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Abstract

Honey bees (Apis mellifera L.) localize the queen and aggre-
gate into a swarm by forming a collective scenting network
to directionally propagate volatile pheromone signals. Previ-
ous experiments show the robustness of this communication
strategy in the presence of physical obstacles that partially
block pheromone flow and the path to the queen. Specifically,
there is a delay in the formation of the scenting network and
aggregation compared to a simple environment without per-
turbations. To better understand the effect of obstacles be-
yond temporal dynamics, we use the experimental results as
inspiration to explore how the behavioral parameter space of
collective scenting responds to obstacle. We extend an agent-
based model previously developed for a simple environment
to account for the presence of physical obstacles. We study
how individual agents with simple behavioral rules for scent-
ing and following concentration gradients can give rise to col-
lective localization and swarming. We show that the bees are
capable of navigating the more complex environment with a
physical obstacle to localize the queen and aggregate around
her, but their range of behavioral parameters is more limited
and less flexible as a result of the spatial density heterogeneity
in the bees imposed by the obstacle.

Introduction

Social insect groups often navigate complex and unknown
environments. To do so, group members must effectively
communicate. Insects, such as honey bees, often exchange
information and coordinate group processes by communi-
cating via pheromones, volatile chemical signals that decay
rapidly in time and space (Conte and Hefetz, 2008; Lensky
and Cassier, 1995). In the context of honey bee swarm for-
mation around the queen, worker bees localize the queen by
following her pheromones and propagate the signals about
her location by “scenting” (McIndoo, 1914; Peters et al.,
2017; Nguyen et al., 2021b). The scenting behavior consists
of a given bee sensing local pheromone concentration above
a given threshold and releasing pheromones from the Na-
sonov gland while rigorously fanning its wings to disperse
the signals to other bees. Wing fanning creates a directional
bias in the flow of pheromones, allowing bees farther away
from the queen to sense the signal and further propagate
them. This collective scenting strategy creates an effective

communication network for localization and aggregation in
honey bee swarms (Nguyen et al., 2021b).

Nguyen et al. (2021a) experimentally showed the robust-
ness of collective scenting in the presence of obstacles that
partially block pheromone flow and the open path to the
queen. Compared to a simple environment without any ob-
stacle, the more complex environment requires more time
to explore and navigate. However, the bees still effectively
employ the scenting strategy to overcome the obstacle and
aggregate around the queen (Fig. 1B).

Inspired by the experiments, we turned to computational
modelling to further explore how physical obstacles affect
the parameter space that dictates the dynamics of localiza-
tion and aggregation based on collective scenting. A pre-
vious work modeling social amoeba aggregation by chemi-
cal signaling has shown the system’s robustness to physical
obstacles, with agents releasing isotropic chemicals that dif-
fuse axi-symmetrically (Fateés, 2010). To model honey bee
chemical signaling, a previous study (Nguyen et al., 2021b)
used agent-based modeling to study how simple behavioral
rules can generate complex collective behaviors and took
into consideration the directional bias of signals that pro-
vide directional information to group members. The au-
thors studied the effect of two behavioral parameters that
the bees may vary with input from the environment—the di-
rectional bias representing the magnitude of wing-fanning
and the concentration threshold above which they can detect
the signal. The model showed the importance of directional
signals seen in the scenting strategy in efficient localization
and aggregation around the queen that can avoid less de-
sired outcomes, such as small clusters far from the queen. In
this study, we build upon this model by adding physical ob-
structions to the system (Fig. 1A,C). Per the experiments in
Nguyen et al. (2021a), we expect to observe the robustness
of the bee communication system in the more complex en-
vironment. More importantly, by modeling, we aim to gain
insights into how the behavioral parameter space responds
to the presence of obstacle. The insights may contribute to
designs and improvements in non-biological systems with
individuals that are limited to local interactions but must co-
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Figure 1: Experiments and model of collective scenting in
the presence of a physical obstacle. A) A scenting bee agent
can produce a pheromone signal with directional bias with
advection-diffusion (wp = 10). A physical obstacle can par-
tially block the signal. B) An experiment where worker bees
use scenting to navigate the obstacle and localize the queen.
C) A computational model simulating pheromone diffusion
and honey bee scenting behavior in presence of obstacle.

ordinate group processes in complex environments, such as
robots that must navigate obstructions (Abiyev et al., 2010).

Methods
Experimental setup & analysis

We followed methods described in detail in Nguyen et al.
(2021b) for experiments without obstacle and in Nguyen
et al. (2021a) with obstacle. As this paper mainly focuses
on modeling, we briefly summarize the methods. The back-
lit arena (50x50x1.5 cm) is semi-2-D to prevent flying, as
bees have been shown to scent while standing (McIndoo,
1914). The experiments are recorded aerially with a video
camera (4k resolution, 30 fps). The queen is kept in a
cage (10.5x2.2x2.2 cm) at the top right corner (Fig. 1B).
A wooden bar is placed diagonally for the obstacle condi-
tion. Workers are placed at the bottom left corner, and a
plexiglass sheet encloses the arena. For each environmental
condition, we report results for three experiments with sim-

ilar number of worker bees ranging from 240 to 380. Five
experiments per condition were presented in Nguyen et al.
(2021a); we present three per condition here for consistency
in number of bees in the simulation (N = 300).

To automatically detect scenting bees and their orien-
tations, we use computer vision approaches presented in
Nguyen et al. (2021b) (Appendix Fig. Al). We detect
individual bees (i.e., x,y centroids) by Otsu’s method of
adaptive thresholding, and morphological transformations
(Otsu, 1979; Dougherty, 1992). To classify a bee as scenting
or non-scenting, we train a ResNet-18 convolutional neu-
ral network (CNN) model (He et al., 2016) that achieves
95.17% test accuracy. We create a regression model for ori-
entation estimation, which achieves 96.71% test accuracy.

We then reconstruct attractive surfaces to correlate the
scenting events with the spatiotemporal density of bees. For
each scenting bee ¢ at time ¢, we define its position as
s;;» and its direction of scenting as s,‘it (unit vector). As-
suming the scenting bees provide directional information
to non-scenting bees, we treat s i.¢ and s¢ '+ as a set of gra-
dients that define a minimal surface of helght flz,y,1).
Thus, f(z,y,t) corresponds to the probability that a ran-
domly moving non-scenting bee will end up at position
(z,y) by following the scenting directions of scenting bees:
fx,y) = Yyvy | Vfdedy where Vf = s, + sd,. We
regularize the least squares solution of surface reconstruc-
tion from its gradient field, using Tikhonov regularization
(Harker and O’Leary, 2008, 2011).

Finally, we obtain some time-series properties. The num-
ber of scenting bees over time is presented as a rolling mean
with the window size of 100 frames. The average distance
to the queen is computed as the average distance of all black
pixels to the queen’s location, as the bee detection method
cannot detect every single individual bee when they touch
or overlap. The queen’s cage and the obstacle are stationary,
thus the remaining black pixels in the arena represent only
the moving bees and allow us to use this proxy. For each
property, we average the time-series data across all experi-
ments for each condition and obtain the standard deviation.

Modeling pheromone diffusion

We model pheromone advection-diffusion using the 2-D dif-
fusion partial differential equation to describe pheromone
concentration, C(x,y, t), at a position and time:
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where C'(z, y, t) is the concentration at position [x, y] at time
t, w, and wy are the x and y components of emission vector
respectively, D is the diffusion coefficient, and + is the decay
constant. The behavioral parameter representing the direc-

- ’VC(x, Y, t)
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tional bias, wy, is the magnitude of the advection—diffusion
of pheromone released by a bee (Fig. 1A). Treating a single
scenting bee as a point source of localized and instantaneous
pheromone emission, we solve Eq. 1:

C A? + B?
0(177%75) = 7%69519 (_M - ’7t> 2

where () is the initial concentration, A = (z — wyw,t), and
B = (y — wpwyt). The environmental parameters of the
model include: the size of the 2-D arena (X,,,;,, and X,,,42)
and the size of a grid cell (§x), the start and final time of the
simulation (¢; and ¢ ) and the time integration constant (J;).

Similar to the experiments, we model the physical ob-
stacle as a diagonal linear bar of pixels with a small open-
ing. Pheromones cannot diffuse past the obstacle by a line-
of-sight method. The obstacle forms a line segment C'D,
and segment EF forms between the scenting agent and
a given pixel. Intersection of the lines indicates that the
pheromone from the scenting agent does not reach the pixel.
To find the point of intersection, we solve the matrix equa-
Acp BCD] [33} _ |:CCD
Agr Bgr| |yl |Cer
of CD, Agr is the slope of EF, Bcp = —1, Bgp = —1,
Ccop is the negative y-intercept of C D, and Cg is the neg-
ative y-intercept of ED. If a solution exists, we check if the
intersection point lies on both lines. If there is no solution
or the solution does not lie on both lines, there is no inter-
section and the pheromone from the source at E is present
in the pixel at F'.

tion: [ ] where A¢p is the slope

Modeling behavioral rules

In a discrete 2-D arena (Appendix Fig. A2A), the queen
is stationary and frequently releases pheromone isotropi-
cally, i.e., without directional bias (wb = 0). She is the
global point of convergence for the swarm. The behavioral
rules of workers are: (1) A worker bee performs a random
walk. Based on her distance to the queen, the bee detects
the queen’s pheromone if above the threshold (7). (2) If T’
is met, the bee orients towards the direction up the gradient.
The negative vector of the gradient scaled by wy is the di-
rection to emit pheromone and disperse it via wing-fanning.
The bee then either walks up the gradient (Appendix Fig.
A2B) or stands still for a certain time to emit and fan her
own pheromones, each event with a 0.5 probability. (3) Bees
that detect this cascade of secondary signals will follow the
same rules to head towards maximum pheromone concen-
tration or scent and further propagate the information.

We formalize the worker bees’ behavior as a probabilis-
tic state machine (PSM) (Rabin, 1963). The PSM consists
of a set of finite states that describe bee behavior and a
probabilistic transition matrix for how a bee may change
from one state to another. Specifically, the state model
SMuyorker = (S, 80,1, M), associated with each worker,
defines her set of behavioral rules within the environment,

. Sn rWalk tMet emit | fan | dWalk
rWalk ¢ <T ¢ >T 0 0 0
dWalk G <T G >T 0 0 0
tMet 0 0 05 0 0.5
emit 0 0 0 I 0
fan ti>PuNe; <T | t; > PyNe; >T 0 ti < Py, 0

Table 1: Probabilistic state machine transition matrix for
honey bee behavioral rules. Variables randomW alk,
thresholdMet, and directedW alk abbreviated as rWalk,
tMet, and dW alk, respectively.

and S My,orker components are fixed across all worker bees:
S = {randomW alk, directedW alk, thresholdMet,
emit, fan} is a set of finite states, where the variable
randomW alk is a random walk when the threshold is not
met, directedW alk is the walk up the concentration gradi-
ent, thresholdM et is when the threshold is met, emit is the
instantaneous release of pheromone, and fan is the wing
fanning at a constant position. sg = randomW alk is the
initial state of each bee. I = {t;, ¢;}, is a set of flags for the
input conditions on state transitions, where for a given bee,
t; is a counter for the time that bee is in the fan state and ¢;
is the concentration at that bee’s position.

For the transition matrix M, there are two relevant param-
eters, P, and T', representing the emission period made of
the emit and the fan state and the threshold over which a
bee can be activated from state randomW alk. Table 1 pro-
vides the conditions and probabilities for transitioning from
the current state, s, to the next state, s,,.

We compute the gradient of pheromone concentration for
a given bee to find the direction of greatest local change:

V(e C =KiEi(r — 2; — wpyw,t)T 3)

+ KiEi(y — yi — wywyt)y
where K; = —A/2Dt\/t and E; = exp(—(z — z; —
wywyt): + (y — yi — wpwyt)? /4Dt — t), 2, y are the po-
sition of the activated bees, and z;, y; are the position of
the scenting bees (i.e., pheromone source) 7. The cumula-
tive gradient for the concentration at a single bee’s position
is the sum of the normalized gradients resulting from each
pheromone source or emitting bee ¢:

V(Ly)cclwnulative = Z V(w,y)(/’i (1‘, y)

4
=Y KEXi+ )Y KEYj @

where X =z —x; — wbw;t andY =y — ;;, — wpwyt. This
gradient defines the vector that points in the direction of the
bee’s heading for its directed walk. The negative vector of
the gradient is the direction for this bee’s pheromone emis-
sion for signal propagation, and thus its x and y components
make up the w, and w, terms of Eq. 2.

Each discrete pixel or cell contains only one bee at a time.
Pixels that make up the physical obstacle do not contain any
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bees. Upon its next movement, a bee agent checks if the
intended pixel is already occupied by another bee or the ob-
stacle; if so, the bee chooses another nearby pixel within
45° over five iterations until it stays at the current posi-
tion. Based on the model parameterization in Nguyen et al.
(2021b), we explore a range of values for the behavioral pa-
rameters, the directional bias w;, and concentration threshold
T, that bees could adjust based on input from the environ-
ment. For each combination of the parameters, we repeat
the simulation three times per condition. Other parameters
remain constant across all simulations (Appendix Table 2).
The algorithm is presented in Appendix Algo. 1.

Construction of phase diagrams

We extract several properties from the simulation data for
time-series analyses: the bees’ average distance to the
queen, the average number of scenting bees, and the aver-
age distance to the queen from the farthest active bee. To
characterize the growth of the queen’s cluster size and the
number of clusters that form, we use the density-based spa-
tial clustering of applications with noise (DBSCAN) algo-
rithm (e: 0.25, minimum number of bees to form a cluster:
5) to cluster bees at every time step (Ester et al., 1996).

To characterize the collective scenting behavior deter-
mined by the behavioral parameters (wy, 1"), we define four
possible phases (i.e., the outcome of simulations, rather than
a period in a time sequence) as previously seen in Nguyen
et al. (2021b): phase 1 of small clusters of bees spread
throughout the arena, phase 2 of bees reaching the queen’s
vicinity by random walk, phase 3 of bees swarming around
the queen by forming a percolation network of senders and
receivers of pheromone signals created by scenting bees as
seen in the experiments, and phase 4 of no clustering at all.
To construct the phase diagrams, we use three properties to
distinguish the phases: the final number of clusters, the fi-
nal queen’s cluster size, and the distance of the farthest ac-
tive bee to the queen. We sequentially applied the following
conditions to each simulation identify its phase group: 1) If
the final number of clusters > 1.5: Phase 1 with many small
clusters; 2) If the final number of clusters 0 — 1.5 and the
final queen’s cluster size < 250 bees: Phase 4 with no clus-
tering; 3) If the farthest active distance < 4.0: Phase 2 with
clustering at the queen’s location via random walk ; 4) If the
farthest active distance > 4.0: Phase 3 with clustering at the
queen’s location via a scenting percolation network.

Results
Bees navigate obstacles by collective scenting

As previously presented in Nguyen et al. (2021a), the experi-
ments comparing the localization and aggregation dynamics
in the presence and absence of physical obstacles show that
bees are able to solve the problem in both conditions by em-
ploying the collective scenting strategy. We show snapshots
of the experiment and the corresponding attractive surfaces
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Figure 2: Experiments. A) Snapshots of an experiment
where worker bees are in a semi-2D arena with a caged
queen without obstacles. The corresponding attractive sur-
faces f show the scenting events correlating to the spatial-
temporal density of bees. B) Snapshots and surfaces of an
experiment where bees are initially placed on on side of a
bar obstacle and the queen is on the other side. C) The aver-
age number of scenting bees over time for both conditions.
D) The average distance to the queen over time.

for an example experiment without obstacles (N = 320) in
Fig. 2A. Over 1800 seconds or 30 minutes, the bees activate
a scenting network early (around ¢ = 140 sec), as reflected
in the surface in which the scenting directions collectively
point to the queen’s area (i.e., surface regions of higher f
values). Most of the bees have formed a swarm around the
queen around ¢ = 900 sec or 15 min. In the presence of
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Figure 3: Simulations of four different phases. The queen is a red circle at the top right corner. Worker bees are circles
colored by their internal state: scenting (green), performing a directed walk up the gradient (orange), and performing a random
walk (gray). The instantaneous pheromone concentration C'(x, y,t) corresponds to the green color scale. Common simulation
parameters are N = 300, Cy = 0.0575, D = 0.6, and v = 108. A) Phase 1 where bees aggregate into small clusters; w;, = 0,
T = 0.0001 for both conditions. B) Phase 2 where bees cluster around the queen via random walk; w, = 30, T" = 0.5 for no
obstacle; wy, = 40, T" = 0.2 for obstacle. C) Phase 3 where bees create a percolating network of senders and receivers of the
pheromone signal to cluster around the queen; w, = 50, T" = 0.025 for no obstacle; w, = 50, 7' = 0.075 for obstacle. D)

Phase 4 where no clustering occurs; w, = 60, T = 1.0 for both.

obstacles, the bees generally require more time and explo-
ration to form the scenting network. In Fig. 2B, we show
snapshots of an example obstacle experiment (N = 310), in
which bees search around the space behind the bar until a
few bees find the opening and begin forming the collective
scenting network at around 900 sec or 15 min. Most bees
swarm around the queen by ¢ = 1800 sec (30 min).

To quantitatively compare the aggregation process over
time for the two conditions, we analyze the number of scent-
ing bees over time (averaged over three experiments for each
condition, with shaded area showing the standard deviation)
in Fig. 2C. Without the obstacle, there is a sharp peak in
the early phase of the experiment (around 350 sec) when
bees quickly form the scenting network and a gradual de-
crease as most bees have clustered around the queen. In
the presence of the obstacle, there is also a very early peak
(around 50 sec); however, this peak of scenting occurs be-

hind the obstacle before the bees find the opening. A smaller
peak around 900 sec occurs when bees find the opening and
forms a scenting network where the attractive surface shows
the scenting directions oriented towards the queen (Fig. 2B).
Further, we compared the average distance to the queen over
time (Fig. 2D). The distance sharply decreases early in the
absence of an obstacle. With an obstacle, the plateau from
the start of the experiment until approximately 800 sec in-
dicates the time the bees spend behind the obstacle until the
first bees explore and find the opening.

Model shows constraints in behavioral parameter
space in the presence of obstacles

The experimental results indicate the robustness of the col-
lective scenting strategy in the presence of a physical obsta-
cle and provide insights into the temporal dynamics of the
aggregation process in different environments. The experi-
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Figure 4: The effect of a physical obstacle on the phase
boundaries for all simulations with varying w; and T'. Phase
diagrams constructed from scenting model dynamics using
summary heatmaps of the final number of clusters, the final
queen’s cluster size, and the distance of the farthest active
bee to the queen. Phase 3 is highlighted in pink. A) Phase
diagram without obstacle. B) Phase diagram with obstacle.

ments are an inspiration for the agent-based model where we
further explore the behavioral parameters behind the mech-
anisms of the collective scenting and localization process.
With and without physical obstacles, the model shows the
four distinct phases defined in the Methods section:

Phase 1: Low values of both w; and 1" produce small
clusters of bees (Fig. 3A). Without an obstacle, signals reach
the entire swarm and lead to clusters earlier than with an
obstacle (around 900 and 3000 time steps, respectively).

Phase 2: High values of 1" produce swarms around the
queen only via the bees that slowly reach the queen by ran-
dom walk (Fig. 3B). When the obstacle is present, more
time is required for bees to spread out throughout the arena
(after 1500 time steps compared to by 900 time steps).

Phase 3: High values of w; and low values of T lead to
the percolation network of scenting (Fig. 3C). Without the
obstacle, the network has begun to form by around 900 time
steps, while it takes around 5000 time steps with the obsta-
cle. Although bees in phases 2 and 3 eventually cluster at
the queen’s location, pheromone signals reach a much far-
ther distance in phase 3 than in phase 2.

Phase 4: Very high values of 7" and wy, lead to no worker
bees ever activated to scent or perform the directed walk up
the gradient, and therefore no clustering (Fig. 3D).

Although all four phases are present in both conditions,
the presence of the physical obstacle affects the phase ar-
eas and boundaries. The phase diagram of four phases as
determined by (wp, T') for simulations without the obsta-
cle is shown in Fig. 4A. Treating the phase diagram as
an image of a total of 36,100 pixels, phase 3 occupies ap-
proximately 11,925 pixels of 33.03% of the total diagram.
When an obstacle is added to the arena, phase 3 only occurs
when wy, = 50 and occupies approximately 4,500 pixels or
12.47% of the total diagram. Most of the parameter space
that makes up phase 3 in the phase diagram for simulations
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Figure 5: Time series of phase 3 simulations in Fig. 3C with
and without obstacle (green and blue curves, respectively).
A) The average distance of the worker bees to the queen over
time. B) The average size of the queen’s cluster over time.
C) The average number of scenting bees over time. D) The
average distance of the farthest scenting bee over time.

without obstacles becomes phase 1 in the diagram with the
obstacle; the remaining phase 3 region becomes phase 2 in
the diagram with the obstacle. For both conditions, phase
3 never occurs when there is no directional bias (w, = 0)
or when the concentration threshold is maximal (7' = 1.0).
Lastly, we compare the temporal dynamics of phase 3 sim-
ulations in Fig. 3C (time-series averaged over three repeti-
tions). The average distance to the queen decreases faster
and converges to a lower value when there is no obstacle
(Fig. 5A). With the obstacle, we observe a slower decrease
due to the exploration required to find the opening, and a
convergence at a higher distance due to some bees that are
still behind the obstacle by the end of the simulation. Sim-
ilarly, the average growth in the queen’s cluster size over
time is faster and the final size is larger when there is no ob-
stacle (Fig. 5B). Both the average number of scenting bees
(Fig. 5C) and average distance of the farthest scenting bee
(Fig. 5D) follows similar trends of sharp initial increase and
plateau (number of scenting bees) or slight decrease (farthest
active distance), but there is a delay in the sharp increase
when the obstacle is present.

Discussion

Experimental studies show that bees employ the collective
scenting strategy when localizing the queen and aggregating
around her to form a coherent swarm (Nguyen et al., 2021b).
This communication method is observed in a simple envi-
ronment free of any perturbations as well as a more com-
plex environment with the presence of physical obstacles
(Nguyen et al., 2021b,a). The experimental results demon-
strate a temporal delay in the peak of collective scenting and
a slower decrease in the average bee distance to the queen as
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the obstacle requires the bees to first explore the space and
find the opening before forming the scenting network.

While the experiments illuminate the temporal dynam-
ics of localization in the presence and absence of obstacles,
we also turn to modeling to better understand how the be-
havioral parameter space is affected by the environmental
perturbation. The model predicts four distinct outcomes, or
phases, determined by the directional bias and concentration
threshold, (wp, T°): 1) many small clusters, 2) clustering via
only random walk, 3) clustering via signal propagation, and
4) no clustering. All four phases are present in both environ-
ments. However, the boundaries of the phases shift in the
presence of the obstacle. Phase 4, dictated by very high T'
and very high wy, remains constant. However, the successful
aggregation of phase 3 occupies a smaller overlapping area
of the phase diagram with the obstacle, constraining the pa-
rameters to only one value of high w; = 50, while the phase
spans wy values of 30, 40, and 50 in the diagram for simu-
lations without the obstacle. With low values of 7', most of
the area encompassing phase 3 in the diagram without ob-
stacles becomes phase 1 in the diagram with obstacles—the
physical wall leads to the breaking of the chains of scenting
bees in the percolation network, resulting in the formation
of small local clusters on both sides of the obstacle. The
phase 3 region with high values of 7" becomes phase 2 with
the obstacle, as the wall separates bees from one another and
prevents the percolation network from forming.

Nguyen et al. (2021b) shows the effect of bee density on
phase boundaries: As density increases, there are more bees
to create and sustain the communication network, and the
range of wy and 1" and the area in the phase diagram for
phase 3 is greater. In this study, the shrinking of phase 3
in the presence of the obstacle suggests that the wall has a
similar effect to decreasing total density, by decreasing the
effective density of scenting bees available to form a robust
scenting percolation network. The bees are capable of nav-
igating the obstacle environment to localize the queen and
aggregate around her, but their range of potential behavioral
parameters for the task is more limited and less flexible.

The model offers a simplified simulation of the bee col-
lective scenting behavior. Some caveats and limitations that
prevent the simulations from better matching the experimen-
tal data include the lack of spontaneous scenting observed
in real bees but not modeled due to a lack of better under-
standing of the mechanisms. Further, bees in experiments
seemingly stop scenting as they gather at the queen’s cluster,
while we simply allow bees to continue scenting without a
stop function. Future analysis of the experiments is required
to understand the mechanisms of these behaviors in order to
improve the accuracy of the model.

Additional future directions include testing various den-
sities in simulations with obstacles to further understand the
density effect on the phase diagram and the temporal dynam-
ics of aggregation. There may be a critical density below

which the successful aggregation via propagation in phase
3 will not be present, as the obstacle dramatically reduces
the effective density of scenting bees. Further, the physi-
cal obstacle in this study is relatively simple; more complex
physical obstacles or other kinds of environmental pertur-
bations (e.g., varying opening size in the obstacle, multiple
obstacles, a maze, wind, or a moving queen) are of interest
and can further shed light on how bee swarms navigate the
complex, noisy environments found in nature. Lastly, un-
derstanding how the behavioral parameters shift in varying
environments for the bees may further inform the design and
development of swarm robotic systems to include a param-
eter space that allows for successful group coordination in
the presence of physical obstacles.
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Appendix

Line-of-sight method. For a given line with end coordinates
(z1,y1) and (x2, y2), its slope is m = (y2 — y1)/(z2 — 1) and
y-intercept is b = —max1 + y1. The equation of the line in stan-
dard form, Az + By = C, is: mxz — y = —b, where the constant
A =m, B = —1,and C = —b. The system of equations for the
lines CD and EF is: {mCDx y=bep
merT — Yy = bgr
Transforming to a matrix equation to solve, where Acp =
mcp, Agr = mer, Bcp = —1, Bgr = —1, Ccp = —bep,
Crp = —bpp: Acp BCD] [m] _ [CCD
Argr Bgr| |y Cer

Additional figures, table, and algorithm.

A) Deep learning data ~ B) Scenting bees detected
Binary image classifier

C) Zoom-in

scenting
» Nt
s 4 A vt -
non-scenting R N
- e v
bl 1
H v
Orientation estimator |, .y ’
’,
head
e 4 Y
oy R

tail

10 cm Scenting

Figure Al: A) Training data examples for deep learning
models to classify scenting bees and estimate orientations.
B) Detections of scenting bees and their orientations (teal
arrows). C) Zooming into scenting bees with wide wings.
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A) Simulation arena B) Directed walk
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Figure A2: A) The L x L 2-d simulation arena is dis-
cretized into [ x [ sized pixels. B) When a bee detects a lo-
cal pheromone concentration above the activation threshold
(C(z,y,t) > T), it computes the gradient around it (using
the nearest 9 pixels, highlighted in different shades of green)
and walks up the gradient towards higher concentration.
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Algorithm 1 Honey Bee Queen-Finding Algorithm

1: procedure SET ENVIRONMENTAL PARAMETERS
2 Spatial: X,in, Ximax, 0x

3 Temporal: ¢, 1y,

4 Pheromonal: D,y

5. procedure SET QUEEN PARAMETERS

6: Zq, Yq, Pgs Co, s we,

7. procedure SET WORKER PARAMETERS

8: Ly Yws Pm, (/‘()“.

9: Free parameters: wy,, , T, Ny,
10: procedure SIMULATE QUEEN-FINDING
11: Initialize Concentration Map
12: for t_iin timesteps do
13: > Step 1. Check if each bee is emitting
14: > & Build list of pheromone sources
15: > Step 1.1. Check Queen
16: if t_i% P, == 0 then
17: Queen emits pheromone via Eq. 3
18: Add Queen to Pheromone Sources
19: > Step 1.2. Check Workers
20: for worker iin Workers do
21: if state == emit then
22: worker i emits pheromone via Eq. 3
23: Add worker_ i to Pheromone Sources
24: > Step 2. Build Concentration Map
25: > & Compute gradient using Pheromone Sources
26: for pheromone source i in Pheromone Sources do
27: Update Concentration Map
28: for worker iin Workers do
29: Calculate concentration gradient via Eq. 5
30: Calculate directed emission direction
31: > Step 3. Update next state for Workers
32: for worker i in Workers do
33: Update next state according to SMyorker

Algorithm 1: Queen localization and aggregation algorithm

Parameter Meaning Value
Xmin Min size of grid arena -3
Xmaz Max size of grid arena 3
Ox Grid cell size 0.01
ti, ts Start and final time 0, 150
Ot Time integration constant 0.005
D Diffusion coefficient 0.6
ol Decay constant 108
(zq,Yq) Queen 2-D position (1,-2)
P, Queen emission frequency 80
Co, Queen initial concentration 0.0575
W, Queen bias scalar 0
(Tws Yuw) Worker 2-D position € [Xmin, Xmaz]
P, Worker emission period 80
Co,, |Worker initial concentration 0.0575
N Worker density 300
Wp,, ‘Worker bias scalar [0, 10, 20, 30,
40, 50, 60]
T Worker activation [1e-4, 1e-3, 0.01,
threshold 0.025, 0.05, 0.075,
0.1, 0.20, 0.25, 0.3,
0.4,0.5,0.6,0.7, 1.0]

Table 2: Free parameters, wp, and T, of the ABM are bolded.
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