

1 **Hyperspectral and Nanosecond Temporal Resolution Widefield Infrared Photothermal**
2 **Heterodyne Imaging**

3 Kirill Kniazev^a, Evgenii Zaitsev^a, Shubin Zhang^b, Yang Ding^a, Loc Ngo^a, Zhuoming Zhang^a,
4 Gregory V. Hartland^a, Masaru Kuno^{a,b,*}

5 **Affiliations:**

6 ^aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

7 ^bDepartment of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556

8 **ORCID**

9 Kirill Kniazev: 0000-0002-7338-1436

10 Yang Ding: 0000-0001-8437-3565

11 Loc Ngo: 0000-0001-9476-5335

12 Zhuoming Zhang: 0000-0002-0507-3546

13 Gregory Hartland: 0000-0002-8650-6891

14 Masaru Kuno: 0000-0003-4210-8514

15 [*mkuno@nd.edu](mailto:mkuno@nd.edu)

16 **Abstract:**

17 Label-free, bond-selective imaging offers new opportunities for fundamental and applied
18 studies in chemistry, biology, and materials science. Preventing its broader application to
19 investigating spectrally congested specimens are issues related to low sensitivity as well as low
20 spatial and temporal resolution. Here, we demonstrate a widefield, mid-infrared (MIR)
21 photothermal imaging technique, called widefield Infrared Photothermal Heterodyne imaging
22 (wIR-PHI), that massively parallelizes acquisition of MIR absorption data through use of a high-
23 speed complementary metal-oxide-semiconductor camera. wIR-PHI possesses notable features
24 that include: spatial resolution significantly below the MIR diffraction limit, hyperspectral imaging
25 capabilities, high sensitivity, and ~100 ns temporal resolution. The first two features are
26 highlighted by hyperspectral imaging of proximally close poly(methyl methacrylate) (PMMA) and
27 polystyrene (PS) nanoparticles where clear, bond-specific imaging of nanoparticles, separated by
28 less than the MIR diffraction limit, is demonstrated. Sensitivity is highlighted by imaging
29 individual PMMA and PS nanoparticles with radii between $r=97$ -556 nm. This leads to a current,
30 peak absorption cross-section limit-of-detection of $\sigma_{abs}=1.9\times10^{-16}$ cm². wIR-PHI's 100 ns temporal
31 resolution is simultaneously demonstrated by observing the decay of photothermal contrast on
32 individual nanoparticles on a ~200-6000 ns timescale. In whole, wIR-PHI's dramatic increase in
33 acquisition speed opens opportunities for future MIR kinetic imaging and spectroscopic studies of
34 important chemical, biological, and material processes.

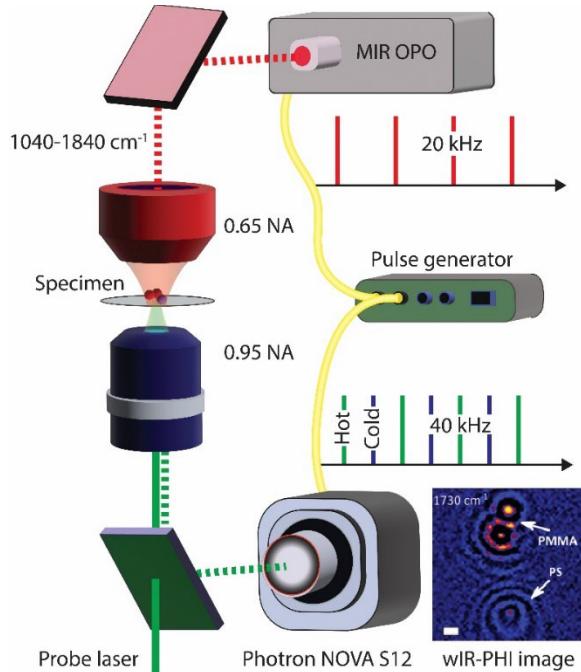
35 **Keywords:** Photothermal spectroscopy, Photothermal microscopy, Infrared imaging, Mid-
36 infrared, Single particle.

42 **Introduction**

43 Vibrational optical spectroscopies stand as important, label-free imaging modalities for the
44 complete structural and functional characterization of chemical, environmental and biological
45 specimens.^{1,6} Two major embodiments involve Raman scattering¹³ and infrared (IR) absorption
46 spectroscopy. Raman microscopy possesses a relatively high spatial resolution of ~300 nm.
47 Unfortunately, small scattering cross-sections of ~ 10^{-30} cm² limit its overall applicability,
48 especially within the context of ultrasensitive analytical detection.¹⁴ Although IR spectroscopy
49 exhibits significantly higher sensitivities due to absorption cross-sections nearly 12 orders of
50 magnitude larger, a significant drawback is its lack of spatial resolution. Here, the Abbe diffraction
51 limit¹⁵ restricts IR-based techniques such as Fourier Transform Infrared (FTIR) spectroscopy¹⁶ to
52 a spatial resolution of 2.5-10 μ m. This prevents IR techniques from being applied to high resolution
53 microscopy and spectroscopy of specimens in spectrally congested environments.

54 Recently, a new super-resolution, infrared absorption spectroscopy that circumvents the Abbe
55 diffraction limit has been developed. Called Infrared Photothermal Heterodyne Imaging (IR-PHI),
56 the technique exhibits a ~300 nm spatial resolution.^{11,17,18} This is achieved through photothermal
57 heating¹⁹ of specimens when a mid-infrared (MIR) pump laser is on resonance with a its
58 characteristic, MIR vibrational transitions. Subsequent specimen refractive index and scattering
59 cross-section changes are then detected using a second, visible wavelength (probe) laser. IR-PHI's
60 spatial resolution is therefore dictated by the probe's diffraction limit, which, in turn, allows super-
61 resolution MIR imaging and spectroscopy. More about IR-PHI and its implementation can be
62 found in References 18, 21, and 22.

63 As demonstrated, IR-PHI involves raster scanning specimens below pump and probe foci.
64 Application to dynamic, bond-selective imaging is therefore restricted. To address an open need,
65 researchers have therefore pursued introducing a widefield modality to the technique.^{23,24,25} Issues
66 exist with these implementations, however, that restrict their use in dynamic imaging.²⁶


67 Here, we introduce a ns-timescale, widefield modality to IR-PHI (called wIR-PHI) that utilizes
68 nanosecond MIR pump pulses synchronized to the frame rate of a high-speed complementary
69 metal-oxide-semiconductor (CMOS) camera. This enables large area MIR image acquisition as
70 well as hyperspectral imaging capabilities when measurements are synchronized to the laser
71 frequency. In what follows, wIR-PHI's capabilities are demonstrated through fast IR imaging of
72 individual poly(methyl methacrylate) (PMMA) and polystyrene (PS) nanoparticles along with
73 acquisition of bond-specific, hyperspectral data. By imaging individual PMMA and PS
74 nanoparticles with radii (r) between $r=97-556$ nm, a peak experimental MIR absorption cross-
75 section (σ_{abs}) limit-of-detection of $\sigma_{\text{abs}}=1.9\times10^{-16}$ cm² is established. Fast 100 ns temporal-
76 resolution is demonstrated via measurements of single nanoparticle photothermal signal decay.
77 Altogether, wIR-PHI enables super-resolution, hyperspectral imaging on fast timescales, opening
78 up opportunities for future dynamic MIR measurements of important chemical, biological, and
79 materials processes.

80 **Instrumentation**

81 **Figure 1** outlines wIR-PHI's implementation. The employed MIR pump laser is a 20 kHz
82 tunable IR optical parametric oscillator (Firefly, M-Squared) with a tuning range between 5.43-
83 9.61 μm (1840-1040 cm^{-1}). MIR pump light is focused onto CaF_2 -supported specimens with a high
84 numerical aperture (NA) reflective Schwarzschild objective (Ealing, 0.65 NA). Pump intensities
85 (I_{pump}) range from $I_{\text{pump}}=18$ to 360 MW cm^{-2} .

86 A visible, 532 nm, continuous wave (CW) laser serves as the probe wherein a high NA
87 refractive objective (Nikon, 0.95 NA) focuses probe light onto the same region of the specimen.
88 Pump and probe objectives are aligned in a counterpropagating pump/probe geometry^{18,20} to
89 maximize either IR-PHI's or wIR-PHI's spatial resolution. Widefield illumination is achieved by
90 placing a 50 cm focal length plan convex lens prior to the refractive objective's back focal plane.
91 Resulting probe illumination regions are thus of order 70 μm^2 with a corresponding wIR-PHI probe
92 intensity of $I_{\text{probe}}\approx40 \text{ kW cm}^{-2}$ (30 mW, 70 μm^2 illumination area). In the absence of a plan convex
93 lens (as required for IR-PHI) the probe intensity is $I_{\text{probe}}\approx230 \text{ kW cm}^{-2}$ (700 μW , 0.3 μm^2
94 illumination area). Scattered probe light from specimens is collected with the same refractive
95 objective and for wIR-PHI is detected with a high-speed CMOS camera (Photron, Nova S12). For
96 IR-PHI, a custom autobalanced photodiode is used.²⁷

97 To generate wIR-PHI images, “hot” and “cold”²⁸ frames are acquired by synchronizing CMOS
98 frame exposure with the MIR laser pulse train. Hot frames are acquired either synchronously or
99 temporally offset from MIR pump pulses. Cold frames are acquired between MIR pulses. MIR
100 laser and CMOS synchronization is achieved using a programmable pulse delay generator
101 (Quantum Composers, Emerald 9250) that takes a 20 kHz master signal from the MIR laser and
102 outputs a 40 kHz signal to trigger the CMOS camera. This maximizes the duty cycle of
103 measurements by allowing alternating hot and cold frames to be acquired within a given movie.
104 Subsequent CMOS movie processing entails subtracting cold frames from hot frames to yield final
105 wIR-PHI images. High-speed data acquisition therefore results in an effective photothermal frame
106 rate of 20 kfps, which is a 16-fold increase compared to a previously established widefield
107 photothermal frame rate of 1.25 kfps.²² wIR-PHI images in **Figures 2-6** have been interpolated.
108 All analyses, however, are conducted on raw images. Further technical details regarding the MIR
109 laser/CMOS camera synchronization, along with a programmatic outline of hot and cold frame
110 subtraction, image processing, and effective wIR-PHI frame rate estimation can be found in the **SI**
111 and in **Figures S1-S3**. IR-PHI data is processed as previously described and involves lock-in
112 amplification of probe signals at the MIR pump laser repetition rate.²³

114
115
116
117
118

Figure 1. wIR-PHI schematic, consisting of a pulsed, MIR pump laser, a CW, visible wavelength probe laser, a programmable pulse delay generator, a high-speed CMOS camera, and high NA reflective and refractive objectives aligned in a counterpropagating geometry.

119
120
121
122
123
124
125
126
127
128
129
130

Comparing wIR-PHI to IR-PHI

120 Figure 2 now compares wIR-PHI and IR-PHI images of individual $r=130\pm 10$ ($N=327$) nm
121 PMMA and $r=210\pm 6$ nm ($N=100$) PS nanoparticles (Phosphorex). Sizes and size distributions
122 have been established using scanning electron microscopy images of respective ensembles
123 (Figures S4 and S5). wIR-PHI and IR-PHI images have been acquired at 1730 cm^{-1} and 1450 cm^{-1}
124 on resonance with PMMA's C=O stretch and PS's CH₂ bend, respectively.^{19,29} **Figure 2a**, in
125 particular, shows a $25\text{ }\mu\text{m}^2$ wIR-PHI image of three PMMA nanoparticles separated by distances
126 below the MIR diffraction limit. **Figure 2b** is a corresponding (identical area) IR-PHI image of
127 the same three particles. These and other like images (Figure S6) highlight wIR-PHI's/IR-PHI's
128 high spatial resolution. Associated wIR-PHI and IR-PHI peak signal-to-noise ratios (SNR) in
129 **Figures 2a** and **2b** are 248 ± 22 and 273 ± 19 respectively. SNR calculations are described in detail
130 in the SI.

131 Of note is the 480-fold difference in data acquisition times between **Figures 2a** and **2b**.
132 Whereas the former wIR-PHI image has been acquired in 2 seconds (2.5 kfps or 5000 frames total,
133 2500 hot, 2500 cold, 300 ns per frame integration, 1.875 second data transfer processing and
134 software overhead), the latter IR-PHI image was acquired over 16 minutes using standard imaging
135 parameters (100 ms lock-in integration, 390 ms total pixel processing time, including software
136 overhead, 2025 total pixels). wIR-PHI's inherent data parallelization is therefore evident.

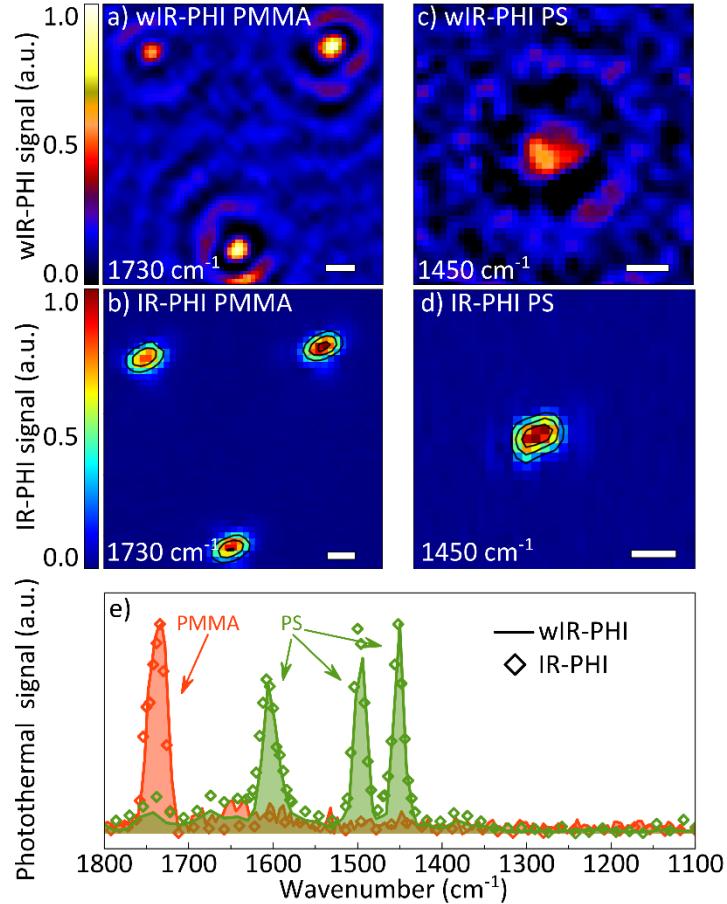


Figure 2. wIR-PHI and IR-PHI images of (a,b) PMMA and (c,d) PS nanoparticles. Scale bars 500 nm. (e) Individual PMMA (orange) and PS (green) nanoparticle wIR-PHI (crosses) and IR-PHI (dashed line) MIR absorption spectra

More dramatic wIR-PHI and IR-PHI data acquisition time differences are possible. To illustrate, in its current implementation, wIR-PHI's field of view is $70 \mu\text{m}^2$. Thus, for the same experimental parameters as in **Figure 2**, an image that takes 2 seconds to acquire would require 45 minutes for IR-PHI. This difference becomes even more acute if the CMOS frame number (F) is reduced. For example, reducing F tenfold from 5000 to 500 while maintaining a SNR value above wIR-PHI's current limit-of-detection (LOD, to be discussed shortly) reduces the total image acquisition time to 663 ms (includes data transfer and software overhead). For IR-PHI, reducing the lock-in integration time to 30 ms results yields a 160 ms pixel processing time (includes software overhead). A total IR-PHI data acquisition time is still on the order of 19 minutes.

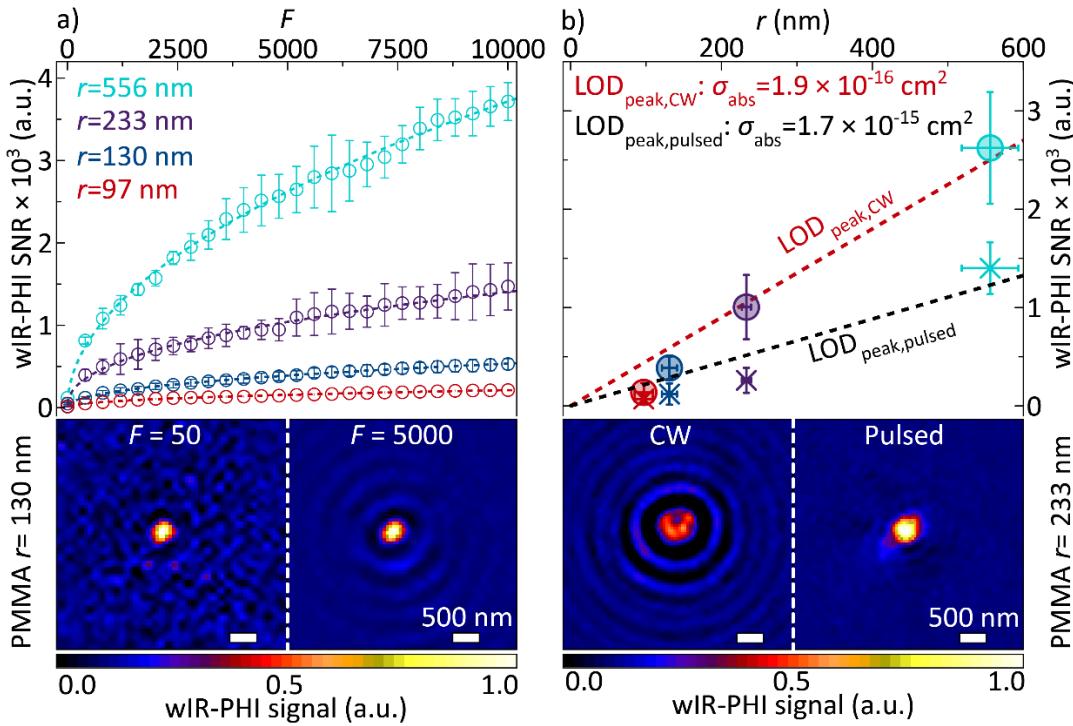
Other differences between wIR-PHI and IR-PHI images exist. Most notable are Airy diffraction rings in the former and absent in latter. This stems from the scanning nature of IR-PHI where photothermal contrast is measured locally by focusing the visible probe laser. In this modality, diffraction effects only occur when the beam is localized at the particle. By contrast, wIR-PHI's inherent widefield (probe) illumination introduces diffractive effects into acquired images. These diffraction rings can be eliminated using a low coherence light source, as will be demonstrated shortly. **Figures 2c-d** show an identical comparison of wIR-PHI and IR-PHI images for a single PS nanoparticle. Analogous wIR-PHI and IR-PHI images for other PMMA nanoparticle sizes can be found in the SI (**Figure S6**).

159 **Figure 2e** now shows associated wIR-PHI and IR-PHI absorption spectra for imaged $r=130$
160 PMMA and $r=220$ PS nanoparticles. For PMMA, both wIR-PHI and IR-PHI show a single 1730
161 cm^{-1} C=O resonance. For PS, both wIR-PHI and IR-PHI exhibit three resonances. The first two
162 are aromatic ring stretches at 1600 cm^{-1} and 1500 cm^{-1} . A third 1450 cm^{-1} resonance arise from
163 PS's CH_2 bend. Observed single nanoparticle wIR-PHI and IR-PHI resonances for PMMA and PS
164 nanoparticles agree.

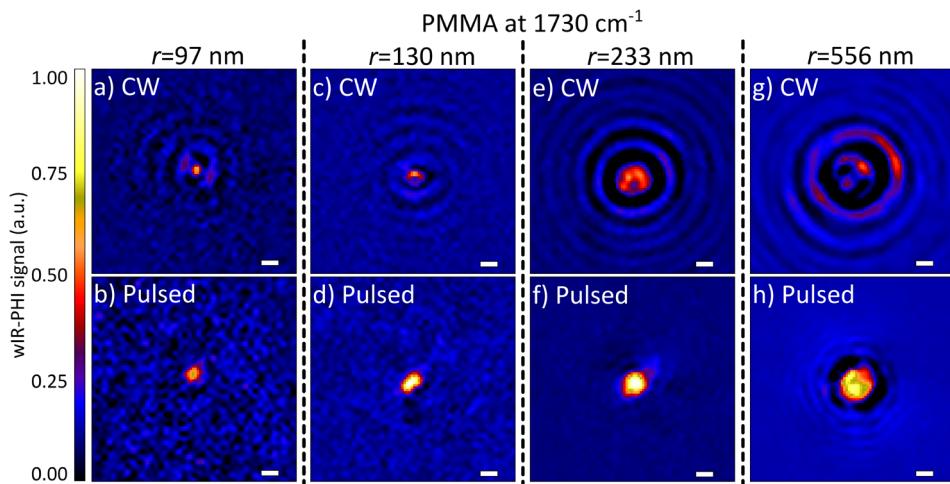
165

166 wIR-PHI SNR ratio and limit-of-detection

167 To establish wIR-PHI's SNR dependency with F and its LOD, different-sized PMMA
168 nanoparticles have been imaged under the same experimental conditions. For PMMA
169 nanoparticles, four radii are used: $r=97\pm12\text{ nm}$ ($N=100$), $r=130\pm10\text{ nm}$ ($N=327$), $r=233\pm7\text{ nm}$
170 ($N=100$), and $r=556\pm39\text{ nm}$ ($N=100$). In what follows, these PMMA sizes are referred to as 97,
171 130, 233, and 556 nm nanoparticles. **Figure S4** of the SI shows SEM images and sizing histograms
172 used to establish nanoparticle sizes.


173 **Figure 3a** now shows acquired peak SNR ratios for wIR-PHI images of different-sized PMMA
174 nanoparticles. As in **Figure 2**, a CMOS frame integration time of 300 ns is used across all images.
175 Varied, however, is F , the total number of hot and cold frames acquired, which ranges from $F=2$
176 to $F=10^4$. As expected, peak SNR-values increase with increasing F for all particle sizes. The SNR
177 data generally follow a square root dependence for all sizes wherein power law growth coefficients
178 for $\text{SNR} \propto F^\alpha$ are $\alpha=0.46$ ($r=97\text{ nm}$), 0.45 ($r=130\text{ nm}$), 0.43 ($r=233\text{ nm}$), and 0.47 ($r=556\text{ nm}$).³⁰
179 The bottom of **Figure 3a** highlights wIR-PHI SNR differences by showing associated images of a
180 $r=130\text{ nm}$ nanoparticle imaged with $F=50$ and $F=5000$.

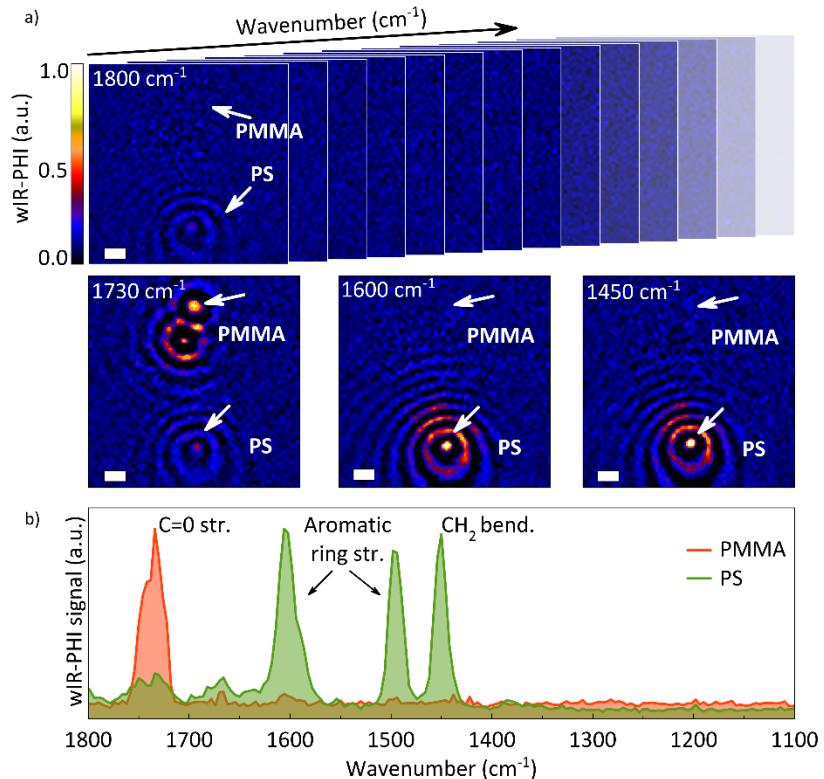
181 wIR-PHI's limit-of-detection (LOD) is subsequently established by acquiring data on 20
182 individual nanoparticles for each size with $F=5000$. Two LOD values are extracted wherein the
183 first is a peak cross section LOD (LOD_{peak}) and the second is an integrated cross section LOD
184 ($\text{LOD}_{\text{integrated}}$). The former uses SNR-values, obtained by dividing the peak wIR-PHI signal of a
185 nanoparticle with its corresponding background noise standard deviation. The second calculates
186 the integrated wIR-PHI signal of a nanoparticle (summed contrast across a $97\times97\text{ nm}$ area) to the
187 same background noise standard deviation.


188 **Figure 3b** shows that peak cross section SNR-values decrease from $\text{SNR}\sim2600\pm560$ for $r=556$
189 to $\text{SNR}\sim140\pm90$ for $r=97\text{ nm}$. Associated integrated cross section SNR-values decrease from
190 12700 ± 3400 to 500 ± 330 for the same size range (**Figure S7**). Observed linear decreases of either
191 SNR-values with particle size are rationalized by the fact that the photothermal contrast used in
192 these estimates come from fixed particle areas, as defined by the pixel(s) used in the analysis.
193 Expected volumetric dependencies due to absorption cross sections scaling as r^3 therefore reduce
194 to linear scaling. By defining a general LOD for either peak or integrated SNR-values as $\text{SNR}=5$
195 ²², an effective PMMA nanoparticle wIR-PHI $\text{LOD}_{\text{peak,CW}}$ is $\sigma_{\text{abs}}=1.9\times10^{-16}\text{ cm}^2$. This is two
196 orders of magnitude better than a previously established IR-PHI LOD_{peak} of $\sigma_{\text{abs}}=3.0\times10^{-14}$
197 cm^2 .²² A corresponding $\text{LOD}_{\text{integrated,CW}}$ is $\sigma_{\text{abs}}=1.4\times10^{-18}\text{ cm}^2$.

198 To enhance wIR-PHI image quality, a low coherence, pulsed probe laser (Thorlabs, NPL52C)
199 is incorporated. This laser has a pulse width of 129 ns and a peak pulse power of 145 mW per $70\text{ }\mu\text{m}^2$
200 illumination area. The laser is synchronized with the CMOS camera at 40 kHz using the
201 Emerald pulse delay generator. With the pulsed probe laser, corresponding LOD-values are
202 $\text{LOD}_{\text{peak,pulsed}}=1.7\times10^{-15}\text{ cm}^2$ and $\text{LOD}_{\text{integrated,pulsed}}=4.3\times10^{-18}\text{ cm}^2$ (**Figures 3b** and **S7**). Lower
203 LODs stem from smaller pulsed probe laser intensities. Details about σ_{abs} LOD estimates can be
204 found in the SI and in **Figure S8**.

205 **Figures 3b** (bottom) and 4 compare wIR-PHI images, acquired using both CW and pulsed
 206 probe lasers. **Figure 4**, in particular, compares CW/pulsed wIR-PHI images of identical PMMA
 207 nanoparticles for all sizes studied. Evident is that pulsed wIR-PHI images do not contain Airy
 208 diffraction rings. This stems from the pulsed laser's low coherence and reveals improvements to
 209 wIR-PHI's image quality.
 210

211 **Figure 3.** (a) Top: CW wIR-PHI SNR dependence with F for $r=97$, 130 , 233 and 556 nm PMMA nanoparticles.
 212 Dashed lines are $SNR \propto F^\alpha$ for $\alpha=0.46$ ($r=97$ nm), 0.45 ($r=130$), 0.43 ($r=233$ nm), and 0.47 ($r=556$ nm). Bottom: CW wIR-PHI images of $r=130$ nm PMMA nanoparticles processed using $F=50$ and $F=5000$. (b) Top: Peak cross-section SNR dependencies with PMMA nanoparticle size for CW (circles) and pulsed (x) probe lasers. Bottom: wIR-PHI images of $r=233$ nm PMMA nanoparticles collected using CW or pulsed probe lasers.
 213
 214
 215
 216
 217


218 **Figure 4.** wIR-PHI images of PMMA nanoparticles with varying sizes at 1730 cm^{-1} , acquired using both CW and
 219 pulsed probe lasers. All scale bars 500 nm.
 220
 221

222 **wIR-PHI hyperspectral imaging**

223 By synchronizing CMOS data acquisition with MIR pump laser frequency, wIR-PHI
 224 hyperspectral imaging is demonstrated on specimens consisting of a mixture of $r=130$ nm PMMA
 225 and $r=514\pm21$ nm ($N=100$, **Figure S5**) PS nanoparticles. In practice, wIR-PHI images are collected
 226 sequentially at different MIR energies between $1040-1840$ cm^{-1} . Data acquisition involves
 227 synchronously tuning the CMOS camera exposure delay relative to MIR laser pulses using home-
 228 written Python software.³¹

229 **Figure 5a** shows the resulting CW wIR-PHI image stack from where frames acquired at 1730
 230 cm^{-1} , 1600 cm^{-1} and 1450 cm^{-1} are highlighted. At 1730 cm^{-1} , three particles are visible. The top
 231 two adjacent particles exhibit strong intensities. The bottom particle is weaker with a three-fold
 232 smaller intensity. At 1600 cm^{-1} , the top two particles disappear whereas the bottom particle now
 233 exhibits a sizable intensity. At 1450 cm^{-1} , the top two particles remain absent while the bottom
 234 particle exhibits an intensity comparable to that seen previously at 1600 cm^{-1} .

235 wIR-PHI's hyperspectral imaging chemical specificity is therefore apparent. This is made more
 236 evident by selecting pixels, associated with identified particles, and plotting their intensities as
 237 functions of MIR pump laser wavenumber to construct local MIR absorption spectra. **Figure 5b**
 238 shows resulting MIR absorption spectra for the two indicated particles (arrows).

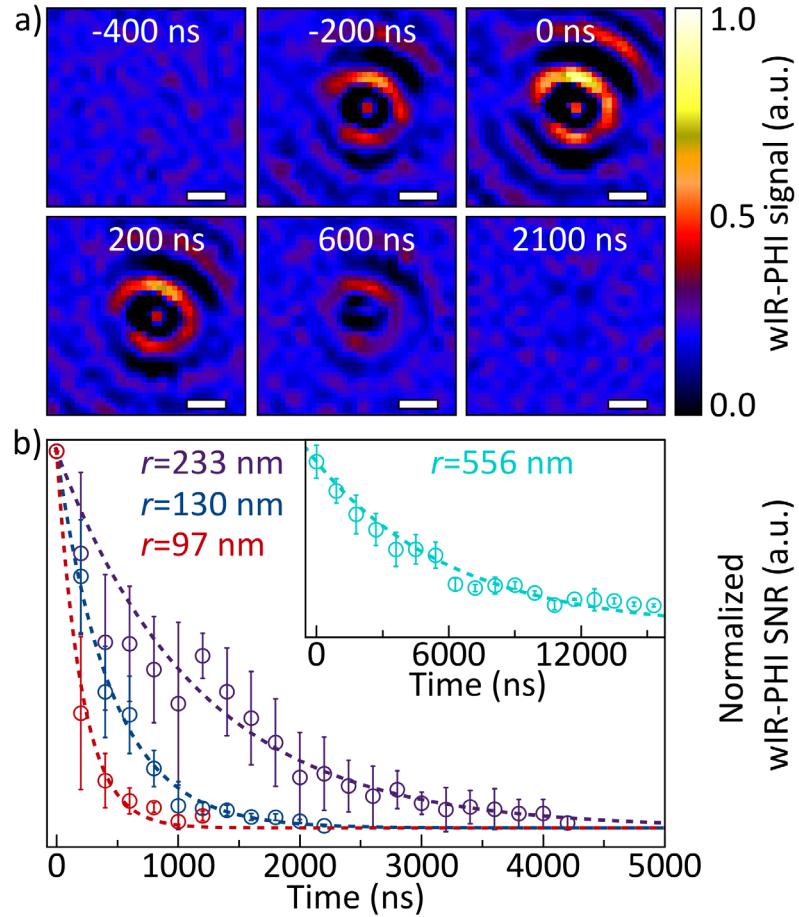
240
 241 **Figure 5.** (a) CW wIR-PHI hyperspectral data set with selected images. Scale bars 1 μm . (b) MIR absorption spectra
 242 from individual PMMA and PS nanoparticle in the hyperspectral images.

243
 244 Of note is that the above hyperspectral data, consisting of 4900 spectra and collected across a
 245 $70 \mu\text{m}^2$ region, has been acquired in 8 minutes. This should be contrasted to the time required by
 246 IR-PHI to collect analogous data. To illustrate, at a bare minimum, prior work²² shows that 2.5
 247 minutes is required per MIR absorption spectra along with approximately 45 minutes per (same

248 area) IR-PHI image. Thus, for two spectra and three images, 140 minutes would be required.
249 Acquiring 200 images to construct an analogous hyperspectral data cube would require ~6 days.
250

251 **Photothermal dynamics: ns temporal resolution**

252 Because CMOS camera exposure times are short (200-300 ns) and because frame exposures
253 can be electronically delayed on ns-timescales relative to the MIR laser pulse, wIR-PHI can be
254 applied to observe fast photothermal dynamics. Although MIR laser/CMOS camera delays can be
255 generated using an external pulse delay generator, here internal CMOS electronics are used. Delays
256 up to 25 μ s are possible with a minimum (temporal) step size of 100 ns. This is comparable to the
257 50 ns resolution offered by existing step-scan FT-IR techniques^{32,33} and is approximately 9 times
258 shorter than the sub-microsecond (915 ns) resolution achieved in alternative widefield MIR
259 imaging techniques.²³ **Figures 2-5** highlight wIR-PHI's super-resolution, which is not possible
260 using step-scan FT-IR.


261 **Figure 6a** now shows $2.5 \mu\text{m}^2$ ($F=5000$, 300 ns per frame integration) images of a $r=130$ nm
262 PMMA nanoparticle acquired at selected delays following the MIR pump pulse. In total, 23 delays
263 between 0-2300 ns have been sampled with data provided as a movie in the SI. The image sequence
264 shows photothermal contrast decaying over ~440 ns. An analogous movie of a $r=514$ nm PS
265 nanoparticle is also provided.

266 **Figure 6b** plots the average photothermal decay (open circles) measured for $r=97-556$ nm
267 PMMA nanoparticles (three particles each size). In all cases, observed contrast decays
268 exponentially, i.e., wIR-PHI signal $\propto e^{-t/\tau}$ where τ is a material specific decay constant, which
269 can be estimated using the following analytical expression (additional details provided in the SI)³⁴
270

$$271 \quad \tau = \frac{C}{Ah}. \quad (1)$$

272 In **Equation 1**, C is a nanoparticle heat capacity (units: J K^{-1}), A is a surface area (units: m^2), and
273 h is a heat transfer coefficient (units: $\text{W K}^{-1} \text{m}^{-2}$).^{35,36} Fits to experimental decays yield τ -values of
274 $\tau=210\pm70$ ($r=97$ nm), 450 ± 100 ($r=130$ nm), 1100 ± 400 ($r=233$ nm), and 6200 ± 1100 ($r=556$ nm)
275 ns.
276

277 Dashed lines in **Figure 6b** are predicted decays where h in **Equation 1** has been estimated
278 independently.³⁵ Resulting theoretical τ -values are $\tau=200\pm30$ ($r=97$ nm), 360 ± 60 ($r=130$ nm),
279 1160 ± 70 ($r=233$ nm), and 6610 ± 930 ($r=556$ nm) ns. The comparison makes evident the good
280 agreement between model and experiment. Details of these τ -value estimates can be found in the
281 **SI**. The data, in whole, thus points to wIR-PHI's ability to simultaneously obtain spatially- and
282 temporally-resolved photothermal data on ns-timescales.
283

284
285 **Figure 6.** (a) 1730 cm^{-1} CW wIR-PHI images of a $r=130$ nm PMMA nanoparticle acquired at varying delays,
286 following MIR pulsed excitation. Delay times indicated. All scale bars 500 nm. (b) Corresponding average
287 photothermal contrast decays for $r=97$, 130, 233, and 556 nm PMMA nanoparticles. Dashed lines are model
288 predictions using independently estimated τ -values.

289

290 Conclusion

291 wIR-PHI represents a new super-resolution, MIR imaging and spectroscopy that enables rapid,
292 large area MIR absorption measurements. Based on a high-speed CMOS camera, wIR-PHI
293 operates in the MIR “fingerprint” spectral region ($2.5\text{--}10\text{ }\mu\text{m}$), possesses a ~ 300 nm spatial
294 resolution, is capable of large area imaging as well as hyperspectral imaging/spectroscopy, and
295 has a temporal resolution on the ns-timescale. wIR-PHI performance is benchmarked by imaging
296 individual PMMA and PS nanoparticles, revealing second timescale images and minute timescale
297 hyperspectral datasets. Temporal resolution on the ns-timescale is also demonstrated. By imaging
298 individual PMMA and PS nanoparticles with radii between $r=97\text{--}556$ nm, a current wIR-PHI peak
299 cross section LOD is $\sigma_{\text{abs}}=1.9\times 10^{-16}\text{ cm}^2$, which is approximately two orders of magnitude better
300 than an analogous IR-PHI peak cross section LOD. This portends well for future uses of wIR-PHI
301 towards MIR imaging and spectroscopic studies of fast chemical, biological, and material
302 processes.

303

304

305

306 **Acknowledgements**
307 M.K. acknowledges the Division of Materials Sciences and Engineering, Office of Basic Energy
308 Sciences. K.K. thanks K. D. Jones for conversations about initial modeling efforts.

309
310 **Funding**
311 This work was supported by the National Science Foundation (CHE-1954724, and CHE-
312 1902403), U.S. Department of Energy (Award DE-SC0014334), the AFOSR under the
313 MURI:MARBLe project (FA9550-16-1-0362).
314

315 **Supporting Information Available:**
316 Technical details regarding MIR laser/CMOS camera synchronization, programmatic outline of
317 hot and cold frame subtraction, effective frame rate and image processing, pre- and post-
318 interpolation wIR-PHI images, PMMA and PS nanoparticle SEM images and sizing histograms,
319 wIR-PHI and IR-PHI image comparison, details about LOD estimates, size-dependent peak
320 absorption cross sections for PMMA and PS nanoparticles at 1730 cm^{-1} and 1450 cm^{-1}
321 respectively, movies illustrating the photothermal contrast decay of individual $r=130\text{ nm}$ PMMA
322 and $r=514\text{ nm}$ PS nanoparticles, and details of τ -value estimates. This material is available free of
323 charge via the internet at <http://pubs.acs.org>.
324

325 **References**

(1) Cheng, J. X.; Xie, X. S. Vibrational Spectroscopic Imaging of Living Systems: An Emerging Platform for Biology and Medicine. *Science* **2015**, *350*, aaa8870. DOI: 10.1126/science.aaa8870

(2) Razumtcev, A.; Li, M.; Rong, J.; Teng, C. C.; Pfluegl, C.; Taylor, L. S.; Simpson, G. J. Label-Free Autofluorescence-Detected Mid-Infrared Photothermal Microscopy of Pharmaceutical Materials. *Anal. Chem.* **2022**, *94*, 6512-6520. DOI: 10.1021/acs.analchem.1c05504

(3) Böke, J. S.; Popp, J.; Krafft, C. Optical Photothermal Infrared Spectroscopy with Simultaneously Acquired Raman Spectroscopy for Two-Dimensional Microplastic Identification. *Sci. Rep.* **2022**, *12*, 18785. DOI: 10.1038/s41598-022-23318-2

(4) Kniazev, K.; Pavlovec, I. M.; Zhang, S.; Kim, J.; Stevenson, R. L.; Doudrick, K.; Kuno, M. Using Infrared Photothermal Heterodyne Imaging to Characterize Micro- and Nanoplastics in

Complex Environmental Matrices. *Environ. Sci. Technol.* **2021**, *55*, 15891-15899. DOI: 10.1021/acs.est.1c05181

(5) Zhang, S.; Kniazev, K.; Pavlovetc, I. M.; Zhang, S.; Stevenson, R. L.; Kuno, M. Deep Image Restoration for Infrared Photothermal Heterodyne Imaging. *Chem. Phys.* **2021**, *155*, 214202. DOI: 10.1063/5.0071944

(6) Pavlovetc, I. M.; Kniazev, K.; Kim, J.; Doudrick, K.; Kuno, M. Photothermal Infrared Imaging: Identification and Visualization of Micro- and Nanoplastics in Environmental Matrices. *Proc. SPIE* **2021**, *11656*, 18. DOI: 10.1021/acs.est.1c05181

(7) Pavlovetc, I. M.; Brennan, M. C.; Draguta, S.; Ruth, A.; Moot, T.; Christians, J. A.; Aleshire, K.; Harvey, S. P.; Toso, S.; Nanayakkara, S. U.; Messinger, J.; Luther, J. M.; Kuno, M. Suppressing Cation Migration in Triple-Cation Lead Halide Perovskites. *ACS Energy Lett.* **2020**, *5*, 2802-2810. DOI: 10.1021/acsenergylett.0c01207

(8) Chatterjee, R.; Pavlovetc, I. M.; Aleshire, K.; Kuno, M. Single Semiconductor Nanostructure Extinction Spectroscopy. *J. Phys. Chem. C* **2018**, *122*, 16443-16463. DOI: 10.1021/acs.jpcc.8b00790

(9) Chatterjee, R.; Pavlovetc, I. M.; Aleshire, K.; Hartland, G. V.; Kuno, M. Subdiffraction Infrared Imaging of Mixed Cation Perovskites: Probing Local Cation Heterogeneities. *ACS Energy Lett.* **2018**, *3*, 469-475. DOI: 10.1021/acsenergylett.7b01306

(10) Pavlovetc, I. M.; Podshivaylov, E. A.; Frantsuzov, P. A.; Hartland, G. V.; Kuno, M. Quantitative Infrared Photothermal Microscopy. *Proc. SPIE* **2020**, *11246*, 13. DOI: 10.1117/12.2545159

(11) Lee, E. S.; Lee, J. Y. Nonlinear Optical Infrared Microscopy with Chemical Specificity. *Appl. Phys. Lett.* **2009**, *94*, 261101. DOI: 10.1063/1.3167286

(12) Li, C.; Zhang, D.; Slipchenko, M. N.; Cheng, J. X. Mid-Infrared Photothermal Imaging of Active Pharmaceutical Ingredients at Submicrometer Spatial Resolution. *Anal. Chem.* **2017**, *89*, 4863-4867. DOI: 10.1021/acs.analchem.6b04638

(13) Zhang, C.; Aldana-Mendoza, J. A. Coherent Raman Scattering Microscopy for Chemical Imaging of Biological Systems. *J. Phys. Photon.* **2021**, *3*, 032002. DOI 10.1088/2515-7647/abfd09

(14) Nasse, M. J.; Walsh, M. J.; Mattson, E. C.; Reininger, R.; Kajdacsy-Balla, A.; Macias, V.; Bhargava, R.; Hirschmugl, C. J. High-Resolution Fourier-Transform Infrared Chemical Imaging with Multiple Synchrotron Beams. *Nat. Methods* **2011**, *8*, 413-416. DOI: 10.1038/nmeth.1585

(15) Editorial. Beyond the Diffraction Limit. *Nat. Photon.* **2009**, *3*, 361. DOI: 10.1038/nphoton.2009.100

(16) Löder, M. G. J.; Kuczera, M.; Mintenig, S.; Lorenz, C.; Gerdts, G. Focal Plane Array Detector-Based Micro-Fourier-Transform Infrared Imaging for the Analysis of Microplastics in Environmental Samples. *Environ. Chem.* **2015**, *12*, 563-581. DOI: 10.1071/EN14205

(17) Zhang, D.; Lan, L.; Bai, Y.; Majeed, H.; Kandel, M. E.; Popescu, G.; Cheng, J. X. Depth-Resolved Mid-Infrared Photothermal Imaging of Live Cells and Organisms with Submicrometer Spatial Resolution. *Sci. Adv.* **2016**, *2*, e1600521. DOI: 10.1126/sciadv.1600521

(18) Li, Z.; Aleshire, K.; Kuno, M.; Hartland, G. V. Super-Resolution Far-Field Infrared Imaging by Photothermal Heterodyne Imaging. *J. Phys. Chem. B* **2017**, *121*, 8838-8846. DOI: 10.1021/acs.jpcb.7b06065

(19) Gaiduk, A.; Ruijgrok, P. V.; Yorulmaz, M.; Orrit, M. Detection Limits in Photothermal Microscopy. *Chem. Sci.* **2010**, *1*, 343-350. DOI: 10.1039/C0SC00210K

(20) Aleshire, K.; Pavlovec, I. M.; Collette, R.; Kong, X. T.; Rack, P. D.; Zhang, S.; Masiello, D. J.; Camden, J. P.; Hartland, G. V.; Kuno, M. Far-Field Midinfrared Superresolution Imaging and Spectroscopy of Single High Aspect Ratio Gold Nanowires. *Proc. Natl. Acad. Sci.* **2020**, *117*, 2288-2293. DOI: 10.1073/pnas.1916433117

(21) Pavlovec, I. M.; Aleshire, K.; Hartland, G. V.; Kuno, M. Approaches to Mid-Infrared, Super-Resolution Imaging and Spectroscopy. *Phys. Chem. Chem. Phys.* **2020**, *22*, 4313-4325. DOI: 10.1039/C9CP05815J

(22) Pavlovec, I. M.; Podshivaylov, E. A.; Chatterjee, R.; Hartland, G. V.; Frantsuzov, P. A.; Kuno, M. Infrared Photothermal Heterodyne Imaging: Contrast Mechanism and Detection Limits. *J. Appl. Phys.* **2020**, *127*, 165101. DOI: 10.1063/1.5142277

(23) Bai, Y.; Zhang, D.; Lan, L.; Huang, Y.; Maize, K.; Shakouri, A.; Cheng, J. X. Ultrafast Chemical Imaging by Widefield Photothermal Sensing of Infrared Absorption. *Sci. Adv.* **2019**, *5*, eaav7127. DOI: 10.1126/sciadv.aav7127

(24) Paiva, E. M.; Schmidt, F. M. Ultrafast Widefield Mid-Infrared Photothermal Heterodyne Imaging. *Anal. Chem.* **2022**, *94*, 14242-14250. DOI: 10.1021/acs.analchem.2c02548

(25) Li, S.; Dai, Z.; Li, L.; Padture, N. P.; Guo, P. Time-Resolved Vibrational-Pump Visible-Probe Spectroscopy for Thermal Conductivity Measurement of Metal-Halide Perovskites. *Rev. Sci. Instrum.* **2022**, *93*, 053003. DOI: 10.1063/5.0083763

(26) Zhang, D.; Lan, L.; Bai, Y.; Majeed, H.; Kandel, M. E.; Popescu, G.; Cheng, J. X. Bond-Selective Transient Phase Imaging via Sensing of the Infrared Photothermal Effect. *Light Sci. Appl.* **2019**, *8*, 116. DOI: 10.1038/s41377-019-0224-0

(27) McDonald, M. P.; Vietmeyer, F.; Aleksiuk, D.; Kuno, M. Supercontinuum Spatial Modulation Spectroscopy: Detection and Noise Limitations. *Rev. Sci. Instrum.* **2013**, *84*, 113104. DOI: 10.1063/1.4829656

(28) Bai, Y.; Yin, J.; Cheng, J. X. Bond-Selective Imaging by Optically Sensing the Mid-Infrared Photothermal Effect. *Sci. Adv.* **2023**, *7*, eabg1559. DOI: 10.1126/sciadv.abg1559

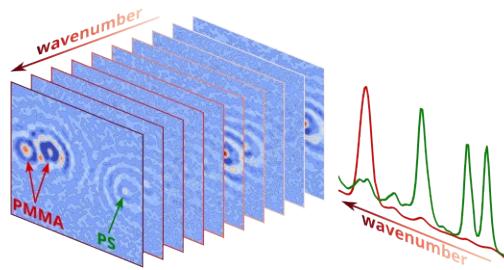
(29) Ahmad, S.; Ahmad, S.; Agnihotry, S. A. Synthesis and Characterization of In Situ Prepared Poly (Methyl Methacrylate) Nanocomposites. *Bull. Mater. Sci.* **2007**, *30*, 31-35. DOI: 10.1007/s12034-007-0006-9

(30) Seitz, P. Image Sensing with Maximum Sensitivity Using Industrial CMOS Technology. *Proc. SPIE* **1997**, *3099*, 22-33. DOI: 10.1117/12.281222

(31) Zaitsev, E. PHI_photon_camera. *GitHub* **2023**. Access on April 20 2023, https://github.com/gliese3/PHI_photon_camera.

(32) Johnson, T. J.; Simon, A.; Well, J. M.; Harris, G. W. Applications of Time-Resolved Step-Scan and Rapid-Scan FT-IR Spectroscopy: Dynamics from Ten Seconds to Ten Nanoseconds. *Appl. Spectrosc.* **1993**, *47*, 1376-1381. DOI:10.1366/0003702934067397

(33) Palmer, R. A.; Manning, C. J.; Rzepiela, J. A.; Widder, J. M.; Chao, J. L. Time-Resolved Spectroscopy Using Step-Scan Fourier Transform Interferometry. *Appl. Spectrosc.* **1989**, *43*, 193-195. DOI: 10.1366/0003702894203101



(34) Zhang, S.; Zhukovskyi, M.; Janko, B.; Kuno, M. Progress in Laser Cooling Semiconductor Nanocrystals and Nanostructures. *NPG Asia Mater.* **2019**, *11*, 54. DOI: 10.1038/s41427-019-0156-4

(35) Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 6th Ed. *John Wiley & Sons* **2006**, 585-586.

(36) Schlünder, E. U.; Churchill, S. W. Heat Exchanger Design Handbook, Hemisphere 2.5.7 **1983**, 513-514.

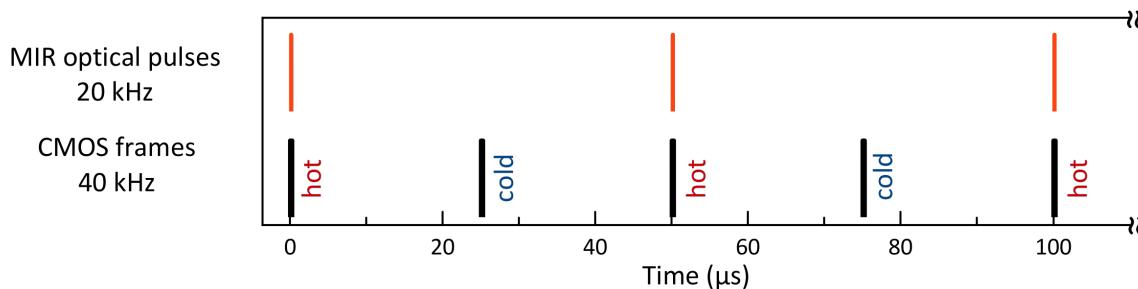
For Table of Content Use Only

Supplementary information for

Hyperspectral and Nanosecond Temporal Resolution Widefield Infrared Photothermal Heterodyne Imaging

Authors: Kirill Kniazev^a, Evgenii Zaitsev^a, Shubin Zhang^b, Yang Ding^a, Loc Ngo^a, Zhuoming Zhang^a, Gregory V. Hartland^a, Masaru Kuno^{a,b}

Affiliations:


^aDepartment of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556

^bDepartment of Physics and Astronomy, University of Notre Dame, Notre Dame, IN 46556

MIR laser/CMOS camera synchronization technical details

The 20 kHz external signal from the M-Squared laser is used as the master trigger for the instrument. A Quantum Composers Emerald pulse delay generator then reads the 20 kHz signal and creates a 40 kHz pulse train that can be delayed relative to the input signal. Possible delays range from 0-24.9 μ s. In what follows, delays are generated using the CMOS camera's internal delay electronics (below). This 40 kHz pulse train is then fed into the Photron CMOS camera to enable external synchronization of its frame acquisition. Camera synchronization involves temporally offsetting frame acquisition from MIR laser pulses via the camera's internal electronics (delays from 0-15.5 μ s). A home-written Python program was used to control camera image acquisition and subsequent data transfer.

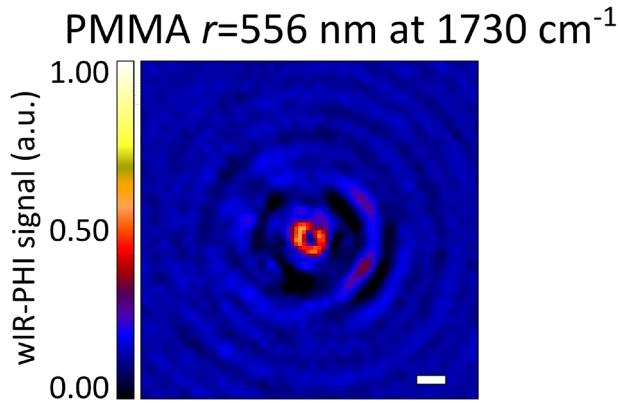
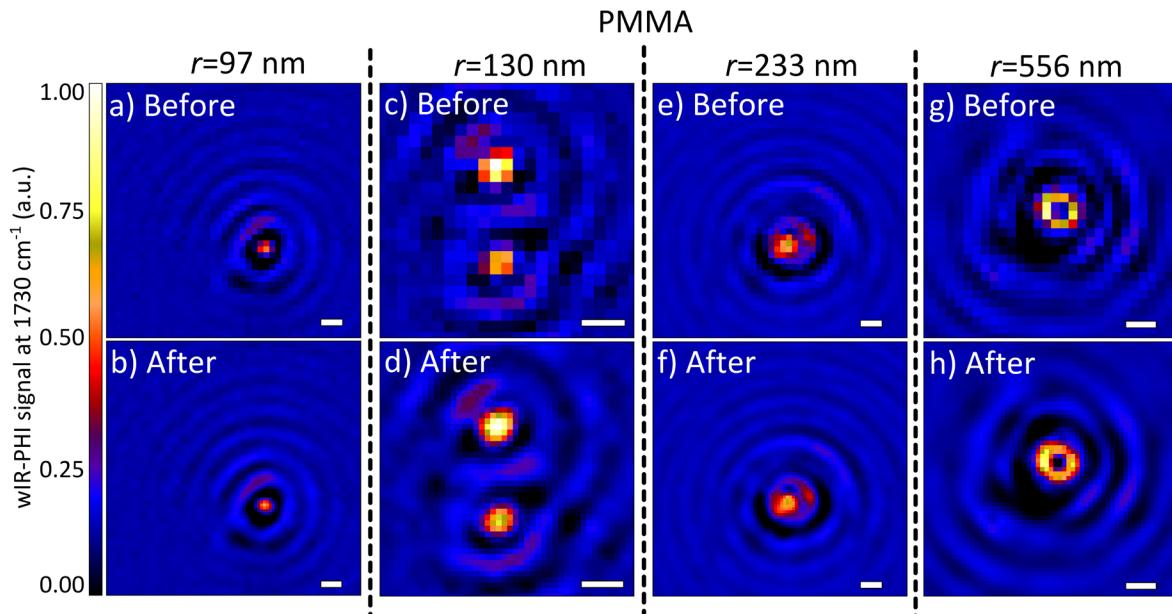

Figure S1 illustrates the synchronization involved in wIR-PHI measurements. MIR laser pulses repeat at 20 kHz. CMOS frame acquisition occurs at 40 kHz. Frames coincident with the MIR laser are referred to as hot frames. Frames between MIR pulses are referred to as cold frames.

Figure S1. Schematic illustration of MIR laser and CMOS camera synchronization. Hot and cold frames denoted.

wIR-PHI effective frame rate

The effective frame rate of wIR-PHI is determined by the acquisition of "hot" and "cold" frames, which establish the photothermal contrast. In wIR-PHI, the system operates at a frequency of 20 kfps (20,000 fps), acquiring 40,000 "hot" and "cold" frames, with each "hot" frame containing a single MIR laser pulse. **Figure S2** now displays a wIR-PHI image of a single $r=556$ nm PMMA nanoparticle, obtained using a single "hot" and "cold" frame pair.

Figure S2. wIR-PHI image of a single $r=556$ nm PMMA nanoparticle processed using only one “hot” and “cold” frame pair.

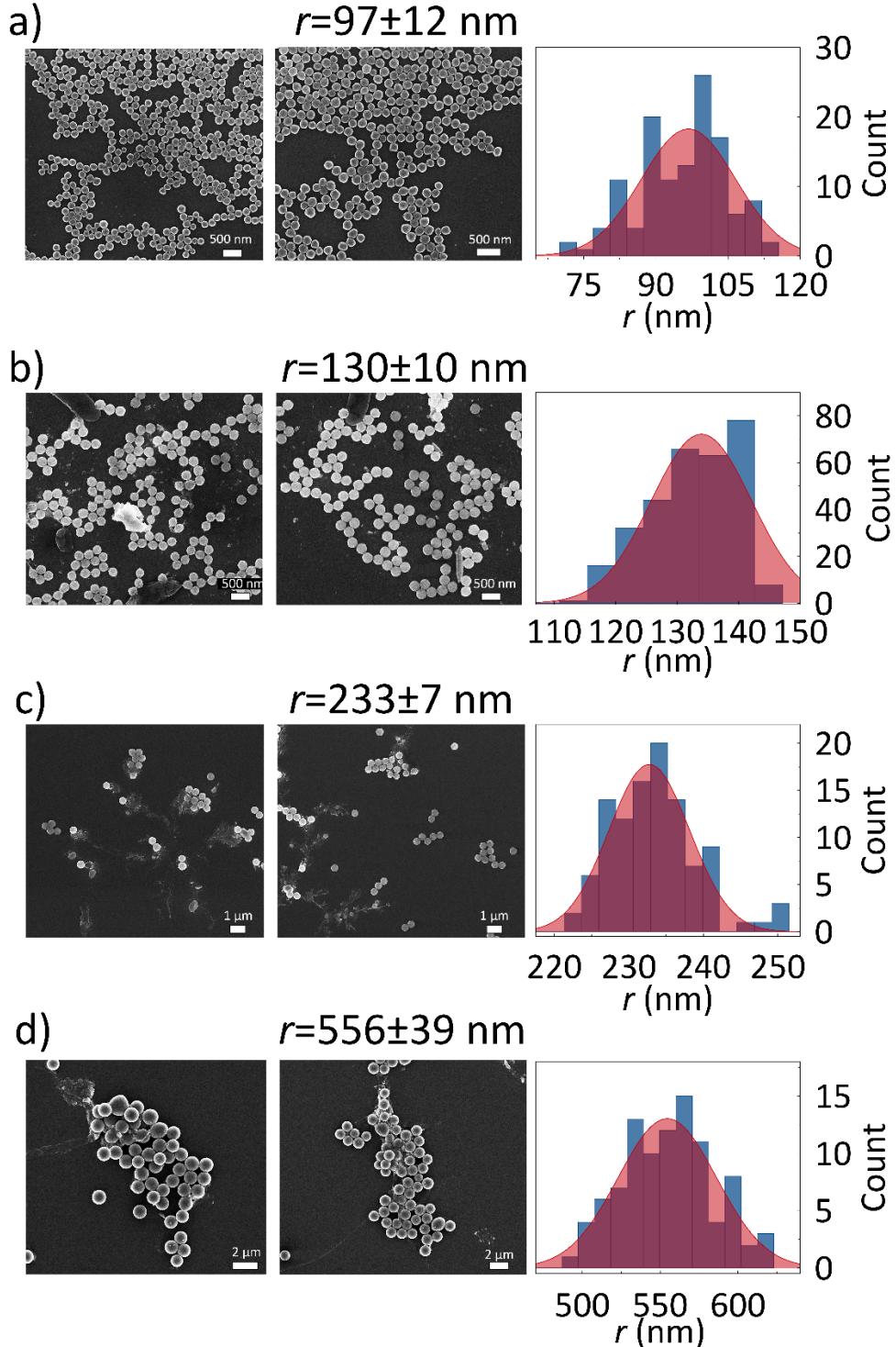

The effective fps achieved varies depending on the number of frame pairs used to construct wIR-PHI images. For instance, constructing images using one “hot” and “cold” frame pair yields a 20 kfps image rate. Using two sequential “hot” and “cold” frame pairs yields a 10 kfps image rate. 2500 sequential “hot” and “cold” frame pairs yields a 2.5 kfps image rate.

It's important to emphasize that the 1.875 s “data transfer processing and software overhead” does not contribute to the instrument's imaging speed. This time refers only to the speed of the final data transfer and processing. The effective fps, on the other hand, is defined by the number of summed “hot” and “cold” frame pairs, used to construct wIR-PHI images, as stated above.

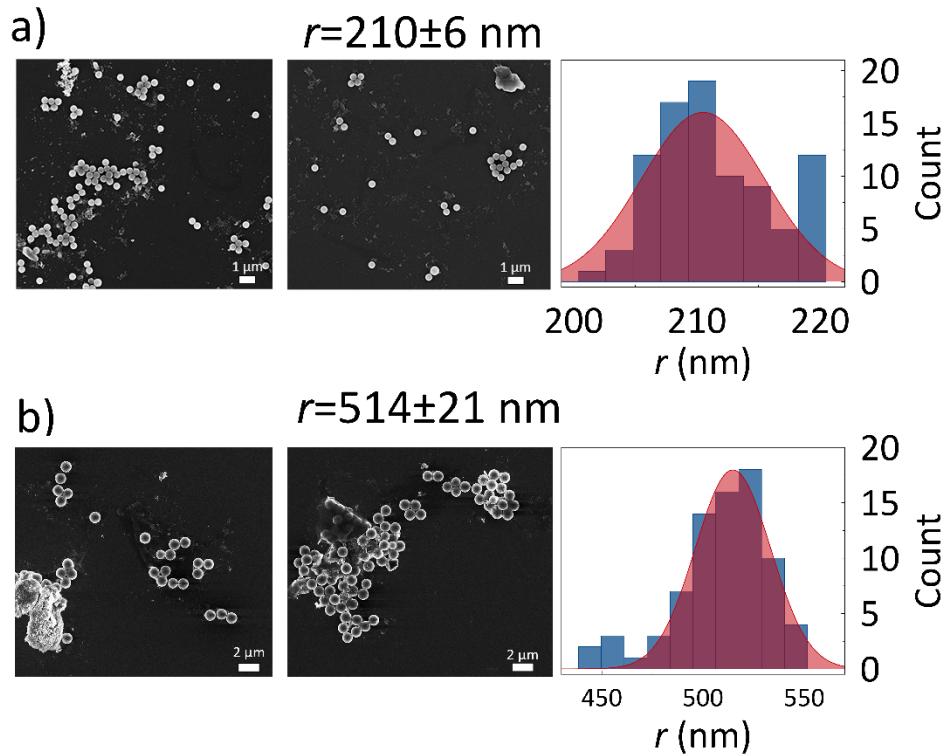
Image processing

The CMOS camera operates at 40 kHz and collects 256×256 pixel frames. The total frame number, F , includes both hot and cold frames. A home-written Python program separates hot and cold frames from a given CMOS movie into two different 3-dimensional (3D) arrays. Intensities in each (x,y) coordinate of a hot/cold 3D array are then summed. What emerges are summed hot and cold images. A wIR-PHI image is obtained by subtracting the summed cold image from the summed hot image. To quadruple the image resolution (from 256×256 to 512×512 pixels) the ‘`interpolate.interp2d`’ function from the SciPy Python library is used.¹

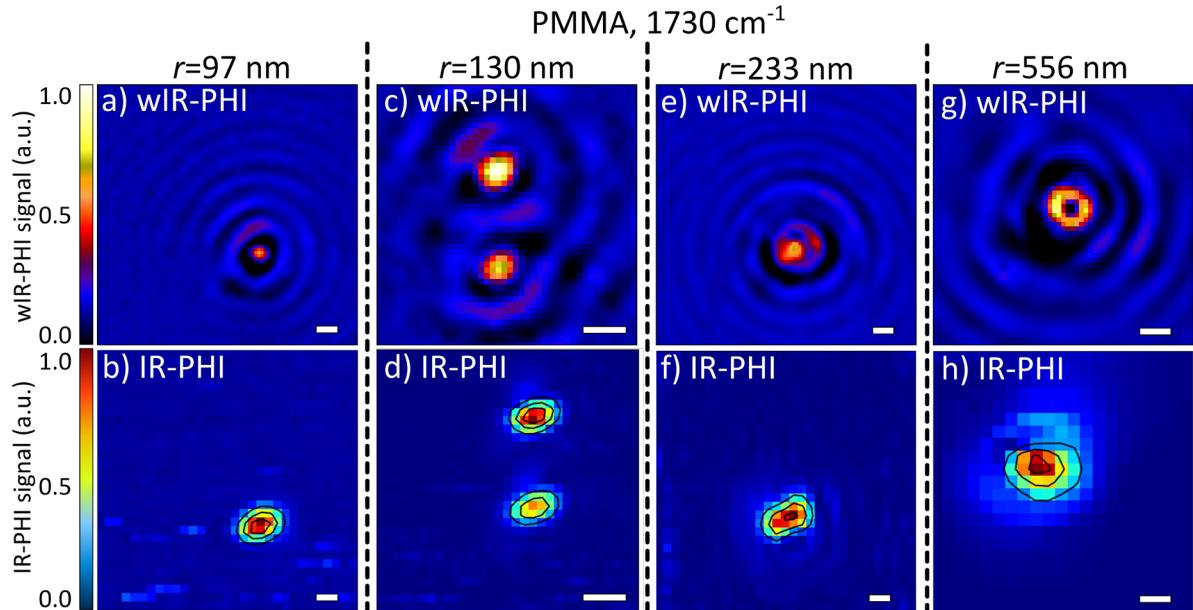
Figures S3 a, c, e, and g show representative raw wIR-PHI images. **Figures S3 b, d, f, and h** show interpolated wIR-PHI images.


Figure S3. Before (a, c, e, g) and after (b, d, f, h) interpolation wIR-PHI images of different-sized PMMA nanoparticles. All scale bars 500 nm.

wIR-PHI signal-to-noise estimates


Peak SNR estimates use the maximum signal from a particle and divide it with the standard deviation of noise in the illuminated region. 20×20 pixel sections of images that do not contain Airy rings are used for this. Integrated SNR estimates uses the integrated signal from 7×7 pixel sections of the image and divide it by the same noise standard deviation used for peak SNR estimates.

Sample preparation


Solutions of PMMA or PS nanoparticles are drop cast onto calcium fluoride coverslips (CaF_2 , 0.5 mm thickness, Crystran) and are allowed to dry under ambient conditions. CaF_2 coverslips were cleaned beforehand using methanol and acetone and were then plasma cleaned (Harrick, Nitrogen). For Scanning Electron Microscopy (SEM), specimens were sputter coated with 3 nm of Ir to prevent charging.

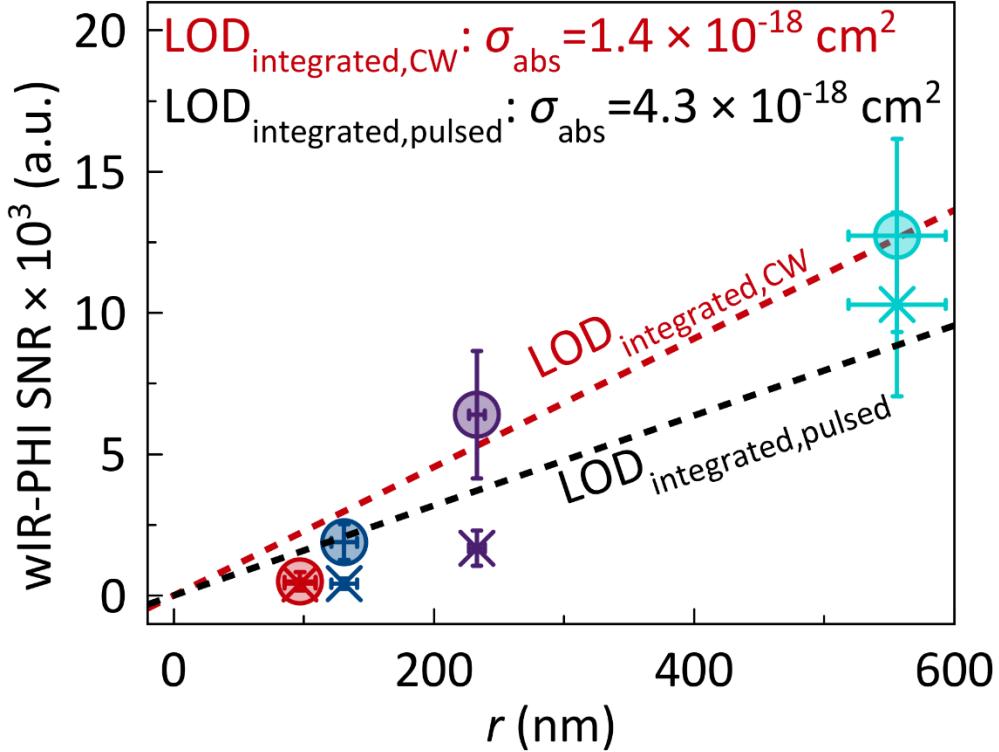

Figure S4. (a-d) SEM images of (a) $r=97 \text{ nm}$, (b) $r=130 \text{ nm}$, (c) $r=233 \text{ nm}$, and (d) $r=556 \text{ nm}$ PMMA nanoparticles. For all, corresponding size histograms provided.

Figure S5. (a, b) SEM images of (a) $r=210$ and (b) $r=514$ nm PS nanoparticles. For all, corresponding size histograms provided.

Figure S6. wIR-PHI and IR-PHI images of different-sized PMMA nanoparticles at 1730 cm^{-1} . All scale bars 500 nm.

Figure S7. Integrated cross-section SNR dependencies with PMMA nanoparticle size for CW (circles) and pulsed (x) probe lasers.

Absorption cross-section estimates

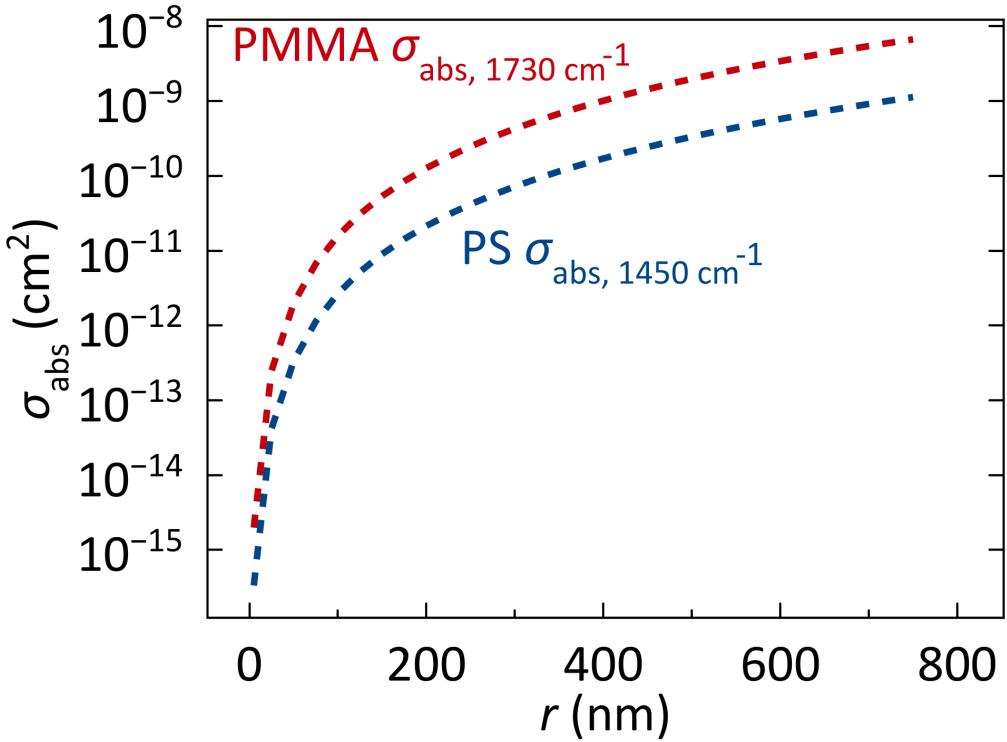
Absorption cross-sections of PMMA and PS nanoparticles at 1730 cm^{-1} and 1450 cm^{-1} , respectively, were estimated based on published literature data.^{2,3} **Equation S1** first extracts an absorption coefficient (α) from experimentally-measured absorbance (Abs) data at a given wavenumber

$$\alpha = \frac{\text{Abs}}{l \times \log_{10}(e)}. \quad (\text{S1})$$

In the equation, l is an experimental thickness for measured PMMA and PS thin films.

Equation S2 calculates a corresponding absorption cross section (σ_{abs})

$$\sigma_{\text{abs}} = \alpha \times V \quad (\text{S2})$$


where V is the volume of the material in the illuminated region.

To estimate the cross section of an individual chromophore, σ_{abs} is divided by the number of absorbers ($N_{\text{absorbers}}$) that are likely present. This latter parameter is found from

$$N_{\text{absorbers}} = \frac{\rho \times V_{\text{NP}}}{m_{\text{monomer}}} \quad (\text{S3})$$

where ρ is the material's density, V_{NP} is the nanoparticle volume ($V_{\text{NP}} = \frac{4}{3}\pi r^3$) and m_{monomer} is the mass of a single PMMA or PS absorber.^{4,5}

Figure S8 shows calculated PMMA and PS nanoparticle peak absorption cross-sections for sizes between $r=5$ and $r=750\text{ nm}$.

Figure S8. Calculated peak absorption cross-sections for different-sized PMMA and PS nanoparticles at 1730 cm⁻¹ and 1450 cm⁻¹ respectively.

Nanoparticle thermal decay model

For our polymer particles supported on a solid substrate in air, the majority of the particle surface is in contact with the air, not the support. Because heat loss occurs through the particle surface we simply use a model of a particle in a homogeneous environment:⁶

$$C \frac{dT}{dt} = -hA[T(t) - T_0] \quad (\text{S4})$$

where $C = C_{p, \text{NP}} \times m_{\text{NP}}$ is the nanoparticle's heat capacity [units: J K⁻¹; $C_{p, \text{NP}}$ is a nanoparticle specific heat capacity which for PMMA is 1368.4 J kg⁻¹ K⁻¹⁷ and m_{NP} is the nanoparticle mass, $m_{\text{NP}} = \rho \times \left(\frac{4}{3}\pi r^3\right)$ with ρ the polymer density. For PMMA, $\rho=1.19 \text{ g cm}^{-3}$], h is a heat transfer coefficient (units: W K⁻¹ m⁻²), A is the nanoparticle geometric surface area (units: m²), and T_0 is ambient temperature. Integration of **Equation S4** yields

$$T(t) = T_0 + (T_{\text{max}} - T_0)e^{-\frac{hA}{C}t} = T_0 + (T_{\text{max}} - T_0)e^{-\frac{t}{\tau}} \quad (\text{S5})$$

where

$$\tau = \frac{C}{Ah}. \quad (\text{S6})$$

To independently estimate h for a sphere, an expression from Reference 8 is used

$$h = \frac{\text{Nu}}{(2r)} k, \quad (\text{S7})$$

where Nu is a Nusselt number and k is the thermal conductivity of air ($0.02514 \text{ W m}^{-1} \text{ K}^{-1}$ ⁹). For a sphere in a medium

$$\text{Nu} = 2 + \frac{0.589 \times \text{Ra}^{1/4}}{[1 + (0.469/\text{Pr})^{9/16}]^{4/9}} \quad (\text{S8})$$

where Ra and Pr are Rayleigh and Prandtl numbers respectively. For small spheres, $\text{Ra} \rightarrow 0$. Consequently, $\text{Nu} \cong 2$. Physically, this corresponds to conductive heat transfer into a stationary air medium.^{8,10}

SI References

- (1) Virtanen, P.; Gommers, R.; Oliphant, T. E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; Walt, S. J.; Brett, M.; Wilson, J.; Millman, K. J.; Mayorov, N.; Nelson, A. R. J.; Jones, E.; Kern, R.; Larson, E.; Carey, C. J.; Polat, İ.; Feng, Y.; Moore, E. W.; Plas, J. V.; Laxalde, D.; Perktold, J.; Cimrman, R.; Henriksen, I.; Quintero, E. A.; Harris, C. R.; Archibald, A. M.; Ribeiro, A. H.; Pedregosa, F.; Mulbregt, P. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. *Nat. Methods* **2020**, *17*, 261-272.
- (2) Namouchi, F.; Smaoui, H.; Fourati, N.; Zerrouki, C.; Guermazi, H.; Bonnet, J. J. Investigation on Electrical Properties of Thermally Aged PMMA by Combined Use of FTIR and Impedance Spectroscopies. *J. Alloys Compd.* **2009**, *469*, 197-201.
- (3) Vardhan, P. V.; Shukla, L. I. FT-IR Investigations on Effect of High Doses of Gamma Radiation-Induced Damage to Polystyrene and Mechanism of Formation of Radiolysis Products. *Radiat. Environ. Biophys.* **2018**, *57*, 301-307.
- (4) NIST Mass Spectrometry Data Center. NIST Chemistry WebBook SRD 69, Methyl Methacrylate. *NIST* **2011**. Access on April 23 2023,
<https://webbook.nist.gov/cgi/cbook.cgi?ID=C80626&Mask=200>.

(5) National Center for Biotechnology Information. PubChem Compound Summary for CID 7501, Styrene. *PubChem* **2021**. Access on April 23 2023, <https://pubchem.ncbi.nlm.nih.gov/compound/Styrene>.

(6) Winterton, R. H. S. Newton's Law of Cooling. *Eur. J. Phys.* **2002**, *23*, 205-212.

(7) Soldera, A.; Metatla, N.; Beaudoin, A.; Said, S.; Grohens, Y. Heat Capacities of Both PMMA Stereomers: Comparison between Atomistic Simulation and Experimental Data. *Polymer* **2010**, *51*, 2106-2114.

(8) Schlünder, E. U.; Churchill, S. W. Heat Exchanger Design Handbook. Hemisphere 2.5.7 **1983**, 513-514.

(9) Wu, H.; Grabarnik, S.; Emadi, A.; de Graaf, G.; Wolffenbuttel, R. F. Characterization of Thermal Cross-Talk in a MEMS-Based Thermopile Detector Array. *J. Micromech. Microeng.* **2009**, *19*, 074022.

(10) Incropera, F. P.; DeWitt, D. P.; Bergman, T. L.; Lavine, A. S. Fundamentals of Heat and Mass Transfer, 6th Ed. *John Wiley & Sons* **2006**, 585-586.