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ABSTRACT

Mean plane measurements of the Kuiper Belt from observational data are of interest for their po-

tential to test dynamical models of the solar system. Recent measurements have yielded inconsistent
results. Here we report a measurement of the Kuiper Belt’s mean plane with a sample size more than
twice as large as in previous measurements. The sample of interest is the non-resonant Kuiper belt

objects, which we identify by using machine learning on the observed Kuiper Belt population whose
orbits are well-determined. We estimate the measurement error with a Monte Carlo procedure. We
find that the overall mean plane of the non-resonant Kuiper Belt (semimajor axis range 35-150 au) and
also that of the classical Kuiper Belt (semimajor axis range 42-48 au) are both close to (within ∼ 0.7◦)

but distinguishable from the invariable plane of the solar system to greater than 99.7% confidence.
When binning the sample into smaller semimajor axis bins, we find the measured mean plane mostly
consistent with both the invariable plane and the theoretically expected Laplace surface forced by

the known planets. Statistically significant discrepancies are found only in the semimajor axis ranges
40.3-42 au and 45-50 au; these ranges are in proximity to the ν8 secular resonance and Neptune’s 2:1
mean motion resonance where the theory for the Laplace surface is likely to be inaccurate. These
results do not support a previously reported anomalous warp at semimajor axes above 50 au.

Keywords: Kuiper Belt, Classical Kuiper Belt objects, Resonant Kuiper Belt objects

1. INTRODUCTION

Chiang & Choi (2008) posed the question:“If we could map, at fixed time, the instantaneous locations in three-
dimensional space of all Kuiper Belt objects [KBOs], on what two-dimensional surface would the density of KBOs be
greatest?” The authors demonstrated that this surface, also known as the Laplace surface, is given by the Laplace-
Lagrange linear secular theory (Murray & Dermott 1999). This theory is based on the time-variable forcing arising
from the planets’ secular variations; consequently, the local normal on the Laplace surface varies only slowly with time;
secular timescales for KBOs are much longer than ∼ 104 yr. The Laplace surface for particles within the Kuiper Belt is

not a flat plane because it has warps owing to secular resonances in certain localized regions of semimajor axes within
the belt where the rate of orbit pole precession coincides with one of the inclination secular mode frequencies of the
planets; at large semimajor axes the Laplace surface converges to the solar system’s invariable plane. The invariable
plane is the flat plane normal to the total orbital angular momentum of the solar system; this plane has an inclination
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of 1.58◦ and a longitude of ascending node of 107.58◦ with respect to the J2000 ecliptic-equinox frame (Souami &
Souchay 2012).

As a foil to the Laplace surface, previous studies have also considered the solar system’s invariable plane as a
candidate for the mean plane of the Kuiper Belt. The mean plane measured from observational data of KBOs is of
interest for its potential to test dynamical models of the solar system and to reveal unmodeled perturbations when
compared with theoretical predictions.

Previous measurements of the Kuiper Belt mean plane have produced inconsistent results. Brown & Pan (2004)
reported a mean plane of (i0,Ω0) = (1.86◦, 81.6◦), where i0 and Ω0 are respectively the inclination and longitude of
ascending node of the plane in J2000 coordinates. With a measurement error of 0.37◦ in the pole position of the mean
plane, this is consistent with the Laplace surface at semimajor axis a = 44 au (the median semimajor axis of their
sample) but inconsistent (at more than 99.7% confidence) with the invariable plane of the solar system as well as the
orbital planes of Neptune and Jupiter. Elliot et al. (2005) used five separate methods to measure the mean plane of
the Kuiper Belt; they reported i0 in the range 1.65◦− 2.49◦ and Ω0 in the range 97.4◦− 104.0◦, with a preferred value
of (i0,Ω0) = (1.51◦ ± 0.26◦, 100.0◦ ± 8.8◦). They rejected the Laplace surface at 99.7% confidence as the Kuiper Belt
mean plane, but did not reject the invariable plane. Chiang & Choi (2008) measured the mean plane for two small
samples of KBOs near a = 38 au and a = 43 au and concluded that they could not reject either the Laplace surface or
the invariable plane for either sample. After a gap of more than a decade, the next measurement of the Kuiper Belt’s
mean plane was reported in Volk & Malhotra (2017) (hereafter vm17) when the observed sample of Kuiper Belt objects
with well-determined orbits (< 5% semimajor axis uncertainty, observed over three or more oppositions) had grown to
931. These authors carefully identified resonant KBOs and discarded them from the mean plane measurement sample

(because the assumptions of Laplace theory are violated for particles in mean motion resonances). vm17 reported an
overall mean plane of (i0,Ω0) = (1.8◦, 77◦) for the classical Kuiper Belt, i.e., the sample of non-resonant KBOs in the
semimajor axis range 42–48 au. For smaller semimajor axis bins, their mean plane measurements in the semimajor axis

range of 35 au to 45 au were consistent with the Laplace surface, notably including the detection of the theoretically
predicted warp near a = 40 au; save for that warp, the mean plane in this range was also consistent with the invariable
plane. However, beyond a = 50 au, vm17 measured mean planes that were strongly warped away from the predicted

Laplace surface and inconsistent with both the Laplace surface and the invariable plane at the 97%–99% confidence
level. The most recent measurement of the Kuiper Belt’s mean plane, by Van Laerhoven et al. (2019), was based
on a sample of KBOs discovered in two specific observational surveys with well-characterized selection biases. These
authors rejected the invariable plane and did not reject the Laplace surface for semimajor axes below 44.4 au; at larger

semimajor axes both planes were accepted. The significant warp of the mean plane of the distant Kuiper Belt, beyond
a ≈ 50, measured by vm17 but not detected by Van Laerhoven et al. (2019) is an open puzzle in the literature.

Since vm17 published their work, the sample of known non-resonant KBOs with well-determined orbits, semimajor

axes between 35–150 au, and perihelia above the semimajor axis of Neptune has nearly doubled, growing from 931 to
1812. Figure 1 shows a scatter plot of the semimajor axes and ecliptic inclinations of these samples. In the present
work, we revisit the measurement of the Kuiper Belt’s mean plane with this larger sample with the goal to test the
reproducibility of vm17’s results. In Section 2, we briefly describe the theoretical background for the Laplace surface.
In the next two sections, we describe the method for measuring the mean plane from observations with generally
unknown biases (Section 3), and a Monte Carlo method for estimating the uncertainty of this measurement (Section
4). In Section 5, we describe the machine-learning tool for identifying the sample of non-resonant KBOs. Our results
are presented and discussed in Section 6.

2. LAPLACE SURFACE

Though their measurements of the mean plane differ, researchers including vm17, Chiang & Choi (2008), and Brown
& Pan (2004) all start with the premise that for KBOs with perihelia outside the orbit of Neptune, the theoretically
expected mean plane is adequately described by Laplace theory, i.e., the linear secular perturbation theory as set forth
in Murray & Dermott (1999). In this approximation, the planetary perturbations on a test particle are orbit-averaged
and the perturbing potential (called the “disturbing function”) is truncated to the first order in the planetary masses
and the second order in eccentricities and inclinations. It then follows from Lagrange’s equations for the variation of

the orbital elements that the test particle’s semimajor axis is constant, while its orbital eccentricity and the orientation
of its orbit vary quasi-periodically with time over secular timescales. Our interest here is in the orbit plane, which
is described by two angular elements, the inclination, i, and the longitude of ascending node, Ω. The unit vector, ĥ,
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Figure 1. Semimajor axis, inclination, and eccentricity of the 931 non-Resonant KBOs with well-determined orbits on 35 <
a < 150 au from vm17 (red +), and the sample of 1812 non-Resonant KBOs with well-determined orbits on 35 < a < 150 au,
q > 30.34 au, in this study (blue ◦). Orbital elements for the 1812 non-Resonant KBOs are from JPL Solar System Dynamics
Group (2022) as explained in Section 5.

normal to the orbit plane can be expressed in terms of these elements (Eq. 5). The Laplace theory expositions in the
literature use the more convenient two-component vector, the so-called “inclination vector” defined as

(q, p) = sin i (cos Ω, sin Ω). (1)

Laplace theory yields the solution of the linear secular equations for the test particle in which (q, p) can be written

as a sum of two parts,

(q, p) = (q0, p0) + (q1, p1). (2)

The first part, (q0, p0) = sin i0 (cos Ω0, sin Ω0), is called the “forced inclination vector” and defines the Laplace
surface; it is determined by the masses and semimajor axes of the planets and their instantaneous orbital planes,

as well as the semimajor axis of the test particle. The second part, (q1, p1) = sin i1 (cos Ω1, sin Ω1), called the “free
inclination vector,” is the remaining part of the total inclination vector; it is determined by initial conditions. The
Laplace surface changes over secular times, and its time variation is given by a superposition of the secular modes of
the inclination vectors of the planets. The free inclination vector precesses around the Laplace surface at a constant
angular rate: the free inclination i1 remains constant and the free longitude of node Ω1 circulates. As the orbit plane of
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a KBO precesses around its local Laplace surface, it follows that the mean plane of a large population of test particles
in a small semimajor axis range (with dispersed orbit planes) is described by the local Laplace surface, as shown in
simulations by Murray & Dermott (1999) and Chiang & Choi (2008).

For later reference, we note that the unit vector, n̂0, normal to the local Laplace surface is related to the forced
inclination vector as follows,

n̂0 =

(
p0,−q0,

√
1− p20 − q20

)
. (3)

We briefly make a note about heliocentric versus barycentric orbital elements. The Laplace surface on 2023 February
20 for semi-major axes outside Neptune’s orbit, shown in Figure 4, is computed according to the theory described
in Murray & Dermott (1999), and using data for the J2000 ecliptic/equinox barycentric planetary elements retrieved
from JPL Horizons and planetary masses from Standish (1995). Laplace theory as set forth in Murray & Dermott
(1999) and other sources describes the Laplace surface in heliocentric coordinates, rather than barycentric coordinates.
The portion of the disturbing function used to develop the theory depends on eccentricity, inclination, longitude of
node, longitude of pericenter, and semimajor axis. Only semimajor axis is affected by the heliocentric-to-barycentric
conversion. The heliocentric semimajor axis has short-period oscillations caused by the motions of planets interior to
the Kuiper Belt; these average to zero over secular timescales. Barycentric elements, which lack those semimajor axis
oscillations, are therefore more convenient and no less accurate than heliocentric coordinates for high-a Laplace surface

calculations. As a practical matter, the Laplace surface for orbits outside Neptune’s is nearly identical in heliocentric
and barycentric coordinates, except in close proximity to the secular resonance locations near (barycentric) semimajor
axis values of 35 au and 40.3 au.

3. MEAN PLANE MEASUREMENT

At first sight, it would seem reasonable to simply average the total inclination vectors of a group of KBOs to find

their mean plane. Stated more carefully, one could average the unit vectors normal to the orbit planes of the KBOs
to find the unit vector normal to their mean plane. However, without a complete or fair sample, the result of such a
calculation will reflect the biases of the observational surveys that produced the sample (Brown & Pan 2004; Elliot

et al. 2005; Volk & Malhotra 2017). Observational surveys not only have brightness limits, but surveys of the outer
solar system for KBOs also have limited and non-uniform coverage in ecliptic latitude and ecliptic longitude. The
resulting KBO samples will yield average planes biased toward the observed regions, whatever the true population

mean plane may be (vm17).
To mitigate the observational biases in catalogs of KBOs, Brown & Pan (2004) proposed that the unbiased mean

plane of the Kuiper Belt could be identified with the plane of symmetry of the vectors, vt, of KBOs’ space velocities
projected on the heliocentric celestial sphere; vt can be called the sky-plane velocity vector. The instantaneous unit

vector, v̂t, along the direction of a KBO’s sky-plane velocity vector can be computed from the KBO’s observational
data pertaining to its orbital plane and its position in the sky at some epoch, as follows. Denoting with ĥ the unit
vector normal to the orbit plane, and with r̂ the unit vector along the radial direction to the KBO’s heliocentric
position, then

v̂t = ĥ× r̂. (4)

The unit vector, ĥ is found from a KBO’s inclination and longitude of ascending node, i and Ω, and the unit vector
r̂ is found from its J2000 ecliptic latitude and ecliptic longitude, β and λ, follows,

ĥ=
(

sin i sin Ω,− sin i cos Ω, cos i
)
, (5)

r̂=
(

cosβ cosλ, cosβ sinλ, sinβ
)
. (6)

vm17 described a simpler implementation of the method of Brown & Pan (2004) for computing the mean plane of
a KBO sample from the sky-plane velocity vectors. The sky-plane velocity of a KBO orbiting exactly on the mean
plane will always be normal to the unit vector n̂ defining the normal to the mean plane, so that

n̂ · v̂t = 0. (7)
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The mean plane can then be computed as the plane whose orbit normal is most normal to the most KBO sky-plane
velocities, i.e., the plane that minimizes

S =
N∑
i=1

|n̂ · v̂t,i|. (8)

The function S may be minimized on a grid search in the (q, p) parameter space for a computationally simple, though
grid-dependent, method of finding the mean plane. That is, we search on a 700 x 700 grid with qmin = pmin = −0.35,
qmax = pmax = +0.35. The precision of the mean plane identification is limited by the grid spacing. With our choice
of grid, the precision of the pole position of the computed mean plane is . 0.1 degrees. This is small compared to
the confidence intervals that are computed later. The mean plane (q0, p0) is trivially converted to an inclination and
longitude of node (i0,Ω0).

Brown & Pan (2004) and vm17 showed, with simulations of biased synthetic samples, that this method of estimating
the midplane by using sky-plane velocity vectors substantially mitigates the systematic error and recovers the true
mean pole more reliably than simply averaging the orbit pole unit vectors. For example, when this method is applied
to a synthetic sample confined to only a small patch of the sky, it recovers the true mean pole whereas the average of
the unit pole vectors is systematically offset from the true mean pole (see, e.g., Fig. 8 in vm17). A present disadvantage
of this method is that the confidence limits of the measured mean plane are not straightforward to compute (discussed
in the next section). The performance of this method and its limitations and reliability with different survey designs
merit further exploration.

4. MEAN PLANE MEASUREMENT UNCERTAINTY

The method of measuring the mean plane as the plane of symmetry of the sky-plane motion vectors does not render
itself to a straightforward method for computing the measurement uncertainty. We follow the method of Brown &
Pan (2004) and vm17, who adopted a heuristic approach which assumes a statistical model of the intrinsic inclination

distribution rather than fitting for it, and constructs Monte Carlo simulations to generate synthetic samples which
approximately account for the biases in the observed sample. In brief, this approach is as follows. For a given
observational sample of NK non-resonant KBOs, we generate a new list of NK simulated objects. The simulated
objects are assigned orbital elements drawn randomly from a statistical model of their intrinsic distribution. Each

random draw is accepted or rejected by subjecting it to a comparison with the properties of the observed sample;
this approximately accounts for the selection biases in the observational data. With a simulated sample in hand,
we compute its mean plane, and repeat NR times with additional simulated samples. In this way, we generate the

statistics of the mean plane. We use the distribution of these NR Monte-Carlo-sampled mean planes to estimate the
68.2%, 95.4%, and 99.7% confidence error bars on the measured mean plane. A more detailed description of these
Monte Carlo simulations is given below.

In each of the NR simulated samples, the ith simulated object is found by first randomly selecting the jth real object
from the observational KBO sample, where j is an integer randomly selected from the discrete uniform distribution on
[1, NK ]. (How the objects are ordered, 1−NK , does not matter.) We then choose its semimajor axis ai randomly from
the continuous uniform distribution on [0.99aj , 1.01aj), and we choose its eccentricity ei randomly from the continuous
uniform distribution on [0.95ej , 1.05ej), so that the model population has approximately the same semimajor axis and
eccentricity distribution as the observed population.

The most important assumption is a model for the intrinsic distribution of free inclinations. Our current best
understanding of the intrinsic inclination distribution in the Kuiper Belt is found in estimates obtained from a few
well-characterized observational campaigns, such as the Canada-France Ecliptic Plane Survey (CFEPS, Petit et al.
(2011, 2017)) and the Outer Solar Systems Origins Survey (OSSOS, Bannister et al. (2018)). The data from these
surveys is more effectively debiased with the use of survey simulators. It is then fit to physically-motivated models for
the intrinsic inclination distribution function. These models use the Rayleigh distribution function, or a combination
of two Rayleigh distributions, one with a narrow width and one with a wider width, to accommodate models for
different dynamical classes of KBOs (e.g. Brown 2001; Petit et al. 2011). vm17 adopted these models for the intrinsic

distribution of free inclinations; we refer the reader to this paper for a detailed description. Van Laerhoven et al. (2019)
obtained debiased estimates with slightly updated data and reported very similar results for the intrinsic inclination
distribution models.
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For the purposes of our goal to test and update the results of vm17 with the larger current observational sample
of catalogued KBOs, we follow the choices made in that work for the functional form and parameters of the model
distribution of free inclinations. Thus, as in vm17, for semimajor axis bins above 50 au we draw free inclinations from
a Rayleigh distribution with scale parameter σ = sin 18◦; below 50 au, the free inclinations are drawn from a mixture
of two Rayleigh distributions with scale parameters σ1 = sin 3◦, σ2 = sin 13◦. If the selected jth real object has
inclination below 5◦ and a random number drawn from the continuous uniform distribution on [0,1) is less than 0.9,
we set σ = σ1, otherwise σ = σ2. vm17 used this rule to generate simulated objects approximately evenly split between
the low-inclination and high-inclination Rayleigh distributions. The longitude of ascending node of the free inclination
vector is drawn randomly from the continuous uniform distribution on [0, 2π). The total inclination vector of the
simulated object is then computed as the sum of this randomly generated free inclination vector and the inclination
vector of the mean plane of the NK objects in the observational sample, as computed in Section 3; that is,

(qi, pi) = (q0, p0) + (q1,i, p1,i), (9)

where (q0, p0) is the inclination vector of the mean plane of the NK observed objects and (q1,i, p1,i) is the randomly
generated free inclination vector. The remaining angular orbital elements – the mean anomaly and the argument of
pericenter – are each drawn randomly and independently from the continuous uniform distribution on [0, 2π). With all
the orbital elements of the simulated object in hand, we then compute its ecliptic latitude βi and ecliptic longitude λi.

Simulated objects are generated until there is exactly one simulated (βi, λi) pair for each (β, λ) pair in the observational
sample, where, as in vm17, an acceptable match is within one degree in β and within five degrees in λ. Unfortunately,
some objects (typically one or two per semimajor axis bin) are difficult to match in this manner. If an object has not
been matched after 107 random draws, we accept the following draw and move on to the next object. As explained in

vm17 and Brown & Pan (2004), this procedure of generating the synthetic samples by matching their sky locations to
those of the real observational sample approximately accounts for the selection biases present in the real observational
sample, subject to the key assumption that each patch of sky in ecliptic coordinates (where a real object is found)

has been thoroughly observed. It follows from this assumption that a true population will have the same number of
objects in each patch of sky as the observed catalog, and we roughly control for the brightness and magnitude biases
of the many surveys that comprise the entire KBO catalog by requiring the semimajor axis and eccentricity of each

synthetic object to be close to that of a real object.
Having generated NK simulated objects, we compute the mean plane of the simulated sample as described in Section

3. We repeat this procedure NR times, producing a set of simulated mean planes (q0,r, p0,r), where r is an integer from
1 to NR. We use the R command dataellipse to compute the 68.2%, 95.4%, and 99.7% covariance ellipses of the

set of simulated mean planes. We are now ready to produce uncertainty intervals for the inclination and longitude of
ascending node of the mean plane of the observational sample, i0 and Ω0. If these were independent quantities defined
on infinite domains, we would simply report low and high percentiles from the inclinations and longitudes of ascending

node of the NR synthetic mean planes, but both i0 and Ω0 have finite angular domains. Instead, we use the 68.2%
(95.4%, 99.7%) covariance ellipse from the simulated mean planes (q0,r, p0,r) and take the maximum and minimum
values of i0 and Ω0 on the ellipse as the 68.2% (95.4%, 99.7%) confidence intervals for the inclination and longitude of
node of the mean plane of the observational sample. If the covariance ellipse surrounds the origin in the (q, p) plane,
the confidence interval for Ω0 spans the entire circle, [0, 2π), and the confidence interval for i0 has its lower endpoint
at zero inclination. We also report a single number, σi, to describe the uncertainty of the pole position, in degrees, on
the celestial sphere, computed as

σi = arcsin
1

2
(a+ b), (10)

where a and b are the semimajor and semiminor axes of the 68.2% covariance ellipse of the simulated mean planes.
For each semimajor axis bin, NR = 40, 000 synthetic mean planes are computed, which is sufficient to get convergence

of the confidence intervals. Note that our grid search computes i0 and Ω0 to a precision of ∼ 0.1◦ and ∼ 1◦, respectively,
but our Monte Carlo procedure produces 68.2% confidence intervals of these parameters that are an order of magnitude
larger; the latter is the 1σ uncertainty of the measured mean plane.

5. SAMPLE SELECTION
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Laplace theory has been developed with the assumption that no two planets in the system are in mean motion
resonances with each other, and no test particle is in a mean motion resonance with any planet. Before the mean
plane of any observational population of KBOs can be computed for comparison with the Laplace surface, all resonant
KBOs must be identified and removed.

To identify the suitable sample of KBOs for which to calculate the mean plane, we first used the JPL Solar System
Dynamics Group’s Small Body Database Query to retrieve all asteroid-type (as opposed to comet-type) objects with
e < 1 and heliocentric semimajor axis constrained to 30 < a < 200 au. On 2023 February 20, this returned heliocentric
elements for 4149 objects. We eliminated all objects with fractional semimajor axis uncertainty σa/a > 5%, as well
as the eleven non-cometary objects where the semimajor axis uncertainty was unstated. Next, we downloaded the
MPCORB.DAT database from the MPC on 2023 February 20 and cross-referenced it against the Small Body Database
to eliminate all objects that have been observed for fewer than the three oppositions recommended by Gladman
et al. (2008) and eliminated all objects with cometary designations. For each of the remaining objects, we retrieved
barycentric elements at 2023 February 20 from JPL Horizons using the Python package Astroquery (Ginsburg et al.
2019). We then eliminated any remaining comets according to the criteria in Gladman et al. (2008), i.e. objects with
a Tisserand parameter of TJ < 3.05 and a perihelion of q < 7.35 au. Next, we enforced barycentric semimajor axis
limits of a < 150 au. We introduced a perihelion cutoff of q > 30.34 au (which is equal to the barycentric aphelion
distance of Neptune on 2023 February 20) to eliminate any remaining planet-crossing objects. We then eliminated
objects with barycentric a > 150 au. After the initial stages of sample selection, 2810 objects remained. We classified
the remaining objects as Resonant or non-Resonant as described below, and eliminated the Resonant objects from the

sample.
The defining property of a resonant object is the libration of its critical resonance angle. The generally accepted

method for identifying resonant KBOs in a sample population is to integrate the orbit of each KBO in an accurate
n-body integrator, including perturbations from all the planets, recording all the resonant angles of interest, and then

examine plots of the time series of the resonant angles by eye to look for persistent librations. The orbit must be
integrated long enough to detect the libration of the longest-period resonant angles. Standard resonance identification
methods, most notably that of Gladman et al. (2008), integrate for 10 Myr. For the longest-period angles, for angles

that librate over large fractions of the circle, or for objects that alternate between libration and circulation, it may
be difficult to distinguish resonant objects from non-resonant objects. Uncertainty in KBO orbital elements can also
complicate resonant classification.

The current count of KBOs with well-determined orbits to classify (2810 objects) is rather large for efficient classi-

fication by eye. When assigning resonant classification by eye, it is important to maintain mental consistency so that
objects at the beginning, middle, and end of the list receive the same scrutiny. Consistency of resonant evaluations
across the sample may be improved by repeatedly shuffling the sample and re-classifying the objects, then accepting

the most common classification for each object, or by deliberately evaluating each object according to a checklist of
features that can be seen by eye. If a checklist is to be used, however, it is faster, more reliable, and more reproducible
to automate the process by encoding those features in a classification algorithm (one example is Yu et al. (2018)). The

machine-classified objects may then be re-examined by eye to check for errors, if desired. Because new generations of
telescopes are expected to dramatically increase the number of known KBOs in the upcoming decade, it is desirable
to have an automated method to classify KBOs.

Smullen & Volk (2020) used the criteria of Gladman et al. (2008) to classify 2305 KBOs from the Minor Planet
Center (MPC) database as of 2016 October 20 after fitting new orbits to each object and integrating them for 10
Myr. They then used the Python machine learning package Scikit-Learn (Pedregosa et al. (2011)) to develop a
gradient boosting classifier for classification of KBOs as either Resonant, Classical, Detached, or Scattering, training
said classifier upon the orbits newly classified using the Gladman et al. (2008) criteria. Their code integrates a KBO
orbit from initial barycentric elements in the n-body integrator rebound (Rein & Liu (2012)) for 100 kyr and records
55 features of the orbit for use by the machine learning algorithm. Full details of the settings used for the machine
learning algorithm, and a full explanation and justification of the 55 recorded features, are given in their paper. This

machine learning classifier was demonstrated to reproduce with 97% accuracy the classifications of their testing sample
of 542 objects while using orbit integrations of only 1% the length of the 10 Myr standard. Smullen & Volk (2020)
posted user-friendly python sample code and training data to GitHub to allow other researchers to use their gradient
boosting classifier to classify KBOs by simply providing the barycentric orbital elements as inputs.
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Table 1. Sample Table of Non-Resonant KBOs.

MPC ID a (au) e i Ω ω M r (au) β λ

15760 43.9 0.07 2 359 3 36 41.5 2 43

15807 43.7 0.06 1 177 305 82 43.6 0 211

15874 83.4 0.58 24 218 185 10 39.1 -18 84

15883 47.0 0.21 19 127 301 76 46.6 12 166

16684 44.1 0.05 4 26 252 333 42.1 -2 247

Note—Non-Resonant KBOs from 34-150 au, from the JPL and MPC
databases as of 2023 February 20, in barycentric elements at the
epoch of 2023 February 20. All angles are given in degrees. a, e,
i, ω, M , and r are provided by JPL Horizons, and β and λ are
calculated from Eq. 6. The complete table is available online.

We downloaded the python sample code and training data (KBO features.csv) from the Smullen & Volk (2020)
GitHub repository. We used their gradient boosting classifier without modification, trained it on the same training

set they provided, exactly as in the sample code, and used it to classify our sample of 2810 KBOs remaining after the
down-selection procedure described above.

To account for orbital uncertainties, we used the JPL Small Body Database API (JPL Solar System Dynamics

Group 2022) to download a JSON file for each object to be classified. The JSON file contained a nominal heliocentric
orbital state, a 6x6 covariance matrix for the heliocentric orbit, and an epoch for the nominal orbit and the covariance
matrix. The heliocentric orbital elements and their covariance were given as e, q, tp,Ω, ω, i, i.e. eccentricity, perihelion

distance in au, time of perihelion passage (Julian date), longitude of the ascending node, argument of perihelion, and
inclination, where all angles are in degrees and referenced to the J2000 plane, and the epoch is a Julian date. JSON
covariances for two of the 2810 objects were unavailable, so we could only classify 2808 objects.

We generated 301 heliocentric orbital element sets for each object: the nominal orbit, and 300 clones from a Gaussian

distribution centred at the nominal orbit, from the given covariance. The mean anomaly for each orbital element set
was computed as the mean motion for the semimajor axis, times the elapsed time between the time of perihelion passage
and the epoch. We used Horizons to download heliocentric orbital elements for the giant planets at each epoch. For

each of 2808 objects, we then built 301 rebound simulations consisting of the outer planets at the appropriate epoch
and the orbital element set of the nominal orbit or the clone at the same epoch, treating the planets as massive particles
and the Kuiper belt object or the clone as a massless test particle.

Each rebound simulation was then classified as Classical, Scattering, Detached, or Resonant using the unmodified
Smullen & Volk (2020) gradient boosting classifier. Of the 2808 cloned objects, 1812 had zero clones classified as
Resonant, 304 had 1–300 clones classified as Resonant, and 692 had all 301 clones classified as Resonant. To be
absolutely sure no resonant objects contaminated our sample, we only accepted the 1812 objects for which no clones
were Resonant. Had we selected a different cutoff (50% Resonant clones), our sample size would have been 150 objects
larger. A further classification of the non-Resonant objects as Classical, Detached or Scattering was not needed for
our mean plane computations, so we did not further examine the classifications of the clones. Mean plane calculations
then proceeded using the nominal orbits of the remaining objects. The complete set of 1812 non-Resonant KBOs is
provided online. A small sample is shown in Table 1. Non-Resonant KBO counts are given by semimajor axis bin in
Table 2. This table also contains KBO counts by bin for vm17, for comparison. The online supplementary material
for this paper includes a ZIP archive with the JSON files that contain the JPL covariance matrix for each object.

Note that Table 1 is given for illustration only. Neither the low precision of the orbital elements in the printed
table nor the high precision of the elements in the electronic table represents the true statistical precision of the JPL

Horizons orbits. This is because the uncertainties reported in the JSON covariance matrix are not straightforwardly
related to the uncertainties of the orbital elements reported in Table 1. The JPL covariance matrix is given in a
different set of orbital elements that must be transformed to the standard set (q to a, tp to M). Table 1 also contains
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elements (r, λ, β) that are not linearly related to the standard set. Also, the JPL covariance matrix is given at a
different epoch for each object, and Table 1 reports the elements of each object at a common epoch. It is well known
that Gaussian uncertainty regions around a nominal orbit do not stay Gaussian as the nominal orbit is integrated
forward or backwards in time, although the deviation from Gaussianity is small for small elapsed times.

6. RESULTS AND DISCUSSION

With the non-Resonant objects identified as in Section 5, and following the mean plane calculation method described
in Section 3, and its confidence interval calculation method described in Section 4, the mean planes and confidence
intervals we found are shown in graphical form in Figures 2-4, and tabulated in Table 2.

In Figure 2, the left panel shows the results for the classical Kuiper belt (42-48 au, 1242 objects), the center panel
shows the results for the entire Kuiper belt (35-150 au, 1812 objects), and the right panel shows the results for the
entire Kuiper belt with the classical region excluded (570 objects). The best-fit mean plane is shown as a dark green +,
and the 68.2%, 95.4%, and 99.7% confidence ellipses are also indicated in dark green. For comparison, the semimajor
axis-dependent Laplace surface (from linear secular theory as developed in Murray & Dermott (1999), recomputed
with updated planetary parameters for the epoch 2023 February 20) is indicated in blue. For context, we also indicate
the location of the invariable plane with a black x. The J2000 ecliptic/equinox pole is located at the origin. We observe
that the classical region dominates the results: when it is removed, i0 is nearly unchanged, but Ω0 shifts by +67◦, and
the dispersion σi of the synthetic mean planes more than doubles.

In Figure 3, we plot the results for the mean planes computed at higher resolution in semimajor axis: each panel
shows the results for a single semimajor axis bin from Table 2. As in Figure 2, we plot the measured mean plane
and its uncertainty distribution, and indicate the invariable plane, and the Laplace surface. In these panels, we also

indicate the best-fit mean plane from vm17 as a magenta +, with the 68.2% confidence ellipses from vm17 in magenta
and with estimated 95.4% and 99.7% confidence ellipses scaled from the 68.2% ellipses. Note that the Laplace surface
appears as a very concentrated set of dots in most panels, but in panels (a) and (b) it is an extended quasi-linear set
of dots owing to the warps caused by the ν17 and the ν18 secular resonance, respectively. As a increases from the lower

boundary of each semi-major axis bin to its upper boundary, the Laplace surface traces these paths: in panel (a), the
trace begins from the left, at high i and Ω ≈ 120◦, passes near the origin with i ≈ 1.8◦, and exits to the lower right;
in panel (b), the trace begins at the upper right and approaches the invariable plane.

Our results for the mean plane inclination and longitude of node, and their 68.2% confidence intervals for each
semimajor axis bin are tabulated in Table 2. These are also plotted in Figure 4 as a function of semimajor axis. The
best-fit mean plane results are in green, where the horizontal error bars indicate the width of the semimajor axis bin

and the vertical error bars indicate the 68.2% confidence interval. For comparison, we plot the Laplace surface (varying
with semimajor axis) in blue and the invariable plane is indicated by the black horizontal line. We also indicate the
results of vm17 in magenta (with a small horizontal offset, for legibility).

Is the measured mean plane consistent with the Laplace surface or with the invariable plane? For the classical
Kuiper Belt from 42-48 au, we find the mean plane of 1242 objects as i0 = (1.6◦)+0.3

−0.4, Ω0 = (82◦)+8
−14. For the entire

belt from 35-150 au, we find the mean plane of 1812 objects as i0 = (1.6◦)+0.2
−0.4, Ω0 = (82◦)+8

−14. When we exclude
the classical region, we find the mean plane of 570 objects as i0 = (1.7◦)+0.4

−1.0, Ω0 = (149◦)+39
−15. In all three cases, this

is close to the invariable plane (respectively within 0.7◦, 0.6◦, and 1.2◦), but distinguishable from it at greater than
99.7% confidence, as evident in Figure 2.

We do not comment on any distinction between the measured mean plane and the Laplace surface for these broad
ranges, as the changing location of the Laplace surface renders the question ill-formed, but we can answer this question
for the smaller semimajor axis bins. In Table 3, we tabulate simple acceptance/rejection decisions with respect to the

invariable plane and the Laplace surface for each semimajor axis bin. At the 99.7% confidence level, we can only reject
the invariable plane or the Laplace surface for the bins 40.3-42, 45-48, and 45-50 au. In each of those bins, we reject
both planes. Elsewhere, both planes are consistent with the sample population.

The discrepancy between the theoretically expected Laplace surface and the measured mean plane in the 40.3-42
au bin may arise from inaccuracies of the linear theory for the theoretical estimate of the strong warp in proximity to
the ν8 secular resonance. In the case of the 45-48 au and 45-50 au bins, we note that both these bins are in proximity
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Figure 2. Kuiper Belt mean plane and its confidence ellipses in the (q, p) plane, by semimajor axis bin. Semimajor axis bins
are (a) the classical belt from 42-48 au, (b) the entire belt from 35-150 au, and (c) the entire belt minus the classical region.
The best-fit mean plane is the dark green +. The mean planes of 40,000 Monte-Carlo samples are in light green, and the 68.2%,
95.4%, and 99.7% covariance ellipses for them are in dark green. The J2000 ecliptic/equinox pole is at the origin. The invariable
plane is the black x. The theoretical prediction (from linear secular theory) for the Laplace surface as a function of semimajor
axis is plotted in blue. More details are given in the main text.

Table 2. Measured Kuiper Belt Mean Plane

Semimajor axis bin, au Count Count (vm17) i0 (deg) Ω0 (deg) σi (deg)

35-40.3 92 43 3.0+1.8
−2.3 121+25

−37 1.59

40.3-42 164 82 4.1+2.3
−0.9 272+17

−12 1.40

42-43 207 100 1.6+0.8
−0.7 64+24

−46 0.81

43-44 360 186 2.1+0.6
−0.6 96+11

−15 0.54

44-45 273 141 1.8+0.6
−0.7 85+15

−22 0.59

45-48 402 194 1.3+0.7
−0.4 3+25

−31 0.60

45-50 440 217 1.4+0.8
−0.4 355+22

−26 0.59

50-80 221 125 2.0+3.2
−2.0 114+246

−114 4.02

50-150 276 162 4.1+3.1
−4.1 138+222

−138 3.66

Total (35-150) 1812 931 1.6+0.2
−0.4 82+6

−15 0.28

Classical (42-48) 1242 617 1.6+0.3
−0.4 82+8

−14 0.31

Total-Classical 570 314 1.7+0.4
−1.0 149+39

−15 0.65

Note—The best-fit and 68.2% confidence intervals of the measured mean plane’s
ecliptic inclination, i0, and longitude of ascending node, Ω0, and the uncertainty of
the pole position, σi.

to Neptune’s 2:1 mean motion resonance but the theoretical Laplace surface does not account for the effects of mean
motion resonances.

Because our methodology closely follows that of vm17 and our main motivation was to test the reproducibility of

their results with the updated sample of KBOs, we comment in some detail on the comparisons between those results
and ours. In general, the results reported here have smaller measurement uncertainties of the mean pole positions
than those in vm17, due to the larger sample sizes now available.

• In the 35-40.3 au bin (Figure 3a), almost our entire 99.7% confidence ellipse falls within their 68.2% confidence
ellipse. While our 68.2% confidence ellipse is small enough to uniquely identify Ω0 at that level of confidence,
our 99.7% ellipse surrounds the origin so we cannot report a unique Ω0 at the higher confidence level.
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Figure 3. Kuiper Belt mean plane and its confidence ellipses in the (q, p) plane, by semimajor axis bin. Semimajor axis bins
are (a) 35-40.3 au, (b) 40.3-42 au, (c) 42-43 au, (d) 43-44 au, (e) 44-45 au, (f) 45-48 au, (g) 45-50 au, (h) 50-80 au, and (i)
50-150 au. The best-fit mean plane is the dark green +. The mean planes of 40,000 Monte-Carlo samples are in light green, and
the 68.2%, 95.4%, and 99.7% covariance ellipses for them are in dark green. The J2000 ecliptic/equinox pole is at the origin.
The invariable plane is the black x. The best-fit mean plane from vm17 is the magenta +. The theoretical prediction (from
linear secular theory) for the Laplace surface as a function of semimajor axis is plotted in blue. More details are given in the
main text. The 68.2%, 95.4%, and 99.7% covariance ellipses from vm17 are plotted in magenta. Each subplot has the same
scale, showing that increased sample size does reduce mean plane uncertainty: in each semimajor axis bin, we have more objects
and smaller covariance ellipses than vm17, and the more heavily populated semimajor axis bins on the second row have smaller
covariance ellipses than the less heavily populated bins on the first row. The larger covariance ellipses on the third row, above
50 au, reflect the wider model inclination distribution used for those bins.

• In the 40.3-42 au bin (Figure 3b), our 68.2% confidence ellipse falls mostly outside theirs and is closer to the
origin, resulting in a similar 68.2% confidence interval for Ω0 but a distinctly different (and lower) estimate and
interval for i0. Our results are closer to the Laplace surface than theirs, but still differ from the Laplace and
invariable planes by more than 99.7% confidence. With future increases in the size of KBO samples, splitting
this bin into two or more narrower semimajor axis ranges could enable higher precision comparisons of the

measured and predicted Laplace surface within the constraints of the existing theory. Without splitting the bin,
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Table 3. Statistical significance of the measured mean plane compared to the Invariable Plane (IP)
and Laplace surface (LS)

Semimajor axis bin, au IP, 68.2% IP, 95.4% IP, 99.7% LS, 68.2% LS, 95.4% LS, 99.7%

35-40.3 X X X X X X

40.3-42 ... ... ... ... ... ...

42-43 ... ... X X X X

43-44 ... X X X X X

44-45 ... X X X X X

45-48 ... ... ... ... ... ...

45-50 ... ... ... ... ... ...

50-80 X X X X X X

50-150 X X X X X X

Total (35-150) ... ... ... X X X

Classical (42-48) ... ... ... X X X

Total-Classical ... ... ... X X X

Note—Acceptance/rejection decisions for invariable plane and Laplace surface compared to the mea-
sured mean plane in each semimajor axis bin. Checks are accepted, ellipses are rejected. A check
indicates that the 68.2% (95.4%, 99.7%) confidence ellipse of the measured mean plane pole for the
semimajor axis bin contains the pole of the invariable plane, or it contains the pole of the Laplace
surface for any semimajor axis within the boundaries of the bin. An ellipsis indicates the contrary.

the ν18 secular resonance warps the Laplace surface so strongly with semimajor axis that a second-order theory

is necessary for accurate predictions.

• In the 42-43, 43-44, and 44-45 au bins (Figure 3c, d, e), our measured mean planes fall within their 68.2%
covariance ellipses, and we produce overlapping, though smaller, 68.2% confidence intervals.

• In the 45-48 and 45-50 au bins (Figure 3f, g), our measured mean planes again fall within their 68.2% covariance
ellipses, but our 95.4% and 99.7% covariance ellipses are small enough that, unlike vm17, we reject the Laplace
surface and invariable plane at all three confidence levels. These bins are close to Neptune’s 2:1 outer mean

motion resonance.

• Most strikingly, we do not detect the strong warp vm17 reported for the distant Kuiper Belt near a > 50 au
(Figure 3h, i). In the 50-80 and 50-150 au bins, the Laplace surface and invariable plane are both within 2.9◦ of

our measured mean planes, and fall within our 68.2% covariance ellipses, while for vm17 they are more than 6◦

away from the measured mean planes and fall near the 99.7% covariance ellipses.

We cannot currently rule out the invariable plane, the Laplace surface, or even the ecliptic plane as the mean
plane of the Kuiper belt in this region at even the 68.2% confidence level. We note that our sample size in this
region is 272, which is 70% larger than vm17’s sample. Although the best-estimate of the mean plane of the
distant Kuiper belt differs by more than 2σ in the two studies, there is significant overlap of the 3σ confidence
ellipses of our and their measurements. Larger sample sizes in the future would help to better understand
this region by reducing the measurement uncertainties. If we assume, as a rule of thumb, that the size of the
uncertainty ellipse varies with the sample size as ∼ N−1/2, then reducing the measurement uncertainty by a
factor of 2–3 will require a sample size 4–9 times as large. This is likely to be achieved over the next decade as
the Vera C. Rubin Observatory carries out the Legacy Survey of Space and Time (LSST, Ivezić et al. 2019).

We briefly comment on comparisons of our results with those of other previous studies.

• Chiang & Choi (2008) computed the Kuiper Belt mean plane and its uncertainty for 10 objects with 38.09 < a <
39.10 au, e < 0.1, and ecliptic inclination i < 10◦, and for 80 objects with 42.49 < a < 43.50 au and the same
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eccentricity and inclination cutoffs. They did not rule out either the Laplace surface or the invariable plane as
the true Kuiper Belt plane for those two specific semimajor axis ranges with greater than 3σ (99.7%) confidence.

When we impose the same eccentricity and inclination restrictions on our sample, we respectively obtain 47 and
347 objects in these semimajor axis ranges. When we compute the mean plane and its uncertainty for these
samples, we do not rule out the Laplace surface at any confidence level for either sample, and we do not rule
out the invariable plane for either sample at a confidence level above 68.2%. Removing the eccentricity and
semimajor axis cutoffs adds no objects to either semimajor axis range, and does not change the outcome.

• Van Laerhoven et al. (2019) computed the plane of the cold classical Kuiper Belt, with uncertainties, for 107
objects in the 42.4-43.8 au bin, 82 objects in the 43.8-44.4 au bin, and 67 objects in the 44.4-47 au bin, where
a cold object was defined as having an inclination of 4◦ or less relative to the Laplace surface at the center of
the semimajor axis bin (i.e. 43.1 au for the 42.4-43.8 au bin). They computed the Kuiper belt plane and its
uncertainties for an unspecified number of hot classical objects between 42.4-47 au, where a hot object has an
inclination of 9◦ or more relative to the Laplace surface at 44.7 au. They repeated the computations, without
inclination restrictions, for 57 objects in the 50-80 au bin and for 83 objects in the 48-150 au bin. In the 42.4-
43.8 au and 43.8-44.4 au bins of cold objects, they rejected the invariable plane but not the Laplace surface at
99% confidence. In the 44.4-47 au bin of cold objects, the 42.4-47 au bin of hot objects and the higher–a bins
(a > 47 au), they rejected neither the invariable plane nor the Laplace surface at 99% confidence.

When we impose the same semimajor axis and inclination restrictions on our sample, we find 450 cold objects in
the 42.4-43.8 au range, 284 cold objects in the 43.8-44.4 au range, and 444 cold objects in the 44.4-47 au range.

We find 1178 hot objects in the 42.4-47 au range, and 314 total objects in the 48-150 au range. In each case, our
sample sizes are larger than Van Laerhoven et al. (2019)’s by factors of three or more. In the 42.4–43.8 au bin
of cold objects, we reject the invariable plane at 95.4% confidence but do not reject the Laplace surface at any
confidence level. In the 43.8-44.4 au bin of cold objects, we reject the invariable plane at 68.2% confidence but

do not reject the Laplace surface at any confidence level. These results are similar to those shown for nearby
semimajor axis bins in Figure 3. In the 44.4-47 au bin of cold objects, we reject neither the invariable plane nor
the Laplace surface at any confidence level. In the 42.4-47 au bin of hot objects, we reject both the invariable

plane and the Laplace surface (for 44.7 au, the center of the bin) at well above 99.7% confidence. As previously
noted, for the higher-a bins we reject neither the invariable plane nor the Laplace surface at 95.4% confidence.

Our results for the cold population agree with those of Van Laerhoven et al. (2019), but we reject at high
confidence both the invariable plane and the Laplace surface for the hot objects in the 42.4-47 au range where
they rejected neither. Our simulated mean planes in that bin are tightly clustered around our observed mean
plane, while theirs were tightly clustered around the invariable plane. We suspect that this discrepancy is

explainable by our much larger sample size; perhaps the mean plane of their much smaller sample was located
much closer to the invariable plane.

• Brown & Pan (2004) rejected the invariable plane at the 3σ (99.7%) confidence level for the Kuiper Belt as a
whole. We also reject it for the entire belt between 35-150 au.

• Elliot et al. (2005) rejected the Laplace surface at the 1σ (68.2%) confidence level for 85 “Classical” objects in
the range 37.9 < a < 47.0 au. In their definition, a Classical object is a non-Resonant object with e ≤ 0.2 and a
Tisserand parameter relative to Neptune of TN > 3.

When we impose the same eccentricity and Tisserand restrictions on this semimajor axis range, we obtain 1507
objects. When we compute the mean plane and its uncertainty for these 1451 objects, we reject the invariable
plane at 99.7% confidence but do not reject the Laplace surface at any confidence level. Removing the eccentricity
and Tisserand cutoffs adds no objects to the semimajor axis range, and does not change the outcome.

We close with the observation that future increases in the sample sizes of outer solar system minor planets will
enable higher confidence results in measurements of the Kuiper Belt mean plane, and should be examined for their
potential to detect the effects of unseen distant planets or other unmodeled perturbations.

We thank Aaron Rosengren, James Keane, and especially Kathryn Volk for correspondence, comments, and sample
code. We acknowledge funding from the NSF (grant AST-1824869) and from the JPL SURP and SIP student support
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Figure 4. Kuiper Belt mean plane and 68.2% confidence intervals by semimajor axis bin. The mean planes and confidence
intervals from this work are in green, and those from vm17 are in magenta. For the sake of readability, the vertical magenta
and green lines have been slightly offset from each other in semimajor axis when they would otherwise overlap. The theoretical
prediction for the Laplace surface as a function of semimajor axis is plotted in blue. The invariable plane is indicated by the
horizontal black line.

programs. We also thank the anonymous reviewer and the data editor and statistics editor for their comments,

questions, and advice.

Software: astroquery (Ginsburg et al. 2019), rebound (Rein & Liu 2012), scikit-learn (Pedregosa et al. 2011), shapely
(Gillies et al. 2007–), KBO classifier (Smullen & Volk 2020)
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