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ABSTRACT
Small bodies in the solar system have widely dispersed orbital poles, posing challenges to dynamical models of solar system origin
and evolution. To characterize the orbit pole distribution of dynamical groups of small bodies it is useful to have a functional form
for a model of the distribution function. Previous studies have used the small-inclination approximation and adopted variations
of the normal distribution to model the dispersion of orbital inclinations. Because the orbital pole is a directional variable, its
distribution can be more appropriately modeled with directional statistics. We describe the von Mises–Fisher (vMF) distribution
on the surface of the unit sphere for application to small bodies’ orbital poles. We apply it to the orbit pole distribution of the
observed Plutinos. We find a mean pole located at inclination 𝑖0 = 3.57◦ and longitude of ascending node Ω0 = 124.38◦ (in
the J2000 reference frame), with a 99.7 per cent confidence cone of half-angle 1.68◦. We also estimate a debiased mean pole
located 4.6◦ away, at 𝑖0 = 2.26◦,Ω0 = 292.69◦, of similar-size confidence cone. The vMF concentration parameter of Plutino
inclinations (relative to either mean pole estimates) is 𝜅 = 31.6. This is similar to a Rayleigh distribution function, with width
parameter 𝜎 = 10.2◦. Unlike previous models, the vMF model naturally accommodates the full –and only the full– range of
inclinations, whereas Rayleigh or Gaussian models must be truncated to the physically limited inclination range 0–180◦. Further
work is needed to produce a theory for the mean pole of the Plutinos against which to compare the observational results.
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1 INTRODUCTION

The orbital distribution of small bodies in the solar system has been
of great interest for its value in providing insights into the origin
and evolution of our solar system (Nesvorný 2018). One of the ob-
servations about solar system small bodies that has been an abiding
challenge to theoretical models is the wide dispersion of orbital in-
clinations found in both the asteroid belt and the Kuiper belt. For
example, asteroids in the main asteroid belt are found with orbital
poles dispersed by over 60◦ relative to the orientation of the solar
system’s total angular momentum vector and the orbital poles of
Kuiper belt objects range over 140◦. In contrast, the major planets
of the solar system have orbital poles within a few degrees of the
ecliptic pole.

Proposed models of the dynamical history of the solar system
often look to testable predictions for the inclination distribution of
the small bodies, especially for dynamical subgroups of small bodies,
such as the Jupiter Trojan asteroids (Levison et al. 2021) and the
resonant Kuiper belt objects (e.g. Nesvorný & Vokrouhlický 2016).
It is therefore useful to have quantitative models to characterize the
distribution of orbital inclinations of the small bodies, including
dynamical subgroups of particular interest.

For solar system orbits, the orientation of an orbital plane is de-
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scribed by the directional unit vector along the orbit pole,

𝒉̂ = (ℎ𝑥 , ℎ𝑦 , ℎ𝑧) = (sin 𝑖 sinΩ,− sin 𝑖 cosΩ, cos 𝑖) (1)

where 𝑖,Ω are the orbital inclination and the longitude of ascending
node, respectively, in the J2000 reference frame. (In this reference
frame, the zero-inclination unit vector 𝒌̂ = (0, 0, 1) is the pole of the
ecliptic at the epoch January 1, 2000.) The orbit poles of a group
of small bodies will then appear as a distribution of points on the
surface of the unit sphere.

In theoretical analyses in solar system dynamics, it is common to
limit to small inclinations (relative to the ecliptic), make the approxi-
mation sin 𝑖 ≈ 𝑖, and to adopt the two-component "inclination vector"
defined as

(𝑞, 𝑝) = (𝑖 cosΩ, 𝑖 sinΩ). (2)

For example, Laplace-Lagrange linear secular theory describes, to a
good approximation, the time evolution of the two-component incli-
nation vector of non-resonant test particles as a circulation around a
"forced" orbit pole given by

(𝑞0, 𝑝0) = (𝑖0 cosΩ0, 𝑖0 sinΩ0) (3)

where the forced inclination 𝑖0 and the forced longitude of node Ω0
are determined by the particle’s semi-major axis and by the secular
perturbations of the planets, with all 𝑞’s and 𝑝’s, including those of
the giant planets, varying with a superposition of sinusoidal varia-
tions on secular timescales (Murray & Dermott 1999; Chiang & Choi
2008). Consequently, measurement of the mean pole of a population
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of small bodies can serve to test dynamical effects of planetary per-
turbations (e.g. Volk & Malhotra 2017; Van Laerhoven et al. 2019),
and the distribution of their inclinations can serve to test theoret-
ical models of the dynamical history of the planetary system (e.g.
Nesvorný et al. 2015; Volk & Malhotra 2019).

Because the orbit pole is a directional variable, it is more appropri-
ate to use the tools of directional statistics for quantitative modeling
of the orbit pole distributions of small bodies. However, previous
studies have generally been limited to modeling the scalar inclina-
tion variable, 𝑖. For example, Brown (2001) adopted a functional form
for the inclination distribution of Kuiper belt objects as proportional
to the sine of the inclination, multiplied by a zero-mean Gaussian
distribution, for inclinations measured relative to the ecliptic:

𝑓 (𝑖) ∝ sin 𝑖 exp
−𝑖2

2𝜎2 . (4)

This form was subsequently adopted by a number of other authors
(e.g. Gulbis et al. 2010; Nesvorný & Morbidelli 2012; Volk & Mal-
hotra 2017; Van Laerhoven et al. 2019). For low inclinations, Eq. 4
simplifies to a Rayleigh distribution function for 𝑖,

𝑓 (𝑖) ∝ 𝑖 exp
−𝑖2

2𝜎2 . (5)

When 𝑖 and Ω are considered jointly as in equation (2), this becomes
a bivariate Gaussian distribution in 𝑞 and 𝑝 with zero mean in each
component, zero corelation between the two components, and with
the standard deviation in each component equal to 𝜎.

If the inclinations are taken to have a Rayleigh distribution and the
longitude of ascending node is taken to have a uniform distribution
relative to a reference plane distinct from the ecliptic plane, then

(𝑞, 𝑝) = (𝑞0, 𝑝0) + (𝑞1, 𝑝1) (6)

can be treated as a bivariate Gaussian distribution centred around
(𝑞0, 𝑝0), where (𝑞0, 𝑝0) is the "forced" orbit pole and (𝑞1, 𝑝1) is the
"free" component. Then, 𝑖 will no longer be Rayleigh distributed with
respect to the ecliptic, and Ω will no longer be uniformly distributed
with respect to the ecliptic.

As the inclination dispersion of a small body population increases,
or as the mean plane of the population increases in inclination, then
Eq. 4 or Eq. 5 or the equivalent bivariate Gaussian distribution in the
(𝑞, 𝑝) plane, all become less useful as a functional form to describe
the distribution of the orbit poles of the population for at least two
reasons. First, to model a sample with a large inclination dispersion by
using a Rayleigh distribution (or the bivariate Gaussian distribution)
it becomes necessary to truncate the distribution function to the range
0 ≤ 𝑖 ≤ 𝜋 radians to abide by the physical limits, as in Lin et al.
(2019). Second, the Rayleigh distribution for 𝑖 (or the equivalent
bivariate Gaussian distribution for 𝑞, 𝑝) depends on the small-angle
approximation sin 𝑖 ≈ 𝑖. At high inclinations above 30–45◦, this
approximation holds to only one significant digit. It is then more
useful to consider the full orbit pole unit vector 𝒉̂ without projecting
on the ecliptic and without the low-inclination approximation. A
distribution of orbit poles is represented by a distribution of points
on the unit sphere.

We propose that the von Mises–Fisher (vMF) distribution is more
suitable to quantify the distribution of orbit poles of dynamical
groups of small bodies having high inclination dispersions. The vMF
distribution on the surface of the unit sphere is the analog of the
isotropic bivariate Gaussian distribution. It has circular contours of
constant probability density centred about a mean direction, and its
concentration parameter, 𝜅, is straightforwardly related to the analo-
gous parameter𝜎 for the Gaussian distribution. The vMF distribution

is part of a larger class of distribution functions useful for modeling
directional data. There exists a significant amount of literature on
directional statistics; we refer the interested reader to the books by
Jupp & Mardia (2009) and Fisher et al. (1993). Directional statistics
has been more commonly applied in meteorology and geology and
bioinformatics. The orbit plane distribution of small bodies in the
solar system is a natural application as well.

In this paper, we first describe the vMF distribution, then, for illus-
tration, we apply it to the observed population of Plutinos to measure
the dispersion of their orbital poles relative to their mean pole. We
choose the Plutinos as an illustrative example for three reasons. First,
the Plutinos are a well-defined and dynamically important popula-
tion with a statistically significant sample size of 431 (see Section
4). Second, over 30 per cent of this sample have orbital inclinations
exceeding 15◦ relative to the ecliptic. Third, we are intrigued by this
population because there is no theoretical prediction in the literature
for its mean orbit pole. This is in contrast with non-resonant popula-
tions of small bodies for which the Laplace-Lagrange secular theory
provides a prediction of the mean orbit pole forced by the major
planets.

The rest of this paper is organized as follows.

• In Section 2 we describe the vMF distribution and how to esti-
mate its parameters from a sample of unit vectors. We also describe
how the vMF distribution is related to the univariate Rayleigh dis-
tribution; the latter is equivalent to the isotropic bivariate Gaussian
distribution in in the limit of a highly concentrated sample.

• In Section 3 we describe an alternate way to estimate the mean
pole of a sample of Plutinos, for comparison.

• In Section 4, we identify our sample of Plutinos.
• In Section 5, we conduct the vMF parameter estimation and

goodness-of-fit tests described in Section 2 for the Plutino sample,
and also compute the alternate mean pole described in Section 3.

• In Section 6, we discuss the results and suggest future directions
for improving quantitative modeling of the distributions of orbit poles
of small bodies in the solar system.

• In Appendix A, we discuss measures taken to account for un-
certainty in the orbits of the Plutinos.

2 VON MISES–FISHER DISTRIBUTION

For a distribution of points on the surface of the unit sphere, the
analog of the isotropic bivariate Gaussian distribution is the von
Mises–Fisher (vMF) distribution. This distribution is unimodal and
rotationally symmetric about its modal direction. We fit the vMF
distribution to a sample of 𝑛 unit vectors 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) as follows.

(i) First, we estimate the mean direction of the sample.
(ii) Second, we estimate a conical confidence region for the mean

direction.
(iii) Third, we estimate the concentration parameter of the sample.

In the following subsections, we define the vMF distribution and each
step of the procedure just described. We then describe how colatitudes
and longitudes are measured relative to the mean direction. Finally,
we describe the relationship of the vMF distribution on the unit
sphere to the more familiar Rayleigh distribution on the positive
real line and the bivariate Gaussian distribution on the plane. This
discussion follows Fisher et al. (1993), and applies to large samples
of size 𝑛 ≥ 25.
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Figure 1. The normalization parameter 𝐶𝐹 (𝜅) as found in Eq. 8.

2.1 vMF distribution function

The vMF distribution is described by the following expression with
domain over the surface of the sphere:

ℎ(𝜃, 𝜙) = 𝐶𝐹 exp [𝜅(sin 𝜃 sin𝛼 cos (𝜙 − 𝛽) + cos 𝜃 cos𝛼)], (7)

where 𝜃 is the colatitude of a random variable and 𝜙 is its longitude,
and 𝛼 and 𝛽 are respectively the colatitude and the longitude of the
mean direction of the vMF distribution, 𝜅 > 0 is the non-negative
concentration parameter, and the coefficient 𝐶𝐹 (plotted in Fig. 1) is
defined as

𝐶𝐹 =
𝜅

4𝜋 sinh 𝜅
=

𝜅

2𝜋(𝑒𝜅 − 𝑒−𝜅 ) (8)

According to this notation, a point on the surface of the sphere is
defined as

(𝑥, 𝑦, 𝑧) = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). (9)

To recover the total probability mass of unity, we integrate ℎ(𝜃, 𝜙)
over the surface of the sphere as∫ 𝜃=𝜋

𝜃=0

∫ 𝜙=2𝜋

𝜙=0
ℎ(𝜃, 𝜙) sin 𝜃 𝑑𝜃 𝑑𝜙 ≡ 1. (10)

Note the finite range of 𝜃 (equivalently, the inclination to the reference
pole direction) in this distribution, whereas previous work on orbit
pole distribution functions has typically used variations of the normal
distribution which has infinite domain.

2.2 Estimating the mean direction

With the assumption that the sample is drawn from a unimodal and
rotationally symmetric distribution, we use the sample to estimate
the mean direction of the source distribution. (Later, in Section 3, we
discuss a method to mitigate systematic error in the mean direction
in the context of solar system small bodies’ orbital poles when the
data has observational selection biases.)

Given 𝑛 unit vectors 𝒙𝑖 = (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) on the surface of the unit
sphere, we compute the resultant vector 𝑺 as

𝑺 = (𝑆𝑥 , 𝑆𝑦 , 𝑆𝑧) =
𝑛∑︁
𝑖=1

(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) (11)

and define its magnitude as

𝑅 = ∥𝑺∥ =
√︃
𝑆2
𝑥 + 𝑆2

𝑦 + 𝑆2
𝑧 . (12)

The resultant vector 𝑺 points in a direction with colatitude 𝜃 and
longitude 𝜙. The unit vector (𝑥, 𝑦̂, 𝑧) in this direction is

𝒙̂ =
𝑺

𝑅
= (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃). (13)

Given the sample vectors 𝒙𝑖 , 𝒙̂ is the maximum-likelihood estimate
of the vMF mean direction. The corresponding maximum-likelihood
estimates for the colatitude and longitude of the mean direction are
respectively 𝛼̂ = 𝜃 and 𝛽 = 𝜙.

2.3 Estimating a confidence region for the mean direction

For sufficiently large sample sizes, 𝑛 ≥ 25, the first two components
𝑥 and 𝑦̂ of the sample mean direction approximately follow a normal
distribution. We compute the spherical standard error, 𝜎̂, as follows.
We compute 𝑅̄, and 𝑑,

𝑅̄ =
𝑅

𝑛
, (14)

𝑑 = 1 − 1
𝑛

𝑛∑︁
𝑖=1

(𝒙𝑖 · 𝒙̂)2. (15)

Then,

𝜎̂ =

√︂
𝑑

𝑛𝑅̄2 . (16)

If we wish to construct a 100(1−𝐴) per cent confidence region for the
mean direction (𝛼, 𝛽) centered on the sample mean direction (𝛼̂, 𝛽),
we define the region as the surface of the unit sphere located within
a cone that has its apex at the origin, an axial direction of (𝛼̂, 𝛽), and
a half-angle of

𝑞 = arcsin (𝜎̂
√︁
− log 𝐴). (17)

This approximation makes use of the same small-inclination assump-
tion that we are trying to avoid by substituting a vMF distribution on
the sphere for a bivariate planar Gaussian distribution of (ℎ𝑥 , ℎ𝑦),
but we defer a more sophisticated confidence region for later work.

2.4 Estimating the concentration parameter

To find the maximum-likelihood estimate of the concentration pa-
rameter 𝜅, we can numerically solve

coth 𝜅 − 1
𝜅
=

𝑅

𝑛
, (18)

or, for 𝑅̄ ≥ 0.95,

𝜅 ≈ 𝑛 − 1
𝑛 − 𝑅

. (19)

A 100(1 − 𝐴) per cent confidence interval for 𝜅 may be constructed
with the respective lower and upper bounds as

𝜅𝐿 =
1
2
𝜒2

2𝑛−2
(
1 − 1

2 𝐴
)

𝑛 − 𝑅
, 𝜅𝑈 =

1
2
𝜒2

2𝑛−2
( 1
2 𝐴

)
𝑛 − 𝑅

. (20)

2.5 Defining relative colatitude and relative longitude

To define the colatitude and longitude of each unit vector in the
sample relative to the mean direction, we rotate the sample data
so that the sample mean pole becomes the ecliptic pole (0, 0, 1)
while preserving the colatitudes and longitudes of the individ-
ual samples relative to each other. The rotated samples 𝒙′

𝑖
=

MNRAS 000, 1–10 (2022)
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(sin 𝜃 ′ cos 𝜙′, sin 𝜃 ′ sin 𝜙′, cos 𝜃 ′) are related to the original samples
𝒙𝑖 = (sin 𝜃 cos 𝜙, sin 𝜃 sin 𝜙, cos 𝜃) as

𝒙′𝑖 = 𝐴(𝛼̂, 𝛽, 0)𝒙𝑖 , (21)

where

𝐴(𝛼̂, 𝛽, 0) = ©­«
cos 𝛼̂ cos 𝛽 cos 𝛼̂ sin 𝛽 − sin 𝛼̂
− sin 𝛽 cos 𝛽 0

sin 𝛼̂ cos 𝛽 sin 𝛼̂ sin 𝛽 cos 𝛼̂

ª®¬ . (22)

2.6 Relationship of the vMF distribution to the univariate
Rayleigh distribution

To relate the vMF distribution on the two-dimensional surface of
the unit sphere to the univariate Rayleigh distribution for the co-
latitude relative to the mean direction, we develop an approximate
expression that relates 𝜎, the width parameter of the latter, to 𝜅, the
concentration parameter of the vMF distribution, in the limit of a
highly concentrated set of random orbit poles, i.e., 𝜅 ≫ 1.

The colatitude distribution relative to the mean direction (𝛼, 𝛽)
may be found by setting the mean colatitude 𝛼 = 0 in Eq. 7, giving

ℎ(𝜃, 𝜙) = 𝐶𝐹 exp (𝜅 cos 𝜃), (23)

where 𝜃 is now the colatitude relative to the mean direction. From Eq.
8, the probability density function for the colatitudes and longitudes
relative to the mean direction is

𝑓 (𝜃, 𝜙) = ℎ(𝜃, 𝜙) sin 𝜃 = 𝐶𝐹 exp (𝜅 cos 𝜃) sin 𝜃. (24)

From this we get the marginal distribution of the colatitudes as

𝑓 (𝜃) =
∫ 2𝜋

0
𝑓 (𝜃, 𝜙) 𝑑𝜙 = 2𝜋 𝐶𝐹 exp (𝜅 cos 𝜃) sin 𝜃. (25)

This is

𝑓 (𝜃) = 𝜅

𝑒𝜅 − 𝑒−𝜅
exp (𝜅 cos 𝜃) sin 𝜃. (26)

An equivalent expression is as follows:

𝑓 (𝜃) = 𝜅

1 − 𝑒−2𝜅 sin 𝜃 exp
(
− 2𝜅 sin2 1

2
𝜃

)
. (27)

This form is better suited to avoid numerical inaccuracies when 𝜅 is
not too small.

In the limit of a highly concentrated sample of random unit vectors,
i.e., 𝜅 ≫ 1 and 𝜃 ≪ 1, 𝑓 (𝜃) can be approximated as follows:

𝑓 (𝜃) ≃ 𝜅 𝜃 exp
(
− 𝜅

2
𝜃2
)
. (28)

Now we can observe that if we take 𝜃 as the random variable then the
probability density function in Eq. 28 resembles the usual Rayleigh
probability density function with width parameter 𝜎,

Rayleigh pdf : 𝑓 (𝑢;𝜎) = 1
𝜎2 𝑢 exp

(
− 𝑢2

2𝜎2

)
(29)

Comparing Eq. 28 with Eq. 29, we derive the result that

𝜎 ≈ 1
√
𝜅
. (30)

We write this as an approximate result rather than exact because the
comparison is not exact: the domain of the 𝜃 distribution is limited to
[0, 𝜋] whereas the standard Rayleigh distribution has domain [0,∞].
Consequently, when applied to directional statistics, the latter must
be truncated to the physical domain of colatitudes. This introduces a

correction to the normalization factor so that the truncated Rayleigh
pdf is given by

𝑓 (𝑢;𝜎) = 𝐶𝑅 (𝜎)
𝜎2 𝑢 exp

(
− 𝑢2

2𝜎2

)
, (31)

with

𝐶𝑅 (𝜎) =
[
1 − exp

(
− 𝜋2

2𝜎2

)]−1
for 0 ≤ 𝑢 ≤ 𝜋. (32)

To compare the vMF relative colatitude distribution in Eq. 28
to the truncated Rayleigh distribution in Eq. 31, we also want the
maximum likelihood estimate 𝜎̂MLE of the width parameter for the
truncated Rayleigh distribution. For a sample of 𝑛 colatitudes 𝑢𝑖 , the
likelihood function for 𝜎 is

lik(𝜎) =
𝑛∏
𝑖=1

𝑓 (𝑢𝑖 ;𝜎) (33)

The log-likelihood function is

ℓ(𝜎) = log(lik(𝜎)), (34)

and the maximum likelihood estimate 𝜎̂MLE is the value of 𝜎 that
solves

𝑑ℓ

𝑑𝜎
= −2𝑛

𝜎
+ 1
𝜎3

𝑛∑︁
𝑖=1

𝑢2
𝑖 +

(
𝑛𝜋2

𝜎3

) (
𝐶𝑅 (𝜎) − 1

)
= 0. (35)

We solve Eq. 35 for 𝜎̂MLE numerically.
As an aside, we note that if we take 𝑠 = sin 1

2 𝜃 as the random vari-
able, then the vMF distribution for relative colatitude, 𝑓 (𝜃) (Eq. 26),
can be expressed as a pdf for 𝑠 as follows:

𝑓𝑠 (𝑠) =
4𝜅

1 − 𝑒−2𝜅 𝑠 exp (−2𝜅𝑠2), 0 ≤ 𝑠 ≤ 1. (36)

In the limit of high concentration parameter, 𝜅 ≫ 1, this resembles a
Rayleigh pdf with width parameter

𝜎𝑠 ≈
1

2
√
𝜅
. (37)

In Fig. 2, we plot the relative (marginal) colatitude pdf (Eq. 27)
of the vMF distribution along with the corresponding truncated
Rayleigh distribution (Eq. 31), for several values of 𝜅. An inset plot
shows the difference between the vMF colatitude and the Rayleigh
colatitude distribution functions for each concentration. As the con-
centration increases, the truncated Rayleigh distribution becomes a
better approximation of the exact vMF relative colatitude distribu-
tion.

With the orbital inclination identified with the colatitude in the
vMF distribution, the above derivation provides the foundation for
the inclination distribution function (Eq. 4 above) adopted in Brown
(2001). It should be noted that in that paper the author made the
small-𝜃 approximation in the exponential factor of Eq. 27 but not in
the sin 𝜃 pre-factor, and measured the inclination 𝑖 (that is, 𝜃) from
the ecliptic pole rather than from the mean pole of observational
samples of KBOs.

2.7 Relationship of the vMF distribution to the bivariate
Gaussian distribution

In the high-concentration limit, 𝜅 ≫ 1, the vMF distribution resem-
bles an isotropic Gaussian distribution centered around the mean
direction. Said more precisely, if we take a population of unit vectors
𝒙𝑖 from a highly concentrated vMF distribution and rotate them as in
Eq. 21 such that the mean direction of the distribution is taken to the
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Figure 2. The relative colatitude pdf of the vMF distribution of Eq. 27
(solid lines) is compared with the truncated Rayleigh distribution of Eq. 31
(dotted lines). The pdfs are plotted for four values of the vMF concentration
parameter, 𝜅 = 30, 15, 4, 1, in green, brown, magenta and blue, respectively.
For the corresponding Rayleigh pdf, we take 𝜎 = 1/

√
𝜅 . The inset plots the

difference between the vMF and the Rayleigh pdfs.

reference 𝑧-direction (0, 0, 1), then the distribution of the first two
components (𝑥′

𝑖
, 𝑦′

𝑖
) of the rotated vectors 𝒙′

𝑖
will resemble a two-

dimensional Gaussian distribution with zero correlation and equal
variance in each dimension.

From Eq. 24, the marginal distribution of the longitudes in a vMF
distribution, relative to the mean direction, is

𝑓 (𝜙) =
∫ 𝜋

0
𝑓 (𝜃, 𝜙) 𝑑𝜃 = constant. (38)

In other words, the relative longitudes have a uniform distribution on
the circle [0, 2𝜋).

Now consider the univariate Rayleigh pdf, which we have already
shown to resemble the relative colatitude pdf of the vMF distribution
for 𝜅 ≫ 1.

The univariate Rayleigh pdf is related to the bivariate Gaussian
pdf of zero mean and zero correlation as follows. Consider the two-
component random vector

𝒖 = (𝑢𝑥 , 𝑢𝑦) − ∞ ≤ 𝑢𝑥 , 𝑢𝑦 ≤ ∞, (39)

whose distribution is described by the bivariate Gaussian pdf of zero
mean, zero correlation and standard deviation 𝜎,

𝑓2 (𝑢𝑥 , 𝑢𝑦) =
1

2𝜋𝜎2 exp
(
−
𝑢2
𝑥 + 𝑢2

𝑦

2𝜎2

)
. (40)

The zero correlation condition means that the distribution of its ori-
entation angle is uniform random over the domain [0, 2𝜋). We can
derive the pdf 𝑓𝑢 (𝑢) of the length, 𝑢, by converting to planar polar co-
ordinates, (𝑢𝑥 , 𝑢𝑦) = 𝑢(cos 𝜙, sin 𝜙) and integrating the probability
element 𝑓2 (𝑢𝑥 , 𝑢𝑦) 𝑑𝑥 𝑑𝑦 = 𝑓2 (𝑢𝑥 , 𝑢𝑦) 𝑢 𝑑𝑢 𝑑𝜙 over the orientation
angle:

𝑓𝑢 (𝑢)𝑑𝑢 =

∫ 2𝜋

0
𝑑𝜙 𝑓2 (𝑢𝑥 , 𝑢𝑦) 𝑢 𝑑𝑢

=
1

2𝜋𝜎2

∫ 2𝜋

0
𝑑𝜙 𝑢 𝑑𝑢 exp

(
− 𝑢2

2𝜎2

)
=

𝑢

𝜎2 exp
(
− 𝑢2

2𝜎2

)
𝑑𝑢. (41)

This shows that the bivariate Gaussian distribution of zero mean,
zero correlation, and equal variance in 𝑥 and 𝑦 is equivalent to the
distribution of a two-component random vector that has a Rayleigh-
distributed length and a uniformly-distributed orientation angle.

3 MITIGATING OBSERVATIONAL BIAS

The vMF maximum likelihood mean unit vector direction for a sam-
ple of random unit vectors (Eq. 13) is simply the normalized sum
of the unit vectors in the sample. Thus, the vMF mean direction,
(𝛼̂, 𝛽) = (𝜃, 𝜙), and its accompanying confidence cone (Eq. 17)
measure only the random error but not the systematic error in the
estimate of the mean pole of the Plutino sample. When analyzing or
modeling observational data, it is important to consider the effect of
observational selection biases. Volk & Malhotra (2017) showed that
any average orbit pole of (non-resonant) KBO samples computed by
simply adding up the orbit normal vectors is significantly affected by
selection biases in the surveys used to compile the sample popula-
tion, and often does not reliably reflect the true mean orbit pole of
the population. Similar observational selection effects would apply to
the resonant Kuiper belt objects, including the Plutinos investigated
here.

In order to mitigate selection biases and identify a debiased mean
pole, we follow the method pioneered by Brown & Pan (2004) and
elaborated by Volk & Malhotra (2017). In this method, the mean
plane of a Plutino sample is identified as the plane of symmetry of the
sky-plane velocity vectors. Given the barycentric orbital elements of
each Plutino, we can compute its barycentric unit position directional
vector 𝒓𝑖 and its barycentric unit orbit normal vector 𝒉̂𝑖 . The sky-
plane velocity directional unit vector of each Plutino is 𝒗̂𝑡 ,𝑖 = 𝒉̂𝑖× 𝒓𝑖 .
If a Plutino’s orbit normal vector is precisely aligned with the mean
pole 𝒏̂ of the population, its sky-plane velocity vector 𝒗̂𝑡 ,𝑖 will be
precisely orthogonal to 𝒏̂, such that 𝒏̂ · 𝒗̂𝑡 ,𝑖 = 0. In a statistical sense,
we seek the nonzero value of 𝒏̂ that minimizes

𝐽 =

𝑛∑︁
𝑖=1

| 𝒏̂ · 𝒗̂𝑡 ,𝑖 |. (42)

If we define

𝒏̂ = (sin 𝜃0 cos 𝜙0, sin 𝜃0 sin 𝜙0, cos 𝜃0), (43)

then it is convenient to evaluate Eq. 42 on a grid in 𝜃0 and 𝜙0 to find
the 𝒏̂ that minimizes 𝐽.

We compute the confidence limits of 𝒏̂ just as for 𝒙̂, using the
spherical standard error as in Eq. 15–17, but replacing 𝒙̂ with 𝒏̂ in
Eq. 15.

4 SAMPLE SELECTION

To identify the 3:2 resonant population – the Plutinos – for this
study, we first used the JPL Solar System Dynamics Group’s Small
Body Database Query (JPL Solar System Dynamics Group 2023a)
to retrieve all objects with constraints of heliocentric 38 < 𝑎 < 42
au, 𝑒 < 1. On 2022 October 12, this returned 887 objects. We
eliminated all objects without specified semimajor axis uncertainty
or with fractional semimajor axis uncertainty 𝜎𝑎/𝑎 > 0.05, making
sure to keep Pluto.

Next, we downloaded the MPCORB.DAT database from the MPC
on 2022 October 12 (Minor Planet Center 2022) and cross-referenced
it against the Small Body Database to eliminate all objects that have
been observed for fewer than the three oppositions recommended by
Gladman et al. (2008). These two steps were meant to exclude objects
with orbits too uncertain to be reliably classified.

In the third step, we used the Python package Astroquery (Gins-
burg et al. 2019) to retrieve barycentric elements for each remaining
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Table 1. This table reports the packed Minor Planet Center identification code
and barycentric semimajor axis 𝑎, eccentricity 𝑒, inclination 𝑖, longitude of
ascending node Ω, argument of perihelion 𝜔, and mean anomaly 𝑀 for
a few arbitrary Plutinos as of 2022 January 1 (JD 2459580.5). The table
accompanying the online form of this article reports the orbital elements of all
431 Plutinos with the full accuracy given by JPL Horizons via Astroquery.
All elements are in the J2000 reference frame.

MPC ID 𝑎 (au) 𝑒 𝑖 Ω 𝜔 𝑀

15789 39.5 0.19 5.2◦ 355◦ 317◦ 74◦
15810 39.4 0.12 3.8◦ 145◦ 102◦ 38◦
20108 39.5 0.15 19.6◦ 188◦ 143◦ 68◦
24952 39.4 0.23 16.6◦ 347◦ 82◦ 346◦
47171 39.4 0.22 8.4◦ 97◦ 295◦ 10◦

object at 2022 January 1 from JPL Horizons1. We then discarded all
objects outside the region 1.28 𝑎N ≤ 𝑎 ≤ 1.34 𝑎N, where 𝑎N = 30.0
au is the barycentric semimajor axis of Neptune on 2022 January 1.
These semimajor axis limits are the approximate lowest and highest
semimajor axes for the 3:2 MMR as computed by Lan & Malhotra
(2019). This left 690 objects.

Finally, for each of the 690 remaining objects, we made plots of
the 3:2 critical resonant angle versus time starting from the epoch
2022 January 1 (for the duration of a 10 Myr integration with the
𝑛-body integrator rebound) and examined each plot by eye. We also
employed the resonance identification algorithm detailed in Yu et al.
(2018) to back up our visual inspection. This left 431 Plutinos. This
list of Plutinos is available in electronic-readable form in the online
version of this paper. Table 1 provides a sample of the first few lines
of this list.

The above method of identifying the Plutinos does not account for
orbital uncertainties, which in the Kuiper belt can, in some cases,
be large enough to render an object’s membership in a particular
resonant population insecure. We examined the effect of orbital un-
certainties on the Plutino sample identification by generating clones
within the uncertainties and found that neither the sample nor the
results of the vMF model of inclination distribution are significantly
affected. Additional details are given in Appendix A.

5 THE VMF DISTRIBUTION OF THE PLUTINOS

In this section, we report numerical results for the calculations set
forth in Sections 2–3. We apply these calculations to the orbit normal
unit vectors 𝒉̂𝑖 of the Plutinos, substituting 𝒉̂𝑖 for 𝒙𝑖 in all equations
starting with Eq. 11. As shown in Fig. 3, the orbit poles of the
431 Plutinos occupy a portion of the unit sphere with appreciable
curvature, inviting the application of directional statistics to describe
them. They can easily be assumed to cluster around a single mean
direction, and their longitudinal distribution does not, at first glance,
appear too irregular to justify the vMF distribution’s assumption of
rotational symmetry. The numbers and figures for the remainder of
the paper use barycentric orbital elements for 2022 January 1.

5.1 Mean direction

Following the procedure detailed in Section 2.2, we find the mean
direction of the Plutino samples to be 𝒙̂ = (0.051, 0.035, 0.998), with
colatitude 𝛼̂ = 3.57◦ and longitude 𝛽 = 34.38◦. This gives the mean
plane of the Plutinos an inclination of 𝑖0 = 3.57◦ and a longitude of
ascending node of Ω0 = 124.38◦.

1 https://ssd.jpl.nasa.gov/horizons/app.html
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Figure 3. The orbit poles of the 431 Plutinos as a scatter plot on the unit
sphere (J2000 coordinate system).

5.2 Mean direction confidence region

From Section 2.3, a 99.7 per cent confidence cone around the mean
direction of the Plutino samples has a half-angle of 𝑞 = 1.68◦.

5.3 Concentration parameter

From Section 2.4, we estimate the concentration parameter of the
Plutino samples as 𝜅 = 31.6. The 99.7 per cent confidence interval
for 𝜅 is (27.3, 36.3).

5.4 Rayleigh width parameters

From Eq. 30, we find the relative colatitudes (relative inclinations)
of the Plutinos have a Rayleigh width parameter 𝜎 ≈ 10.2◦. The
maximum-likelihood estimate from Eq. 35 is 𝜎̂MLE = 10.3◦. Using
the relationship of𝜎 to 𝜅 (Eq. 30), we transform the 99.7% confidence
interval of 𝜅 (27.3, 36.3), into the corresponding 99.7% confidence
interval of 𝜎̂ as (9.5◦, 11.0◦).

5.5 Debiased mean direction

From Section 3, we find a debiased mean pole for the Plutinos of

𝒏̂ = (0.0152,−0.0364, 0.9992) (44)

with 𝜃0 = 2.26◦ and 𝜙0 = 292.69◦. The debiased mean pole has
an inclination of 𝑖0 = 2.26◦ and a longitude of ascending node of
Ω0 = 22.69◦. The 99.7 per cent confidence cone around the debiased
mean pole has a half-angle of 𝑞 = 1.69◦.

6 DISCUSSION

In Fig. 4, we plot the orbit poles of all 431 Plutinos projected in the
ecliptic plane; that is, we plot (ℎ𝑥 , ℎ𝑦) for the entire Plutino sample.
In Fig. 5, we plot a detail view near the origin. The detail view shows
the mean pole of the Plutinos, 𝒙̂, and its 99.7 per cent confidence
circle; the debiased mean pole 𝒏̂ and its 99.7 per cent confidence
circle; and the orbit pole of Neptune and the pole of the invariable
plane of the Solar System. As Neptune is the dominant perturbing
planet for the Plutinos, and Neptune’s orbit pole itself precesses
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Figure 4. Plutino orbit poles projected in the ecliptic plane. Longitude lines
are drawn at 30◦ intervals and latitude circles are drawn at 10◦ intervals from
the ecliptic pole to the equator. (Note that an orbit pole is located at a ecliptic
longitude angle Ω − 90◦ because the projection of an orbit pole vector in the
ecliptic is +90◦ away from the longitude of ascending node, Ω, of the orbit
plane on the ecliptic; recall that (ℎ𝑥 , ℎ𝑦) = sin 𝑖 (sinΩ, − cosΩ) .)
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Figure 5. Detail of Fig. 4 near the origin. Longitude lines are drawn at 10◦
intervals and latitude circles are drawn at 1◦ intervals starting from the ecliptic
pole at the origin. Orbit poles of individual Plutinos are indicated with the
small red dots. The vMF mean pole is the blue point, surrounded by a blue
99.7 per cent confidence cone. The debiased mean pole is the green diamond,
surrounded by a green 99.7 per cent confidence cone. The invariable pole of
the solar system is the red ▽. The orbit pole of Neptune is the blue ▷.

on secular timescales under the influence of the other planets, it is
reasonable to expect that the Plutinos’ mean pole would bear some
relationship to Neptune’s pole and/or to the invariable pole. Our
results show that the invariable pole of the Solar System is separated
from 𝒙̂ by 2.1◦ and from 𝒏̂ by 2.6◦. The orbit pole of Neptune is
separated from 𝒙̂ by 1.8◦ and from 𝒏̂ by 3.3◦. The two Plutino mean
plane estimates 𝒙̂ and 𝒏̂ are separated by 4.6◦, which is great enough
that their confidence circles do not overlap; thus, the two estimates
contradict each other at the 99.7 per cent level. Neither confidence
circle contains the invariable plane or the orbit pole of Neptune.

0°

45°

90°

135°

180°

225°

270°

315°

Figure 6. Area-weighted polar histogram of Ω, the longitudes of ascending
node relative to the ecliptic plane. (The area of a sector in a polar histogram
corresponds to the height of a bar in a rectangular histogram.)

Because the two mean plane estimates are so widely separated, we
can draw no conclusions about any dynamical relationship between
the mean plane of the Plutinos and the orbit pole of Neptune or the
invariable plane.

We observe that the ecliptic longitudes of the Plutino poles are
not uniformly distributed. This is shown more clearly in Fig. 6 as
a circular histogram of Ω𝑖 , the longitudes of ascending node of the
Plutinos relative to the ecliptic plane. The strong non-uniformity of
Ω𝑖 is evidence of selection biases in observational surveys of the
outer Solar System, none of which have all-sky coverage and all
of which have non-uniform coverage of the near-ecliptic sky (cf.
Gladman et al. 2012; Shankman et al. 2017).

In Fig. 7, we plot histograms of the inclinations of the Plutinos
relative to the ecliptic plane (gray), the vMF mean pole (blue), and
the debiased mean pole (green). The one-dimensional vMF inclina-
tion distribution (Eq. 27) with 𝜅 = 32 is plotted in yellow, and the
maximum-likelihood truncated Rayleigh pdf (Eq. 31–35) is plotted
in red. The vMF concentration parameter of the Plutinos is large
enough that the maximum-likelihood truncated Rayleigh approxi-
mation is nearly identical to the vMF distribution. The inclination
histograms of the Plutinos relative to the vMF mean pole and the de-
biased mean pole are nearly identical, and are skewed towards slightly
lower inclinations than the histogram relative to the ecliptic pole. Vi-
sual inspection shows that the data have greater positive skewness
than the fitted vMF and maximum-likelihood truncated Rayleigh in-
clination distributions. They are more highly concentrated at low
inclinations, yet they have a longer high-inclination tail.

Even though the inclination distribution of the Kuiper belt obser-
vational sample is noticeably skewed relative to the one-dimensional
vMF inclination distribution and the Rayleigh distribution, Gaussian
and Rayleigh-like distributions have been widely used and continue
to be useful for modeling the orbit plane distributions of Kuiper belt
populations. Observational incompleteness of samples and observa-
tional selection biases are likely contributing factors for the poor
fits. We anticipate that the vMF distribution can also be useful in
modeling observational samples, despite present shortcomings. In
the case of synthetic or simulated data, the vMF distribution can be a
natural fiducial model for the distribution of orbital planes. We note
that many two-parameter probability distributions with support on
the positive real line could potentially be fit to the relative inclination
distribution of the Plutinos with high accuracy, but, lacking a phys-
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Figure 7. Histogram of the Plutino orbit inclinations relative to the ecliptic
pole (gray), the vMF mean pole (blue), and the debiased mean pole (green).
The vMF relative inclination pdf (Eq. 27) with 𝜅 = 32 is shown as the yellow
curve. A truncated Rayleigh pdf (Eq. 31) with a maximum-likelihood width
parameter of 𝜎̂MLE = 10.2◦ (Eq. 35) is shown as the red dotted curve.

ical motivation for any particular two-parameter distribution, we do
not explore that direction at this time.

6.1 Comparison to past studies

We report a vMF concentration parameter for the Plutinos of 𝜅 =

31.6, with a 99.7 per cent confidence interval of (27.3, 36.3) and a
68 per cent confidence interval of (30.1, 33.1). This corresponds to
a truncated Rayleigh width parameter of 𝜎 = 10.2◦, with a 99.7 per
cent confidence interval of 𝜎 = 10.2+0.8

−0.7 degrees and a 16th-84th
percentile confidence interval of 𝜎 = 10.2+0.2

−0.4 degrees.
Brown (2001); Gladman et al. (2012); Volk et al. (2016) investi-

gated the orbital plane distributions of the Plutinos but did not report
a mean pole measurement. These authors fitted the Plutinos’ inclina-
tions relative to the ecliptic to the one-parameter functional form of
Eq. 4 and reported the best-fitting width parameter 𝜎. Brown (2001)
reported the 16th-84th percentile confidence interval for 𝜎 of the
Plutinos to be 𝜎 = 10.2+2.5

−1.8 degrees, Gulbis et al. (2010) gave the
same interval to be 𝜎 = 10.7+2.0

−2.3 degrees, Gladman et al. (2012) re-
ported 𝜎 = 16+8

−4 degrees, and Volk et al. (2016) reported 𝜎 = 12+1
−2

degrees.
Our Plutino sample has a generally similar but smaller inclination

dispersion (as well as smaller uncertainty in the dispersion measure)
compared with any previous study but Brown (2001). Our smaller
measured dispersion may be partly owed to the fact that we measured
the inclination dispersion relative to the measured mean pole of the
sample, distinct from the ecliptic pole, and partly also to the larger
size of our sample. We have 431 Plutinos, whereas Brown (2001)
had a sample of 20, Gulbis et al. (2010) had a sample of 51, Gladman
et al. (2012) had a sample of 24, and Volk et al. (2016) had a sample
of 21. Gulbis et al. (2010), Gladman et al. (2012) and Volk et al.
(2016) restricted their Plutino samples to detections from the well-

characterized DES, CFEPS and OSSOS surveys, whereas we use the
entire catalog of known KBOs.

6.2 Directions for future work

In this paper, we compute the mean plane and its uncertainty region
for the observed Plutino sample using two methods, the vMF mean
pole 𝒙̂ and the debiased mean pole 𝒏̂, but we make no attempt to
explain the location of the mean plane of the Plutinos. In future
work, we hope to apply theory and simulation to find where the
mean plane of the Plutinos “should” be as forced by the known
planetary perturbers, in order to comprehend the significance of
these results. We also hope to extend the vMF distribution, or vMF
mixture distributions, to other Kuiper belt populations, including the
cold classical KBOs and the entire Kuiper belt taken as a whole.
It would also be useful to undertake a detailed investigation of the
reliability of the plane-of-symmetry mean pole 𝒏̂ in identifying the
true mean pole as compared to 𝒙̂ (from the raw average of the orbit
poles), under a variety of survey designs, or otherwise harmonize
the two estimates. Other possible directions for future work include
developing a method to compute a more rigorous model-independent
estimate of the uncertainty in 𝒏̂ and deriving constraints on unseen
perturbers from the deviation of the measured mean pole from the
theoretically expected one based on known perturbers.

7 SUMMARY

In this paper, we proposed the two-dimensional von Mises–Fisher
distribution on the surface of a unit sphere as a physically motivated
functional form for the distribution of orbit poles of populations of
small bodies in the solar system. We derived its relationship to the
univariate Rayleigh distribution (for inclinations) and to the Gaussian
distribution (for the components of the two-component inclination
vector) that are more commonly used to model inclination distribu-
tions of small bodies.

We applied the vMF distribution to the current observational sam-
ple of Plutinos, and obtained the following results.

(i) We found that the Plutinos’ vMF mean pole is given by the
unit vector 𝒙̂ = (0.051, 0.035, 0.998), with a 99.7 per cent confi-
dence cone of half-angle 1.68◦ (in the J2000 coordinate system).
The inclination and longitude of ascending node of the vMF mean
pole are 3.57◦ and 124.38◦, respectively.

(ii) We found the vMF concentration parameter of the Plutinos
as 𝜅 = 31.6, with 99.7 per cent confidence bounds of (27.3, 36.3).
This resembles a Rayleigh distribution function (for the inclination
relative to the mean pole) of width parameter 𝜎 ≈ 10.2◦ and 99.7
per cent confidence bounds of (9.5◦, 11.0◦).

(iii) We computed the debiased mean pole of the Plutinos as the
pole of the plane of symmetry of their sky-plane velocity vectors. This
is found to be 𝒏̂ = (0.0152,−0.0364, 0.9992), with a 99.7 per cent
confidence cone of half-angle 1.69◦. The inclination and longitude
of ascending node of the debiased mean pole are 2.26◦ and 22.69◦,
respectively.

(iv) The vMF mean pole and debiased mean pole of the Plutinos
are widely separated, by∼ 4.6◦. Their 99.7 per cent confidence cones
do not overlap. Neither confidence cone contains the invariable pole
of the Solar System or the orbit pole of Neptune.

Our Plutino sample has a smaller inclination dispersion and
smaller uncertainty than any previous study but Brown (2001), pos-
sibly because our sample size is much larger. The Plutino sample
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is more highly concentrated at low inclinations and has a heavier
high-inclination tail than the fitted vMF distribution. Nevertheless,
we assert that the vMF distribution function is a natural functional
form to adopt in theoretical models and in simulated or observational
data of random directional vectors.
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APPENDIX A: ACCOUNTING FOR ORBITAL
UNCERTAINTIES

Orbital uncertainties in the Kuiper belt can render an object’s mem-
bership in a particular resonant population insecure. To see whether
our Plutino sample would change when accounting for orbital un-
certainties, we used a separate resonant object identification pipeline
that began with the same 690-object semimajor axis limits as in Sec-
tion 4. Our procedure for securely identifying Plutinos does not, like
the laborious standard method described in Gladman et al. (2008)
and used in Volk & Malhotra (2017) and Smullen & Volk (2020),
have the advantage of returning to the observations and fitting new
orbits from first principles, but it is more portable and more highly
automated. We begin by building off the work of Smullen & Volk
(2020).

Smullen & Volk (2020) used the system of Gladman et al. (2008)
to classify 2305 KBOs from the Minor Planet Center (MPC) database
as of 2016 October 20. They then used the Python machine learning
package Scikit-Learn (Pedregosa et al. 2011) to develop a gradient
boosting classifier for fast, easy classification of KBOs as either
Classical, Scattering, Detached, or Resonant, training said classifier
upon the orbits newly classified using the Gladman et al. (2008)
criteria. Their code integrates a KBO orbit from initial barycentric
elements in the n-body integrator rebound (Rein & Liu 2012) for
100 kyr and records 55 features of the orbit for use by the machine
learning algorithm. Full details of the settings used for the machine
learning algorithm, and a full explanation and justification of the 55
recorded features, are given in their paper. To allow other researchers
to use their gradient boosting classifier to classify KBOs from their
barycentric elements without repeating the entire process of selecting
and justifying the features of the orbit to record and the settings to
use for the algorithm, Smullen & Volk (2020) posted user-friendly
sample code and training data to GitHub.

To classify the sample of 690 objects remaining after the first three
steps of the downselection process in Section 4, we downloaded the
Python sample code and training data (KBO_features.csv) from the
Smullen & Volk (2020) GitHub repository. We used their gradient
boosting classifier without modification and trained it on the same
training set they provided, exactly as suggested in the sample code.

To account for orbital uncertainties, we used the JPL Small Body
Database API (JPL Solar System Dynamics Group 2023b) to down-
load a JSON file for each of the 690 objects. The JSON file contained
a nominal heliocentric orbital state, a 6x6 covariance matrix for the
heliocentric orbit, and an epoch for the nominal orbit and the covari-
ance matrix. The heliocentric orbital elements and their covariance
were given as 𝑒, 𝑞, 𝑡𝑝 ,Ω, 𝜔, 𝑖, i.e. eccentricity, perihelion distance in
au, time of perihelion passage (Julian date), longitude of the ascend-
ing node, argument of perihelion, and inclination, where all angles
are in degrees and referenced to the J2000 plane, and the epoch is a
Julian date.

We generated 301 heliocentric orbital element sets for each ob-
ject: the nominal orbit, and 300 clones from a Gaussian distribution
centred at the nominal orbit, from the given covariance. The mean
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anomaly for each orbital element set was computed as the mean mo-
tion for the semimajor axis, times the elapsed time between the time
of perihelion passage and the epoch. We used Horizons to download
heliocentric orbital elements for the giant planets at each epoch. For
each of 690 objects, we then built 301 rebound simulations con-
sisting of the outer planets at the appropriate epoch and the orbital
element set of the nominal orbit or the clone at the same epoch.

Each rebound simulation was then classified as Classical, Scat-
tering, Detached, or Resonant using the unmodified Smullen & Volk
(2020) gradient boosting classifier. If all 301 of the 301 orbital el-
ement sets for each object were classified as Resonant, we kept the
object; otherwise, we discarded it. After this step, the 690 objects
were reduced to 427.

The preceding steps were meant to ensure that only objects se-
curely in mean motion resonances (MMRs) remained in our sample,
but did not guarantee that the Resonant objects would librate in the
3:2 MMR. To identify which Resonant objects were truly Plutinos,
we took the first orbital element set identified as Resonant for each
of the 427 Resonant objects (and the corresponding orbital elements
of the giant planets at the same epoch), and integrated for 10 Myr,
recording the 3:2 angle every 100 yr. We employed the resonance
identification algorithm detailed in Yu et al. (2018) to classify the
time history of the 3:2 angle for each of the 427 objects as librating
(True) or circulating (False).

At the conclusion of this Plutino identification pipeline, we had a
slightly different sample than we previously found without account-
ing for orbital uncertainties. In Section 4, we found 431 Plutinos, but
in this section, we found only 424. We repeated all calculations for
the 424-object sample, and the results were negligibly different from
those of the calculations that used the 431-object sample.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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