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A B S T R A C T   

Electric vehicles, residential rooftop solar photovoltaics, and home battery storage contribute to a reliable, 
resilient, affordable, and clean power grid. To accelerate decarbonization, large-scale deployment of these 
distributed technologies will be indispensable but cause significant impacts on the power grid in the future. This 
study provides the first empirical evidence of the impact of co-adopting the three technologies on electricity 
consumption patterns based on smart meter data of three representative adopters from Arizona. The estimated 
overall impact of the coadoption on average hourly net load is -0.68 kWh. An intraday consumption transfer is 
identified. Leveraging the three technologies, consumers reduced electricity consumption from the grid during 
the day and early evening, increased consumption in the late evening, and exported excess electricity to the grid 
during the day. We also estimate the decomposed impacts of each adopted technology.   

1. Introduction 

Electric vehicles play a key role in electrification and have gained 
great attention over the last decade. With continued strong growth, the 
total number of electric vehicles on the road worldwide was 16.5 million 
by the end of 2021, three times the number in 2018 (IEA, 2022). 
Replacing gasoline vehicles with electric vehicles helps control emis
sions from burning gasoline in the transportation sector, which is a 
major contributor to greenhouse gas emissions from all countries and is 
currently the largest emitting sector in the United States (US EPA, 2022). 
However, charging electric vehicles with the current power grid still 
causes environmental damage—both from local air pollution and from 
Greenhouse Gases (GHGs)—because some power plants use dirty fuels, 
such as coal, for generation (Holland et al., 2016). Full decarbonization 
of the transport sector requires that it not only becomes all-electric, but 
that electricity is generated from renewable energy or other low-carbon 
sources (Qiu et al., 2022b). 

Solar photovoltaics (PV) are a renewable and clean source of energy. 
Residential solar PV has been adopted by an increasing number of 

households worldwide (IEA, 2020) and can be used for generating 
electricity at home and saving energy bills. It can provide clean elec
tricity for electric vehicles, which further reduces the environmental 
damage of traffic (Muratori, 2018). However, solar PV is only able to 
generate electricity during the day with sunlight. 

Home battery storage is another new green technology, which stores 
the electricity delivered from the grid or generated by residential solar 
PV. It has been discussed widely in recent literature (Ratnam et al., 
2015; Ranaweera and Midtgård, 2016; Jargstorf et al., 2015). The home 
battery can store the excess solar electricity during the day and then 
discharge the electricity at night when the solar power generation is not 
available. The battery can also be charged at off-peak hours (with lower 
electricity prices) and discharged at peak hours (with higher prices) to 
save energy bills. This intraday transfer of electricity usage helps reduce 
grid load variability contributing to a more reliable, resilient, and 
affordable power grid (Qiu et al., 2022a; Freitas Gomes et al., 2020; 
Nyholm et al., 2016). 

To help achieve deep decarbonization, there is an urgent need to 
promote these three technologies on a large scale. Many governments 
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and utilities have introduced a variety of incentives to encourage con
sumers to adopt these technologies. Although the current penetration 
rate of co-adopting the three technologies is low, large-scale deployment 
of these distributed energy technologies with uncertain charge and 
discharge patterns in the future will have a significant impact on the 
power grid and bring challenges for future power grid management 
(Tran et al., 2019). Consumers could have different motivations to adopt 
these three technologies, such as the maximization of self-sufficiency, 
the minimization of electricity bills, or the maximal use of renewable 
electricity. The diverse motivations imply different strategies for using 
these technologies and different changes in electric consumption pat
terns. Also, the impact of co-adopting the three technologies could be 
different from a simple combination of adopting each technology indi
vidually (Qiu et al., 2022a). Thus, a full understanding of the behavior 
changes and the overall impact on the grid after co-adopting these 
technologies is urgently needed. 

This paper explores the impacts of these three technologies with 
evidence from Arizona. Arizona is one of the states that is deeply 
involved in the clean energy transition in the U.S. It has the seventh- 
highest number of registered electric vehicles in the U.S. at around 
40,740 as of 2022 (Department of Energy US, 2022), and it has the 
fifth-highest number of installed solar panels at around 5984 MW as of 
2022 (Solar Energy Industries Association, 2022). Unlike the above two 
technologies, still very few consumers installed home battery storage in 
Arizona. In this study, we provide the first empirical evidence of the 
overall and decomposed impacts of co-adopting these three residential 
green technologies (electric vehicles, solar PV, and battery storage) on 
electricity consumption patterns and their impact on the power grid. 
Based on the high-frequency smart meter data of three representative 
adopters in Phoenix, Arizona (who installed all the three technologies 
within a short period and share a similar level of electricity consumption 
with normal users) and using the difference-in-differences method in 
conjunction with matching, we estimate the net impact of the coad
option on electricity consumption patterns compared to consumers who 

did not adopt any of the three technologies. In addition, leveraging a 
machine learning algorithm, we explore potential behavior changes by 
estimating the short-run changes in electricity consumption patterns 
after installing each technology for each individual user, respectively. 

We provide two major contributions to the literature. First, this 
paper builds upon the empirical studies investigating the impact of 
adopting clean energy technologies, such as solar PV, electric vehicles, 
and heat pumps, on electricity consumption patterns (Qiu et al., 2019, 
2022a, 2022b; Liang et al., 2022; McKenna et al., 2018). These studies 
only estimate the impact of a single-technology adoption or a coad
option of two technologies (such as solar PV and battery storage) (Qiu 
et al., 2022a). Currently, few users install electric vehicles, solar PV, and 
battery storage at the same time. For instance, only 8 users installed all 
the three technologies in our sample of 13,279 users in Arizona. We 
provide a pilot empirical study investigating the impact of co-adopting 
these three residential clean technologies, which has leading implica
tions for the future large-scale deployment. Second, previous engineer
ing studies used simulation-based approaches to explore the impacts of 
single-technology adoption (Muratori, 2018; Harris and Webber, 2014) 
and multi-technology integration (Ding et al., 2010; Li et al., 2018) on 
the power grid. The simulation-based approaches have shortcomings 
relying on the pre-determined assumptions about consumer responses 
and technology-usage patterns (Muratori, 2018): (1) Assuming that 
technologies are used according to established patterns (e.g., charging 
electric vehicles only during the off-peak hours); (2) Assuming that all 
the consumers share a similar behavior pattern. Recent empirical studies 
(Qiu et al., 2022a, 2022b) have shown that the heterogeneous changes 
in consumption patterns of clean residential technologies differ from 
simulation-based predictions. Our study based on actual smart meter 
data does not rely on pre-determined assumptions and provides more 
accurate estimates. 

This paper is structured as follows. Section 2 describes methodo
logical approaches and data, and Section 3 shows estimated results. 
Section 4 concludes the paper with discussion and policy implications. 

2. Methods 

2.1. Data 

We obtained the high-frequency smart meter data from the Salt River 
Project, an electrical utility company serving the Phoenix metropolitan 
area. Our dataset includes electricity flows (hourly kWh delivered from 
and to the power grid) of 13,279 residential users from 1st May 2013 to 
30th April 2019. The dataset also records the solar PV adoption date, 
home battery storage adoption date, and date of starting the electrical 
vehicle in-home charging, electricity rate plan, and ZIP code for each 
individual user. Among the users of our dataset, 2220 users adopted the 
electric vehicle and started charging it during the time window of the 
dataset. Among these electric vehicle users, 8 users adopted residential 
battery storage and 333 users adopted solar PV in our observed period. 
11,059 users did not adopt any of the three technologies. To sum up, 8 
users installed all the three technologies in our dataset. Only 3 users 
adopted the three technologies within a short term (e.g., within one 
year). To support the analysis, we obtained the hourly temperature in 
the city of Phoenix from the website of the National Oceanic and At
mospheric Administration (2022). 

2.2. Difference-in-differences in conjunction with matching 

To estimate the overall impact of adopting electric vehicles, solar 
photovoltaics, and battery storage on electricity consumption patterns, 
we focus on three outcomes, namely hourly kWh delivered from the grid 
to consumers, hourly kWh sent back to the grid, and net load (which is 
the amount of hourly kWh delivered from the grid minus the amount 
sent to the grid). To address the selection bias and omitted variable bias, 
we utilize the difference-in-differences approach in conjunction with 

Table 1 
Summary of three consumers who installed the three technologies.   

Treated 
Consumer #1 

Treated 
Consumer #2 

Treated 
Consumer #3 

Solar PV adoption 
date 

2–10–2017 6–22–2018 9–6–2018 

Battery adoption 
date 

9–18–2018 6–22–2018 9–6–2018 

EV adoption date 9–1–2017 11–1–2018 4–1–2019 
Observed period 5–1–2013 to 4–30–2019 
Average hourly 

electricity 
consumption 
(kWh) from the 
grid 

2.12 1.42 1.12 

Standard deviation 
of hourly 
electricity 
consumption 
(kWh) from the 
grid 

2.07 1.45 1.24 

Electricity rate plan Plan 23 (before 
2–10–2017) Plan 
27 (since 
2–10–2017) 

Plan 23 (before 
6–22–2018) Plan 
27 (since 
6–22–2018) 

Plan 21 (before 
9–6–2018) Plan 
27 (since 
9–6–2018) 

Note: Rate plan 23 is SRP Basic Price Plan, which has a flat rate for all hours; 
plan 21 is SRP EZ-3 Super peak Time-of-Use Price Plan, and plan 27 is Customer 
Generation Price Plan. In plan 21, on-peak hours are 3- 6 p.m. Monday to Friday 
and the rest are off-peak hours. In plan 27, on-peak hours are 2- 8 p.m. in 
summer and 5–9 a.m. & 5–9 p.m. in winter, Monday to Friday, and the rest are 
off-peak hours. In both plans 21 and 27, the rate is higher during on-peak hours. 
In all three plans, rates are seasonally adjusted. Rates are higher in summer than 
in winter. Detailed descriptions of the rate plans can be found on SRP’s website: 
https://www.srpnet.com/menu/electricres/priceplans.aspx and Appendix A. 
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matching to estimate the impacts (Angrist and Pischke, 2008). Intui
tively, we compare changes in electricity flows in households before and 
after adopting the three technologies with those in households in the 
control group, which helps control both time-invariant and time-variant 
confounding factors. We use households who did not install these 
technologies but shared similar electricity demands as the control group. 
We aim to estimate the average treatment effect on treated (ATT) 
(Angrist and Pischke, 2008), and the treatment of interest in this study is 
adopting three technologies successively within a short term. The dates 
of adopting different technologies are different, so the treatment did not 
happen in a single day. To relieve the concern on the confounding fac
tors of time-variant behavior changes along with the adoption process of 
the three technologies, this study focuses on the sample of users who 
installed the three technologies within a relatively short term (e.g., 
within 1 year). In our dataset, 3 consumers installed the three 

technologies within a short term, who serve as the treated group in the 
difference-in-differences study design. See descriptive information of 
the three users in Table 1. The electricity consumption amounts of the 
three treated consumers are similar to normal consumers in the Phoenix 
metropolitan area. 

Then, we utilize the methods of Exact Matching and Coarsened Exact 
Matching (CEM) (Iacus et al., 2012) to find comparable users, who did 
not install any of the three technologies, as a control group. We first 
conduct the exact matching on the ZIP code and electricity rate plan in 
the pre-treatment period. After the exact matching, each treated user 
and their control users are located in the same ZIP code area and share 

Fig. 1. Trends of monthly electricity consumption one year prior to the adoption of three technologies between the treated users and their corresponding con
trol groups. 
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the same electricity rate plan in the pre-treatment period.1 We remove 
the control users who changed their rate plan in the time window of 
analysis from the sample, which means that the rate plan of control users 
is fixed in our sample. Second, we conduct CEM on two new generated 
covariates, namely average daily electricity consumption (delivered 
from the grid) and the standard deviation of daily electricity consump
tion, to find comparable treated and control users sharing similar elec
tricity consumption patterns. The CEM method coarsens the covariates 
into a number of bins and then finds exact matches based on the 
coarsened bins. In our analysis, we use a Stata-default CEM algorithm to 
conduct the CEM for each treated user, respectively. 104, 61, and 43 bins 
are automatically generated by Stata for matching. At last, 13, 5, and 3 
comparable control users are matched to each treated user. 

Fig. 1 plots the trends of monthly electricity consumption one year 
prior to the adoption of the three technologies between treated users and 
their corresponding control users. Points in the figure are the average 
daily electricity consumption within each month. Shaded areas in the 
figure show the standard deviation of the consumption of control groups 
each month. Treated and control users share similar monthly trends of 
electricity consumption in the pre-treatment period, which supports the 
key assumption of our difference-in-differences research design, namely 
the parallel trend assumption (Roth, 2019). We also formally test the 
parallel trend assumption by running a statistic regression (See the 
statistic test procedures and results in Appendix B). 

Then, we apply a two-way fixed effects model to obtain the 
difference-in-differences estimator by comparing the changes in out
comes of interest (e.g., kWh delivered from the grid and net load) of 
treated users before and after adopting the three green technologies with 
those of control users in the same period. The following regression is 
applied: 

Yit =
∑24

j=1
βjHj⋅Dit +

∑5

p=1
αpfp(TEMPt) +

∑
πk + μt + ρt + σt + τt + εit (1)  

where Yit is the outcome variable for consumer i at time t. We examined 
two outcomes in this difference-in-differences model, namely hourly 
electricity consumption (kWh) delivered from the grid and hourly net 
load (kWh), respectively; Hj are 24 hour-of-day indicators; Dit is the 
treatment variable, which takes value one for treated users after 
installing the three technologies and takes value zero before the adop
tion of the first technology; We use a spline function fp to represent the 
heterogeneous responses of electricity consumption to temperature 
(Anderson, 2014; Shen et al., 2021) and four knots are identified to 
divide the temperature into five bins; TEMPt is the hourly temperature in 
the city of Phoenix; πk are a series of dummy variables indicating na
tional holidays in the U.S.; μt is the season-by-hour-of-day fixed effects, 
which help control for common intraday electricity consumption pat
terns by the three different seasons (summer, summer peak, and winter) 
defined by the SRP utility.2 ρt , σt , τt are year fixed effects, 
month-of-year fixed effects, and day-of-week fixed effects. εit is the error 
term. Standard errors are clustered at the individual consumer level. 
Observations between dates of installations of different technologies are 
removed from our sample so that we can estimate the net impact of 
adopting all three technologies relative to consumers who did not install 
any of the technologies. The pre-treatment period in the sample of our 
analysis is one year prior to the adoption date of the first technology and 
the post-treatment period is from the adoption date of the last technol
ogy to April 30th, 2019. Interpreting the coefficient of βj in our model 
should be cautious, since all the three treated users changed their 

electricity rate plan to “E27 customer generation price plan” after they 
installed the solar PV and stayed with the E27 plan until the end of our 
analysis time window. Thus, our estimated impact is caused by a com
bination of co-adopting technologies and changing rate plans. Detailed 
interpretation of results is discussed in Section 3. 

We also examined the impact of the coadoption on hourly electricity 
(kWh) sent back to the grid. Since there is no electricity sent to the grid 
without the adoption of these three technologies, the treatment effect is 
simply the observed amount of electricity sent back to the grid after the 
coadoption. We report the average and standard deviation of hourly 
kWh sent to the grid in Section 3.1. 

2.3. Counterfactuals prediction based on a machine learning algorithm 

To understand and decompose the overall impact of co-adopting the 
three technologies, we explore the short-run changes in electricity 
consumption patterns (hourly kWh delivered from and to the grid) after 
adopting each technology for each treated consumer, respectively. 

It is relatively easier to find comparable control users for estimating 
the overall impact of three technologies since the control users are 
among the most common group who did not adopt any of the three 
technologies. It is harder to find comparable control consumers for every 
stage of technology adoption and for every treated consumer if we apply 
the same difference-in-differences study design to estimate the impact of 
each technology. For example, if we aim to estimate the impact of 
adopting an electrical vehicle on consumer #1′s electricity consumption 
pattern, we need to find comparable control users who have installed 
solar PV and share the same electricity rate plan and similar electricity 
consumption pattern. Thus, in this section of analysis, we apply a ma
chine learning algorithm, namely the Random Forest algorithm (Brei
man, 2001; Meinshausen and Ridgeway, 2006), to construct the 
counterfactuals of electricity flows (kWh delivered from and to the grid) 
if the treated users had not installed a green technology only based on 
the long time-series data of treated users prior to adopting the tech
nology. The flexible machine learning model can better fit the complex 
and non-linear relationship between residential electricity consumption 
and other factors, such as temperature, season, time of day, and many 
others (Jarvis et al., 2022; Burlig et al., 2020). Thus, the machine 
learning model shows more advantages in constructing counterfactuals 
compared to traditional linear regression models. The machine learning 
methods have been applied by many studies to generate counterfactuals 
(Varian, 2014, 2016; Athey et al., 2021; Carvalho et al., 2018) and 
evaluate the performance of energy efficiency programs (Burlig et al., 
2020; Souza, 2020; O’Neill and Weeks, 2018). 

For each technology adoption by each user, we use the time-series 
data of the individual user from one year before the adoption to one 
month after the adoption for analysis.3 Training data, the time-series 
data before the adoption, is used for training the Random Forest algo
rithm. Testing data, one month after the adoption, is used for predicting 
the counterfactuals with the trained machine learning model. Since the 
training data does not include any information about adopting the 
technology, our approach can estimate the electricity flows under a 
scenario where the consumer did not install the technology. The dif
ference between actual flows and predicted counterfactuals is the 
treatment effect of adopting the technology. We only predict the coun
terfactuals in the short term (within a month) to relieve the influence of 
time-variant confounding factors. For example, the users may also 
install other energy-efficient appliances after adopting the technology of 
our interest and may change their electricity consumption patterns. 
Focusing on a small time window (such as one month) can reduce the 
possibility of the above confounding factor. 

1 All the three treated users switched their electrical rate plan to rate plan 27 
“Customer Generation Price Plan” after they installed the solar PV.  

2 In SRP rate plan, three seasons are defined. Summer season is defined as 
May, June, September and October. Summer peak is July and August. Winter is 
from November to April. 

3 When we estimate the impact of adopting EV on electricity sent back to grid 
of the three treated consumers, the pre-treatment time-series data of hourly 
kWh sent to grid are less than one year. 
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The input variables in the Random Forest model include hourly 
temperature, day-of-month fixed effects, month-of-year fixed effects, 
year fixed effects, day-of-week fixed effects, hour-of-day fixed effects, 
national holidays fixed effects, electricity rate plan fixed effects, and 
three dummies indicating the adoption status of the three technologies. 
We check the performance (or, prediction accuracy) of the machine 
learning models by calculating the out-of-sample cross-validated R- 
square and Mean Absolute Error (MAE) (Jarvis et al., 2022). The 
calculated R-squares range from 0.629 to 0.889 and the MAE is from 
0.100 to 0.958 kWh (See the detailed performance of each model in 
Appendix C). Although the model performs well, we apply the following 
difference-in-differences-style estimator (Burlig et al., 2020) to take into 
account the prediction error: 

β̂h = E
(
Yi,h,post − Ŷ i,h,post

)
− E

(
Yi,h,pre − Ŷ i,h,pre

)
(2)  

where β̂h is the estimator of electricity flow change (changes in hourly 
kWh delivered from and to the grid) at hour-of-day h after the adoption 
of technology. Yi,h,post is the actual electricity flow of consumer i at hour h 
after adopting the technology, and Ŷ i,h,post is the predicted counterfac
tuals of electricity flow at hour h after adopting the technology. Yi,h,pre is 
the actual value at hour h before adopting the technology in the training 
data and Ŷ i,h,pre is the predicted value within the sample of training data. 
The first difference in Eq. (2) is an estimate of the treatment effect of 
adopting technology and the second difference is the model prediction 
error. Thus, by minus the prediction error in the training data, this 

difference-in-differences-style estimator can ameliorate the concern for 
the accuracy of counterfactuals prediction. 

When we estimate the impact of adopting solar PV on consumer #1′s 
electricity sent to grid and the impact of adopting solar PV and battery 
on consumers #2 and #3′s electricity sent to grid, treatment effects are 
simply the observed amounts of kWh sent to grid one month after the 
technology adoption. We report these values directly without using the 
machine learning approach in these circumstances in Section 3.2. 

This study has the limitation of the small sample size. Few consumers 
adopted the three technologies at the same time and our study is based 
on a sample of three representative early adopters. Interpreting the 
broader implications of our results should be cautious given that future 
consumers who adopt these technologies on a large scale may have 
different characteristics from the first adopters. Nevertheless, this paper 
provides a pilot study with empirical evidence of consumers’ behavior 
changes after co-adopting the three technologies. 

2.4. Calculations of private and environmental benefits 

The coadoption could not only change electricity consumption but 
also changed consumers’ private benefits (electricity bill savings and 
vehicle fuel cost savings) and environmental benefits (avoided pollution 
from dirty electricity generation sources and driving gasoline vehicles). 
Based on our estimations of electricity consumption changes, we 
conduct a back-of-envelope calculation on these benefits. See method
ology details in Appendix E and we discuss the results in the discussion 

Fig. 2. The overall impact of co-adopting electric vehicles, solar photovoltaics, and battery storage on hourly electricity flows (kWh delivered from the power grid, to 
the grid, and net load). Note: circles are point estimators, error bars in subplot (a) and (c) are 95% confidence intervals, and error bars in subplot (b) are stan
dard deviation. 
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Fig. 3. The impact on treated consumer #1′s electricity consumption patterns after adopting each technology. (Note: yellow columns are point estimators, error bars 
in subplots (a)(b)(c)(e)(f) are 95% confidence intervals, and error bars in subplot (d) are standard deviations.). 

Fig. 4. The impact on treated consumer #2′s electricity consumption patterns after adopting each technology. (Note: yellow columns are point estimators, error bars 
in subplots (a)(b)(d) are 95% confidence intervals, and error bars in subplot (c) are standard deviations.). 
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section. 

3. Results 

3.1. The overall impact of co-adopting electric vehicles, solar 
photovoltaics, and battery storage 

We first check the impact of co-adopting the three technologies on 
average hourly electricity flows using the difference-in-differences 
method in conjunction with matching. In our final sample of analysis, 
we include 3 representative early adopters accompanied by 21 compa
rable control users. The time-series smart meter data in our analysis 
include 274,457 observed hours of electric input and output. We 
examined three outcomes of interest, kWh delivered from the grid, kWh 
delivered to the grid, and net load, respectively. The estimated change in 
average hourly kWh delivered from the grid is 0.0005 (with the standard 
error of 0.28) and the estimated change in average hourly net load is 
-0.68 kWh (with the standard error of 0.31; see detailed estimation re
sults in Appendix D). After installing the three technologies, the average 
hourly kWh delivered from the consumers to the grid is 0.68 (with the 
standard deviation of 1.2). It means that the co-adoption of the three 
technologies did not change the consumers’ average hourly electricity 
consumption (or, daily electricity consumption) delivered from the 
power grid but consumers sent excess electricity back to the grid. Thus, 
the impact of the coadoption on net load is negative. 

Second, we check the change in electricity consumption patterns by 
estimating the impact by 24 h of the day. Fig. 2 shows the estimated 

results by the three different outcomes (See detailed estimates in 
Appendix D). Subplot (a) shows the impact on electricity consumption 
delivered from the grid. We find that the treated users reduced their 
hourly electricity consumption from the grid significantly by about 1 
kWh from 6AM to 9PM, and increased their hourly electricity con
sumption significantly by about 2.5 kWh from 10PM to 1AM. The pos
itive impact (increased electricity consumption compared to periods 
before the technology adoption) decayed to 0 from 2AM to 5AM. The 
reduced consumption could be due to the generation from solar PV and 
the discharge from battery storage. In the hours without sunlight (e.g., 
8PM to 9PM), the reduced consumption could be only due to the 
discharge of the battery. The significantly increased consumption in the 
middle of the night (10PM to 1AM) could be due to the charging of 
battery storage and electric vehicles. Subplot (b) shows the hourly 
electricity sent back to the grid. We find that the treated consumers sent 
excess electricity to the grid from 10AM to 5PM when the solar PV can 
generate electricity with sunlight. The electricity send to grid could also 
be due to the discharge of battery. Subplot (c) shows the overall impact 
on consumers’ net load, which is consistent with the results in subplots 
(a) and (b). The consumers increased their net load significantly at late 
night and reduced net load during the day and early evening. 

The decreased net load can save consumers’ energy bills. In addition, 
after installing the solar PV, all the three treated users switched their 
rate plan to E27 consumer generation price plan, which charged elec
tricity consumption based on time of use. Under the E27 rate plan, on- 
peak hours are from 2PM to 8 PM in summer and from 5AM to 9AM 
and from 5PM to 9PM in winter. According to our estimated result, the 

Fig. 5. The impact on treated consumer #3′s electricity consumption patterns after adopting each technology. (Note: yellow columns are point estimators, error bars 
in subplots (a)(b)(d) are 95% confidence intervals, and error bars in subplot (c) are standard deviations.). 
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reduced consumption happened during the on-peak hours (with a higher 
rate) and the increased consumption happened during the off-peak 
hours (with a lower rate), which could further reduce the users’ elec
tricity bills (See detailed calculation of private benefits in Section 4). 

To sum up, after the installation of electric vehicles, solar photo
voltaics, and battery storage, the three residential consumers did not 
change their overall daily electricity consumption from the grid but 
switched their intraday consumption patterns and sent excess electricity 
back to the grid. That is, with the help of the three technologies, they 
reduced their net load during the day and early evening (including peak 
hours with higher electricity prices) and increased their net load during 
the late evening (off-peak hours with lower electricity prices), which 
help save energy bills, reduce grid load variability, and meet their travel 
needs via electric vehicles. 

Peak demand is the highest electric power demand during a specific 
time, which determines the maximum generation capacity of power 
plants in order to meet the electricity consumption needs of all time 
periods. Shaving peak demand helps save utilities and consumers’ 
money by lowering wholesale electricity prices and subsequent retail 
electricity prices as well as deferring construction of new power plants 
and power delivery systems that are reserved for use during peak times 
(US DOE, 2022). According to our results, the coadoption of these three 
technologies, that help shave peak demand and increase off-peak de
mand, is consistent with the long-term strategy of demand management 
of electric utilities. 

3.2. Electricity consumption pattern changes after adopting each 
technology 

To further understand the decomposed impacts of co-adopting the 
three technologies, we explore the changes in electricity flows (deliv
ered from and to the grid) after each technology adoption for each in
dividual treated user, respectively. Using the machine learning approach 
(Random forest algorithm), we generate the counterfactuals of elec
tricity flows and then estimate the impact of coadoption on electricity 

consumption patterns within one month after the installation of each 
technology. As for the impact of adopting solar PV on consumer #1 and 
the impacts of adopting solar PV and battery on consumers #2 and #3, 
we directly report the average and standard deviation of hourly kWh 
sent back to the grid within the first month. 

Fig. 3 shows the estimated changes in electricity consumption 
pattern of the treated consumer #1, who installed the solar PV, the 
electric vehicle, and the battery storage, successively. After installing the 
solar PV, the consumer decreased electricity consumption from the grid 
significantly and sent excess electricity back to the grid in the daytime 
because of the generation from solar PV. After installing the electric 
vehicle, electricity consumption from the grid was increased at night 
(from 9PM to 6AM), which could be due to charging the vehicle, and was 
decreased in the daytime, which could be due to the consumer traveling 
more within the first month after adopting the new electric vehicle. The 
increased electricity exported to the grid in the daytime could be due to 
the decreased electricity demand caused by the absence of a homeowner 
who left her/his home by car. After installing the battery storage, the 
electricity consumption from the grid increased at night and decreased 
during the day and early evening, which could be due to that charging at 
off-peak hours and discharging at peak hours can save energy bills, 
especially during the summer. In winter, the E-27 tariff gap between off- 
peak and peak prices is small, so there is little room for arbitrage profits 
given the energy loss during battery charging and discharging. Subplot 
(f) shows that the consumer may send electricity back to the grid 
through discharging the battery in the daytime (including the peak 
hours with high electricity rates). 

Fig. 4 shows estimated impacts on the treated consumer #2, who 
installed solar PV and battery together at first and then adopted electric 
vehicle later. After adopting the PV and battery, consumer #2 increased 
electricity consumption from the grid significantly at night from 8PM to 
12AM because of charging battery storage. During the daytime, elec
tricity consumption from the grid decreased and exported electricity 
increased because of the generation of solar PV and discharging from the 
home battery. After installing the electric vehicle, a similar pattern 

Fig. A1. Pre-treatment parallel trend test. Note: Circles are point estimators and error bars are 95% confidence intervals.  
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change is noted. The significant increase in electricity consumption from 
the grid at night (from 9PM to 12AM) indicates that the consumer may 
charge their electric vehicle at that time. The decrease in electricity 
consumption from the grid and the increase in exported electricity in the 
daytime may imply that the consumer travel more during the day. 

Fig. 5 shows estimated impacts on treated consumer #3, who also 
installed solar PV and battery together at first and then adopted the 
electric vehicle later. We find consumer #3 had a similar pattern change 
as consumer #2 after installing the solar PV and battery. However, we 
fail to identify a distinct change in consumer #3′s electricity consump
tion from the grid after adopting the electric vehicle. It could be due to 
that consumer 3 did not charge their EV at home (e.g., only at public 
charging stations) within the first month after they bought it. The 
increased exported electricity to the grid during the daytime could be 
due to more travel and less electricity consumption demand at home. 
This finding also indicates that consumers may not behave as predicted 
due to the heterogeneity of consumers and demonstrates the importance 
of the empirical study. 

To sum up, these identified electricity consumption pattern changes 
after each individual technology adoption are consistent with our esti
mated overall impact of co-adopting the three technologies. 

4. Discussion and conclusion 

Electric vehicles, solar photovoltaics, and battery storage play an 
important role in electrification, clean power grid, and deep decarbon
ization. As the penetration rate of these three technologies keeps 
increasing, understanding their impact on the power grid and consumer 
behavior changes becomes more important. Particularly, the impact of 
co-adopting the three technologies can be different from a simple 

Table A1 
Model performance.  

Panel A: Outcome: kWh delivered from the grid   
Adoption Stages   
Adopting 
PV 

Adopting 
EV 

Adopting 
Battery 

Adopting 
PV & 
Battery 

Consumer 
#1 

Out-of- 
sample 
CV MAE 

0.415 0.549 0.958  

Out-of- 
sample 
CV R2 

0.667 0.842 0.629  

Consumer 
#2 

Out-of- 
sample 
CV MAE  

0.275  0.277 

Out-of- 
sample 
CV R2  

0.834  0.855 

Consumer 
#3 

Out-of- 
sample 
CV MAE  

0.363  0.370 

Out-of- 
sample 
CV R2  

0.749  0.675 

Panel B: Outcome: kWh delivered to the grid   
Adoption Stages   
Adopting 
PV 

Adopting 
EV 

Adopting 
Battery 

Adopting 
PV & 
Battery 

Consumer 
#1 

Out-of- 
sample 
CV MAE  

0.121 0.100  

Out-of- 
sample 
CV R2  

0.806 0.769  

Consumer 
#2 

Out-of- 
sample 
CV MAE  

0.138   

Out-of- 
sample 
CV R2  

0.889   

Consumer 
#3 

Out-of- 
sample 
CV MAE  

0.177   

Out-of- 
sample 
CV R2  

0.866   

Note: For each individual user, we use observations before the adoption of each 
technology as training data to train our machine learning model using the 
Random Forest algorithm. To validate our model, we check the model perfor
mance by calculating the out-of-sample cross-validated mean of absolute error 
(MAE) and R square. The training data is divided into 10 folds when imple
menting the cross-validation. 

Table A2 
Estimates of difference-in-differences.   

Model (1) Model (2) Model (3) Model (4)  
Outcome: kWh delivered from grid Outcome: net load 

D 0.0005  -0.6844**   
(0.287)  (0.3138)  

D_hour1  2.011  2.003   
(1.347)  (1.342) 

D_hour2  1.431  1.424   
(1.065)  (1.060) 

D_hour3  0.892  0.885   
(0.765)  (0.760) 

D_hour4  0.475  0.467   
(0.533)  (0.528) 

D_hour5  0.156  0.149   
(0.408)  (0.403) 

D_hour6  -0.818***  -0.831***   
(0.0775)  (0.0731) 

D_hour7  -0.935***  -0.949***   
(0.0730)  (0.0698) 

D_hour8  -1.068***  -1.115***   
(0.112)  (0.119) 

D_hour9  -1.119***  -1.420***   
(0.143)  (0.218) 

D_hour10  0.0113  -0.982***   
(0.0919)  (0.108) 

D_hour11  -0.328  -2.157***   
(0.278)  (0.330) 

D_hour12  -0.727***  -3.222***   
(0.0538)  (0.0631) 

D_hour13  -0.766***  -3.460***   
(0.0856)  (0.0701) 

D_hour14  -0.760***  -3.411***   
(0.102)  (0.0825) 

D_hour15  -0.777***  -3.069***   
(0.142)  (0.0817) 

D_hour16  -0.747***  -2.495***   
(0.114)  (0.164) 

D_hour17  -0.733***  -1.665***   
(0.0939)  (0.258) 

D_hour18  -1.066***  -1.341***   
(0.235)  (0.184) 

D_hour19  -1.058***  -1.103***   
(0.203)  (0.205) 

D_hour20  -1.107***  -1.124***   
(0.159)  (0.164) 

D_hour21  -0.627**  -0.644**   
(0.237)  (0.235) 

D_hour22  2.122***  2.113***   
(0.487)  (0.486) 

D_hour23  3.382**  3.374**   
(1.475)  (1.471) 

D_hour24  2.161  2.153   
(1.333)  (1.328) 

Adjusted R-squre 0.26 0.29 0.25 0.32 
Observations 274,457 274,457 274,457 274,457 

Note: *** p<0.01, ** p<0.05, * p<0.1. Robust standard errors are in parentheses 
and clustered at the individual consumer level. Control variables include spline 
function of hourly temperature, year fixed effects, month-of-year fixed effects, 
season-by-hour-of-day fixed effects, day-of-week fixed effects, and national 
holiday fixed effects. 
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combination of adopting three different technologies independently. 
This study provides the first empirical evidence of the impact of co- 
adopting these three technologies on residential electricity consump
tion patterns in Arizona. While there was no significant change in 
average hourly (or daily) electricity consumption delivered from the 
grid after installing the three technologies, we find that consumers 
changed their intraday consumption patterns by reducing consumption 
from the grid during the day and early evening, increasing consumption 
from the grid at late night, and exporting excess electricity back to the 
grid during the day (see detailed changes in Fig. 2). The average hourly 
net load of the three treated consumers decreased by 0.68 kWh after 
installing the three technologies. Our decomposition analysis suggests 
four behavior patterns: (1) Users applied the solar PV to generate elec
tricity during the day, which reduced consumption from the grid; (2) 
Users charged residential batteries in the late night and early morning 
(off-peak period with lower electricity prices) and discharged during the 
day and early night (including an on-peak period with higher electricity 
prices); (3) Users charged electric vehicles in the late night and early 
morning; (4) Users sent excess electricity back to the grid during the day 
through solar generation and discharging home battery. 

The average electricity consumptions of the early adopters in our 
sample are similar to average consumers in Arizona (see Table 1). Thus, 
our selected sample could be representative. Although this paper is 
limited by the small sample size, we still provide implications about the 
general consumption pattern changes for the broader population. One 
caveat is that our findings apply for the specific case of Arizona and 
similar climates, and that the coadoption may have different impacts in 
zones with different consumption peak times. 

This paper provides several implications for utilities, policymakers, 
and environmental communities. First, consumers, who co-adopt elec
tric vehicles, solar photovoltaics, and battery storage, tend to reduce 
their electricity consumption from the power grid during peak hours and 
increase their consumption during off-peak hours. This consumption 
pattern change helps reduce peak energy demand and adds off-peak 
demand contributing to a more reliable and affordable electric grid. 
Our findings provide new documented benefits of co-adopting the three 
technologies. Policymakers should provide more incentives, such as 
rebates, low-interest loans, tax credits, and alternative business models, 
to encourage adopting them. Second, our analysis indicates that coad
option brings significant private and environmental benefits through 
changing intraday electricity consumption patterns and avoiding 
driving gasoline vehicles. The calculated annual private benefits asso
ciated with the coadoption are $2646 per household and the associated 
annual environmental benefits range from $340 to $664 per household. 
(See the detailed estimation of benefits in Appendix E). Policymakers 
can initiate information programs about the benefits to encourage co- 
adopting the three technologies. Third, although we find net positive 
environmental benefits after adopting these technologies, increased 
electricity consumption at night when the marginal damage of elec
tricity generation is higher leads to environmental damage. Policy
makers should apply more approaches to fully decarbonize the power 
grid as we move further up the level of electrification. For instance, we 
should phase out coal power plants in the U.S. as soon as possible to 
reduce reliance on coal to satisfy marginal electricity use (Holland et al., 
2022). Fourth, in addition to providing subsidies and information to 
encourage co-adopting these three technologies, utilities and policy
makers can also encourage more consumers to apply the time-of-use rate 
plan, which provides additional incentives for the coadoption. 

This study has limitations. Few consumers adopted the three tech
nologies at the same time and our study is based on a sample of three 
representative early adopters. Interpreting the broader implications of 

our results should be cautious given that future consumers who adopt 
these technologies on a large scale may have different characteristics 
from the first adopters. Nevertheless, this paper provides a pilot study 
with empirical evidence of consumers’ behavior changes after co- 
adopting the three technologies. 

The electricity consumption patterns after adopting these technolo
gies are determined by consumers’ motivations and use strategies (such 
as self-sufficiency and minimizing electricity bills). It helps understand 
consumers’ motivations by comparing the calculations of simulation- 
based optimization with our empirical estimates. However, since we 
cannot observe the installed size of solar PV and home battery, we 
cannot infer the optimal electricity consumption pattern. Although this 
analysis is beyond the scope of our paper, it could be an important 
extension in future studies. 

Future empirical studies can keep investigating the impact of co- 
adopting clean technologies on consumer behaviors with an increasing 
number of consumers adopting them. With the data of solar generation, 
future studies can estimate the impact of coadoption on consumers’ 
energy consumption and identify whether there is a rebound effect after 
the coadoption. In addition to quantitative studies, more qualitative or 
interview-based analyses can be conducted to actually ask the users 
what they are doing with the three technologies. With more data of 
consumers’ attributes at the individual level, future studies can also 
explore the linkage between heterogeneous behavior changes after the 
technology adoption and the heterogeneous consumer attributes (e.g., 
income, political leanings, marginalized groups). 

Data statement 

The high-frequency smart meter data were obtained from the Salt 
River Project. The data are proprietary and are not publicly available 
under a non-disclosure agreement with Salt River Project. The hourly 
temperature data in the city of Phoenix were obtained from the website 
of the National Oceanic and Atmospheric Administration (https://www. 
ncdc.noaa.gov/cdo-web/). 

CRediT authorship contribution statement 

Xingchi Shen: Conceptualization, Data curation, Formal analysis, 
Validation, Visualization, Writing – original draft, Writing – review & 
editing. Yueming Lucy Qiu: Conceptualization, Funding acquisition, 
Supervision, Validation, Writing – review & editing. Xing Bo: Valida
tion, Writing – review & editing. Anand Patwardhan: Supervision, 
Validation, Writing – review & editing. Nathan Hultman: Supervision, 
Validation, Writing – review & editing. Bing Dong: Validation, Writing 
– review & editing. 

Declaration of Competing Interest 

The authors declare that they have no conflict of interest. 

Data availability 

The data that has been used is confidential. 

Acknowledgement 

Funding for this research was provided by National Science Foun
dation award # 2125775. The authors declare that they have no conflict 
of interest.  

Appendix A. Residential electricity rate plans of the SRP utility 
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Plan 
number 

Plan name Season On peak hour marginal 
rate ($/kWh) 

Off peak hour marginal 
rate ($/kWh) 

Notes: 

E-21 Super peak Time-of- 
Use 

Summer 0.2924 0.0858 On-peak hours are 3- 6 p.m. Monday to Friday and the rest are off- 
peak hours Summer 

peak 
0.3473 0.0882 

Winter 0.1110 0.0785 
E-27 Customer generation 

price plan 
Summer 0.0491 0.0389 On-peak hours are 2- 8 p.m. in summer and 5–9 a.m. & 5–9 p.m. in 

winter, Monday to Friday. The rest are off-peak hours. Summer 
peak 

0.0651 0.0441 

Winter 0.0457 0.0417 
Plan 

number 
Plan name Season Flat rate ($/kWh) 

(0–2000 kWh) 
Flat rate ($/kWh) 
(2001þ kWh)  

E-23 Standard price plan Summer 0.1120 0.1163  
Summer 
peak 

0.1186 0.1299  

Winter 0.0829 0.0829  

Note: Summer is defined as May, June, September, and October. Summer Peak is defined as July and August. Winter is defined as the November through April billing 
cycles. We only report the rate plans applied by the sampled users in this study. See other rate plans on the website of SRP utility company: https://www.srpnet.com/ 
menu/electricres/priceplans.aspx. 

Appendix B. Pre-treatment parallel trend test 

To formally test the pre-treatment parallel trend assumption, we group all the matched users, restrict the dataset to the pre-treatment period only, 
and regress average daily consumption within each month on the interaction terms between a treatment group dummy variable and the indicators of 
12 months prior to the treatment controlling for individual user fixed effects, year fixed effects, and month of year fixed effects (following Mueh
lenbachs et al. (2015)’s approach). Regression results show that all the estimated coefficients are close to zero and not significant statistically (See the 
figure below), which indicates that there are no differential trends between the treated and control groups prior to the treatment. Fig. A.1. 

Appendix C. Model performance of machine learning 

Table A1 

Appendix D. Estimates of electricity consumption change after installing the three technologies 

Table A2 

Appendix E. Private and environmental benefits 

The coadoption of the three technologies and the electricity consumption pattern change may bring changes in private benefits and environmental 
benefits. In this section, we conduct a back-of-envelope analysis of the benefits. 

We first calculate the private benefits (energy bill savings), which include electricity bill savings and vehicle fuel cost savings. We assume that 
consumers’ rate plan is fixed to E27 (customer generation price plan) before and after installing the three technologies4 and the resulting estimated 
annual electricity bill savings caused by the electricity consumption pattern change is $286 per household. We estimate the vehicle fuel cost savings as 
equal to the gasoline costs of a typical gasoline car in the U.S.5 so the annual vehicle fuel cost savings are $2360. Thus, the total annual private benefits 
caused by co-adopting these three technologies are $2646 per household. 

The environmental impacts include the avoided environmental damage of electricity generation and the avoided environmental damage of driving 
a gasoline vehicle. Electricity generation emits air pollutants, such as CO2, SO2, NOX, and PM2.5. To account for the benefits of avoided CO2 emissions 
by electricity generation, we obtained the value of marginal CO2 emissions by hour of the day in the West Electric Power Interconnections from 
(Holland et al., 2022) and multiply it by the value of Social Cost of Carbon (SSC) to get the value of hourly marginal damage to the environment per 
kWh of electricity generated. Based on the standard approach from the U.S. Environmental Protection Agency (EPA, 2021), the SSC in 2020 ranges 
from $14 to $152 per metric ton of CO2 depending on different discount rates. We then obtain the values of local marginal damage of SO2, NOX, and 
PM2.5 emissions by hour of the day in the Western Electricity Coordinating Council region from (Holland et al., 2016). By multiplying the changed 
hourly net load (kWh) with the hourly marginal damage, we get the avoided environmental damage. The annual avoided environmental damage 
caused by electricity consumption pattern change ranges from $47 to $371 per household. Avoiding driving a gasoline vehicle can bring environ
mental benefits by avoiding air pollutant emissions. According to Holland et al. (2019), the environmental damage (without carbon emissions) from 
driving gasoline cars in Phoenix is 1.93 cents/mile, while the cost of carbon emission is 0.24 cents/mile from driving gasoline cars based on estimates 

4 In our sample of the three treated consumers, two consumers changed their rate plan from E23 to E27 and one consumer changed their plan from E21 to E27 after 
installing the solar PV. For simplicity, here we assume the consumers’ rate plan is fixed to E27 and calculate their energy bill savings caused by the electricity 
consumption pattern change. We multiply the changed hourly net load with hourly electricity prices by different seasons (summer, summer peak, and winter) to 
obtain hourly savings, and then add them up to annual savings.  

5 According to U.S. Department of Transportation’s Federal Highway Administration (2018), people in the U.S. drive 13,500 miles a year on average. A typical 
gasoline vehicle in the U.S., Ford F-150, gets 24 miles per gallon of gas. That means the average gasoline consumption of a typical vehicle is 562 gallons. According to 
EIA (2022), the average retail gasoline price on April 2022 is $4.2 per gallon. Thus, the annual cost of gasoline consumption by a typical vehicle in the U.S. is $2360. 
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from (Parry et al., 2007). The avoided annual environmental damage of a typical gasoline vehicle6 is $293. Thus, the total annual avoided envi
ronmental damage ranges from $340 to $664 per household. 

Although these three technologies bring private and environmental benefits, co-adopting these technologies incurs costs. Consumers need to spend 
money to install the solar PV and the home battery and spend extra money to purchase an electric vehicle which is usually more expensive than a 
traditional gasoline vehicle. Detailed estimations on the co-adoption costs are beyond the scope of this paper, but the payback period after investing in 
these three technologies can be a key parameter that determines whether consumers are willing to install them. 

References 

Anderson, M.L., 2014. Subways, strikes, and slowdowns: the impacts of public transit on 
traffic congestion. Am. Econ. Rev. 104 (9), 2763–2796. 

Angrist, J.D., Pischke, J.S., 2008. Mostly Harmless Econometrics. Princeton university 
press. 

Athey, S., Bayati, M., Doudchenko, N., Imbens, G., Khosravi, K., 2021. Matrix completion 
methods for causal panel data models. J. Am. Stat. Assoc. 116 (536), 1716–1730. 

Breiman, L., 2001. Random forests. Mach. Learn. 45 (1), 5–32. 
Burlig, F., Knittel, C., Rapson, D., Reguant, M., Wolfram, C., 2020. Machine learning from 

schools about energy efficiency. J. Assoc. Environ. Resour. Econ. 7 (6), 1181–1217. 
Carvalho, C., Masini, R., Medeiros, M.C., 2018. Arco: an artificial counterfactual 

approach for high-dimensional panel time-series data. J. Econom. 207 (2), 352–380. 
Ding, F., Li, P., Huang, B., Gao, F., Ding, C., Wang, C., 2010. Modeling and simulation of 

grid-connected hybrid photovoltaic/battery distributed generation system. In: 
CICED 2010 Proceedings. IEEE, pp. 1–10. 

Gomes, I.S.F., Perez, Y., Suomalainen, E., 2020. Coupling small batteries and PV 
generation: a review. Renew. Sustain. Energy Rev. 126, 109835. 

Harris, C.B., Webber, M.E., 2014. An empirically-validated methodology to simulate 
electricity demand for electric vehicle charging. Appl. Energy 126, 172–181. 

Holland, S.P., Mansur, E.T., Muller, N.Z., Yates, A.J., 2016. Are there environmental 
benefits from driving electric vehicles? The importance of local factors. Am. Econ. 
Rev. 106 (12), 3700–3729. 

Holland, S.P., Mansur, E.T., Muller, N.Z., Yates, A.J., 2019. Distributional effects of air 
pollution from electric vehicle adoption. J. Assoc. Environ. Resour. Econ. 6 (S1), 
S65–S94. 

Holland, S.P., Kotchen, M.J., Mansur, E.T., Yates, A.J., 2022. Why marginal CO2 
emissions are not decreasing for US electricity: estimates and implications for 
climate policy. Proc. Natl Acad. Sci. 119 (8), e2116632119. 

Iacus, S.M., King, G., Porro, G., 2012. Causal inference without balance checking: 
coarsened exact matching. Polit. Anal. 20 (1), 1–24. 

International Energy Agency (IEA), 2022. Global EV Outlook 2022. IEA, Paris. htt 
ps://www.iea.org/reports/global-ev-outlook-2022.  

International Energy Agency (IEA), 2020. Renewables 2020. IEA, Paris. https://www.iea 
.org/reports/renewables-2020.  

Jargstorf, J., De Jonghe, C., Belmans, R., 2015. Assessing the reflectivity of residential 
grid tariffs for a user reaction through photovoltaics and battery storage. Sustain. 
Energy Grids Netw., 1, 85–98. 

Jarvis, S., Deschenes, O., Jha, A., 2022. The private and external costs of Germany’s 
nuclear phase-out (No. w26598). J. Eur. Econ. Assoc. jvac007. https://doi.org/ 
10.1093/jeea/jvac007. 

Li, Y., Gao, W., Ruan, Y., 2018. Performance investigation of grid-connected residential 
PV-battery system focusing on enhancing self-consumption and peak shaving in 
Kyushu, Japan. Renew. Energy 127, 514–523. 

Liang, J., Qiu, Y.L., Xing, B., 2022. Impacts of electric-driven heat pumps on residential 
electricity consumption: an empirical analysis from Arizona, USA. Clean. Respons. 
Consump. 4, 100045. 

McKenna, E., Pless, J., Darby, S.J., 2018. Solar photovoltaic self-consumption in the UK 
residential sector: new estimates from a smart grid demonstration project. Energy 
Policy 118, 482–491. 

Meinshausen, N., Ridgeway, G., 2006. Quantile regression forests. J. Mach. Learn. Res. 7 
(6). 

Muehlenbachs, L., Spiller, E., Timmins, C., 2015. The housing market impacts of shale 
gas development. Am. Econ. Rev. 105 (12), 3633–3659. 

Muratori, M., 2018. Impact of uncoordinated plug-in electric vehicle charging on 
residential power demand. Nat. Energy 3 (3), 193–201. 

National Oceanic and Atmospheric Administration (NOAA), 2022. Climate Data Online. 
https://www.ncdc.noaa.gov/cdo-web/. 

Nyholm, E., Goop, J., Odenberger, M., Johnsson, F., 2016. Solar photovoltaic-battery 
systems in Swedish households–Self-consumption and self-sufficiency. Appl. Energy 
183, 148–159. 

O’Neill, E., Weeks, M., 2018. Causal tree estimation of heterogeneous household 
response to time-of-use electricity pricing schemes. arXiv preprint arXiv: 
1810.09179. 

Parry, I.W., Walls, M., Harrington, W., 2007. Automobile externalities and policies. 
J. Econ. Lit. 45 (2), 373–399. 

Qiu, Y.L., Bo, X., Patwardhan, A., Hultman, N., Zhang, H., 2022a. Heterogeneous 
changes in electricity consumption patterns of residential distributed solar 
consumers due to battery storage adoption. iScience, 104352. 

Qiu, Y., Kahn, M.E., Xing, B., 2019. Quantifying the rebound effects of residential solar 
panel adoption. J. Environ. Econ. Manage. 96, 310–341. 

Qiu, Y.L., Wang, Y.D., Iseki, H., Shen, X., Xing, B., Zhang, H., 2022b. Empirical grid 
impact of in-home electric vehicle charging differs from predictions. Resour. Energy 
Econ. 67, 101275. 

Ranaweera, I., Midtgård, O.M., 2016. Optimization of operational cost for a grid- 
supporting PV system with battery storage. Renew. Energy 88, 262–272. 

Ratnam, E.L., Weller, S.R., Kellett, C.M., 2015. An optimization-based approach to 
scheduling residential battery storage with solar PV: assessing customer benefit. 
Renew. Energy 75, 123–134. 

Roth, J., 2019. Pre-test With caution: Event-study estimates After Testing For Parallel 
Trends. Department of Economics, Harvard University. Unpublished manuscript.  

Shen, X., Qiu, Y., Luo, L., Zheng, X., 2021. The impacts of special environmental events 
on short-run electricity-saving behaviors. Environ. Res. Lett. 16 (9), 094035. 

Solar Energy Industries Association. (2022). Arizona Solar. https://www.seia.org/state 
-solar-policy/arizona-solar. 

Souza, M., 2020. Predictive Counterfactuals for Treatment Effect Heterogeneity in Event 
Studies with Staggered Adoption. SSRN Working Paper No. 3484635. 

Tran, V.T., Islam, M.R., Muttaqi, K.M., Sutanto, D., 2019. An efficient energy 
management approach for a solar-powered EV battery charging facility to support 
distribution grids. IEEE Trans. Ind. Appl. 55 (6), 6517–6526. 

US Department of Energy (DOE), 2022. Alternative Fuels Data Center - Electric Vehicle 
Registrations By State. https://afdc.energy.gov/data/10962. 

US Department of Energy (DOE), 2022. Demand Response. June 8, 2022. https://www. 
energy.gov/oe/activities/technology-development/grid-modernization-and-smar 
t-grid/demand-response. 

US Department of Transportation’s Federal Highway Administration, 2018. Average 
Annual Miles Per Driver by Age Group. March 29, 2018. https://www.fhwa.dot.gov/ 
ohim/onh00/bar8.htm. 

US Energy Information Administration (EIA), 2022. Weekly Retail Gasoline and Diesel 
Prices. https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_w.htm. 

US Environmental Protection Agency, 2021. Technical Support Document: Social cost of 
carbon, methane, and Nitrous Oxide Interim Estimates Under Executive Order 
13990. 

US EPA. (2022). Sources of greenhouse gas emissions overviews and factsheets, May 25, 
2022, https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions. 

Varian, H.R., 2014. Big data: new tricks for econometrics. J. Econ. Perspect. 28 (2), 3–28. 
Varian, H.R., 2016. Causal inference in economics and marketing. Proc. Natl Acad. Sci. 

113 (27), 7310–7315. 

6 According to U.S. Department of Transportation’s Federal Highway Administration, people in the U.S. drive 13,500 miles a year on average. 13,500 miles* 
(0.0193$/miles+0.0024$/miles) = 293$. 

X. Shen et al.                                                                                                                                                                                                                                    

http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0001
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0001
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0002
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0002
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0003
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0003
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0004
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0005
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0005
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0006
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0006
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0007
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0007
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0007
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0009
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0009
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0010
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0010
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0011
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0011
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0011
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbresf0004
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbresf0004
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbresf0004
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0012
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0012
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0012
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0013
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0013
https://www.iea.org/reports/global-ev-outlook-2022
https://www.iea.org/reports/global-ev-outlook-2022
https://www.iea.org/reports/renewables-2020
https://www.iea.org/reports/renewables-2020
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0016
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0016
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0016
https://doi.org/10.1093/jeea/jvac007
https://doi.org/10.1093/jeea/jvac007
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0018
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0018
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0018
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0019
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0019
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0019
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0020
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0020
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0020
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0021
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0021
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0022
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0022
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0023
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0023
https://www.ncdc.noaa.gov/cdo-web/
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0025
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0025
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0025
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0026
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0026
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0026
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0027
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0028
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0028
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0028
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0029
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0029
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0030
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0030
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0030
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0031
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0032
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0032
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0032
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0033
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0033
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0034
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0034
https://www.seia.org/state-solar-policy/arizona-solar
https://www.seia.org/state-solar-policy/arizona-solar
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0036
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0036
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0037
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0037
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0037
https://afdc.energy.gov/data/10962
https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/demand-response
https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/demand-response
https://www.energy.gov/oe/activities/technology-development/grid-modernization-and-smart-grid/demand-response
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://www.fhwa.dot.gov/ohim/onh00/bar8.htm
https://www.eia.gov/dnav/pet/pet_pri_gnd_dcus_nus_w.htm
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0008
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0008
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0008
https://www.epa.gov/ghgemissions/sources-greenhouse-gas-emissions
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0043
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0044
http://refhub.elsevier.com/S0921-3449(23)00051-4/sbref0044

	The impact of co-adopting electric vehicles, solar photovoltaics, and battery storage on electricity consumption patterns:  ...
	1 Introduction
	2 Methods
	2.1 Data
	2.2 Difference-in-differences in conjunction with matching
	2.3 Counterfactuals prediction based on a machine learning algorithm
	2.4 Calculations of private and environmental benefits

	3 Results
	3.1 The overall impact of co-adopting electric vehicles, solar photovoltaics, and battery storage
	3.2 Electricity consumption pattern changes after adopting each technology

	4 Discussion and conclusion
	Data statement
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Data availability
	Acknowledgement
	Appendix A. Residential electricity rate plans of the SRP utility
	Appendix B. Pre-treatment parallel trend test
	Appendix C. Model performance of machine learning
	Appendix D. Estimates of electricity consumption change after installing the three technologies
	Appendix E. Private and environmental benefits
	References


