circular
solutions of the ODE’s (2.4) are unstable (as illustrated in Figure 5.2). The left two
panels of Figure 5.5 show solutions at a fixed time for the ODE’s and the coupled system
with the bacteria initially aligned with the spiral ¢(0) = 7+ ¢+ 60(0), and the right hand
panel shows the solution of the coupled system when (0) = 97/8 4+ ¢ + 6(0). It is clear
that both the hydrodynamics and initial orientation significantly influence the collective
dynamics of the bacteria.
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To further illustrate the effect of initial bacteria orientation, solutions with four closely
spaced bacteria and spiral angle ¢ = 7 /4 are illustrated in Figure 5.6. Solutions of the
ODE’s with bacteria initially aligned with the spiral all exit the domain; however, when
the initial orientation of the top two bacteria is perturbed those two bacteria remain

in the domain and tend to circular orbits. The hydrodynamic interaction results in a

similar scenario; instead of exiting the domain when initially aligned with the spiral the

bacteria tend to a circular orbit.
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F1G. 5.5. Solutions at time ¢t = 15 for ODE’s (left), partial hydro-
dynamics initially aligned (middle), and not aligned (right) with the
spiral having angle of ¢ = 7 /6.
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F1G. 5.6. Solutions of the ODE with bacteria initially aligned (left)
and perturbed (middle) with the spiral, and solution with partial
hydrodynamics (right).

5.3. Full hydrodynamics. This section presents numerical approximations of solutions
to the ODE’s modeling the bacteria motion with the full set of hydrodynamic equations in
equations (3.3). As in the experiments, the velocity of the nematic was small so relaxing
the assumption v = 0 made in the previous section resulted in very little change.

Figure 5.7 illustrates the velocity field generated by a single bacterium initially aligned
with a spiral with angle ¢ = 7/4. This is the configuration illustrated in Figure 5.6 where
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F1a. 5.7. Trajectory and velocity streamlines for a single bacterium
initially aligned with the spiral having angle ¢ = 7 /4.
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Fic. 5.8. Trajectories and velocity streamlines for 100 bacteria ini-
tially aligned with the spiral having angles ¢ = /4.

the the bacterium eventually exits the domain. Figure 5.8 illustrates the solution for the
configuration shown in Figures 5.3 and 5.4. The solution is qualitatively the same as for
the partial hydrodynamics considered in the previous section, and the only quantitative
change is that of the initial 100 bacteria 68 remained in the domain while only 54 remained
in Figure 5.4

(1]
2]
(3]

[4]
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