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ABSTRACT

The most distant known trans-Neptunian objects (perihelion distance above 38 au and semimajor
axis above 150 au) are of interest for their potential to reveal past, external, or present but unseen
perturbers. Realizing this potential requires understanding how the known planets influence their
orbital dynamics. We use a recently-developed Poincare mapping approach for orbital phase space
studies of the circular planar restricted three body problem, which we have extended to the case of the
three-dimensional restricted problem with N planetary perturbers. With this approach, we explore the
dynamical landscape of the 23 most distant TNOs under the perturbations of the known giant planets.
We find that, counter to common expectations, almost none of these TNOs are far removed from
Neptune’s resonances. Nearly half (11) of these TNOs have orbits consistent with stable libration in
Neptune’s resonances; in particular, the orbits of TNOs 148209 and 474640 overlap with Neptune’s 20:1
and 36:1 resonances, respectively. Five objects can be ruled currently non-resonant, despite their large
orbital uncertainties, because our mapping approach determines the resonance boundaries in angular
phase space in addition to semimajor axis. Only three objects are in orbital regions not appreciably
affected by resonances: Sedna, 2012 VP113 and 2015 KG163. Our analysis also demonstrates that
Neptune’s resonances impart a modest (few percent) non-uniformity in the longitude of perihelion
distribution of the currently observable distant TNOs. While not large enough to explain the observed
clustering, this small dynamical sculpting of the perihelion longitudes could become relevant for future,
larger TNO datasets.

Keywords: Trans-Neptunian objects, Resonant Kuiper belt objects, Detached objects, Orbital reso-

nances, Celestial mechanics

1. INTRODUCTION

There has been much recent discussion about the or-
bits of the most distant set of observed trans-Neptunian
objects (TNOs) and whether or not they offer evidence
for an as-yet-undetected outer solar system planet (e.g.,
Trujillo & Sheppard 2014; Batygin & Brown 2016; Mal-
hotra et al. 2016; Madigan & McCourt 2016; Shankman
et al. 2017a,b; Napier et al. 2021; Brown & Batygin
2021; Bernardinelli et al. 2022). The orbits of TNOs
that are dynamically ‘detached’ from strong interactions
with Neptune and the other giant planets are of partic-
ular interest in looking for signs of undiscovered distant
perturbers. The orbital distribution of the detached
TNOs could also record long-gone perturbers such as
rogue planets ejected from the early solar system (e.g.
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Gladman & Chan 2006), past strong external pertur-
bations such as close encounters between stars and the
solar system (e.g. Kaib et al. 2011; Brasser et al. 2012),
or details such as the ‘graininess’ of Neptune’s migration
to its current orbit (e.g. Kaib & Sheppard 2016; Lawler
et al. 2019). However, identifying the ‘detached’ ob-
jects is fraught with ambiguities. Many of the observed
TNOs with very long orbital periods, i.e., with large
semimajor axes a, belong to the scattering population
(see, e.g., Gladman et al. 2008 for commonly used defini-
tions of TNO dynamical classes). Most of these scatter-
ing objects have perihelion distances ¢ < 37— 38 au, low
enough to cause relatively strong gravitational pertur-
bations from Neptune. In general, the larger the value of
a, the larger the value of ¢ below which planetary per-
turbations induce a significant random walk in a over
the age of the solar system (see, e.g., discussion in Ban-
nister et al. 2017; Gladman & Volk 2021). TNOs with
larger ¢ that do not experience significant changes in a
over time due to the known giant planets are more likely
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to preserve signatures of other perturbers. However,
the potential for mean motion resonances (MMRs) with
Neptune out to high a and high ¢ complicates whether
an object can truly be considered as detached. Secular
resonances within these MMRs can induce long-term os-
cillations in eccentricity that could bring an object close
enough to experience scattering at some future epoch
even if its current perihelion distance appears out of
reach (see, e.g., Gomes et al. 2005).

In previous work, different authors have used different
cuts in @ and ¢ (a = 150 — 250 au and ¢ = 30 — 45 au)
in an attempt to isolate TNOs that are not strongly
dynamically influenced by the giant planets, but these
cuts are often not robustly motivated and thus fairly
arbitrary. To determine which of these TNOs are ‘de-
tached’ from the giant planets, some works have taken
the approach of integrating the orbits of objects meet-
ing these rough cuts in a and g over long timescales (up
to several Gyr; e.g., Batygin et al. 2019) to look for
mobility in semimajor axis, keeping only objects with
relatively stable orbits. However these analyses do not
fully account for orbital semimajor axis uncertainties,
which can be as large as several au even for objects ob-
served over many oppositions, and do not adequately
assess the potential for resonant interactions with Nep-
tune. Classification schemes that do adequately search
for resonant behavior amongst potentially detached ob-
jects (e.g. Gladman et al. 2008) are often limited to
shorter integration timescales (~ 10Myr) and a sparse
sampling of the orbital uncertainties.

Our goal in this paper is to develop a more rigor-
ous method to identify detached objects in the observed
TNO population. Our approach is based on a recently
developed implementation of Poincaré return maps of
the planar circular restricted three body model (Wang &
Malhotra 2017; Lan & Malhotra 2019; Malhotra 2022).
We extend this method to the restricted case of the
three-dimensional N-body model to explore the dynami-
cal landscape near the most distant observed TNOs un-
der the influence of the known giant planets. Under-
standing the dynamical landscape around the observed
objects allows us to understand the likelihood of differ-
ent dynamical states even for TNOs with large or poorly
characterized orbital uncertainties. The rest of this pa-
per is organized as follows. In Section 2, we list the or-
bital data of the known TNOs under consideration and
introduce the motivation for our approach with Poincaré
return maps rather than direct integration of the (quite
uncertain) observed orbits. In Section 3, we describe the
methodology of computing the Poincaré return maps to
explore the dynamical neighborhood of each of the ob-
served TNOs (expanded upon in Appendix A) and our

resulting determination of the role (or lack thereof) of
Neptune’s distant resonances in their long term evolu-
tion. In Section 5, we discuss the implications of these
results for future studies of the distant solar system.

2. ORBITAL DATA OF OBSERVED DISTANT
OBJECTS

We use three main sources of orbital data for TNOs,
the database at the Minor Planet Center (MPC)!, the
JPL small body browser 2, and JPL Horizons®. To con-
struct the list of TNOs we consider in this paper, we
started with the list of all objects in the MPC database
as of October 12, 2021 that meet the following crite-
ria: heliocentric perihelion distance ¢ > 38 au and semi-
major axis a > 150 au. We then use the JPL small
body browser to limit the list to only those objects with
semimajor axis uncertainties da < 10 au. Finally, we
then use JPL Horizons to determine the TNOs’ barycen-
tric orbital elements, keeping only objects with barycen-
tric perihelion distance ¢ > 38 au and semimajor axis
a > 150 au (for outer solar system objects, barycentric
elements are much more dynamically relevant than he-
liocentric ones; see, e.g., Gladman et al. 2008; Gladman
& Volk 2021). We choose these cutoffs in order to ob-
tain a generous and inclusive sampling of the objects
that have been considered ‘extreme’ in the literature.
The ¢ > 38 au boundary excludes most objects expe-
riencing strong scattering from Neptune on megayear
timescales. (However, as we will see, it does not ex-
clude objects that may have moderate mobility in or-
bital energy/semi-major axis on long timescales.) Our
lower boundary in @ matches some of the lower-a cuts
in the literature (e.g. Trujillo & Sheppard 2014; Malho-
tra et al. 2016; Bernardinelli et al. 2020) to ensure our
list of TNOs is inclusive. The resulting list of TNOs
are given in Table 1, where we list their primary des-
ignation, their barycentric orbital elements at the time
of perihelion, and JPL’s estimate of the 1-o uncertainty
in each TNO'’s heliocentric semimajor axis (none of the
available databases give both a barycentric orbit fit and
an uncertainty, forcing us to mix coordinate systems;
orbital uncertainties are discussed further below).

A significant source of the uncertainty in an observed
TNO’s orbit is the fact that their orbital periods are
extremely long compared to the timespan over which
they have been observed (~ 5 — 10 years for most of the
objects in Table 1). Determining an object’s semimajor
axis requires determining its orbital energy, including its

L https://www.minorplanetcenter.net /db_search
2 https://ssd.jpl.nasa.gov/tools/sbdb_lookup.html
3 https://ssd.jpl.nasa.gov/horizons/app.html
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Table 1. The sample of TNOs investigated in this work.

object a da q e ) w Q| T, P
designation (au) | (au) | (au) ()| (| ()| (o)D) (0)
2015 KG163 679.8 5.1 | 40.49 | 0.9404 | 13.99 32.1 | 219.1 | 2459754.81 | 256.9
90377 Sedna® | 506.4 | 0.17 | 76.19 | 0.8495 | 11.93 | 311.3 | 144.4 | 2479347.99 | 345.2
2013 RA109° 463.0 2.1 | 46.01 | 0.9006 | 12.40 | 262.9 | 104.8 | 2454266.49 46.7
2015 RX245° 423.7 5.2 | 45.55 | 0.8925 | 12.14 65.1 8.6 | 2475608.68 | 345.4
2016 SD106* 350.2 | 3.8 | 42.70 | 0.8781 | 4.81 | 162.6 | 219.4 | 2464562.83 | 359.6
2010 GB174° 348.7 | 7.3 | 48.59 | 0.8606 | 21.56 | 347.3 | 130.7 | 2433928.47 | 279.2
474640° 327.7 | 1.7 | 47.32 | 0.8556 | 25.55 | 327.0 | 66.0 | 2455064.31 | 67.4
2013 SL102 314.5 | 0.75 | 38.13 | 0.8788 | 6.50 | 265.5 | 94.7 | 2455323.11 | 32.8
2015 GT50 311.2 | 2.5 |3841 | 0.8765 | 8.79 | 129.0 | 46.1 | 2451595.57 | 229.8
2013 FT28° 291.7 1.6 | 43.50 | 0.8509 | 17.38 40.7 | 217.7 | 2473469.28 | 182.1
2014 WB556 280.4 1.1 ] 42.70 | 0.8477 | 24.16 | 235.3 | 114.9 | 2451283.61 46.8
2012 VP113°* 261.9 1.5 | 80.52 | 0.6926 | 24.05 | 293.9 90.8 | 2443932.38 | 126.4
2016 SA59* 245.0 | 0.6 | 39.09 | 0.8456 | 21.50 | 200.2 | 174.6 | 2453106.10 | 60.8
148209° 222.0 0.6 | 44.12 | 0.8012 | 22.76 | 316.7 | 128.3 | 2438857.48 | 216.6
505478 200.2 | 0.8 | 43.92 | 0.7806 | 10.65 | 252.1 | 192.0 | 2476000.65 | 353.4
2003 SS422 190.7 | 0.7 | 39.59 | 0.7924 | 16.80 | 206.8 | 151.1 | 2454394.39 | 35.9
2015 UN105* 185.0 2.2 | 41.41 | 0.7761 | 37.02 | 231.5 | 129.4 | 2453134.01 46.4
2016 QV89 171.62 | 0.08 | 39.95 | 0.7672 | 21.39 | 281.1 | 173.2 | 2469915.13 39.8
2018 AD39 165.8 7.6 | 38.67 | 0.7668 | 19.77 | 49.22 | 330.1 | 2428376.33 | 213.1
506479 159.6 | 0.35 | 38.10 | 0.7613 | 15.50 10.8 | 197.9 | 2454873.70 | 243.6
2005 RH52 153.7 | 0.18 | 39.00 | 0.7463 | 20.45 32.5 | 306.1 | 2452802.96 26.1
2015 KH163 153.0 | 0.58 | 39.94 | 0.7390 | 27.14 | 230.8 67.6 | 2471713.22 | 233.0
2013 GP136 150.2 | 0.19 | 41.04 | 0.7268 | 33.54 42.6 | 210.7 | 2465015.57 | 227.6

NoTE—The listed orbital elements are barycentric elements in the J2000 reference frame at the time of perihelion passage (Tp;
last column) as given by JPL Horizons (https://ssd.jpl.nasa.gov/horizons.cgi); da is the 1o uncertainty in the heliocentric a
from the JPL small bodies database browser (https://ssd.jpl.nasa.gov/sbdb.cgi). Data was retrieved August 30, 2021 for all
objects except the three denoted with *, which were retrieved October 12, 2021. Objects denoted with e are those that overlap
with the TNO sample considered by Brown & Batygin (2021) for their constraints on the unseen Planet Nine (see Section 4).

kinetic energy, i.e., velocity. A TNO’s long orbital pe-
riod means that the line-of-sight between the observer
and the TNO changes slowly, which means that the ob-
servational constraint on the line-of-sight component of
the velocity takes longer to constrain than for inner so-
lar system objects, especially if the TNO is only ob-
served near opposition (see discussion in, e.g., Bernstein
& Khushalani 2000). In addition to uncertainties due
to observational arc length, the uncertainties in the ob-
servationally measured astrometric positions contribute
to the orbit-fit uncertainties. Random errors in the as-
trometry are, in principle, relatively easy to quantify
and propagate; however these errors are not reported
in the astrometry databases and so must be estimated.
Moreover, there are also systematic errors in the astrom-
etry (such as stellar catalog errors) that are more diffi-
cult to quantify and account for (see, e.g., discussion in

Gladman et al. 2008). Different orbit fitting techniques
also yield different orbital uncertainty estimates. Thus
it is very difficult to provide a precise accounting for the
orbit-fit uncertainties of any given TNO.

We examine the orbit of TNO 2013 SL102 to show a
typical example of the range of estimated orbit-fit un-
certainties for a single TNO. In Table 2, we give orbit
fits and uncertainties for 2013 SL102 from two com-
monly used orbit databases and two orbit fitting soft-
ware packages. We list best-fit a values and 1-0 uncer-
tainties from the JPL small body database browser and
the AstDys-2 database* as well as from the Bernstein
& Khushalani (2000) orbit fitting software package; for
comparison to each of these orbit fits, we also used the

4 https://newton.spacedys.com /astdys/
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Table 2. An example range of best-fit semimajor axis and un-
certainties for 2013 SL102

source a da da/a coordinate | epoch
(au) (au) | x107% | system (JD)

JPL 337.88 | 0.75 | 2.2 heliocentric | 2459396.5

Find_ Orb | 337.75 | 0.51 | 1.5 heliocentric | 2459396.5

AstDys-2 | 332.36 | 1.01 | 3.0 heliocentric | 2459200.5

Find Orb | 332.24 | 0.49 | 1.5 heliocentric | 2459200.5

Find Orb | 314.33 | 0.44 | 1.4 barycentric | 2456563.6

NoTeE—The best-fit and 1-0 uncertainties in 2013 SL102’s semi-
major axis take from JPL (https://ssd.jpl.nasa.gov/sbdb.cgi),
AstDys-2 (https://newton.spacedys.com/astdys/), and fit us-
ing the Bernstein & Khushalani (2000) orbit fitting code. For
each epoch, we also used the online version of Find orb (https:
//www.projectpluto.com/fo.htm) to produce a comparison fit
and uncertainty in the same reference frame. Note the wide
range in estimated uncertainties and the fact that the best-fit
a value can differ by up to 50% of the 1-c a range when using
different fitting procedures. These relatively discrepant uncer-
tainty estimates are typical for distant TNOs.

online Find Orb orbit-fitting software® to produce an
orbit-fit for the same epoch in the same coordinate sys-
tem. All the orbits in Table 2 were fit using the same
29 astrometric measurements from observations of 2013
SL102 (taken from the MPC) spanning a 3.2 year arc.
Note that the large change in heliocentric a between
the JPL and AstDys-2 fits is due to Jupiter’s influence
on the Sun’s position and velocity in the two different
epochs; barycentric a values (such as given by the Bern-
stein & Khushalani 2000 software and barycentric fits
from Find Orb) do not suffer from this volatility. The
1-0 uncertainty estimates for a range from 0.23-1 au
(daja = (0.7—3) x 1073), a factor of ~ 4; note also that
the best-fit value of a can differ by up to 50% of the
1-0 uncertainty between different orbit fits for the same
epoch. This illustrates why we prefer to take a mapping
approach (described in more detail in the next section)
in this work, rather than rely on any specific orbit fit and
uncertainty estimate to determine the range of orbital
phase space to investigate. In addition to illustrating
the dynamical regime near an observed orbit, including
extending past the current estimated orbital uncertain-
ties, these maps will also be useful for reference against
future improved orbit fits.

5 https://www.projectpluto.com /fo.htm

3. NUMERICAL INVESTIGATION OF DYNAMICS
NEAR THE OBSERVED OBJECTS

To explore the range of possible dynamical evolution
of observed TNOs, previous studies have carried out long
timescale (typically 10 Myr) N-body orbit integrations
of many clones of each object’s orbit generated with
initial conditions within its orbit-fit uncertainties (e.g.,
Gladman et al. 2008). Here we take a different approach:
we make maps of the dynamical neighborhood of each
TNO by constructing Poincaré return maps of a bundle
of orbits in proximity to a TNO’s orbit. Resonances can
be clearly identified in these maps using quite short in-
tegrations (< 1Myr); we have extended our integrations
to typical timescales of 5-10 Myr to identify relatively
stable libration zones (discussed further below). As we
will show, a relatively sparse sampling of initial orbits
is required to derive a useful picture of the nearby dy-
namical landscape. We take advantage of the fact that,
for most TNOs, some orbital parameters (such as the
inclination, ¢, and longitude of ascending node, ) are
much better constrained than others. In our analysis,
we adopt the best-fit values of 7, {2, and perihelion dis-
tance ¢, and then explore the dynamical landscape in the
TNO’s orbital neighborhood by varying the semimajor
axis, a, and argument of perihelion, w; we note that w is
also typically well-constrained for observed TNOs, but
scanning over both a and w in our simulations is key to
probing nearby resonant structures. Consequently, with
our particular choice of variables for the 2D projections
of the Poincaré maps (described in the next section),
it becomes possible to very directly assess the role of
Neptune’s MMRs on each observed TNO. Moreover, the
proximate dynamical landscape is fixed and unvarying,
even as future observations refine and update a TNQO’s
orbit. With a Poincaré map of a TNO’s neighborhood
in hand, it becomes possible to identify quickly the need
(or not) to re-classify that TNO if its orbit is updated
with new observations.

Poincaré return maps have previously been used pri-
marily with simple models, such as the circular planar
restricted three body problem, where the return map is
a two dimensional surface and thus can be conveniently
visualized in 2D plots (e.g. Hénon 1966; Winter & Mur-
ray 1997). These plots readily delineate the zones of
stable resonant librations, stable non-resonant zones, as
well as chaotic zones. For three degrees of freedom and
multiple perturbers (on non-circular and non-coplanar
orbits), Poincaré return maps have not previously been
thought to be of much use because there is an insufficient
number of conserved quantities to allow us to visualize
the dynamical landscape in two dimensional surfaces.
However, in this work we demonstrate their usefulness
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when they are constructed with well-chosen criteria and
the high-dimensional return map is rendered in 2D pro-
jections of well-chosen pairs of orbital parameters. This
allows us to directly assess whether a distant TNO is
likely influenced significantly by Neptune’s MMRs or if
it can be reliably classified as ‘detached’.

3.1. Methods

Our approach is based on a recently developed imple-
mentation of Poincaré return maps of the circular planar
restricted three body model (Wang & Malhotra 2017;
Lan & Malhotra 2019; Malhotra 2022). We first briefly
describe this method for the case of the simple model
and then describe the additional modifications we have
made to extend it to the case of the three dimensional
restricted N-body model, that is a massless test parti-
cle moving under the perturbations of N-1 point-mass
bodies under mutual Newtonian gravitational forces.

In their implementation of Poincaré return maps in
the circular planar restricted three body model, Wang
& Malhotra (2017) and Lan & Malhotra (2019) carried
out numerical orbit integrations for many initial condi-
tions (with the same Jacobi integral) and recorded the
state vector of the test particles at every pericenter pas-
sage. They then plotted 2D maps in two pairs of orbital
parameters, (¢, a) and (ecos,esin), where a,e are
the semimajor axis and eccentricity, and 1 is the dif-
ference in true longitude between the test particle and
the planet. In this simplified model, v is the physical
angle between the barycentric position vectors of the
planet and particle when the latter passes perihelion.
(For a p : q exterior resonance, 1 is related to the usual
critical resonant angle, ¢ = pA — ¢g\y — (p — ¢)w, by
noting that A = @w when the particle is at perihelion, so
¢ =q(A—An) = qv.) In these 2D maps, particles at ex-
act resonance will appear sequentially at a discrete set of
points (the resonance centers) in the (¢, a) plane. Parti-
cles librating stably with a non-zero libration amplitude
will trace out smooth, closed (bounded) curves around
each resonance center; collectively these will appear as
a chain of resonant islands. Those particles not in res-
onance but in regular, quasi-periodic motion will trace
out smooth 1D curves in which v circulates through
all values 0-360°. Those in chaotic motion will random-
walk over a 2D region in the parameter plane. An exam-
ple of such a Poincaré map in the (¢, @) plane is shown in
the left panel of Figure 1 for orbits near Neptune’s 20:1
exterior mean motion resonance in the circular planar
restricted three body model. Traces of individual parti-
cle initial conditions are plotted using different colored
dots; the resonant paths are emphasized using slightly
larger, more darkly colored dots. The large, two-island
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structure at 221.6 au indicates the libration zone of the
20:1 resonance. Other chains of islands (with two, three,
four, or more islands) are also visible in this neighbor-
hood.

The N:1 exterior resonance exhibits a more complex
dynamical structure than other exterior resonances, so
it is worth explaining in some detail. Particles librating
in an N:1 exterior resonance have a single perihelion pas-
sage in a synodic period and can exhibit librations about
three different centers, forming three different libration
zones: two zones of so-called asymmetric librations, and
a zone of symmetric librations. In the example shown in
Figure 1, the asymmetric resonant particles come to per-
ihelion with values of ¢ that librate around either ~ 70°
or ~ 290°; these are the two tear-drop shaped asym-
metric islands in the left panel of Figure 1, and they
are traced by independent sets of test particles. The
symmetric resonant particles come to perihelion with
librating around 1 = 180°, tracing a path of large libra-
tion amplitude that encloses both asymmetric islands.

Neptune’s other exterior resonances are simpler in
their dynamical structure. For an N : k exterior res-
onance, resonant particles sequentially visit each of a
chain of k resonant islands over their k perihelion pas-
sages each resonant cycle. In Figure 1, the second
strongest resonance (after the 20:1) is the 61:3 near
the top of the left panel. Particles in this resonance
have three perihelion passages per resonant cycle; in
the Poincaré return map, they trace curves which li-
brate around centers at iy = 60, 180, 300°, creating the
three-island chain near a = 224 au. Particles in the
81:4 resonance trace out the four-island chain just be-
low the three-island chain of the 61:3 resonance. We ob-
serve a ‘sea’ of points in-between the resonant islands;
these are generated by initial conditions of chaotic or-
bits. Maps from this simplified, coplanar restricted three
body model of the Sun—Neptune—test particle system,
like those in the left panel of Figure 1, can help illustrate
the potential for resonant interactions near an observed
TNO'’s orbit. However, to get the most accurate picture,
we must include the effects of the other giant planets,
relaxing the assumption of circular planet orbits and of
co-planarity.

With a full N-body model, we adopt a procedure in-
spired by but modified from that of the simple three
body model described above. We construct Poincaré re-
turn maps for bundles of test particles evolving under
the influence of the Sun and all four giant planets by
recording the state vectors at each perihelion passage.
Rather than initializing all particles in the map with the
same Jacobi constant as in the simplified model, we in-
stead initialize them with fixed perihelion distances (this
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Figure 1. Semimajor axis vs ¢ Poincaré maps in the circular planar restricted three body problem (left panel) and in simulations
with all 4 giant planets on their present orbits and test particles on inclined orbits (right panel) for a region of phase space
near the orbit of TNO 148209 (2000 CR105). The large black dots connected by black vertical lines show then TNO’s best-fit
orbit (center circle) along with 1-o and 3-c uncertainties in a; the uncertainty in v is negligible). The plots show the semimajor
axis vs 1 for test particles (different particles shown in different colors) when they pass through perihelion. To best highlight
the resonant structures, particles that remain in resonance with Neptune for more than 1000 resonant cycles are plotted with
the largest, most opaque points; particles librating for 750—-1000 resonant cycles are plotted in slightly smaller, slightly more
transparent points, as these particles’ paths temporarily stick near the resonant islands before dispersing into the non-resonant
phase space. Other, generally non-resonant, chaotic particles are shown in small, more transparent points. The resonant
boundaries obtained from the three body problem (the librating resonant test particles with the largest a and v variations) are
shown as black curves in both panels for the labeled mean motion resonances with Neptune; the simplified problem captures

the widths of the strongest resonances quite well.

difference is discussed further in Appendix A). We then
make 2D plots of the barycentric semimajor axis versus
a modified version of the relative longitudes, v, defining
Y =X— Ay, where A = M + w + Q (the sum of mean
anomaly, the argument of perihelion, and the longitude
of ascending node) is the mean longitude of the test
particle, and Ay is the mean longitude of Neptune. The
right panel of Figure 1 shows such a Poincaré map near
Neptune’s 20:1 resonance with the full N-body model
and test particles on significantly inclined orbits; for
comparison, we overlaid in black the maximum extent of
the libration zones of the resonant islands found in the
simple model. We observe that the Poincaré map of the
N-body model is a ‘blurred’ version of the map seen in
the simple model, but the dominant resonant structures
are still evident. To more clearly visualize the resonant
islands and separate them from the sea of non-resonant
orbits in Figure 1 and our later plots, we use different
point sizes and transparencies depending on dynamical
behavior. We show the paths of non-resonant particles
using the smallest, most transparent points. Particles
in stable libration zones, which we define as particles

that complete at least 1000 resonant cycles in our simu-
lations, are shown with the largest, most opaque points.
Quasi-resonant particles, which we define as completing
between 750 and 1000 resonant cycles before dispersing
into the chaotic sea, are shown as medium sized, slightly
transparent points. These distinctions are by necessity
somewhat arbitrary, but we have found them to provide
more informative visualizations of the phase space. The
resonance structures identified in our N-body Poincaré
maps show much similarity with but also some inter-
esting differences compared with those in the simplified
model. It is evident that the phase space near resonances
is affected by both inclination and by the perturbations
of the additional giant planets; a detailed analysis of how
different resonances behave as a function of inclination
and under perturbations from the other planets is de-
ferred to future studies. See Appendix A for additional
validation of our modified Poincaré mapping approach.

The vertical line in both panels of Figure 1 indicates
the best-fit and 3-0 uncertainty range of the semimajor
axis for the observed TNO 148209 (2000 CR105) plotted
at its observed v value. (Note that for all the observed



TNOs considered here, 1) is very well determined, with
its uncertainty being less than the thickness of the line;
we thus ignore the uncertainty in this parameter.) With
this comparison, we can conclude that 148209’s best-fit
orbit is consistent with libration in the 20:1 resonance,
although the orbit-fit uncertainties must be reduced in
order to have high confidence that this is a resonant
TNO. Below we describe in detail how we construct
these maps for each of the objects listed in Table 1,
including the choice of initial conditions for the bundles
of proximate orbits near an individual TNO.

The vast majority of the observed objects in Table 1
are currently near their closest approach to the Sun.
Their perihelion distances are thus observationally well
constrained, so we will take them to be fixed in our sim-
ulations. We similarly take their inclinations and longi-
tudes of ascending node to be fixed at their best-fit val-
ues because these orbital elements converge very quickly
and have small observational errors. The objects’ argu-
ments perihelion are similarly well-constrained, but we
take this as a free parameter in our simulations in order
to map the full range of potential resonant interactions
near the observed orbit. The semimajor axes of the ob-
jects contain the bulk of the orbital uncertainties, so we
consider initial semimajor axes spanning their full 3-o
ranges (except in a few instances where these ranges are
very large, in which case we restrict ourselves to the 1-o
range).

For each of the objects in Table 1, we initialize test
particles at perihelion (mean anomaly M = 0) at ini-
tial barycentric semimajor axes corresponding to every
N:{1,2,3,4,5} resonance with Neptune within the ob-
served uncertainty range and slightly beyond on either
side. We limit ourselves to this set of resonances because
for the large eccentricities in the high-a TNO popula-
tion, N:1 resonances are expected to be the strongest
local resonances, followed by N:2 then N:3 resonances,
and so on (see, e.g., Gallardo 2006’s estimates of reso-
nance strengths in the scattering TNO population and
discussion of high-e resonance order in Pan & Sari 2004).
For 2015 RX245 and 2016 SD106, we only initialize par-
ticles in the N:1 and N:2 resonances due to the large
semimajor axis uncertainties to be covered and the fact
that the resulting maps show only weak stability in the
N:2 resonances. Similarly, for 2010 GB174, we limit our-
selves to N:1, N:2, and N:3 resonances. We also limit the
study of the regions near 2010 GB174 and 2018 AD39 to
only their 1-0 a ranges due to their large orbital uncer-
tainties and the large number of resonances with stable
zones in their regions (both of which increase the com-
putational cost of constructing the maps). We similarly
limit the a ranges of the maps near 2012 VP113 and
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2015 KG163 to just the 1-o range because the smaller
range is sufficient to tell us resonances are unlikely to be
important drivers of their dynamical evolution.

The test particles for each considered resonance for
each TNO are given q,1,{) values identical to the ob-
served object’s best-fit orbit. We then set w to a range
of values such that v = XA — Ay is in the range 0-
360°/{1,2,3,4,5}, (the divisor in the range set by the
resonance being initialized) with test particles spaced
every 1° in A — An; this ensures that initial test par-
ticles cover the resonant islands we hope to map. For
each resonance we also include an additional 100 test
particles initialized randomly in a-t the range ag+1 au
and ¢ = 0-360°/{1,2,3,4,5}, where ag is the nominal
resonant semimajor axis to account for potential shifts
in the center of the resonant islands and to capture the
dynamics of nearby higher-order resonances. The test
particles are then integrated using the 1As15 adaptive
step size integrator in the REBOUND orbit integration
software (Rein & Liu 2012; Rein & Spiegel 2015) until
they complete 1500 resonant cycles (i.e., 1500 orbits for a
particle in an N:1 resonance, 3000 orbits for a particle in
an N:2 resonance, etc.) or are scattered more than 5 au
outside the initial semimajor axis range of interest. The
largest allowed integration step size in the simulations is
set to 0.2 years to ensure we can resolve the time of a par-
ticle’s perihelion passage with high accuracy (to within
0.05°) in order to output its state vector at each perihe-
lion passage. Our simulation length is chosen to main-
tain computational feasibility while still demonstrating
resonant stability over meaningful timescales. At our
lower semimajor axis limit (a = 150 au), our simulations
span {1,2,3,4,5} times ~ 3 Myr for N:{1,2,3,4,5} res-
onances; the base timescale for N:1 resonances increases
to ~ 6 Myr at a = 250 au, ~ 10 Myr at a = 350 au, and
~ 14 Myr at a = 450 au.

3.2. Results

Figure 2 shows the resulting Poincaré maps for the ob-
jects in Table 1. As with Figure 1, we use different point
size and transparency to highlight the structure around
the resonances. It is immediately and strikingly evident
that stable resonant islands are present in all but one
of these maps. Only 2015 KG163 is in a phase space
that is devoid of even temporarily stable resonant inter-
actions with Neptune. With a =~ 680 au and ¢ ~ 40 au,
this object likely belongs to a class of ‘diffusing’ orbits
(see, e.g., Bannister et al. 2017); the test particles in
these simulations all experience strong enough changes
in energy at perihelion to spread out and fill a-v space
within relatively few orbits. The phase space surround-
ing Sedna and 2012 VP113 also stand out in this collec-
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tion of maps. Both these objects have such large peri-
helia that the non-resonant test particles in the simula-
tions experience almost no drift in semimajor axis over
time (as evidenced by the nearly straight traces in a-t)).
While there are resonant islands in the vicinity of both
objects, it seems unlikely that either object is strongly
perturbed by these MMRs. Sedna’s observed value of
1 places it firmly outside the 69:1 island in the map,
even if the 3-0 uncertainty in a sightly overlaps the res-
onant a. While 2012 VP113’s observed 1 is not formally
inconsistent with the stable 51:2 resonant islands seen
at a =~ 260.5 au, the resonance islands are very small;
the likelihood of it being resonant is therefore small, and
the effects of the resonance, even if it is occupied, appear
minor.

Two of the objects near our ¢ = 38 au cutoff for in-
vestigation, 2015 GT50 and 2013 SL102, seem likely to
be part of the weakly scattering TNO population. The
non-resonant test particles in these maps show signifi-
cant a mobility, and the resonant islands are small. The
N:1 resonances in both these maps have lost their sym-
metric librators, leaving behind only small portions of
relatively stable asymmetric islands; we note that this
loss of the symmetric libration islands at larger a is con-
sistent with expectations from Pan & Sari (2004)’s ana-
lytical model for nearly planet-crossing N:1 populations.
No resonant islands remain for the N:3 and higher-order
resonances in the vicinity of these two objects. Neither
of these TNOs have 1) consistent with the remaining sta-
ble resonant zones, though they might experience some
resonance sticking as they could be near the chaotic
edges of those MMRs. The more distant 2013 RA109
is perhaps in a similar regime. Its larger ¢ gives the test
particles slightly less mobility in a, but the resonant is-
lands are still relatively small, and 2013 RA109’s ¢ only
marginally overlaps the stable islands.

The remaining objects are all in a-q regions where
Neptune’s resonances are strong and have reasonably
large stable zones. TNO 496315 (2013 GP136) ap-
pears firmly outside the stable zone of the 11:1 reso-
nance based on its semimajor axis, though it resides
right on the edge of this strong resonance. TNO 506479
(2003 HB57) is similarly just outside 12:1, though it
is more clearly separated from the resonance’s chaotic
zone; its semimajor axis uncertainty overlaps with the
nearby 37:3, but the observed 1w rules out libration
in that resonance. TNOs 505478 (2013 UT15), 2015
RX245, and 2016 SD106 all have semimajor axes that
span many strong MMRs but their values of 1 rule
out current resonance occupation. TNO 148209 (2000
CR105) has a best-fit a and 1 consistent with occu-
pation of the symmetric island of Neptune’s 20:1 reso-

nance. The remaining TNOs, (2015 KH163, 2005 RH52,
2018 AD39, 2016 QV89, 2003 SS422, 2014 WB556, 2013
FT28, 474640 (2004 VN112), 2010 GB174, 2016 SA59,
and 2015 UN105) all have a and ¢ that could be consis-
tent with current occupation of Neptune’s MMRs; these
objects all require significantly reduced orbital uncer-
tainties to be sure about their resonant status.

4. DISCUSSION
4.1. The distant reach of Neptune’s resonances

Our analysis demonstrates that the vast majority of
the TNOs in Table 1 are not, in fact, beyond the reach
of Neptune’s dynamical influence via mean motion res-
onances. Simple cuts in semimajor axis and/or perihe-
lion distance are not reliable for determining whether
an object’s orbit is affected by the known giant plan-
ets. Furthermore, in the observed sample, attempts to
isolate more dynamically ‘detached’ objects by choos-
ing an increasingly large minimum perihelion distance
cut can backfire and yield TNOs that are actually in re-
gions dense with Neptune’s resonances; see, for example,
the additional resonances near 2010 GB174 in Figure 2
compared to the slightly lower ¢ object 2016 SD106 at
the same a range. This has implications for studies that
use the orbital distribution of high-a and high-q objects
to infer the presence of additional planets in the outer
solar system. For example, Brown & Batygin (2021)
use a sample of 11 TNOs from a more restricted a and
g range (in addition to considering dynamical stability)
to constrain the orbit of their hypothetical Planet Nine;
two of their TNO sample are excluded from our study
for having very poorly constrained orbits, but we have
examined the dynamical regimes of the other 9. Based
on Figure 2, Neptune’s resonances are still present in
the vicinity of all 9 of those TNOs (though extremely
weakly in the cases of Sedna and 2012 VP113). One
third of the Brown & Batygin (2021) TNO sample actu-
ally have best-fit orbits consistent with being currently
resonant with Neptune, and the TNOs not likely to be
currently resonant with Neptune are still dynamically
affected by resonances in their orbital proximity.

Resonant (and near-resonant) interactions influence
the distribution of TNOs’ perihelion locations relative
to Neptune, i.e. the distribution of . To demonstrate
this, we examine a time-averaged 1 distribution for the
population of TNOs in our sample. To do this, we in-
tegrated clones of all 23 TNOs in Table 1 for 40 Myr
under the influence of the Sun and four giant planets,
recording their v values at every perihelion passage. To
generate clones of each object, we sampled a Gaussian
semimajor axis distribution centered at the best-fit a
with o, given by the JPL orbit uncertainty estimate
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Figure 2. Poincaré maps for test particles on orbits similar to those of the observed high-a, high=¢ TNOs listed in Table 1.
Each panel shows semimajor axis vs 1) at each perihelion passage for test particles with identical ¢, i, and 2 to the object in the
panel title; the test particles are given an expanded range of initial a and 1. Test particles evolve under the influence of all four
giant planets, and v is defined as A — A\n. Each individual test particle is plotted in a different color. Test particles librating in
N:1, N:2, N:3, N:4, or N:5 resonances for at least 1000 resonant cycles are shown in the largest, most opaque points; particles that
librate for 750-1000 resonant cycles are shown in slightly smaller, slightly less opaque points. Shorter-term resonant particles,
higher-order (higher than N:5) resonant particles, and non-resonant particles are plotted with the smallest, most transparent
points. The black line and circles in each panel shows the observed object’s best-fit orbit (middle) and 1- and 3-o uncertainties
(taken from JPL horizons); in cases where the uncertainties in a are large and/or span a large number of resonances, only the

1-0 range is shown (uncertainties in 1 for the observed objects are very small).
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Figure 2. (continued) The first six panels on this page are sorted from weakest to strongest resonances, which roughly
correlates with increasing ¢ (though not strictly increasing ¢ due to the wide range of semimajor axes). Note that for for 2010
GB174, only N:1, N:2, and N:3 resonances within the object’s 1o uncertainty range were simulated, and for 2015 RX245 and
2016 SD106, only N:1 and N:2 resonances were simulated; this is due to the large orbital uncertainties these objects span and
the diminishing stability seen for the higher order resonances in these regions. A representative subset of the simulation data
underlying these figures is available on GitHub (https://github.com/katvolk/TNO-res-maps).
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Figure 4. Time averaged v distribution for clones of the
23 observed TNOs listed in Table 1 (thick purple histogram)
and the subset of those TNOs that overlap with the Brown &
Batygin (2021) TNO sample (9 of their 11 total TNOs; green
histogram) from a 40 Myr integration of clones sampling each
objects’ orbit-fit uncertainty; each TNO’s current, observed
1) value is shown as a dot near the top of the plot (with arbi-
trary shifts in y-position to distinguish objects with similar
). We would expect the histograms to be flat if Neptune’s
resonances did not have a significant influence on the evolu-
tion of the simulated orbits. The notable features near ~ 90°
and ~ 270° are due to clones of the TNOs interacting with
the N:1 and N:2 resonant libration centers near those values.

300 times. For each a value, we then used the observed
perihelion distance to assign e and kept all the other
orbital elements fixed to their best-fit values. This is a
simpler scheme than using the full orbit-fit covariance
matrix, but provides a good sampling of the available
resonant phase space. The 40 Myr integration timescale
is many times longer than any of the libration or cir-
culation timescales for the resonances near the TNOs,
thus allowing the clones to fully explore the range of 1
dynamically available. An object completely unaffected
by resonances would have a flat time-averaged distribu-
tion of 1 over these integrations. We determined the )
distribution for each individual observed TNO and com-
bined them (with equal weighting for each object) into
one time-averaged 1 as shown in Figure 4.

Figure 4 shows that the expected 1 of the observed
objects is not flat, reflecting the prevalence of clones in-
teracting with Neptune’s resonances. The notable dip
in the distribution near @ ~ 270 in particular is due
to libration in the trailing asymmetric island of Nep-
tune’s N:1 resonances; objects in moderate-amplitude
libration tend to spend more time at the extremes of
libration than at the center, creating a dip in the time-
averaged distribution near the resonance center. We
note that if we consider just the 9 TNOs in our sam-
ple that overlap with the Brown & Batygin (2021) sam-
ple, the non-uniformity of the 1 distribution is enhanced
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due to the higher prevalence of resonant orbits; the peak
near ¥ ~ 90° is due to the small-amplitude libration
of many clones of 474640 (2004 VN112) in the leading
asymmetric island of Neptune’s 36:1 resonance. Given
the large semimajor axis uncertainties of many of the
high-a TNOs, Figure 4 could change significantly as or-
bits are refined. If improved orbit fits converge on the
resonant semimajor axis values, it will become less uni-
form (and vice versa). We also note that the dynamics of
these regions could change in the presence of a currently
unseen distant massive planet; see, e.g., Hadden et al.
2018; Li et al. 2018 for explorations of the combined dy-
namics of Neptune and the hypothetical Planet Nine.
Clement & Sheppard (2021) recently examined how an
additional large planet can erode the stability of Nep-
tune’s N:1 resonances in the a ~ 150 —200 au region. As
they suggest, the actual prevalence and distribution of
distant TNOs near and in resonance with Neptune will
provide an important constraint on the presence of addi-
tional perturbers. As we can see from Figure 2, orbit-fit
improvements are needed for this determination.

4.2. Implications for the apparent apsidal clustering of
distant TNOs

A population of TNOs that have a non-uniform 1 dis-
tribution will also display an apparently non-uniform
distribution of longitudes of perihelion () when sam-
pling only those TNOs that are currently near perihe-
lion. This is because resonant TNOs have constrained
values of vy = A — Ay. If we are considering a spe-
cific observational epoch for which Neptune’s current
location along its orbit is fixed at mean longitude Apyq,
TNOs near perihelion have A\ ~ w and so by defini-
tion must have w = ¥ + Anyg. At the current epoch,
Ano = 354°, so observable TNOs have w ~ 1. Thus,
because all brightness-limited surveys for larger-a TNOs
are strongly biased toward TNOs that are at or near per-
ihelion, the currently observable distribution of w will
be non-uniform if the TNO population being observed
is significantly affected by resonances. It is important
to emphasize that this need not reflect an intrinsic non-
uniformity in the w distribution; it is instead an epoch-
dependent non-uniformity. If one were to conduct an
all-sky survey of a fully resonant TNO population over
a full orbital period for Neptune (164 years), one would
have no preference toward a particular range of w and
could recover the intrinsic w distribution directly, even
from a perihelion-biased sample; but because TNO sur-
veys have a time baseline much shorter than Neptune’s
orbital period, even all-sky surveys cannot necessarily
probe the full range of their . This ‘bias’ in the cur-
rently observable w distribution for resonant popula-
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tions is in addition to any biases in the observed TNO
population that result from the non-uniform sky cov-
erage of TNO surveys to date. See Shankman et al.
(2017a), Napier et al. (2021), and Bernardinelli et al.
(2022) for examples of how pointing biases in the surveys
that have discovered significant portions of the known
TNOs result in very clear non-uniform observed w dis-
tributions. These works found that the observed clus-
tering in w for the subset of high-a TNOs with well-
characterized discovery circumstances is consistent with
the survey biases. They did not, however, consider
any additional effects from dynamically induced non-
uniformity in the distribution of @w for TNOs currently
near perihelion. This would not change their conclu-
sions as the pointing biases are much larger in mag-
nitude than resonant-induced epoch-dependent biases,
but we will estimate the size of the latter effect here for
demonstration purposes.

Given the time-averaged expected distribution of
for the 23 TNOs in Table 1 (see Figure 4), we can
make a rough estimate of the dynamically induced ‘bias’
in the current observable w distribution under the as-
sumption that the intrinsic w is actually uniform. For
the purposes of this illustration, we will consider an ob-
ject ‘observable’ if it has an estimated apparent mag-
nitude brighter than 24.5 at any point over a 10-year
span starting at the current epoch, regardless of posi-
tion in the sky; this is a very crude approximation of a
deep, long-baseline, large-area survey like the Vera Ru-
bin Observatory’s upcoming Legacy Survey of Space and
Time (LSST; see, e.g., Ivezi¢ & et al. 2019). To do this,
we generate a large synthetic population representative
of each TNO. We use the integrations described above
(Section 4.1) to determine the distribution of a, e, ¢, and
1 for each object, assign uniform random distributions
of w and 2, and assume a simple power law for the in-
trinsic brightness distribution with a slope of 0.9 from
H = 1.5—9 (the bright-end distribution for the scatter-
ing TNO population; see, e.g., Lawler et al. 2018); the
mean anomaly of the synthetic object is then determined
to be M = ¥ + Ay — w. Then, assuming observations
take place at opposition, we can convert this starting
position and H magnitude to an estimated brightest ap-
parent magnitude over a 10 year period by propagating
M forward in time. We repeat this process to build up a
catalog of synthetic detectable objects based on each real
TNO to determine the expected observable w distribu-
tion based on its v distribution. These distributions are
then combined to produce Figure 5, which shows that
the resonant interactions do indeed produce a slightly
non-uniform expected observable w distribution for the
known high-a TNOs.

For the full sample, there is a ~ 5% variation in the
expected number of TNOs from the most to least prob-
able w values; for the 9 TNOs overlapping with the
Brown & Batygin (2021) sample, there is a ~ 9% vari-
ation. We note that a complete understanding of this
dynamical bias requires a much better understanding of
and model for the intrinsic a and ¢ distribution for the
distant TNOs, which is beyond the scope of this work.
The model presented here is meant only to be illustra-
tive. This dynamically-induced ‘bias’ is clearly not large
enough to explain the non-uniform observed distribu-
tion of w for these TNOs; when comparing the ranges
w = 0 — 180° and w = 180 — 360°, it only results in
an expected 1-2% asymmetry in the distribution of the
current observed objects. However, the dynamical bias
for the current set of TNOs is toward the cluster in ob-
served w and could thus add to the pointing biases that
already provide a promising explanation for the non-
uniformity (Shankman et al. 2017a; Napier et al. 2021;
Bernardinelli et al. 2022).

For completeness, we also investigate whether we
should expect the intrinsic distribution of w for a high-
a TNO population to be uniform if they are strongly
affected by resonances. We did this by re-examining ex-
isting integrations of a model of the closer-in scattering
population of TNOs, which is known to be significantly
affected by the phenomenon of resonance sticking (e.g.
Duncan & Levison 1997; Lykawka & Mukai 2007). Yu
et al. (2018) integrated the Kaib et al. (2011) model of
the scattering TNO population for 1 Gyr, finding that
the 40% of the a = 30 — 100 au population was tem-
porarily resonant with Neptune at any given time. The
initial w distribution for that simulation was uniform,
so we examined the final snapshot at 1 Gyr to look for
any changes that might have resulted from those res-
onant interactions. We find no statistically significant
evidence of the resonances generating a non-uniform w
distribution, either for the a = 30 — 100 au or for the
full semimajor axis range of the modeled scattering pop-
ulation (for which we do not have a quantified resonant
fraction from Yu et al. 2018). While this population is
not a perfect analog for the high-a, high-¢ TNO popu-
lations of interest here, it is a population known to be
heavily influenced by Neptune’s resonances and it does
not show evidence of a sculpted w distribution. This
might merit future investigation for the most distant
TNOs, whose orbital precession rates are very slow and
thus perhaps more likely to retain dynamical signals in
their w distributions (see, e.g., discussion in Clement &
Kaib 2020).

4.3. Future work
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Figure 5. Estimated observable w distribution for clones
of the 23 observed TNOs listed in Table 1 (thick purple his-
togram) and the subset of those TNOs that overlap with the
Brown & Batygin (2021) TNO sample (9 of their 11 total
TNOs; green histogram) assuming that the true, intrinsic w
is uniform and the population has the time-averaged v distri-
bution relative to Neptune as shown in Figure 4; each TNO’s
actual observed w value is shown as a dot near the top of
the plot (with arbitrary shifts in y-position to distinguish ob-
jects with similar w). We assume an object is ‘observable’ if
at any point over a 10-year timespan its estimated apparent
brightness is 24.5 magnitudes or brighter. See Section 4.2 for
details.

In addition to investigating the dynamical regimes of
known TNOs, our new mapping approach provides a
way to more generally probe for the importance of Nep-
tune’s resonances and how the other giant planets influ-
ence the structure of Neptune’s resonances in different
TNO orbital regions (see Appendix A). We are explor-
ing these questions more broadly and expect to obtain
new insights into the dynamical distribution of TNOs,
when combined with the expected large increase TNO
discoveries when LSST is underway. Understanding the
full range of possible dynamical behaviors of TNOs will
help identify which features of the observed dynamical
distribution of the TNOs are signatures of planet migra-
tion, prior perturbers, or unseen present-day perturbers.

We also plan to expand this mapping approach to
a wider range of observed TNOs. For each individual
TNO considered in this work, the mapping simulations
described in Section 3.1 typically required a few hundred
CPU hours to complete. This is more CPU time than
typical, ~10 Myr integrations of a comparable number
of test particles sampled from an observed TNO’s or-
bit, partly due to the requirement that each perihelion
passage be very well-resolved to record the parameters
needed for our maps and partly due to our choice of in-
tegrator. However, as noted above, the maps need only
be computed once as they will remain valid even as a
TNOQO’s orbit is refined over time by additional observa-
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tions. We also note that we made no effort to optimize
our mapping approach for computational efficiency be-
cause it was not necessary considering the small number
of TNOs in this work. As we discover more of these dis-
tant TNOs or expand the analysis to closer-in objects,
the CPU time requirements per object could become
limiting. Several steps could be taken to improve ef-
ficiency in our mapping simulations. The most fruit-
ful would likely be to switch to the WHFAST integrator
(Rein & Tamayo 2015), which is significantly faster than
1As15, and add an interpolation step near a test parti-
cle’s perihelion passage to estimate the state vector at
perihelion rather than relying on an integration timestep
small enough to directly resolve it. We used 1AS15 in
this study for its very high accuracy, but WHFAST would
work very well for the TNOs of interest here because
their large perihelion distances mean they don’t experi-
ence close encounters with the planets (which WHFAST
cannot accurately resolve). We also note that the res-
onances could be resolved with sparser sampling in
than we have used here, again reducing the CPU time
required to produce the maps. We leave such modifica-
tions to our procedure for future work.

5. SUMMARY AND CONCLUSIONS

We have examined the dynamical regimes of 23 TNOs
with semimajor axes larger than 150 au and perihe-
lion distances larger than 38 au. Nearly half of this
sample (11 objects) have observed a and 1 values that
are consistent with stable libration zones of Neptune’s
external resonances. Of particular note amongst these
TNOs is that the best-fit orbits of 148209 (2000 CR105)
and 474640 (2004 VN112) fall within the stable re-
gions of Neptune’s 20:1 and 36:1 resonances, respec-
tively. Two objects (Sedna and 2012 VP113) continue
to stand out as being on orbits that are relatively un-
affected by the giant planets, though Neptune’s reso-
nances are still weakly present even at such extreme
a,q combinations. One object (2015 KG163) likely be-
longs to the weakly bound, high-a, high-q diffusing class
of TNOs, with no resonances in its vicinity. Two or
three objects (2015 GT50, 2013 SL102, and possibly
2013 RA109) are in the regime of moderate to weak
scattering, with ¥ marginally consistent with the possi-
bility of temporary sticking to the chaotic boundaries of
Neptune’s N:1 MMRs. Ouly five objects (besides Sedna
and 2012 VP113) can definitively be said to reside on
relatively stable orbits that do not currently overlap
with the stable regions of strong resonances (506479,
496315, 505478, 2016 SD106, and 2015 RX245); this
determination relies mostly on v rather than a as all
five objects are in regions that have strong resonances
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within their semimajor axis uncertainty ranges. This
highlights the usefulness of our dynamical mapping ap-
proach when orbit-fit uncertainties are large and when
the uncertainties themselves are poorly determined. Se-
cure dynamical classification of TNOs is only possible
when the orbit-fit uncertainties are well-understood. We
strongly suggest that the orbital parameter uncertainties
be made readily available in all public databases of solar
system small body orbits. Follow-up observations of the
majority of the distant TNOs are required to securely
determine their current dynamical state.

Using this sample of TNOs, we have demonstrated
that Neptune’s resonances extend out significantly fur-
ther than often assumed and that simple cuts in a and
q cannot reliably be used to determine whether an ob-
ject is dynamically isolated from the known giant plan-
ets. We showed that the current observed sample of
high-a and high-¢ TNOs maintains a non-uniform dis-
tribution of perihelion locations relative to Neptune (¢
values) due to the prevalence of resonant interactions.
Even for a population with an intrinsically uniform dis-
tribution of perihelion longitudes (@), the non-uniform
1 distribution from resonant interactions can lead to
an apparent bias in w values for TNOs currently near
their perihelia and thus bright enough to be detectable;
this bias will only disappear when the time baseline for

TNO discoveries is comparable to Neptune’s orbital pe-
riod. While the exact magnitude of this effect on even
all-sky observations of the distant TNO population is
difficult to quantify because our models of the a and ¢
distribution of this population are not well-constrained,
we estimate that it results in a few percent asymmetry
in the expected observed w distribution. This is not a
large enough bias to explain the much larger observed
non-uniformity in <o, which is likely better explained by
pointing biases in discovery surveys (Shankman et al.
2017a; Napier et al. 2021; Bernardinelli et al. 2022), but
it is an additive effect. It is also a bias that is not reme-
died by performing an all-sky survey and thus should be
kept in mind when analyzing future, much larger sets of
observed distant TNOs.
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APPENDIX
A. ADDITIONAL VALIDATION OF THE MODIFIED N-BODY POINCARE MAP

As noted in Section 3.1, the Poincaré maps presented here are modified from the traditional Poincaré maps produced
in the planar circular restricted three body problem. One modification we make, even in our maps of test particles
in the circular restricted three body problem (left panel of Figure 1; top left panel of Figure 6) is that we initialize
our test particles with varying a and 1 at constant perihelion distance g rather than with with varying a and v at
constant values of the Jacobi integral (as was done in Wang & Malhotra 2017; Lan & Malhotra 2019). Our motivation
for fixing ¢ is that for observed TNOs, ¢ is typically one of the better-determined orbital elements. Additionally, for
high-eccentricity orbits, constant ¢ is approximately equivalent to constant Jacobi integral. In the restricted three
body problem, the Jacobi integral can be approximately expressed as the Tisserand parameter,

1

T =
2a

++v/a(l —e?)cosi (A1)
(see discussion in Wang & Malhotra 2017). As a is varied amongst the test particle initial conditions for a single map, T’
can be used to calculate the value of e that should be assigned to each particle to maintain a constant Jacobi integral.
For orbits with eccentricities typical of the TNOs in Table 1 (e = 0.7), instead assigning e based on maintaining
constant ¢ results in eccentricities that differ from those calculated from T by less than 0.2% across a ~ 10 au range.
Thus, maintaining constant ¢ (to match the observed value) rather than constant Jacobi integral across a typical
semimajor axis uncertainty range is a reasonable modification to the Poincaré mapping calculations for the restricted
three body problem. Additionally, when the model is expanded to include the perturbations of the other giant planets,
the Jacobi integral is no longer a conserved quantity, further justifying the modification.

We performed a number of tests to explore how the modified Poincaré maps described in Section 3.1 evolve as
complexity is added to our simulations. Figure 6 shows how our 2D projection of the 20:1 resonance in the (a,1))
plane changes compared to the simplest case (the circular planar restricted three body model of the Sun—Neptune—test
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particle) as additional perturbations and/or perturbers are added to the model. We start by allowing Neptune to
have an eccentric orbit (e = 0.02) with a fixed orbital orientation. This slightly increases the ‘fuzziness’ of the particle
paths in the a-9 plane (top right panel) compared to the simplest problem, and some of the very high-order resonant
chains surrounding the 20:1 become less clear. We next added perihelion precession to Neptune’s orbit by adding
a J2 term to our integrations (we use the J2 terms for the other giant planets from Malhotra & Ito 2022). This
adds additional fuzziness to the closed curves representing stable resonant libration, though does not eliminate the
higher-order islands (middle left panel). Next, we added Jupiter to the integrated system at its current eccentricity,
but kept both planets and the test particles in the same plane. This significantly reduces the separation between the
libration paths of individual particles (middle right panel) and washes out the nearby higher-order resonant islands,
likely because Neptune’s orbit experiences more significant time-varying changes; in addition to perihelion direction
precession, Neptune’s semimajor axis and eccentricity vary over time due to the perturbations from Jupiter. In the
final two models, we include all four giant planets at their current eccentricities. In one model, we keep them all on
co-planar orbits with each other and the test particles (lower left panel) and in the other we allow their orbits to assume
their current inclinations and place the test particles on inclined orbits (lower right panel; the same inclination as in
Figure 1). In both cases, the extent of the stable symmetric libration zone for the 20:1 resonance is reduced compared
to the simpler models. This is because Uranus has a relatively strong effect on Neptune’s orbital evolution through
both secular perturbations and also because Neptune and Uranus have orbital periods that are themselves close to
a 2:1 resonant ratio. In future work we will explore in more detail how Uranus may influence Neptune’s resonances,
but, for the present work, we have shown in this Appendix that including all four giant planets is important for fully
exploring the influence of Neptune’s resonances on observed TNOs, and that our modified Poincaré maps are able to
capture and visualize the relevant dynamics in simple 2D plots.
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Figure 6. Poincaré maps of Neptune’s 20:1 MMR (for ¢ = 44 au) in the circular, planar, restricted three body problem (top left)
compared to simulations with increasing complexity. In the top right, test particles evolve on orbits under the influence of the
Sun plus a co-planar Neptune with an eccentricity of 0.02 (and a fixed orbital orientation); this slightly increases the ‘fuzziness’
of the particle paths in the a-1 plane. In the middle left, we have added perihelion precession to Neptune’s orbit using a J2 term;
this again slightly increases the fuzziness. In the middle right, we have added Jupiter to the system at its current eccentricity
(both planets and the test particles remain co-planar); this significantly blurs the distinction between separate particle paths
as Jupiter causes Neptune’s semimajor axis and eccentricity to vary over time. In the bottom left, we include all four giant
planets (at their current eccentricities) on co-planar orbits with the each other and the test particles; the perturbations from
the additional planets reduce the extent of the stable symmetric libration zone. In the bottom right panel, the giant planets are
all on their current, mutually-inclined orbits, and the test particles are initialized on orbits inclined by ~23° (inclination and

node matching TNO 148209).
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