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Abstract

Honey bees (Apis mellifera L.) localize the queen and aggre-
gate into a swarm by forming a collective scenting network
to directionally propagate volatile pheromone signals. Previ-
ous experiments show the robustness of this communication
strategy in the presence of physical obstacles that partially
block pheromone flow and the path to the queen. Specifically,
there is a delay in the formation of the scenting network and
aggregation compared to a simple environment without per-
turbations. To better understand the effect of obstacles be-
yond temporal dynamics, we use the experimental results as
inspiration to explore how the behavioral parameter space of
collective scenting responds to obstacle. We extend an agent-
based model previously developed for a simple environment
to account for the presence of physical obstacles. We study
how individual agents with simple behavioral rules for scent-
ing and following concentration gradients can give rise to col-
lective localization and swarming. We show that the bees are
capable of navigating the more complex environment with a
physical obstacle to localize the queen and aggregate around
her, but their range of behavioral parameters is more limited
and less flexible as a result of the spatial density heterogeneity
in the bees imposed by the obstacle.

Introduction

Social insect groups often navigate complex and unknown

environments. To do so, group members must effectively

communicate. Insects, such as honey bees, often exchange

information and coordinate group processes by communi-

cating via pheromones, volatile chemical signals that decay

rapidly in time and space (Conte and Hefetz, 2008; Lensky

and Cassier, 1995). In the context of honey bee swarm for-

mation around the queen, worker bees localize the queen by

following her pheromones and propagate the signals about

her location by ªscentingº (McIndoo, 1914; Peters et al.,

2017; Nguyen et al., 2021b). The scenting behavior consists

of a given bee sensing local pheromone concentration above

a given threshold and releasing pheromones from the Na-

sonov gland while rigorously fanning its wings to disperse

the signals to other bees. Wing fanning creates a directional

bias in the flow of pheromones, allowing bees farther away

from the queen to sense the signal and further propagate

them. This collective scenting strategy creates an effective

communication network for localization and aggregation in

honey bee swarms (Nguyen et al., 2021b).

Nguyen et al. (2021a) experimentally showed the robust-

ness of collective scenting in the presence of obstacles that

partially block pheromone flow and the open path to the

queen. Compared to a simple environment without any ob-

stacle, the more complex environment requires more time

to explore and navigate. However, the bees still effectively

employ the scenting strategy to overcome the obstacle and

aggregate around the queen (Fig. 1B).

Inspired by the experiments, we turned to computational

modelling to further explore how physical obstacles affect

the parameter space that dictates the dynamics of localiza-

tion and aggregation based on collective scenting. A pre-

vious work modeling social amoeba aggregation by chemi-

cal signaling has shown the system’s robustness to physical

obstacles, with agents releasing isotropic chemicals that dif-

fuse axi-symmetrically (Fatès, 2010). To model honey bee

chemical signaling, a previous study (Nguyen et al., 2021b)

used agent-based modeling to study how simple behavioral

rules can generate complex collective behaviors and took

into consideration the directional bias of signals that pro-

vide directional information to group members. The au-

thors studied the effect of two behavioral parameters that

the bees may vary with input from the environmentÐthe di-

rectional bias representing the magnitude of wing-fanning

and the concentration threshold above which they can detect

the signal. The model showed the importance of directional

signals seen in the scenting strategy in efficient localization

and aggregation around the queen that can avoid less de-

sired outcomes, such as small clusters far from the queen. In

this study, we build upon this model by adding physical ob-

structions to the system (Fig. 1A,C). Per the experiments in

Nguyen et al. (2021a), we expect to observe the robustness

of the bee communication system in the more complex en-

vironment. More importantly, by modeling, we aim to gain

insights into how the behavioral parameter space responds

to the presence of obstacle. The insights may contribute to

designs and improvements in non-biological systems with

individuals that are limited to local interactions but must co-
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tional bias, wb, is the magnitude of the advection±diffusion

of pheromone released by a bee (Fig. 1A). Treating a single

scenting bee as a point source of localized and instantaneous

pheromone emission, we solve Eq. 1:

C(x, y, t) =
C0√
t
exp

(

−A2 +B2

4Dt
− γt

)

(2)

where C0 is the initial concentration, A = (x−wbwxt), and

B = (y − wbwyt). The environmental parameters of the

model include: the size of the 2±D arena (Xmin and Xmax)

and the size of a grid cell (δX ), the start and final time of the

simulation (ti and tf ) and the time integration constant (δt).
Similar to the experiments, we model the physical ob-

stacle as a diagonal linear bar of pixels with a small open-

ing. Pheromones cannot diffuse past the obstacle by a line-

of-sight method. The obstacle forms a line segment CD,

and segment EF forms between the scenting agent and

a given pixel. Intersection of the lines indicates that the

pheromone from the scenting agent does not reach the pixel.

To find the point of intersection, we solve the matrix equa-

tion:

[

ACD BCD

AEF BEF

] [

x
y

]

=

[

CCD

CEF

]

where ACD is the slope

of CD, AEF is the slope of EF , BCD = −1, BEF = −1,

CCD is the negative y-intercept of CD, and CEF is the neg-

ative y-intercept of ED. If a solution exists, we check if the

intersection point lies on both lines. If there is no solution

or the solution does not lie on both lines, there is no inter-

section and the pheromone from the source at E is present

in the pixel at F .

Modeling behavioral rules

In a discrete 2-D arena (Appendix Fig. A2A), the queen

is stationary and frequently releases pheromone isotropi-

cally, i.e., without directional bias (wb = 0). She is the

global point of convergence for the swarm. The behavioral

rules of workers are: (1) A worker bee performs a random

walk. Based on her distance to the queen, the bee detects

the queen’s pheromone if above the threshold (T ). (2) If T
is met, the bee orients towards the direction up the gradient.

The negative vector of the gradient scaled by wb is the di-

rection to emit pheromone and disperse it via wing-fanning.

The bee then either walks up the gradient (Appendix Fig.

A2B) or stands still for a certain time to emit and fan her

own pheromones, each event with a 0.5 probability. (3) Bees

that detect this cascade of secondary signals will follow the

same rules to head towards maximum pheromone concen-

tration or scent and further propagate the information.

We formalize the worker bees’ behavior as a probabilis-

tic state machine (PSM) (Rabin, 1963). The PSM consists

of a set of finite states that describe bee behavior and a

probabilistic transition matrix for how a bee may change

from one state to another. Specifically, the state model

SMworker = (S, s0, I,M), associated with each worker,

defines her set of behavioral rules within the environment,

sc

sn
rWalk tMet emit fan dWalk

rWalk ci < T ci ≥ T 0 0 0

dWalk ci < T ci ≥ T 0 0 0

tMet 0 0 0.5 0 0.5

emit 0 0 0 1 0

fan ti ≥ Pw ∧ ci < T ti ≥ Pw ∧ ci ≥ T 0 ti < Pw 0

Table 1: Probabilistic state machine transition matrix for

honey bee behavioral rules. Variables randomWalk,

thresholdMet, and directedWalk abbreviated as rWalk,

tMet, and dWalk, respectively.

and SMworker components are fixed across all worker bees:

S = {randomWalk, directedWalk, thresholdMet,
emit, fan} is a set of finite states, where the variable

randomWalk is a random walk when the threshold is not

met, directedWalk is the walk up the concentration gradi-

ent, thresholdMet is when the threshold is met, emit is the

instantaneous release of pheromone, and fan is the wing

fanning at a constant position. s0 = randomWalk is the

initial state of each bee. I = {ti, ci}, is a set of flags for the

input conditions on state transitions, where for a given bee,

ti is a counter for the time that bee is in the fan state and ci
is the concentration at that bee’s position.

For the transition matrix M , there are two relevant param-

eters, Pw and T , representing the emission period made of

the emit and the fan state and the threshold over which a

bee can be activated from state randomWalk. Table 1 pro-

vides the conditions and probabilities for transitioning from

the current state, sc, to the next state, sn.

We compute the gradient of pheromone concentration for

a given bee to find the direction of greatest local change:

▽(x,y)C =KiEi(x− xi − wbwxt)x̂

+KiEi(y − yi − wbwyt)ŷ
(3)

where Ki = −A/2Dt
√
t and Ei = exp(−(x − xi −

wbwxt)
2 + (y − yi − wbwyt)

2/4Dt − γt), x, y are the po-

sition of the activated bees, and xi, yi are the position of

the scenting bees (i.e., pheromone source) i. The cumula-

tive gradient for the concentration at a single bee’s position

is the sum of the normalized gradients resulting from each

pheromone source or emitting bee i:

▽(x,y)Ccumulative =
∑

i

▽(x,y)Ci(x, y)

=
∑

i

KiEiXx̂+
∑

i

KiEiY ŷ
(4)

where X = x−xi −wbwxt and Y = y− yi −wbwyt. This

gradient defines the vector that points in the direction of the

bee’s heading for its directed walk. The negative vector of

the gradient is the direction for this bee’s pheromone emis-

sion for signal propagation, and thus its x and y components

make up the wx and wy terms of Eq. 2.

Each discrete pixel or cell contains only one bee at a time.

Pixels that make up the physical obstacle do not contain any
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