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Abstract—Federated Learning (FL) has been considered as an appealing framework to tackle data privacy issues of mobile devices
compared to conventional Machine Learning (ML). Using Edge Servers (ESs) as intermediaries to perform model aggregation in
proximity can reduce the transmission overhead, and it enables great potential in low-latency FL, where the hierarchical architecture of
FL (HFL) has been attracted more attention. Designing a proper client selection policy can significantly improve training performance,
and it has been widely investigated in conventional FL studies. However, to the best of our knowledge, systematic client selection
policies have not yet been fully studied for HFL. In addition, client selection for HFL faces more challenges than conventional FL

(e.g., the time-varying connection of client-ES pairs and the limited budget of the Network Operator (NO)). In this article, we investigate
a client selection problem for HFL, where the NO learns the number of successful participating clients to improve training performance
(i.e., select as many clients in each round) as well as under the limited budget on each ES. An online policy, called Context-aware
Online Client Selection (COCS), is developed based on Contextual Combinatorial Multi-Armed Bandit (CC-MAB). COCS
observes the side-information (context) of local computing and transmission of client-ES pairs and makes client selection
decisions to maximize NO’s utility given a limited budget. Theoretically, COCS achieves a sublinear regret compared to an
Oracle policy on both strongly convex and non-convex HFL. Simulation results also support the efficiency of the proposed

COCS policy on real-world datasets.

Index Terms—Hierarchical federated learning, client selection, contextual combinatorial multi-armed bandit

1 INTRODUCTION

EDERATED Learning (FL) [1], [2], [3] has become an attrac-

tive ML framework to address the growing concerns of
transmitting private data from distributed clients (e.g.,
mobile devices) to a central cloud server by leveraging the
ever-increasing storage and computing capabilities of the
client devices. In each FL round, clients train local models
using their local data and the cloud server aggregates local
model updates to form a global model. Because only local
model information is exchanged in FL rather than the local
data, FL preserves the data privacy of the clients and hence
has found applications in a wide range of problems, such as
next-word prediction [4] and image classification [5].
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A main bottleneck that limits the performance of FL is the
delay variability among individual clients due to their local
training and model data transfer via the wireless network. In
standard FL, the cloud server has to wait until receiving the
training updates from all the clients before processing any
next step. Therefore, straggler clients who have unfavorable
wireless links or low computation capabilities may dramati-
cally slow down the whole FL process [6], [7]. This is the so-
called “straggler effect”. Various approaches have been pro-
posed to mitigate the “straggler effect”. For example, model
quantization [8] and gradient sparsification [9] schemes aim
to directly reduce the transferred data size and the model
training complexity, thereby reducing all clients’ training
and transmission delay. Asynchronous FL [10], [11] allows
clients to train and upload training data in an asynchronous
manner, and hence the cloud server does not have to wait for
the slow clients to process the next step. Another mainstream
and proven effective approach to address the straggler prob-
lem is client selection, which reduces the probability of strag-
gler clients participating in FL by judiciously selecting clients
in every FL round. However, these mechanisms mainly focus
on the traditional FL and mitigate the straggler effect based
on designing new mechanisms, which is not easy to solve the
straggler effect from FL wireless networks (e.g., large dis-
tance of clients-Cloud Server (CS) and unstable connection).
Thanks to the hierarchical architecture, some existing studies
[12], [13], [14] propose Hierarchical FL (HFL) including mul-
tiple Edge Servers (ESs) which reside between the single CS
and the large number of clients. Instead of communicating to
the CS, clients in HFL only need to download/upload the
training model updates to the nearest ESs. This significantly
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reduces the communication time of the slowest client located
far from the CS and provides more stable connection to save
training time. HFL is able to achieve a faster convergence
speed than the traditional FL architecture both theoretically
[12], [13] and empirically [14].

Although several learning algorithms have been designed
for HFL [12], [13], [14], simplified assumptions have been
made that all clients participate in each round of model
parameter aggregation. This is weak for the straggler effect
since each ES should wait for the slowest client in each edge
aggregation round. Hence, it is necessary to design a new cli-
ent selection mechanism for HFL. However, it is not straight-
forward to apply existing client selection solutions [7], [15],
[16] to HFL due to several unique challenges that HFL faces.
First, since the service area of an ES is much more restricted
than CS and contains overlapping areas, the accessible clients
of each ES are time-varying. This time-varying characteristic
makes the client behavior of opportunistic communication
more complicated, and Network Operator (NO) must care-
fully select the client to the corresponding ES in the overlap-
ping area. Second, since the advantage of HFL is to deal with
the straggler problem, how to design an efficient client selec-
tion policy is more important than traditional FL. Third, the
client selection decision needs to be determined based on
many uncertainties in the HFL network conditions (e.g., the
traffic pattern of client-ES pair and available computation
resources of clients), which affect training performance in pre-
viously unknown ways. Therefore, a learning-based client
selection policy is preferred to a solely optimization-based
policy.

In this paper, we investigate the client selection problem
for HFL and propose a new learning-based policy, called
Context-aware Online Client Selection (COCS). COCS is
developed based on a novel Multi-Armed Bandit (MAB)
framework called Contextual Combinatorial MAB (CC-
MAB) [17], [18]. COCS is contextual because it allows clients
to use their computational information (e.g., available com-
putation resources), and the client-ES pairs transmission
information (e.g., bandwidth and distance). COCS is combi-
natorial because NO selects a subset of client-ES pairs and
attempts to maximize the training utilities (i.e., select as
many as clients in each round) by optimizing the client
selection decision. To the best of our knowledge, COCS pol-
icy is the first client selection decision for HFL. In summary,
we highlight the contributions of this paper as follows:

1)  We formulate a client selection problem for HFL,
where NO needs to select clients to ESs clients to pro-
cess the local training to make more clients received
by ESs before deadline under limited budget. Client
selection policy of HFL has a three-fold problem: (i)
estimate the local model updates successfully received
by ESs with cold-starts, (ii) decide whether a client
should be selected to a certain ES due to time-varying
connection conditions, and (iii) optimize how to pay
computation resources on clients to maximize the util-
ity under limited budgets.

2) Due to the a priori uncertain knowledge of partici-
pated clients, the client selection problem is formu-
lated as a CC-MAB problem. An online learning
policy COCS is developed, which leverages the
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contextual information such as downloading channel
state and local computing time over aggregation
round for making a decision. For the strongly convex
HFL, we analyze the utility loss of COCS, termed
regret, compared to the Oracle solution that knows
the exacted information of participated clients. A sub-
linear regret bound is derived for the proposed COCS
policy, which implies that COCS can produce asymp-
totically optimal client selection decisions for HFL.

3)  For non-convex HFL, the utility function of the con-
vergence speed is quadratically related to the num-
ber of participated clients. By assuming that the
information of each client-ES pair is perfectly known
by NO, we show that the client selection problem is
a submodular maximization problem with M knap-
sack and one matroid constraints, where M is the
number of ESs. We use the Fast Lazy Greedy
(FLGreedy) algorithm [19] to approximate the opti-
mal solution with a performance guarantee. To this
end, the analysis shows that the COCS policy also
achieves a sublinear regret.

The rest of this paper is organized as follows: Section 2
overviews the related works. The system model and client
selection problem of HFL are presented in Section 3. We
design the COCS policy for strongly convex HFL and provide
an analytical performance in Section 4. Section 5 presents the
COCS policy for non-convex HFL, which is applied by the
approximated oracle solutions. Simulation results are shown
in Section 6, followed by the conclusion in Section 7.

2 RELATED WORK

Client selection can efficiently deal with the straggler prob-
lems and significantly improve the performance of FL in
terms of convergence speed and training latency. For exam-
ple, [15] designs a deep reinforcement learning algorithm
(the local model updates and the global model are consid-
ered as states) to select clients. [20] uses gradient information
to select clients. If the inner product between the client’s local
and global gradient is negative, it will be excluded. In [21],
they develop a system model to estimate the total number of
aggregation rounds and design a greedy algorithm to jointly
optimize client selection and bandwidth allocation. Some
biased client selection policies have been developed to
improve the convergence results of conventional FL, [22]
presents the biased client sampling can achieve communica-
tion and computation efficiency and [23] uses clustered client
sampling to reduce the variance of local and global models.
To improve the time-to-accuracy performance of training,
[24] proposes an Oort algorithm that can guide the cloud
server to select clients, and PyramidFL [25] fully exploits
both data and system heterogeneity in a fine-grained man-
ner. These mechanisms mainly focus on conventional FL,
which differs from our scenario (client selection for HFL).
HFL has been considered to be a more practical FL
framework for the current MEC system, since the hierarchi-
cal architecture makes FL communication more efficient
and significantly reduces the impact of straggler [12]. Later,
some studies improve the performance of HFL from differ-
ent perspectives or use it in some other applications. For

example, [13], [14] %rocpose a detailed convergence analysis
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of HFL, showing that the convergence speed of HFL
achieves a linear speedup of conventional FL. Recently, FL
has attracted the more interest, especially for ML on IoT
devices. [26] designs a hierarchical blockchain framework
for knowledge sharing on smart vehicles, which learns the
environmental data through ML methods and share the
knowledge with others. [27] uses HFL to better adapt to per-
sonalized modeling tasks and protect private information.
The MAB problem has been extensively studied to
address the key trade-off between exploration and exploita-
tion making under uncertain environment [28], and it has
been used in FL for designing the client scheduling or selec-
tion [29], [30], [31]. For example, [17] considers an MAB
problem for the edge service provisioning and [18] studies
the optimal sniffer channel assignment for small cell cogni-
tive radio networks. It has also been widely used in FL for
designing the client scheduling or selection [29], [30], [31].
[29] designs a client scheduling problem and provides a
MAB-based framework for FL training without knowing
the wireless channel state information and the dynamic
usage of local computing resources. In order to minimize
the latency, [30] models fair-guaranteed client selection as a
Lyapunov optimization problem and presents a policy
based on CC-MAB to estimate the model transmission time.
A multi-agent MAB algorithm is developed to minimize the
FL training latency over wireless channels, constrained by
training performance as well as each client’s differential pri-
vacy requirement in [31]. In this paper, the COCS policy is
proposed to select clients for HFL. In traditional FL, CS con-
nects all clients and the available set of selecting clients does
not change in each aggregation round. However, in HFL,
due to the dynamic connection conditions of the client-ES
pair and the limited available computing capacities of cli-
ents in each edge aggregation round, we cannot assume
that each ES can make a selection decision for the same cli-
ent set, which indicates that the COCS policy must face two
constraints for deciding which clients can be selected and
how to rent the computational resources. These two con-
straint can be divided into two different categories: knap-
sack and matroid constraints rather than single constraint
MAB problems [17], [18], which brings more challenges.

3 SYSTEM MODEL AND PROBLEM FORMULATION

3.1 Preliminary of Hierarchical Federated Learning

The Network Operator (NO) leverages a typical edge-cloud
architecture to set a Federated Learning (FL) service, where
it is named as Hierarchical FL (HFL) [12], [13], [14] in Fig. 1.
Unlike the conventional FL [1], [2], [3] only including clients
and a Cloud Server (CS), HFL consists of a set of mobile devi-
ces/clients, indexed by A" = {1,2,..., N}, a set of Edge Serv-
ers (ES), indexed by M = {1,2,. M } and a Cloud Server
(CS). Let NV, t—={1,2,.. LN} denote the set of clients, which
can communicate with the ES m in edge aggregation round ¢.
Note that the communication area of different edge server
may be overlapped (i.e., Y | N! > N). The clientn € N is
able to communicate to a subset of ESs sz C Minround t. In
particular, we assume that each client is equipped a single
antenna such that it only communicates with one ES m € C/,
even it is located in the overlapped area in each round. Let w

denote the parameters of the global model. The goal of the
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Fig. 1. The architecture of HFL.

FL service is to find the optimal parameters of global model
w, which minimizes the average loss function f(w) under the
HFL network as follows:

MZSZ w), )

meM “M nesy,

HllIl flw

where s,, is the selected client set by the ES m with the num-
ber S, in each edge aggregation round, F,(w)2 Z&w%
l(w;&,) is the loss function associated with the local dataset
D,, on client n, and 4(w;&,) is the loss of data sample &,. The
objective of the loss function F},(-) can be convex (e.g., logistic
regression) or non-convex (e.g., Convolutional Neural Net-
work (CNN) and Long Short-Term Memory (LSTM)). The
training steps of HFL can be summarized as follows:

(i) First, each ES m randomly selects a subset of clients
st C N in its coverage area. Even if a client is in the over-
lapplng area, is is only allowed to communicate with one ES
in one round. We assume that the HFL network contains a
backhaul link to transmit the selected clients to avoid that
some clients are selected on multiple ESs. Each client n
selected by ES m downloads the edge model w!, and sets it
to be the local model v}, = w!,, Vn € s,

(ii) Then, each Chent n takes £ epochs to update its own
local model by Stochastic Gradient Descent (SGD) from its
dataset D,, as follows:

t+e+1

w! et = I+e - g( l+e.€i+e)’ (2)

where ¢=0,1,...,E—1, n, is the learning rate, and
glwle g*e) is the stochastic gradient of F,(w) (.e.,
E ’*PND [g( t+e. fH—L)] VFVH( t+5)).

(i) After E local trammg epochs, client n € S/, uploads
the local model updates Al 2w!*f~! —w! to the ES m.
Instead of aggregating all local models on CS at the end of
round ¢ [1], [2], [3] of conventional FL, local model updates
are averaged within ES m to be edge model w';, called edge
aggregation, which is given as follows:

w, " = Z A 3)

" nest,

(iv) After Tyg rounds of edge aggregatlon global model
w' is computed by w' = LM w! Wt = {Tis, 2Tks, .. .}
from all M ESs, called global aggregation. Then each ES m
downloads the global model to be its edge model w!, = w'.
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Repeating the above four steps with a sufficiently large
round 7', NO will achieve the global model w = w’ and
stop the training process. HFL has been demonstrated that
it achieves a linear speedup of convergence to conventional
FL algorithms [13], [14].

3.2 Cost of Client Selection

Since clients usually do not belong to NO, clients are
required to charge NO for the amount of requested compu-
tation resources for collecting dataset and processing the
local training to achieve the learning goal. At the beginning
of each edge aggregation round, each client reveals its avail-
able computation resources 3!, to NO, which includes CPU
frequency, RAM and storage, etc., in order to process the
current local training updates.

Each client sets a price for its computation resources. Let
cn(yh) denote the price charged by client n, where ¢,(-) is a
non-decreasing mapping function related to the price for
computation resources y.,. Due to the limited rental budget
B of NO, for any edge aggregation round t, the client selec-
tion decision NO must satisfy the budget constraint

ZmEM ZnES% C”(yiL) < B

3.3 Deadline Based HFL
In summary, an edge aggregation consists of four stages:
Download Transmission (DT), Local Computation (LC), Upload
Transmission (UT) and Edge Computation (EC).

In DT stage, the selected client n € s/, downloads the
current edge model from the ES m. Followed by Shannon’s
equation, the channel state of DT ¢}, is calculated by:

CET,TL = 10g2(1 + Prtlgf)T,n/NU)» (4)

where P! is the transmission power, gh,, is the downlink
wireless channel gain and Nj is the noise power. Let apr
denote the downloading data size (i.e., size of edge model
w!) and the allocated bandwidth is ¥, in the edge aggrega-
tion round t. Therefore, thus the DT time for client n is
tf)T,n = aDT/(b;C}ST,n)'

Once the client n receives w!,, training comes to the LC
stage (i.e., it updates the local model using its own dataset
D,, according to (2)). The LC time of each client is deter-
mined by the local computation resources i/, in the current
round ¢. Given the computation resources gy, > 0, the LC
time can be obtained as 7}, (v,) = ¢/v/,, where ¢ is the com-
putation workload, which is based on the complexity of
learning model and data.

When the LC is finished, client n uploads its local model
updates A" to the ES m. Similar to the channel state defini-
tion of DT in (4), the channel state of UT is ¢{;, =
10g2(1 + Rig%T,n/NO) and UT time is T%T,n = aUT/(bflc{JT.n)/
where gl;;, is the uplink channel gain and ayr is the
uploading data size (i.e., size of AL'").

Finally, if the local model updates of all selected clients are
received by ESs, the edge models should be computed in (3).
The EC time is rtECJn = ¢n/Ym, where ¢, is the edge model
workload and y™ is the process capacity of the ES m. Note
that 7, should be different for every ES m. However, since
the EC stage only takes the average calculation of the received
local model updates according to (3) and the capacity of ES g,,,
is always very large compared to clients’, this does not waste
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Fig. 2. HFL training performance with different number of participating
clients in each edge aggregation round.

much running time compared to the other three stages. The
difference of trc,, across all ESs is small and negligible, and
hence NO does not need to consider the influence of T .. As
such, the training time of client n is defined as follows:

T:l(y:l) = TBTﬁn, + rILC,n(yZ;L) + thT,n

a%T,n (5)

t

a
DT, q
- ,  Vn,t.

T g
bn CDT,n Yn bn, CUT,'n

Due to some physical limitations (e.g., low computation
capability and unstable communication), some clients may
incur huge training latency in one edge aggregation round.
Therefore, the deadline-based FL [32], [33], [34] is more realis-
tic to deal with straggler clients. Specifically, ESs drop the cli-
ents whose the local model updates cannot be received
before the deadline tgeaqn (e, client n such that
T > Tdgeaam)- In this paper, we consider deadline-based
HFL. Therefore, the edge aggregation can be reformulated:

1 t ot : t
Z . Xt ZnES;l ann7 if ansﬁn Xn Z Z
wt — nes,, N (6)

m 1 t
7 Zr; <tz wy, else

where X! is a binary random variable representing whether
client n’s model update can be received before the deadline
(i.e., if T, < Tgead.m, X!, = 1; otherwise, X! = 0), and 77 is the
training time of the Zth fastest client. In Fig. 2, we can see
that if each ES only receives 3 local model updates, the train-
ing performance has large degradation and variance. In
order to guarantee a minimum level of training perfor-
mance, we require that at least Z local model updates must
be received for edge aggregation. Therefore, in case less
than Z clients” updates are received before the deadline, the
system has to wait for some additional time 7 — Tdead,m- FOT
practical values of Z — Tdead,m, the probability of having
less than Z client updates received before the deadline is
small. For analysis convenience, we assume that at least Z
client updates can be received before the deadline in every
edge aggregation round. In addition, we assume that the
deadline of all ESs are set the same, tgeadm = Tdead; V1. The
extension to heterogeneous deadlines is straightforward.

3.4 Utility Function of Client Selection of HFL

Some existing HFL studies [13], [14], [35] have demon-
strated that the convergence speed depends on the number
of participating clients in each edge aggregation round for
both strongly convex and non-convex HFL (i.e., the more
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clients participated, the faster convergence speed). In order
to support the theoretical results, we show the training per-
formance on our simulated HFL network with M =3 and
N =80 in Fig. 2, and it is observed that more participating
clients on ESs can improve the performance in both the
strongly convex and non-convex HFL settings.

For now, we consider strongly strongly convex HFL,
where the convergence speed is linearly dependent on the
number of participating clients. The client selection policy
for non-convex HFL will be developed in Section 5. As in
[32], [33], [34], not all the selected clients in sfn may reach the
EC stage (i.e., >, . X! < S!) due to straggler drop-out. To
achieve a targeted néonvergence criteria, NO thus needs to
run more FL rounds, thereby incurring a higher training
cost. Therefore, it is necessary to develop an efficient client
selection policy to improve the convergence speed for HFL,
where more clients can participate in every round without
dropping out. Let X!, = {X! }, - then the utility of the

m n,m

client selection decision on ES m is defined as:

/'L(Sin;an) = Z sz,m' (7)

nesh,

Further, let s' = {s},s!,...,si,} denote the client selection
decision of the overall system and X' = {X|, X},..., X', }.
Therefore, the utility function of the whole HFL network is
defined as:

u(sh X') = % DD X ®)

neMnpest,

3.5 Client Selection Problem Formulation

The client selection problem for NO is a sequential decision-
making problem. The goal of NO is to make selection decision
s', Vt to maximize the cumulative utility for a total of T’ aggre-
gation rounds. If an ES selects very few clients, its training
performance may be degraded and the computation resour-
ces of computation resources of ESs may be wasted. Since N/,
is time variant in each edge aggregation due to the clients
movement, we assume that the location of client n is uni-
formly distributed in the HFL network. Moreover, as Tgg is
usually set larger than 1, NO cannot allocate the total budget
B to M ESs in each edge aggregation round. Therefore, we
consider that NO equally divides the budget among the ESs
(i.e., for each m, its budget is B = B/ M). Assuming that NO
knows a priori whether a selected client can return its model
updates to the corresponding edge server in time, namely
X', Vt, then the client selection problem is formulated:

T
P1: max 1 ;M(St;Xt) (9a)
s.t. Z ea(yl) < B, Yme M (9b)
nest,
sin c N:n? vm,t 90
shnsh, =0, mm' e MVt (9d)

The following challenges should be addressed to solve the
client selection problem in HFL networks: (i) For maximizing
the expected training utility of HFL, it is necessary to precisely

estimate the selected clients in each edge ag%lre ation round.
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In addition, since NO does not have enough experience to
determine the selected clients at the first several rounds (i.e.,
cold start), collecting the historical data for estimation is impor-
tant for this policy. (ii) With the successful participated clients
estimation, how to optimize the selection decision on each ES
under the limited budget should be carefully considered,
because high variance of number of participated clients on
each ES degrades the training performance. Therefore, we
equally separate the total budget to each ES (constraint (9b)).
(iii) Due to the movement of each client and the overlapping
areas across all ESs, the available connecting ESs can be consid-
ered as time-varying (constraint (9c)), we must decide the cli-
ent-ES pairs especially for the clients in overlapping areas,
which brings more difficulties to make an efficient client selec-
tion decision. Note that constraint (9d) can guarantee that each
client only can be selected to communicate with at most one
ES. (iv) Since the selection decisions are based on the estimated
participated clients X?, the accuracy of participated clients esti-
mation will directly influence the training utility of NO. After
finishing the EC stage, ESs can process the client selection for
next round (i.e., processing in DT, LC, and UT stages). The
advantage is that if the client selection can be finished before
td it does not waste extra training time. The following sec-
tion will propose an policy based on the Multi-Armed Bandits
(MAB) in order to address the mentioned challenges.

4 CONTEXT-AWARE ONLINE CLIENT SELECTION
PoLicYy FOR STRONGLY CONVEX HFL

In this section, we formulate our client selection problem of
HFL as a Contextual Combinatorial Multi-Armed Bandit (CC-
MAB). The combinatorial property is because NO pays com-
putation resources from multiple clients for maximizing the
training utility. The contextual property is because NO lever-
ages contexts associated with clients to infer their participated
probabilities. In this paper, whether successfully participating
in the corresponding ES depends on many side factors, which
are collaboratively referred to as context. We use contextual
information to help infer the number of participated clients.

In CC-MAB, NO observes the context of clients at the
beginning of each edge aggregation round before making
the client selection decision. Recall that the participated
probability of a client-ES pair depends on ., 4, and {1,
in (5). At each edge aggregation round ¢, ES can measure the
the channel state cf;, by inferring the received signal
strength of the received local model updates [36], [37]. Based
on ¢},r, and bandwidth b/, ESs can compute the DT rate
T, Since the movement speed of clients is slower than the
transmission speed of wireless signals, while NO cannot
know the UT rate 7}, it is not difficult to be inferred by
b, (suppose that clients do not locate in the same area in
each edge aggregation round). Therefore, we set ¢}, , as con-
text and use the information to help significantly improve
the participated probabilities of client-ES pairs.

Let ¢/, ,, € @ be the context of client-ES pair (n,m) in edge
aggregation round ¢. Without loss of generality, we normalize
!, in a bounded space ® = [0,1]” using min-max feature
scaling. Let ¢ = {¢}, , },,, ,ent denote the context of all clients
on ESs. The context of all clients on ESs are collected in ¢' =
{¢),n ymment - Whether successful participation of client n on
ES m is a random variable parameterized by the context ¢/

n,m*
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We simplify the notation of selected clients and define the con-
text-aware X!, (¢! ). Specifically, X, ,, is a mapping function
for each client-ES pair (n,m), since the training time of clients
is usually location-dependent (e.g., the distance between cli-
ents and ES, communication environment, and other process-
ing tasks on a client). =~ We  further define
P (D) 2 B[ X0 (8] m)] as the expected value (i.e., the par-
t1c1pated probability X7, ~ Bernoulli (Pl 1)) Of Xy (@)

4.1 Oracle Solution and Regret

Similar to the existing CC-MAB studies [17], [18], before pro-
viding our policy design, we first give an Oracle benchmark
solution to the client selection problem of HFL by assuming
that the NO knows the context-aware successful participated
probability p!, . (¢, m) Vm,n € N, . In this ideal setting, the
utility function u(s';p') is perfectly known by NO, and thus
we can get the optimal value of the client selection problem.
The long-term selection problem P1 can be decomposed into
T independent subproblems in each edge aggregation round:

P2: maxy u(s';p') (10a)

s.t. Z cn(y;) <B, YmeM (10b)
nES;”

s, CNL, Vm,t (10¢)

shonst, =0, m,m € M,V (10d)

P2 is a combinatorial optimization problem with A
Knapsack and a Matroid constraints. The combinatorial prop-
erty is because NO should choose a proper client selection
decision to optimize participated probabilities on all ESs in
order to achieve higher convergence speed. Knapsack con-
straints are from the constraint (10b), which bounds compu-
tation resources payment on each ES.

To prove that (10c) is a matroid constraint, we first state
the definition of matroid. A matroid £ = ((X), ()) is a system
with independents sets, in which X is a finite set (named the
ground set) and Z represents the set of independent subsets
of X. It has the three properties: (1) § € 7 and X has at least
one subset of X; (2) Foreach AC BC X,if A€ Z, then B ¢
Z;, 3) If A,BeZ, and |A| < |B|, then 3 € B\ A such that
A{z} € Z. In the subproblem P2, let X = U,e N ﬁn denote
the ground set of matroid £ = (X,Z), and Z = {I;, I»,...}
consists of subsetsof X (i.e.,I; C X, I, C X,...),whereall ] €
7 includes at most one client from N m for each m e M. We
canwrite [ as [ = Uy, ms' ,s.t.s! € Nm, Vm. In this paper, 7
is the set of all feasible client select1on decisions. Therefore, it
can be verified that (10c) is a matroid constraint [18].

Based on our analysis, it is easy to observe that P2 is NP-
hard, and hence it can be solved by brute-force, if the size of
the HFL network is moderate. If the HFL network is too
large, NO can use some commercial software to obtain the
optimal solution (e.g.,, CPLEX [38]). For simplicity, we
define the optimal Oracle solution for each P2 in edge
aggregation round ¢ is s°". However, in practice, obtaining
the prior knowledge of participated clients is infeasible,
thus NO has to make a selection decision s' based on the
estimated participated clients X in each edge aggregation
round. Intuitively, NO should design an online client selec-
tion policy to choose s based on the estimation X*. The per-

formance of an online client selection policy is calculated by
Authorized licensed use limited to: UNIV
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utility loss compared with the Oracle solution, called regret.
Suppose that we have a selection sequence {s',s?,..., s’}
given by a policy, the expected regret is

EIR(T)) = S0 (Blu(s™ X)) — Elu(s: X)) (D

The expectation is concerning with respect to the decisions
made by the client selection decision policy and the partici-
pated clients over contexts.

Algorithm 1. Context-Aware Online Client Selection
(COCS)

Input: 7', hy, K(t).
Initialization: Create partition L7y on context space ®; set
Con(1) =0, Ep(l) =0 B, (1) = 0,¥n € N Vm € M, VI € L.
1: fort=1,...,T do
2:  Observes the context of clients on ESs ¢';
3:  Determine C!*' and V", and estimate the participated
clients X' based on the contexts ¢';
if N "' £ () then
Nuet # 0, Vn then

4
5
6: Determine s’ by solving (14);
7.
8
9

> Exploration

else
Get §' by solving (15);
Select the clients in N** "by solvmg (17) and determine
the client selection decision s';
10: end if
11:  else > Exploitation
12:  Determine the client selection decision s’ by solving (18);
13:  endif
14: forn e N do > Update
15: Identify each ES m successfully receives the client n

before 7% and context hypercube I that belongs to
t
n Sm
16: Observe whether the selected client n successfully par-

ticipates on ES m as X, n,;

17: Update estimations: p,, ., (1) = BumCnmOFX,

Com(D+1 7
18: Update counters: C,, ,,, (1) = C (1) + 1;
19:  end for
20: end for

4.2 Context-Aware Online Client Selection Policy
Now, we will present our online client selection decision policy
name Context-aware Online Client Selection (COCS). The
COCS policy is designed based on CC-MAB. In edge aggrega-
tion round ¢, the process of COCS of NO is operated sequen-
tially as follows: (i) NO observes the contexts of all client-ES
pairs ¢’ = {¢' .}, et s ¢!, € ®. (i) NO determines its selec-
tion decision s' based on the observed context information ¢’ in
the current round ¢ and the knowledge learned from the previ-
ous t — 1 rounds. (iii) The selection decision s' is applied. If s!, /
=0, Vn € st , the clients located in the coverage area of ES m
can be selected by ES m for training in round ¢. (iv) At the end
of each edge aggregation round, the local model updates A’
from which clients are observed by all ESs, which is then used
to update the estimated participated clients X,,,, (¢!, ) from
the observed context ¢/, of client-ES pair (n, m). Note that in
this paper, we consider how to properly allocate the computa-

tional resources to i T}grove the training performance in FL.
from IEEE Xplore. Restrictions apply.
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Instead of computational resources, our policy can easily
extend to other scenario such as spectrum resources [39], [40].

The pseudocode of COCS policy is presented in Algo-
rithm 1. It has two parameters K (t) and hr to be designed,
where K(t) is a deterministic and monotonically increasing
function used to identify the under-explored context, and
hr decides how we partition the context space. The COCS
policy is stated as follows:

Initialization Phase. Given parameter hr, the proposed policy
first creates a partition denoted by L for the context space & =
[0, 1]%, which splits @ into (hr)? sets. Each set is a 2-dimensional
hypercube with size % X -ee X % Note that /7 is an important
input parameter to guarantee policy performance. For each
hypercube [ € L, the NO keeps a counter C?,, (1) for each cli-
ent n € N and each ES m € M. For the tuple (n,m,l) of a
counter C;, (1) for each client-ES pair (n,m), we define a selec-
tion event V},,,; that represents a selection decision satisfying
the following three conditions: 1) the client n € N/, is selected
to an ES m; 2) the ES m successfully receives the client n before
Taead (€., 7! < T4ea); 3) the context of client-ES pair (n,m)
belongstol (i.e., ¢!, ,, € ). The counter C!, (1) stores the number
of times that the event V,,,,,; occurs until edge aggregation round
t. Bach ES m also saves an experience &, (1) for each client n
and each hypercube [, which contains the observed participated
clients indicators when a selection event V/, ,,,; occurs. The expe-
rience &, (1) is useful for making the future decision whether
coming into exploration or exploitation phase. Based on the
observed participation indicators in & (1), the estimated par-
ticipated probability for a selection event V;, ,,,; is computed by:

. 1
Pi,m(l)zct— Z X.

(12)
n,m (Z) Xegimﬂ(l)

In each edge aggregation round ¢, the COCS policy has
the following phases:

Hypercube Identification Phase. If the local model updates
Al of clientn € !, can be successfully received by an ES m
in edge aggregation round ¢, we obtain that I/, is the hyper-
cube for the context ¢! , , the estimated participated proba-
bility of client n on ES m is X!  =p!, (I',). Let
X' ={X! . }ynent denote the collection of all the esti-
mated participated probabilities. For making a client selec-
tion decision, COCS policy needs to check whether these
hypercubes have been explored sufficiently in order to
ensure the enough accuracy of the estimated participated
probability for each client-ES pair (n,m). Therefore, we
define under-explored hypercubes L (¢') for the ES m in
edge aggregation round ¢ as follows:

Loyt e {l €Lr o €9 I € 1 < Ta } (13)

and C! (1) < K(t)

n,m

Also, let V' (¢') £{n € N |I!, , € L1'(¢')} denote the col-
lection of the under-explored client n for each ES m. The
challenge of COCS policy is how to decide the current esti-
mated participated clients are accurate enough to guide the
client selection decision in each edge aggregation round,
which is referred as exploitation or more training results
need to be collected for a certain hypercube, which is
referred to as exploration. COCS policy aims to balance the
exploration and exploitation phases in order to maximize
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the utility of NO up to a finite round 7. Based on the
N'(¢)', COCS can identify that then either enters an
exploration phase or an exploitation phase.

Exploration Phase. First, let N (¢') 2 {n € N, IN'" # 0}
denote an ES m has under-explored clients, and V% (') 2
NA\N"!(¢") denote the ES m does not have under-
explored clients. If the ES m has a non-empty N, then
COCS enters the exploration phase. We may have two cases
in exploration phase:

(i) All the clients have under-explored ESs. NO hopes to
receive more local training updates A’. Thus, COCS policy
aims to select as many clients that have under-explored ESs

sequentially solved by the following optimization:

maxy |s'|  s.t. (10b), (10c), (10d), (14)

where |s'| is the size of the collection s' = {s|,s},..., s, }.

(i) Part of ESs have under-explored clients IN"" £ ().
We divide this case into two stages: NO first selects ESs that
have under-explored clients m € A" by solving the fol-
lowing optimization:

maxy  [5'] (15a)
st > ) <B, YneNS' VmeM  (15b)

neéfn

st € N:n U{null}, Vne ./\/‘;ff (15¢)

§.Ns, =0, m,m eM,Vt (15d)

where §' is client selection decision on ES m that has under-
explored clients and |3'| is the size of the collection 3 =

{s8,8,,...,8%,}. Second, ESs aim to select the explored cli-
ents Vn € N ffL“ Here, we assume that there exists ESs that
B— Zneéfm ca(yl) > ™t m e M, where ¢t = min _ et
¢a(y!), ¥m. Therefore, ESs can select the clients n € N
with the following constraint:

Z Cn(yﬁl) <B- Z C7l(y:z,)7 Vn € N?sﬁt‘

t o\ gt
TIESm\Sm

(16)
neéin
If not, NO does not need to select clients in N"*** due to no

budget left. Under this condition, the client selection deci-
sions are jointly optimized the following optimization:

maxy u(s'; X' (17a)

s.t. B— Z en(yl) > At m e M, (17b)
nest,

(15b), (15¢), (16). (17¢)

Exploitation Phase. If the set of under-explored clients is
empty (e, N =@, ¥m), then COCS policy enters the
exploitation phase. The optimal client selection decision s'
is derived by solving P2 from the current estimated partici-
pated clients X':

maxy u(s'; X') s.t. (10b), (10c). (18)

Update Phase. After selecting the client-ES pair in each
round ¢, the proposed COCS policy observes whether the
local model updates of selected clients can be received
before the deadline t'**%; then, it updates ¢/, (1) and C , (1)
of each hypercube [ € L.

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 22,2023 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.
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4.3 Performance Analysis

To present an upper performance bound of the COCS policy
in terms of regret, we make the following assumption that
the participated clients are similar when their contexts are
similar. This natural assumption is formalized by the fol-
lowing Holder condition [17], [18], which is defined as
follows:

Assumption 1. (Holder Condition). If a real function f on
D-dimensional euclidean space satisfies Hodel condition, there
exists L > 0, « > 0 such that for any ¢, ¢’ € ®, it holds that
|£n(9) — fu(@)| < Ll — ¢'||* for an arbitrary client n € N,

where || - || is the euclidean norm.

By providing the design of the input parameters K (¢) and
hr, we show that COCS policy achieves a sublinear R(T) =
O(T7) with y < 1, which guarantees that COCS has an
asymptotically optimal performance. This means that the
online client selection decision via COCS policy converges to
the Oracle solution. Because any edge aggregation round is
either in the exploration or exploitation phase, the regret can
be divided into two parts R(T) = Rexplore(T) + Rexploit(T),
where Reypiore(T) and Rexpoit(1') are the regrets due to explo-
ration and exploitation phases, respectively. The total regret
bound is achieved by separately bounding these two parts.
Therefore, we present two lemmas for bounding exploration
and exploitation regrets.

Lemma 1. (Bound of E[Rexpiore(T')].) Given the input parameters
K(t) = t?log (t) and hy = [T7], where 0 < z < 1 and 0 <
y < 1, the regret E|Euqpiore(T)] is bounded by:

4N*MB

CHllIl

E[Eexpl()re(T)] S (TZ+2leg (T) + TQV),

min __ .3 t
where ™ = min; v, (Y,)-

Proof. See in online Appendix A, available in the online
supplemental material [41]. ]

Lemma 1 shows that the order of Regior(T) is deter-
mined by the control function K(T') and the number of
hypercubes (hr)? in partition Lr.

Lemma 2. (Bound of E[Rexploit(T')].) Given K (t) = t*log (t) and
hy = [TY], where 0 < z < 1and 0 < y < i, if the Holder
condition holds true and the additional condition 2H(t) +
ANMB 1 95pe. < AtY is satisfied with H(t) > YMB4=5, A > 0,

cmin cmin

0 <0, for ull t, then E[Rexpioit (1)) is bounded by

B/Cmin N 7T2
— Cmin k=1 k ?

3NMBL2%T17}/(X+ A 711+t97

cmin 146

NMB
E [Rexploit (T)] < (

min

where ™™ = min; v, . (y),)-

Proof. See in online Appendix B, available in the online
supplemental material [41]. ]

Lemma 2 indicates that the regret of exploitation
E[Rexploitation(I')] depends on the choice of z and y with an
additional condition being satisfied. Based on the above
two Lemmas, we will have the following Theorem for the
upper bound of the regret E[R(T')].
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Theorem 1. (Bound of E[R(T)].) Given the input parameters
K(t) = t*log (t) and hy = [T7], where 0 < z < 1 and 0 <
y < %, if the Holder condition holds true and the additional
condition 2H (t) + 2NMB 195pe < At? is satisfied with H(t) >

cmin

NMBy=3 A > 0,6 < 0, for allz‘ then the regret E[R(T)| can

cmin

be bounded by:

AN?MB ., ,
E[R(T)] < — o (T7log (T) + T7)

NMB prenn [ N\ 72
+ Cmin (Zk‘:l ( k )) ?

3NMB

LT 7 4 T

1 +0
min __ .3 t
where ™ = min; v, (Y),).

Proof. See in online Appendix C, available in the online
supplemental material [41]. O

The regret upper bound in Theorem 1 is given with prop-
erly choosing input parameters K(t) and h;. However, the
values of z,y, A and 6 are not deterministic. Next, we will
show that the regret upper bound of E[R(T)] in these
parameters design.

Theorem 2. (Regret upper bound) If we select z = 32%5 € (0,1),
y=%,0=—-% A= ZﬁﬁBt + H\,’r}lﬁBL? and COCS algo-
rithm runs with these parameters, ‘the regret B[R(T)] can be

bounded by:

4N?MB

200+2 2
E[R(T)] S cmin (log (T)TW + Tm)

NMB [ <=5/ [ N\\ 72
cmin k=1 k 3

o 2+ L2% NMB, 22

3L22 3a+2

+( +(2a+2)/(3a+2)) T
where ™" =min , ¢, (y,,). The dominant order of the

20+2

regret E[R(T)] is O(2MB T5log (T)).

Proof. See in online Appendix C, available in the online
supplemental material [41]. O

The dominant order of regret upper bound indicates the
COCS policy in Theorem 2 is sublinear. In addition, the
regret bound is valid for any total rounds 7', and it can be
used to characterize the convergence speed of HFL.

4.4 Complexity Analysis

The space complexity of COCS policy is determined by the
number of counters C! (I) and experiences &, (I) main-
tained for hypercubes. Because the counter is an integer for
each hypercube, the space complexity is determined by the
number of hypercubes. The experience &/ m(l) is a set of
observed successfully participating clients records up to
round ¢, which requires a higher memory. However, it is
unnecessary to store all historical records, since most esti-
mators can be updated recursively. Therefore, the NO only
needs to keep the current participated clients estimation for
a hypercube. If COCS is run with the parameters in Theo—
rem 2, the number of hypercubes is (hr)? = (TW 1?, and

thus the required space is sublinear in total rounds 7. This
TC from IEEE Xplore. Restrictions apply.
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means that when 7" — oo, COCS will require infinite mem-
ory. In the practical implementations, NO only needs to
keep the counters and experiences of hypercubes to which
at least one of the observed contexts occurs. Therefore, the
practical space requirement of some counters and experien-
ces is much smaller than the theoretical requirement.

5 COCS PoLicy FOR NON-CONVEX HFL

In this section, we will discuss the solutions for the client
selection problems for non-convex HFL (e.g., neural net-
work), where the convergence speed is quadratically related
to the number of participated clients in each edge aggrega-
tion round [13], [14]. Similar to the strongly convex HFL in
(7), the utility function of non-convex HFL is

1
t. ty
/’Ln()n(s ’X ) - \/M ZWGM Znesin X'fl*m'

Therefore, the client selection problem of non-convex HFL
in edge aggregation round ¢ is formulated as follows:

(19)

P3: maxy pn(s'; X") s.t. (10b), (10c), (10d).

(20)

The problem P3 is also a combinatorial optimization prob-
lem. While brute-force search can always find the optimal
solution, the complexity can be high due to the non-linear
property in (20). In order to address this problem, we aim to
design an efficient polynomial runtime approximation algo-
rithm to solve P3 in the next subsection. We will show the
performance guarantee of the approximation algorithm.

5.1 Approximated Oracle Solutions

To solve the problem P3, we first show that P3 is a mono-
tone submodular maximization problem with M knapsack
and a matroid constraints. Below gives the definition of the
monotone submodular maximization [42]:

Definition 1. (Monotone Submodular Maximization.) A set
function F : 2! R is monotone increasing if VAC BC I,
F(A) < F(B). In addition, the function F(-) is submodular if
VACBCI and ecI\ B, F(AU{e})— F(A) > F(BU
{e}) — F(B).

Theorem 3. P3 is a monotone submodular maximization with
M knapsack and a matroid constraints problem.

Proof. See in online Appendix D, available in the online
supplemental material [41]. ]

To facilitate the solution for non-convex HFL in P3,
approximation algorithms are efficiently obtained approxi-
mate solutions in polynomial runtime. Some existing stud-
ies are focusing on solving the submodular maximization
with knapsack and matroid constraints [19], [43], and they
proposed the approximation guarantee to the optimal solu-
tion. In this paper, we use the Fast Lazy Greedy (FLGreedy)
algorithm in [19] to achieve the approximated oracle solu-
tion with mapproximation guarantee, where € is an
error parameter in the FLGreedy algorithm. If € is small,
FLGreedy can achieve high approximation guarantee but

have high computational complexi
uthorized licensed use limite

ty.
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The FLGreedy algorithm acquires the client selection deci-
sion of the client sequentially, which starts with the all-null
decisions. In each edge aggregation round, it selects a client
to an ES that gives the largest incremental learning utility.
Because each client can only be selected at most one ES and
each iteration decides the client selection decision for one cli-
ent, the algorithm terminates in at most M iterations. Based
on the results for submodular maximization with a knapsack
and a matroid constraints in [19], the FLGreedy algorithm

guarantees to yield a MTM)-approximation for P3:

Lemma 3. In an arbitrary edge aggregation round t, let s*' be
the client selection decision solved by FLGreedy algorithm and
s°PUE be the optimal client selection decision for the problem P3,

we will have pu(s*; X") > mﬂ(soptt; Xt)_

Proof. The proof follows [19] and hence is omitted. O

We use FLGreedy to approximate the optimal client
selection decision with oracle information on participated
clients. Note that the actual performance of the FLGreedy
algorithm is usually much better than the WM approx-
imation ratio in practice.

5.2 Performance Analysis of COCS Policy for Non-
Convex HFL

The regret in (11) is used when the optimal oracle solutions
can be derivable. Because the FLGreedy algorithm can effi-
ciently approximate the optimal oracle solution for P3 instead
of obtaining the optimal oracle solution. As such, we leverage
the definition of §-regret, which is usually used in MAB based
on approximation algorithms [44]. For a é-approximation
algorithm (i.e., the solution s' solved by the approximation
algorithm satisfies u(s'; X*) > & u(s°"'; X")), for problem P3,
the §-regret is

T T

R(S(T) _ Z 'u(sopt,t;Xt) _ ZM(St§Xt)-

t=1 t=1

(21)

S| =

Because the FLGreedy algorithm for the problem P3 has an
approximation ratio of m, COCS policy obtains § =
m The definition of §-regret essentially compares
the utility of a policy with the lower bound of the approxi-
mated oracle solution.

Next, we aim to present the input parameters K(t) and
hr and propose a regret upper bound for COCS policy. The
regret analysis is also proved based on the Holder condition
in Assumption 1. Given the input parameters K(t¢) and hr
in Theorem 4, we achieve a sublinear regret upper bound of
COCS policy for P3 as follows:

Theorem 4. (5-Regret Upper Bound.) If K(t) = t%log (1),
hy = [T3+2], Holder condition holds true and a §-approxima-

tion is applied for optimization, then the dominate order of
2042

8-regret B[R (T)] is O(L2ME Tiat3log (T)).

§emmin,

Proof. See in online Appendix E, available in the online
supplemental material [41]. O

The regret upper bound given in Theorem 4 implies that
COCS policy performs well enough if the subproblem in each

edge a§§regation round can only be derived approximately.
ugust 22,2023 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.
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A sublinear §-regret can be achieved based on the perfor-
mance guarantee of -approximation algorithms.

6 SIMULATIONS

6.1 Setup

Datasets and Training Models. We set up the simulation with
PyTorch and the computation is conducted by a workstation
with 2 NVIDIA RTX 2080 GPUs. We have prepared two data-
sets for evaluating our proposed COCS algorithm. Specifically,
MNIST dataset [45] under a logistic regression, which is widely
used for strongly convex FL studies [2], [46]. For the non-con-
vex HFL, we use CIFAR-10 dataset [47] by adopting a CNN
with two 5 x 5 convolution layers, followed with 2 x 2 max
polling, two fully-connected layers with 384 and 192 units, and
finally a softmax output layer. The NLP dataset is built from
Complete Works of William Shakespeare Shakespeare dataset
[1]. We use a two-layer LSTM classifier with 100 hidden units
and an 8D embedding layer. To this end, there is a densely-
connected layer. For each simulation, we distribute the dataset
among N = 80 clients in a general non-iid fashion such that
each clients only contains samples of only two labels.

Contexts. For the context generation, in each edge aggre-
gation round, we assume the allocated bandwidth of all cli-
ents is sampling from a uniform distribution between
U ~[0.3,1] for MNIST dataset and U ~ [2,4] for CIFAR-10
dataset, since the data and model sizes are different for each
dataset. Likewise, the available computation capacity of all
clients is also sampling from U ~ [2,4] for MNIST dataset,
U ~ [8,15] for CIFAR-10 dataset, and U ~ [1,2] for Shake-
speare dataset. The distance d;,,, between client and ES is
from U ~ [0,2]km. For SAFA, the distance d, between cli-
ents and CS is from U ~ [0, 10]km.

Parameters of HFL Networks. Our simulated HFL network
includes 3 ESs and 50 clients, where the radius of each ES is
2km. Within the coverage area, there are several clients ran-
domly distributed and communicated by the corresponding
ES through a wireless channel in each edge aggregation
round. In the edge aggregation round ¢, the downlink and
uplink channel gain are decomposed of both small-scale
fading and large-scale fading, where the small-scale fading
is set as Rayleigh distribution with uniform variance and
the large-scale fading are calculated by the path-loss with
random shadowing ¢iyy,, = gi;r,, = 37.6log (d., ) +128.1,
where d represent the distance of client-ES pair (n,m). We
set parameter of our simulated HFL network for the two
datasets shown in Table 1.

6.2 Comparison Benchmarks
We compare the COCS policy to the five benchmarks:

1) Oracle: the Oracle algorithm knows precisely
whether one client can be received by the corre-
sponding ES before the deadline t%*! with any
observed context. In each aggregation round, it
makes a client selection decision to maximize the
utility in (10a): brute-force for the strongly convex
HFL and GreedyLS for non-convex HFL.

2)  Combinatorial UCB (CUCB): CUCB is designed based
on a classical MAB policy UCB [28]. It develops com-
binations of client selection decisions on all ESs to
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TABLE 1
HFL Network Parameters (If the Parameter has Three Values,
the First One is on MNIST Dataset, Second is on CIFAR-10
Dataset, and Third is on Shakespeare Dataset)

Parameter Value
Number of clients, N 80
Number of ESs, M 3

0.18, 18.7, 31.3 (Mbits)
2.41,28.3,11.6 (Mbytes)

Size of local model updates, s
Computation workload, ¢"

Transmission (Power, P! 23dBm
Deadline, i 4,20, 30 (sec)
Pricing function, b,,(f,,) U ~ [0.5,2] per Mbytes
Budget on each ES B 3.5,40, 18

« in Holder condition 1

hr in COCS 5

Local training epochs, F 2,55

Global aggregation, Tgs 5

Learning rate, n 0.001, 0.1, 0.01

enumerate NO’s decision s. CUCB runs UCB with
feasible NO selection decisions s and learns the
expected utility for each s' in edge aggregation
round. Since CUCB does not fit for the time-varying
arm set, we set the static computation and transmis-
sion resource for client-ES pairs.

3) LinUCB: LinUCB [48] is a contextual variant of run-
ning CUCB. LinUCB also aims to learn the expected
utility for client selection decision s, which assumes
that the utility of an arm is a linear function of client-
ES pairs’ contexts.

4)  Random: The Random algorithm selects a client to an
accessible ES randomly in each edge aggregation
round under these two constraints.

2.001 —&— Oracle
1.75s4 —=— COCS
| —— cucs
—=— LinUCB
1 —— SAFA
Random

0 200 400 600 800
Aggregation Round

1000 1200

(a) Cumulative Utilities.

144 —— COCS
—+— CUCB
121 —=— LinucB
Random

0 200 400 600 800
Aggregation Round

(b) Regret.

Fig. 3. Comparisons on cumulative utilities under logistic regression on
MNIST dataset.

1000

Authorized licensed use limited to: UNIV OF MIAMI LIB. Downloaded on August 22,2023 at 18:47:23 UTC from IEEE Xplore. Restrictions apply.



QU ETAL.: CONTEXT-AWARE ONLINE CLIENT SELECTION FOR HIERARCHICAL FEDERATED LEARNING

4363

0.72
0.725 0.725
0.701
0.700 0.700
5. 0.68 1 > >
3 C0675 C0675
© 1 — —
g 0.66 Oracle 5 0.650 5 0.650
g 0.64 1 — Cocs Soss Los2s
> 0621 =Cus 7 0.600 0 0.600 dead
E 0.60 1 — LinuCB Q- — COCSB=35 o COCS t2d =2
0551 —— Random 0373 —— COCSB=5 0575 —— COCS téead =4
—— SAFA 0550 — COCSB=10 0:550 —— COCS 1% =8
oset e — osps 4 osps A oo
0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200 0 25 50 75 100 125 150 175 200
Aggregation Round Aggregation Round Aggregation Round
(a) (c) (e)
24 6000 6000
—— Oracle
2] —— cocs & 50001 & 50001
g N 4:; 4000 4:; 4000
O 181 —— LinUCB 3 3
© 16 Random 2 3000 I 2 3000
S = - © - |
£, g 20001 El Oracle LinuCB g 2000 HEl Oracle LinuCB
2 3 10001 B COCS  mmm Random 3 1000 BN COCS  mmm Random
10 cucs UCB HEE SAFA
8 ol - - - ol - -
0 25 50 75 100 125 150 175 200 20 30 40 2 4 8
Aggregation Round Impact of budget B Impact of deadline Tdead
(b) (d) ()

Fig. 4. (a) Training performance of 5 client selection policies based on logistic regression; (b) Temporal number of successful participated clients in

each edge aggregation round (i.e., > .\ >

nest,

X! . =1); (c) Training performance of different budget B; (d) Cumulative utilities of different budget

B; (e) Training performance of different deadline t%°*! and (f) Cumulative utilities of different deadline 7%,

TABLE 2
Final Accuracy and Edge Aggregation Round to the Targeted Accuracy (MNIST 70%, CIFAR-10 60%, and Shakespeare 45%)
Under non-iid (iid) Dataset of Different Benchmarks

MNIST CIFAR-10 Shakespeare
Policy Final Accuracy Round Final Accuracy Round Final Accuracy Round
Oracle 71.90 (74.85) 111 (70) 68.41 (73.81) 92 (58) 58.83 (61.24) 223 (180)
COCS 71.84 (74.57) 121 (74) 67.93 (73.12) 101 (63) 57.66 (60.39) 246 (192)
uUCB 71.15 (73.53) 147 (86) 63.76 (68.16) 175 (120) 54.25 (57.19) 289 (219)
LinUCB 71.67 (74.26) 134 (79) 65.19 (72.30) 133 (82) 55.52 (59.87) 251 (201)
Random 70.81 (72.31) 161 (103) 62.25 (67.79) 207 (146) 47.30 (52.41) 339 (297)
SAFA 71.07 (73.40) 152 (93) 63.31 (66.93) 184 (129) 53.63 (56.18) 296 (230)
5) SAFA:SAFA [10] is an asynchronous FL algorithm. If ~ disadvantage of CUCB comes from the following two reasons:

some clients cannot be received before deadline, they
will join to the next aggregation stage.

6.3 Performance Evaluation of Strongly
Convex HFL

1) Comparison on Cumulative Utilities. Fig. 2 shows the cumu-
lative utilities and regret obtained by the COCS policy and
the other 4 benchmarks during 1,000 edge aggregation
rounds under logistic regression on the MNIST dataset. For
the cumulative utilities in Fig. 3a, it is observed that the Oracle
policy achieves the highest cumulative utilities and provides
an upper bound to the other benchmarks as expected. Among
the others, COCS policy significantly outperforms the other
benchmarks and has a closed cumulative utility performance
to Oracle. The profit of the context of client-ES pairs can be
shown by comparing the performance of context-aware pol-
icy (LinUCB) and context-unaware policies (CUCB and Ran-
dom). More specifically, the results show that the cumulative
utilities of CUCB are similar to the Random policy. The

(1) an arm of CUCB is a combination of the selection decisions
of all client-ES pairs, and hence CUCB obtains a large number
of arms. This means that CUCB is difficult to enter the exploi-
tation phase. (2) CUCB fails to capture the connection
between context and clients. The cumulative utilities of
LinUCB are based on the context, for which a CUCB arm is
not effective to produce a good result due to the large arm set.
The reason that the cumulative utilities of SAFA are low (only
higher than random) is because the average distance between
clients and CS is much larger than HFL. Therefore, due to the
low value of 94 most of clients cannot be received within
one aggregation round. In Fig. 3b, we notably depict the regret
generated by the 4 benchmarks. It is easy to observe that our
proposed COCS policy incurs a sublinear regret.

2) Training Performance and Client Selection Results. We use
two metrics to evaluate the training performance based on
client selection policies: edge aggregation rounds to achieve
targeted accuracy and final accuracy. In Fig. 4a, we present
the training performance under logistic regression on the
MNIST dataset from different client selection benchmarks.
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TABLE 3
Final Accuracy and Edge Aggregation Round to the Targeted
Accuracy (MNIST 70%, CIFAR-10 60%, and Shakespeare 45%)
Under non-iid Dataset Without Z Constriant

MNIST CIFAR-10 Shakespeare
Policy Acc. Rou. Acc. Rou. Acc. Rou.
Oracle 71.90 111 68.41 92 58.76 227
COCSs 71.20 126 66.10 109 57.13 251
UCB 69.98 181 61.54 196 53.11 311
LinUCB 70.97 142 64.43 146 55.03 259
Random 68.16 208 60.48 276 43.49 386

The Oracle policy, as expected, results in the fastest conver-
gence speed and highest accuracy among all benchmarks.
Although COCS performs slower than Oracle during the
first several rounds due to exploration, it achieves similar
testing accuracy to Oracle in 200th round. In particular, it
easy to observe that COCS outperforms others. Due to the
insufficient selection of clients all the rounds, Random
selecting clients is considerably inferior to all other bench-
marks. For clarifying the training performance, we present
an auxiliary Table 2 to emphasize the results, in which the
targeted accuracy on MNIST dataset is set 70%. As is
shown, our proposed COCS policy only uses 121 rounds to
achieve 70% test accuracy, which is 36, 13, 40, 38 rounds
faster than CUCB, LinUCB, Random, and SAFA.

In Fig. 4b, we show that the temporal number of clients
are selected in each round. The upper bound and lower
bound of clients are Oracle and Random policies. Although
COCS, LinUCB, and CUCB all have increasing levels due to
obtaining historical experiences, it is easy to observe that
the increase of CUCB is very slow, and COCS outperforms
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the other two benchmarks. The reason why the number of
successful participated clients are few in the first several
rounds via the MAB based policies is that most of selected
clients cannot be received by ESs before deadline 7.

In addition, Table 3 also presents the training perfor-
mance without minimum received clients constraint (i.e.,
even though ESs cannot receive Z =9 clients before the
deadline t9°*d, they must process the EC stage). We can see
that there is less impact on Oracle, COCS and LinUCB poli-
cies, because they usually guarantee to successfully select
more than 9 clients on each ES. However, due to fewer cli-
ents participating edge aggregation, the accuracy of UCB
and Random degrade from 65.19%-61.54% and 62.25%-
60.48% on the non-iid CIFAR-10 dataset.

3) Impact of Budget B. Fig. 4c shows that the training per-
formance of COCS under different budgets B (B = 3.5,5
and 10). It is easy to observe that COCS has better perfor-
mance when NO increases the budget B. This is simply to
explain because increasing the budget can select more cli-
ents in each round in order to increase the utility of HFL. In
particular, when B =5 NO only uses 77 rounds to achieve
70% test accuracy, which is much faster than B = 3.5. How-
ever, the training performance does not have significant
improvement from B = 5 to 10. Fig. 4c presents the cumula-
tive utilities of these five benchmarks after 200 edge aggre-
gation rounds. Clearly, for all the benchmarks, the NO can
achieve higher cumulative utilities with increasing budget.
As can be observed, when the budget increases from 3.5 to
5, the benefit of client selection gradually increases. How-
ever, although the payment budget is set large, the redun-
dant selection does not have significant improvement. The
reason may be because some client-ES pairs performing
poor transmission status cannot be successfully received by
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Fig. 5. Performance evaluation under CNN on CIFAR-10 dataset.
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TABLE 4
Final Accuracy and Edge Aggregation Round to the Targeted
Accuracy (MNIST 70%, CIFAR-10 60%, and Shakespeare 45%)
Under non-iid Dataset With the Optimal Budget B on Each ES

MNIST CIFAR-10 Shakespeare
Policy Acc. Rou. Acc. Rou. Acc. Rou.
Oracle 71.96 109 68.07 95 58.75 227
COCS 71.88 118 67.16 108 57.52 254
UCB 71.26 140 63.49 180 54.02 294
LinUCB 71.73 131 65.03 137 55.39 256
Random 71.32 155 62.31 202 47.32 338

ESs before the deadline 94, even if NO increases the bud-
get of computation resources.

4) Impact of Deadline t%°*!. Fig. 4e depicts the training per-
formance and Fig. 4f depicts the cumulative utilities under
different deadlines 79¢¢ = 2, 4 and 8. We can see that when
NO increases the value of deadline, the number of clients
increases gradually, which performs similarly to increasing
budget B. However, if NO sets the deadline too large (i.e.,
rdead = 8) training performance and cumulative utilities
perform similarly to 9! = 4. More specifically, cumulative
utilities of COCS only increase from 5,125 to 5,378. It is easy
to observe that the impact of increasing %! is less than
increasing budget B. We consider that the less budget can
control the number of selected clients, which is more domi-
nant than the impact of deadline t%*! for the training per-
formance both on convergence and accuracy.

6.4 Performance Evaluation of Non-Convex HFL

We show the performance of non-convex HFL under the CNN
model on the CIFAR-10 dataset and LSTM model on the Shake-
speare dataset, where the utility is quadratically related to the
number of participated clients. We set the error parameter of
FLGreedy algorithm e = 0.3. Fig. 5a depicts the cumulative
utilities and Fig. 5b depicts regret. Similar to the performance
of strongly convex HFL in Fig. 2, the Oracle policy performs
the best cumulative utilities as expected, and COCS outper-
forms the other 3 benchmarks (e.g., 1.7x higher than CUCB
policy). In particular, the difference of cumulative utilities
between Oracle and COCS is smaller than the result in Fig. 2a,
since this is an approximated Oracle solution in this case. It is
also observed that COCS achieves a sublinear regret in Fig. 5b.
Fig. 5c shows the test accuracy of different client selection
benchmarks on the CIFAR-10 dataset. Since the training model
and data size of CIFAR-10 is complicated enough, training per-
formance of different benchmarks are clear to see. Oracle has
the best performance among all benchmarks, which achieves

8
3
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TABLE 5
Average Time Cost (sec) of Oracle and COCS Client Selection
Policies on Each ES

Policy MNIST CIFAR-10 Shakespeare
Oracle 3.73 5.18 5.36
COCS 3.41 4.09 4.22

68.41% test accuracy. In Table 2, COCS policy can achieve
67.93% test accuracy, which is 4.17%, 1.74%, 5.68%, 4.52%
higher than LinUCB, CUCB, Random, and SAFA policies.

Fig. 6 shows the cumulative utilities, regret, and training
performance on the Shakespeare dataset under LSTM. The
results are similar for other datasets, where COCS consis-
tently has the best performance except Oracle; and Random
performs the worst. From the convergence performance
perspective, COCS also outperforms the other three bench-
marks. We can conclude that COCS policy can improve the
training performance for HFL significantly both on strongly
convex and non-convex settings.

6.5 Other Simulation Results

We present the training performance with optimal budget B
on each ES in Table 4. It is observed that the training perfor-
mance of equal budget 5 and optimal budget B does not have
obvious difference (e.g., on Shakespeare dataset, the Oracle
policy achieves 58.83% with equal B and 58.75% with optimal
B). In addition, all the training performances on MNIST data-
setimprove, but decrease on CIFAR-10 and Shakespeare data-
sets. This matches our intuition in Section 3.5, which may be
due to the larger variance of the number of selected clients on
each ES. For example, on CIFAR-10 dataset, COCS policy
obtains 57.66% with equal B and 57.52% with optimal B.

The time cost of Oracle and COCS policies is shown in
Table 5. We can see that all the client selection can be fin-
ished before 4 which means client selection does not
have impact on the training time. Moreover, since the expe-
rience and counter in CC-MAB are both scalars, which indi-
cates that the client selection does not depend on the
complexity of dataset. For example, the time cost is 4.09 sec
on CIFAR-10 and 4.22 sec on Shakespeare dataset.

To compare the efficiency of computation and storage, we
show the trade-off between computational cost and final accu-
racy in Fig. 7, and trade-off between storage cost and final
accuracy in Fig. 8. It is worth noting that both costs include
training cost, edge aggregation cost and client selection cost.
It means that if NO selects more clients, the cost should
increase. For example, on the Shakespeare dataset in Fig. 7c,
COCS selects 17.29 more clients than the Random policy, but

36

Computational Cost (MB)
Computational Cost (MB)

Oracle cocs. ucs LinUcB Random SAFA

(a) MNIST dataset.

Oracle cocs ucs

Fig. 7. Computational cost and testing accuracy on different dataset.
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