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Electric vehicles, residential rooftop solar photovoltaics, and home battery storage contribute to a reliable,
resilient, affordable, and clean power grid. To accelerate decarbonization, large-scale deployment of these
distributed technologies will be indispensable but cause significant impacts on the power grid in the future. This
study provides the first empirical evidence of the impact of co-adopting the three technologies on electricity
consumption patterns based on smart meter data of three representative adopters from Arizona. The estimated

overall impact of the coadoption on average hourly net load is -0.68 kWh. An intraday consumption transfer is
identified. Leveraging the three technologies, consumers reduced electricity consumption from the grid during
the day and early evening, increased consumption in the late evening, and exported excess electricity to the grid
during the day. We also estimate the decomposed impacts of each adopted technology.

1. Introduction

Electric vehicles play a key role in electrification and have gained
great attention over the last decade. With continued strong growth, the
total number of electric vehicles on the road worldwide was 16.5 million
by the end of 2021, three times the number in 2018 (IEA, 2022).
Replacing gasoline vehicles with electric vehicles helps control emis-
sions from burning gasoline in the transportation sector, which is a
major contributor to greenhouse gas emissions from all countries and is
currently the largest emitting sector in the United States (US EPA, 2022).
However, charging electric vehicles with the current power grid still
causes environmental damage—both from local air pollution and from
Greenhouse Gases (GHGs)—because some power plants use dirty fuels,
such as coal, for generation (Holland et al., 2016). Full decarbonization
of the transport sector requires that it not only becomes all-electric, but
that electricity is generated from renewable energy or other low-carbon
sources (Qiu et al., 2022b).

Solar photovoltaics (PV) are a renewable and clean source of energy.
Residential solar PV has been adopted by an increasing number of
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households worldwide (IEA, 2020) and can be used for generating
electricity at home and saving energy bills. It can provide clean elec-
tricity for electric vehicles, which further reduces the environmental
damage of traffic (Muratori, 2018). However, solar PV is only able to
generate electricity during the day with sunlight.

Home battery storage is another new green technology, which stores
the electricity delivered from the grid or generated by residential solar
PV. It has been discussed widely in recent literature (Ratnam et al.,
2015; Ranaweera and Midtgard, 2016; Jargstorf et al., 2015). The home
battery can store the excess solar electricity during the day and then
discharge the electricity at night when the solar power generation is not
available. The battery can also be charged at off-peak hours (with lower
electricity prices) and discharged at peak hours (with higher prices) to
save energy bills. This intraday transfer of electricity usage helps reduce
grid load variability contributing to a more reliable, resilient, and
affordable power grid (Qiu et al., 2022a; Freitas Gomes et al., 2020;
Nyholm et al., 2016).

To help achieve deep decarbonization, there is an urgent need to
promote these three technologies on a large scale. Many governments
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Table 1
Summary of three consumers who installed the three technologies.

Treated
Consumer #3

Treated
Consumer #2

Treated
Consumer #1

Solar PV adoption 2-10-2017 6-22-2018 9-6-2018
date

Battery adoption
date

EV adoption date 9-1-2017 11-1-2018

Observed period 5-1-2013 to 4-30-2019

Average hourly 2.12 1.42 1.12
electricity
consumption
(kWh) from the
grid

Standard deviation 2.07 1.45 1.24
of hourly
electricity
consumption
(kWh) from the
grid

Electricity rate plan

9-18-2018 6-22-2018 9-6-2018

4-1-2019

Plan 23 (before
2-10-2017) Plan
27 (since
2-10-2017)

Plan 23 (before
6-22-2018) Plan
27 (since
6-22-2018)

Plan 21 (before
9-6-2018) Plan
27 (since
9-6-2018)

Note: Rate plan 23 is SRP Basic Price Plan, which has a flat rate for all hours;
plan 21 is SRP EZ-3 Super peak Time-of-Use Price Plan, and plan 27 is Customer
Generation Price Plan. In plan 21, on-peak hours are 3- 6 p.m. Monday to Friday
and the rest are off-peak hours. In plan 27, on-peak hours are 2- 8 p.m. in
summer and 5-9 a.m. & 5-9 p.m. in winter, Monday to Friday, and the rest are
off-peak hours. In both plans 21 and 27, the rate is higher during on-peak hours.
In all three plans, rates are seasonally adjusted. Rates are higher in summer than
in winter. Detailed descriptions of the rate plans can be found on SRP’s website:
https://www.srpnet.com/menu/electricres/priceplans.aspx and Appendix A.

and utilities have introduced a variety of incentives to encourage con-
sumers to adopt these technologies. Although the current penetration
rate of co-adopting the three technologies is low, large-scale deployment
of these distributed energy technologies with uncertain charge and
discharge patterns in the future will have a significant impact on the
power grid and bring challenges for future power grid management
(Tran et al., 2019). Consumers could have different motivations to adopt
these three technologies, such as the maximization of self-sufficiency,
the minimization of electricity bills, or the maximal use of renewable
electricity. The diverse motivations imply different strategies for using
these technologies and different changes in electric consumption pat-
terns. Also, the impact of co-adopting the three technologies could be
different from a simple combination of adopting each technology indi-
vidually (Qiu et al., 2022a). Thus, a full understanding of the behavior
changes and the overall impact on the grid after co-adopting these
technologies is urgently needed.

This paper explores the impacts of these three technologies with
evidence from Arizona. Arizona is one of the states that is deeply
involved in the clean energy transition in the U.S. It has the seventh-
highest number of registered electric vehicles in the U.S. at around
40,740 as of 2022 (Department of Energy US, 2022), and it has the
fifth-highest number of installed solar panels at around 5984 MW as of
2022 (Solar Energy Industries Association, 2022). Unlike the above two
technologies, still very few consumers installed home battery storage in
Arizona. In this study, we provide the first empirical evidence of the
overall and decomposed impacts of co-adopting these three residential
green technologies (electric vehicles, solar PV, and battery storage) on
electricity consumption patterns and their impact on the power grid.
Based on the high-frequency smart meter data of three representative
adopters in Phoenix, Arizona (who installed all the three technologies
within a short period and share a similar level of electricity consumption
with normal users) and using the difference-in-differences method in
conjunction with matching, we estimate the net impact of the coad-
option on electricity consumption patterns compared to consumers who
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did not adopt any of the three technologies. In addition, leveraging a
machine learning algorithm, we explore potential behavior changes by
estimating the short-run changes in electricity consumption patterns
after installing each technology for each individual user, respectively.

We provide two major contributions to the literature. First, this
paper builds upon the empirical studies investigating the impact of
adopting clean energy technologies, such as solar PV, electric vehicles,
and heat pumps, on electricity consumption patterns (Qiu et al., 2019,
2022a, 2022b; Liang et al., 2022; McKenna et al., 2018). These studies
only estimate the impact of a single-technology adoption or a coad-
option of two technologies (such as solar PV and battery storage) (Qiu
et al., 2022a). Currently, few users install electric vehicles, solar PV, and
battery storage at the same time. For instance, only 8 users installed all
the three technologies in our sample of 13,279 users in Arizona. We
provide a pilot empirical study investigating the impact of co-adopting
these three residential clean technologies, which has leading implica-
tions for the future large-scale deployment. Second, previous engineer-
ing studies used simulation-based approaches to explore the impacts of
single-technology adoption (Muratori, 2018; Harris and Webber, 2014)
and multi-technology integration (Ding et al., 2010; Li et al., 2018) on
the power grid. The simulation-based approaches have shortcomings
relying on the pre-determined assumptions about consumer responses
and technology-usage patterns (Muratori, 2018): (1) Assuming that
technologies are used according to established patterns (e.g., charging
electric vehicles only during the off-peak hours); (2) Assuming that all
the consumers share a similar behavior pattern. Recent empirical studies
(Qiu et al., 2022a, 2022b) have shown that the heterogeneous changes
in consumption patterns of clean residential technologies differ from
simulation-based predictions. Our study based on actual smart meter
data does not rely on pre-determined assumptions and provides more
accurate estimates.

This paper is structured as follows. Section 2 describes methodo-
logical approaches and data, and Section 3 shows estimated results.
Section 4 concludes the paper with discussion and policy implications.

2. Methods
2.1. Data

We obtained the high-frequency smart meter data from the Salt River
Project, an electrical utility company serving the Phoenix metropolitan
area. Our dataset includes electricity flows (hourly kWh delivered from
and to the power grid) of 13,279 residential users from 1st May 2013 to
30th April 2019. The dataset also records the solar PV adoption date,
home battery storage adoption date, and date of starting the electrical
vehicle in-home charging, electricity rate plan, and ZIP code for each
individual user. Among the users of our dataset, 2220 users adopted the
electric vehicle and started charging it during the time window of the
dataset. Among these electric vehicle users, 8 users adopted residential
battery storage and 333 users adopted solar PV in our observed period.
11,059 users did not adopt any of the three technologies. To sum up, 8
users installed all the three technologies in our dataset. Only 3 users
adopted the three technologies within a short term (e.g., within one
year). To support the analysis, we obtained the hourly temperature in
the city of Phoenix from the website of the National Oceanic and At-
mospheric Administration (2022).

2.2. Difference-in-differences in conjunction with matching

To estimate the overall impact of adopting electric vehicles, solar
photovoltaics, and battery storage on electricity consumption patterns,
we focus on three outcomes, namely hourly kWh delivered from the grid
to consumers, hourly kWh sent back to the grid, and net load (which is
the amount of hourly kWh delivered from the grid minus the amount
sent to the grid). To address the selection bias and omitted variable bias,
we utilize the difference-in-differences approach in conjunction with
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Fig. 1. Trends of monthly electricity consumption one year prior to the adoption of three technologies between the treated users and their corresponding con-

trol groups.

matching to estimate the impacts (Angrist and Pischke, 2008). Intui-
tively, we compare changes in electricity flows in households before and
after adopting the three technologies with those in households in the
control group, which helps control both time-invariant and time-variant
confounding factors. We use households who did not install these
technologies but shared similar electricity demands as the control group.
We aim to estimate the average treatment effect on treated (ATT)
(Angrist and Pischke, 2008), and the treatment of interest in this study is
adopting three technologies successively within a short term. The dates
of adopting different technologies are different, so the treatment did not
happen in a single day. To relieve the concern on the confounding fac-
tors of time-variant behavior changes along with the adoption process of
the three technologies, this study focuses on the sample of users who
installed the three technologies within a relatively short term (e.g.,
within 1 year). In our dataset, 3 consumers installed the three

technologies within a short term, who serve as the treated group in the
difference-in-differences study design. See descriptive information of
the three users in Table 1. The electricity consumption amounts of the
three treated consumers are similar to normal consumers in the Phoenix
metropolitan area.

Then, we utilize the methods of Exact Matching and Coarsened Exact
Matching (CEM) (lacus et al., 2012) to find comparable users, who did
not install any of the three technologies, as a control group. We first
conduct the exact matching on the ZIP code and electricity rate plan in
the pre-treatment period. After the exact matching, each treated user
and their control users are located in the same ZIP code area and share
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the same electricity rate plan in the pre-treatment period.! We remove
the control users who changed their rate plan in the time window of
analysis from the sample, which means that the rate plan of control users
is fixed in our sample. Second, we conduct CEM on two new generated
covariates, namely average daily electricity consumption (delivered
from the grid) and the standard deviation of daily electricity consump-
tion, to find comparable treated and control users sharing similar elec-
tricity consumption patterns. The CEM method coarsens the covariates
into a number of bins and then finds exact matches based on the
coarsened bins. In our analysis, we use a Stata-default CEM algorithm to
conduct the CEM for each treated user, respectively. 104, 61, and 43 bins
are automatically generated by Stata for matching. At last, 13, 5, and 3
comparable control users are matched to each treated user.

Fig. 1 plots the trends of monthly electricity consumption one year
prior to the adoption of the three technologies between treated users and
their corresponding control users. Points in the figure are the average
daily electricity consumption within each month. Shaded areas in the
figure show the standard deviation of the consumption of control groups
each month. Treated and control users share similar monthly trends of
electricity consumption in the pre-treatment period, which supports the
key assumption of our difference-in-differences research design, namely
the parallel trend assumption (Roth, 2019). We also formally test the
parallel trend assumption by running a statistic regression (See the
statistic test procedures and results in Appendix B).

Then, we apply a two-way fixed effects model to obtain the
difference-in-differences estimator by comparing the changes in out-
comes of interest (e.g., kWh delivered from the grid and net load) of
treated users before and after adopting the three green technologies with
those of control users in the same period. The following regression is
applied:

24 5
Yu=Y BHrDi+ > apfy(TEMP) + Y m+p,+p 4o, + 1 +e (1)

j=1 p=1

where Y} is the outcome variable for consumer i at time t. We examined
two outcomes in this difference-in-differences model, namely hourly
electricity consumption (kWh) delivered from the grid and hourly net
load (kWh), respectively; H; are 24 hour-of-day indicators; Dy is the
treatment variable, which takes value one for treated users after
installing the three technologies and takes value zero before the adop-
tion of the first technology; We use a spline function f, to represent the
heterogeneous responses of electricity consumption to temperature
(Anderson, 2014; Shen et al., 2021) and four knots are identified to
divide the temperature into five bins; TEMP; is the hourly temperature in
the city of Phoenix; =, are a series of dummy variables indicating na-
tional holidays in the U.S.; y, is the season-by-hour-of-day fixed effects,
which help control for common intraday electricity consumption pat-
terns by the three different seasons (summer, summer peak, and winter)
defined by the SRP utility.? P 0r, v are year fixed effects,
month-of-year fixed effects, and day-of-week fixed effects. ¢; is the error
term. Standard errors are clustered at the individual consumer level.
Observations between dates of installations of different technologies are
removed from our sample so that we can estimate the net impact of
adopting all three technologies relative to consumers who did not install
any of the technologies. The pre-treatment period in the sample of our
analysis is one year prior to the adoption date of the first technology and
the post-treatment period is from the adoption date of the last technol-
ogy to April 30th, 2019. Interpreting the coefficient of §; in our model
should be cautious, since all the three treated users changed their

1 All the three treated users switched their electrical rate plan to rate plan 27
“Customer Generation Price Plan” after they installed the solar PV.

2 In SRP rate plan, three seasons are defined. Summer season is defined as
May, June, September and October. Summer peak is July and August. Winter is
from November to April.
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electricity rate plan to “E27 customer generation price plan” after they
installed the solar PV and stayed with the E27 plan until the end of our
analysis time window. Thus, our estimated impact is caused by a com-
bination of co-adopting technologies and changing rate plans. Detailed
interpretation of results is discussed in Section 3.

We also examined the impact of the coadoption on hourly electricity
(kWh) sent back to the grid. Since there is no electricity sent to the grid
without the adoption of these three technologies, the treatment effect is
simply the observed amount of electricity sent back to the grid after the
coadoption. We report the average and standard deviation of hourly
kWh sent to the grid in Section 3.1.

2.3. Counterfactuals prediction based on a machine learning algorithm

To understand and decompose the overall impact of co-adopting the
three technologies, we explore the short-run changes in electricity
consumption patterns (hourly kWh delivered from and to the grid) after
adopting each technology for each treated consumer, respectively.

It is relatively easier to find comparable control users for estimating
the overall impact of three technologies since the control users are
among the most common group who did not adopt any of the three
technologies. It is harder to find comparable control consumers for every
stage of technology adoption and for every treated consumer if we apply
the same difference-in-differences study design to estimate the impact of
each technology. For example, if we aim to estimate the impact of
adopting an electrical vehicle on consumer #1’s electricity consumption
pattern, we need to find comparable control users who have installed
solar PV and share the same electricity rate plan and similar electricity
consumption pattern. Thus, in this section of analysis, we apply a ma-
chine learning algorithm, namely the Random Forest algorithm (Brei-
man, 2001; Meinshausen and Ridgeway, 2006), to construct the
counterfactuals of electricity flows (kWh delivered from and to the grid)
if the treated users had not installed a green technology only based on
the long time-series data of treated users prior to adopting the tech-
nology. The flexible machine learning model can better fit the complex
and non-linear relationship between residential electricity consumption
and other factors, such as temperature, season, time of day, and many
others (Jarvis et al., 2022; Burlig et al., 2020). Thus, the machine
learning model shows more advantages in constructing counterfactuals
compared to traditional linear regression models. The machine learning
methods have been applied by many studies to generate counterfactuals
(Varian, 2014, 2016; Athey et al., 2021; Carvalho et al., 2018) and
evaluate the performance of energy efficiency programs (Burlig et al.,
2020; Souza, 2020; O’Neill and Weeks, 2018).

For each technology adoption by each user, we use the time-series
data of the individual user from one year before the adoption to one
month after the adoption for analysis.® Training data, the time-series
data before the adoption, is used for training the Random Forest algo-
rithm. Testing data, one month after the adoption, is used for predicting
the counterfactuals with the trained machine learning model. Since the
training data does not include any information about adopting the
technology, our approach can estimate the electricity flows under a
scenario where the consumer did not install the technology. The dif-
ference between actual flows and predicted counterfactuals is the
treatment effect of adopting the technology. We only predict the coun-
terfactuals in the short term (within a month) to relieve the influence of
time-variant confounding factors. For example, the users may also
install other energy-efficient appliances after adopting the technology of
our interest and may change their electricity consumption patterns.
Focusing on a small time window (such as one month) can reduce the
possibility of the above confounding factor.

3 When we estimate the impact of adopting EV on electricity sent back to grid
of the three treated consumers, the pre-treatment time-series data of hourly
kWh sent to grid are less than one year.
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Fig. 2. The overall impact of co-adopting electric vehicles, solar photovoltaics, and battery storage on hourly electricity flows (kWh delivered from the power grid, to
the grid, and net load). Note: circles are point estimators, error bars in subplot (a) and (c) are 95% confidence intervals, and error bars in subplot (b) are stan-

dard deviation.

The input variables in the Random Forest model include hourly
temperature, day-of-month fixed effects, month-of-year fixed effects,
year fixed effects, day-of-week fixed effects, hour-of-day fixed effects,
national holidays fixed effects, electricity rate plan fixed effects, and
three dummies indicating the adoption status of the three technologies.
We check the performance (or, prediction accuracy) of the machine
learning models by calculating the out-of-sample cross-validated R-
square and Mean Absolute Error (MAE) (Jarvis et al., 2022). The
calculated R-squares range from 0.629 to 0.889 and the MAE is from
0.100 to 0.958 kWh (See the detailed performance of each model in
Appendix C). Although the model performs well, we apply the following
difference-in-differences-style estimator (Burlig et al., 2020) to take into
account the prediction error:

B=E (Yipost — ?i,h.poxt) —E(Yippre — S;i.h,pre) ()]
where ﬁh is the estimator of electricity flow change (changes in hourly
kWh delivered from and to the grid) at hour-of-day h after the adoption
of technology. Y; ; pos is the actual electricity flow of consumer i at hour h
after adopting the technology, and ?i,h post is the predicted counterfac-
tuals of electricity flow at hour h after adopting the technology. Y;pr is
the actual value at hour h before adopting the technology in the training
data and ?i,h pre is the predicted value within the sample of training data.
The first difference in Eq. (2) is an estimate of the treatment effect of
adopting technology and the second difference is the model prediction
error. Thus, by minus the prediction error in the training data, this

difference-in-differences-style estimator can ameliorate the concern for
the accuracy of counterfactuals prediction.

When we estimate the impact of adopting solar PV on consumer #1’s
electricity sent to grid and the impact of adopting solar PV and battery
on consumers #2 and #3's electricity sent to grid, treatment effects are
simply the observed amounts of kWh sent to grid one month after the
technology adoption. We report these values directly without using the
machine learning approach in these circumstances in Section 3.2.

This study has the limitation of the small sample size. Few consumers
adopted the three technologies at the same time and our study is based
on a sample of three representative early adopters. Interpreting the
broader implications of our results should be cautious given that future
consumers who adopt these technologies on a large scale may have
different characteristics from the first adopters. Nevertheless, this paper
provides a pilot study with empirical evidence of consumers’ behavior
changes after co-adopting the three technologies.

2.4. Calculations of private and environmental benefits

The coadoption could not only change electricity consumption but
also changed consumers’ private benefits (electricity bill savings and
vehicle fuel cost savings) and environmental benefits (avoided pollution
from dirty electricity generation sources and driving gasoline vehicles).
Based on our estimations of electricity consumption changes, we
conduct a back-of-envelope calculation on these benefits. See method-
ology details in Appendix E and we discuss the results in the discussion
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Fig. 3. The impact on treated consumer #1's electricity consumption patterns after adopting each technology. (Note: yellow columns are point estimators, error bars
in subplots (a)(b)(c)(e)(f) are 95% confidence intervals, and error bars in subplot (d) are standard deviations.).
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Fig. 5. The impact on treated consumer #3's electricity consumption patterns after adopting each technology. (Note: yellow columns are point estimators, error bars
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section.
3. Results

3.1. The overall impact of co-adopting electric vehicles, solar
photovoltaics, and battery storage

We first check the impact of co-adopting the three technologies on
average hourly electricity flows using the difference-in-differences
method in conjunction with matching. In our final sample of analysis,
we include 3 representative early adopters accompanied by 21 compa-
rable control users. The time-series smart meter data in our analysis
include 274,457 observed hours of electric input and output. We
examined three outcomes of interest, kWh delivered from the grid, kWh
delivered to the grid, and net load, respectively. The estimated change in
average hourly kWh delivered from the grid is 0.0005 (with the standard
error of 0.28) and the estimated change in average hourly net load is
-0.68 kWh (with the standard error of 0.31; see detailed estimation re-
sults in Appendix D). After installing the three technologies, the average
hourly kWh delivered from the consumers to the grid is 0.68 (with the
standard deviation of 1.2). It means that the co-adoption of the three
technologies did not change the consumers’ average hourly electricity
consumption (or, daily electricity consumption) delivered from the
power grid but consumers sent excess electricity back to the grid. Thus,
the impact of the coadoption on net load is negative.

Second, we check the change in electricity consumption patterns by
estimating the impact by 24 h of the day. Fig. 2 shows the estimated

results by the three different outcomes (See detailed estimates in
Appendix D). Subplot (a) shows the impact on electricity consumption
delivered from the grid. We find that the treated users reduced their
hourly electricity consumption from the grid significantly by about 1
kWh from 6AM to 9PM, and increased their hourly electricity con-
sumption significantly by about 2.5 kWh from 10PM to 1AM. The pos-
itive impact (increased electricity consumption compared to periods
before the technology adoption) decayed to 0 from 2AM to 5AM. The
reduced consumption could be due to the generation from solar PV and
the discharge from battery storage. In the hours without sunlight (e.g.,
8PM to 9PM), the reduced consumption could be only due to the
discharge of the battery. The significantly increased consumption in the
middle of the night (10PM to 1AM) could be due to the charging of
battery storage and electric vehicles. Subplot (b) shows the hourly
electricity sent back to the grid. We find that the treated consumers sent
excess electricity to the grid from 10AM to 5PM when the solar PV can
generate electricity with sunlight. The electricity send to grid could also
be due to the discharge of battery. Subplot (c) shows the overall impact
on consumers’ net load, which is consistent with the results in subplots
(a) and (b). The consumers increased their net load significantly at late
night and reduced net load during the day and early evening.

The decreased net load can save consumers’ energy bills. In addition,
after installing the solar PV, all the three treated users switched their
rate plan to E27 consumer generation price plan, which charged elec-
tricity consumption based on time of use. Under the E27 rate plan, on-
peak hours are from 2PM to 8 PM in summer and from 5AM to 9AM
and from 5PM to 9PM in winter. According to our estimated result, the
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Fig. Al. Pre-treatment parallel trend test. Note: Circles are point estimators and error bars are 95% confidence intervals.

reduced consumption happened during the on-peak hours (with a higher
rate) and the increased consumption happened during the off-peak
hours (with a lower rate), which could further reduce the users’ elec-
tricity bills (See detailed calculation of private benefits in Section 4).

To sum up, after the installation of electric vehicles, solar photo-
voltaics, and battery storage, the three residential consumers did not
change their overall daily electricity consumption from the grid but
switched their intraday consumption patterns and sent excess electricity
back to the grid. That is, with the help of the three technologies, they
reduced their net load during the day and early evening (including peak
hours with higher electricity prices) and increased their net load during
the late evening (off-peak hours with lower electricity prices), which
help save energy bills, reduce grid load variability, and meet their travel
needs via electric vehicles.

Peak demand is the highest electric power demand during a specific
time, which determines the maximum generation capacity of power
plants in order to meet the electricity consumption needs of all time
periods. Shaving peak demand helps save utilities and consumers’
money by lowering wholesale electricity prices and subsequent retail
electricity prices as well as deferring construction of new power plants
and power delivery systems that are reserved for use during peak times
(US DOE, 2022). According to our results, the coadoption of these three
technologies, that help shave peak demand and increase off-peak de-
mand, is consistent with the long-term strategy of demand management
of electric utilities.

3.2. Electricity consumption pattern changes after adopting each
technology

To further understand the decomposed impacts of co-adopting the
three technologies, we explore the changes in electricity flows (deliv-
ered from and to the grid) after each technology adoption for each in-
dividual treated user, respectively. Using the machine learning approach
(Random forest algorithm), we generate the counterfactuals of elec-
tricity flows and then estimate the impact of coadoption on electricity

consumption patterns within one month after the installation of each
technology. As for the impact of adopting solar PV on consumer #1 and
the impacts of adopting solar PV and battery on consumers #2 and #3,
we directly report the average and standard deviation of hourly kWh
sent back to the grid within the first month.

Fig. 3 shows the estimated changes in electricity consumption
pattern of the treated consumer #1, who installed the solar PV, the
electric vehicle, and the battery storage, successively. After installing the
solar PV, the consumer decreased electricity consumption from the grid
significantly and sent excess electricity back to the grid in the daytime
because of the generation from solar PV. After installing the electric
vehicle, electricity consumption from the grid was increased at night
(from 9PM to 6AM), which could be due to charging the vehicle, and was
decreased in the daytime, which could be due to the consumer traveling
more within the first month after adopting the new electric vehicle. The
increased electricity exported to the grid in the daytime could be due to
the decreased electricity demand caused by the absence of a homeowner
who left her/his home by car. After installing the battery storage, the
electricity consumption from the grid increased at night and decreased
during the day and early evening, which could be due to that charging at
off-peak hours and discharging at peak hours can save energy bills,
especially during the summer. In winter, the E-27 tariff gap between off-
peak and peak prices is small, so there is little room for arbitrage profits
given the energy loss during battery charging and discharging. Subplot
(f) shows that the consumer may send electricity back to the grid
through discharging the battery in the daytime (including the peak
hours with high electricity rates).

Fig. 4 shows estimated impacts on the treated consumer #2, who
installed solar PV and battery together at first and then adopted electric
vehicle later. After adopting the PV and battery, consumer #2 increased
electricity consumption from the grid significantly at night from 8PM to
12AM because of charging battery storage. During the daytime, elec-
tricity consumption from the grid decreased and exported electricity
increased because of the generation of solar PV and discharging from the
home battery. After installing the electric vehicle, a similar pattern
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Table Al
Model performance.
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Panel A: Outcome: kWh delivered from the grid
Adoption Stages

Adopting Adopting Adopting Adopting
PV EV Battery PV &
Battery
Consumer Out-of- 0.415 0.549 0.958
#1 sample
CV MAE
Out-of- 0.667 0.842 0.629
sample
CV R2
Consumer Out-of- 0.275 0.277
#2 sample
CV MAE
Out-of- 0.834 0.855
sample
CV R2
Consumer Out-of- 0.363 0.370
#3 sample
CV MAE
Out-of- 0.749 0.675
sample
CV R2
Panel B: Outcome: kWh delivered to the grid
Adoption Stages
Adopting Adopting Adopting Adopting
PV EV Battery PV &
Battery
Consumer Out-of- 0.121 0.100
#1 sample
CV MAE
Out-of- 0.806 0.769
sample
CV R2
Consumer Out-of- 0.138
#2 sample
CV MAE
Out-of- 0.889
sample
CV R2
Consumer Out-of- 0.177
#3 sample
CV MAE
Out-of- 0.866
sample
CV R2

Note: For each individual user, we use observations before the adoption of each
technology as training data to train our machine learning model using the
Random Forest algorithm. To validate our model, we check the model perfor-
mance by calculating the out-of-sample cross-validated mean of absolute error
(MAE) and R square. The training data is divided into 10 folds when imple-
menting the cross-validation.

change is noted. The significant increase in electricity consumption from
the grid at night (from 9PM to 12AM) indicates that the consumer may
charge their electric vehicle at that time. The decrease in electricity
consumption from the grid and the increase in exported electricity in the
daytime may imply that the consumer travel more during the day.

Fig. 5 shows estimated impacts on treated consumer #3, who also
installed solar PV and battery together at first and then adopted the
electric vehicle later. We find consumer #3 had a similar pattern change
as consumer #2 after installing the solar PV and battery. However, we
fail to identify a distinct change in consumer #3's electricity consump-
tion from the grid after adopting the electric vehicle. It could be due to
that consumer 3 did not charge their EV at home (e.g., only at public
charging stations) within the first month after they bought it. The
increased exported electricity to the grid during the daytime could be
due to more travel and less electricity consumption demand at home.
This finding also indicates that consumers may not behave as predicted
due to the heterogeneity of consumers and demonstrates the importance
of the empirical study.

Table A2
Estimates of difference-in-differences.
Model (1) Model (2) Model (3) Model (4)
Outcome: kWh delivered from grid Outcome: net load
D 0.0005 -0.6844**
(0.287) (0.3138)
D_hourl 2.011 2.003
(1.347) (1.342)
D_hour2 1.431 1.424
(1.065) (1.060)
D_hour3 0.892 0.885
(0.765) (0.760)
D_hour4 0.475 0.467
(0.533) (0.528)
D_hour5 0.156 0.149
(0.408) (0.403)
D_hour6 -0.818%** -0.831%**
(0.0775) (0.0731)
D_hour?7 -0.935%** -0.949%**
(0.0730) (0.0698)
D_hour8 -1.068*** -1.115%**
(0.112) (0.119)
D_hour9 -1.119%** -1.420%**
(0.143) (0.218)
D_hour10 0.0113 -0.982%**
(0.0919) (0.108)
D_hourll -0.328 -2.157%**
(0.278) (0.330)
D_hour12 -0.727%** -3.222%%*
(0.0538) (0.0631)
D_hour13 -0.766%** -3.460%**
(0.0856) (0.0701)
D_hourl4 -0.760%** -3.411%**
(0.102) (0.0825)
D_hourl5 -0.777%** -3.069%**
(0.142) (0.0817)
D_hourl6 -0.747%** -2.495%**
(0.114) (0.164)
D_hourl7 -0.733%** -1.665%**
(0.0939) (0.258)
D_hourl8 -1.066*** -1.341%**
(0.235) (0.184)
D_hour19 -1.058%** -1.103%**
(0.203) (0.205)
D_hour20 -1.107*** -1.124%**
(0.159) (0.164)
D_hour21 -0.627** -0.644**
(0.237) (0.235)
D_hour22 2.122%%%* 2.113%**
(0.487) (0.486)
D_hour23 3.382%* 3.374%*
(1.475) (1.471)
D_hour24 2.161 2.153
(1.333) (1.328)
Adjusted R-squre 0.26 0.29 0.25 0.32
Observations 274,457 274,457 274,457 274,457

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are in parentheses
and clustered at the individual consumer level. Control variables include spline
function of hourly temperature, year fixed effects, month-of-year fixed effects,
season-by-hour-of-day fixed effects, day-of-week fixed effects, and national
holiday fixed effects.

To sum up, these identified electricity consumption pattern changes
after each individual technology adoption are consistent with our esti-
mated overall impact of co-adopting the three technologies.

4. Discussion and conclusion

Electric vehicles, solar photovoltaics, and battery storage play an
important role in electrification, clean power grid, and deep decarbon-
ization. As the penetration rate of these three technologies keeps
increasing, understanding their impact on the power grid and consumer
behavior changes becomes more important. Particularly, the impact of
co-adopting the three technologies can be different from a simple
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combination of adopting three different technologies independently.
This study provides the first empirical evidence of the impact of co-
adopting these three technologies on residential electricity consump-
tion patterns in Arizona. While there was no significant change in
average hourly (or daily) electricity consumption delivered from the
grid after installing the three technologies, we find that consumers
changed their intraday consumption patterns by reducing consumption
from the grid during the day and early evening, increasing consumption
from the grid at late night, and exporting excess electricity back to the
grid during the day (see detailed changes in Fig. 2). The average hourly
net load of the three treated consumers decreased by 0.68 kWh after
installing the three technologies. Our decomposition analysis suggests
four behavior patterns: (1) Users applied the solar PV to generate elec-
tricity during the day, which reduced consumption from the grid; (2)
Users charged residential batteries in the late night and early morning
(off-peak period with lower electricity prices) and discharged during the
day and early night (including an on-peak period with higher electricity
prices); (3) Users charged electric vehicles in the late night and early
morning; (4) Users sent excess electricity back to the grid during the day
through solar generation and discharging home battery.

The average electricity consumptions of the early adopters in our
sample are similar to average consumers in Arizona (see Table 1). Thus,
our selected sample could be representative. Although this paper is
limited by the small sample size, we still provide implications about the
general consumption pattern changes for the broader population. One
caveat is that our findings apply for the specific case of Arizona and
similar climates, and that the coadoption may have different impacts in
zones with different consumption peak times.

This paper provides several implications for utilities, policymakers,
and environmental communities. First, consumers, who co-adopt elec-
tric vehicles, solar photovoltaics, and battery storage, tend to reduce
their electricity consumption from the power grid during peak hours and
increase their consumption during off-peak hours. This consumption
pattern change helps reduce peak energy demand and adds off-peak
demand contributing to a more reliable and affordable electric grid.
Our findings provide new documented benefits of co-adopting the three
technologies. Policymakers should provide more incentives, such as
rebates, low-interest loans, tax credits, and alternative business models,
to encourage adopting them. Second, our analysis indicates that coad-
option brings significant private and environmental benefits through
changing intraday electricity consumption patterns and avoiding
driving gasoline vehicles. The calculated annual private benefits asso-
ciated with the coadoption are $2646 per household and the associated
annual environmental benefits range from $340 to $664 per household.
(See the detailed estimation of benefits in Appendix E). Policymakers
can initiate information programs about the benefits to encourage co-
adopting the three technologies. Third, although we find net positive
environmental benefits after adopting these technologies, increased
electricity consumption at night when the marginal damage of elec-
tricity generation is higher leads to environmental damage. Policy-
makers should apply more approaches to fully decarbonize the power
grid as we move further up the level of electrification. For instance, we
should phase out coal power plants in the U.S. as soon as possible to
reduce reliance on coal to satisfy marginal electricity use (Holland et al.,
2022). Fourth, in addition to providing subsidies and information to
encourage co-adopting these three technologies, utilities and policy-
makers can also encourage more consumers to apply the time-of-use rate
plan, which provides additional incentives for the coadoption.

This study has limitations. Few consumers adopted the three tech-
nologies at the same time and our study is based on a sample of three
representative early adopters. Interpreting the broader implications of

Appendix A. Residential electricity rate plans of the SRP utility
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our results should be cautious given that future consumers who adopt
these technologies on a large scale may have different characteristics
from the first adopters. Nevertheless, this paper provides a pilot study
with empirical evidence of consumers’ behavior changes after co-
adopting the three technologies.

The electricity consumption patterns after adopting these technolo-
gies are determined by consumers’ motivations and use strategies (such
as self-sufficiency and minimizing electricity bills). It helps understand
consumers’ motivations by comparing the calculations of simulation-
based optimization with our empirical estimates. However, since we
cannot observe the installed size of solar PV and home battery, we
cannot infer the optimal electricity consumption pattern. Although this
analysis is beyond the scope of our paper, it could be an important
extension in future studies.

Future empirical studies can keep investigating the impact of co-
adopting clean technologies on consumer behaviors with an increasing
number of consumers adopting them. With the data of solar generation,
future studies can estimate the impact of coadoption on consumers’
energy consumption and identify whether there is a rebound effect after
the coadoption. In addition to quantitative studies, more qualitative or
interview-based analyses can be conducted to actually ask the users
what they are doing with the three technologies. With more data of
consumers’ attributes at the individual level, future studies can also
explore the linkage between heterogeneous behavior changes after the
technology adoption and the heterogeneous consumer attributes (e.g.,
income, political leanings, marginalized groups).
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Plan Plan name Season On peak hour marginal Off peak hour marginal Notes:
number rate ($/kWh) rate ($/kWh)
E-21 Super peak Time-of- Summer 0.2924 0.0858 On-peak hours are 3- 6 p.m. Monday to Friday and the rest are off-
Use Summer 0.3473 0.0882 peak hours
peak
Winter 0.1110 0.0785
E-27 Customer generation Summer 0.0491 0.0389 On-peak hours are 2- 8 p.m. in summer and 5-9 a.m. & 5-9 p.m. in
price plan Summer 0.0651 0.0441 winter, Monday to Friday. The rest are off-peak hours.
peak
Winter 0.0457 0.0417
Plan Plan name Season Flat rate ($/kWh) Flat rate ($/kWh)
number (0-2000 kWh) (20014 kWh)
E-23 Standard price plan Summer 0.1120 0.1163
Summer 0.1186 0.1299
peak
Winter 0.0829 0.0829

Note: Summer is defined as May, June, September, and October. Summer Peak is defined as July and August. Winter is defined as the November through April billing
cycles. We only report the rate plans applied by the sampled users in this study. See other rate plans on the website of SRP utility company: https://www.srpnet.com/
menu/electricres/priceplans.aspx.

Appendix B. Pre-treatment parallel trend test

To formally test the pre-treatment parallel trend assumption, we group all the matched users, restrict the dataset to the pre-treatment period only,
and regress average daily consumption within each month on the interaction terms between a treatment group dummy variable and the indicators of
12 months prior to the treatment controlling for individual user fixed effects, year fixed effects, and month of year fixed effects (following Mueh-
lenbachs et al. (2015)’s approach). Regression results show that all the estimated coefficients are close to zero and not significant statistically (See the
figure below), which indicates that there are no differential trends between the treated and control groups prior to the treatment. Fig. A.1.

Appendix C. Model performance of machine learning

Table Al

Appendix D. Estimates of electricity consumption change after installing the three technologies

Table A2

Appendix E. Private and environmental benefits

The coadoption of the three technologies and the electricity consumption pattern change may bring changes in private benefits and environmental
benefits. In this section, we conduct a back-of-envelope analysis of the benefits.

We first calculate the private benefits (energy bill savings), which include electricity bill savings and vehicle fuel cost savings. We assume that
consumers’ rate plan is fixed to E27 (customer generation price plan) before and after installing the three technologies” and the resulting estimated
annual electricity bill savings caused by the electricity consumption pattern change is $286 per household. We estimate the vehicle fuel cost savings as
equal to the gasoline costs of a typical gasoline car in the U.S.” so the annual vehicle fuel cost savings are $2360. Thus, the total annual private benefits
caused by co-adopting these three technologies are $2646 per household.

The environmental impacts include the avoided environmental damage of electricity generation and the avoided environmental damage of driving
a gasoline vehicle. Electricity generation emits air pollutants, such as CO5, SO2, NOx, and PM2.5. To account for the benefits of avoided CO5 emissions
by electricity generation, we obtained the value of marginal CO, emissions by hour of the day in the West Electric Power Interconnections from
(Holland et al., 2022) and multiply it by the value of Social Cost of Carbon (SSC) to get the value of hourly marginal damage to the environment per
kWh of electricity generated. Based on the standard approach from the U.S. Environmental Protection Agency (EPA, 2021), the SSC in 2020 ranges
from $14 to $152 per metric ton of CO, depending on different discount rates. We then obtain the values of local marginal damage of SO5, NOx, and
PM2.5 emissions by hour of the day in the Western Electricity Coordinating Council region from (Holland et al., 2016). By multiplying the changed
hourly net load (kWh) with the hourly marginal damage, we get the avoided environmental damage. The annual avoided environmental damage
caused by electricity consumption pattern change ranges from $47 to $371 per household. Avoiding driving a gasoline vehicle can bring environ-
mental benefits by avoiding air pollutant emissions. According to Holland et al. (2019), the environmental damage (without carbon emissions) from
driving gasoline cars in Phoenix is 1.93 cents/mile, while the cost of carbon emission is 0.24 cents/mile from driving gasoline cars based on estimates

4 In our sample of the three treated consumers, two consumers changed their rate plan from E23 to E27 and one consumer changed their plan from E21 to E27 after
installing the solar PV. For simplicity, here we assume the consumers’ rate plan is fixed to E27 and calculate their energy bill savings caused by the electricity
consumption pattern change. We multiply the changed hourly net load with hourly electricity prices by different seasons (summer, summer peak, and winter) to
obtain hourly savings, and then add them up to annual savings.

5 According to U.S. Department of Transportation’s Federal Highway Administration (2018), people in the U.S. drive 13,500 miles a year on average. A typical
gasoline vehicle in the U.S., Ford F-150, gets 24 miles per gallon of gas. That means the average gasoline consumption of a typical vehicle is 562 gallons. According to
EIA (2022), the average retail gasoline price on April 2022 is $4.2 per gallon. Thus, the annual cost of gasoline consumption by a typical vehicle in the U.S. is $2360.
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from (Parry et al., 2007). The avoided annual environmental damage of a typical gasoline vehicle® is $293. Thus, the total annual avoided envi-

ronmental damage ranges from $340 to $664 per household.

Although these three technologies bring private and environmental benefits, co-adopting these technologies incurs costs. Consumers need to spend
money to install the solar PV and the home battery and spend extra money to purchase an electric vehicle which is usually more expensive than a
traditional gasoline vehicle. Detailed estimations on the co-adoption costs are beyond the scope of this paper, but the payback period after investing in
these three technologies can be a key parameter that determines whether consumers are willing to install them.
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