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ABSTRACT

Mean motion resonances are important in the analysis and understanding of the dynamics of planetary systems. While perturbative
approaches have been dominant in many previous studies, recent non-perturbative approaches have revealed novel properties
in the low eccentricity regime for interior mean motion resonances of Jupiter in the fundamental model of the circular planar
restricted three body model. Here we extend the non-perturbative investigation to exterior mean motion resonances in the low
eccentricity regime (up to about 0.1) and for perturber mass in the range ~ 5 x 107> to 1 X 1073 (in units of the central mass).
Our results demonstrate that first order exterior resonances have two branches at low eccentricity as well as low-eccentricity
bridges connecting neighboring first order resonances. With increasing perturber mass, higher order resonances dissolve into
chaos whereas low order resonances persist with larger widths in their radial extent but smaller azimuthal widths. For low order
resonances, we also detect secondary resonances arising from small integer commensurabilities between resonant librations and
the synodic frequency. These secondary resonances contribute significantly to generating the chaotic sea that typically occurs

near mean motion resonances of higher-mass perturbers.
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1 INTRODUCTION

Mean motion resonances are important for many aspects of the dy-
namics of planetary systems. A basic quantity about a mean motion
resonance (henceforth abbreviated as MMR) is its width in terms of
the range of the ratio, n’ /n, of the mean motions of two objects whose
orbital periods are close to a resonant ratio of two mutually prime
integers, j/(j + k). This width, which depends on the masses of the
objects as well as the orbital eccentricities, is often reported as arange

of the semimajor axis ratio, a/a’ = (n’/n) % Within this resonance
width the conjunctions of the two objects librate rather than circulate
relative to the apsidal line of one of the bodies (or, sometimes, rela-
tive to their mutual nodal line); this libration is a consequence of the
mutual gravity of the two objects. Many previous theoretical investi-
gations have taken a perturbative approach; the reader is referred to
the textbooks by Murray & Dermott (1999) and Morbidelli (2002),
as well as other recent literature (e.g. Deck et al. 2013; Hadden 2019;
Gallardo 2019; Lei & Li 2020). The perturbative approaches, espe-
cially analytical treatments, have been very useful in estimating the
sizes of resonance zones, their scalings with parameters, as well as
revealing many qualitative and quantitative properties of the dynam-
ics near resonances (e.g. Henrard & Lemaitre 1983; Wisdom 1980).
Perturbative approaches have also been employed in modeling and
analysis of observations of exo-planets whose low-eccentricity orbits
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are near first order MMRs (e.g., Holman & Murray 2005; Lithwick
& Wu 2012; Wu & Lithwick 2013).

Unsurprisingly, perturbative approaches have limitations. A re-
cent investigation of the resonance widths in the planar circular re-
stricted three body problem reported novel details of first order inte-
rior MMRs in the low eccentricity regime (Malhotra & Zhang 2020);
the novel details include the existence of a separatrix at zero eccen-
tricity and “low eccentricity resonant bridges" between neighboring
interior first order resonances. These hitherto unknown features were
found by making use of a non-perturbative approach that was devel-
oped for the investigation of interior resonance widths in the high
eccentricity regime (Wang & Malhotra 2017). These features have
subsequently been confirmed with higher order perturbative meth-
ods (Lei & Li 2020; Antoniadou & Libert 2021); a brief review is
given in Malhotra (2022). The same approach was used by Malhotra
et al. (2018) and Lan & Malhotra (2019) to measure the widths of
Neptune’s exterior resonances in the moderate to high eccentricity
regime; however, these authors did not investigate the low eccen-
tricity regime of those exterior MMRs, below e ~ 0.05, because it
presents certain numerical challenges.

Here we apply the non-perturbative approach to investigate the
widths of low order exterior mean motion resonances, in the low
eccentricity regime. (The order of a j : (j + k) MMR is the absolute
value of the integer k, as the perturbation strength is of order elkl,
where e refers to the orbital eccentricity of the perturbed particle.) In
addition to obtaining non-perturbative measurements of resonance
widths, we are also interested to know if the zero eccentricity sepa-
ratrix and the “low eccentricity resonant bridges" can also be found
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near first order exterior MMRs. While we expect the answer is affir-
mative, we expect differences in detail because interior and exterior
resonances have quantitative and qualitative asymmetries. For exam-
ple, it is known that, unlike the interior 2:1 resonance, the exterior
1:2 resonance has a bifurcated libration center that leads to three
libration zones — a large-amplitude zone of librations surrounding a
pair of so-called “asymmetric" libration zones. This phenomenon is
peculiar to exterior 1 : j MMRs (e.g. Beaugé 1994; Malhotra 1996;
Murray-Clay & Chiang 2005; Lan & Malhotra 2019).

The paper is organized as follows. The methodology is described
briefly in Section 2. The results are given in Section 3. In Section 4,
we summarize our findings and discuss broader implications.

2 METHODOLOGY

The non-perturbative method makes use of Poincaré surfaces of sec-
tion of the planar circular restricted three body problem. The proce-
dure is essentially the same as detailed in a recent sequence of papers
(Wang & Malhotra 2017; Malhotra et al. 2018; Lan & Malhotra
2019; Malhotra & Zhang 2020). Here we provide a brief description
of our implementation for exterior resonances in the regime of low
eccentricity of the massless body. The equations of motion for the
massless body are solved numerically with the adaptive step size
seventh order Runge-Kutta method (Fehlberg 1968), with relative
and absolute error tolerance of 1072, We use natural units for the
restricted three body problem, namely, the unit of mass is the total
mass of the two primaries, m| +my, the unit of length is the constant
distance between them (the radius of their relative motion in a circu-
lar orbit), and the unit of time is their orbital period divided by 2x.
The equations of motion of the massless third body are expressed
in the rotating reference frame of unit angular velocity whose origin
is at the barycenter of the two primaries. In this reference frame,
the primaries are at fixed locations on the x-axis, at (—u,0) and
(1 = u,0), where u = my/(my + mj). The position of the massless
body is recorded at every pericenter passage. The pericenter passage
is identified by monitoring the length of the position vector of the
massless body, and using interpolation when a pericenter passage is
detected in two consecutive integration steps. The initial conditions
are given in osculating orbital elements, which are then converted
to the initial position and velocity in the rotating reference frame.
Initial conditions are chosen as follows. For each surface-of-section,
we initialize all trajectories such that they share a common value of
the Jacobi constant, Cy. Initial semi-major axis a and eccentricity
e are chosen in the neighborhood of the resonance of interest; the
combination of a and e is constrained by the Jacobi constant. All
trajectories also have zero initial mean anomaly (so they start at peri-
center). The initial longitude of pericenter is different for different
trajectories in the same surface-of-section so as to cover the full range
of the angular elements in the resonance neighborhood. In the work
reported here, we investigated several different values of the mass
ratio, u, in the planetary mass range 5.146 x 107 to 1 x 1073,
From the record of consecutive pericenter passages, we calcu-
late the barycentric osculating orbital elements of the test particle
and make plots of the Poincaré surfaces-of-section in (i, a) and in
(ecosy, esiny), where a is the semimajor axis, e is the eccentricity,
and ¢ is the angular separation of the planet from the test particle at
the latter’s pericenter passage. In these surfaces-of-section, we first
identify the resonant islands. For each resonant island, we measure
the values Yres, ares and ereg at the centers of the resonant libration
islands, and also measure the minimum and maximum values of a
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in each libration island. The latter defines the width of the resonance
with center at (dres, €res)-

For later reference, we note that the usual critical resonant angle
for an exterior j : (j + k) MMR is defined by

= +kA-jl —kw, (1)

where A and @ are the mean longitude and the longitude of pericenter
of the particle, and A’ is the mean longitude of the perturbing planet.
While ¢ is a continuous variable of time, when we compute its value
at the time of pericenter passage of the particle, it is an integer
multiple of our stroboscopic variable i, i.e., ¢ = ji.

It is also useful to note that the extent of the stable resonant islands
in terms of a and e relates to the radial extent of stable resonance
libration, and the extent of the resonant islands in terms of i measures
the azimuthal extent of the stable librations. The radial extent of the
resonance libration refers to the libration of the perihelion distance in
the range apmin (1 — emin) 10 dmax (1 — emax). Here the subscripts min
and max refer to the minimum and maximum values of the parameters
measured in a resonant island in the Poincaré section. [Note that the
Jacobi constant enforces a corelation in the time variations of a and
e, so minimum and maximum perhelion distance is given as stated
instead of the naive expectation that it would be @, (1 — emax) and
amax (1 — emin), respectively.] The azimuthal extent of the libration is
the range, ¥ min t0 ¥max, of the librations of the perihelion longitude
in the rotating frame.

The low eccentricity regime presents greater numerical challenges
because the resonance libration zones in the surfaces of section are
small and difficult to resolve for mass ratios y in the planetary mass
regime. Secondary resonances and chaotic layers crowd the surfaces
of section, even for low order resonances, requiring greater effort and
care in identifying the boundaries of stable libration zones. For exte-
rior 1 : j resonances, there is the additional complexity arising from
bifurcated libration centers. This requires numerical experimentation
with a much larger number of initial conditions and of finer numer-
ical resolution. The investigation of the low eccentricity regime of
exterior resonances is more time consuming in both human time and
in computing time.

3 RESULTS

Our main results consist of a table of measured values of e, €res,
dres, Amin» @max- 1his tabulated data is available in the online article
as an electronically readable file. A sample of this table is presented
in Table 1. These results are based on measurements from many
Poincaré surfaces-of-section. Below we provide a selection of plots
of the Poincaré surfaces-of-section and associated summary plots
of the data, in order to illustrate and discuss the results. We have
organized these plots as follows.

In each of Figures 1-4, we plot Poincaré surfaces-of-section for
the first order exterior mean motion resonances, 4:5, 3:4, 2:3 and
1:2, respectively, for the case of 4 = 1 X 10~*. Each figure shows
surfaces-of-section for three different values of the Jacobi constant,
Cy, to illustrate how the phase space changes with C;. The three
values of Cj are in descending order, and generally correspond to
increasing values of eres within each resonance. We observe that,
in these Poincaré sections, a j : (j + k) exterior MMR presents as
a chain of j resonant islands with approximate j—fold symmetry.
In the (¢, a) plots, the visible lower boundary of the trajectories is
enforced by the value of the Jacobi constant (noted in the top legend
of each plot); below that boundary, there are no solutions for that
specific value of the Jacobi constant. The most prominent chain of
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Figure 1. Poincaré surfaces-of-section for the 4:5 exterior MMR for ¢ = 0.0001.
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Figure 2. Poincaré surfaces-of-section for the 3:4 exterior MMR for u = 0.0001.
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Figure 3. Poincaré surfaces-of-section for the 2:3 exterior MMR for ¢ = 0.0001.
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Figure 4. Poincaré surfaces-of-section for the 1:2 exterior MMR for u = 0.0001.
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Figure 5. First order resonance widths in the (a, e) plane, for g = 0.0001.

Table 1. Resonance centers and boundaries of exterior MMRs.
This is a small sample of the tabulated measurements. The complete table is
available in machine readable form in the online supplement.

€res dres Amin Amax Yres MMR
1=9.53x10"4
0.0982 2.0730  2.0622  2.0885 180° 1:3
0.0912 2.0733 2.0639  2.0872 180° 1:3
0.0062 2.0725 2.0722  2.0744 180° 1:3
0.0033 2.0726  2.0724  2.0731 180° 1:3
0.0964 1.8393 1.8305 1.8539  £89.95° 2:5
0.0756 1.8404 1.8327 1.8504  +91.80° 2:5
0.0114 1.8411 1.8373 1.8442  £95.56° 2:5
0.0079 1.8412 1.8385 1.8425 +98.65° 2:5

1 =5.146 x 10-3

0.0918 2.0797 2.0779 2.0816 180° 1:3

0.0076 2.0798 2.0795 2.0802 180° 1:3

0.0025 2.0798 2.0798  2.0801 180° 1:3
(and so on)

J islands visible in these plots is that of the apocentric librations in
which the particle’s conjunctions with the planet librate around its
apocenter. At the lower values of Cy, we observe an additional chain
of j resonant islands nested around the apocentric islands; these are
most readily visible very close to the origin in the (e, ey) plots.
This is the chain of islands of the pericentric librations, and they

exist only for very small eccentricities, below a maximum value of a
few percent.

In the case of the 1:2 exterior MMR, at very low eccentricity,
there is only one resonant island for the apocentric zone and one for
the pericentric zone. However, at slightly higher eccentricities, the
apocentric zone supports two asymmetric libration zones embedded
within a symmetric libration zone (see the third pair of panels Fig-
ure 4). The asymmetric libration zones arise from a bifurcation of
the apocentric resonance center. As mentioned in Section 1, this is a
feature peculiar to exterior 1 : j MMRs.

The j—fold symmetry of the chains of resonant islands is only
approximate. This can be understood by considering the system in
the rotating frame. Recall that, in the rotating frame, the massive
bodies are at fixed locations on the x—axis. Their fixed locations are
not symmetric about the origin (except for the unique case of equal
mass primaries). When we measure the state vector of the particle at
pericenter, the angular phase ¢ is measuring the polar angle of the
pericenter from the x-axis in the rotating frame. We can expect that
the phase space portraits will have symmetry about the x-axis but
not about the y-axis. Consequently, only those resonant islands that
are located symmetrically about the x—axis have symmetry under
the transformation y — —y. This means that their centers and
widths will be identical when measured in terms of their osculating
semimajor axis and eccentricity. For example, in Fig. 1, the pair of
islands centered at y ~ 45° and ¢ ~ 315° have common values of
ares and eres as well as the range apyjn, @max of their extent. Similarly
the pair of islands centered at ¢ ~ 135° and ¢ ~ 225° have common
values of ares and eyres as well as the range ain, @max of their extent.
However, the values for the latter pair differ slightly from that of the
former pair, even though both pairs belong to the same resonance.
These differences are visible by eye in the (¢, a) and (ex, ey) plots.

In Figure 5, we plot the resonance centers, (dres, €res), and the
resonance widths in the (a, €) parameter plane for several first order
MMRs, 4:5, 3:4, 2:3 and 1:2, for perturber mass fraction u = 0.0001.
(Other cases of u are generally similar.) We observe two features at
low eccentricities: each MMR is split into two branches, and there
exist bridges between neighboring first order MMRs. For each MMR,
the dominant visible resonance branch in this figure is the apocentric
resonance zone in which the particle’s conjunctions with the planet
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librate about its apocenter. The second branch, visibly smaller, is the
pericentric resonance zone in which the particle’s conjunctions with
the planet librate about its pericenter. As mentioned previously, this
branch exists only for very small eccentricities, below a maximum
value of a few percent. Indeed, the pericentric zone of the 4:5 MMR
was too small to measure by eye, so we limited our measurements
of the pericentric branches to the 3:4 and more distant first order
MMRs.

At very small eccentricities the center of each branch moves away
from the nominal location of the MMR [i.e., away from aj.s = ((j +

1)/j ).%]. For decreasing values of eres, the center of the apocentric
zone moves to the right, that is, to higher values of the semimajor
axis, whereas the center of the pericentric zone moves to the left,
to smaller values of semimajor axis. However, far away from the
nominal resonance location, the eccentricity does not asympotically
approach zero, as is found in perturbative approaches (e.g., Henrard &
Lemaitre 1983). Instead, accompanying the migration of the resonant
center, we observe that the pericentric zone of the j : (j + 1) MMR
smoothly transforms into the apocentric zone of the (j + 1) : (j +2)
MMR, making the “low eccentricity resonant bridge" between these
neighbor first order MMRs. The width of the libration zone in this
bridge is much smaller than the width of the apocentric resonance
zone closer to the nominal semi-major axis location of the MMR.

By examining the Poincaré sections across these resonant bridges,
we observe two noteworthy features. The first is that the boundaries
of the pericentric islands in the Poincaré sections in the eccentricity
plane, (ex, ey), pass through a common point at zero eccentricity.
This indicates that the zero eccentricity orbit is a homoclinic orbit,
and that the phase space in this region sports a separatrix that passes
through zero eccentricity. The zero eccentricity orbit is an unstable
periodic orbit in this range of semimajor axis that forms the resonant
bridge.

The second feature we observe is that the transformation from the
pericentric zone of the j : (j + 1) MMR to the apocentric zone of
the (j + 1) : (j +2) MMR involves a bifurcation of one of the j
pericentric resonant islands, the one centered at ¢ = 0. An example
of this incipient bifurcation is visible in the lower right panel in Fig. 1
where we see that the pericentric island (of the 4:5 MMR) centered
at ¥ = 0 has a nearly bifurcated shape, visibly different from the
same island in the lower middle panel at a slightly higher value of
Cj. (A similar feature is visible in the lower right panel of Fig. 2 as
well as of Fig. 3, for the 3:4 and 2:3 MMRs, respectively.) With this
bifurcation, the j pericentric islands transform into (j + 1) islands as
ares moves to lower values along the resonant bridge. Simultaneously,
the other islands in the resonant chain! gradually move their centers
to positions that have approximate (j + 1)-fold symmetry.

The zero eccentricity separatrix and the “low eccentricity resonant
bridges" were previously reported for the first order interior MMRs
of Jupiter (Malhotra & Zhang 2020). Our results here demonstrate
that they also exist for first order exterior MMRs.

In Figure 6, we plot a sequence of Poincaré surfaces-of-section
for different values of the planet mass, u, but at a fixed value of the
Jacobi constant, Cy = 3.03. This figure illustrates the u—dependence
of the phase space structure around the 2:3 exterior resonance. For the
lowest mass ratio, u = 5.146x 10_5, we observe that the 2:3 MMR has
a well-resolved boundary with no visible chaotic sea. Moreover, many

1" The terminology "resonant chain" we use here refers to the structures in the
Poincare’ sections; "resonant chain" is sometimes also used to refer to cases
of "three-body resonances” in systems of three (or more) planets when more
than one pair of planets are in or near resonance.
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other chains of resonant islands are cleanly resolved; we can identify
these structures corresponding to several higher order MMRs, such
as 9:13,7:10, 5:7, 8:11, 3:4, as indicated in the figure. For the larger
values of u, we observe that more and more of these higher order
resonant chains disappear into increasing amounts of area occupied
by a chaotic sea. For the largest mass ratio that we investigated,
u =103, the higher order resonances are no longer discernible in
Fig. 6: only the two islands of the 2:3 and the three islands of the
3:4 MMRs are visible, and these are surrounded by a vast chaotic
sea. We also observe that, with increasing y, the stable domains of
first order MMRs have larger widths in a and e but smaller widths
in libration amplitude of y. Because the resonance width in @ and e
translates into the radial width of the resonance and the width in ¢
(equivalently, ¢) translates into the azimuthal width of the resonance,
our results show that for larger y first order MMRs have larger radial
extent but smaller azimuthal extent of the stable resonant librations.

In Figure 7, we illustrate the interesting fact that higher order
resonances are intricately “nested" in some parts of phase space. We
observe that the chain of five islands of the 5:8 MMR is nested in-
between the chain of three islands of the 3:5 MMR and the two-island
chain of the 2:3 MMR. When we plot these resonance zones in the
(a, e) plane, as in Figure 8, they overlap in projection, even as they
exist as distinct and non-overlapping libration islands in the higher
dimensional phase space. This underscores an important point: the
commonly used concept of “resonance overlap” must be understood
with this nuance that stable resonant librations can exist even when
there is overlap of resonance widths in the semimajor axis range (or,
equivalently, in the range of orbital period ratios).

In Figure 9 we illustrate the phenomenon of secondary resonances.
These are chains of islands that surround the main islands of the
mean motion resonances. We detected secondary resonance chains
around many low order MMRs, most commonly for the higher mass
perturbers of u > 5 X 10~%. Such secondary resonances are well
known in nonlinear dynamical systems (e.g., Chirikov 1979). They
arise from the interaction of the main resonance with other frequen-
cies in the perturbing potential (e.g., Tittemore & Wisdom 1989;
Malhotra & Dermott 1990). Focusing on the 3:4 MMR resonant is-
land centered at ¢ = 180° (Figure 9), we can identify a prominent
chain of six islands (highlighted in the exploded panel on the right).
Moving outward to larger libration amplitude, we can also readily
identify a chain of 17 islands, a chain of 11 islands and a chain of
5 islands; the keen reader may notice additional chains. [Note that
the secondary resonance islands occur within the libration zones
of the main MMR islands and they encircle the center of each of
the main MMR islands; they are distinctly different from the chains
of islands of MMRs, including higher order MMRs, that appear as
nearly horizontal structures in the (¢, a) plots, such as those marked
in Figure 6, top left panel.] By measuring the periods of the trajec-
tories near these secondary resonance chains of islands, we found
that these are owed to commensurability of the libration frequency
of the main resonance with the synodic frequency, the latter being
the difference of the orbital frequencies of the planet and the particle.
To illustrate, we observe in Figure 9 (right panel) that the libration
period of a trajectory belonging to the 6-island secondary resonance
chainis Ar ~ 156.2381 —6.8202 = 149.4179 (in natural units, where
the orbital period of the primaries is 2x); this is the time interval
between point #1 and point #7 which (nearly) completes a full libra-
tion of . Therefore, the libration frequency of trajectories near this
secondary resonance is wyip ~ 27/149.4179 ~ 0.04205. The orbital
frequency of the particle at the center of the main 3:4 resonance

in this case is n =~ 1.214_% ~ (.7476, and the orbital frequency
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2:3

3:4

Figure 6. A sequence of Poincaré surfaces of section for increasing planet mass, u, for the same Jacobi constant, Cy = 3.03.

3:5

5:8

2:3

Figure 7. Poincaré surface-of-section to illustrate that neighboring mean motion resonances are nested in phase space but overlap in semimajor axis. The nominal

locations, ayg, of a few MMRs are marked.

difference between the planet and the particle is An =~ 0.2524, so
that |6 X wyjp, — An|/An ~ 4 x 10™%. These calculations show that the
libration frequency near the chain of six secondary resonance islands
has a 6/1 commensurability with the synodic frequency. In the Ap-
pendix, we describe additional examples of secondary resonances.
In general, a chain of N secondary resonance islands is associated
with an N/k commensurability between the libration frequency and
the synodic frequency, where N and k are mutually prime numbers
and k < N.

At the same value of C; as in Figure 9, but at a higher perturber
mass, 4 = 9.53 x 107, we detected only a chain of four secondary
resonance islands, i.e., a 4/1 commensurability of the libration fre-
quency with the synodic frequency. No other secondary resonance
chains appear in this case, and the range of ¢ of the main resonance
zone is smaller. This indicates that for larger mass perturbers, the
higher integer secondary resonances (of the type N/k, with larger
N) are increasingly submerged in the chaotic sea. The shrinking of
the libration amplitude and the increase of the chaotic sea surround-

MNRAS 000, 1-10 (2022)
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Figure 8. Neighboring mean motion resonances in the (a, ¢) plane that overlap in semimajor axis but occupy distinctly separate regions in phase space (see
Fig. 7). The location and extent of the 2:3 MMR is shown in red, the locations and extent of different islands of the 5:8 MMR are shown in different shades of
green, and the locations and extent of the different islands of the 3:5 MMR are shown in shades of violet.

ing the main resonance zones can be attributed in part to the merging
of secondary resonances at larger libration amplitudes on the shores
of the main resonance islands.

The phenomenon of secondary resonances deserves some elabo-
ration. Because the libration frequency depends on libration ampli-
tude, as well as on p and on e, in a complex way, the appearance and
locations of secondary resonances is quite complex. For example,
Malhotra (1996) and Lan & Malhotra (2019) computed the libration
period as a function of libration amplitude for a few exterior MMRs
of Neptune, and for a few different values of the eccentricity, us-
ing non-perturbative approaches. For low eccentricities, their results
showed that the libration period in the 1:2 and 2:3 MMRs changes
very slowly at first with increasing libration amplitude, then changes
rapidly and reaches a maximal (very large) value over a small range of
high libration amplitude (e.g., Fig. 3 and Fig. 6 of Malhotra (1996)),
then decreases sharply again (e.g., Fig. 4 and Fig. 11 of Lan & Mal-
hotra (2019)). The rapid variation of the libration period at large
libration amplitudes implies that many secondary resonances, with
higher values of N, occur in this region of the main resonance zone.
And these occur in close proximity to each other, as seen in Figure 9.
Consequently, at large libration amplitudes, the density of secondary
resonances will become high enough that their overlap will lead to
chaos, shrinking the stable domain of the main resonant islands from
the inside-out. Only the strongest of the secondary resonances are
visible as chains of islands, the others are submerged in the chaotic
sea.

3.1 Comparison with previous results

The literature cited in Section 1 describes many of the results from
the long history of previous theoretical investigations of mean mo-
tion resonances. Here we limit to a comparison of our results with
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those from Lei & Li (2020)’s perturbative analysis of several of the
same MMRs we investigated here. These authors adopted the single
resonance approximation and a disturbing function (for the circular
planar restricted three body model) truncated up to order 10 in pow-
ers of eccentricity to investigate several first order inner and outer
mean motion resonances. They reported results for a single value of
the mass fraction, u corresponding to the Jupiter-Sun system, and
compared their results to the non-perturbative results of Malhotra &
Zhang (2020). They confirmed that the new critical resonant angle
¢/j (see Eq. 1), introduced in Wang & Malhotra (2017), has the
advantage of making visible important phase space structures that
are suppressed in the analyses with the traditional critical resonant
angle, ¢. Notably, previous work has nearly exclusively made use of
only ¢; this is probably because this angle arises in series expansions
of the disturbing function, whereas its sub-multiple, ¥, does not.

Lei & Li (2020) found that the topology of the phase space can
be erroneous when computed with only one or two lowest order
harmonics in the disturbing function, but can be more accurately re-
covered by including higher order harmonics. One significant feature
of the phase space topology that is not recovered with only one or
two lowest order harmonics is the existence of the separatrix passing
through zero eccentricity. We can observe that the topology of the
phase space of the 3:4 and the 2:3 exterior MMRs (Poincaré sections
in the (e, ey) plane in our Fig. 2 and Fig. 3) is quite similar to Lei
& Li (2020)’s Fig. C3 and Fig. 8; those authors did not report phase
space portraits for the exterior 1:2 MMR, so we cannot compare with
our Fig. 4 for this MMR.

We also observe some differences between Lei & Li (2020)’s per-
turbative analyses and our non-perturbative analyses: (a) The former
does not make visible the secondary resonances and the chaotic seas
that exist near the boundaries of the stable libration regions. (b) The
resonant bridges between neighboring first order MMRs are also not
visible with the perturbative approach. (c) The gradual transforma-
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Figure 9. A Poincaré surface of section displaying a chain of secondary resonance islands in the 3:4 MMR. The panel on the right illustrates the sequence of
visits of one trajectory librating in the 3:4 MMR close to this chain of six secondary resonance islands.

tion of the phase space topology from approximate j-fold symmetry
to approximate (j + 1)-fold symmetry (and vice versa) at low ec-
centricities away from the nominal resonance locations is also not
visible in Lei & Li (2020)’s results. These differences are due to
the single resonance assumption in the perturbative analysis, as this
assumption neglects the effects of neighboring MMRs as well as the
synodic perturbations from the planet; the non-perturbative analysis
includes these effects fully without approximations.

4 SUMMARY AND DISCUSSION

We investigated the phase space structure of exterior mean motion
resonances in the regime of low eccentricities (up to about 0.1) with a
non-perturbative, fully numerical approach using visualizations with
Poincaré surfaces of section of the circular planar restricted three
body model. We obtained results for a range of the perturber’s mass
fraction, i, ~ 5% 107> to 1 x 1073 (corresponding to the mass ratio
of Neptune-to-Sun and Jupiter-to-Sun). A summary of our findings
as well as discussion of some of their phenomenological implications
is enumerated below.

(1) We find that first order exterior MMRs have two branches at low
eccentricities, the apocentric branch and a smaller pericentric branch,
similar to the previous result for interior MMRs (as in Malhotra &
Zhang 2020). It must be emphasized that this fine-scale structure is
distinct from the well-known bifurcation of the apocentric resonance
zone of 1 : j exterior MMRs that occurs at higher eccentricities
(Beaugé 1994; Malhotra 1996; Murray-Clay & Chiang 2005; Lan &
Malhotra 2019).

(ii) For decreasing eccentricity of the test particle, the center of
the pericentric branch of a j : (j + 1) exterior MMR migrates away
from the nominal resonance location, towards the (j + 1) : (j +2)
MMR location (closer to the perturber’s orbit). The apocentric branch
migrates in the opposite direction. However, in contrast with results
from perturbative approaches (e.g., Henrard & Lemaitre 1983), we

find that the resonance center does not asympotically approach zero
eccentricity at large distances from the nominal resonance location.

(iil) Accompanying the migration of the resonant centers at very
low eccentricities, the pericentric zone of the j : (j + 1) MMR
smoothly transforms into the apocentric zone of the (j + 1) : (j +2)
MMR, generating a low-eccentricity bridge between neighboring
first order MMRs.

The low eccentricity resonant bridges are of great theoretical in-
terest, but due to their narrow minimum widths, their role in nature
remains to be investigated. Malhotra & Zhang (2020) conjectured that
these bridges may serve as effective transport conduits for radial mi-
gration under small non-gravitational forces (such as the Yarkovsky
force due to solar radiation on small asteroids). Antoniadou & Lib-
ert (2021) confirmed this conjecture with numerical simulations, also
noting that too slow radial migration could be interrupted by encoun-
ters with higher order MMRs. In a future investigation, this conjecture
can be tested with observational data of small minor planets.

(iv) With increasing mass fraction of the perturber, y, first order
MMRs have larger widths in their radial extent (i.e., in a and e)
but smaller azimuthal widths (i.e., in the libration amplitude of their
critical resonant angle, ¢). Moreover, with increasing u, more and
more of the higher order resonances dissolve into the chaotic seas
in the vicinity of lower order resonances. For Neptune-to-Sun value
of u, we find that many MMRs are well resolved and have very
little chaotic boundaries. However, for the Jupiter-to-Sun value of p
many high order MMRs dissolve into chaotic zones. This difference
between Neptune’s and Jupiter’s resonances partially accounts for the
observation that many of Neptune’s exterior MMRs, including high
order ones, are occupied by minor planets whereas Jupiter’s higher
order MMRs are mostly devoid of minor planets.

(v) Higher order resonances are often intricately “nested" in some
parts of phase space. This means that the commonly used concept
of “resonance overlap" causing chaos must be understood with some
nuance, namely, that stable resonant librations can persist even when
there is overlap of resonance widths measured in semimajor axis (or,
equivalently, in terms of orbital period ratios).

MNRAS 000, 1-10 (2022)
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(vi) We detected many secondary resonances near the large libra-
tion amplitude boundaries of low order MMRs. We found that these
arise from commensurabilities between the libration frequency of a
main resonance and the synodic frequency with the planet. The im-
plication is that secondary resonances are significantly responsible
for shrinking the stable resonance widths and generating the chaotic
sea surrounding MMRs of higher-mass perturbers. This result iden-
tifies a mechanism which is distinct from (and in addition to) the
“resonance overlap" mechanism for the origin of chaos, in which the
interaction of neighboring MMRs is understood to be responsible
for the dynamical chaos in the vicinity of MMRs. In other words,
the overlap of mean motion resonances can be understood to cause
chaos “from the outside-in" as neighboring MMRs press on each
others” domain, while the secondary resonances cause chaos “from
the inside-out" as secondary resonances occur in the interior of the
resonant libration zone.
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APPENDIX: ADDITIONAL EXAMPLES OF SECONDARY
RESONANCES NEAR THE 3:4 EXTERIOR MMR

As noted in the main text, a chain of N secondary resonance islands
is associated with an N/k commensurability between the libration
frequency and the synodic frequency, where N and k are mutually
prime numbers and £ < N. An example is the 6/1 secondary reso-
nance illustrated in Figure 6. Here we describe additional examples
of secondary resonances in the same Poincaré section.

In Figure A-1, we highlight the 17-island chain. The sequence of
visits in the Poincaré section of one quasi-periodic trajectory that
belongs to this chain is marked by the red points, enumerated from 1
to 18. [These are the visits to the middle island (centered aty = 180°)
of the three islands of the 3:4 MMR seen in the left panel of Figure 9.
The time between successive visits to the Poincaré section is of course
one orbital period of the particle, but the time between visits to any
one of the three islands of the 3:4 MMR is three orbital periods
of the particle, equivalently four orbital periods of the primaries,
or approximately 8z in natural units.] The times of visit of each
point in the sequence (taken from the numerical orbit integration)
are tabulated in Table A-1. Note that the successive points do not
belong to the secondary resonance islands in sequence, rather in-
between successive visits the trajectory skips over two of the islands
in the secondary resonance chain. The 18th point returns close to
the first one. During the interval between the first and 18th point the
trajectory has wound three times around the center of the main island.
This indicates that the libration period around the center of the 3:4
MMR is approximately one-third of the time interval between the
18th point and the first point. The numerical value of the 3:4 MMR
libration frequency for this trajectory is therefore given by wyp =
(3 x 2m)/(430.5514 — 6.9056) =~ 0.04449. The synodic frequency
was noted previously in the main text, An =~ 0.2524. Therefore,
(17/3) X wyjp, — An = 0.0011An, showing that the libration frequency
near the 17-chain secondary resonance has a 17/3 commensurability
with the synodic frequency.

Similarly, in Figure A-2 and Figure A-3, we highlight the 11-
island and the 5-island secondary resonance chains. The times of
visit of each point in these chains (taken from the numerical orbit
integration) are also tabulated in Table A-1. In the case of the 11-
island chain, in-between successive visits the trajectory skips over
one of the islands in the secondary resonance chain. The 12th point
returns close to the first one. During the interval between the first
and 12th point the trajectory has wound two times around the center
of the main island. This indicates that the libration period around the
center of the 3:4 MMR is approximately one-half of the time interval
between the 12th point and the first point. The numerical value of the
3:4 MMR libration frequency for this trajectory is therefore given
by wijp * (2 X 27)/(281.1520 — 6.9347) ~ 0.04583. Then using
the synodic frequency, An, we find (11/2) X wyjp, — An =~ 0.0014An,
showing that the libration frequency near the 11-chain secondary
resonance has a 11/2 commensurability with the synodic frequency.
In the case of the S-island chain (visible within the large chaotic
sea at the outskirts of the 3:4 MMR’s main resonant islands), the
6th point returns close to the first one, and each of the 5 islands is
visited in sequence, without any skips. The numerical value of the
3:4 MMR libration frequency for this trajectory is therefore given by
wiip ~ 21/(131.0826 — 6.2306) ~ 0.05033. Then using the synodic
frequency, An, we find 5 X wyjp — An = 0.0030An; we conclude that
the libration frequency near the 5-chain secondary resonance has a
5/1 commensurability with the synodic frequency.

This paper has been typeset from a TEX/IXTEX file prepared by the author.
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Figure A-1. Similar to the right panel of Figure 9. This plot highlights
the sequence of visits of one trajectory associated with the 17/3 secondary
resonance within the exterior 3:4 MMR’s resonant island centered at ¢ =
180°.

Figure A-2. Similar to Figure A-1. This plot highlights the 11/2 secondary
resonance.

Figure A-3. Similar to Figure A-1. This plot highlights the 5/1 secondary
resonance.
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Table A-1. Data for successive points of three example trajectories forming
chains of secondary resonance islands within the middle island of the 3:4
mean motion resonance (for ¢ = 0.0005). Taken from the same Poincaré
section plotted in Figure 9. The time is given in natural units (see main text
for explanation); an electronic version of this table, with double precision

values, is available online.

17-island chain

11-island chain  5-island chain

Point#  Time Time Time
1 6.9056 6.9347 6.2306
2 31.8313 31.9473 30.3801
3 55.8041 55.7503 55.7469
4 80.3727 80.4354 81.6500
5 105.6073 105.7439 107.0231
6 131.1969 131.3724 131.0826
7 156.5001 156.6239
8 181.1950 181.1796
9 205.0740 205.0948
10 229.9702 230.1031
11 255.3979 255.6247
12 280.9451 281.1520
13 306.0223
14 330.3021
15 354.5278
16 379.5741
17 405.1051
18 430.5514
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