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Figure 1: The Scholastic interface. Scholastic aims to support core elements of an interpretive qualitative analysis workfow for analyzing 
text documents using visual analytics and interactive machine learning. The system is comprised of three views that aford a variety of 
strategies for document sampling, applying codes to passages within individual documents, and refning and categorizing codes. 

ABSTRACT 
Interpretive scholars generate knowledge from text corpora by man-
ually sampling documents, applying codes, and refning and collat-
ing codes into categories until meaningful themes emerge. Given a 
large corpus, machine learning could help scale this data sampling 
and analysis, but prior research shows that experts are generally 
concerned about algorithms potentially disrupting or driving inter-
pretive scholarship. We take a human-centered design approach to 
addressing concerns around machine-assisted interpretive research 
to build Scholastic, which incorporates a machine-in-the-loop clus-
tering algorithm to scafold interpretive text analysis. As a scholar 
applies codes to documents and refnes them, the resulting coding 
schema serves as structured metadata which constrains hierarchical 
document and word clusters inferred from the corpus. Interactive vi-
sualizations of these clusters can help scholars strategically sample 
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documents further toward insights. Scholastic demonstrates how 
human-centered algorithm design and visualizations employing 
familiar metaphors can support inductive and interpretive research 
methodologies through interactive topic modeling and document 
clustering. 
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1 INTRODUCTION 
Modern social science depends heavily on analyzing text data, such 
as interviews, written logs, or social media archives. Researchers 
may infer patterns from raw texts using statistical topic modeling 
[6]. Alternatively, researchers may employ interpretive methods, 
clustering texts based on an in-depth reading of the data to apply 
codes and group codes into categories, which are then iteratively 
refned until meaningful themes emerge [8]. The two approaches 
represent trade-ofs between efciency and efcacy. The labor-
intensive interpretive methods may not scale to a large corpus (e.g., 
collections of online blog posts or tweets), requiring researchers to 
only examine (an often random) sample of texts [24]. While statis-
tical models can rapidly process a large corpus, their reliance on 
purely statistical patterns in the absence of expert knowledge can 
sacrifce semantics for scale, leading to fndings that may insuf-
ciently address critical research questions [11]. 

Visualizing topic models and document clusters could help inter-
pretive scholars explore both the breadth and depth of content in 
a corpus [5]. However, our prior interview studies [23, 33] discov-
ered that interpretive scholars were largely skeptical about using 
machine learning to support their analyses, raising concerns about 
algorithms driving or replacing human expertise and biasing the 
analysis process (§3). Recent human-AI collaboration tools can cap-
ture expert knowledge as input to refne statistical text models [21]. 
However, using these tools would require interpretive scholars to 
work outside of typical workfows where they freely and iteratively 
apply codes to documents. In this work, we introduce Scholastic, a 
visual analytics tool that instead explores a machine-in-the-loop 
[26, 27] approach to interpretive research, where scholars analyze 
text to generate codes and categories that also serve as goal-oriented 
user input to models that scafold, rather than replace, human sense-
making. Scholastic aims to build on the strengths of interactive 
topic modeling and document clustering for helping organize text 
data at scale while minimizing disruptions to a focused qualitative 
analysis workfow. 

When scholars sample documents to examine and apply codes 
to a passage within a document, the code label becomes both a 
meaningful unit of information as well as an organizational tool 
for re-examining relevant passages from the corpus [40] to refne 
the scholar’s coding schema. We consider two additional concep-
tualizations of codes as: 1) meaningful human input for the text 
model to learn from (§5.1), and 2) interactive flters to visualize the 
distribution of emerging knowledge across clusters (§6). Hierarchi-
cal document and word clusters generated by an interactive topic 
modeling algorithm are depicted using interactive geographical 
treemaps [2] and indented trees [34], drawing on familiar visual 
metaphors while supporting evolving strategies for information 
foraging. Scholars can apply and iterate on individual codes us-
ing the raw text, moving freely between clusters and text as their 
analysis develops. 

Scholastic is the result of a multi-phase co-design process with 
interpretive scholars, machine learning researchers, and visualiza-
tion scientists. Our prototype provides preliminary insight into the 
vision of incorporating interactive ML within the data sampling 
and sensemaking loops of a qualitative analysis workfow given 
a large corpus (e.g., online blog posts). Our primary contribution, 
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Scholastic, is a visual analytics tool that supports interpretive data 
analysis at scale, which comprises: 

• An interactive word and document clustering algorithm that 
incorporates evolving codes and categories as model con-
straints, 

• Reading, coding, and categorization tools familiar to inter-
pretive scholars, 

• Interactive cluster visualizations that support both breadth-
frst exploration of and depth-frst search for relevant docu-
ments, and 

• A characterization of the design needs for graphical tools 
supporting qualitative analysis workfows. 

We conducted a formative user study of the tool (§7), focusing on 
its usability for sampling and coding processes. 

2 BACKGROUND 
2.1 Inductive and Interpretive Text Analysis 
Interpretive research methods for making sense of text data include 
thematic analysis [8] and grounded theory analysis [16]. One shared 
thread between these approaches is a principled method for data 
collection (or sampling items when given an existing corpus) given 
a research question. Given the collected (or sampled) dataset and in 
the absence of prior relevant knowledge about a population under 
study (‘data-driven’ as opposed to ‘theory-driven’ analysis [8]), the 
process of applying codes to texts and iteratively categorizing those 
codes [40] is the central process of inductively modeling meaningful 
patterns (‘surfacing themes’) within interpretive analysis. 

The deluge of data available has in some ways made data collec-
tion easier, but data items must still be sampled from a corpus, and 
applying codes can be laborious for even small sets of interviews 
or ethnographic data [42]. Popular tools like MaxQDA1 or NVivo2 

provide environments in which analysts can manage texts and 
codes, but these tools can only produce basic summary statistics 
like code counts. The visualization features in our system prototype 
are designed to support the data sampling process for interpretive 
analysis, but also provide coding and categorization functionalities 
to 1) provide scholars an efective algorithmic support tool to think 
with and 2) collect user input for an interactive ML algorithm. 

2.2 Using Topic Models for Qualitative 
Research 

Epistemological discussions surrounding how machine learning 
could be leveraged for interpretive research [4, 14] have noted sim-
ilarities between coding in qualitative analysis and topic modeling: 
both approaches share the goal of iteratively inferring models with-
out prior labels. Topic models such as Latent Dirichlet Allocation 
(LDA) [6] output probabilistic clusters of words based on their co-
occurrence patterns within documents. One application of topic 
models is to facilitate document clustering [49]. Boyd-Graber et al. 
[7] review the use of topic models across digital humanities and 
social sciences. These works focus on refning topic models (e.g., 
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by introducing new random variables [44]) and statistically vali-
dating them (e.g., using posterior predictive checks [41]) to output 
best-ftting statistical models summarizing text corpora. 

On the other hand, the high probability words in each topic 
may also be read as ‘themes’ that provide an overview of a text 
corpus [4]. When interpreted this way, topic models can sometimes 
suggest overlooked codes and categories or open up paths to other 
meaningful documents. For example, through human interpretation 
and sampling via topic models, Nelson [43] analyzed sufrage and 
feminism movements in New York City and Chicago to characterize 
how these two local movements difered in their guiding political 
principles. Although refning and validating topic models may ap-
peal to qualitative scholars for their statistical power, our research 
team and the qualitative scholars we interviewed [23, 32] agree with 
the views of Nelson and Grimmer & Stewart [29] that topic models 
can be a tool for assisting—but not superceding—human induction 
when conducting data-driven interpretive analysis. Still, how mod-
els should be integrated into human-AI collaborative workfows 
remains an open question within interpretive scholarship. 

2.3 Interfacing with Text Models 
Text models can be interpreted and refned using graphical tools. 
Termite [13] represents the probability distributions of topic models 
with matrix-based representations. Topicalizer [5], TOME [36], and 
Serendip [1] follow a more human-centered design approach for 
presenting topic models for qualitative research or digital humani-
ties. UTOPIAN [12] and ArchiText [34] allow users to improve topic 
models using various interactions, including merging and splitting 
topics and removing words from topics. Lee et al. [38] surveyed and 
evaluated these strategies, recommending eight useful interactions 
for topic refnement. In contrast, our algorithm design is closest to 
Yang et al. [50] who incorporated expert knowledge as ‘must-link’ 
or ‘cannot-link’ constraints for LDA via factor graphs. 

Visual analytics approaches also enable users to understand how 
their interactions change clustering outputs. For example, iVisClus-
tering [37] allows users to see how adjusting topic models impacts 
document clustering outputs. Endert et al. [22] introduces semantic 
interaction for directly updating document embeddings. Semantic 
Concept Spaces [21] helps analysts incorporate expert knowledge 
about data semantics into topic models through direct manipulation. 
Our algorithm design takes the goal of incorporating data seman-
tics further by gathering user input given clear research objectives 
and methodologies while surfacing codes and categories. Related 
tools for coding documents include Overview [9], an investigative 
journalism tool for sampling and categorizing documents given 
hierarchical clusters. Aeonium [20] is a collaborative coding tool 
that helps identify disagreements between scholars via an SVM 
classifer. Chandrasegaran, et al. [10] leverages NLP to highlight 
keywords across documents to support sensemaking within in-
terpretive scholarship. Our tool provides a contrasting view on 
supporting interpretive scholarship with visual analytics by focus-
ing on document sampling and interactive modeling in inductive 
qualitative workfows. 
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Figure 2: Scholastic’s machine-in-the-loop workfow. Sam-
pling, coding, and categorization are performed by the analyst. The 
algorithm can then hierarchically cluster the documents and words 
using the codes and categories as constraints, and represent the out-
puts with interactive visualizations for the analyst to sample more 
documents. The analyst retains agency over when the algorithm 
will perform these tasks. 

3 DESIGN OBJECTIVES 
We characterized four key design considerations for interpretive 
analysis based on recent interview studies conducted by the re-
search team [23, 33] as well as internal discussions with experts 
throughout the design process. Popular methodologies such as the-
matic analysis and grounded theory analysis share several common 
components. Most notably, they defne processes for selecting or 
collecting data, inferring codes or categories from that data, and 
organizing and refning those codes to build knowledge. 

On the other hand, researchers across felds have diferent ways 
of framing the interpretive analysis process. To resolve potential 
ambiguities in terminology, we refer to an individual document as a 
data item, a collection of documents as a data sample, and the entire 
collection of documents as a corpus. Coding is the act of applying 
labels to text passages, and categorizing is the act of collating codes. 
Memoing is recording notes [40] to later recall reasons for coding 
passages or to log additional expert insights. 

3.1 Consideration 1: Supporting Serendipity 
Interviews from Jiang et al. [33] stressed that machines should 
not lead data sensemaking in interpretive analysis. Scholars felt 
that traditional algorithms that output potentially immutable data 
summaries could bias knowledge generation. For example, they felt 
that traditional algorithmic approaches could overly constrain how 
analysts see the data (e.g., by asserting an algorithmic defnition 
of the most “meaningful” patterns in data or creating anchoring 
biases), bias interpretation by dictating the most “important” terms 
associated with document clusters prior to analysis (e.g., by labeling 
clusters according to the most frequent or highest probability terms), 
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and put the algorithm in control of the data analysis workfow (e.g., 
by limiting how analysts can compare documents across clusters). 
They also felt that “maybe [the machine] could make suggestions, 
but even then I don’t know if I want it because it doesn’t know 
what my research questions are." From the interpretivist view, text 
data has inherent ambiguities related to semantics, and experts 
wanted to resolve those ambiguities themselves to support their 
own knowledge generation: “It’s really satisfying ... it’s those kinds 
of exciting Eureka moments that make research kind of worth it.” 

AI could instead support serendipitous moments where the hu-
man analysts resolve ambiguities about the data to foster moments 
of insight. Therefore, our goal was to support curiosity about the 
data by scafolding data sampling with a mixed-initiative visual an-
alytics tool. Muller et al. [42] also previously suggested that cluster 
models can provide human scholars with alternative representa-
tions of data with which to refne codes. While past approaches 
have used NLP algorithms to identify important segments across 
texts to explicitly drive insight generation within qualitative analy-
sis [10], researchers we spoke with felt this approach shifted too 
much analytical power to the algorithm to the detriment of the 
analysis process. 

3.2 Consideration 2: Right Place, Right Time 
Feuston & Brubaker [23] described various computational subsam-
pling strategies used by scholars, including simple random sam-
pling. While reticent to use automation in coding or categorization, 
scholars were willing to delegate data sampling to algorithms often 
as a matter of practicality: corpora are often too large to code all 
data items. One scholar had used cluster overview visualizations 
from semantic network analysis alone to sample data items; another 
used classifers grounded in keywords related to categories they 
had developed to identify similar data items. While both approaches 
illustrate algorithmic sampling strategies, the latter approach com-
bines human expertise with automation. 

Many scholars felt that AI was only appropriate after they had 
made some analytic progress, as in the second analyst’s keyword-
based approach. Cluster models often rely on word-document co-
occurrence matrices that privilege frequently occurring words [46]. 
Frequency is not necessarily integral to qualitative methodologies. 
Data patterns of interest can be sparsely scattered, so if text models 
are used at all, they should incorporate human inputs in addition to 
co-occurrence information. The updated clusters can then be used 
to guide further sampling (adhering to the constant comparative 
method in grounded theory). We note the potential caveat that 
human selection bias also poses a challenge to generalizability 
within qualitative research [15]. 

3.3 Consideration 3: Using Familiar Paradigms 
Qualitative researchers often only rely on the most basic features 
of software [48]. Scholars interviewed by Jiang et al. [33] attributed 
this to the overall difculty of using complex qualitative analysis 
tools like MaxQDA or NVivo: “[qualitative analysis tools should not 
be] like the NVivo type, where I have to really learn a lot of it." Such 
complexity was perceived as getting in the way of their analysis. 
Many scholars used Google Docs or post-it notes to manage codes. 
Sensemaking about computational tools can inadvertently hinder 

or misguide sensemaking about data using those tools: “Using any 
tools, I think it gets in the way of the analysis... I think the focus 
then inevitably becomes on the tool and how I can manipulate and 
push data in order to make it appropriate for the tool." Building on 
these observations, interpretive analysis tools should, whenever 
possible, leverage familiar visual and interaction paradigms to help 
analysts retain their focus on the data rather than on navigating 
the tool. 

3.4 Consideration 4: Overlaying Visualizations 
With Codes and Categories 

Scholars interviewed by Feuston & Brubaker [23] described how “it 
might be interesting to compare and contrast" the analyst-inferred 
codes with machine-inferred clusters to help refne codes and cate-
gories. This desire was echoed by scholars in Jiang et al. [33] who 
frequently requested visualization features that allowed compar-
isons across clusters and codes: “I want to be able to say, okay, 
all the people I’ve talked to who identify as queer, how did they 
feel about capitalism? I want to be able to do a cross-sectional 
analysis on multiple codes and domains.” This comparison may 
be accomplished by incorporating visual overlays of the applied 
codes and categories onto cluster visualizations, situating both 
human-induced and machine-inferred models in the same space. 

These comparisons also could foster collaborative interaction 
between human and automated analyses. For example, once a ma-
chine has learned from human input, the visualizations could guide 
the user toward sets of related documents or codes. An expert in 
Jiang et al. [32] indicated that it would be useful “if there was some 
sort of learning algorithm, for example, that would suggest... other 
quotes that were similar to that one." 

3.5 Summary of Design Objectives 
The above considerations indicate a need for human-AI collabo-
ration in qualitative analysis, such that AI is embedded within an 
interpretive research workfow and adapts to evolving codes and 
categories. System features should support: 

(1) Insight Generation and Retention: We aim to develop an in-
terface for memoing, developing codes and categories, and 
revisiting coded documents to help people generate knowl-
edge by creating, applying, and refning their coding schema 
with intelligent and transparent system support. 

(2) Random Sampling: We aim to enable a random subselection 
of documents in the absence of human codes to gather initial 
insights about the dataset. 

(3) Strategic Cluster-Based Sampling: We aim to incorporate clus-
ter model visualizations that enable both breath-frst ex-
ploration of the corpus or depth-frst search for potentially 
meaningful data items. Overlaying codes and categories onto 
the cluster visualizations will allow scholars to compare the 
model outputs with their own coding schema. 

(4) Familiar Metaphors for Interactive Visualizations: We aim 
to leverage familiar visual metaphors for representing text 
models such that sensemaking about the tool does not inhibit 
sensemaking about the data. 
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(5) Interactive Models that Incorporate Expert Input: We introduce 
an interactive clustering algorithm that can learn from par-
simonious human input without disrupting their analysis by 
using codes and categories as additional data for the model. 

4 IMPLEMENTATION 
Scholastic is a web-based application built using Python and JavaScript. 
Interactive machine learning is implemented through the Python 
packages spacy, graph-tool, NumPy, and SciPy. The backend inter-
face utilizes Flask, pandas, and the Google Sheets API. As requested 
by experts, user inputs (codes, categories, passages, keywords, and 
memos) are saved to Google Sheets to support the integration of 
their analysis into existing external processes. The frontend inter-
face is implemented through the Svelte, Carbon Design, TopoJSON, 
and D3.js packages. 

Text layer Metadata layer

Figure 3: Undirected multilayer network representation of 
the corpus and human-induced metadata. Note that this net-
work allows parallel edges from the word nodes. The Text layer is 
a bipartite network between the documents (hexagons) and words 
(triangles). The Metadata layer is a disconnected, tripartite network 
of words, codes (squares), and category tags (circles). The edges 
between words and codes will be input via passage highlighting 
and subsequent ‘in vivo’ keyword selection, as described in §6.2. 
By default, words are assigned the non-keyword code (green). 

5 ALGORITHM DESIGN 
We adapt the hSBM approach to probabilistic word and document 
clustering by Gerlach et al. [25] which uses a stochastic block 
model to detect communities in complex bipartite networks formed 
by text data. A stochastic block model [30] generates a random 
graph whose adjacency matrix representation is Aij with proba-
bility P(A | b), where elements in the vector bk represent block 
membership assignments. In the context of text, each Aij represents 
the number of times a word wi occurs in a document dj , and bW 

and bD represent individual word and document blocks respec-
tively. Given the marginal likelihood function defned in Gerlach 
et al. [25], the posterior distribution P(b | A) can be efciently 
approximated using Markov Chain Monte Carlo (MCMC), which is 
then equilibriated to avoid local optima [45]. 

The informative priors on hSBM produce more heterogeneous 
mixtures than LDA while being completely non-parametric [25]. 
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Notably, the mixed-membership (‘overlapping’) version of hSBM, 
which outputs ‘soft’ clusters of words (‘topics’), signifcantly out-
performs LDA topic models even on synthetic Dirichlet mixtures. 
Additionally, even in the absence of stop-word removal, hSBM au-
tomatically detects clusters of stop-words which frequently occur 
across the corpus; it will also infer the number of word and docu-
ment clusters directly by sampling from the posterior distribution 
rather than requiring either the developer or researcher to specify 
a target number of clusters a priori. 

In this work, we utilize the non-overlapping variant of hSBM. 
Non-overlapping blocks partition the text data deterministically 
(e.g., P(bW |wi ) = 1 if word node wi belongs in a word cluster bW 

l 
in level l and P(bW |wi ) = 0 otherwise). In contrast to LDA, this l
forgoes the need for the system or its users to set a minimum proba-
bility threshold to obtain ‘hard’ clusters from topic models. 3 Given 
this bipartite model structure, hSBM infers hierarchical word and 
document block assignments P(bW |wi ) and P(bD |dj ) simultane-
ously. 

l l 

5.1 Incorporating Codes and Categories 
as Metadata 

Adapting the multilayer hSBM introduced by Hyland et al. [31], 
Scholastic pairs word-document co-occurrence matrices with analyst-
induced coding schema, adjusting clusters to refect ongoing expert 
analyses. To formulate these coding schema as constraints to cluster 
outputs, we re-frame the data types which characterize interpretive 
text analysis as follows: 

Documents A corpus D of document nodes dj . 
Words A vocabulary W of word nodes wi . 
Codes Each wi in W is classifed by a code in C . 
Categories Each code in C is classifed by a category tag in T . 
We represent these variables as an undirected multilayer network 

[35] with parallel edges (Figure 3), whose clusters can then be 
inferred using stochastic block models. Our network includes two 
layers: a Text layer to capture co-occurrence patterns in text and a 
Metadata layer for codes and categories generated by the human 
scholar. The Text layer is a bipartite network with parallel edges 
between W and D. The Metadata layer is a disconnected, tripartite 
network of words, codes, and category tags where parallel edges 
hierarchically partition words. 

When applied to multilayer networks, hSBM will simultaneously 
infer clusters across all layers. Since the same W occurs in both the 
Text and Metadata layers, how words are clustered together will 
be identical across both layers [31]. Thus, the partitioned nature 
of the Metadata layer enforces a constraint that keywords applied 
the same code must always be clustered together. However, the 
relationships of these keywords to other words in the Text layer 
allows sets of keywords to be clustered with other non-keywords 
or with other keyword clusters. 

The edges between words and codes is inferred from passage 
highlighting and subsequent ‘in vivo’ keyword selection used to 
apply codes to raw texts, as described in §6.2. Note that every word 
in the corpus is always adjacent to a unique code. If a word has not 
3This partly motivates our avoidance in this paper toward referring to probabilistic 
word clusters as ‘topics’; interpretive scholars may also fnd the concept of ‘topics’ 
difcult to disassociate from ‘themes.’ 
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Figure 4: Scholastic’s Document Map features and states. The geographical treemap represents a hierarchical clustering of the corpus 
with color-coded pins summarizing applied codes (colors correspond to code categories). A navigation bar (1) persists across all views of the 
interface, and the left sidebar (2) contains two sliders that can step through either the lowest level of the hierarchical clusters displayed or 
the history of the evolving model. The item legend component at the bottom of the left sidebar allows a scholar to remove all overlaid pins 
(3) and avoid visual occlusion. Code flters within the navigation bar flter overlaid pins, which appear above documents if codes have been 
applied to passages within those documents. The random sampling component (4) generates a set of N documents for the analyst to apply 
codes in the Document Reader. Categorizing codes through the Code Examiner changes the colors of code tags and pin overlays (5). Code 
colors use D3.js’s Set2 color scheme, applying one color per category. If there are more than eight categories, the color hues will duplicate as 
in commercial tools like Tableau, but the code flters still explicitly encode their categorization through their text labels. Hovering over each 
hexagon dynamically displays the corresponding document’s title on the right sidebar; right-clicking the hexagon expands this component 
to show a content preview (6). Left-clicking a hexagon navigates the researcher to the Document Reader. 

been coded, it remains by default adjacent to the non-keyword code. 
After a scholar produces codes and categories, they can update the 
model on demand using a button in the interface (see §6). The 
Metadata layer is then remodeled and clusters reinferred with the 
new constraints that refect the current analysis state. 

6 INTERFACE DESIGN 
To incorporate the above algorithm within a machine-in-the-loop 
interpretive scholarship workfow, our system prototype Scholastic 
has three views: 

(1) The Document Map (Figure 4), which supports both random 
and breadth-frst sampling as well as model comparisons; 

(2) The Document Reader (Figure 5), which supports coding, 
memoing, and keyword selection for the algorithm; and 

(3) The Code Examiner (Figure 6), which supports categoriza-
tion, depth-frst search for similar documents related to 
codes, and subsequent code refnement. 

This design embodies qualitative analysts’ workfows for manu-
ally applying codes and categories through inductive interpretivist 
methods while allowing the system to collect metadata (via key-
word selection for each applied code) to refne the outputs of our 
hSBM algorithm. The analyst can navigate between these views 
using the navigation bar (Figure 4.1) or by sampling documents. 
Code flters within the navigation bar flter overlay pins on the 
Document Map: pins appear above documents if codes have been 
applied to passages within those documents. The navigation bar 
also contains a button to update the cluster models on demand. The 
scholar can continue working on their analysis during this model 

update, which given our study dataset (Appendix A) and hardware 
(32GB RAM with an Intel 6-Core i7 processor) took approximately 
11 minutes. Lastly, the navigation bar also allows a scholar to switch 
between color themes (light mode by default and dark mode for 
focused reading) using radio buttons. 

6.1 Breadth-First Sampling: Document Map 
The Document Map serves two main functionalities: corpus ex-
ploration and model comparisons. The central visual element is a 
geographical treemap [2] representing the hierarchical document 
clusters as spatial regions. The analyst controls the granularity 
of the hierarchical clusters with a step slider (Figure 4.2), which 
determines the lowest level cluster boundaries shown. 

Each document is represented with a hexagonal tile (Figure 4.3). 
Hovering over individual hexagons on the map dynamically dis-
plays the corresponding document title on the preview component 
at the bottom right. Right-clicking a hexagon expands this preview 
component to show the frst 1000 characters of a document without 
entering the Document Reader; left-clicking a hexagon opens the 
document in the Document Reader (§6.2) to begin coding. If the 
scholar chooses not to use the geographical map for document 
sampling, the Document Map allows them to randomly sample a 
subset of N documents from the corpus, where the sample size can 
be specifed by the scholar (Figure 4.4). 

We used a geographical treemap to draw a familiar visual metaphor 
between hierarchical document clusters and maps to allow analysts 
to easily explore the hierarchical clusters. We intentionally do not 
impose a priori cluster keywords or flters on this map to avoid 
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Figure 5: Scholastic’s Document Reader features and states. When multiple documents are sampled, the analyst can scroll through 
them using the pagination tool (1). Clicking and dragging across the text creates a highlight (2) that activates the coding footer component (3, 
4) that allows the user to apply codes and memos to the highlighted portion of text. The coding footer component also displays a stemmed 
subset of the highlighted passage (minus stopwords) from which analysts can click to select code-relevant keywords (3). Saving the highlight 
will cause it to appear as a clickable section of the document text (5). Clicking a previously highlighted section will auto-populate the coding 
footer component (6) where the analyst can view or edit their previously applied codes, memos, and keywords. 

biasing an interpretive scholar’s attention toward any specifc clus-
ter. We also do not provide information extracted from the model 
(e.g., common words, topic names, word probabilities) beyond clus-
ter boundaries to avoid bias in cluster interpretation. By design, 
the Document Map requires the user to demand details about data 
items frst by hovering over or sampling an item, then build up their 
own flters and relations between documents (codes and categories), 
constructing an overview through their own sensemaking process. 

We display a location pin above a hexagon tile if a code has 
been applied to the document. Each pin is colored according to the 
category of the applied code. In cases where multiple codes have 
been applied to a document, the number of unique categories is 
initially shown above the text item. Analysts can choose to show all 
codes associated with each document or a subset of codes using the 
code flters on the navigation bar (Figure 4.5). The pins are intended 
to support diverse and adaptive search strategies to explore related 
(i.e., depth-frst) and unrelated (i.e., breadth-frst) documents based 
on the user’s ongoing analysis. They also allow the scholar to 
compare their evolving coding schema with the document cluster 
output. Once the hSBM has output an updated cluster model on 
the scholar’s demand, they can also make comparisons across the 
model outputs (using a step slider on the left sidebar) to assess how 
their inputs afected the distribution of codes across clusters. 

6.2 Applying Codes: Document Reader 
A scholar accesses the Document Reader (Figure 5) from either the 
Document Map (when conducting a breadth-frst sampling from 

the corpus) or the Code Examiner (when revisiting a document 
given a target code or when conducting a depth-frst sampling us-
ing the indented tree; see §6.3). When multiple documents have 
been sampled (e.g., through the indented tree or random sampling), 
the scholar can scroll through them using the pagination compo-
nent (Figure 5.1). The Document Reader frst displays the selected 
document’s title and content. The scholar can click-and-drag (i.e., 
highlight) a passage to apply a code (Figure 5.2). As soon as the 
drag is released, the coding footer component appears (Figure 5.4). 

The coding footer component allows the analyst to apply a new 
code by typing in a code label or apply existing codes by clicking 
on existing code tags. It also displays a stemmed subset of words 
from the highlighted passage (minus stopwords) from which the 
scholar can choose relevant keywords for the multilayer hSBM 
(Figure 5.3). This parsimonious input operation is similar to in vivo 
coding and allows the scholar to characterize semantically mean-
ingful relationships between keywords. Highlighted passages are 
then visualized as clickable tagged text [1], persisting throughout 
the analysis. When revisiting a document, the scholar can click on 
a previously highlighted passage—which auto-flls the code, key-
words, and memos in the coding footer—to allow refection and 
refnement (Figure 5.5, 5.6). 

6.3 Categorization and Depth-First Search: 
Code Examiner 

After applying codes, the Code Examiner (Figure 6) allows scholars 
to compare, refne, and categorize them. Selecting a pair of codes 
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Figure 6: Code Examiner features and states. These models show P2’s evaluation (§7.3) before and after they triggered the interactive 
model update. The indented tree component (1, 2) displays keywords associated with selected codes, clustered and sorted by word frequency 
according to the model. Hovering over and selecting a vertical line samples documents most relevant to the word cluster at the given level 
(2). Note that words corresponding to code A (pink) and code B (green) were not clustered together, and the model update successfully 
enforced the correct constraints. Moreover, this cluster also found other related words (3) which are shown on hover interaction. These 
words were clustered together because P2 had categorized codes A and B together (4) using the dropdown menus. These menus also double 
as text felds where researchers can modify a code label or create new categories. Once codes are selected, the highlighted passages are 
shown at the bottom. These text sections are clickable and will navigate back to the full document within the Document Reader. 

from drop-down menus populates the interface with each code’s 
label, memos, and the passages containing that code (Figure 6.4). 
Researchers can create a new category for a code by typing in a 
category label under the code label drop-down. If category labels 
already exist, this text feld also doubles as a drop-down menu to 
assign an existing category to a code. These text segments highlight 
important keywords selected by the analyst using tagged text [1]. 
Clicking on a passage will navigate the scholar back to the corre-
sponding document in the Document Reader (§6.2) for refection 
and refnement. 

When codes are selected from the dropdown menus, the Code 
Examiner displays a pruned tree representation of the hierarchi-
cal word clusters generated by the hSBM model (Figure 6.2). The 
indented word tree representation of these clusters—similar to Ar-
chiText [34]—and the simple form-based interface build on familiar 
metaphors from digital fling systems. At the overview level, the 
tree only displays keywords from the coded passages to reduce 
complexity, but hovering over each cluster will display the top ten 
words within it. The analyst can click on a word cluster at various 
depth levels in the hierarchy to sample 30 documents associated 
with the selected cluster. These 30 documents are selected and dis-
played in a paginated list (see Figure 5.1), sorted according to the 
probability of the selected word cluster occurring in each document 
(P(bW | d)). This algorithmic sampling and sorting allows schol-
ars to identify candidate documents depth-frst through their code 
labels and preview the documents in the list view to quickly fnd 
those that are most relevant for their current analysis. 

7 EVALUATION 
We evaluated Scholastic in an interview study with two interpretive 
researchers. The study consisted of three phases: a brief introduc-
tion to the study goals, a think-aloud analysis of 2,615 recipe blog 
posts using Scholastic (Appendix A), and an exit interview to capture 
additional feedback. Both participants were trained and published 
in interpretive research using text data. 

Scholastic integrates a constraint-based interactive ML algorithm 
with both the data sampling and sensemaking loops of qualitative 
analysis. Our design considerations took into account that an efec-
tive human-AI collaboration tool should support: 1) serendipitous 
insightful moments during data sampling and sensemaking, and 2) 
incorporating human input into cluster models (see §3). Therefore, 
our evaluation sought evidence of following: 

• A range of sampling strategies within the Document Map 
and the Code Examiner, and 

• Indications that the interactive ML-related functionalities 
would not disrupt a scholar’s focused analysis within the 
Document Reader. 

First, a short introduction was given describing how we wished 
to examine the ways an interpretive scholar might use our system to 
analyze a large corpus in order to gather feedback on its design. We 
then obtain informed consent to participate and basic demographic 
information. Finally, we introduced the target dataset and a relevant 
research question with the following script: 
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“You have collected 2615 online recipe blog posts. You are interested 
in examining how certain foods elicit stories about certain interper-
sonal relationships as bloggers build narratives around food. Due to 
the amount of data, you will try a new system designed to support the 
qualitative analysis of large datasets. The frst thing you want to do 
is to familiarize yourself with your dataset. You open up the system. 
Talk aloud while you use this screen—as well as the interactions it 
supports—to examine the dataset.” 

We devised three simple, open-ended tasks to help scafold the 
interview such that scholars were able to navigate all system fea-
tures. These task instructions were devised to ensure task coverage, 
avoid a prescriptive workfow, and minimize researcher bias. We 
did not provide participants with tutorials on system functionalities, 
instead allowing participants to independently learn through their 
interactions. By providing an example dataset, we also intended to 
mitigate biases that may arise from familiarity with the underlying 
information. Each interview took 90 minutes. 

7.1 Task 1: You open up the system. 
What do you do frst? 

Our frst task captured initial interactions with the Document Map 
(§6.1), which served as a frontispiece for the tool. P1 described the 
geographical treemap as “pleasing,” “so wholesome,” and that one 
cluster was “a very pleasing shape.” They appreciated the connec-
tion to familiar geographic maps and board games (e.g. Dungeons 
& Dragons, Settlers of Catan). They started exploring documents 
by hovering over items, which dynamically displayed each item’s 
title on the right sidebar. Their interactions focused on items at the 
cluster boundaries, leading them to wonder: “Is there a reason this 
cell is bordered of in this section?” 

Although the geographical treemap did not communicate visual 
content summaries, the dynamic details-on-demand interactions 
with document titles still allowed P1 to conceptualize clusters in 
a creative way. They remembered each cluster by its shape and 
position, developing light-hearted yet memorable names for the 
regions (e.g., ‘Grandma’s Cookie Empire’, ‘Meat-topia’). When ad-
justing the granularity of the hierarchical document clusters, they 
talked about how the frst and second levels were manageable, but 
the third level was too granular, saying they might as well be going 
through the documents manually on their computer. 

Similarly, P2 was drawn to the hover interactions on the geo-
graphical treemap, which they described as ‘techy’ and ‘aesthetic.’ 
They noted that although one region seemed to only include pasta 
recipes, another region seemed to combine drinks and desserts, 
prompting them to wonder why those recipes were clustered to-
gether. P2 described the process of foraging for documents with the 
map as akin to fnding “little treats.” P2 heavily relied on the right-
click preview feature, which retrieves the frst 1,000 characters of 
the document, to make more detailed sense of each item within the 
clusters. Although P2 did not verbally conceptualize the regions as 
P1 did, when asked to recall where the pasta and drinks regions 
were at the end of the interview, P2 located them by their shapes 
and positions. 
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7.2 Task 2: Sample document items 
and apply codes. 

How participants sampled documents were left to their preferences. 
P1 chose to select documents via click interactions on the map, 
whereas P2 sampled ten random documents. With the Document 
Reader (§6.3) shown, participants were then instructed to begin 
applying codes. P1’s coding process started with ‘meme’ codes (e.g., 
‘veggie tales,’ ‘boil em mash em’) that they later refned. Neither 
participants had guidance for why the keyword selection feature 
was present, but immediately speculated that keywords might be 
used to help update the cluster outputs, as P1 noted: “The machine 
will operate better if I give it more input, is what I’m assuming there.” 
P2 also recognized that the keywords could beneft collaboration 
with the machine: “so when we see this in other documents, [the 
system is] going to assign more weight to that in some way.” To this 
point, they speculated about what would happen if they trained the 
model incorrectly: “I feel like it’s basically the garbage in, garbage 
out principle.” 

P1 appreciated that the keyword selection features in the Doc-
ument Reader were automatically stemmed and stripped of stop-
words, but noted that stopwords may be useful for in-depth soci-
olinguistic analysis. For P2, on the other hand, keyword selection 
became a redundant feature because they began by coding short 
chunks of texts with one to three words (in vivo coding). However, 
when they started highlighting larger passages, they commented 
how selecting keywords within these chunks, in combination with 
memoing, could potentially aid in their self-refection on the mean-
ing of a highlighted passage. Lastly, both experts noticed a few 
missing features for coding: notably, the ability to apply multiple 
codes to a single highlighted passage or to simultaneously highlight 
two passages and apply a single code to both. 

7.3 Task 3: Now that you have codes, 
organize them into categories. 

Upon being given this instruction, participants intuitively navigated 
to the Code Examiner (§6.3) using the navigation bar to refect and 
categorize the codes they applied in the Document Reader. On 
the Code Examiner, P1 selected a code (‘meat-lovers’) and saw the 
hierarchical word clusters, pruned to include only clusters with as-
sociated code keywords. Clicking into one of the clusters prompted 
the sampling of 30 documents, ordered by the likelihood of contain-
ing the clicked word cluster. P1 could not immediately make sense 
of why these documents were sampled, since some documents did 
not contain the keyword, instead containing other words related 
to them based on the clustering output. Also, interesting passages 
within recipe blog posts may be sparsely scattered, only serving 
as a transition from the introduction to the recipe body. However, 
their reaction then was to code “more of this [document] with like, 
people’s declaration of love to meat,” since they developed an un-
derstanding that the document was sampled due to its relationship 
to their keywords from the combined visualizations and raw text. 

When P2 started categorizing codes, they noticed that the colored 
code tags in the navigation bar (Figure 4.5) made it easy to see 
how the categories were emerging as well as which codes were 
uncategorized. In exploring the word cluster list, P2 clicked into a 
leaf cluster containing the keyword ‘friend.’ They used Ctrl-F to fnd 
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occurrences of the word “friend” from the word cluster, which was 
present in the second document but not the frst. They noted that 
the cluster levels seemed to get “more fltered” down the hierarchy. 
For example, they noticed the associated words at the lower two 
cluster levels started with the word ‘friend,’ (Figure 6.3) but words 
at the top level cluster began with ‘salt.’ They then felt more certain 
about the function of the indented tree when working with their 
“culture” code: “Let’s see what’s in the Southern cluster. So on the 
frst level, it’s ‘Southern,’ ‘biscuits,’ ‘health’; on the second level, 
it’s ‘cake,’ ‘Southern’; and on the third, it’s ‘roll,’ ‘dough,’ ‘flling,’ 
etc. Again, I do feel this is grabbing all the documents that have 
‘Southern.’ or maybe something like that.” 

Due to time constraints, only P2 was able to explore the doc-
ument and word clusters updated based on their codes and cate-
gories. After the model update (which took around 11 minutes), 
they interacted with the Document Map with the color-categorized 
code flters, doing this with several codes to see where the coded 
documents now appeared. They contrasted the document cluster 
partitions with the positions of colored code pins, discussing how it 
was interesting that documents with the same codes still appeared 
across diferent clusters. They had expected that documents sharing 
codes would instead be clustered together by the update. Upon be-
ing asked what they would do next, they responded that they would 
keep coding to see if more concrete patterns might emerge when 
contrasting the document cluster partitions with the positions of 
colored code pins. 

8 DISCUSSION 
Scholastic is a human-AI collaboration tool for interpretive scholar-
ship co-designed with experts. The system represents preliminary 
steps towards the vision of supporting scalable qualitative analysis 
with large text corpora scafolded by algorithmic and visualiza-
tion tools. We took a human-centered approach to enabling this 
epistemic practice, grounding our design objectives in our team’s 
earlier user interviews [23, 33] and design iterations between the 
interpretive scholars and visualization researchers on our team. Our 
discussions revealed the importance of designing for agency: tools 
should enhance analysts’ natural workfows rather than enforcing 
alternative practices. On the algorithmic side, models should adapt 
to human input from the scholar’s analysis; on the visualization 
side, the visualization should evolve to incorporate human-inferred 
codes and categories. Here, we summarize preliminary outcomes 
from the implementation and evaluation of Scholastic to inform fu-
ture work on forging efective human-AI collaboration for inductive 
and interpretive text analysis. 

8.1 Outcome 1. Supporting Serendipity 
Most cluster visualizations follow the visual information-seeking 
mantra, starting with descriptive visual summaries of the data 
(overviews) that are interactively adjusted (flter, relate), and in-
formation about individual data points is available on-demand. 
The goal of these techniques is to better provide quantitative sum-
maries of cluster contents at-a-glance. In contrast, our geographical 
treemap communicated only the size and hierarchical containment 
of each cluster: Scholastic does not impose a priori cluster keywords 
or flters to avoid biasing an interpretive and inductive researcher’s 

attention toward any specifc cluster. By design, the Document 
Map requires the user to demand details frst, then build up their 
own flters and relations (i.e., codes and categories), constructing 
an overview through their own sensemaking process. This rever-
sal of the information-seeking mantra allows the analyst to either 
implicitly develop their own mental model of a cluster’s meaning 
or explicitly code documents and allow the interactive machine 
learning algorithm to match their outputs more closely to codes 
and categories identifed by analysts. 

However, the analyst’s curiosity about emergent features on the 
geographical treemap became an entry point for interpretation. 
Their use and interpretation of these features naturally shifted 
toward data sensemaking. They appeared to be able to integrate 
both text and shape to construct a better mental model of the space 
of documents [47], to efciently sample data items, avoiding data 
items from the same cluster or sampling data items from a cluster 
of interest. For P1, naming regions (e.g., “meatopia”) provided a 
way to remember what documents had been sampled and to revisit 
similar documents later (e.g., “maybe I should go look at what’s 
in Meatopia”). They called the regions by names related to their 
shape or the document content: “And then there’s this little cell 
here, that’s like the country on the African continent, that’s like the 
little donut hole. . . ”). Although P2 initially expressed confusion over 
some document clusters, their ability to vocalize their uncertainty 
(e.g., “why does [this cluster] contain both drinks and desserts?”) 
also refected curiosity-driven exploration by both verbal and spatial 
conceptualization of the map [17]. 

8.2 Outcome 2. Right Place, Right Time 
By incorporating evolving human codes and categories into Scholas-
tic’s interfaces and algorithms, we supported both random and 
strategic sampling with visualizations that increasingly refect the 
knowledge built by the user rather than by the raw text models. The 
participants in our evaluation each chose a diferent strategy for 
sampling. Supporting diverse strategies gives the researchers the 
agency to choose the right tools for the right data, scenarios, and 
times. Although P2 chose not to use the map for sampling initially, 
in our post-study interview they appreciated that the document 
clusters helped them familiarize themselves with the breadth of the 
dataset before coding. 

P2 noticed that keyword selection for the interactive ML al-
gorithm could help them analyze a passage in more depth. They 
mentioned that coding individual keywords would be “the kind 
of thing I would probably be memoing about,” as identifying key-
words within codes allows analysts to focus on why a particular 
code might be appropriate for a given passage. In this sense, both 
participants saw the tool as a collaborator, where the ML features 
helped the analyst, but the analyst also helped the model evolve. 
P1 in many ways personifed the system as they would a research 
assistant. They remarked when there was a lag in saving a high-
light that “He’s keeping up in the back there.” P1 noted that if the 
keyword selection appeared benefcial for the model, they would 
be pleased “because it’s designed to help me. It is my helper.” P2 
noted that seeing how the document cluster outputs had changed 
based on input made the model more trustworthy, because it was 
able to adapt to their own interpretations. 
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9 LIMITATIONS AND FUTURE WORK 
Scholastic’s design focused on capturing the core components of 
qualitative analysis workfows without necessarily supporting any 
individual methodology (e.g., grounded theory or thematic anal-
ysis). In our evaluation with qualitative experts, analysts wanted 
several additional features to tailor the tool for specifc interpretive 
approaches. For example, P1 appreciated that the keyword selec-
tion features in the Document Reader were automatically stemmed 
and stripped of stopwords within the context of their preferred 
methods (thematic analysis). However, both participants noted that 
stopwords may be useful for in-depth sociolinguistic analyses. Fu-
ture work should explore extensible frameworks that tailor analysis 
support to individual methodological or disciplinary needs. 

We note that our tool does not aim to incorporate all of the coding 
features present in commercial tools like MaxQDA that primarily 
support code management. Analysts’ coding practices vary widely: 
for example, P1 would have preferred to code titles of documents 
in addition to their body texts. Analysts may desire to highlight 
multiple disjoint segments with a single code or to assign multiple 
unique codes to a single highlight. The latter practice—while fre-
quently requested—requires further algorithmic development since 
our algorithm assumes that each keyword maps to a single code. If 
a user wishes to apply multiple codes to the same passage of text 
in our current implementation, the text must be segmented into 
unique keywords for each code to avoid overlapping assignments. 
For interpretive scholarship, assigning multiple codes to a single 
passage for approaches treating text data as a bag-of-words input 
will require novel algorithmic support, unless the word tokens can 
be separated according to additional metadata such as semantics 
and syntax as in Grifths et al. [28]. 

Engagement played a signifcant role in analysts’ desire to use a 
given visualization for sampling data items. For example, P1 noted 
that the directory-like nature of the indented tree visualization 
lacked the engaging, more organic features that had emerged on 
the Document Map. This diference impacted how willing they 
were to sample documents with the indented tree visualization. 
Our future work will study how visual features emerging in cluster 
visualizations may play a role in learning and memory for qual-
itative data. For example, even in the absence of explicit visual 
summaries, people were able to leverage details-on-demand in-
teractions and emergent shapes of the geographical treemap to 
conceptualize and remember the information contained within 
clusters and guide their exploration. Future work should explore 
if this behavior has a capacity limit (e.g., number of clusters) or is 
mediated by the visualization technique used (e.g., geographical 
treemaps vs. scatterplots). 

Our evaluation studies focused on the system’s usability with 
two researchers. An extended, longitudinal evaluation could bet-
ter demonstrate analytical insights generated using Scholastic. We 
intend to deploy this system as part of a future longitudinal study 
on the impact of mixed-initiative tools on qualitative analysis out-
comes. This comparative study may investigate the varying ef-
ciency and efcacy of these tools over a lengthy collaborative and 
interpretive text analysis (e.g., by analyzing subjective evaluations 
of confdence and trust in analysts’ knowledge work and comparing 
research outcomes across users). 
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10 CONCLUSION 
Statistical models are powerful tools for analyzing text data. How-
ever, there is no consensus within the interpretivist research com-
munity regarding what the role of machine learning should be 
within their practices [19, 43]. Our co-design process with experts 
took a human-centered approach to implement an interface and 
algorithm for supporting key phases of interpretive and inductive 
text analysis workfows [3]. Scholastic embodies the goals of de-
signing for various sampling strategies given a corpus, letting the 
AI model adapt to on-going knowledge development, and allowing 
human sensemaking to drive interpretive text analysis, enabling 
familiar and non-disruptive interactions with the AI mediated by 
visualizations. Given the popularity of qualitative methods for ana-
lyzing text data within human-computer interaction [39] and visual 
analytics [18], we hope that our work will build a foundation for 
future mixed-initiative systems scafolding interpretive scholarship. 
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were crawled and retrieved on November 8th, 2021. The corpus con-
sists of 2,615 recipes with 14,343 unique words after lemmatization 
and removal of all words (using the spacy package) except content 
words (proper nouns, adjectives, adverbs, nouns, verbs). This re-
sulted in 720,292 total edges in the Text layer, with the average 
document length (node-degree) of 275.45. 

https://doi.org/10.1145/2254556.2254572
https://doi.org/10.1145/2254556.2254572
https://doi.org/10.1353/wp.1996.0023
https://doi.org/10.1353/wp.1996.0023
https://doi.org/10.1007/BF00988593
https://doi.org/10.1007/BF00988593
https://doi.org/10.1007/BF00052700
https://doi.org/10.1007/BF00052700
https://arxiv.org/abs/2203.01777
http://arxiv.org/abs/2203.01777
http://arxiv.org/abs/2203.01777
https://doi.org/10.1109/pacificvis.2017.8031598
https://doi.org/10.1109/pacificvis.2017.8031598
https://doi.org/10.1109/TVCG.2019.2934654
https://doi.org/10.1109/TVCG.2019.2934654
https://arxiv.org/abs/1908.00475
https://doi.org/10.1109/TVCG.2012.260
https://doi.org/10.1109/TVCG.2012.260
https://doi.org/10.1145/3479856
https://doi.org/10.1145/3492844
https://doi.org/10.1126/sciadv.aaq1360
https://doi.org/10.1126/sciadv.aaq1360
https://doi.org/10.1093/pan/mps028
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1016/0378-8733(83)90021-7
https://doi.org/10.1140/epjds/s13688-021-00288-5
https://doi.org/10.1140/epjds/s13688-021-00288-5
https://doi.org/10.1145/3274350
https://doi.org/10.1145/3449168
https://doi.org/10.1109/TVCG.2020.2981456
https://doi.org/10.1093/comnet/cnu016
https://arxiv.org/abs/1309.7233
https://doi.org/10.1093/llc/fqv052
https://doi.org/10.1111/j.1467-8659.2012.03108.x
https://doi.org/10.1111/j.1467-8659.2012.03108.x
https://doi.org/10.1016/j.ijhcs.2017.03.007
https://doi.org/10.1145/3359174
https://books.google.com/books?id=p0wXBAAAQBAJ
https://books.google.com/books?id=p0wXBAAAQBAJ
https://doi.org/10.1145/2957276.2957280
https://doi.org/10.1177/0049124117729703
https://doi.org/10.1177/0049124117729703
https://doi.org/10.1002/9781119483298.ch11
https://doi.org/10.1002/9781119483298.ch11
https://arxiv.org/abs/1705.10225
https://arxiv.org/abs/1111.6189v1
http://www.sciencedirect.com/science/article/pii/S0140366413001047%5Cnhttp://ceas.cc/2004/167.pdf%5Cnhttp://doi.acm.org/10.1145/1806338.1806450%5Cnhttp://eprints.soton.ac.uk/272254/%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7033160%25
http://www.sciencedirect.com/science/article/pii/S0140366413001047%5Cnhttp://ceas.cc/2004/167.pdf%5Cnhttp://doi.acm.org/10.1145/1806338.1806450%5Cnhttp://eprints.soton.ac.uk/272254/%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7033160%25
http://www.sciencedirect.com/science/article/pii/S0140366413001047%5Cnhttp://ceas.cc/2004/167.pdf%5Cnhttp://doi.acm.org/10.1145/1806338.1806450%5Cnhttp://eprints.soton.ac.uk/272254/%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7033160%25
http://www.sciencedirect.com/science/article/pii/S0140366413001047%5Cnhttp://ceas.cc/2004/167.pdf%5Cnhttp://doi.acm.org/10.1145/1806338.1806450%5Cnhttp://eprints.soton.ac.uk/272254/%5Cnhttp://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=7033160%25
https://arxiv.org/abs/1309.6874
https://doi.org/10.18653/v1/d15-1037
https://www.simplyrecipes.com

	Abstract
	1 Introduction
	2 Background
	2.1 Inductive and Interpretive Text Analysis
	2.2 Using Topic Models for Qualitative Research
	2.3 Interfacing with Text Models

	3 Design Objectives
	3.1 Consideration 1: Supporting Serendipity
	3.2 Consideration 2: Right Place, Right Time
	3.3 Consideration 3: Using Familiar Paradigms
	3.4 Consideration 4: Overlaying Visualizations With Codes and Categories
	3.5 Summary of Design Objectives

	4 Implementation
	5 Algorithm Design
	5.1 Incorporating Codes and Categories as Metadata

	6 Interface Design
	6.1 Breadth-First Sampling: Document Map
	6.2 Applying Codes: Document Reader
	6.3 Categorization and Depth-First Search: Code Examiner

	7 Evaluation
	7.1  Task 1: You open up the system. What do you do first?
	7.2 Task 2: Sample document items and apply codes.
	7.3 Task 3: Now that you have codes, organize them into categories.

	8 Discussion
	8.1 Outcome 1. Supporting Serendipity
	8.2 Outcome 2. Right Place, Right Time

	9 Limitations and Future Work
	10 Conclusion
	Acknowledgments
	References
	A Recipes Dataset



