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Resource Management in Mobile Edge Computing:

A Comprehensive Survey

XIAOJIE ZHANG and SAPTARSHI DEBROY, City University of New York, USA

With the evolution of 5G and Internet of Things technologies, Mobile Edge Computing (MEC) has emerged

as a major computing paradigm. Compared to cloud computing, MEC integrates network control, computing,

and storage to customizable, fast, reliable, and secure distributed services that are closer to the user and data

site. Although a popular research topic, MEC resource management comes in many forms due to its emerging

nature and there exists little consensus in the community. In this survey, we present a comprehensive review

of existing research problems and relevant solutions within MEC resource management. We first describe

the major problems in MEC resource allocation when the user applications have diverse performance

requirements. We discuss the unique challenges caused by the dynamic nature of the environments and use

cases where MEC is adopted. We also explore and categorize existing solutions that address such challenges.

We particularly explore traditional optimization-based methods and deep learning-based approaches. In

addition, we take a deeper dive into the most popular applications and use cases that adopt MEC paradigm

and how MEC provides customized solutions for each use cases, in particular, video analytics applications.

Finally, we outline the open research challenges and future directions.1
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1 INTRODUCTION

With the rapid development of data science, data-intensive smart applications such as smart trans-
portation, smart healthcare, AR/VR/MR, and real-time gaming are becoming increasingly popular.
These applications often require massive data computations/processing and have strict low/ultra-
low latency requirement. Nevertheless, deploying such applications on mobile devices is still a
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Fig. 1. A three-tiered computing architecture and involved components.

challenging problem, primarily due to their hardware limitations. Particularly: (i) most mobile de-
vices do not have powerful central processing units (CPU) and thus cannot host computation-
intensive applications; (ii) the battery capacity of mobile devices is greatly restricted by the small
physical size, i.e., intensive computation drains the battery quickly, which limits computation-
intensive application hosting; and (iii) smart applications require considerable memory space and
may cause device memory shortages. In particular, machine learning and artificial intelli-

gence (ML/AI)-based applications can easily occupy the entire memory, making the mobile de-
vices significantly slow. The most obvious solution to address such issues is the use of remote
computation that can provide elastic and on-demand resources.

1.1 Tiered Computing Architecture: Cloud, Edge, and Device

A tiered computing architecture (as shown in Figure 1) that spans across cloud data centers, edge
servers, and local computation capabilities of mobile devices is the de facto paradigm for such re-
mote computation. The tiers are typically classified by reliability, latency, and computation capac-
ity. Cloud resources in Tier 3 provides users with powerful computing resources (e.g., CPU, GPU)
with a choice of different operating systems. It also provides pre-installed software and libraries
(e.g., ML/AI, visual computing) that in turn enables mobile services to support more sophisticated
and complex end-to-end applications (e.g., 3D reconstruction) with better user experience. How-
ever, due to the long network distance between the mobile user and the cloud data center (i.e.,
switching, routing, and congestion), the application suffers a higher end-to-end delay. This makes
cloud computing unsuitable for many mission-critical mobile applications (e.g., AR/VR/MR, au-
tonomous driving) that have strict low end-to-end latency requirements. In recent times, MEC has
emerged as the alternative approach, which is a combination of the bottom two tiers in Figure 1.
The bottom tier consists of multiple heterogeneous small base stations (SBSs), including eNodeB
(LTE 4G), eNodeB (5GNR), andWiFi access points (APs) that together represent differentwireless
technologies. In addition, users can operate different types of mobile devices (e.g., smartphones,
drones, and robots) with diverse computation and energy capacities. At the same time, computa-
tion capacity can be augmented by the use of small-scale edge nodes with CPU/GPU capabilities,
such as Jetson nano and TX2. This tier brings computation resources closer to the mobile devices,
therefore is able to achieve ultra-reliable (network reliability ≥ 99.999% ) and low-latency com-
munications (usually wireless). However, the computation resources available at this tier are very
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Fig. 2. Applications and requirements of 5G Wireless Network and network slicing [6].

limited due to the limited computation capacity of the mobile and edge devices. This makes it dif-
ficult to host sophisticated applications entirely within this tier. Tier 2 consists of several Macro

base stations (MBSs) that typically host city-level data centers (e.g., COSMOS [1]) containing
considerable computation and storage resources that are able to host multiple virtual machines

(VMs) and containers simultaneously. In general, the MBSs are connected to SBSs via high-speed
optical fiber and thus can provide reliable and low-latency communications.

1.1.1 Edge Computing vs. Fog Computing. In recent times, fog computing as a concept has be-
come popular. As both edge computing and fog computing bring computational resources closer
to the mobile devices, there is often debate about their similarities and differences. The concept of
fog computing is first defined in Reference [2], which states that the characteristics of fog comput-
ing include low latency and location awareness, wide-spread geographical distribution, mobility, very

large number of nodes, predominant role of wireless access, strong presence of streaming and real time

applications, and heterogeneity. Although edge computing shares most of these characteristics, it
is more resource-limited and closer to data generation site than fog computing. Another way to
distinguish edge computing and fog computing is mentioned in References [3, 4], which state that
fog computing is designed to provide computing, networking, storage, and control services any-
where from the cloud to mobile devices while the edge computing utilizes resources only located
at the edge of the network. The scope of this survey is resource management in edge computing,
but the collection of papers discussed here is not limited to “edge-only” computing as long as their
proposed systems benefit from collaborative computing paradigms across edge, fog, and cloud.

1.2 Applications Supported by MEC

To capture the challenges of resource management in MEC, it is necessary to understand the
classification and characteristics of complex applications. According to the International

Telecommunication Union (ITU), current and future 5G mobile applications are classified into
three categories, viz., Enhanced Mobile Broadband (eMBB), Massive Machine Type Com-

munications (mMTC), and Ultra-reliable and Low-latency Communications (uRLLC) [5].
As shown in Figure 2, eMBB aims to support stable communication that have high bandwidth
requirements (e.g., 4K video and Virtual Reality); whereas, mMTC serves a massive number of
IoT devices that are active intermittently (e.g., smart city with high connection density). Finally,
uRLLC accommodates services with low-latency and high reliability requirements (e.g., connected
autonomous vehicles). Therefore, given such diverse set of requirements (viz., latency, scalability,
availability, and reliability), a combination of customized scheduling and resource management
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strategies are needed to allow heterogeneous applications running on the same system stack
(includes computation and network). To this end, the concept of network slicing or virtual

networks is being used to allocate customized end-to-end resources to diverse applications with
different requirements to ensure performance satisfaction and mutual isolation. Network slices
are defined as end-to-end logical/virtual networks on top of a common shared physical network
infrastructure. The design and composition of network slices are driven by the need to fulfill
the latency, scalability, availability, and reliability requirements for vertical-specific applications,
such as eMBB, uRLLC, or mMTC, as shown in Figure 2.

1.3 Challenges in MEC Resource Allocation

Given this tiered computing architecture and characteristics of complex applications, we can see
that the optimization problems to achieve efficient resource allocation and application manage-
ment is more complicated in MEC than traditional distributed and cloud systems due to the inher-
ent heterogeneity of MEC resources. Specifically, the challenges are:

• As explained before, the diversity of applications and a variety of user specified requirements
add additional complications to the system and application optimization problems in terms
of resource allocation decision making. This makes things especially complicated for joint
optimization problems where resource provisioning and placement problems involve both
computation and network/radio resources. Since most of the joint optimization problems
are NP-hard, conventional approaches are unable to solve such problems efficiently.
• MEC environments are more dynamic and prone to faults/fluctuations than traditional
cloud environments. These fluctuations include and are not limited to: (1) unpredictable
changes in user requirements and mobility, (2) dynamic network connecting devices and
edge servers with fluctuations in wireless channel quality, (3) edge servers with fluctuating
computation resource availability, and (4) unpredictable changes in device energy levels.
Inability to handle such faults/fluctuations efficiently and promptly may cause serious
performance degradation of mission-critical applications. At the same time, continuous
handling of the fluctuations through efficient resource adaptations to optimize long-term
system performance is a non-trivial problem.
• Real-time or close to real-time video analytics is being touted as the killer application in
MEC in recent years. Unlike generic applications, in video analytics the users may select
different configurations (e.g., frame rate, frame resolution, and number of video sources)
to balance the tradeoff between application quality of service (QoS) such as latency and
energy consumption, and application quality of experience (QoE) such as quality of
analysis outcome. This makes efficient resource optimization even more challenging.

1.4 Related Surveys

Please refer to Appendix A in the Supplementary File for a summary of the existing surveys [7–12]
and their comparison to this survey.

1.5 Our Contributions

In this survey, we focus on both system-side and application-side optimization problems within
MEC systems, viz., computation offloading decision-making, resource allocation, and configura-
tion adaptation in handling dynamism in edge systems. In particular, the main contributions of
this survey can be summarized as follows:

(1) We offer a comprehensive discussion on the optimization of computation offloading
and resource allocation at the edge. In particular, we discuss these problems from differ-
ent performance objectives’ perspective ranging from simple (e.g., minimizing energy
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consumption and latency) to more complex (e.g., minimizing energy consumption subjected
to latency constraints).

(2) In this survey, we also take a look at works that address the dynamic nature of the environ-
ments and systems where MEC is adopted. We particularly focus on the impact of stochastic
computation offloading that includes dynamic task arrival, fluctuations in channel quality,
and changes in computation availability. We discuss the existing works that propose
service migration strategies within the edge architecture triggered by the aforementioned
system dynamism. We also investigate the role of MEC in vehicular networks, especially in
handling user mobility.

(3) Most optimization problems in MEC are joint optimization problems and are Mixed-

Integer Nonlinear Programming (MINLP)-based. It is difficult to obtain closed-form
solutions for MINLP problems subject to non-convex constraints and integer (or binary) pa-
rameters. In this survey, we discuss existing decentralized frameworks for solving complex
decision-making problems (e.g., user-server association, channel allocation, computation
offloading model selection). Game theory-based frameworks are also introduced such as,
potential game, Stackelberg game, and matching game. We also discuss existing task queue
management and reinforcement learning (RL) techniques that make a sequence of
decisions based on the changes in the edge environment. We then show how recent works
in federated learning use RL techniques and optimization.

(4) Finally, we highlight the challenges and solutions of deploying and optimizing video ana-
lytics workflows on MEC. Typically, video analytics require considerable data transmission
(e.g., live streaming video) and computation resources to run sophisticated processing
algorithms (e.g., larger and complex neural networks). Compared to generic non-video ap-
plications, tasks in video analytics are both computation-intensive and bandwidth-hungry.
However, such tasks warrant performance guarantees (e.g., accuracy, completeness) in
addition to energy efficiency and latency sensitivity requirements. Therefore, simply
optimizing computation offloading and resource allocation strategies from the system
point of view does not yield the best performance. Thus, for video analytics, the system
optimizations to be application-aware is of paramount importance. In this survey, we
mainly consider three types of optimizations from a video analytics application point
of view: (i) balance between performance of video analytics and cost for mobile devices,
(ii) task placement for different video pipelines (i.e., sequential, parallel and hybrid) based on
directed acyclic graph (DAG), and (iii) deep neural network (DNN)-level optimization
and distributed and collaborative model inference.

Figure 3 shows the overview and organization of this article. The rest of the article is organized
as follows: Section 2 presents the existing work in computation offloading and resource allocation.
Section 3 discusses the dynamic optimization problems in MEC. Section 4 presents the edge opti-
mization solution approaches. Section 5 discusses the challenges and solutions on video analytic
in MEC. Section 6 presents the open research challenges and future directions. Section 7 concludes
the survey. A list of important acronyms (in the order they appear in the survey) are summarized
in Table 2 of the Supplementary File.

1.6 Survey Methodology

Please refer to Appendix B in the Supplementary File.

2 COMPUTATION OFFLOADING AND RESOURCE ALLOCATION

As we discussed in the previous section, most modern mobile devices are limited by their battery
and computing capacities. Therefore, offloading their data to nearby edge servers for the purpose
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Fig. 3. Survey organization. It presents papers that solve full offloading and partial offloading problems in

generic communication and computation environment (Section 2). Then, several dynamic factors (e.g., tasks,

channels, and mobility) and their impacts on the edge system are presented. In particular, papers on service

migration, vehicular network, and dynamic network slicing are presented in Section 3. This follows the sum-

mary and comparison of existing mathematical tools and techniques that are widely used to solve the prob-

lems of computation offloading and resource allocation in Section 4. Finally, video analytics as an exemplar

application is discussed to show how application-side optimizations can improve the overall performance in

resource-constrained edge computing systems (Section 5).

of energy preservation and latency reduction makes a lot of sense. In this section, we describe
and compare the common computation offloading models, viz., (1) full offloading (or edge-only)
and (2) partial offloading. We also discuss some common optimization objectives (towards such
computation offloading) in terms of latency and energy consumption minimization. The classifi-
cation of related works (i.e., papers) in this space and their objectives and optimized metric are
summarized in Appendix F (particularly, Tables 3 and 4) of the Supplementary File. Figure 2 in the
Supplementary File presents their relative comparison.

2.1 Full Offloading/Edge-only Computation

In full offloading [13–22], mobile devices transfer the whole application data to the edge server(s).
Since the application only runs on the edge server, only the energy consumption of data transmis-
sion needs to be considered. The end-to-end application latency in such cases includes the data
transmission time (from devices to edge servers) and the computation time at the edge server. The
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former depends on the transfer data rate, while the latter depends on the allocated computing re-
sources (such as CPU cycle frequency). In case of multiple edge servers, the mobile device not only
needs to determine whether the task should be offloaded, but also needs to select the best edge
server. However, when more and more mobile devices choose the same server, resource competi-
tion among mobile devices becomes more intense and the system performance starts to decline.
Therefore, both resource allocation and edge server selection are important factors in performance
optimization of full offloading strategies. Overall, the strategies where mobile devices benefit from
full offloading can be classified into: (1) ones where the energy consumption can be reduced by
sending the task data to the edge while satisfying the latency constraint and (2) ones where the
task can not meet the latency constraint by running it locally.
The key to a successful (or beneficial) full offloading is to allocate sufficient radio and compu-

tation resources such that both the transmission time and energy can be minimized. However,
such application-specific minimization can be defined in many different ways. For example, Refer-
ence [14] studies full offloading strategy for a specific area with multiple IoT devices and multiple
edge servers to minimize the end-to-end latency. The proposed sample average approximation

(SAA)-based method achieves 20% of global cost reduction on a true base station dataset. Authors
in References [22] and [15] propose offloading frameworks that aim to minimize the weighted

energy consumption and latency. To minimize the energy consumption while satisfying the end-to-

end latency constraint, the offloading decisions in Reference [18] are determined by sub-carrier
power and sub-carrier allocation strategy, while Reference [20] performs a device classification
and priority determination strategy to make offloading decisions based on communication
channels and computation requirements. The summary and comparison of works proposing full
offloading strategies are described in Appendix F (particularly, Table 3) of the Supplementary
File.

2.2 Partial Offloading

Under ideal conditions, all application data should be sent to the edge server to be processed there.
Nevertheless, when mobile devices have to transmit a large amount of data (e.g., training data for
machine learning, videos processing) to the edge server, the transmission cost (to edge servers)may
overcome the offloading benefits due to the consequent increase in energy expenditure (due to data
transmission) of the mobile devices. To solve this problem, the partial offloading model [23–32]
allows mobile devices to offload part of the data to the edge server, while the rest of the data
is processed/executed locally. In such cases, mobile devices and edge servers can process differ-
ent parts of data, i.e., processing tasks concurrently, thereby reducing the end-to-end processing
latency. However, the energy consumption at mobile devices may increase compared to full of-
floading, since local computation at the devices can consume significant energy. Therefore, partial
offloading frameworks typically use a configurable offloading ratio to control the tradeoff between
communication cost and computation cost, making such offloading models more flexible.
Related works in this space include Reference [24], which proposes a partial offloading-based

video compression framework. The authors formulate a latency-minimization problem for
multi-user video compression with joint communication and computation resource allocation.
Their simulation results show that as the number of devices increases, the performance gap
between the full offloading and partial offloading models becomes more evident. It indicates that
the partial offloading model can greatly reduce the system delay by introducing local computa-
tions. To minimize the energy consumption, Reference [31] proposes a Deep Reinforcement

Learning (DRL)-based approach to partially offload parts of tasks to the edge server based
on the current queue length and the reward obtained from cooperative spectrum sensing. This
work allows devices to adjust their computation and transmission speeds to perform different
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ratio of task offloading. Authors in Reference [32] propose a multi-user and multi-server partial
task offloading and resource allocation framework. They use a many-to-one matching game
to perform user-server association and then solve the resource allocation and task partition
problems at the user side with the queue length bounds. In Reference [29], the authors propose
a novel three-node edge system that the data is divided into three parts, i.e.: (1) device processing,
(2) helper node processing, and (3) edge node processing. The helper node acts as a small edge
server and a decode-and-forward relay for cooperative communication to help the user device
offload some of the data to the edge node. Such data partition is based on minimizing the total
energy consumption of the user and helper with a latency constraint.
Since the major motivation for partial offloading is energy saving, such works are widely used

in energy harvesting applications where mobile devices use harvested energy to perform local
processing as well as data transmission. Works such as Reference [25] proposes a UAV-enabled
wireless powered MEC system to maximize the sum of computation rate of all the users. The UAV
is equipped with a radio-frequency energy transmitter that can charge multiple mobile users. It
shows that the partial offloading mode achieves largest weighted sum computation bits compared
to local computing and binary mode (i.e., a flexible selection between full offloading and local).
Authors in Reference [33] integrate simultaneous wireless information and power transfer

(SWIPT) technologies into MEC system. Enabled by SWIPT and power-splitting receiver, the
user device can perform energy harvesting and information decoding simultaneously. The
authors propose an energy-efficiency problem to determine the relay beamforming, device CPU
frequency, transmission rate of uplink and downlink channels, and the task partition. The goal
is to minimize the system energy consumption while satisfying the latency constraint. Compared
to References [25, 33], authors in Reference [30] make partial offloading decisions based on
the backup power supply of an edge device rather than that of users. The authors propose a
renewable-powered edge-cloud computing system. Based on whether the existing battery level
can support the basic computation and transmission in each time slot, the edge device can offload
all the workload or part of the workload to the cloud and select the number of active servers.
A summary and comparison of all such works that propose partial offloading frameworks are
described in Appendix F (particularly, Table 4) of the Supplementary File.

3 DYNAMISM IN EDGE COMPUTING

Computation offloading and resource allocation optimization can be effectively performed when
the task information within the application model is known in advance and MEC environment is
stable. However, for real-time and complex applications, task models are not deterministic. More-
over, MEC environments are more dynamic and prone to faults/fluctuations than traditional cloud
environments. Thus, especially for mission critical applications, the optimization is unlikely to
satisfy strict user requirements when such task dynamism and environmental fluctuations are not
addressed. In this section, we discuss how the current literature address the dynamic changes in
MEC environments. As shown in Figure 4 related works in this space are primarily grouped into
stochastic computation offloading and several use cases such as service migration, vehicular edge
computing, and dynamic network slicing.

3.1 Stochastic Computation Offloading

In this subsection, along with different aspects of stochastic computation offloading, we describe
the list of factors that leads to such model adoption. These include unpredictable changes in user
requirements [17, 32, 34, 35] and fluctuating wireless [14, 17, 31, 36–41] and computation resource
availability [36]. Details can be found in Appendix D in the Supplementary File.
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Fig. 4. Dynamism in edge computing.

Fig. 5. Examples of service migration.

3.2 Service Migration

Service migration from current edge server to a new edge server (from the user/device point of
view) may occur in the following situations as shown in Figure 5(a): (i) the user is moving away
from the current edge server and (ii) the resource availability at the current edge server has di-
minished and (iii) the wireless interference caused by other users. In those situations, the basic
motivation for service migration is to find a new edge server to maintain service continuity and
QoS/QoE. Figure 5(a) shows an illustrative example of such migration where vehicle v1 is driv-
ing towards the edge server e1 initiating service migration from e2 to e1, while vehicle v2 is also
heading towards e1 and thus initiating similar migration. The cost of migrating a stateless applica-
tion is the migration delay in the network handover, which is usually negligible. However, stateful
services such as VM and/or container-based systems need to move the running states (i.e., CPU
states, memory) from current (i.e., source) server to the new (i.e., destination) server. In such cases,
the service may be suspended during the migration of those runtime states and such migration
cost cannot be ignored. Typically, service migration in edge computing is based on the following
two considerations: (i) first, since service migration requires expensive operations and resources,
such as I/O, CPU, bandwidth, the QoS/QoE will be degraded during the process of migration. The
tradeoff between service migration cost and migration benefit is crucial and, (ii) second, it is also
very important to find a suitable strategy to determine how the memory of stateful services will
be transmitted. Especially in a resource-constrained system, this strategy has a great impact on
the overall migration performance.

3.2.1 Taking Migration Decision. Here, we describe a list of strategies used to take migration
decisions in an edge computing environment. The papers are classified into two types, viz.,
Mobility-aware migration [42–46] and QoE/QoS-based migration [39, 47, 48].
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Figure 5(b) shows an example ofmobility-awaremigration, where the network topology consists
of a set of possible service locations and it is assumed that each location is associated with an edge
server. The state of the system is defined as the distance between the user location and the service
location. When mobile users are moving across different geographical areas, we can predict the
user mobility pattern to find the optimal migration decision (i.e., when and where to migrate).
In References [42, 43], the migration cost and the transmission cost are assumed to be functions
of distance. In Reference [42], the authors propose a mobility-driven service migration for 1D
mobility patterns. In uniform 1D random walk, the mobile device moves to the left and right with
equal probability r or stay in the same location with probability 1 − 2r . Authors in Reference [43]
propose a distance-based migration framework to handle 2D mobility. While in 2D random walk
(e.g., Figure 5(b)), the mobile device steps to one of its six neighboring cells with equal probability
r or stays in the same location with probability 1 − 6r . In this work, the cost is modeled as a
constant-plus-exponential function with respect to the distance. The authors propose a distance-
based MDP and use a modified policy-iteration approach to find the optimal migration policy.
Their numerical evaluations show that the proposed migration approach reduces the cost 9%–54%
compared with the never/always migrate or myopic policies. This improvement largely depends
on the total amount of available resources.
The mobility patterns of the above papers are either too simplistic or they assume that users’

mobility patterns are known in advance (e.g., the transition probabilities)—both scenarios are in-
adequate to deal with real-world mobility patterns. By contrast, Reference [44] predicts the target
area of the user’s movement by using an idealized geometric model that is based on a 6-tuple infor-
mation, viz., position, position error, speed, speed error, direction, and direction error. The authors
use T-pattern tree to mine local motion trajectory information, which can complement location
prediction in case of incomplete tuple information. However, this work only considers linear mo-
bility pattern. Works such as References [46, 49] use ML-based techniques to implement mobility
prediction. Authors in Reference [49] propose glimpse, a seq2seq model customized for predicting
a sequence of future locations. The model consists of an encoder and a decoder with both using
LSTM neural networks. The authors use mobility data from New York City CRAWDAD NCSU
dataset [45] to train the prediction model. The authors in Reference [46] propose a DQN-based
task migration framework in MEC system that supports arbitrary moving patterns and network
structures.
Instead, distance-based migration strategies use distance differences as the only reference that

cannot capture the impact of other environmental fluctuations on QoE/QoS performance. While
in QoE/QoS (Performance)-based Migration, the system jointly considers the impact of wireless
condition and computation availability when making migration decision—a more practical solu-
tion for real-world use-cases. In Reference [47], a dynamic service-migration mechanism-based on
the user’s QoE is proposed. This mechanism considers both the user mobility and the dynamic net-
work resources (e.g., storage and bandwidth). The migration objective is to minimize the service
cost while improving the QoE by offering different service resolutions. In Reference [47], the mi-
gration decision is based on a score function S and a cost functionC . The migration cost function
depends on the data size of the task. The score function reflects the relationship between the user’s
QoE and the acquired service resolution. The authors in Reference [39] use a balance factor to char-
acterize the tradeoff between too frequent and too infrequent migrations in consideration of the
job completion rate, transmission cost, andmigration overhead.With the use of dynamic spectrum
access communication, frequent migration will adversely affect short-term performance, which it
may be detrimental to the success of the tasks. However, too infrequent migration may leave the
task vulnerable to upcoming spectrum fluctuations. A migration strategy is carried out by the op-
timizations of the tradeoff between transmission cost improvement and migration overhead. The
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strategy tries to find the optimal “application to edge server” mapping that maximizes the ben-
efit of migration. In Reference [48], the authors use threshold-based mechanisms to control the
balance between too frequent and too infrequent migrations based on prediction measurements.
The authors study the service migration problem that considers network state and server response
time in making migration decisions. This work proposes a QoS-aware migration strategy that de-
termines when to migrate the service. The system monitors and predicts the QoS either when
the user moves or the server and/or network workload changes. When the predicted QoS violates
the QoS threshold, the service migration is triggered. Although Performance-based migration can
capture realistic performance of applications to some extent, it needs to collect a huge amount of
state information to get accurate prediction. This inevitably adds more network and computational
overhead.

3.2.2 Stateful Live Migration in Edge. Although application performance is improved upon ser-
vice migration, the process is expensive and consumes extra network and computation resources.
This in turn affects the performance of the running application. To handle this issue, live migration
strategies are introduced to reduce the service downtime and the overall migration time. There are
mainly two types of migration strategies, namely, pre-copy and post-copy.
In pre-copy migration [50], the whole memory of the source machine is transmitted to the

destination machine while the source machine is still hosting the application. In the meantime,
the dirty memory pages will be re-copied to the destination machine. This process terminates
when the re-copied rate is greater than the page “dirty”-ing rate. Then the source stops the service
and transmits the rest of dirty pages to the destination (i.e., stop and copy phase). Afterwards,
the destination machine resumes the service for the mobile device. The key factor affecting
the performance of pre-copy is the dirtying rate. This can be considered as a synchronization
process between the source and destination machines. This synchronization also impacts the
service downtime. For example, under a low dirtying rate, the service can be kept running on the
source until the whole memory is copied. Therefore, the service downtime is simply the startup
time of the new service instance on the destination. But for a high dirtying rate, the service
has to stop before the whole memory is copied, thereby causing longer service downtime. To
characterize the migration cost in pre-copy strategy, the authors in Reference [51] propose a
profit maximization framework to optimize the tradeoff between the migration gain (reduction
of the delay between the mobile device and the service machine) and the migration cost. The
authors perform the pre-copy live migration and estimate the total migration time based on the
network bandwidth between the source and the destination, the size of the memory, and the page
dirtying rate of the application. Since the same migration time may cause varying performance
degradation for different applications (e.g., I/O intensive or CPU intensive), the migration
cost is determined by the total migration time, and a weighted sum of utilization of different
resources.
While in post-copy [52], the source machine immediately suspends the service and only sends a

minimal set of the state data to the destination (e.g., CPU state, register). The destination machine
resumes the service and the source machine actively pushes remaining memory pages to the des-
tination. For example, when page faults occur at the destination, those pages will be pulled from
the source machine. Compared to post-copy, the pre-copy migration reduces the service downtime
but adds more network overhead (i.e., transferring dirty papers). While the post-copy migration
transfers less data, but it subjects the service to considerable delays when calling the missed mem-
ory pages—this lasts until the whole memory is transferred. Therefore, post-copy is not ideal for
mission-critical applications where low-latency is required. In the rest of this subsection, we will
discuss several edge frameworks based on pre-copy migration.
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3.3 Vehicular Edge Computing

Mobility as the primary requirement for vehicular systems brings many unique challenges such as
routing and forwarding, content caching, trust and authentication, and flexible network manage-
ment [53, 54]. However, the scope of this survey is resource allocation and computation offloading
aspects within edge systems, which are two fundamental problems for vehicular edge comput-

ing (VEC). In recent years, edge computing combined with Internet of Vehicle (IoV) techniques
have provided a reliable and low/ultra-low latency computation and communication environment
for VEC, thus playing an important role in handling real-time vehicle traffic and latency-sensitive
computation tasks.
Vehicles can be considered as users/devices with unique abilities within the MEC space, as

their fast-moving characteristics generate many stochastic resource allocation and computation
offloading problems. Authors in Reference [55] propose a road-segment-based network infrastruc-
ture where the system aims to ensure that a task can be completed before the vehicles leaves the
connecting roadside unit (RSU) under current segment. A game-theoretic approach is used to
determine whether a task should be processed locally or remotely, followed by a Lagrange mul-
tiplier method to find the optimal solution for resource allocation. In comparison, Reference [56]
proposes a predictive offloading scheme that allows the vehicles to offload their tasks to the RSU
in front along the direction in which the vehicle is moving. With accurate prediction of commu-
nication and computation latencies, the transmission cost for task output is greatly reduced, since
the output data can be transmitted directly from RSU to vehicles. However, this work also requires
additional information to determine the future location of the vehicle. Instead of improving the
end-to-end latency on average, the authors in Reference [57] propose a risk-sensitive task fetch-
ing and offloading framework. The proposed system formulates a risk minimization problem by
considering a set of reliability measures, e.g., mean, variance, skewness, and other higher-order sta-
tistics. The problem is solved by a “joint utility and policy estimation”-based learning algorithm.
However, based on frequently changing vehicle density and computation requirements, the RSU
operators usually need to continuously adjust their computation offloading and resource alloca-
tion strategies. In this context, VEC systems, such as References [58–60], that use DRL methods
for computation offloading and resource allocation are further discussed in Section 4.3.3.

3.4 Dynamic Network Slicing

As discussed in Section 1.2, network slicing is a promising solution to solve resource man-
agement issues in complex communication and computation environments where various
applications with different requirements are involved. Similarly, one of the key design goals of
dynamic network slicing is to fulfill the diverse slice performance requirements and provide
multi-dimensional resources on demand. For example, a dynamic network slicing system should
ideally be able to change its resource allocation policy according to actual user requirements and
resource availability, which may change periodically or randomly in both spatial and temporal
dimensions. Works such as References [61–63] focus on dynamic inter-slice and intra-slice
resource management, which is an inherently complicated problem. The authors in Reference
[61] jointly optimize dynamic assignment of tasks to slices, inter-slice resource management,
and intra-slice resource management. A mixed-integer problem is proposed whose objective is to
minimize the completion time of tasks. The problem is solved by an approximation algorithm with
bounded approximation ratio obtained from a game theoretic treatment. Authors in Reference
[62] propose EdgeSlice, a decentralized resource orchestration system for dynamic network
slicing. A performance coordinator and multiple orchestration agents are deployed to handle
inter-slice and intra-slice resource allocations, respectively. The orchestration agents use DRL
methods to manage resources for their own network slices under the supervision of a coordinator
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Fig. 6. Joint optimization of computation offloading and resource allocation in dynamic edge computing.

(i.e., connecting the two sub-problems by introducing a set of auxiliary variables). Reference
[63] formulates a non-cooperative stochastic game in which tenants (i.e., service providers) aim
to selfishly maximize their own long-term payoff. To address the network dynamics, a DRL
algorithm is proposed to make joint communication and computation resource allocation policy.
However, efficient admission control is required to schedule incoming slice requests while guar-

anteeing existing performance requirements. Works such as References [64–66] address the admis-
sion control process in dynamic network slicing. Authors in Reference [64] propose a stochastic
optimization to jointly optimize slice request admission and resource allocation. The authors use
Lyapunov optimization to handle unknown channel information and traffic distributions. A heuris-
tic algorithm is applied to obtain the dynamic slice request admission decision with the purpose
of maximizing the operator’s revenue. Reference [65] proposes a global service provisioning com-
ponent that aims to provide admission control for incoming slice requests. A blockchain-based
bidding system is applied to map user requests to appropriate network slices. Based on the pre-
diction of network slices’ traffic and user mobility patterns, a learning and forecasting-based ad-
mission control is proposed in Reference [66]. In this work, the admission control problems are
considered as two-dimensional geometric knapsack problems, where slice requests are sorted in
non-increasing order according to their profits and traffic classes. The problem is solved by a sim-
ulated annealing-based algorithm.

4 OPTIMIZATION IN EDGE COMPUTING

Typically, joint optimization of computation offloading and resource allocation is defined as a Non-
ConvexMixed-Integer Nonlinear Programming (MINLP) problem (as shown in Figure 6) that
is NP-hard in general. It is expensive and time-consuming to find the optimal solution (e.g., closed-
form expressions) to such problems.
One of the most widely used methods in solving joint task offloading and resource allocation

problems is bi-level optimization [18, 28]. This technique is also known as decomposition opti-
mization. Here, the original NP-hard problem is divided into two sub-problems, and the solution
is obtained by alternatively and iteratively solving the sub-problems. This method is typically used
to separate computation offloading from resource allocation, i.e., the integer variables are relaxed
(e.g., LP relaxation or Lagrangian relaxation) to turn the resource allocation into convex optimiza-
tion problems that can be easily solved by classic convex optimization algorithms. However, when
the optimal solution of the relaxed problem does not have all variables either 0 or 1 (i.e, some of
them have fractional values), the solution only gives an upper bound. That is, the quality of the
integer solution after variables are rounding back to integers may not at as good as that of the
relaxed solution. Although methods such as Branch and Bound (B&B) can be used to effectively
solve such discrete and combinatorial optimization problems when facing fractional values, they
may cause huge computational complexity when the MEC contains a large number of users and
servers. In this survey, we discuss an alternative bi-level optimization, which turns the 0-1 integer
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programming problem into a distributed problem. We then describe several decentralized frame-
works such as game theory andmatching techniques that are used to obtain a high-quality solution
with less computational overhead. However, to address user mobility and resource availability, it
is necessary to continuously compute such optimal decision. Thus, we also review the most widely
used long-term resource allocation and computation offloading techniques.

4.1 Decentralized Computation Offloading

Since in real-world scenarios mobile devices running data-intensive applications are managed by
individual stakeholders (teams, agencies, users) who are selfish in nature, most centralized solu-
tions ignore the satisfaction and willingness of users to agree to centralized server scheduling and
resource allocation techniques. Therefore, in real-world scenarios users and their applications may
behave in a non-cooperative manner when facing resource competition.
LetN be a set of players (i.e., mobile devices) andA be a set of feasible actions. An example of

transformation from centralized optimization into decentralized optimization can be stated as:

min
an ∈A

un (an , a−n ), ∀n ∈ N ← min
an ∈A

N∑
n=1

un (an ), (1)

where a−n is the set of strategies made by all other mobile devices except for device n and un is
the cost function of device n. This decentralized framework provides a solution that is close to the
performance of optimal centralized solution but with less computational overhead and at the same
time ensures that all players are mutually satisfied.

4.1.1 Game Theory. Game theory is one of the powerful tools to solve distributed optimization
problems with rational and selfish actors, such as, multi-device and multi-server edge environ-
ments. Through a game theoretic framework, mobile devices are considered as a set of players
that distributedly select their offloading decisions from a feasible strategy space A. As shown in
Equation (1), the original centralized optimization problem is transformed into multiple identical
and distributed strategy making problems, i.e, scenarios where each mobile device aims to find a
strategy an ∈ A to minimize its own cost (i.e., best response strategy). The most common way to
define a game solution isNash equilibrium (NE). At NE (Definition (1)), all mobile devices satisfy
their final offloading strategies and have no incentive to deviate from their strategies. Therefore, if
a mobile device at NE chooses full or partial offloading, then it must indicate that the local compu-
tation leads to higher cost [67]. Otherwise, the mobile device can just unilaterally switch to local
computation without consulting other mobile devices.

Definition 1. A strategy profile A∗ = {a∗1,a∗2, . . . ,a∗N } is an NE of a strategic offloading game, if
at the equilibrium S∗, no player (mobile device) can further reduce its cost by unilaterally altering
its strategy, i.e.,

un (a
∗
n , a
∗
−n ) ≤ un (a

′
n , a
∗
−n ),∀a′n ∈ A,n ∈ N .

Potential game [22, 67–70] is one of the useful tools to find the NE for game-based optimization
frameworks where players have the same interests and share a global potential function defined in
Equation (2)). The potential function indicates the incentives of all mobile devices to change their
strategies. For example, when a mobile device updates its strategy, the same behavior occurs in
both the cost function of the mobile device and the potential function of all other mobile devices.
The beauty of potential game is in itsfinite improvement property (FIP), which ensures that any
algorithm that asynchronously updates the player’s strategies is guaranteed to reach an NE within
finite strategy update iterations (e.g., linear time complexity [68], quadratic convergence time [67]).
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Definition 2. A game is called a potential game if there exists a potential function (global cost
function) p (a) such that ∀n ∈ N and an ,a

′
n ∈ A, if

un (a
′
n , a−n ) < un (an , a−n ),

we have

p (a′n , a−n ) < p (an , a−n ).

Reference [69] utilizes a potential game approach to allow IoT users to maximize their own
QoE. The authors propose a near optimal ϵ−NE resource allocation mechanism to reduce the time
complexity of the best response algorithm to O (N /ϵ ), i.e., the player can increase its QoE by no
more than ϵ at ϵ−NE. To customize it for edge computing, one needs to study the property of the
original centralized problem and produce a customized potential function. References [22, 67, 70]
propose a multi-device computation offloading game that seeks to minimize a weighted sum of
computational time and energy of mobile devices in a multi-channel wireless interference envi-
ronment. Stackelberg game, a two-stage game model, is also used to provide incentive mechanism
for computation offloading in edge computing [71–73]. Here, the players are labeled as a leader
(e.g., edge servers) and multiple followers (e.g., mobile devices). In Stackelberg game, the leader
chooses the best response strategy to maximize its payoff, while the followers react rationally to
the leader’s action to minimize their game cost functions [74]. The solution of Stackelberg game is
Stackelberg equilibrium, which is a little different from NE, where the follower’s optimal strategy
is also the optimal strategy for the leader.

4.1.2 Two-sidedMatching. Two-sidedmatching approaches can also help to solve decisionmak-
ing problems for edge computing in a decentralized manner, especially for sub-channel allocation
and user-server association, as defined in Definition 3. A two-sided matching game for user-server
association is typically modeled with two sets of players, i.e., mobile devicesU and edge serversS.
Since onemobile device is only connected to at most one edge server but one server can accept mul-
tiple mobile devices, the user-server association is defined as many-to-one matching. Every mobile
device u ∈ U has strict preference order 
u over S ∪ {θ ∗} where θ ∗ denote local computation (no
offloading), while every edge server s ∈ S has strict preference order 
s overU . The preference
order is defined by user-defined performance metric (e.g., latency, energy consumption). Authors
in Reference [28] use energy consumption as its matching preference and formulate a two-sided
matching game for sub-channel access. In Reference [32], the matching preference is defined as the
weighted transmission rates in a descending order, which is affected by the other UEs (matched to
the same server) via co-channel interference. In Reference [75], the mobile user prefers to select
the edge server that provides the higher offloading rate and computation resource, while the edge
server prefers the users with lower computation overhead.

Definition 3. A matching μ is a collection of pairs inU × S s.t. every u ∈ U is a member of at
most one pair, and every s ∈ S is a member of at most |U | pairs.

The matching game should also consider the externalities in which the matching preference
dynamically changes with the matching states of the other mobile devices in the same set [28, 32,
75, 76]. According toDefinition 4, the goal of many-to-onematching is to obtain a stable matching μ
such that both mobile devices and edge servers have no incentive to exchange their matched pairs.
A simple approach is to initialize a temporary matching μ based on Deferred Acceptance (DA)

method [76], i.e., mobile devices propose to their most preferable edge servers and edge servers
accept or reject mobile devices from its applicant list based on their applicant preferences. The
remaining mobile devices remain unmatched and repeat this process until all mobile devices are
matched. Once an initialized μ is ready, all the pairs are traversed to find a block pair, then the
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Fig. 7. The queue length of task buffer.

matching process is updated and repeated until a stable matching is achieved. The complexity of
this approach is O ( |U |2) [32].

Definition 4. A matching μ is blocked by a pair (u, s ) ∈ U × S iff s 
u μ (u) and ∃s ′ ∈ μ (s ) s.t.
u 
s u ′. Also, a matching is stable iff it is not blocked by any pair.

4.2 Lyapunov Optimization

To address the temporal and spatial differences in edge environments caused by user mobility and
resource availability, one can consider computation offloading and resource allocation as dynamic
programming problems. We study related Lyapunov optimization-based online algorithms that
seek to make a sequence of computation offloading and resource allocation decisions based on the
changes in the edge environment.

4.2.1 Task Queue Management. Task queue management is a classic dynamic programming
problem within edge computing environments that is usually subjected to long-term queue con-
straints. We also discuss how Lyapunov optimization balances the tradeoff between queue stability
and other user-defined performance metrics.
When partial offloading is enabled, mobile devices need to maintain a local queue and a remote

queue, i.e., the arrived/offloaded but not yet executed tasks will be queued in the task buffer of
the device and the edge server. The queue length changes dynamically, triggering the need for
online optimization. As shown in Figure 7, the evolution of the local and remote queue lengths
can be stated as follows: (1) The local queue length at the end of time slot t is determined by the
number arrived tasks at the beginning of time slot t , the number of tasks executed by the mobile
device (which can be controlled by the device’s CPU-cycles frequency), and the number of tasks
offloaded to the edge server (which is controlled by the data rate) during the time slot t ; and (2)
The length of the remote queue at the edge server is determined by the number of unscheduled
tasks executed by the server (which is controlled by the computation resource allocated to the
mobile device) and the number of offloaded tasks from the mobile device during time slot t .

4.2.2 Long-term Queue Constraint. According to Little’s law [17, 32], it is assumed that the
average delay is proportional to the sum queue length of the local queue and remote queue. Many
works use long-term queue constraints to describe the latency requirement.

For example, the authors in Reference [17] propose an online joint radio and computational re-
source management algorithm to minimize the “long-term weighted average” power consumption
of the mobile devices and the edge server. To guarantee that the tasks can be completed within
finite delay, the authors add the following constraints to enforce the task buffers to be mean rate
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stable:

lim
T→∞

E[|Q (t ) |]
T

= 0, lim
T→∞

E[|T (t ) |]
T

= 0,

where Q (t ) andT (t ) are the queue lengths of local and remote queues, respectively. An extension
of this type of constraint is to further ensure the reliability of the queue by adding probabilistic
constraints. In Reference [32], the authors propose a ultra-reliable and low latency communi-

cation (URLLC) task offloading and resource allocation framework. The statistics of the queue
length is studied and the authors impose probabilistic constraints to characterize the queue length.
This work uses two queue buffers to store the split tasks for local computationQL (t ) and offloading
QO (t ). The queue length constraints are expressed as follows:

lim
T→∞

1

T

T∑
t=1

Pr (QL (t ) > dL ) ≤ ϵL, lim
T→∞

1

T

T∑
t=1

Pr (QO (t ) > dO ) ≤ ϵO ,

where dL and dO are the the queue length bounds, ϵL and ϵO are the tolerable bound violation
probabilities (which are small values less than 1).

4.2.3 Lyapunov Optimization. Once the queue constraints are given, the problem seeks to find
ways to adjust decisions according to the most recent queue length. Here, we discuss the Lyapunov
Optimization that tackle such problems. Many Lyapunov optimization frameworks [13, 17, 32, 77]
have been proposed as solutions to deal with task queue management problems that aim to sta-
bilize the queue while optimizing a user-defined long-term average performance objectives. The
basic idea is to transform the original dynamic programming problem into individual determin-
istic per-time slot optimization problems. Let us consider a typical queue-based edge computing
optimization system (e.g., Figure 7) where Q (t ) and T (t ) indicate the lengths of local and remote
queues, respectively. In time slot t , a Lyapunov functionwill be defined to drive the current optimal
decision, which is a quadratic equation that can be expressed as:

L
(
Θ(t )
)
=

1

2

(
Q (t )2 +T (t )2

)
.

Then, the Lyapunov drift is computed to indicate the stability of the queue by measuring the
difference in function L(Θ(t )) between two adjacent time slots (i.e., t + 1 and t ). It can stated as

Δ(Θ(t )) = E[L
(
Θ(t + 1)

)
− L
(
Θ(t )
)
|Θ(t )].

In Δ(Θ(t )), the difference can be computed as:

L
(
Θ(t + 1)

)
− L
(
Θ(t )
)
=

1

2

(
Q (t + 1)2 −Q (t )2

)
+
1

2

(
T (t + 1)2 +T (t )2

)
.

Afterwards, the conditional Lyapunov drift-plus-penalty is applied to balance the tradeoff between
latency and objective (i.e., energy minimization) optimization, which is stated as:

Δ(Θ(t )) +V × E[X (t ) |Θ(t )],

where X (t ) is the per-time slot objective function of the original problem and V is a control pa-
rameter that adjusts the tradeoff between queue stability and objective function. In Reference [17],
it shows that there exists an [O (1/V ),O (V )] tradeoff between objective function and the queue
stability.
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4.2.4 VirtualQueue. The Lyapunov optimizationmethod can also be used to solve optimization
problems with generic long-term constraint by introducing the virtual queue. In Reference [13],
the authors create a virtual queue as a historical measurement of the exceeded latency for real-time
video analytics. The virtual queue and the equivalent long-term constraint are defined as:

q(t + 1) = [q(t ) + l (t ) − Lmax ]
+ ← lim

T→+∞

1

T

T∑
t=1

lt ≤ Lmax ,

where l (t ) is the average latency of video streams at time slot t and Lmax is an average latency
threshold of a long period (i.e, 1→ T ). The stability of the queue ensures that the average latency
does not exceed Lmax . Similarly, Reference [77] constructs a virtual queue to transform the long-
term data transmission constraint into the following equivalent long-term constraint, which is
stated as:

q(t + 1) = [q(t ) − s (t ) + L

T
]+ ←

T∑
t=1

s (t ) ≥ L,

where s (t ) is the amount of data transmitted in time slot t and the system needs to transmit L bits
of data within the deadline T . Although Lyapunov optimization method reduces the complexity
of the original problem by transforming the long-term problem into individual time slot problems,
the transformed objective is still a weighted function. For works with strict requirements, it is
time-consuming to find the optimal V such that the requirement can be satisfied.

4.3 Learning-based Optimization

Papers mentioned in Table 1 solve computation offloading and resource allocation problems
using conventional mathematical tools, such as Sample Average Approximation (SAA) [14],
Lagrange dual decomposition and subgradient projection [15], alternating direction method

of multipliers (ADMM) [16], piecewise optimization [24], successive convex approximation

(SCA)method [25], and interior point method [29]. To formulate a realistic optimization problem,
these methods need to create precise mathematical models that are usually obtained by per-
forming extensive experimental measurements or drawing from historical experience. Therefore,
conventional mathematical tools may only be successful in some specific use cases, as they rely
entirely on pre-defined mathematical models. In contrast, learning-based methods such as Rein-
forcement Learning (RL) allow the system to estimate mathematical models from interactions
between learning agents and edge environment, resulting in a more efficient and adaptable
solution. Furthermore, learning-based methods are able to capture the spatial and temporal
correlations between environmental states, making them more suitable for long-term/online opti-
mization. In particular, we focus on Markov Decision Process (MDP) and RL-based techniques
for edge resource management. The RL frameworks in the current literature are classified into
the following two types, viz., Q-learning-based (i.e., a Q-table-based iterative method) and Deep
Q-learning-based (i.e., deep neural network-based iterative method). We also present Federated
learning (FL) as a novel distributed training scheme for learning-based methods.

4.3.1 Markov Decision Process. Many learning-based resource management problems in
dynamic edge environment are modeled as Markov Decision Process (MDP). Although
conventional optimization methods (e.g., value or policy iteration) can be applied to obtain
optimal long-term strategies for problems with known transition probabilities, they are not
always suitable for many dynamic edge systems. In many real-world use cases, the value or the
policy-based iteration mechanisms suffer from exponential computation complexity due to the
multi-dimensional state and action spaces. However, the system may also lack prior information,
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Table 1. The Comparison of Individual Papers Working on RL

Ref Actions Objective RL approach

[21] Channel allocation, User-association
Maximize long-term downlink

reward
DDQN

[34]
Computation offloading, Energy

allocation

Minimize weighted sum of

delay and computation task

dropping
DQN

[47] Service location, service resolution
Maximize Quality of

Experience (QoE)
Q-learning

[58]
Server selection, Data transmission

mode selection
Maximize utility DQN

[59]
Spectrum, computing, and storing

resource allocation

Maximize the numbers of

offloaded tasks that are

completed with satisfied QoS

requirements

DDPG

[60] Channel prediction Maximize utility DQN

[78]
Transmit power, Offloading

decision-making

Minimize weighted energy

consumption and latency
Q-learning

[79]
Computing capability, Ratio of task

computed locally

Minimize execution time

(subjects to energy constraint)
Cooperative Q-learning

[80]
Computation offloading, Energy

harvest time
Maximize computation rate DQN

[81] Device classification Minimize energy consumption DQN

[82]
Computation offloading, Energy

allocation
Minimize experienced delay DDQN

i.e., transition probabilities. To address these issues of stochastic task offloading and resource
allocation problems, RL methods are being used in edge computing systems. RL is a major branch
of artificial intelligence andmachine learning (AI/ML)where the basic model can be defined
as a tuple (S,A, P ,R,γ ), where S and A denote the state and action spaces, P (st+1 |st ,at ) is the
transition probability (unknown) from state st ∈ S to st+1 ∈ S after the agent takes the action
at ∈ A, the reward R (st ,at ) represents the immediate utility obtained by taking action at at state
st . γ ∈ [0, 1) is the discount factor that determines the importance of future rewards compared
to the recently rewards. In RL, the agent (decision maker) defines the control policy π (st ) = at as
a mapping from a state to an action and the goal of the agent is to learn an optimal policy π that
maximizes the expected long-term discounted reward, which can be expressed as

π ∗ = argmax
π

E

⎡⎢⎢⎢⎢⎣

+∞∑
t=0

γ tR (st ,π (st )) |s0,a0
⎤⎥⎥⎥⎥⎦
, ∀s ∈ S.

The agent should study the tradeoff between exploration and exploitation and find an optimal
balance among the two. Exploration aims to find better new action that may yield a higher reward
in the future, while exploitation using the action that has the highest cumulative reward tried in
the past. A well-known solution is called ϵ-greedy, which acts randomly with probability ϵ (explor-
ing) and acts greedily with probability 1-ϵ (exploiting). In edge systems, the utilities are usually
measured as computational and communication costs such as processing latency, energy con-
sumption, or a combination of both. The key to obtain an effective learning policy is to ensure that
minimizing the expected cumulative discounted cost is equal to minimizing the objective function
of the original optimization problem. Table 1 describes the list of related papers that use RL-based
frameworks to optimize the computation offloading and resource allocation in edge environments.
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Fig. 8. Bellman equation and corresponding Q-table.

4.3.2 Q-learning. It is a model-free scheme to learn the quality of actions in unknown environ-
ments without knowing any dynamic statistics. In Q-learning, the quality of action at is defined
given certain state st as a Q-value Q (st ,at ). The optimal Q-value represents the maximum ex-
pected reward by following a policy π after receiving the state st and taking the action at . Even
though the state transition probabilities are unknown, the optimal policy can be found in a recur-
sive manner based on historical records. The update of Q-value can be obtained via the Bellman
equation (as shown in Figure 8), where α is the learning rate that impacts the updating speed of
Q-value learning from the new value. The new value depends on two elements: (1) The immediate
reward R (st ,at ) by taking action at in given state st . Then, the next state st+1 can be observed,
and (2) The update scheme adds a weighted future value to the immediate reward. This weighted
future value is computed by searching the maximum Q-value of all the actions in state st+1, that
is, γ ·maxa∈A (Q (st+1,a)). Conventional Q-learning methods store and update the values of all the
state-action pairs in a Q-table, as shown in Figure 8. The size of the table entries equals to the size
of state space times the size of action space. At each decision epoch, the agent is going to search
the Q-table by the given state and find the optimal action based on state-action values. Also, the
corresponding value will be updated based on the Q-function.
Authors in Reference [78] propose resource allocation for edge computing in IoT networks,

where end devices adopt the time division multiple access TDMA scheme to transmit their data
to a gateway with edge server. To minimize the “long-term weighted sum” of power consump-
tion and task execution latency in time-varying channel gain condition, a ϵ-greedy Q-learning
is used to make computation task offloading decision and select the transmit power level from a
set of discrete variables. Software defined edge cloudlet (SDEC)-based RL optimization frame-
work is proposed in Reference [79] to tackle the task offloading and resource allocation in wireless
MEC. The authors use a cooperative Q-learning technique to further enhance the search speed in
Q-learning method. The basic ideal is that the agents search different choices in parallel by shar-
ing their information decreases the search time greatly. In cooperative Q-learning, the Q-tables of
agents that are located in the same vicinity are shared with one another. Afterward, each agent
takes the weighted average of the shared Q-tables and uses the resulted table as its new Q-table,
where the weights are assigned based on agent’s expertness (rewards). In the simulation result,
they found that the proposed cooperative scheme achieves around 31.39% and 62.10% sum delay
reduction when compared to traditional Q-learning with random algorithm and Q-learning with
epsilon greedy, respectively. Authors in Reference [47] use Q-learning to solve the service migra-
tion problem caused by user mobility and dynamic network resources. The objective is to find the
best service locations and service resolution that maximize the system reward for a sequence of
batch requests.

4.3.3 Deep Reinforcement Learning. Deep Q-network (DQN) complements Q-table to handle
environments with high-dimensional action-state spaces. To this end, the DQN method integrates
the deep neural network (DNN) into the RL framework by adding an online DNN, a target DNN,
and an experience replay [83]. The online DNN is used to approximate the Q-function, which is
denoted asQ (s,a) ≈ Q (s,a;θ ),where θ stands for the weights of the online DNN. The target DNN
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Fig. 9. An exemplary schematic of a framework with Deep Q-learning network.

is used to stabilize and improve the performance of the network and its weights θ− are copied from
the online DNN in every few iterations. The online DNN is trained to minimize a sequence of the
loss functions that are defined as MSEs between the current predicted Q-value and target Q-value.
The loss function at time-step t is is expressed as:

Lt (θ ) = E[(R (st ,at ) + γ argmax
a∈A

Q (st+1,a;θ
−)

︸���������������������������������������︷︷���������������������������������������︸
target Q-value

− Q (st ,at ;θ )︸�������︷︷�������︸
predicted Q-value

)2].

The experience replay strategy is applied to address the instability during the training procedure.
In particular, the user experiences (st ,at , rt , st+) are stored into a replay memory of a finite size. At
each learning epoch, the DNN is trained by a random mini-batch of experiences from the replay
memory. The use of experience replay strategy helps to breaks the correlation of learning data.
The framework of DNQ is illustrated in Figure 9.

Works such as References [34] and [80] use DQN to optimally adapt task offloading decisions
and resource allocation in time-varying wireless channel conditions. Authors in Reference [34]
propose a DQN-based algorithm for a single-user MEC system to jointly decide computation
offloading and energy allocation. The states of the environment include the channel qualities
between the mobile user and the base stations, the energy queue state, and the task queue state.
In their simulation, they found that wider (with bigger number of neurons) DQN can better
approximate the Q-function compared to deeper (with more hidden layers) DQN. Their algorithm
achieves up to 56% in performance improvement. However, the convergence of the proposed
algorithm is slow and the whole process leads to huge computational complexity. The reason
behind this is the fact that DRL agents cannot handle high-dimensional discrete states (i.e., the
channel gain). To avoid the dimensionality problem and reduce complexity, DNN can be used
to only solve some sub-problems [80]. To maximize the weighted sum computation rate in a
wireless powered system, Reference [80] proposes a learning-based framework that decomposes
the original optimization problem (mixed integer programming non-convex problem) into an
offloading decision sub-problem and a resource allocation sub-problem. The framework first uses
DNN with an order-preserving quantization method to obtain the binary offloading actions. Once
the offloading actions are fixed, the original problem reduces to a convex problem that can be
easily solved using bisection search withO (N ) complexity. Authors in Reference [81] address the
long-term energy efficiency problem of an IoT-based network structure designed for green energy
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management systems (in smart cities). They propose energy management architecture and soft-
ware model along with the DRL process. Moreover, the authors introduce a collaborative learning
method in which the edge server offloads the DNN training to the cloud to reduce computing costs,
and the edge server deploys the online DNN based on the trained weights sent from the cloud.
Since Q-learning and DQN methods use the same values to select and evaluate an action, the Q-

functionmay be over-optimistically estimated. To address this problem,DoubleDeepQ-learning

(DDQN) methods decouple the selection from the evaluation [84]. Here, the target is as

y
DDQN
t = R (st ,at ) + γQ (st+1, argmax

a∈A
Q (st+1,a;θ );θ

−).

In DDQN, the online DNN and its weight θ are used to determine the greedy policy while the
target DNN and weight are selected for value evaluation. Works, such as References [21, 82] apply
DDQN approaches to learn the optimal computation offloading policy without a priori knowledge
of network dynamic. Reference [21] presents a multi-user deep reinforcement learning algorithm
for user association and resource allocation in heterogeneous networks. They use DDQN approach
to solve a joint optimization problem with non-convex and combinatorial features. The authors
in Reference [82] consider a representative mobile user in ultra-dense networks where computa-
tional tasks are offloaded to the edge server via different base stations. They use a DDQN frame-
work to obtain the optimal offloading decision as well as energy unit allocation. Those works show
that the DDQN method outperforms Q-learning and DQN on both the learning speed and system
performance.
DRL techniques are widely used in VEC to design learning policies that handle problems of sto-

chastic vehicular traffic management. Authors in Reference [58] adopt a deep Q-learning-based
approach for designing optimal offloading schemes that jointly consider selection of target server
and data transmission path (i.e., vehicle to base station, vehicle to RSU, and vehicle to vehicle). The
authors analyze the impact of real traffic on the obtained average utilities of a task with different
offloading schemes. The proposed deep Q-learning scheme yields higher offloading utility com-
pared to game theoretic approaches. Authors in Reference [59] propose a DRL-based framework
that optimizes spectrum, computing, and storage resource allocation jointly for moving vehicles
and their dynamically changing computing tasks. Since the convergence time of the DRL networks
becomes longer as the number of vehicles under the service area increases, the authors develop
a hierarchical learning architecture that decomposes the original problem into sub-problems of
spectrum allocation and computing/storage resource allocation. Subsequently, two deep determin-
istic policy gradient algorithms (i.e., DDPG, an improved actor-critic algorithm that combines the
advantages of policy gradient and DQN algorithms) are applied to solve the sub-problems, respec-
tively. Authors in Reference [60] propose a model-assisted DRL framework where the DRL agent
adaptively selects the appropriate transition data to update the weights of an online DNN based on
their learning complexities (compared to other works that choose data randomly from experience).
Suchmodifications improve the performance of the DRL framework in handling time-varying tran-
sition memory created by fast-moving vehicles.

4.3.4 Federated Learning. With the increasing popularity of artificial intelligence applications
and the volume of IoT data, traditional centralized data training on high-performance cloud data
center or server is becoming unsuitable as centralized training leads to considerable communi-
cation overhead along with other issues such as reliability and data privacy (discussions of such
issues are beyond the scope of this survey) [85]. To solve these issues, the concept of FL was devel-
oped by Google in 2016 [86] where edge devices download and train the models using local data
and only send the learned parameters to the server for aggregation and model update. The local
training and aggregation are repeated until the loss function reaches convergence. Such exchange

ACM Computing Surveys, Vol. 55, No. 13s, Article 291. Publication date: July 2023.



Resource Management in Mobile Edge Computing: A Comprehensive Survey 291:23

of model parameters instead of raw data greatly improves data privacy and network resource con-
servation. Below, major research on FL for edge resource allocation and FL driving edge resource
allocation are discussed.
(a). Resource optimization for FL: Given that edge devices are usually constrained in terms

of computing power and energy budget, implementing distributed data training on resource-
constrained edge environment remains a challenging problem. For example, the time and the en-
ergy consumption of FL caused by local training and parameter transmission are two conflicting
metrics. Therefore, striking a balance between the two is non-trivial. In References [87, 88], the au-
thors minimize the weighted sum of training latency and total device energy consumption by find-
ing the optimal device CPU frequency, transmission latency, and local accuracy. In Reference [87],
a TDMA-based communication time allocation scheme is adopted, while Reference [88] uses an
OFDMA-based communication scheme. Problem decomposition and iterative algorithmic solution
are proposed to obtain the optimal resource allocation strategy under a given latency constraint.
Considering that the processing latency of local training and the transmission time of param-

eters (to server) can vary significantly between devices, optimal client and global aggregation
frequency selection strategies are crucial to the convergence speed of FL. Reference [89] proposes
a control algorithm that determines the frequency of global aggregation under a given resource
budget. To this end, the authors analyze the convergence bound of distributed gradient descent
from a theoretical perspective and study the tradeoff between local update and global parame-
ter aggregation in terms of minimizing the loss function. Afterward, the control algorithm uses
non-i.i.d. data distribution, system dynamics, and model characteristics to make the frequency of
global aggregation dynamically adapt in real time. Authors in Reference [90] propose a joint de-
vice scheduling and resource allocation algorithm to maximize the model accuracy under a given
training time budget. Similar to Reference [89], this work theoretically bounds the impact of the
number of rounds and the number of scheduled devices to the convergence bound of FL. Then, the
tradeoff between latency per round and number of required rounds to achieve a fixed accuracy is
investigated. The proposed accuracy maximization problem is solved by decoupling resource allo-
cation from device scheduling. A binary search algorithm is designed to obtain optimal bandwidth
allocation such that devices with worse channel conditions and/or weaker computation capabili-
ties get more bandwidth. In terms of device scheduling, a greedy algorithm is introduced to select
devices with the least update time, one after the other.
Authors in Reference [91] bring FL into vehicular edge computing and propose a FL framework

that jointly optimizes the on-board computation capability (CPU frequency), transmission power,
and local model accuracy to minimize the maximum energy consumption (of vehicles) and com-
putation latency. Since training devices are moving vehicles in this work, new vehicles entering
the current service area are added to the participating vehicles list if the energy and latency can
be minimized by selecting these new vehicles instead of the existing ones.
(b). FL using DRL: In one of group among works on FL using DRL, DRL-based techniques (e.g.,

DQN, DDQN) typically provide a model-free solution for optimizing FL frameworks, helping them
deal with learning problems under dynamic edge environments [92–95]. Authors in Reference
[92] propose a DRL-assisted FL framework where DRL is used to select Industrial Internet
of Things (IIoT) devices with high quality data for local training. The proposed framework
aims to increase the model aggregation rate and reduce communication costs. The authors in
Reference [93] use DRL to adjust the CPU-cycle frequency of mobile devices with the purpose
of minimizing the weighted sum of training time and energy consumption. To achieve update
synchronization, devices reduce their CPU-cycle frequency if they are faster in the training
group. Reference [94] uses DRL for channel selection and energy decision in a mobility-aware FL
network. This work aims to maximize the number of successful transmissions while minimizing
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Fig. 10. Optimization for DAG-based application and single DNN-based application.

the energy and channel costs. The authors in Reference [95] focus on the inter-client correlation
across the clients as they propose a novel FL model that utilizes DRL to determine the weights of
local parameters in the aggregation process.
In the other group, DRL-based edge resource allocation and offloading decision making solu-

tions are proposed where FL helps to train DRL agents in a distributed manner, leading to higher
resource efficiency (i.e., FL-assisted DRL). In Reference [96], authors compare the pros and cons
of several training schemes of a DRL agent. In centralized DRL, training data from all partici-
pants are uploaded to central servers and DRL agents are trained at servers. Although centralized
DRL gives the best performance, it suffers from massive redundant data transmission and privacy
risk. While distributed DRL is designed to train DRL agents individually on the participants, the
additional energy consumption and weak computing power of participating devices make them
impractical in the real world. By contrast, FL replaces raw data transmission with model parameter
upload to reduce communication cost. Second, FL selectively lets part of the devices train locally
to achieve higher energy savings. Therefore, FL-assisted DRL serves as an intermediate design be-
tween centralized and distributed DRL and represents the best of both worlds. In Reference [97],
DRL agents are responsible for making offloading and energy allocation decisions for IoT devices
within an edge environment. To address the issues of non-i.i.d. data, IoT devices that have suffi-
cient computational and energy resources are selected to join the local training and global model
aggregation process. Authors in Reference [98] propose a two-timescale DRL approach to make
real-time computation offloading decisions and resource allocation strategies in the ultra-dense
5G network scenarios. The authors leverage FL to train the DRL model in a distributed manner,
aiming to obtain faster and more robust training.

5 VIDEO ANALYTIC IN EDGE COMPUTING

Video analytics is one of the driving applications in edge computing that brings new resource
allocation and computing offloading challenges. Many critical, next-generation use cases (e.g., dis-
aster response, tactical scenarios, industrial IoT, vehicular systems) that are increasingly relying on
edge computing are driven by the need of performing video analytic at scale and in real-time, thus
making it one of the most adopted application domains supported by edge systems. Compared to
optimization for generic applications, optimizing real-time video streaming at the edge requires
customized solutions and frameworks. As shown in Figure 10, the current literature mainly consid-
ers two types of optimizations from a model point of view: (1) optimizing DAG-based workflows
with mixed generic tasks and DNNs and (2) optimizing single DNN-based workflows. To optimize
the DAG-based workflows, finding optimal placement of distributed tasks across edge and end
devices is paramount. While for single DNN-based workflows, optimizing DNN model partition
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enables the edge system to run the target DNN in a distributed manner, either vertically or hor-
izontally. Apart from these workflow-specific optimizations, achieving performance tradeoff by
balancing data configurations and desired application performance is something that is equally
important for both optimization scenarios.

5.1 Performance Tradeoff Study: Accuracy, Energy, and Latency

The performance of video analytics (often measured in terms of accuracy, energy efficiency, and la-
tency) depends on a variety of application data configuration parameters such as, frame resolution,
frame rate, and so on. The selection of configuration has a great impact on different performance
metrics as increasing configuration parameters often result in higher quality, but at the cost of
higher latency.
In References [13, 99], the authors use extensive measurements to establish the relationship

between different configuration parameters and performance metrics. The authors in Reference
[99] study the tradeoff between latency and accuracy. They design and implement an edge-based
orchestrator for Mobile Augmented Reality (MAR). The orchestrator aims to find the optimal
server assignment and frame resolution based on empirical modeling. From the measurement data
with YOLO [100] and SSD [101], the relationship between computational complexity, analytics
accuracy, and video frame resolution is obtained and then fitted into the optimization problems.
With respect to the video frame resolution, the authors model the computational complexity as a
convex function (e.g., quadratic or cubic), while the accuracy is fitted into a concave function. The
proposed problem is solved by the block coordinate descent method that iteratively optimizes the
video frame resolution and server assignment. The edge-based orchestrator achieves 25% latency
reduction at the cost of less than 1% accuracy loss. However, this paper considers a simplified
latency model where the achievable data rate is considered as constant for MAR users. Such strong
assumptions might be impractical in the real-world wireless scenarios. Compared to Reference
[99], the authors in Reference [13] propose a framework for both configuration adaptation and
bandwidth allocation for edge-assisted video analytics. This work aims to optimize the tradeoff
between accuracy and energy consumption for a given service latency constraint. They consider a
practical scenario in which multiple video streams connect to the same edge server sharing a nar-
row uplink channel. Similar to the experiment in Reference [99], the results show that the frame
resolution and frame sampling rate independently impact the accuracy. To handle the problems
caused by bandwidth variation and intrinsic dynamics of video contents, an online algorithm based
on Lyapunov Optimization is used to select the optimal CNN model, sampling frame rate, and
uplink bandwidth for each time slot. The proposed algorithm achieves a 44% reduction in energy
consumption at the cost of 4% accuracy loss. The authors in Reference [102] develop a data-driven
optimization framework that introduces a complex interaction between accuracy, video bit rate,
battery constraints, network parameters. The goal is to find an optimal offloading strategy for AR
devices. This work formulates the configuration adaptation problem caused by time dynamic as a
multiple-choice, multiple-constraint knapsack program and solves it with an improved brute-force
search.
In VideoStorm [103] and VideoEdge [104], the tradeoff between query accuracy and resource

demand is extensively studied. VideoStorm [103] optimizes query scheduling by exploring utility-
based resource management in terms of query accuracy and delay; while VideoEdge extends the
problem to query placement across a hierarchy of clusters. More specifically, VideoEdge proposes
a three-tier hierarchical architecture, including cameras, clusters, and the cloud for video analytics.
For every video query, VideoEdge searches the components implementation, knobs, and place-
ment and finds a configuration to balance the accuracy and resource demands using an efficient
heuristic.
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Fig. 11. An exemplar task graph for face recognition [68].

Fig. 12. The DAG classification.

5.2 Distributed Task Placement

Typically, the pipeline of many complex video analytics applications are modeled as multi-stage
tasks, varying from sequential batch processing to branched pipelined tasks. This subsection dis-
cusses optimization techniques for DAG-based video pipelines. A directed acyclic graphG = (V,E)
can be used to describe the video pipeline and intermediate result passing between different stages.
In graphG, each vertexv ∈ V can be described as a task (e.g., encoding, decoding, and object recog-
nition). The edge e ∈ E represents the data passing between tasks. As shown in Figure 11, Reference
[68] shows the pipeline of face recognition. It contains three tasks that are executed sequentially:
(1) face detection, (2) feature encoding, and (3) face matching. The intermediate results are the face
images and lists of face encoding. The end-to-end performance of the video pipeline is determined
by the critical path of the DAG, that is, the largest weighted path from source task to the sink task.
In resource-constrained edge environments, effectively placing these tasks in optimal computation
locations is paramount. Nevertheless, when tasks are placed on different edge servers, the critical
path determination and performance estimation become challenging problems due the heteroge-
neous processing capacity (e.g., CPU and GPU) and dynamically changing wireless conditions at
the edge servers.
As shown in Figure 12, video pipeline graphs can be classified into three types based on the

dependencies among tasks: (1) Sequential DAG, (2) Parallel DAG, and (3) Mixed (arbitrary) DAG.
Here, we describe the task placement problems of different types of DAG. In general, the task
placement for a DAG-based video pipeline can be stated as aM × K matrix:

AM×K =

1 2 3 ... K

	



�

�



�

1 0 0 ... 0 1
0 0 1 ... 0 2
... ... ... ... ... ...
0 0 1 ... 0 M

,

where am,k = 1 indicates that the taskm is placed on edger server k , otherwise am,k = 0. Since a
task can only be placed on edge servers, the placement follows

∑
∀k ∈K am,k = 1.
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(a). Sequential DAG: Here, the tasks are executed one at a time. A task can only have one prede-
cessor and one successor. The pipelines of some photogrammetry-based applications (e.g., open-
MVG [105]) and well-known image processing CNNs or DNNs (e.g., LeNet, AlexNet, and ResNet)
can be described as sequential DAGs. The basic idea of task placement for sequential DAG is
task partition, i.e., tasks are partitioned into local-processing tasks and remote-processing tasks
to reduce the communication cost (latency and energy consumption). However, this partitioning
problem is usually integrated with other problems such as resource allocation and server selection,
making it challenging to solve. In Reference [35], the authors propose a distributed offloading archi-
tecture and formulate a strategic game to find the optimal server selection and resource allocation,
DAG partition and the optimal configuration for transmission power and CPU frequency at the
mobile devices. The experimental results show that the proposed offloading schemes saves 40% (in
sufficient network resource scenarios) to 60% (in limited network resource scenarios) on the total
energy consumption. Authors in Reference [106] classify application components into local-only
phases and offloadable phases. The offloadable phases can be executed locally or to be transmitted
to the server for processing. To ensure predictable performance (e.g., response time) while mini-
mizing energy consumption, they propose a “Suspension-and Energy-Aware” offloading algorithm
where the tasks are executed following the earliest-deadline-first (EDF) task scheduling policy.
For DNN partitioning, the discussions are made in Section 5.3.

(b). Parallel DAG: A parallel DAG contains multiple sequential sub-DAGs that can be executed
independently. An example is given in Distream [107], where the proposed DAG contains multi-
ple branches and each branch is dedicated to process a specific type of the detected object. The
authors propose a stochastic partitioning scheme by profiling the accumulated inference cost of
all the possible execution paths in the DAG. Based on these costs, a workload adaptation controller
is applied to determine the probabilities for partitioning at certain vertices. Authors in Reference
[108] propose Hetero-Edge, an edge computing platform designed to minimize the end-to-end la-
tency for real-time vision applications on heterogeneous edge clouds. This work uses a 3D scene
reconstruction as a driving application example for the evaluation of resource allocation and or-
chestration. Two practical topologies, viz., Serial Topology (serial-DAG) andParallel Topology
(para-DAG) are considered for the 3D scene reconstruction application. In para-DAG, the frame-
work partitions the images into multiple sections during the generation of disparity map. This
partition creates a data-parallel bolt that runs the same disparity calculation function to acceler-
ate the computation. The platform is built on Apache Storm and consists of multiple edge servers
and a distributed resource orchestration framework. The servers have heterogeneous computa-
tion and networking resources. The orchestration framework stores edge application as Storm
tasks which are defined by a DAG and maps these tasks onto heterogeneous edge servers for ef-
ficient execution. The implemented testbed can achieve 40% latency reduction with an average
per-frame latency of 32 ms. In Reference [109], a collaborative mobile edge environment is estab-
lished to split the pipeline of 3D reconstruction into high frequency and low frequency tasks. The
evaluation on a hardware testbed using publicly available datasets shows up to ∼ 54% reduction in
latency with negligible loss (~4%–7%) in reconstruction quality. References [107–109] use available
edge resources intelligently by enabling extreme task parallelization, which proves to be a highly
effective approach.

(c). Mixed DAG: This type of DAG has no dependency restrictions and a task can have multiple
predecessors and multiple successors. Many deep learning-based video processing applications
have arbitrary DAGs, such as MV3D [110] and MVSNet [111] in the field of 3D object detection
and reconstruction. For mixed DAGs, task placement is more complicated as most of optimization
problems are NP-hard. The authors in Reference [112] present Latency-Aware Video Edge
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Fig. 13. Schematic of vertical and horizontal DNN model partitioning.

Analytics (LAVEA), a low-latency video analytics edge computing platform that can serve
multiple clients at the same time. They assume that DAG tasks are only offloaded to the nearest
edge node (the edge-front node) via access points and formulate a mixed integer non-linear

programming problem (MINLP) to determine the offloading decision and connection rate
assignment. The problem is solved by integer relaxation and branch and bound (B&B) method.
Since the edge-front node receives a large number of offloaded tasks from the clients at each time
epoch, LAVEA uses a task queue prioritizer to minimize the makespan for the task scheduling and
proposes inter-edge collaboration to avoid workload overload on the edge-front node. When the
edge front-end node is full of requests, it starts to coordinate with nearby edge nodes by placing
some tasks on the less busy edge nodes so all tasks can be scheduled within a reasonable time.
To reduce computation complexity of dependent task offloading, the authors in Reference [113]
consider each DAG as a set of “co-subtask” stages (tasks with the same depth). A flow scheduling
heuristic is proposed to determine the task scheduling priority based on the release time and
maximum computation load of a task within a co-subtask stage. Most of the work in this subsec-
tion only considers task placement without optimizing other aspects. It is crucial that an edge
framework can jointly optimize task placement, configuration searching, and resource allocation,
which together provide a highly efficient and adaptive system dedicated to video analytics.

5.3 Accelerate Model Inference

Previous subsections discuss video analytics from application-level perspective; here, we list a set
of optimization approaches at the DNN-level. For a given task workflow and a set of configuration
parameters, video analytics performance can be further improved by looking at the inner structure
of the DNN model and the property of the video content that will quicken the model inference. In
this way, unnecessary communication and computation under resource constraints can be avoided,
thereby improving the overall inference efficiency. Here, we discuss three useful methods, namely,
model partition, early exit, and input filters.

5.3.1 DNN Model Partition. A layered DNN model can be partitioned either vertically or hori-
zontally across mobile devices and edge servers to accelerate the computation and reduce energy
consumption. Examples of vertical and horizontal model partition for a four-layer DNN are shown
in Figure 13.
(a). Vertical partitioning: Most state-to-art DNN models contain a sequence of layers (e.g.,

convolution layer, fully connected layer) that are executed sequentially by passing intermediate
data between layers. Thus conceptually, this method is quite similar to sequential DAG partition-
ing. The intuitive idea is to find the best partition point that offloads computation-intensive layers
to the edge server with little data transmission. Given that the DNN layers can vary significantly in
both computation requirement and data size, the selection of partition point can significantly affect
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the overall latency and energy consumption of mobile devices. In addition, the application perfor-
mance requirement as well as the edge environment may change frequently (as discussed before).
Thus, it is necessary to build a layered-based prediction model. This can be done by deploying
a real-time monitor that periodically collects the availability of communication and computation
resources in the system.
Neurosurgeon [114], Edgent [115], and SPINN [116] are cutting-edge frameworks that provide

automated, adaptive, and collaborative DNN inference at the edge. Driven byDNNmodel partition-
ing, Neurosurgeon [114] and Edgent [115] establish a regression model to estimate the layer-wise
performance (e.g., end-to-end latency or mobile energy consumption) and a dynamic mechanism
to find the optimal partition point that meets the user-defined requirements during the runtime.
Edgent [115] considers DNN inference under dynamic network environment and build a reward-
based configuration map constructor to customize their framework. SPINN [116] measures the
inference latency using a two-staged linear model based on the scaling factor between the actual
time and the offline latency estimation.
(b). Horizontal partitioning: Among works that propose horizontal DNN partition,

References [117] and [118] are notable. MoDNN [117] is a distributed mobile computing system
in Wireless Local Area Network (WLAN) where the DNN models are partitioned by layers
and mapped onto mobile devices to accelerate the computation. Based on the computation time
and the memory usage of the layers along with the worker’s resource availability, each worker is
mapped with a part of the layer inputs to increase the overall parallelism. Authors in Reference
[118] propose a scalable Fused Tile Partitioning (FTP) of convolutional layers to minimize mem-
ory footprint and enable parallelism. It also develops a novel work scheduling process to reduce
overall execution latency.

5.3.2 Early Exit. Confidence is an important factor in DNN inference. It indicates the likeli-
hood that an anchor box contains an object. Early exit method explores the relationship between
the layer’s computational overhead and confidence score. This method gives a layer-wise selec-
tion to further accelerate the inference at the edge by terminating the ongoing processing at cus-
tomized exit points. BranchyNet [119] proposes an open-source framework to obtain “Branchy”
(i.e., branched) DNN with multiple early exit points. When the classifier at a particular exit point
is confident in the prediction (i.e., its confidence is above a threshold), the inference can directly
terminate. BranchyNet applies the weighted sum of the loss functions of each exit branch as its op-
timization objective function. The results show that when using some well-known CNNs such as
LeNet, AlexNet, and ResNet for testing, BranchyNet can provide 2× to 6× acceleration on the CPU
and GPU. Early exit is also an enabler for distributed computing in edge when DNNs have more
than one exit point. Authors in Reference [120] propose a three-layer framework across mobile de-
vices, edge, and cloud to execute different exit points of a given DNN in a distributed manner. This
work allows distributed devices and edge servers to jointly perform classification and aggregates
the outputs.
Furthermore, the DNNmodel inference at edge can be further optimized by combining early exit

policy with DNN model partition as proposed in References [115, 116]. Compared to monotonous
optimization of early exit strategies or DNN model partitioning, this combined method can deal
with diverse user requirements and dynamic edge environments more flexibly. The secret lies in
finding a combinatorial configuration of exit points and partition points that jointly optimize the
overall performance. An example of early exit with DNN model partition is shown in Figure 14(a)
with three exit points. Authors in Reference [115] map system states (e.g., latency, bandwidth) to
exit points and partition points, then perform model partitioning on the selected exit point. While
in Reference [116], the on-device inference continues even after the partition point. The advantage
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Fig. 14. Examples of Early-Exit policy.

of this method is that when the mobile device reaches an early exit point and the classifier gives
a sufficient confidence (above the predefined threshold), the inference on the edge server can be
stopped. This approach may also reduce the unnecessary data transmission if the server-side in-
ference has not yet started. In the Figure 14(a), if the first exit point outputs a confident prediction
that the image contains a “cat,” then the execution of exit point 2 and 3 can be terminated and
thus computation resources can be saved. Otherwise, server-side inference will continue until a
qualified early exit point is encountered. Based on this feature, SPINN achieves a speedup of up to
83% and 52% when compared to Neurosurgeon [114] and Edgent [115].

However, works such as Reference [116] will significantly increase the energy consumption of
mobile devices and therefore it is not suitable for energy-constrained scenario. In fact, when there
are multiple edge servers, the inference can be accelerated by sending the layers of different early
exit branches to different edge servers. For example, as shown in Figure 14(b), we can let the exit
point 2 and 3 run on two servers to improve parallelism. Similar to Reference [116], when exit
point 2 is completed, it can notify the server who is running exit point 3 based on its prediction
confidence. We can also introduce another edge server to run exit point 1 to reduce the on-device
computation overhead. But this will incur extra communication overhead, since the intermedi-
ate data generated by the first layer have to be transmitted to both edge servers, which in turn
generates a more changeling optimization problem.

5.3.3 Input Filter. Input filter is a key accelerator for running DNN model inference in edge
computing environment with limited bandwidth and computation resources. Its objective is to
remove redundant transmission and computation without compromising the accuracy. The basic
idea is to deploy a lightweight pre-processing algorithm to determine the Region-of-Interest

(RoI) within individual frames or filter non-target-object across consecutive frames. Then, com-
pute the difference among those areas or calculate the motion behaviors of the target objects to
further make inference decision. This approach significantly reduces the latency and energy con-
sumption, especially for video analytics.
Authors in Reference [121] propose a Dynamic RoI Encoding technique to decrease the encod-

ing quality of uninteresting areas to reduce the transmission latency and bandwidth consump-
tion. More specifically, this work uses candidate RoIs generated by previous processed frame and
slightly expands each RoI by one macroblock. A Parallel Streaming and Inference pipeline is in-
troduced to further reduce the latency. This work solves the problem caused by object movement
by shifting the bounding box based on the motion vectors from the current encoded frame. Sim-
ilarly, Reference [122] uses a linear velocity model to approximate the ground truth boxes based
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Fig. 15. An example of input filter based on RoI and parallelism inference with three edge servers. The de-

tected results are fused back to the original frame.

on temporal correlation. While in Reference [123], the authors apply an attention-based LSTM
network to predict the region proposals (RP) of a new frame based on detected historical frames.
The bounding boxes of RPs are dynamically expanded to address the tradeoff between accuracy
and latency. In addition, the authors propose a content-ware frame partitioning and offloading
pipeline that effectively assign RP-Boxes to the edge servers (as shown in Figure 15). Instead of
targeting the RoIs or RPs, an alternate approach is to simply skip the non-target-object frames [124]
or consecutive frames that have little change [125]. The authors in Reference [124] consider the
bandwidth-efficiency problem of real-time drone video analytics. The authors introduce the Ear-
lyDiscard strategy, which is based on on-board processing to identify and filter useless frames,
thereby reducing the number of frames required for transmission. More specifically, a weak detec-
tor such as image classification (e.g., MobileNet) is deployed to filter useless frames. Authors in
NoScope [125] use a difference detector to compute the MSE between a labeled reference frame
and an unlabeled frame to skip the frames whose MSE is lower than the predefined threshold. The
authors also optimize the tradeoff between accuracy and reference frame update speed. However,
both works require specialized pre-trained model for a small set of target object classes (e.g, trees,
cars, boats). Moreover, the weak detector [124] and difference detector [125] must have consider-
able small inference latency and energy consumption compared to original model inference.

6 OPEN RESEARCH CHALLENGES AND FUTURE DIRECTIONS

The open research challenges and future directions on edge resource management can be found
in Appendix E in the Supplementary File.

7 DISCUSSION AND CONCLUSIONS

MEC is an emerging distributed computing paradigm that brings low/ultra-low latency, intelligent
network and compute capabilities to the users and helps preserve mobile devices’ energy. Due to
the heterogeneity of edge resources, application structures, and user’s requirements, most of op-
timization problems in MEC are NP-hard. However, the dynamic nature of environments and use
cases where MEC are deployed brings unique challenges and thus adds novel design dimensions.
This survey presented a state-of-the-art literature review of research thrusts in MEC from various
design, deployment, and application perspectives. In this survey, we categorized and discussed the
existing MEC research works based on their computation offloading models and resource alloca-
tion strategies as well as performance metrics. We also discussed the DAG-based task modeling
and placement problems for multi-stage computations. We then outlined the dynamic issues in
MEC, such as stochastic task arrival and channels and service migration, followed by existing re-
search efforts that address such issues including MDP, Q-learning, and Deep Q-learning. Finally,
we discussed the challenges of video analytics in MEC from joint system-side and application-site
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optimization considerations. We believe that the outcomes of this survey research will benefit the
future distributed computing, smart applications, and data-intensive science communities to build
effective, efficient, and robust MEC environments.
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