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In a recently demonstrated quantum-state tomography scheme [P. Yang, M. Yu, R. Betzholz, C. Arenz, and
J. Cai, Phys. Rev. Lett. 124, 010405 (2020)], a random-control field is locally applied to a multipartite system
to reconstruct the full quantum state of the system through single-observable measurements. Here, we analyze
the robustness of such a tomography scheme against measurement errors. We characterize the sensitivity to
measurement errors using the condition number of a linear system that fully describes the tomography process.
Using results from random matrix theory we derive the scaling law of the logarithm of this condition number with
respect to the system size when Haar-random evolutions are considered. While this expression is independent of
how Haar randomness is created, we also perform numerical simulations to investigate the temporal behavior of
the robustness for two specific quantum systems that are driven by a single random-control field. Interestingly,
we find that before the mean value of the logarithm of the condition number as a function of the driving time
asymptotically approaches the value predicted for a Haar-random evolution it reaches a plateau whose length
increases with the system size.
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I. INTRODUCTION

Using randomized measurements to reconstruct the state of
a quantum system has been receiving an increasing amount of
attention [1–4]. Such randomized tomography schemes have
the advantage that properties of complex quantum systems can
be probed while requiring less resources than some alternative
methods. Randomization is typically achieved by conjugating
easily accessible observables with random unitary transforma-
tions created through randomized gates in a quantum circuit.
However, the creation of these (Haar) random unitary trans-
formations through quantum circuits typically requires access
to the full system.

Among many new methods for quantum-state tomography
[5–8], methods that only require a local access to a mul-
tipartite quantum system [9–13] are particularly interesting,
since full access to all constituents of a complex quantum
system is rarely given in realistic settings. In particular, using
random-control fields to create Haar-random unitary evolu-
tions [14] allows for reconstructing the full quantum state
when access to the system is limited. Indeed, it has recently
been demonstrated [12] that randomly driving and measuring
a single qubit allows for reconstructing the state of a multi-
qubit system, provided the system is fully controllable, the
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random pulse is sufficiently long, and the time trace given by
single-observable expectation-value measurements only con-
tains negligible errors.

Here, we expand on the groundwork laid in Ref. [12]
and study the robustness of this random-control tomography
scheme against measurement errors. In particular, we analyze
the tradeoff between the accuracy in reconstructing quantum
states through expectation measurements of a single observ-
able, errors in the corresponding measurement record, and the
length of the random-control pulse. We characterize the ro-
bustness with respect to these errors by analyzing the behavior
of the condition number of a matrix that fully describes the
tomography process.

We show that known results from a random matrix can be
utilized to develop an analytical expression for the scaling of
the logarithm of this condition number with respect to the di-
mension of the quantum system when Haar random evolutions
are considered. We go on to provide numerical evidence that
the assumptions used to derive this expression are justified in
the settings we consider. We remark here that the expression
for the logarithm of the condition number is not only inde-
pendent of the explicit form of the quantum system, namely,
both the system itself and the control, but also independent
of how the Haar randomness of the time evolution is actually
achieved, thereby making it applicable far beyond the random-
control setting we focus on in the following. We then proceed
by numerically investigating the temporal behavior of the log-
arithm of the condition number, i.e., how the asymptotic value
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is achieved, when the system is driven by a random-control
field. We focus on two case studies, namely, a driven multi-
level quantum system and an Ising spin chain where control
is exerted through a single local control field. We find good
agreement between the predicted value and the simulated one
when the evolution time is sufficiently long. We also show an
intriguing phenomenon in the convergence toward the asymp-
totic value for these two cases, namely, plateaulike structures.
While this phenomenon is not intrinsic to the local random-
control tomography protocol, it is of interest for further
research.

The paper is organized as follows: In Sec. II, we introduce
the general setup of quantum-state tomography as well as
the condition number and its logarithm as a measure for the
robustness against measurement errors. This is followed by
a discussion of how random unitary evolutions are created
via random-control fields in fully controllable systems. Af-
terwards, we develop an analytic expression for the expected
behavior of the logarithm of the condition number when Haar
random unitary transformations are considered. We go on
to numerically investigate, in two case studies, how Haar
randomness is approached as a function of the duration of
a random-control field. In particular, in Sec. III, we study a
d-level system with hopping between neighboring levels, and,
in Sec. IV, we study a transverse-field Ising chain. In both set-
tings, we investigate the behavior of the expected robustness
as a function of the length of the random-control field that is
applied to the first level and the first spin, respectively. We
finally draw conclusions in Sec. V and present a number of
useful details in Appendixes A–G.

II. ROBUSTNESS OF RANDOM UNITARY
QUANTUM-STATE TOMOGRAPHY

A. Robustness of randomized quantum-state tomography

For a d-dimensional quantum system, a general quantum
state has d2 − 1 degrees of freedom. Let us therefore consider
{Bn}d2−1

n=1 to be a basis for traceless Hermitian d × d matrices
that is orthonormal with respect to the Hilbert-Schmidt inner
product, i.e., Tr(BnBm) = δn,m. We collect its elements in the
vector B = (B1, . . . ,Bd2−1) such that any density matrix ρ of
the system can be written in the form

ρ = d−11d + x · B, (1)

with the d × d identity matrix 1d and the generalized Bloch
vector x, whose components are given by xn = Tr(Bnρ) for
n = 1, . . . , d2 − 1. In order to determine x for an unknown
quantum state, it is, in general, necessary to perform a mea-
surement of d2 − 1 different observables. However, these
observables can also be generated from a single observable
M using d2 − 1 different time evolutions, represented by the
unitaries Un that effectively rotate M into a set of different
observables.

We collect the measurement outcomes of the expectation
values, up to a constant offset, in the vector y whose compo-
nents are yn = Tr(MUnρU †

n ) − d−1Tr(M ). Thus, one finds the
linear system of equations

Ax = y, (2)

that determines the Bloch vector x. Here, the matrix A con-
necting the Bloch vector with the measurement results has the
entries An,m = Tr(MUnBmU †

n ) and fully describes the tomog-
raphy process. Writing out these matrix entries in terms of the
matrix entries of the observable, the basis matrices, and the
unitaries gives

An,m =
d∑

j,k,p,q=1

Mj,kB
(m)
p,qU

(n)
k,pU

(n)∗
j,q , (3)

where B(n)
k,l and U (n)

k,l , respectively, denote the k, l entries of
the matrices Bn and Un. In the following, we will consider
unitaries Un that are created uniformly random according to
the Haar measure. In this case, A is almost always invertible
[12], so that the generalized Bloch vector can be obtained by
inverting Eq. (2). Furthermore, from the above expression, it
can then be seen that for a fixed value of m the entries of
A are statistically independent random variables, because they
originate from independent unitaries. However, the entries for
fixed n can depend on the same entries of Un, making them
statistically dependent.

In the analysis of linear systems of equations, it is cus-
tomary to describe the robustness of the solution x against
perturbations in y as well as A with the condition number
of A. Therefore, as a figure of merit for the robustness of
a faithful retrieval of x against errors in the measurement
outcomes y, as well as possible perturbations in the entries of
A, we use the two-norm condition number κ [15–18], which
is defined as

κ = ||A||2||A−1||2. (4)

This expression takes the form κ = smax/smin, where smax and
smin, respectively, denote the largest and smallest singular
value of A [19]. For convenience, below, we will not use
κ itself but the quantity ln(κ ) to describe the robustness of
the tomography. However, before we investigate the behavior
of ln(κ ), we first describe how Haar-random evolutions can
be created through randomly applied control fields in systems
which are fully controllable.

B. Generation of Haar-random unitaries by random controls

We recall the random-control tomography setting in
Ref. [12], where a d-dimensional fully controllable quantum
system [20,21] is driven by a single random-control field. In
this case, the control system is described by a time-dependent
Hamiltonian of the form

H (t ) = H0 + f (t )Hc, (5)

where we refer to H0 and Hc as the the drift and the con-
trol Hamiltonian, respectively, and f (t ) represents a classical
control field. The unitary evolution U (t ) describing the dy-
namics of this driven quantum system is governed by the
Schrödinger equation U̇ (t ) = −iH (t )U (t ), where we have
set h̄ = 1. The system is said to be fully controllable if all
unitary transformations can be achieved to arbitrary preci-
sion in finite time by appropriately shaping f (t ). It can be
shown that this is the case if and only if the dynamical
Lie algebra L = Lie(iH0, iHc) that is formed by all nested
commutators of the drift and the control Hamiltonian as well
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FIG. 1. Dependence of the expectation value of ln(κ ) on the
dimension d of the quantum system. The solid line shows the exact
asymptotic result given by Eq. (7). Open circles and filled squares
represent numerical averages over 1000 realizations of ln(κ ), based
on randomly generated unitaries [31,32], for the two choices of the
operator basis {Bn}d2−1

n=1 we use for the specific quantum systems
discussed in Secs. III and IV, respectively.

as their real linear combination span the full space, i.e., the
special unitary algebra su(d ) for traceless Hamiltonians. For
a more formal definition of full controllability we refer to
Ref. [22].

When the control system is fully controllable, a random-
control field yields a Haar-random evolution provided the
evolution time is sufficiently long [14]. As such, if we as-
sociate the unitaries Un in Eq. (3) with different points in
time of the evolution, where Haar randomness is achieved,
the corresponding time trace y almost always contains
enough information to reconstruct the generalized Bloch
vector. We can consequently reconstruct the full quan-
tum state of a complex system by randomly driving and
measuring only parts of it, which has been experimen-
tally demonstrated for an electron-nuclear spin system
in Ref. [12].

In the subsequent analysis, if nothing else is specified,
the random controls we use to generate the unitaries employ
piecewise-constant control fields f (t ) with a segment length
�t , where the constant values of the fields in every segment
are random numbers uniformly distributed on the interval
[−1, 1] showing no temporal correlations.

C. Condition number for Haar-random unitaries

Let us now lay our attention on the case where the
d2 − 1 unitaries Un are generated by sufficiently long random
controls, such that they can be assumed to be independently
drawn from the Haar measure. The entries of A do not strictly
follow a Gaussian distribution, thus its condition number
requires further analysis. Recalling Eq. (3) shows that the
random variables An,m are bilinear forms of the entries of
the unitaries Un. Their expectation value and covariance
can be calculated by integration with respect to the Haar
measure (see Appendix A or Refs. [23–25]) which yields
E [An,m] = 0 and

E [An,mAn′,m′ ] = δn,n′δm,m′

d2 − 1
[Tr(M2) − d−1Tr(M )2], (6)

and shows that they have a zero mean, are uncorrelated [26],
and can easily be rescaled to yield unit-variance random
variables with a single normalization factor that does not
depend on n and m.

The entries of A are not necessarily identically dis-
tributed. However, if a subset {Bn}Dn=1, where D � d2 − 1,
is unitarily equivalent, i.e., for every l,m ∈ {1, . . . ,D} one
can find a unitary matrix Tl,m such that Bl = Tl,mBmT

†
l,m,

then the random variables An,1, . . . ,An,D are identically dis-
tributed for all values of n. This can be seen from An,l =
Tr[M(UnTl,m)Bm(UnTl,m)†] and the fact that the Haar measure
is invariant under multiplication by a unitary from the right.
In summary, the different columns of A are independent and
identically distributed, whereas the entries are not indepen-
dent and may follow different probability distributions in the
individual rows.

For (d2 − 1) × (d2 − 1) random matrices whose entries
are independent zero-mean unit-variance random variables, it
was shown that for growing system sizes the expectation value
of ln(κ ) converges to the expression [27–29]

E [ln(κ )] = ln(d2 − 1) + 1.537. (7)

More details on this known result are provided in Appendix B.
Although, in our case, the random variables, i.e., the entries of
A, are not all statistically independent, we find that this result
can still be applied to our situation. In this respect, existing
works [30] have already shown that random matrices with
statistically dependent entries can have the same asymptotic
properties as shown in Eq. (7).

In order to verify this, we have performed numerical simu-
lations that are associated with the tomography on two specific
fully controllable quantum systems, namely, a d-level system
and a spin chain, that will be investigated in more detail in
Secs. III and IV, respectively. The solid line in Fig. 1 rep-
resents the result (7) for the dependence of E [ln(κ )] on the
dimension of the quantum system. The open circles and solid
squares show the numerical average over 1000 realizations
of ln(κ ), based on randomly generated unitaries [31,32], for
the two specific choices of the basis {Bn}d2−1

n=1 we employ in
the actual quantum-state-tomography setups discussed below.
One sees that after initial discrepancies for very low values
of the dimension, the disagreement between the numerical re-
sults and Eq. (7) becomes much less pronounced for a growing
system size.

III. CASE STUDY 1: MULTILEVEL SYSTEM

In this section, we focus on a specific fully controllable
quantum system as a first case study to verify the results
for the robustness of the random-field tomography presented
above.

A. System, control, and measurement

The system we investigate here is a quantum system with
d states denoted by |n〉 for n = 1, . . . , d , with hopping terms
of identical strength h between adjacent levels. Control of the
system is applied in the form of an energy variation of the
first level, which makes the system fully controllable [33,34].
The drift and the control Hamiltonian describing this control
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system are given by

H0 = h
d−1∑
n=1

(|n〉〈n + 1| + |n + 1〉〈n|), (8)

Hc = g|1〉〈1|. (9)

Such a drift Hamiltonian describes, for example, a quantum
random walk [35] with equal probabilities.

As an observable we consider the population of the first
level, i.e., M = |1〉〈1|. As our basis, in this case, we use
the generalized Gell-Mann operators [36]. This basis can be
split into three distinct categories, namely, the symmetric and
antisymmetric matrices Bsymm

j,k and Banti
j,k , respectively, for 1 �

j < k � d , and the diagonal matrices Bdiag
l for 1 � l � d − 1.

Explicitly, they are given by

Bsymm
j,k = 1√

2
(|k〉〈 j| + | j〉〈k|), (10)

Banti
j,k = i√

2
(|k〉〈 j| − | j〉〈k|), (11)

Bdiag
l = 1√

l (l + 1)

(
l∑

n=1

|n〉〈n| − l|l + 1〉〈l + 1|
)

. (12)

By combining these three sets of matrices into a single set,
with appropriate reindexing, this becomes the basis collected
in B. The definition we employ here may differ from some
definitions used elsewhere by a factor of

√
2, such that, in

our case, the basis matrices fulfill the orthonormality relation
Tr(BnBm) = δn,m.

With this form of the basis at hand, one can use Eq. (3)
to establish the probability distribution of the entries of
A assuming Haar randomness of the unitaries Un. The ex-
plicit form of the distribution of the An,m can be derived
using an approximation of the entries of the unitaries by
independent complex Gaussian random variables [23,37], as
shown in Appendix D, even though the explicit distribution
of the matrix entries of Haar-random unitaries is not readily
accessible [38].

B. Robustness

We will now analyze the robustness of the random-control
tomography, as described by ln(κ ), for the system introduced
previously. Since we are employing random-control fields
f (t ), in order to obtain an expectation value, we take an
average over a sufficiently large number of numerical realiza-
tions. We remark that the number of distinct random unitary
evolutions in each numerical realization is d2 − 1, which cor-
responds to the number of expectation values that have to be
measured in an experiment.

Figure 2 shows the time evolution of E [ln(κ )] calcu-
lated using 100 realizations of the random pulses with a
pulse-segment length fulfilling h�t = 0.1 and a control-field
amplitude g/h = 10. The long-time behavior of the average
of ln(κ ) is shown in Fig. 2(a) for different dimensions of the
system, namely, d = 4, 8, 16, 32, 64. There, we observe con-
vergence toward the value expected for Haar random unitaries
(shown as dashed horizontal lines), which are given by Eq. (7)
and shown in Fig. 1 as a function of d . The time t shown

(a)

(b)

FIG. 2. Mean of the logarithm of the condition number of the to-
mography matrix for a randomly controlled multilevel system vs the
duration t of a single random unitary evolution. The result is averaged
over 100 realizations with the parameters g/h = 10, h�t = 0.1, K =
20, and � = g, with each realization using d2 − 1 distinct random
unitary evolutions. (a) Long-time behavior for piecewise-constant
control for d = 4, 8, 16, 32, 64 (bottom to top). The dashed horizon-
tal lines indicate the value of E [ln(κ )] for Haar-random unitaries,
which are given by Eq. (7) and shown in Fig. 1. (b) Short-time behav-
ior, where solid lines and circles correspond to piecewise-constant
and truncated-Fourier controls, respectively.

in Fig. 2 denotes the duration of a single random unitary
evolution.

Having a closer look at shorter times reveals more sub-
tleties in the convergence behavior. Here, as a second example
for a random control, we also employ a truncated Fourier
series [39] of the form f (t ) = ∑K

k=1 Fk cos(ωkt + ϕk ), with
uniformly distributed parameters: Fk fulfilling

∑K
k=1 Fk = 1,

ωk ∈ [0,�], and ϕk ∈ [0, 2π ]. In Fig. 2(b), one sees that after
a rapid initial drop for very short times, a plateau appears
over which the slope is significantly lower than during the
initial decrease. This behavior is present for both kinds of
random controls we used (circles for truncated Fourier series
and solid lines for piecewise constant). After this stage, there
appears another more rapid drop. During the convergence to
the asymptotic value, more of such plateaus can be found,
although not as pronounced as the first one. We found that the
length of the first plateau increases for a growing number d of
levels and the time tp until it is reached can be well approxi-
mated by the linear dependence htp ∝ d on the dimension.

More details on this phenomenon are given in Appendix G,
including the observation that this behavior is special to our
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case studies and is not necessarily found in other controlled
quantum systems. We believe that it is closely related to the
geometry of the coupling graph of the system and how the
control spreads through the system.

IV. CASE STUDY 2: SPIN SYSTEM

As a second example, we consider a fully controllable
system composed of N spins, i.e., of the dimension d = 2N .

A. System, control, and measurement

In particular, we investigate an Ising chain with a transverse
field in the x−z plane and a control that is applied only to a
single spin at the edge of the chain. Therefore, we consider
the drift and control Hamiltonians given by

H0 = h

[
N−1∑
n=1

σ z
nσ

z
n+1 +

N∑
n=1

(
σ x
n + σ z

n

)]
, (13)

Hc = gσ x
1 , (14)

where the σα
n denote the Pauli matrices of the nth spin,

for α = x, y, z. Here, we have, for the sake of convenience,
set the nearest-neighbor interaction equal to the global field
strength h. However, independently of this assumption we
show in Appendix E that the control system given by the pair
Eqs. (13) and (14) is fully controllable. We choose M to be a
single-spin observable, namely, M = σ z

1 . For this special case
of the Hilbert-space dimension one can use the Pauli matri-
ces to construct the basis whose elements are given by the
products

Bn = 2−N/2
N∏

m=1

σ km
m , (15)

where every value of n corresponds to one of the 4N − 1
tupels (k1, . . . , kN ) ∈ {0, x, y, z}N \ {0, 0, 0, 0}, with σ 0

j = 12.
In this case, all basis matrices are unitarily equivalent, which
means that for Haar random unitaries all entries of A are
identically distributed. In Appendix F, it is furthermore shown
that, in the case of Haar-random unitaries, a good approxi-
mation for their probability distribution is given by a normal
distribution.

B. Robustness

In Fig. 3, we present the results of the robustness for this
spin system in the same fashion as we have for the multi-
level system. That is, we again show an average of ln(κ )
over 100 realizations, with 4N − 1 distinct random unitary
evolutions for each realization, although shown here only for
piecewise-constant random pulses. We used the parameters
g/h = 10 and h�t = 0.01 for N = 2, 3, 4, 5, 6 spins, which
corresponds to the same dimensions as for the multilevel
system. Here, the time t shown in Fig. 3 denotes the duration
of a single random unitary evolution as well.

In Fig. 3(a) we again see convergence toward the asymp-
totic value expected for Haar random unitaries (shown as
dashed horizontal lines), which are given by Eq. (7) and
represented as solid squares in Fig. 1. The short-time be-
havior is shown in Fig. 3(b). Similar to the previous case

(a)

(b)

FIG. 3. The mean of the logarithm of the condition number,
ln(κ ), of the tomography matrix for a randomly controlled Ising spin
chain in dependence of the duration t of a single random unitary
evolution. The result is averaged over 100 realizations with the
parameters g/h = 10 and h�t = 0.01. Each realization uses 4N − 1
distinct random unitary evolutions. (a) Long-time behavior for N =
2, 3, 4, 5, 6 (bottom to top). The dashed horizontal lines show the
value of E [ln(κ )] for Haar-random unitaries, which are given by
Eq. (7) and shown as solid squares in Fig. 1. (b) Short-time behavior
for the same values of N .

study, the initial drop is rapid and is followed by a plateau
over which E [ln(κ )] changes much slower. Also here, this
plateau becomes more pronounced and longer for higher
dimensions.

V. CONCLUSIONS

We have established an expression for the robustness
against measurement errors of randomized quantum-state to-
mography. This robustness is quantified by the condition
number κ of a matrix that fully describes the tomography
process. We have derived an analytical expression for the
mean of its logarithm when randomization is achieved through
applying a Haar-random unitary to a given observable. In
particular, we have shown that, up to a constant, the de-
pendence on the system dimension d of the mean value of
ln(κ ) is given by ln(d2 − 1). This result constitutes a general
property of quantum-state tomography based on Haar-random
unitaries since it depends neither on the specific kind of
quantum system under investigation nor on the actual method
that is employed for the generation of the Haar-random
unitaries.
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We went on to numerically investigate the asymptotic be-
havior in more detail for the case when Haar randomness
is achieved through the application of random-control fields.
Here, we have studied the robustness of such a random-control
quantum-state tomography scheme for two distinct controlled
quantum systems: a d-level system with hopping between
neighboring levels and a transverse-field Ising chain. In both
cases, the system is fully controllable through a single control
field that is applied locally, which we used together with a
local observable measurement to achieve full quantum-state
reconstruction [12]. The random drive asymptotically leads
to a Haar-random time evolution, such that the robustness
converges to the above result as the control time tends to
infinity. However, in the two quantum systems we investi-
gated as case studies, we have found that while a finite time
evolution is sufficient to achieve a satisfactory convergence
toward the asymptotic value, the numerical simulations sug-
gest that before the asymptotic value is reached, a plateau
appears whose length increases with the system size. It would
be interesting to relate this behavior to the cutoff phenomenon
in classical Markov chains [40], which will be the subject of
future studies.
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APPENDIX A: INTEGRATIONWITH RESPECT
TO THE HAAR MEASURE

For Haar-random unitaries U the vanishing expectation
value and the covariance (6) of the entries of A were presented
in the main text. These results can be easily established by in-
tegration over the unitary groupU (d ) with respect to the Haar
probability measure μ [23–25]. In detail, one can employ∫

U (d )
dμ(U )Ui, jU

∗
k,l = d−1δi,kδ j,l (A1)

and ∫
U (d )

dμ(U )Ui, jUk,lU
∗
i′, j′U

∗
k′,l ′

= δi,i′δk,k′δ j, j′δl,l ′ + δi,k′δk,i′δ j,l ′δl, j′

d2 − 1

− δi,i′δk,k′δ j,l ′δl, j′ + δi,k′δk,i′δ j, j′δl,l ′

d (d2 − 1)
. (A2)

The expectation value of a function p(U ) can then be cal-
culated according to E [p(U )] = ∫

U (d ) dμ(U ) p(U ). Applied
to Eq. (3) this leads to E [An,m] = 0 and Eq. (6) from the
main text, where we used the fact that the basis matrices are
traceless and orthonormal.

APPENDIX B: PROBABILITY DENSITY OF THE
CONDITION NUMBER

In the seminal paper Ref. [27], it was shown that for n × n
random matrices whose entries are independent real standard
normal variables the quantity κ/n converges in distribution to
a random variable with the probability density

fκ/n(x) = 2x + 4

x3
e−2/x−2/x2

. (B1)

While the integrals to compute moments of κ/n do not exist,
the ones to calculate the moments of ln(κ/n) can be evaluated
explicitly. For the expectation value E [ln(κ/n)] one can use
the integral∫ ∞

0
dx

2x + 4

x3
e−2/x−2/x2

ln(x)

= 1

2

[
γ + ln(4)

2
+

√
2πe +

√
πe

2
M

(
0,

1

2
,−1

2

)

−
√

πe

2
M

(
0,

3

2
,−1

2

)
−M

(
1,

1

2
,

1

2

)
+ M

(
1,

3

2
,

1

2

)]

(B2)

with the Euler-Mascheroni constant γ and Kummer’s function
M(a, b, z) [41]. The numerical value of this is given by 1.537
and applied to the case of the main text, namely, n = d2 − 1,
one readily obtains Eq. (7).

The above result was further generalized, in Refs. [28,29],
to random matrices with independent zero-mean unit-
variance entries with an arbitrary, not necessarily identical,
distribution.

APPENDIX C: DISTRIBUTION OF THE DIFFERENCE OF
TWO GAMMA-DISTRIBUTED RANDOM VARIABLES

For the setup discussed in Sec. III, the probability dis-
tribution of the entries of A can be derived explicitly by
approximating the entries of the Haar-random unitaries with
independent complex Gaussian random variables. Under this
approximation, one comes across the difference of two
Gamma-distributed random variables, as we will see below.
Let us therefore derive the general form of the probability
density of such differences in detail. As a first step, we employ
the fact that if X and Y have the probability densities fX (x)
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and fY (y), respectively, then Z = X − Y has the probability
density

fZ (z) =
∫ ∞

−∞
dx fX (x) fY (x − z), (C1)

where we have used that the variable −Y has the den-
sity f−Y (y) = fY (−y). We now consider the case where
X ∼ 
dis (α1, β1) and Y ∼ 
dis(α2, β2) and remind ourselves
that the probability density of a 
dis(α, β )-distributed random
variable is βαxα−1e−βx/
(α) for x � 0 and zero otherwise.
The integral above can be evaluated using, for example, 3.383
(4) in Ref. [42], yielding the final expression [43]

fZ (z) = β
α1
1 β

α2
2 |z| α1+α2

2 −1e
β2−β1

2 z

(β1 + β2)
α1+α2

2

×
⎧⎨
⎩

1

(α1 )Wα1−α2

2 ,
1−α1−α2

2
((β1 + β2)z), z � 0,

1

(α2 )Wα2−α1

2 ,
1−α1−α2

2
((β1 + β2)|z|), z < 0,

(C2)

with the Whittaker function Wκ,μ(z) [41,44].

APPENDIX D: APPROXIMATE DISTRIBUTION
OF THE MATRIX ENTRIES

IN CASE STUDY 1

Every projector P can be transformed according to RPR† =
|1〉〈1| with a unitary matrix R. Thereby, the invariance of the
Haar measure ensures that the same results we derive below
for the simple choice M = |1〉〈1| apply to all observables that
are projectors. In the Gell-Mann basis, one finds the unitarily
equivalent subset {Bsym

j,k ,Banti
j,k ,Bdiag

1 }1� j<k�d . This means the
D = d2 − d + 1 corresponding variables are thereby identi-
cally distributed. Let us, for the sake of convenience, choose
them to be distributed as the one corresponding to Bdiag

1 . The
remaining d − 2 variables then correspond to Bdiag

n , for n ∈
{2, . . . , d − 1}. Overall, this means it is sufficient to analyze
the d − 1 random variables:

Vn = 1

2
√
n(n + 1)

(
n∑

k=1

|U1,k|2 − n|U1,n+1|2
)

. (D1)

Since it is far from straightforward to obtain the explicit prob-
ability distribution of the individual matrix entries of Haar
random unitaries (see, e.g., Ref. [38]), it would be favorable
to bring the above expression into a form that is easier to
handle. To achieve this, we use the fact that for d × d Haar
random matrices U the matrix

√
dU converges in distribution

to a standard complex Gaussian matrix (see Lemma 4.2.4 in
Ref. [23] or Theorem 6 of Ref. [37]). We can therefore approx-
imate the entries {Uj,k}dj,k=1 by complex normal variables.

Applying this approximation to the rescaled variables
νn = dVn yields νn = Xn − Yn, where Xn and Yn are,
respectively, distributed according to 
dis(n,

√
n(n + 1))

and 
dis(1,
√

(n + 1)/n). Therefore, we can directly apply
Eq. (C2). We find β1 ± β2 = √

(n + 1)/n(n ± 1) and can use

Wκ,μ(z) = Wκ,−μ(z) as well as the properties

Wμ− 1
2 ,μ(z) = e

z
2 z

1
2 −μ
(2μ, z), (D2)

Wκ,κ− 1
2
(z) = e− z

2 zκ , (D3)

with the incomplete Gamma function 
(k, z) [44]. By
identifying μ = n/2 and κ = 1/2 − n/2, this simplifies the
probability density to

fνn (x) =
(

n

n + 1

)n− 1
2

e
√

n+1
n x

×
⎧⎨
⎩


(n, (n + 1)
3
2 n− 1

2 x)
(n − 1)!

, x � 0

1, x < 0.

(D4)

For n = 1 we can use 
(1, z) = exp(−z) to find the
exponential distribution f1(x) = exp(−√

2|x|)/√2. When n
tends to infinity, on the other hand, we find limn→∞ fn(x) =
exp(x − 1)�(1 − x), with the Heaviside step function � [45].

APPENDIX E: PROOF OF FULL CONTROLLABILITY IN
CASE STUDY 2

Here, we show that the control system given by

H0 =
N−1∑
n=1

σ z
nσ

z
n+1 +

N∑
n=1

(
σ x
n + σ z

n

)
, (E1)

Hc = σ x
1 (E2)

is fully controllable. For convenience, in the proof, we
use a rescaled and dimensionless version of the spin-chain
Hamiltonians of the main text, viz., Eqs. (13) and (14). We
show that the dynamical Lie algebra L = Lie(iHc, iH0) that
is formed by all nested commutators of the drift iH0 and the
control iHc as well as their real linear combinations spans the
special unitary algebra su(2N ). Principally, the proof can be
summarized as follows. We first show that su1(2) = su(2) ⊗
12N−1 of the first spin of the chain is contained in L. It induc-
tively follows that then also su j (2), j = 2, . . . ,N , of all other
spins is contained in L. Recalling results from Ref. [46] we
conclude that the control system described by Eqs. (E1) and
(E2) is thereby fully controllable.

Let us now construct this proof explicitly. The commutator
of the drift and the control Hamiltonian gives the Lie-algebra
element a1 = i(σ y

1 + σ
y
1 σ z

2 ). By commuting a1 with the con-
trol Hamiltonian anew, one obtains the Lie-algebra element
a2 = i(σ z

1 + σ z
1σ z

2 ), which can then be used to create, together
with iHc and iH0, the Lie-algebra element

a3 = i

[
N−1∑
n=2

σ z
nσ

z
n+1 +

N∑
n=2

(
σ x
n + σ z

n

)]
(E3)

via linear combination. Commuting a3 twice with a2 gives
the Lie-algebra element a4 = iσ y

1 σ
y
2 , from which one retrieves

a5 = iσ x
1 σ

y
2 through commutation with a2. The commutator of

a4 and a5 finally gives iσ z
1 , which implies that su1(2) ∈ L. We

proceed by noting that the commutator of a1 and a2 gives,
via linear combination with iHc, the element a6 = iσ x

1 σ z
2 ,

from which one, in turn, obtains through commutation with
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a5 the Lie-algebra element a7 = iσ x
2 . We can thus repeat the

procedure above, this time starting with the pair a3 and a7,
to establish su2(2) ∈ L. It inductively follows that then also
su j (2) ∈ L, j = 1, . . . ,N . The proof can then be concluded
by one final step. Since the coupling graph describing the
spin system, namely, a chain, is connected, it follows from
Theorem 1 in Ref. [46] that the control system described by
Eqs. (E1) and (E2) is fully controllable.

APPENDIX F: APPROXIMATE DISTRIBUTION
OF THE MATRIX ENTRIES IN CASE STUDY 2

In Sec. IV, we have already established that for the setup
discussed there all basis matrices are unitarily equivalent. For
the sake of simplicity, we will therefore focus on the simple
basis matrix σ z

1 . The random variable (3) then takes the form

V = 2−N/2
2N−1∑
j,k=1

(|Uj,k|2 + |Uj+2N−1,k+2N−1 |2

− |Uj+2N−1,k|2 − |Uj,k+2N−1 |2). (F1)

Here, we can again approximate 2N/2U by a standard complex
Gaussian random matrix. The normalized random variable
ν = 2N/2V thereby has the form ν = X − Y , where X and
Y are two independent 
(4N/2, 2N )-distributed random vari-
ables. To calculate the probability density of ν we can again
use Eq. (C2) with α1 = α2 = 4N/2 and β1 = β2 = 2N as
well as the identity W0,μ(2z) = √

2z/πKμ(z) (cf. 13.18.9 of
Ref. [44]), with the modified Bessel function of the second
kind Kμ(z), in order to find the Bessel distribution [47]

fν (x) = 2N

√
π
(4N/2)

(2N |x|/2)
4N

2 − 1
2 K 4N

2 − 1
2
(2N |x|). (F2)

The limiting distribution of this is given by nothing
but the standard normal distribution, viz., limN→∞ fν (x) =
exp(−x2/2)/

√
2π [48]. Already for N = 3 the probability

density is almost indistinguishable from the normal distribu-
tion and for N > 3 the shape does not visibly change anymore.

APPENDIX G: ANALYSIS OF THE PLATEAUS
IN CASE STUDY 1

Below, we present a brief analysis of the plateaus that
arise during the convergence toward the asymptotic value of
E [ln(κ )] in our case study 1. Before we do so, we start by
making an important observation, namely, that the emergence
of these plateaus has its origins most likely in the special
structure of the controlled quantum systems at hand. This is
supported by numerical evidence where randomly choosing a
pair of drift and control, that form a fully controllable system,
does not produce a similar behavior.

We therefore conjecture that the observed phenomenon
originates in the geometry of the underlying quantum system,
namely, in the structure of its coupling graph. For both our
case studies, this is a chainlike graph with the control applied
to one of the ends. However, a more definitive explanation lies
outside the scope of this paper and will be shown elsewhere.
Nevertheless, we present some preliminary perspective.

(a)

(b)

(c)

FIG. 4. The mean of the logarithm of the condition number (solid
lines) and the average of the magnitude |U1,1| over 50 realizations
(circles) for the randomly controlled multilevel system from case
study 1. The parameters are the same as in Fig. 2. Here, (a), (b),
and (c), respectively, depict the dimensions 16, 32, and 64.

In our random-field tomography setup, the unitaries are ini-
tially all the identity matrix 1d and become Haar random only
asymptotically. In Appendices D and F, we have already made
use of the fact that for a d × d Haar random unitaryU the ma-
trix entries of

√
dU can be approximated by standard complex

normal variables. Let us consider a single entry of the unitary,
e.g., the very first entry U1,1. The mean of the magnitude of
this entry starts at the initial value 1 and converges toward
the value E [|U1,1|]. Since

√
dU1,1 can be approximated by a

standard complex normal variable, the magnitude
√
d|U1,1| is

Rayleigh distributed with a scale parameter of 1/
√

2. Thereby,
one can establish the asymptotic value E [|U1,1|] = √

π/4d .
In Fig. 4,
we show the evolution of this quantity (circles) for the

same parameters as in Fig. 2 and compare it with the evo-
lution of E [ln(κ )] (solid lines). The numerical averages over
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50 realizations are shown in the subfigures (a), (b), and (c)
for the three values 16, 32, and 64 of the dimension d ,
respectively. Here, for numerical convenience, in the simu-
lation we made the approximation exp[−i(H0 + f Hc)�t] ≈
exp(−iH0�t ) exp(−i f Hc�t ), which we checked to be quite
accurate for our choice of parameters.

From the numerical findings we conjecture that changes
in the slope of E [ln(κ )] occur around times when E [|U1,1|]
shows revivals. The mechanism of these revivals can be
explained by realizing that |U1,1| = |〈1|U (t )|1〉|, which is

nothing but the square root of the population of the state |1〉,
if the system is initially prepared in |1〉. The chainlike struc-
ture of the quantum system suggests that the hopping term
transports the population toward the opposite end of the chain,
where it is then reflected. This means it takes a certain amount
of time until U1,1 changes again after its initial drop. This is
similarly the case for other entries of U . We therefore sug-
gest that the particular way in which changes spread through
the system leads to the emergence of the plateaus, which is
strongly connected to the coupling graph of the system.
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[24] B. Collins and P. Śniady, Integration with respect to the
Haar measure on unitary, orthogonal and symplectic group,
Commun. Math. Phys. 264, 773 (2006).

[25] Z. Puchala and J. A. Miszczak, Symbolic integration with re-
spect to the haar measure on the unitary groups, Bull. Pol. Acad.
Sci. Tech. Sci. 65, 22 (2017).

[26] C. Arenz and H. Rabitz, Drawing together quantum control
and quantum tomography principles, Phys. Rev. A 102, 042207
(2020).

[27] A. Edelman, Eigenvalues and condition numbers of random
matrices, SIAM J. Matrix Anal. Appl. 9, 543 (1988).

[28] T. Tao and V. Vu, Random matrices: The distribution of
the smallest singular values, Geom. Funct. Anal. 20, 260
(2010).

[29] T. Tao, V. Vu, and M. Krishnapur, Random matrices: Univer-
sality of ESDs and the circular law, Ann. Probab. 38, 2023
(2010).

[30] R. Adamczak, On the marchenko-pastur and circular laws
for some classes of random matrices with dependent entries,
Electron. J. Probab. 16, 1065 (2011).

022408-9

https://doi.org/10.1038/s41567-020-0932-7
https://doi.org/10.1103/PhysRevLett.127.030503
https://doi.org/10.1103/PhysRevLett.124.010504
https://doi.org/10.1126/sciadv.aaz3666
https://doi.org/10.1103/PhysRevA.81.032126
https://doi.org/10.1038/s41534-018-0080-4
https://doi.org/10.1103/PhysRevA.98.032330
https://doi.org/10.1103/PhysRevA.106.012409
https://doi.org/10.1103/PhysRevA.76.042117
https://doi.org/10.1103/PhysRevLett.122.110406
https://doi.org/10.1038/s41534-019-0222-3
https://doi.org/10.1103/PhysRevLett.124.010405
https://doi.org/10.1103/PhysRevA.104.012421
https://doi.org/10.1103/PhysRevX.7.041015
https://doi.org/10.1103/PhysRevLett.105.010404
https://doi.org/10.1103/PhysRevA.90.062123
https://doi.org/10.1103/PhysRevB.92.075312
https://doi.org/10.1103/PhysRevA.94.052327
https://doi.org/10.1088/1367-2630/12/7/075008
https://doi.org/10.1103/PhysRevA.63.063410
https://doi.org/10.1007/s00220-006-1554-3
https://doi.org/10.1515/bpasts-2017-0003
https://doi.org/10.1103/PhysRevA.102.042207
https://doi.org/10.1137/0609045
https://doi.org/10.1007/s00039-010-0057-8
https://doi.org/10.1214/10-AOP534
https://doi.org/10.1214/EJP.v16-899


JINGCHENG WANG et al. PHYSICAL REVIEW A 108, 022408 (2023)

[31] M. Ozols, How to generate a random unitary matrix (2009).
[32] T. Cubitt, Generate random unitary matrix (2009).
[33] X. Wang, P. Pemberton-Ross, and S. G. Schirmer, Symmetry

and subspace controllability for spin networks with a single-
node control, IEEE Trans. Automat. Contr. 57, 1945 (2012).

[34] D. Burgarth, D. D’Alessandro, L. Hogben, S. Severini, and
M. Young, Zero forcing, linear and quantum controllability for
systems evolving on networks, IEEE Trans. Automat. Contr. 58,
2349 (2013).

[35] J. Kempe, Quantum random walks: An introductory overview,
Contemp. Phys. 44, 307 (2003).

[36] R. A. Bertlmann and P. Krammer, Bloch vectors for qudits, J.
Phys. A 41, 235303 (2008).

[37] T. Jiang, Maxima of entries of Haar distributed matrices,
Probab. Theory Relat. Fields 131, 121 (2005).

[38] K. Zyczkowski and M. Kus, Random unitary matrices, J. Phys.
A 27, 4235 (1994).

[39] Such control fields may be advantageous for experimental im-
plementations due to their continuous nature.

[40] P. Diaconis, The cutoff phenomenon in finite Markov chains,
Proc. Natl. Acad. Sci. USA 93, 1659 (1996).

[41] M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions (Dover, New York, 1965).

[42] I. S. Gradshtyn and I. M. Ryhzik, Table of Integrals, Series, and
Products (Academic, New York, 1980).

[43] B. Klar, A note on gamma difference distributions, J. Stat.
Comput. Simul. 85, 3708 (2015).

[44] F. W. Olver, D. W. Lozier, R. F. Boisvert, and C. W. Clark,
The NIST Handbook of Mathematical Functions (Cambridge
University, Cambridge, England, 2010).

[45] To obtain this limiting distribution, one can use the limit
limn→∞ 
(n, (n + 1)

3
2 n− 1

2 x)/
(n) = �(1 − x), which follows
from 6.5.34 in Ref. [41].

[46] R. Zeier and T. Schulte-Herbrüggen, Symmetry principles in
quantum systems theory, J. Math. Phys. 52, 113510 (2011).

[47] N. L. Johnson, S. Kotz, and N. Balakrishnan, Continuous Uni-
variate Distributions (Wiley, New York, 1994).

[48] This can be proven, e.g., by showing the equality of their series
expansions [49] using limn→∞ nk
(n − k)/
(n) = 1 in every
term.

[49] G. N. Watson, A Treatise on the Theory of Bessel Functions
(Cambridge University, Cambridge, England, 1952).

022408-10

http://home.lu.lv/~sd20008/papers/essays/Random%20unitary%20[abstract].pdf
https://www.dr-qubit.org/matlab.html
https://doi.org/10.1109/TAC.2012.2202057
https://doi.org/10.1109/TAC.2013.2250075
https://doi.org/10.1080/00107151031000110776
https://doi.org/10.1088/1751-8113/41/23/235303
https://doi.org/10.1007/s00440-004-0376-5
https://doi.org/10.1088/0305-4470/27/12/028
https://doi.org/10.1073/pnas.93.4.1659
https://doi.org/10.1080/00949655.2014.996566
https://doi.org/10.1063/1.3657939

