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Abstract. Models of dilute systems of bacteria swimming in a nematic liquid crystal

are developed and analyzed. The motion and orientation of the bacteria are simulated

using ordinary differential equations coupled with the partial differential equations mod-

eling the nematic liquid crystal (Ericksen Leslie equations). The analysis and numerical

simulations of this system are shown to predict interesting phenomena observed experi-

mentally.

1. Introduction. This work is motivated by the experimental observation that, in

certain configurations, the motion of bacteria swimming in a nematic liquid crystal is

strongly influenced by the nematic configuration [11]. In these experiments bacteria were

swimming in a liquid crystal medium “sandwiched” between glass plates coated with a

spiral pattern as illustrated in Figure 1.2. Since the nematic configuration of liquid

crystals can be controlled through boundary conditions and electric fields, and swim-

ming activity by oxygen concentration, this offers the possibility of controlling bacteria

transport.

The concentration of bacteria in the experiments in [11] was low enough to record

the motion of individual bacteria; Figure 1.1 illustrates this1. In this dilute limit we

model the experimental configuration as a finite number of active particles in a nematic

liquid crystal. The model presented below is an extension of the one presented in [8],

and much of the analysis presented below extends directly to the latter. While the
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Fig. 1.1. Trajectories of bacteria swimming in a nematic liquid crystal.

Fig. 1.2. Experimental configuration.

equations modeling this system hold in both two and three dimensions, we focus on the

two dimensional configuration illustrated in Figure 1.2 where the region between the glass

plates is thin. The inner surfaces of the glass plates are coated with organic dye molecules

that are photoaligned to form a spiral pattern [16]. Surface anchoring and elasticity of

the nematic filling the space between the glass plates causes the nematic director to follow

the patterned spirals. A detailed description of the experimental configuration can be

found in [11, 26, 27]

When the boundary conditions in the third dimension dominate, the fluid velocity is

negligible and the nematic orientation is fixed. In this situation the motion of the bacte-

ria is modeled by a pair of ODE’s for their position and orientation. In Section 2 we show

that solutions of these ODE’s can exhibit some of the richness of properties reported in

the experiments. For various spiral configurations and initial conditions, solutions with

circular orbits are shown to exist and their stability is investigated. In Section 3 the

dynamics for swimming particles is coupled with the Ericksen Leslie equations which

model the hydrodynamics of a nematic liquid crystal. Weak statements of the coupled

system are formulated for which Galerkin (numerical) approximations inherit the natural

energy estimates. Numerical simulations are presented in Section 5 to illustrate the prop-

erties of the solutions and comparison with experimental results and other approaches is

considered.
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1.1. Models of swimming. There is a large body of work focusing on mathematical

modeling of swimming. Essentially all of this work considers the fluid medium to be a

Newtonian fluid which is typically incompressible. For small swimmers, such as bacteria,

the inertial forces are negligible and the motion of a Newtonian fluid is governed by linear

(Stokes’) equations. In this situation the models can generally be classified according to

the length scale being resolved.

• At the finest length scale, the geometry of the swimmer is parameterized and

deformations which result in net motion are investigated [1,4,5]. In these models

the Dirichlet–to–Neumann map for Stokes’ equations is used on the boundary to

determine the traction due to the fluid.

• Mesoscale models utilize a Boltzman approach with Jeffery’s ODE’s [2, 10] for

the motion of an ellipsoid in a Newtonian fluid modeling the particle kinematics.

The particle density is then transported (pushed forward) by the corresponding

flow [3,18]. The density is defined on the phase space which is high dimensional

(position and velocity), so closure models are required to render the problem

computationally tractable.

• Macroscopic models typically represent the particle kinematics as a diffusion due

to the swimming action superimposed upon a drift given by the underlying fluid

velocity. The balance of mass then gives an equation for the concentration of

the bacteria. The momentum equation for the fluid is then augmented with an

additional stress to simulate the momentum transfer due to the swimming action

[13, 15, 20–22,25].

In addition to the usual viscous stresses, nematic fluids also support elastic stresses

which renders their equations of motion intrinsically nonlinear. In this situation Green’s

function techniques are not available; in particular, analogs of Jeffery’s equations for the

motion of ellipsoids in a liquid crystal are not available [24].

2. Modeling bacterial motion. In this section we develop a system of ODE’s to

model the position and orientation a particles in a nematic liquid crystal under the

influence of a propulsive force, as illustrated in Figure 1.3.

Assumption 2.1. Let y(t) and m(t), with |m(t)| = 1, denote the position and ori-

entation of a bacterium in a nematic liquid crystal with velocity and director fields

(v(t, x),n(t, x)). Typically |n| ≃ 1; however, this can not hold near singularities.

(1) The concentration of bacteria is sufficiently low so that the interaction of the

bacteria with each other is mediated through the liquid crystal medium.

fbm n

Fig. 1.3. Particle in a nematic with a body force.
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(2) Viscous and elastic forces on the bacteria dominate the inertial forces, so the

latter can be neglected.

(3) Translation and rotation of the bacterial give rise to viscous dissipation of the

form

Rb = (ct/2)|ẏ(t)− v(t,y(t))|2 + (cr/2)|ṁ(t)−W
(

v(t,y(t)
)

m(t)|2,

where W (v) = (1/2)
(

∇v − (∇v)⊤
)

, and ct, cr > 0 are viscous coefficients.

(4) The elastic energy due to local alignment of the nematic with the bacteria takes

the form Wb(m(t),n(t,y(t))). Prototypically

Wb(m,n) = (kb/2)|m× n|2 = (kb/2)(|n|2 − (m.n)2); (2.1)

in particular, the elastic energy vanishes when the bacteria aligns with the ne-

matic.

(5) The propulsive force due to the flagellum is of the form fbm, where fb is a con-

stant. This constant may take either sign depending upon whether the bacteria

is a “pusher” or “puller” [13]

To simplify the notation we write v(y) for v(t,y(t)) and W (v(y)) for the skew part

of ∇v(t,y(t)) when the context is clear.

Remark 2.2. The viscous dissipation and elastic energies in the above can be iden-

tified with the first order terms in any expansion of these quantities in the following

sense.

• Viscous dissipation must depend upon differences (or gradients) of velocities and

vanish when the velocities are zero. The motion of a short rigid rod in a shear

flow [2, 10] is given by ẏ = v and ṁ = W (v)m. Deviation from these relations

gives rise to dissipation.

The ratio of length to diameter of the bacteria in [8, 9, 28] is O(10:1), so they

are almost rod–like. If they were more elliptical (or disk shaped), the orientation

would evolve according to an equation of the form ṁ = (a(∇v) − b(∇v)⊤)m

(assuming the fluid is incompressible).

• Independence of observer requires Wb(Qm, Qn) = Wb(m,n) for Q orthogonal,

in which case Wb(m,n) = W̃b(|n|,m.n). Equation (2.1) is the first order term

in an expansion of a non–negative energy which vanishes when the orientations

align or n = 0.

In the absence of inertia, Hamilton’s principle for the motion of a particle states that

for all times t1 < t2 and variations (y,m) �→ (y + δy,m + δm) with m.δm = 0 and

compact support in (t1, t2) must satisfy

δ

ˆ t2

t1

Wb(m,n(y)) =

ˆ t2

t1

{

fbm.δy − ∂Rb

∂ẏ
.δy − ∂Rb

∂ṁ
.δm

}

.

The variation of the elastic energy with respect to y is computed as

δyWb(m,n) =
∂Wb

∂n
.δyn(y) =

∂Wb

∂n
.(∇n)δy,
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so that the equations of motion for a single bacteria take the form

ct(ẏ− v) + (∇n)⊤
∂Wb

∂n
= fbm, and cr(ṁ−W (v(y))m) +

∂Wb

∂m
+ λm = 0, (2.2)

where λ is the Lagrange multiplier dual to the constraint |m| = 1.

2.1. Spiral director with negligible hydrodynamics. In this section the experimental

configuration in [11] is modeled as a two dimensional domain with planar bacteria orien-

tation and liquid crystal director, and consider the situation where boundary conditions

(v,n) = (0,ns(x)) in the third dimension are sufficiently strong to render the distur-

bance of the nematic due to bacterial action negligible. Solutions of the equations (2.2)

then satisfy

dWb

dt
+ ct|ẏ|2 + cr|ṁ|2 = fbm.ẏ.

The experiments reported in [11] had a spiral pattern on the glass plates of the form

ns(x) =
Rx

√

|x|2 + ǫ
, where R =

[

cos(φ) − sin(φ)

sin(φ) cos(φ)

]

, (2.3)

φ ∈ [0, π/2] is the spiral angle, as in Figure 1.2, and the parameter ǫ ≥ 0 parameterizes

the size of the “core” of the singularity.

In this situation it is possible to express equations (2.2) in polar coordinates. Letting

y(t) = r(t)
(

cos(θ(t)), sin(θ(t))
)

, and m(t) =
(

cos(ψ(t)), sin(ψ(t))
)

,

a calculation shows

ctṙ = fb cos(ψ − θ)− kbr

(r2 + ǫ)2
sin(θ − ψ + φ)2ǫ

ctrθ̇ = fb sin(ψ − θ)− kbr

2(r2 + ǫ)
sin(2(θ − ψ + φ)) (2.4)

crψ̇ =
kbr

2

2(r2 + ǫ)
sin(2(θ − ψ + φ)).

when the elastic energy is given by equation (2.1).

This formulation of the equations is used to compute numerical solutions presented

below. However, for their analysis it is convenient to consider a combination of angles

which reduces the size of the system from three to two unknowns. Specifically, letting

η(t) = θ(t)− ψ(t) + φ gives the pair of equations for (r(t), η(t)),

ṙ =
fb
ct

cos(φ− η)− kbr

ct(r2 + ǫ)2
sin(η)2ǫ, (2.5)

η̇ =
fb
ctr

sin(φ− η)− kb
2(r2 + ǫ)

(

1

ct
+

r2

cr

)

sin(2η).

2.2. Invariant region & long time behavior. We show that there is an invariant region

of equations (2.5) in the (r, η) plane for which the radius of all solutions diverge to infinity

(see Figure 2.1).
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N

I

η

r

η0−η0

Fig. 2.1. Invariant region and plot of a solution in the (η, r) plane.

Lemma 2.3. Let φ ∈ (−π/2, π/2) and 0 < η0 < π/2− |φ| and R(η) = K/ sin(η). Then

I = {(r, η) | |η| ≤ η0, R(η0) ≤ r ≤ R(η)}, (2.6)

is an invariant region of the differential equations (2.5) whenever

K ≥ max

{

cr|fb|
ctkb

(

tan(η0) + 1

cos(η0)

)(

R(η0)
2

R(η0)2 + ǫ

)

,

(

kb
√
ǫ

2ct cos(π/2− |φ|)

)1/2

sin(η0)

}

.

If (r, η) ∈ I then |η| ≤ η0, and if ǫ = 0,

ṙ = (fb/ct) cos(φ− η) ≥ (fb/ct) cos(π/2− |φ|) > 0 so, r(t) → ∞,

and since R(|η|) ≥ r for (r, η) ∈ I,
K

| sin
(

η(t)
)

| = R
(

|η(t)|
)

≥ r(t) → ∞ so, η(t) → 0.

Proof. Writing the differential equation (2.5) as (ṙ, η̇) = F(r, η), it suffices to show

that F(r, η).N(r, η) ≤ 0 at each point (r, η) ∈ ∂I, where N(r, η) denotes an outward

normal to I.
Write the boundary as the union of the bottom, left, and right hand sides,

∂I = R(η0)× (−η0, η0) ∪ {(R(η), η) | η ∈ (0, η0)} ∪ {(R(η),−η) | η ∈ (0, η0)}.
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Bottom: The outward normal at the bottom is N = (−1, 0)⊤ so that

F(η, r).N = − cos(φ− η) +
kb
ct

R(η0)ǫ

(R(η0)2 + ǫ)2
sin(η)2

≤ − cos(π/2− |φ|) + kb
2ct

√
ǫ

(R(η0)2 + ǫ)

≤ − cos(π/2− |φ|) + kb
2ct

sin(η0)
2

K2

√
ǫ.

Left and Right Hand Sides: Since sin(η) is an odd function it suffices to consider the

right hand side. At a boundary point (R(η), η) with η > 0 an outward normal is

N(η) =

(

1

−R′(η)

)

=

(

1

K cos(η)/ sin2(η)

)

=

(

1

R(η) cos(η)/ sin(η)

)

.

Writing R = R(η) and N = N(η) we have

F (η,R).N =
fb
ct

cos(φ− η)− kbR

ct(R2 + ǫ)2
sin(η)2ǫ

(

fb
ctR

sin(φ− η)− kb
(R2 + ǫ)

(

1

ct
+

kbR
2

cr

)

cos(η) sin(η)

)

R cos(η)

sin(η)

≤ |fb|
ct

+

( |fb|
ct

− kbR
2

cr(R2 + ǫ)
cos(η)K

)

cos(η)

sin(η)
.

In the second step the cosine and sine of φ− η were bounded by unity, and the identity

R sin(η) = K was used. Continuing,

F (η,R).N ≤ |fb|
ct

(

1 +
cos(η)

sin(η)

)

− kbR
2

cr(R2 + ǫ)

cos2(η)

sin(η)
K

=
|fb|
ct

(

sin(η)

cos(η)
+ 1− ctkb

cr|fb|
R2

(R2 + ǫ)
cos(φ)K

)

cos(η)

sin(η)

≤ |fb|
ct

(

tan(η0) + 1− ctkb
cr|fb|

R(η0)
2

(R(η0)2 + ǫ)
cos(η0)K

)

cos(η)

sin(η)

≤ 0,

where the last lines follows since 0 < η ≤ η0 < π/2 and K is sufficiently large. QED

2.3. Radial solution. Setting φ = 0 gives the hedgehog director ns(x) = x/
√

|x|2 + ǫ,

and η̇ vanishes when sin(η) = 0. Then θ = ψ or θ = ψ + π are constant so m is parallel

to y and r(t) = r(0)± fbt.

2.4. Circular trajectories. When ǫ = 0 explicit solutions of the stationary values of

(2.5) are available. In this case ṙ = 0 requires cos(φ − η) = 0 so that η(t) = φ ± π/2 is

constant. The equation for η̇ = 0 then reduces to a quadratic equation for the radius,
(

ct
cr

)

r2 ±
(

2fb
kb sin(2φ)

)

r + 1 = 0.

Selecting the sign so that the roots are non–negative gives solutions with circular trajec-

tories at radii

r± =
cr|fb|

ctkb sin(2φ)
±

√

(

crfb
ctkb sin(2φ)

)2

− cr
ct
.
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Then

θ(t) = θ(0) +
1

crr

(

|fb| −
kb
2r

sin(2φ)

)

t, and ψ(t) = ψ(0)− kb
2cr

sin(2φ)t.

2.4.1. Stability. When ǫ = 0 the formula for the Jacobian of the right hand side of

(2.5) is

[

∂ṙ/∂r ∂ṙ/∂η

∂η̇/∂r ∂η̇/∂η

]

=

[

0 − fb
ct

1
ctr2

(fb − kb sin (2φ)
r ) kb cos (2φ)(

1
ctr2

+ 1
cr
)

]

,

and the eigenvalues can be written as

λ =
b±

√
b2 + c

2crctr2
, with b = kb cos (2φ)(ctr

2 + cr) and c = 4c2rfbr(kb sin(2φ)− fbr),

The salient features of these expressions for the circular orbits with prototypical physical

parameters are:

• b < 0 when φ > π/4 and typically c < 0 for the larger radius and c > 0 for the

smaller radius, so the former is stable and latter unstable.

• b > 0 when φ < π/4, and solutions are unstable; prototypically r(t) → ∞.

• b = 0 when φ = π/4, and the sign of the expression under the radical is deter-

mined by kb−fbr. For the larger radius±
√
c are imaginary and the corresponding

solution is marginally stable. For the smaller radius ±√
c are real so this solution

is unstable.

2.4.2. Finite core (ǫ > 0). When ǫ > 0 formulae for the roots of the stationary

solutions of equations (2.5) are not available; however, for 0 < ǫ << 1 solution branches

emanate from the two solutions with ǫ = 0. In addition, a third solution may branch

from r = 0 which is a singular point when ǫ = 0.

Fig. 2.2. Plots of r(r2 + ǫ)η̇ with φ = π/4, η = 3π/4 and ǫ ∈
{0, 0.0005, 0.001} (top, middle, bottom). Roots are radii of solutions
with circular orbits.
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Example 2.4. If φ = π/4 and η = 3π/4 the right hand side of (2.5)1 vanishes. With ǫ

fixed, roots of (2.5)2 plotted as a function of r give the radii of the solutions with circular

orbits.

This is illustrated in Figure 2.2 with kb = 0.1, fb = 2 cr = 0.25 and ct = 20. If

0 < ǫ � 0.0007 a third solution bifurcating from r = 0 is present. As ǫ increases this

solution merges second solution when ǫ ≃ 0.0007. For ǫ � 0.0007 only one solution exists.

When ǫ = 0.1, the radii for circular trajectories is 0.61, and in this case, the Jacobian of

the right hand side of (2.5) has eigenvalues 0.0029± 0.1887i, and the small positive real

part renders the corresponding solutions slightly unstable.

2.5. Constant speed model. Motivated by the experimental observation that there was

very little variation in the speed of the bacteria, the following pair of equations was

proposed in [11] to model their motion,

ẏ − v = vbm, and cr
(

ṁ−W (v(y))
)

+
∂Wb

∂m
+ λm = 0.

Here vb = fb/ct is the speed of the bacteria relative to the fluid, and is constant when

the elastic forces are neglected.

With v = 0 and the spiral director pattern and polar coordinates introduced in Section

2.1, these equations become

ctṙ = fb cos(ψ−θ), ctrθ̇ = fb sin(ψ−θ), crψ̇ =
kbr

2

2(r2 + ǫ)
sin(2(θ−ψ+φ)). (2.7)

Setting η = θ − ψ + φ, equations (2.7) combine to give

ṙ =
fb
ct

cos(η − φ) and η̇− = − fb
ctr

sin(η − φ)− kbr
2

2cr(r2 + ǫ)
sin(2η). (2.8)

A solution with (r, η) constant has η − φ = ±π/2, so that

0 = − fb
ctr

+
kbr

2

2cr(r2 + ǫ)
sin(2φ), or 0 = ctkb sin(2φ)r

3 − 2crfbr
2 − 2crfbǫ.

The discriminant2 of this cubic equation is negative since the linear coefficient vanishes

and the the quadratic and constant coefficients have the same sign. It follows that there

are two complex conjugate roots and one real root with expansion

r =
cr
ct

2fb
kb sin(2φ)

+
ct
cr

kb sin(2φ)

2fb
ǫ− 2(

ct
cr

kb sin(2φ)

2fb
)3ǫ2 +O(ǫ3).

2.5.1. Stability. Equation (2.8) has Jacobian matrix

F =

[

0 −(fb/ct) sin(η − φ)

(fb/ctr
2) sin(η − φ)− kbrǫ sin(2η)

cr(r2+ǫ)2 −(fb/ctr) cos(η − φ)−(kbr
2/cr(r

2 + ǫ)) cos(2η)

]

.

2Recall that the discriminant of the cubic ar3+br2+cr+d is Δ = 18abcd−4b3d+b2c2−4ac3−27a2d2,
which reduces to Δ = −4b3d− 27a2d2 when c = 0.
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704 MOCHONG DUAN AND NOEL J. WALKINGTON

The Jacobian at the stationary point becomes

F (r, φ) =

[

0 (fb/ct)

− 1
4 (a− ct

fb
a2ǫ+O(ǫ2)) (kb/cr) cos(2φ)(1− 1

4
ct
fb
aǫ) +O(ǫ2)

]

where a ≡ (ct sin(2φ)
2k2b )/(c

2
rfb). When φ = π/4 this becomes

F (r, π/4) =

[

0 (fb/ct)

− 1
4 (a−

ct
fb
a2ǫ+O(ǫ2)) 0

]

,

which has purely imaginary eigenvalues, so the solutions with constant radii are

“marginally” stable.

3. Hydrodynamic interaction. Letting y(t) ∈ R
2 denote the position of a bac-

terium with orientation m(t) ∈ S1 and ns(x) denote the spiral pattern on the glass

plates, we postulate energy and dissipation functions of the liquid crystal medium and

bacterium between two glass plates of the form3

W(n,∇n,y,m) =

ˆ

Ω

WOF (n(x),∇n(x)) + (κ3/2)|n(x)− ns(x)|2 dx+Wb(m,n(y)),

(3.1)

R(v,∇v, ṅ, ẏ, ṁ;n,m) =

ˆ

Ω

REL(∇v(x),n(x), ṅ(x)) + (c3/2)|v(x)|2 dx

+ (ct/2)|ẏ − v(y)|2 + (cr/2)|ṁ−W (v(y)m|2.

In these expressions WOF (n,∇n) and REL(∇v,n, ṅ) are the Oseen–Frank elastic energy

and the Ericksen–Leslie dissipation functions of the nematic [6, 7, 12, 14, 19];

WOF (n,∇n) =
1

2

(

k1 div(n)
2 + k2(n.curl(n) + q)2 + k3|n× curl(n)|2

)

+
1

2
(k2 − k4)

(

|∇n|2 − div(n)2 − |curl(n)|2
)

,

and writing n̊ = ṅ−W (v)n

REL(n, ṅ,∇v) =
γ1
2
|̊n|2 + γ2n̊

⊤D(v)n+
γ3
2
(D(v)n)2 +

γ4
2
(n⊤D(v)n)2 +

γ5
2
|D(v)|2.

The terms with coefficients κ3 and c3 model the influence of boundary conditions in the

third dimension. The elastic constant κ3 is a measure of the “anchoring strength”, and

c3 quantifies the dissipation due to shear in the third dimension due to the fluid sticking

to the plates.

3For clarity of exposition W and R are written with a single bacterium with position and orientation
(y,m). If multiple bacteria are present then W and R contain the sum of their elastic energies and rates
of dissipation.
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Inactive Bacteria: If inactive bacteria are acted upon by an external body force, fb,

and moment, gb, the dynamics would be determined by Hamilton’s principle:

δ

ˆ t2

t1

(

W − (ρ/2)|v|2
)

+

ˆ t2

t1

(

∂R
∂ẏ

.δy +
∂R
∂ṁ

.δm+
∂R
∂v

.δx+
∂R
∂∇v

: ∇δx+
∂R
∂ṅ

.δn

)

=

ˆ t2

t1

(

fb.δy + gb.δm+ f .δx+ g.δn
)

.

As in Section 2, variations of y and m give the equations (2.2) for of motion for the

bacteria. Variations of x and n give the linear and angular momentum balances for the

liquid crystal which we assume to be incompressible,

ρv̇ + c3v − div

[

−pI +
∂REL

∂∇v
− (∇n)⊤

∂WOF

∂∇n

]

+ κ3(∇n)⊤(n− ns) (3.2)

−fbδy − crW
∗
(

ṁ−W (v(y))m))⊗m
)

= f ,

∂REL

∂ṅ
+

∂WOF

∂n
− div

[

∂W
∂∇n

]

+ κ3(n− ns) +
∂Wb

∂n
δy + λn = g.

Here δy and W ∗(.) are distributions which act on scalar and vector valued test functions

respectively as δy(φ) = φ(t,y(t)) and

W ∗(A)(φ) = A : (1/2)
(

∇φ(t,y(t))−∇φ(t,y(t))⊤
)

≡ A : W (φ(y)).

Active Bacteria: When the motion of the bacteria is due to their swimming action,

and the bacteria have negligible inertia, the active force generated by the flagellum and

the drag on the body of the bacteria are equal in magnitude and opposite in direction

as illustrated in Figure 3.1. However, their action on the fluid is displaced by a distance,

ℓ, comparable to the length of the bacteria which is small. In this situation the active

forces on the fluid can be approximated by a dipole [3]; specifically, if φ is a vector valued

test function, then (see Figure 3.1)

fb.φ
(

y + (ℓ/2)m
)

− fb.φ
(

y − (ℓ/2)m
)

≃ ℓ(fb ⊗m) : ∇φ(y) ≡ div∗(ℓfb ⊗m)(φ).

The linear momentum equation for the active system is then obtained by substituting

this distribution in place of the inactive force fbδy in (3.2). Since fb = fbm, the dipole

ℓfb⊗m = (ℓfb)m⊗m is symmetric so does not couple to the angular momentum equation.

fb fb

Fig. 3.1. Forces on the tail (active), head (drag), and fluid (dipole).
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Collecting the above gives the following set of equations for the coupled system,

ct(ẏ − v) + (∇n)⊤
∂Wb

∂n
= fbm,

cr(ṁ−W (v(y))m) +
∂Wb

∂m
+ λbm = 0,

ρv̇ + c3v − div

[

−pI +
∂REL

∂∇v
− (∇n)⊤

∂WOF

∂∇n

]

+ κ3(∇n)⊤(n− ns) (3.3)

− div∗(fbℓm⊗m)− crW
∗
(

ṁ−W (v(y))m))⊗m
)

= f ,

∂REL

∂ṅ
+

∂WOF

∂n
− div

[

∂W
∂∇n

]

+ κ3(n− ns) +
∂Wb

∂n
δy + λn = g.

The variables (λb, p, λ) are Lagrange multipliers dual to the constraints |m| = 1, div(v) =

0 and |n| = 1 respectively.

3.1. Weak statement & energy estimate. The (Ericksen) identity [19]

div

[

(∇n)⊤
∂WOF

∂∇n

]

= ∇WOF − (∇n)⊤
(

∂WOF

∂n
− ∂WOF

∂∇n

)

,

is used to formulate a weak statement of the system for which Galerkin approximations

inherit the natural energy estimates. Using this identity, and writing m̊ = ṁ−W (v(y))m

and p̂ = p+WOF , we have

ˆ

Ω

{

(

ρv̇ + c3v, v̄
)

−
(

p̂, div(v̄)
)

+
(∂REL

∂∇v
,∇v̄

)

+
(∂REL

∂ṅ
, (∇n)v̄

)

}

=

ˆ

Ω

(

f+(∇n)⊤g, v̄
)

+ fbℓ
(

m⊗m,∇v̄(y)
)

−
(∂Wb

∂n
,∇n(y)v̄(y)

)

+ cr
(

m̊⊗m,W (v̄(y))
)

, (3.4)

ˆ

Ω

{

(∂REL

∂ṅ
+

∂WOF

∂n
+κ3(n−ns)+λn, n̄

)

+
(∂WOF

∂∇n
,∇n̄

)

}

=

ˆ

Ω

(g, n̄)−
(∂Wb

∂n
, n̄(y)

)

.

Here v̄ and n̄ are test functions and homogeneous boundary conditions have been as-

sumed. The energy estimate follows upon multiplying the equations for y and m by

ẏ − v and ṁ respectively, and selecting the test functions in this weak statement

(v̄, n̄) = (v,nt) to get

d

dt

(

W +

ˆ

Ω

(ρ/2)|v|2
)

+

ˆ

Ω

(

∂REL

∂ṅ
.ṅ+

∂REL

∂∇v
: (∇v)

)

+c3|v|2+ct|ẏ−v(y)|2+cr|m̊|2

=

ˆ

Ω

(

f .v + g.ṅ
)

+ fbm.(ẏ − v(y)) + fbℓ(m⊗m) : (∇v(y)).

3.2. Scaling. To render equations (3.3) dimensionless, we scale them using typical

values of mass, length, and time present in the experiments reported in [11, 26, 27].

• M = 10−9kg, the mass of fluid in the experiment.

• L = 10−3m, the size of the cell.

• T = 10s, experimental data was recorded for approximately 10 minutes.

Table 3.1 lists the physical parameters and scaled values of the coefficients appearing in

equations (3.3).
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Table 3.1. Scale factors for non–dimensionalization.

Coefficient Unit Scale Factor Value Scaled Value

Mass M 109 1μg 1

Length L 103 1mm 1

Time T 10−1 10 s 1

Bacteria Dynamics

ct Transnational Viscosity M

T
1010 2 × 10−9 20

cr Rotational Viscosity ML
2

T
1016 2.5 × 10−17 0.25

fb Active Force ML

T2
1014 2 × 10−14 2

kb Elastic Constant ML
2

T2
1017 1 × 10−18 0.1

Nematic Hydrodynamics

ρ Density M

L3
1 1000 1000

ki Elastic Coefficients ML

T2
1014 [7.5, 0.6, 21, 0] × 10−15 [0.75,0.06,2.1,0]

γi Viscous Coefficients M

LT
107 [0.15, 0.35, 1.75, 0.1, 1] × 10−7 [0.15, 0.35, 1.75, 0.1, 1]

κ3 Anchoring Strength M

LT2
108 2 × 10−7 20

c3 Shear Viscosity M

L3T
10 5 50

4. Numerical approximation. The ODE’s for the bacteria positions and orien-

tations were solved using the classical fourth order Runge-Kutta algorithm with the

equations (2.2) formulated as

ct(ẏ − v) + (∇n)⊤
∂Ŵb

∂n
= fbm, and cr(ψ̇ − ω(y)/2) +

∂Ŵb

∂ψ
= 0,

where m = (cos(ψ), sin(ψ)), ω = curl(v) is the vorticity, and Ŵ(ψ,n) = W(m(ψ),n);

specifically,

ω =
∂v2
∂x1

− ∂v1
∂x2

, and
∂Ŵb

∂ψ
(ψ,n) =

∂Wb

∂m
(m,n).

(

− sin(ψ)

cos(ψ)

)

.

The equations for the nematic were approximated using the numerical scheme in [23].

This is a Galerkin approximation of equations (3.4) with discontinuous Galerkin time

stepping for the linear momentum equation and continuous Galerkin time stepping for

the angular momentum equation. The constraint |n| = 1 is approximated by includ-

ing a penalty term (1/ǫ)(|n|2 − 1)2 into the energy W . This scheme was coded using

the Firedrake finite element package [17]. The distributions on the right hand side of

equations (3.4) were approximated using a Gaussian mollifier of the form δy(t)(t, x) ≃
exp

(

−|x− y(t)|2/ǫ
)

/(ǫπ); for example

(

m(t)⊗m(t),∇v̄(t,y(t))
)

≃
ˆ

Ω

(

m(t)⊗m(t),∇v̄(t, x)
)

exp
(

−|x− y(t)|2/ǫ
)

/(ǫπ) dx.

When y(t) and m(t) are specified, Firedrake can evaluate the right hand side of this

expression but not the left. Anisotropic Gaussian’s with (x − y)⊤M(x − y) in place of

|x−y|2 were considered in [8] with M = g‖(m⊗m)+g⊥(I−m⊗m); however, numerical

solutions were essentially identical for the isotropic and anisotropic Gaussian’s.

Being a finite element package, Firedrake can only approximate solutions of the PDE’s

for v and n so it is necessary to utilize a partitioned time stepping scheme to solve the

coupled system. Writing X = (y,m) and Y = (v,n), the time stepping in the following

lemma was utilized.
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708 MOCHONG DUAN AND NOEL J. WALKINGTON

Lemma 4.1. Let [tk, tk + τ ] ⊂ R with τ > 0,

F : [tk, tk + τ ]× R
m × R

n → R
m and G : [tk, tk + τ ]× R

m × R
n → R

n,

and (X,Y ) : [tk, tk + τ ] → R
m × R

n satisfy

Ẋ = F (., X, Y ), Ẏ = G(., X, Y ), with (X,Y )(tk) = (Xk, Y k) ∈ R
m × R

n.

Let

Ẋ1 = F (., X1, Y
k), Ẏ1 = G(., X1, Y1), with (X1, Y1)(t

k) = (Xk, Y k)

Ẋ2 = F (., X2, Y1), Ẏ2 = G(., X2, Y2), with (X2, Y2)(t
k) = (Xk, Y k).

Then the scheme (Xk+1, Y k+1) = (X2(t+τ ), Y2(t+τ )) is third order with local truncation

error

|Xk+1 −X(t+ τ )| ≤ (1/4!)L2
FLGLY e

τ(LG+2LF )τ4,

|Y k+1 − Y (t+ τ )| ≤ (1/5!)L2
FL

2
GLY e

2τ(LF+LG)τ5,

where LF , LG, LX , and LY denote the Lipschitz constants of the indicated functions.

Identifying Ẋ = F (., X, Y ) as the system of ODE’s for the bacteria and Ẏ = G(., X, Y )

as the Galerkin approximation of the PDE’s modeling the nematic, this scheme requires

two decoupled Runge Kutta solves and finite element solutions per time step.

5. Numerical results. The domain and parameters were selected to model the ex-

perimental configuration in [11, 26, 27], and non–dimensionalized as in Section 3.2.

• Domain: Ω = [−1, 1]2.

• Constraint: The constraint |n| = 1 was approximated by adding (1/ǫ)(|n|2 − 1)2

to the bulk term of the elastic energy in equation (3.1). The penalty parameter

was set to be ǫ = 0.01.

• Spiral Pattern: ns(x) is given in equation (2.3). Unless noted otherwise, the

parameter characterizing the size of the core of the singularity was set to be

ǫ = 0.1.

• Boundary Data: v|∂Ω = 0 and n(t, x)|∂Ω = ns(x).

• Initial Data:

– Velocity: v(0, x) = 0

– Director: For the hydrodynamic simulations n(0, x) was set to be a (numer-

ically computed) minimizer of the elastic energy given by the bulk term in

equation (3.1) augmented with the penalty term to approximate the con-

straint |n| = 1.

Note that the spiral pattern ns(x) is not a minimizer of the Oseen Frank

energy WOF . Selecting the initial value to be a minimizer of (3.1) rather

than ns(x) eliminates an initial transient.
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– Bacteria Orientation: Unless otherwise noted, the bacteria are initially (in-

wardly) aligned with the spiral, m(0) = −ns(y(0)); specifically, ψ(0) =

π − φ− θ(0).

Solutions of the ODE’s (2.4) with initial angles outwardly aligned with the

spiral, ψ(0) ∈ (φ+ θ(0)− π/2, φ+ θ(0) + π/2), directly exit the domain.

• Mollifier: The parameter in the Gaussian mollifier of δy was ǫ = 0.24.

• Physical Parameters: The elastic and viscous parameters are listed in Table 3.1.

5.1. ODE system. The position and orientation of active bacteria were simulated by

solving the ODE system with initial values y(0) = (0.67, 0) and ψ(0) = −π/2, so that

m(0) is tangential to the circular solutions. The radii r(φ) of the solutions with circular

orbits are

r(π/6) = 0.682, r(π/4) = 0.613, r(π/3) = 0.672.

Figure 5.1 plots numerical solutions for Equation 2.2 with spiral angles φ = π/6, π/4

and π/3 to illustrate the unstable, marginally stale, and stable cases respectively. With

φ = π/6 and initial position and orientation close to a point on the circular solution of

Equation (2.2), the bacteria makes one orbit of the circular equilibrium and then enters

the invariant region in which the radius increases monotonically. The middle panels

illustrate the solution with spiral angle φ = π/4 which is the configuration considered

in Example 2.4. The circular solution is marginally stable when ǫ = 0, and is slightly

unstable for for ǫ = 0.1. The latter situation is illustrated in Figure 5.1 where the bacteria

traverse a spiral with slowly increasing radius. When the spiral angle is π/3, the bacteria

travel in a circular motion with a fixed radius and the trajectory converges to the stable

equilibrium in the phase plane.

Fig. 5.1. Orbits and phase plots for single bacteria with spiral angles
π/6, π/4, and π/3.
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Fig. 5.2. Multiple initial angles for a single bacteria: Trajectories
with spiral angle π/6, π/4, and π/3.

To illustrate how the trajectories depend up the initial orientations Figure 5.2 plots

multiple solutions with multiple initial orientations emanating from a fixed point for

three spiral angles.

• φ = π/6: All trajectories eventually exit the domain following the spiral director

pattern.

• φ = π/4: The bacteria initially move towards the equilibrium circle before spi-

raling out of the domain with the number circular orbits traversed depending

upon their initial angle. Experimental observation of bacteria motion with this

spiral angle exhibit a similar range of outcomes.

• φ = π/3: The circular solution is stable and attracts most of the solutions.

Fig. 5.3. Time slices of solutions of the ODE’s with spiral angle π/4
and bacteria initially on a 10× 10 grid.
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To simulate the patterns that may be observed when bacteria are uniformly dis-

tributed, solutions of the ODE with bacteria initially on a 10 × 10 grid are shown in

Figure 5.3. The bacteria were initially aligned inwardly with the spiral having angle

φ = π/4, and colored by the radius of their initial positions. The bacteria exhibit tran-

sient behavior; traveling in a circular motion, they first concentrate on a circle with radius

less than the stationary value. The radius of the circle where they concentrate slowly

increases, and after reaching the stationary radius spiral outwards to exit the domain

with bacteria initially at smaller radii exiting first.

5.2. Partial hydrodynamics (v = 0). The gap between the glass plates in the exper-

iments in [11] was small, and since the fluid sticks to the plates the the velocity was

observed to be very small, v ≃ 0. This section considers the solution of equations (3.3)

with v ≡ 0, in which case the hydrodynamic interaction only involves the elastic inter-

action with the nematic. With this ansatz equations (3.3) reduce to a system of vector

valued ODE’s for the bacteria positions and orientations coupled to the angular momen-

tum equation for the nematic. Solutions of these equations were approximated using

the classical fourth order Runge Kutta scheme for the ODE’s and finite elements for the

angular momentum equation with quadratic bilinear elements on a 32×32 grid with time

step Δt = 0.01. The qualitative behavior of the solutions reported here did not change

under further refinement of the mesh or time step.

The experimental observations in [11] indicated that in low concentrations the bacteria

tended to simply follow the spiral pattern, while at higher concentration they were more

likely to swim in circular orbits. In the current context we illustrate similar trends

when “concentration” is identified with with hydrodynamic interaction which depends

primarily upon the active force fb and elastic constant kb. Another possible consequence

of increased bacteria concentration is that, being rod like, they will tend to align with

each other. In this situation their initial orientation may not be aligned with the spiral

pattern, and this can also result in more bacteria swimming in circular trajectories.

Figures 5.4–5.6 illustrate these trends. Figure 5.4 shows the numerical solution of the

configuration shown in Figure 5.3 when the hydrodynamic interaction is included. The

hydrodynamics results in a dramatic difference to the long time behavior of the system.

Absent the hydrodynamics, all of the bacteria eventually exit the domain; however,

Figure 5.4 clearly shows that approximately half of the bacteria remain and swim in

circular orbits with a time periodic radius [11].

Figure 5.5 illustrates the role of both hydrodynamics and influence of initial bacteria

orientation on the solutions. The spiral angle was set to φ = π/6 so that circular

solutions of the ODE’s (2.4) are unstable (as illustrated in Figure 5.2). The left two

panels of Figure 5.5 show solutions at a fixed time for the ODE’s and the coupled system

with the bacteria initially aligned with the spiral ψ(0) = π+φ+θ(0), and the right hand

panel shows the solution of the coupled system when ψ(0) = 9π/8 + φ+ θ(0). It is clear

that both the hydrodynamics and initial orientation significantly influence the collective

dynamics of the bacteria.
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To further illustrate the effect of initial bacteria orientation, solutions with four closely

spaced bacteria and spiral angle φ = π/4 are illustrated in Figure 5.6. Solutions of the

ODE’s with bacteria initially aligned with the spiral all exit the domain; however, when

the initial orientation of the top two bacteria is perturbed those two bacteria remain

in the domain and tend to circular orbits. The hydrodynamic interaction results in a

similar scenario; instead of exiting the domain when initially aligned with the spiral the

bacteria tend to a circular orbit.

Fig. 5.4. Partial hydrodynamics v(t, x) = 0: spiral angle φ = π/4
and bacteria initially on a 10× 10 grid.

Fig. 5.5. Solutions at time t = 15 for ODE’s (left), partial hydro-
dynamics initially aligned (middle), and not aligned (right) with the
spiral having angle of φ = π/6.
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Fig. 5.6. Solutions of the ODE with bacteria initially aligned (left)
and perturbed (middle) with the spiral, and solution with partial
hydrodynamics (right).

5.3. Full hydrodynamics. This section presents numerical approximations of solutions

to the ODE’s modeling the bacteria motion with the full set of hydrodynamic equations in

equations (3.3). As in the experiments, the velocity of the nematic was small so relaxing

the assumption v = 0 made in the previous section resulted in very little change.

Figure 5.7 illustrates the velocity field generated by a single bacterium initially aligned

with a spiral with angle φ = π/4. This is the configuration illustrated in Figure 5.6 where

Fig. 5.7. Trajectory and velocity streamlines for a single bacterium
initially aligned with the spiral having angle φ = π/4.
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Fig. 5.8. Trajectories and velocity streamlines for 100 bacteria ini-
tially aligned with the spiral having angles φ = π/4.

the the bacterium eventually exits the domain. Figure 5.8 illustrates the solution for the

configuration shown in Figures 5.3 and 5.4. The solution is qualitatively the same as for

the partial hydrodynamics considered in the previous section, and the only quantitative

change is that of the initial 100 bacteria 68 remained in the domain while only 54 remained

in Figure 5.4
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