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Abstract

During an infectious-disease epidemic, people make choices that impact transmission, trading off the 
risk of infection with the social-economic benefits of activity. We investigate how the qualitative features 
of an epidemic’s Nash-equilibrium trajectory depend on the nature of the economic benefits that people 
get from activity. If economic benefits do not depend on how many others are active, as usually modeled, 
then there is a unique equilibrium trajectory, the epidemic eventually reaches a steady state, and agents 
born into the steady state have zero expected lifetime welfare. On the other hand, if the benefit of activity 
increases as others are more active (“social benefits”) and the disease is sufficiently severe, then there are 
always multiple equilibrium trajectories, including some that never settle into a steady state and that welfare 
dominate any given steady-state equilibrium. Within this framework, we analyze the equilibrium impact of 
a policy that modestly reduces the transmission rate. Such a policy has no long-run effect on society-wide 
welfare absent social benefits, but can raise long-run welfare if there are social benefits and the epidemic 
never settles into a steady state.
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1. Introduction

In 2005, a team of researchers led by Yale School of Medicine Professor Neel Gandhi de-
scended on a rural hospital in KwaZulu Natal, South Africa to document the prevalence of 
drug-resistant tuberculosis (Gandhi et al., 2006). Of 542 patients diagnosed with active tubercu-
losis (TB), 53 had “extensively drug-resistant” (XDR) infections that were resistant to all of the 
first-line antibiotics typically used to treat TB as well as multiple second-line treatments. Worse 
yet, this XDR-TB strain was especially virulent: half of those with XDR-TB infection were dead 
within 16 days of identification, and only one survived for a full year.1 “Totally-resistant” TB 
strains that are untreatable with any known antibiotic have been identified in Italy, Iran, India, 
and elsewhere (Velayati et al., 2013; Khawbung et al., 2021). Fortunately, none of these night-
mare pathogens has yet succeeded in launching a global pandemic. But once that does happen, 
and an untreatable pandemic-potential TB strain arrives in places like Europe and the United 
States, what will happen next? What course will the epidemic take? And what long-term impact 
will this novel pathogen have on society-wide welfare, including not just the direct harms due 
to the disease but also the indirect economic and psycho-social harms associated with efforts to 
avoid infection?

How a novel infectious disease such as untreatable TB spreads through a human population 
and how much harm it inflicts on people’s health and prosperity depends on people’s behavior, 
which itself changes during the course of the epidemic. This feedback between human behavior 
and pathogen transmission determines the equilibrium trajectory of the epidemic. The field of 
economic epidemiology seeks to further our understanding of equilibrium epidemics through 
models of behavior during an epidemic. Such models can be used to analyze the path of a 
novel infectious disease (Farboodi et al. (2021), Garibaldi et al. (2020), Keppo et al. (2020), 
McAdams (2020), Toxvaerd (2020), and references therein), to evaluate policy options for man-
aging an unfolding epidemic (on optimal lockdown policies, see Acemoglu et al. (2021), Alvarez 
et al. (2021), Bethune and Korinek (2020), Jones et al. (2021), and Rowthorn and Maciejowski 
(2020)), and to quantify the social value of new vaccines and treatments (Makris and Toxvaerd 
(2020)), among many other things—but only if these models adequately capture the underlying 
economic-epidemiological environment.

Many assumptions about the economic-epidemiological environment are implicit in any 
economic-epidemic model, including (i) ecological and epidemiological assumptions about the 
disease process itself and (ii) economic assumptions about agents’ information, interactions, and 
payoffs. McAdams (2021) surveys the recent Covid-inspired literature, categorizing economic-
epidemic models based on their assumptions about immune response, manner of transmission, 
and economic impacts. Avery et al. (2021) provides an insightful discussion of several of these 
modeling dimensions, focusing especially on how agent heterogeneity can impact the qualitative 
features of equilibrium outcomes.

1 Most of those who died were also infected with HIV, but two health-care workers contracted XDR-TB within the 
hospital and they also died. Multiple XDR-TB strains were present, but 39 of 46 genotyped XDR-TB isolates were 
genetically related. Gandhi did not know about this strain before he arrived; it was sheer coincidence that he found it.
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In this paper, we focus on the impact of an economic assumption that has not yet received 
much attention. Specifically, consider the social-economic activities that increase the risk of 
pathogen transmission (“transmissive activities” or simply “activity”). When an agent engages 
in these activities, does the benefit that they enjoy depend on whether others are also active? In 
other words, are the activities that drive transmission social in nature (such as working in-person 
at an office rather than virtually from home) or non-social (such as exercising in a gym). We show 
that incorporating social motivations into the economic model of an infectious-disease epidemic 
can have profound equilibrium implications for how the disease will progress and persist over 
time.

To illustrate the novel aspects of our analysis as clearly as possible, we employ an especially 
simple epidemiological model, a Susceptible-Infected-Removed (SIR) model with vital dynam-
ics in which infected agents never recover from infection but may be “removed” due to death 
from the disease, agents also die at a constant rate from other causes, and there is a constant 
flow of newborn agents susceptible to infection. The special case in which no one dies from the 
disease is a Susceptible-Infected (SI) model. We develop our main findings first in the SI model, 
and then extend the analysis to allow for disease-induced death.

In the SI model, we first consider the benchmark case in which the economic benefits of 
activity do not depend on others’ activity choices. For an epidemic that starts from an initial 
condition with low infection prevalence and sufficiently severe disease, we show:

(i) there is a unique equilibrium epidemic trajectory;
(ii) there is a unique steady-state equilibrium (SSE) and the unique equilibrium trajectory 

reaches this steady state in finite time; and
(iii) agents born into the SSE have the same expected lifetime welfare as if forbidden from ever 

engaging in transmissive activity (“zero welfare”).

We then show that none of these key qualitative features of the equilibrium set are robust to 
the possibility that agents’ individual benefit from activity may depend on others’ activity. In 
particular, suppose that there are positive economic complementarities, so that agents gain more 
from being active when others are more active, what we refer to as “social benefits.”2 In that 
context, we show the following for any sufficiently severe disease:

(i) there are many equilibrium epidemic trajectories;
(ii) there is a unique SSE, which can be reached in finite time along an equilibrium trajectory, 

but many equilibrium trajectories never converge to a steady state; and
(iii) agents born into the SSE have zero welfare, but there are non-converging equilibrium tra-

jectories in which agents’ behavior oscillates over time and all agents have positive welfare 
at birth.

Interesting differences also arise in terms of equilibrium comparative statics, with policy-
relevant implications. For example, consider the long-run impact of a policy that somewhat 
reduces the transmission rate, such as improving ventilation, providing free masks, or developing 
an imperfect immunotherapy or vaccine. In the benchmark case without economic complemen-

2 The case with negative economic complementarities (e.g., congestion) is also of interest, but appears qualitatively 
similar to the benchmark case. We focus on the case with social benefits to streamline the exposition and highlight the 
novel aspects of our analysis as clearly as possible.
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tarities, such a policy changes how many people are infected in the unique SSE (ironically, more
people are infected in the new steady state when the disease is sufficiently severe) but newborn 
agents continue to have zero expected lifetime welfare. The societal benefits of the new policy 
are therefore transitory in nature, undone by agents’ equilibrium behavioral response. By con-
trast, if there are social benefits to activity and the epidemic never settles into a steady state, then 
the policy can increase long-run society-wide welfare.

The most novel aspect of our analysis is that non-converging epidemic trajectories can emerge 
in equilibrium once there are social benefits associated with transmissive activity. In addition to 
the qualitative differences emphasized above, the possibility of non-converging equilibrium be-
havior can also have substantial quantitative implications. For instance, in the numerical example 
illustrated in Fig. 4(c), about 90% of the population is infected in the unique steady-state equilib-
rium of the epidemic but non-converging equilibrium trajectories also exist in which only about 
20% of the population is infected in the long run. Predictions and policy recommendations de-
rived from models that abstract from economic complementarities and/or that restrict attention to 
equilibrium trajectories that converge to a steady state could therefore be substantially off-base.

Relation to the literature. Like the vast majority of the recent Covid-inspired literature, this 
paper follows and builds on what we refer to as the “standard model,” introduced in Geoffard 
and Philipson (1996) (“GP”) and developed further by Reluga (2010) and others. In the literature 
following GP, agents know their own health status, transmission occurs whenever an infected 
person is randomly matched with a susceptible one, and the likelihood that any two agents are 
matched depends on how active they each choose to be. Most closely related is Toxvaerd (2019), 
who analyzes a Susceptible-Infected-Susceptible model with recovery and re-infection where 
strategic and forward-looking agents choose their individual level of exposure dynamically, under 
both centralized and decentralized decision making. By contrast, we focus on the decentralized 
case and work within a Susceptible-Infected-Removed model without recovery.

What distinguishes our paper from the rest of this literature is that we allow for economic 
complementarities of activity in a dynamic setting with forward-looking agents.3 We find that 
complementarities can have novel and profound qualitative and quantitative implications for the 
set of equilibrium epidemic trajectories. Most notably, we show that any equilibrium trajectory 
that enters a steady state is welfare dominated by other equilibrium trajectories that never con-
verge but instead eventually oscillate over time. Moreover, the difference in infection prevalence 
and welfare between oscillating and steady-state equilibria can be quite large in some cases. In 
environments where the benefits from activity depend on others’ activity, such as when employ-
ees decide whether to work from home, analyses that abstract from complementarities and from 
non-convergent behavior may therefore generate inaccurate predictions and policy conclusions.

We appear to be the first in the economic literature4 to analyze non-converging equilibrium 
epidemic trajectories, but a variety of mechanisms have been identified that can lead to equi-
librium multiplicity. Kremer (1996) and Chen (2012) provide two interesting examples, where 
multiplicity arises as a result of a more complex transmission technology. In a pioneering early 
paper, Kremer (1996) considers a model in which agents control how many encounters they have, 
but who they meet depends on who else is looking to meet. In that context, multiple equilibria 

3 Other notable works such as Philipson and Posner (1993), Toxvaerd (2017) and Toxvaerd (2021) have analyzed 
complementarities in static or agent-myopic frameworks.

4 Hethcote and Levin (1989) shows that, in some (non-economic) epidemiological models with constant activity, the 
epidemic need not ever converge to a steady state.
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naturally arise due to a selection effect: If few uninfected people are looking to meet, then most 
encounters will be with infected people and it is an equilibrium for the uninfected to avoid oth-
ers. On the other hand, if many uninfected people are looking to meet, then each encounter poses 
less exposure risk and hence becomes more attractive for the uninfected. Within the standard 
model, Chen (2012) shows that multiple equilibria can exist if there is crowding in transmission, 
more precisely, if the “contact rate” (encounter rate per unit of others’ overall activity, typically 
assumed constant) is decreasing in overall activity.

Also related is Philipson and Posner (1993 “PP”) and the insightful albeit relatively small lit-
erature that has followed, including Toxvaerd (2017) and Toxvaerd (2021). In their classic study 
of the AIDS epidemic, PP introduced a rich alternative modeling approach in which agents do 
not observe their own health status and transmission only occurs if, upon meeting, both agents 
consent to consummate their interaction. The need for mutual consent creates economic comple-
mentarities much as in our model, since the expected benefit and the exposure risk associated 
with activity both depend on others’ willingness to consent. However, the implications of such 
complementarities on the equilibrium set have not hitherto received much attention in this liter-
ature. An earlier version of this paper, McAdams (2020), provides an algorithm to compute the 
set of equilibrium trajectories in a PP-esque model with asymptomatic infection and economic 
complementarities. However, the set of equilibria in that richer context is quite complex, making 
it difficult to draw clear insights from the analysis. For this reason, we focus here on a simpler 
model without asymptomatic infection.

The rest of the paper is organized as follows. Section 2 presents the model and some pre-
liminary analysis. Section 3 considers the Susceptible-Infected model, corresponding to an un-
treatable disease from which people cannot recover but which does not kill them. Section 4 then 
extends the analysis to the Susceptible-Infected-Removed model, allowing infected agents to die 
from the disease. Section 5 considers a variety of equilibrium comparative statics, focused espe-
cially on equilibrium welfare during the endemic phase of the epidemic. Section 6 concludes.

2. Model and preliminary analysis

A disease-causing pathogen circulates among a population of hosts (or “agents”) according to 
a standard Susceptible-Infected-Removed (SIR) model with vital dynamics. The pathogen first 
emerges at time 0, grows more prevalent during an initial “outbreak phase” and then potentially 
persists over the long run in an “endemic phase.” Epidemiological dynamics depend on agents’ 
economic choices whether or not to be socially active.

Vital dynamics. There is a unit-mass population of agents who die from other causes at rate 
r > 0, and each infected agent dies from the disease at rate γ ≥ 0. There is constant flow r of 
newborn susceptible agents entering the population. Let I (t) be the mass of infected agents and 
let N(t) be the mass of living agents at time t . Vital dynamics are governed by the differential 
equation

N ′(t) = r(1 − N(t)) − γ I (t) (1)

Epidemiological dynamics. At each point in time t ≥ 0, each agent in the population is either 
susceptible (health status ht = S), infected (ht = I ), or dead before their time due to the disease 
(ht = R for “removed”). All agents are susceptible at birth, creating a flow of new hosts available 
to be infected. Let h(t) be the mass of hosts in health state h ∈ {S, I, R}. Note that R(t) =
1 −N(t) is the mass of agents who are dead at time t due to the disease but who would otherwise 
still be alive.
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Susceptible and infected agents know their own health status and choose at each point in time 
whether or not to be “active.” Susceptible hosts become infected if, while active, they encounter 
an infected host who is also active. For simplicity, we assume that activity is a zero-one decision 
and that inactive agents have zero exposure risk. Let ah(t) be the fraction of h-agents who choose 
to be active at time t ≥ 0. Each active S-agent encounters an active I -agent and becomes infected 
themselves at rate βaI (t)I (t); the parameter β captures the transmissibility of the disease. An 
S-agent who chooses not to be active at time t is certain to remain in the susceptible state.

Infected agents have a dominant strategy to be fully active (details below). To simplify equa-
tions, we may therefore set aI (t) = 1 for all t .5

Epidemiological dynamics are determined by the system of differential equations

S′(t) = −βaS(t)S(t)I (t) + r(I (t) + R(t)) (2)

I ′(t) = βaS(t)S(t)I (t) − (r + γ )I (t) (3)

R′(t) = γ I (t) − rR(t) (4)

as well as the adding-up condition S(t) + I (t) + R(t) = 1 for all t ≥ 0 and initial condition 
(S(0), I (0), R(0)). Motivated by the emergence of a novel infectious disease, we focus on initial 
conditions of the form I (0) ≈ 0 and R(0) = 0.

An epidemic trajectory (or simply “epidemic”) E consists of an initial condition, an epidemic 
process (S(t), I (t), R(t) : t ≥ 0), and a susceptible-activity process (aS(t) : t ≥ 0), where the 
epidemic process is determined from the initial condition and the susceptible-activity process 
according to the system of differential equations (2)-(4). To parse equation (3), note that there 
is mass aS(t)S(t) of active S-agents, each of whom encounters an active I -agent at rate βI (t), 
creating overall flow βaS(t)S(t)I (t) of new infections. On the other hand, each infected agent 
dies at rate r + γ , creating a flow (r + γ )I (t) out of the infected state. Equation (4) is a re-
expression of the vital dynamics equation (1), while (2) follows directly from (3)-(4) and the 
adding-up condition.

The case when r + γ ≥ β is trivial and uninteresting since I ′(t) < 0 and limt→∞ I (t) = 0
regardless of agent behavior. We therefore focus on the case when r + γ < β .

Special case: SI model. In the special case of a non-deadly disease (γ = 0 and R(t) = 0 for all 
t), the SIR model reduces to a Susceptible-Infected (SI) model. The SI model generates much 
simpler epidemiological dynamics than the SIR model. In the SI model in the “full-activity tra-
jectory” in which susceptible agents are always active (aS(t) = 1 for all t), the prevalence of 
infection I (t) is monotonically increasing over time with limt→∞ I (t) = 1 − r

β . By contrast, in 
the SIR model, there are non-trivial transient dynamics early during the epidemic.

Economic dynamics. Each agent i seeks to maximize their expected lifetime continuation payoff 
Ui(t), henceforth referred to as agent i’s “welfare” at time t . Agent i gets flow payoff ui(t) equal 
to the sum of their “health flow payoff” and “social-economic flow payoff” (discussed below) 
while alive and has zero continuation payoff upon death.

5 In reality, infected agents’ transmissive activity may be constrained, e.g., if their sickness is incapacitating, if others 
can perceive that they are infected and shun transmissive contact (as with leprosy), and so on. Such effects can be 
incorporated into the transmission rate. In particular, if sickness is incapacitating for fraction s of I -agents, then only 
fraction (1 − s) of them will be active and infection will spread as if the transmission rate were β̂ = (1 − s)β .
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Health: Health flow payoff is 0 if susceptible and −d if infected; the parameter d > 0 captures 
the severity of the symptoms associated with the disease. Let Hi(t) denote agent i’s expected 
lifetime continuation health payoff (or simply “lifetime health”) at time t .

Social-economic well-being (“wealth”): Social-economic flow payoff is b0 for inactive agents 
and b0 + b1 + b2A(t) for active agents, where we use shorthand

A(t) = aS(t)S(t) + I (t) (5)

for the mass of active hosts at time t . Let Wi(t) denote agent i’s expected lifetime continuation 
social-economic payoff (or simply “lifetime wealth”) at time t .

The parameter b0 ≥ 0 captures the baseline benefit of being alive, including the benefits of 
all safe activity that does not put one at risk of exposure. b1 > 0 captures the benefit of public 
non-social activity that puts an agent at risk of exposure to the virus but whose value to the agent 
does not depend on whether others are also active, e.g., going to the gym. b2 ≥ 0 captures the 
additional benefit of public social activity that arises when people are active at the same time. 
Such “social benefits” can arise for several sorts of reasons, such as (i) if people enjoy being 
around others, (ii) if the purpose of activity is to match with someone else and a better match can 
be found when more people are active, or (iii) if more aggregate activity leads to more individual 
opportunities to benefit from activity, e.g., if more stores open when more people are out looking 
to shop.

Equilibrium epidemics. An equilibrium trajectory (or “equilibrium epidemic”) is one in which 
each living agent’s activity choice at each time t ≥ 0 maximizes their welfare given their time-t
health status ht ∈ {S, I }, the current state of the epidemic process, and the rest of the trajectory 
after time t . Because all agents must be optimizing along any equilibrium trajectory E , all agents 
with the same health status must have the same welfare Uh(t; E). Let Hh(t; E) and Wh(t; E)

denote the lifetime health and lifetime wealth of h-agents at time t . Unless needed for clarity, we 
will usually suppress notation for the underlying epidemic trajectory; so, Uh(t) = Hh(t) +Wh(t)

for all h ∈ {S, I } and all t ≥ 0. Let #U(t) ≡ US(t) − UI (t) be the “harm of infection” at time t , 
the amount by which an agent’s lifetime welfare falls instantaneously at time t upon becoming 
infected.

Lemma 1 gathers together some basic facts that will be useful later in the analysis.

Lemma 1. In any equilibrium epidemic: (i) if aS(t) ∈ (0, 1), then b1 + b2A(t) = βI (t)#U(t); 
and (ii) if aS(t ′) < 1 for all t ′ ≥ t , then US(t) = b0

r .

Proof. (i) If aS ∈ (0, 1), then S-agents must be indifferent whether to be active. Being inactive 
guarantees that an S-agent will get baseline flow payoff b0 plus continuation payoff US(t). By 
contrast, being active increases the agent’s flow payoff to b0 + b1 + b2A(t) while causing them 
to transition to the infected state at rate βI (t). Thus, each S-agent finds it strictly optimal to be 
active at time t when

b1 + b2A(t) > βI (t)#U(t), (6)

and is indifferent whether to be active when b1 + b2A(t) = βI (t)#U(t). (ii) If aS(t ′) < 1 for all 
t ′ ≥ t , then S-agents are indifferent at each point in time whether to be active and hence must get 
the same payoff as if they were to choose to be inactive for their entire lives. Because inactive 
S-agents get flow b0 payoff and have expected lifetime 1

r , we conclude that US(t) = b0
r . !
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Epidemics in the long run. We are especially interested in the prevalence of infection and 
agents’ welfare in the long run of an equilibrium epidemic. However, as we will show, not every 
equilibrium epidemic settles into a long-run steady state.

Definition 1 (Long-run infection range). An epidemic trajectory E has “long-run infection range” 
[I∞, I∞], where I∞ ≡ lim supt I (t) and I∞ ≡ lim inft I (t ′). If I∞ = I

∞ = I∞, then E has 
“long-run infection prevalence” I∞.

Suppose that an epidemic has long-run infection prevalence I∞. Equation (4) implies that the 
mass of recovered agents must converge in the long run to R∞ = γ

r I∞, and so the mass of 
susceptible agents must converge to S∞ = 1 − r+γ

r I∞.

Welfare comparisons. In the course of our analysis, we will use two main notions to compare 
agents’ welfare in different epidemic trajectories. The strongest sense in which we compare 
epidemic trajectories is that of “welfare dominance.”

Definition 2 (Welfare dominance). Trajectory E ′ “welfare dominates” E if (i) US(t; E ′)S(t; E ′) +
UI (t; E ′)I (t; E ′) ≥ US(t; E)S(t; E) + UI (t; E)I (t; E) for all t and (ii) Uh(t; E ′) ≥ Uh(t; E) for 
all h ∈ {S, I } and all t .

Condition (i) means that the aggregate welfare of all living agents is always higher along tra-
jectory E ′. Condition (ii) means that each living agent always prefers trajectory E ′ given their 
current health status.

We also compare epidemic trajectories based on the welfare of susceptible agents only. Be-
cause newborn agents are susceptible, S-agent welfare US(t; E) is the welfare of someone born 
at time t , i.e., “newborn welfare.”

Definition 3 (Better for newborns). Trajectory E ′ has “higher newborn welfare” than E if, for all 
t ≥ 0, US(t; E ′) > US(t; E), i.e., E ′ is better than E ′ for all agents at birth.

Note that, along an epidemic trajectory that is better from a welfare point of view, there may be 
more sickness and/or more death. For instance, it could be trajectory E ′ is better for newborns 
than trajectory E but S(t; E ′) < S(t; E) and/or R(t; E ′) > R(t; E) at some or all times t > 0. 
However, for that to be the case, any anticipated welfare losses due to increased sickness and/or 
accelerated death must be more than compensated by welfare gains due to increased social-
economic activity for each newborn agent to view themselves as better off.

3. Susceptible-Infected (SI) analysis

This section develops our main findings within the context of the Susceptible-Infected (SI) 
model in which no one dies from the disease. Focusing on the SI model allows us to simplify the 
analysis in two main ways. First, since γ = 0, the system of differential equations (2)-(4) reduces 
to the single differential equation

I ′(t) = βaS(t)S(t)I (t) − rI (t) (7)

plus the adding-up condition S(t) + I (t) = 1. Second, because agents live for expected length of 
time 1

r no matter what, the fact that being alive generates baseline flow benefit b0 lifts all agents’ 
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welfare by b0
r but otherwise has no effect on incentives or the equilibrium set. Without loss of 

generality, we may therefore set b0 = 0 to simplify equations.
When an epidemic first emerges, infection is sufficiently rare that all agents have an incentive 

to be fully active and the prevalence of infection grows exponentially over time. There are two 
basic possibilities for how the epidemic then progresses: (i) sustained full activity, if all agents 
remain fully active forever; or (ii) eventual social distancing if, at some time, at least some 
susceptible agents choose not to be active.

The full-activity trajectory. Let E be the epidemic trajectory that arises when S-agents are 
always active, and let I(t) be the time-t prevalence of infection along E . That is, (I (t) : t ≥ 0)

is determined by differential equation I ′
(t) = βS(t)I (t) − rI (t), where S(t) = 1 − I(t). As can 

be easily checked, I ′
(t) > 0 for all t and limt→∞ I(t) = 1 − r

β . Proposition 1 provides a simple 
condition that characterizes when E is an equilibrium trajectory.

Proposition 1. In the SI model, the full-activity trajectory E is an equilibrium epidemic trajectory 
if and only if disease severity d ≤ d , where

d ≡ β(b1 + b2)

β − r
. (8)

Proof. Along the full-activity trajectory, all agents get flow economic payoff b1 + b2 but the 
health flow payoff for S-agents is d higher than for I -agents. Consequently, #U(t) = dL(t)

where L(t) is the expected length of time that an S-agent remains alive and uninfected. L(t) is 
the mean of an exponential distribution with arrival rate βI (t) + r . Because infection prevalence 
I (t) increases over time from approximately zero to limt→∞ I (t) = 1 − r

β , L(t) decreases over 
time from approximately 1

r to limt→∞ L(t) = 1
β−r+r = 1

β .
Suppose that d ≤ d . By equation (6), S-agents find it optimal to be active at time t if and only 

if βI (t)#U(t) ≤ b1 + b2. Because #U(t) = dL(t), L(t) < 1
β for all t , and I (t) < 1 − r

β for all 

t , we have βI (t)#U(t) < d(β−r)
β for all t . By equation (8) and the fact that d ≤ d , we conclude 

that βI (t)#U(t) < b1 + b2 and hence that S-agents find it strictly optimal to be active at all 
times; so, E is an equilibrium trajectory.

Suppose next that d > d . Because limt→∞ I (t) = 1 − r
β and limt→∞ L(t) = 1

β , we have 

limt→∞ βI (t)#U(t) = limt→∞ βdI (t)L(t) = d(β−r)
β > b1 + b2; so, S-agents strictly prefer not 

to be active sufficiently far into the epidemic and E is not an equilibrium trajectory. !

Equilibrium uniqueness without social benefits of activity. If b2 = 0, then there is a unique 
equilibrium trajectory and this equilibrium follows either the full-activity trajectory or an es-
pecially simple “rise-and-plateau trajectory” whereby all S-agents are active until the level of 
infection hits a critical threshold I ∗ at some time T ∗, after which S-agents randomize whether 
to be active with just the right probability so that I (t) = I ∗ for all t ≥ T ∗.

Definition 4. A “rise-and-plateau trajectory” is an epidemic trajectory that consists of (i) an 
outbreak phase during which all agents are active, followed by (ii) an endemic phase after time 
T in which the prevalence of infection is constant.

9
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Proposition 2. Consider the SI model. When b2 = 0 and d > d ,6 there is a unique equilibrium 
epidemic trajectory E∗. Moreover, E∗ is a rise-and-plateau trajectory with plateau infection level 
I ∗ ≡ b1r

β(d−b1)
.

Proof. Proposition 2 follows directly from Proposition 8, which provides sufficient conditions 
for equilibrium uniqueness in the SIR model which include these as a special case. !

Equilibrium epidemics more broadly. A rise-and-plateau trajectory is the simplest path that 
an epidemic can take, but there are many other possibilities. Suppose that E is an equilibrium 
epidemic and that, in this trajectory, at least some S-agents are active at time t̃ > 0.7 Lemma 2
shows how to construct a new equilibrium epidemic trajectory Ẽ by pasting together an initial 
portion of the full-activity trajectory E with the remainder of the original trajectory E after time t̃ .

Lemma 2. In the SI model, suppose that E is an equilibrium epidemic trajectory with aS(t̃) > 0
for some t̃ > 0, and define tO implicitly by I(tO) = I (t̃). Then Ẽ is also an equilibrium epidemic 
trajectory, determined by the S-agent activity process (ãS(t) : t ≥ 0) as follows:

– ãS(t) = 1 for all t ≤ tO (“pasted” initial outbreak)
– ãS(tO + x) = aS(t̃ + x) for all x ≥ 0 (remainder of original trajectory)

Proof. Because E is an equilibrium epidemic trajectory and aS(t̃) > 0, S-agents find it optimal 
to be active at time tO and agents’ behavior after time tO constitutes an equilibrium of the 
continuation game. We need to show (only) that S-agents find it optimal along Ẽ to be active at 
times t ≤ tO .

Let US(t; ̃E) denote the welfare of a S-agent i at time t along the trajectory Ẽ , assuming that 
others behave as prescribed along the trajectory (whether individually-optimal or not) and agent 
i plays an individually-optimal best response. Similarly, let UI(t; ̃E) be the welfare of optimizing 
I -agents, and let #U(t; ̃E) = US(t; ̃E) −UI (t; ̃E) be the time-t harm of infection. Since all others 
are active at times t < tO , agent i finds it optimal to be active if and only if

βI (t)#U(t; Ẽ) ≤ b1 + b2 (9)

by inequality (6). (For ease of exposition, we henceforth drop “Ẽ notation.”)
Because S-agents find it optimal to be active at time tO , we have βI (tO)#U(tO) ≤ b1 +

A(tO)b2 ≤ b1 + b2; thus, condition (9) holds at time tO .
Suppose for the sake of contradiction that condition (9) fails for some t ′ < tO . By a simple 

continuity argument, there must be an interval [t ′, t ′′) over which agent i strictly prefers not to 
be active but becomes indifferent whether to be active at time t ′′, for some t ′′ ≤ tO . In particular, 
(9) holds with equality at time t ′′.

Because S-agent i finds it optimal not to be active from time t ′ to t ′′, agent i gets zero eco-
nomic payoff and is certain to avoid infection during this time. Since agent i survives from time 
t ′ to t ′′ with probability e−r(t ′′−t ′), we have US(t ′) = e−r(t ′′−t ′)US(t ′′). Moreover, US(t ′′) ≥ 0
since S-agents can guarantee zero payoff by remaining inactive; so, US(t

′) ≤ US(t ′′).

6 When b2 = 0 and d ≤ d , the full-activity trajectory is the unique equilibrium (details omitted for space).
7 In any equilibrium continuation trajectory starting from initial condition I (t) at time t , there must be a future time 

t ′ > t with some S-agent activity. If not, the prevalence of infection would fall to zero and all agents would eventually 
have a dominant strategy to be active, a contradiction.

10
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What about infected agents? Because they are always active, I -agents’ welfare takes the form 
UI (t

′) =
∫ ∞
t ′ e−r(t−t ′)(b1 +A(t)b2)dt − d

r , where 1
r is agents’ expected lifetime. Since all agents 

are active until time tO , we have A(t) = 1 for all t < tO and, of course, A(t) ≤ 1 for all t > tO . 
UI (t) is therefore weakly decreasing over the interval [t ′, tO ] and, in particular, UI (t

′′) ≤ UI (t
′).

All together, we have US(t ′′) ≥ US(t ′) and UI (t
′′) ≤ UI (t

′); so, #U(t ′′) ≥ #U(t ′). Since 
infection prevalence is rising, I (t ′′) > I (t ′) and hence βI (t ′)#U(t ′) < βI (t ′′)#U(t ′′) = b1 +
b2, where the second equality holds because S-agents are indifferent whether to be active at time 
t ′′. We conclude that S-agents strictly prefer to be active at time t ′, a contradiction. !

Discussion of Lemma 2: In Sections 3.1-3.2, we will construct equilibrium continuation trajecto-
ries starting from initial conditions in which infection is already widespread. Lemma 2 shows that 
these continuation trajectories can in fact be “reached” along equilibrium trajectories that start 
from an initial condition with rare infection and take an especially simple form, consisting of 
(i) an “outbreak phase” in which all agents are fully active followed immediately by (ii) an “en-
demic phase” in which further play follows the equilibrium continuation trajectory in question. 
See Propositions 4 and 5.

Bearing this in mind, the rest of this section focuses on situations in which infection is already 
widespread. We begin in Section 3.1 by characterizing what steady states can arise in equilib-
rium. Then in Section 3.2, we consider the simplest sort of non-converging trajectory, so-called 
“oscillating trajectories” in which S-agents alternate regularly between activity and inactivity, 
causing infection prevalence to rise and fall regularly over time.8

3.1. Steady-state equilibria

A “steady-state trajectory” is one with constant infection prevalence I > 0 and constant 
susceptible-agent activity aS . This section provides a starting point for our analysis of the en-
demic phase of an infectious disease, by characterizing all steady-state trajectories that can arise 
in equilibrium. Our main finding is that, whenever the disease is sufficiently severe that d > d

(defined in Proposition 1), there is a unique steady-state equilibrium and, in this steady state, 
susceptible agents’ lifetime welfare is the same as if they were required to be inactive for their 
entire lives.

Definition 5. A “steady-state equilibrium (SSE)” with infection prevalence I is a steady-state 
trajectory that is also an equilibrium trajectory starting from initial condition I (0) = I .

If aS ≤ r
β and all S-agents are active with probability aS , then I ′(t) < I (t)(S(t) − 1) < 0

for all t by equation (7), causing the level of infection to decline toward zero. This can never 
occur in equilibrium, as S-agents have an incentive to be active once I (t) ≈ 0. We may therefore 
restrict attention to aS ∈ ( r

β , 1]. For each such activity level, there is a corresponding steady-state 
infection level ISS(aS) ≡ 1 − r

βaS
. Let ESS(aS) denote the steady-state trajectory with S-agent 

activity aS ∈ ( r
β , 1] and infection prevalence ISS(aS), and let Uh(ESS(aS)) be agents’ steady-

state welfare in each health status h ∈ {S, I }.

8 It is easy to show that, whenever an oscillating equilibrium trajectory exists, other non-converging equilibrium tra-
jectories also exist without a regular oscillation. However, such equilibria are difficult to characterize and analyze, and 
do not appear to generate additional qualitative insights.
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Fig. 1. Illustration of our characterization of all steady-state equilibria (SSEs), as disease severity d varies with other 
fixed parameters β = 1, b0 = 0, b1 = 0.2, b2 = 0.1, and r = 0.05. Each zero of the function USS

S (aS) over aS ∈ ( r
β , 1)

corresponds to a partial-activity SSE. When d is sufficiently small (blue curve), the unique SSE has full activity. When 
d is sufficiently large (green curve), exactly one partial-activity SSE exists. In between (red, yellow, and purple curves), 
a full-activity SSE exists as well as one or two partial-activity SSEs. (For interpretation of the colors in the figure(s), the 
reader is referred to the web version of this article.)

Full-activity steady state. Here we show that the full-activity steady state ESS(1) is an SSE if 
and only if d ≤ d . In this steady state, the infection level ISS(1) = 1 − r

β , I -agents earn con-

stant flow payoff b1 + b2 − d and hence have welfare USS
I (1) = b1+b2−d

r . S-agents earn flow 
payoff b1 + b2 while uninfected, remain uninfected for average length of time 1

(β−r)+r = 1
β , be-

come infected at rate βISS(1) = β − r , and have ex ante likelihood β−r
(β−r)+r = β−r

β of becoming 

infected before death. Overall, then, S-agents have welfare USS
S (1) = b1+b2

β + β−r
β USS

I (1) =
b1+b2

r − d(β−r)
βr and the steady-state harm of infection is #USS(1) = d

β . By the incentive condi-

tion (6), ESS(1) is an equilibrium trajectory if and only if b1 + b2 ≥ βISS(1)#USS(1) = d(β−r)
β , 

which holds if and only if d ≤ d as defined in (8).

Partial-activity steady states. Consider any aS ∈ ( r
β , 1) and the partial-activity steady-state tra-

jectory ESS(aS). This is an SSE if and only if S-agents are indifferent whether to be active. 
Because inactivity guarantees zero flow payoff, such indifference arises if and only if each S-
agent has zero welfare along ESS(aS), i.e., USS

S (aS) = 0. This observation provides a simple 
way to characterize the full set of SSEs, by identifying the set of activity levels aS ∈ ( r

β , 1) such 
that S-agents have zero welfare in the steady-state trajectory ESS(aS).

Numerical example. Fig. 1 provides an illustration of our method of determining the set of 
SSEs, highlighting how the SSE set varies with disease severity d , in a numerical example. In 
particular, suppose that β = 1, b0 = 0, b1 = 0.2, b2 = 0.1, and r = 0.05, given which d ′ ≈ 0.274
and d ≈ 0.316. There are three main possibilities for the SSE set, depending on disease severity.
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– low-severity disease: If d < d ′ (e.g., d = 0.25), then USS
S (aS) > 0 for all aS > r

β . In this 
case, there is a unique SSE, which has full activity.

– intermediate-severity disease: If d < d < d ′ (e.g., d = 0.3), then USS
S (aS) = 0 at two activity 

levels less than one and USS
S (1) > 0. In this case, there are three SSEs, one with full activity 

and two with partial activity.
– high-severity disease: If d > d (e.g., d = 0.33), then USS

S (aS) = 0 at a unique activity level 
less than one and USS

S (1) < 0. In this case, there is a unique SSE, which has partial activity.

Proposition 3 summarizes our main findings about the SSE set, focusing especially on the 
(surprisingly narrow) conditions under which there are multiple SSEs.

Proposition 3. Consider the SI model. (i) An SSE exists. (ii) There is a unique SSE if and only 
if any of the following conditions hold: (a) there are no social benefits of economic activity, 
i.e., b2 = 0; (b) agents are sufficiently short-lived that r ≥ βb2

b1+2b2
; and/or (c) disease severity is 

greater than d or less than d ′, where

d ′ ≡ b1 + 2r
b2

β
+ 2

√
rb2

β
(b1 + rb2

β
). (10)

Proof. Part (i). If d ≤ d , then a full-activity SSE exists. If d > d , then b1 + b2 <

βISS(1)#USS(1). However, because limaS→r/β ISS(aS) = 0, we have b1 + b2 >

βISS(aS)#USS(aS) for all aS ≈ r
β . By continuity, there must exist some âS ∈ ( r

β , 1) such that 
b1 + b2 = βISS(âS)#USS(âS), and ESS(âS) is an ESS. This completes the proof of (i).

Part (ii). Define the following shorthand: I (aS) ≡ ISS(aS) = 1 − r
βaS

for infection prevalence in 
the steady-state trajectory ESS(aS); A(aS) = I (aS) +aS(1 − I (aS)) = I (aS) + r

β for population-
wide activity; and US(aS; d) and UI (aS; d) for the welfare of susceptible and infected agents, 
viewed here also as functions of disease severity d .

As discussed earlier: ESS(1) is an SSE if and only if US(1; d) ≥ 0, which holds whenever 
d ≤ d ; and for each aS ∈ ( r

β , 1), ESS(aS) is an SSE if and only if US(aS; d) = 0. It remains for 
us to characterize when US(aS; d) = 0 and show that SSE is unique under the stated conditions. 
We begin by deriving UI(aS; d) and US(aS; d).

Infected-agent welfare: I -agents get flow payoff b1 + A(aS)b2 − d until they die. Since death 
arrives at rate r , each agent’s expected length of life is 1

r ; so UI (aS; d) = b1+A(aS)b2−d
r .

Susceptible-agent welfare: S-agents get flow payoff aS(b1 + A(aS)b2) until they either die or 
become infected. Since infection arrives at rate βaSI (aS) = βaS − r and death at rate r , each 
S-agent remains susceptible for expected length of time 1

(βaS−r)+r = 1
βaS

and becomes infected 

prior to death with likelihood βaS−r
βaS

= I (aS), in which case they have continuation welfare 
UI (aS; d). All together, then,

US(aS;d) = 1
βaS

aS

(
b1 + A(aS)b2

)
+ I (aS)UI (aS;d) (11)

=
(

b1 +
(
I (aS) + r

β

)
b2

)(
1
β

+ I (aS)

r

)
− d

I (aS)

r
(12)
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Because US(aS; d) is linearly decreasing in d , there is a unique disease severity d(aS) given 
which US(aS; d(aS)) = 0 for any given aS ∈ ( r

β , 1]:

d(aS) =
(

b1 +
(
I (aS) + r

β

)
b2

)(
1 + r

βI (aS)

)
for all aS ∈

(
r

β
,1

]
. (13)

Each partial-activity steady state ESS(aS) is an SSE if and only if disease severity d = d(aS) and 
the full-activity steady state ESS(1) is an SSE if and only if d ≤ d(1) = d .

Lemma 3 establishes several useful facts about d(aS).

Lemma 3. Consider the SI model. (i) If r ≥ βb2
b1+2b2

, then d(aS) is strictly decreasing over 

aS ∈ ( r
β , 1]. (ii) If r < βb2

b1+2b2
, then −d(aS) is single-peaked with arg minaS d(aS) ∈ ( r

β , 1), and 
minaS d(aS) = d ′ < d , where d ′ is defined in Proposition 3.

Proof. We can re-write (13) as d(aS) = b1 + 2r b2
β + I (aS)b2 + rb1+r2 b2

β

βI (aS) . Since I (aS) is an 
increasing function of aS , we can think of d also as a function of steady-state infection prevalence 

I , i.e., d(I) = b1 + 2r b2
β + Ib2 + rb1+r2 b2

β

βI . Taking a derivative yields

d ′(I ) = b2 −
r(b1 + r b2

β )

βI 2 .

d ′(I ) ≷ 0 when I ≷ Î ≡
√

r2

β2 + b1
b2

r
β . We conclude that d(I) is strictly decreasing in I for all 

I ∈ (0, Î ) and, if Î < 1 − r
β , strictly increasing in I for all I ∈ (Î , 1 − r

β ). Or equivalently, d(aS)

is strictly decreasing in aS whenever aS ∈ ( r
β , r

β(1−Î )
) and strictly increasing in aS whenever 

aS ∈ ( r

β(1−Î )
, 1].

Note that Î is strictly increasing in r , with Î > 1 − r
β if and only if r > r̂ ≡ βb2

b1+2b2
. Suppose 

first that r ≥ r̂ so that Î ≥ 1 − r
β . Since I (aS) < 1 − r

β for all aS ∈ ( r
β , 1), we conclude that d(aS)

is strictly decreasing over the whole interval aS ∈ ( r
β , 1], as desired. Suppose next that r < r̂ , so 

that Î < 1 − r
β . Since I (aS) is strictly increasing with limaS↘r I (aS) = 0 and limaS↗1 I (aS) =

1 − r
β , there exists âS ∈ ( r

β , 1) such that I (âS) = Î and hence I (aS) > Î if and only if aS >

âS . We conclude that d ′(aS) < 0 for all aS ∈ (r, âS) and d ′(aS) > 0 for all aS ∈ (âS, 1). This 
establishes that −d(aS) is single-peaked over aS ∈ ( r

β , 1), as desired.

Lastly, in the case when r < r̂ so that d(I) is non-monotone, define d ′ ≡ minI d(I ) = d(Î ). 

The fact that d ′ = b1 + 2r b2
β + 2

√
rb2
β (b1 + rb2

β ) can be verified directly through tedious alge-

bra, but a more elegant approach is to recognize that the geometric mean of Ib2 and 
rb1+r2 b2

β

βI

is 
√

rb2
β (b1 + rb2

β ). The AM-GM Inequality therefore implies that d(aS) − b1 − 2r b2
β = Ib2 +

rb1+r2 b2
β

βI ≥ 2
√

rb2
β (b1 + rb2

β ), with the equality being realized only when I = Î . Thus, the global 

minimum of d(I) is b1 + 2r b2
β + 2

√
rb2
β (b1 + rb2

β ), as desired. !

We are now ready to verify the specific conditions for SSE uniqueness in Proposition 3.
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(a-b) Suppose first that r ≥ βb2
b1+2b2

, including as a special case any situation with b2 = 0. 
By Lemma 3, d(aS) is continuously decreasing over aS ∈ ( r

β , 1], from limaS↘r d(aS) = ∞ to 
d(1) = d . We establish SSE uniqueness in two cases. First, for any d > d , there is exactly one 
activity level aS such that d(aS) = d , which is between r and 1; thus, there is a unique SSE 
and this SSE has partial activity. Second, for any d ≤ d , no partial-activity SSE exists because 
d(aS) > d ≥ d for all aS < 1. However, a full-activity SSE exists by Proposition 1.

(c) Suppose next that r < βb2
b1+2b2

. By Lemma 3, d(aS) is continuously decreasing over aS ∈
( r
β , âS), reaching its minimum at d(âS) = d ′, then is continuously increasing over (âS, 1] with 

d(1) = d . There are three main cases, in two of which there is a unique SSE. First, for any 
d > d , there is exactly one SSE activity level aS(d) supported by disease severity d , and aS(d) ∈
( r
β , âS). Second, for any d < d ′, we have d ∈ D(1) but d(aS) > d ′ ≥ d for all aS < 1; thus, the 

unique SSE has full activity. The main difference with part (i) of the proof is that multiple SSE 
exist whenever d ∈ [d ′, d]. In particular: a full-activity SSE exists over this entire range; and 
when d ∈ (d ′, d), two partial-activity SSE exist, one with activity less than âS and the other with 
activity more than âS . This completes the proof of (ii). !

Rise-and-plateau epidemic trajectories. For any given partial-activity steady state with in-
fection level I , each S-agent is active with probability aS = β

r(1−I ) > 0. Lemma 2 therefore 
implies that, starting from an initial condition in which infection is rare, an equilibrium epidemic 
trajectory exists in which all agents are active until the infection level reaches I , after which 
continuation play follows the partial-activity SSE in question. Proposition 4 summarizes this 
observation that rise-and-plateau equilibrium trajectories exist whenever a partial-activity SSE 
exists.

Proposition 4. In the SI model, suppose that a partial-activity SSE exists with infection level I . 
Then a rise-and-plateau equilibrium trajectory exists in which that partial-activity SSE is played 
during the endemic phase.

3.2. Oscillating equilibrium trajectories

“Eat, drink, and be merry, for tomorrow we all stay home.”
– variation on a famous proverb, for those in an oscillating epidemic trajectory

This section expands our analysis to consider non-steady state “oscillating trajectories,” 
whereby the endemic phase of the epidemic consists of alternating periods in which susceptible 
agents are all active and then all inactive. We have three main results. First, we characterize the 
full set of oscillating equilibrium trajectories (OETs), which can vary quite substantially in terms 
of endemic disease prevalence and agent welfare. Second, whenever a partial-activity steady-
state equilibrium (SSE) exists, we show that “barely-oscillating trajectories” that approximate 
that SSE are also equilibrium trajectories, and that some of these nearby non-steady-state equi-
librium trajectories Pareto dominate the SSE. Finally, we characterize the set of barely-oscillating 
equilibrium trajectories (“barely-OETs”) and show that susceptible-agent welfare is maximized 
in the barely-OET with the least infection. This contrasts with our earlier finding that the SSE 
with the most infection Pareto dominates all other SSEs whenever there are multiple SSEs (corol-
lary to Proposition 3).
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Characterization of all oscillating equilibrium trajectories. Outline of approach: First, we 
define and describe all epidemiologically-feasible oscillating trajectories. In any such trajectory, 
we derive the prevalence and harm of infection at each point in time. This then allows us to 
derive necessary and sufficient incentive-compatibility conditions for that trajectory to arise in 
equilibrium.

Definition 6. An “oscillating epidemic trajectory” is one such that:

– infection prevalence oscillates with period length T ≡ T1 + T2, namely, I (t + T ) = I (t) for 
all t ≥ 0, I ′(t) > 0 for all t ∈ (0, T1), and I ′(t) < 0 for all t ∈ (T1, T );

– S-agents alternate between all being active and all being inactive, i.e., aS(t) = 1 for all 
t ∈ (0, T1) and aS(t) = 0 for all t ∈ (T1, T ), while I -agents are always active.

Note that, because infection prevalence follows the same oscillating pattern over each period 
of time [KT, (K + 1)T ], S-agent activity in an oscillating epidemic trajectory must also repeat 
over time, alternating between “active periods” of length T1 from KT to KT + T1 and “inactive 
periods” of length T2 from KT + T1 to (K + 1)T .

Feasible oscillating trajectories. Let I ≡ I (0) denote the minimal infection prevalence, reached 
at each time t = KT for K = 0, 1, 2, . . . . Infection dynamics during each active period are de-
termined by I and the differential equation I ′(t) = (β(1 − I (t)) − r)I (t). Let I ≡ I (T1) denote 
the maximal infection prevalence, reached for the first time at t = T1. Infection dynamics during 
each inactive period are determined by I and the differential equation I ′(t) = −rI (t).

By definition, I (0) = I (T ) in any oscillating trajectory. This constrains the period lengths 
T1, T2 and oscillation range (I , I ) that can feasibly arise. T1 and T2 are each determined by 
the amount of time it takes, respectively, to rise or fall between I and I . In particular, because 
d log(I (t))

dt = I ′(t)
I (t) equals β(1 − I (t)) − r for all t ∈ (0, T1) and equals −r for all t ∈ (T1, T ), we 

have

log(I ) − log(I ) =
T1∫

0

(β(1 − I (t)) − r)dt = T2r (14)

Since I (t) < 1 − r
β at all times and r > 0, equation (14) uniquely determines T1 and T2.

Let EO be shorthand for a feasible oscillating trajectory. For ease of notation, we will mostly 
suppress EO -notation in what follows, except where needed for clarity.

Infected-agent welfare. Infected agents have lifetime health (or simply “health”) HI(t) = −d
r in 

any trajectory, but their lifetime wealth (or simply “wealth”) WI(t) varies over time and depends 
on the trajectory. I -agents’ wealth WI(0) at the start of each oscillation is determined by the 
fact that they get flow economic payoff b1 + b2 during each active period, flow economic payoff 
b1 + I (t)b2 during each inactive period, and continuation welfare WI(0) if still alive at the start 
of the next oscillation. That is,

WI(0) =
T1∫

0

(b1 + b2)e
−rxdx +

T∫

T1

(b1 + I (x)b2)e
−rxdx + e−rT WI (0)

=
∫ T1

0 (b1 + b2)e
−rxdx +

∫ T
T1

(b1 + I (x)b2)e
−rxdx

1 − e−rT
(15)
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In the same way, I -agents’ wealth at times t ∈ (0, T ) is determined by their remaining flow 
economic payoffs until time T plus continuation payoff WI(0) if still alive at that time:

WI(t) =
T1−t∫

0

(b1 + b2)e
−rxdx

+
T∫

T1

(b1 + I (x)b2)e
−r(x−t)dx + e−r(T −t)WI (0) for all t ∈ [0, T1]

=
T∫

t

(b1 + I (x)b2)e
−r(x−t)dx + e−r(T −t)WI (0) for all t ∈ [T1, T ] (16)

I -agents’ overall individual welfare UI(t) = HI (t) +WI(t) at each time t ∈ [0, T ], with UI (t) =
UI (t − T ) for all t > T .

Susceptible-agent welfare. Consider an agent who is susceptible at time t = 0. Such an agent has 
health and wealth

HS(0) =
T1∫

0

βI (x)HI (x)P (x)e−rxdx + HS(0)P (T )e−rT

=
∫ T1

0 βI (x)HI (x)P (x)e−rxdx

1 − P(T )e−rT
(17)

WS(0) =
T1∫

0

(b1 + b2 + WI(x)βI (x))P (x)e−rxdx + WS(0)P (T )e−rT

=
∫ T1

0 (b1 + b2 + WI(x)βI (x))P (x)e−rxdx

1 − P(T )e−rT
(18)

where P(t) is the probability that such an agent remains susceptible at time t , conditional on 
being alive at that time. Since S-agents are infected at rate βI (t) during each active period and 
never infected during each inactive period, we have P(t) = e−

∫ t
0 βI (x)dx for all t ∈ [0, T1] and 

P(t) = P(T1) for all t ∈ [T1, T ].
The health and wealth of S-agents at times t ∈ (0, T ) is determined by their remaining flow 

payoffs and potential transition to infection until time T , plus a continuation payoff if still alive 
and susceptible at that time:

HS(t) =
T1−t∫

0

βI (t + x)HI (t + x)
P (t + x)

P (t)
e−rxdx

+ HS(0)
P (T )

P (t)
e−r(T −t) for all t ∈ [0, T1]

= HS(0)
P (T )

P (t)
e−r(T −t) for all t ∈ [T1, T ] (19)
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WS(t) =
T1−t∫

0

(b1 + b2 + WI(t + x)βI (t + x))
P (t + x)

P (t)
e−rxdx

+ WS(0)
P (T )

P (t)
e−r(T −t) for all t ∈ [0, T1]

= WS(0)
P (T )

P (t)
e−r(T −t) for all t ∈ [T1, T ] (20)

S-agents’ overall individual welfare US(t) = HS(t) +WS(t) at each time t ∈ [0, T ], with US(t) =
US(t − T ) for all t > T .

Incentive-compatibility (IC) conditions. At all times t ∈ (0, T1), S-agents must at least weakly 
prefer to be active given that all other agents are active. By inequality (6), this “active-IC condi-
tion” holds if and only if

b1 + b2 ≥ βI (t)#U(t) for all t ∈ [0, T1], (21)

where #U(t) = US(t) − UI (t) is the harm of infection at time t . Similarly, at all times t ∈
(T1, T ), S-agents must at least weakly prefer not to be active given that other S-agents are not 
active. By inequality (6), this “inactive-IC condition” holds if and only if

b1 + b2I (t) ≤ βI (t)#U(t) for all t ∈ [T1, T ]. (22)

Inequalities (21),(22) allow us to compute all OETs given any model parameters.

Rise-and-oscillate epidemic trajectories. For any given OET, note that all S-agents are active 
at the start of the first active period at time t = 0. Lemma 2 therefore implies that, starting from 
the true initial condition in which infection is rare, an equilibrium epidemic trajectory exists in 
which all agents are active until the infection level reaches the oscillation’s trough I , after which 
continuation play follows the OET in question. Proposition 5 summarizes this observation that 
“rise-and-oscillate” equilibrium trajectories exist whenever the set of OETs is non-empty.

Definition 7. A “rise-and-oscillate trajectory” is an epidemic trajectory that consists of (i) an 
outbreak phase during which all agents are active, followed by (ii) an endemic phase in which 
the prevalence of infection oscillates over a fixed range.

Proposition 5. In the SI model, suppose that an OET exists with infection range [I, I ]. Then a 
rise-and-oscillate equilibrium trajectory exists in which that OET is played during the endemic 
phase.

Numerical example. Fig. 2 illustrates how the set of OETs and the set of SSEs vary with the 
importance of social interactions to agent welfare, as captured by the parameter b2, in a numerical 
example with other parameters β = 1, b0 = 0, b1 = 3, d = 12, and r = 0.1. In each panel, 
the horizontal and vertical axes denote, respectively, the minimal infection-level I and maximal 
infection-level I during each oscillation. SSEs are shown in each panel as red dots on the 45◦-
line, while the set of OETs is the entire colored area above the 45◦-line, with colors illustrating 
how average newborn welfare varies over the set of OETs. (In an oscillating trajectory with 

period length T , “average newborn welfare” equals 
∫ T

0 US(t)dt

T .)
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Fig. 2. Illustration of the set of all oscillating equilibrium trajectories (OETs, colored according to average newborn 
welfare) and steady-state equilibria (SSEs, red dots), as b2 varies given other parameters β = 1, b0 = 0, b1 = 3, d = 12, 
and r = 0.1. In each panel, the horizontal and vertical axes represent I and I , respectively, where [I , I ] is the range of 
oscillation.
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Steady-state equilibria: In panels (a-b), there is a unique SSE with partial activity. In panels (c-e), 
there are two SSE with partial activity and one with full activity. In panel (f), there is one SSE 
with partial activity and one with full activity. In panels (g-h), there is a unique SSE with full 
activity.

Oscillating equilibrium trajectories: In panel (a), there are no social benefits of activity and 
hence no OET exists (Proposition 2). In panel (b), there is a single connected region of OETs, 
fully surrounding (i.e., “containing”) the unique SSE. In panels (c-d), the set of OETs is the union 
of two connected regions, each containing one of the two partial-activity SSEs. In panels (e-f), 
the set of OETs is a single connected region containing both partial-activity SSEs. In panel (g), a 
set of OETs exists while partial-activity SSE does not. In panel (h), there are again no OETs. !

In every OET, the active-IC constraint b1 + b2 ≥ βI (t)#U(t) must be satisfied at all times 
t ∈ (0, T1) and the inactive-IC constraint b1 + b2I ≤ βI (t)#U(t) must be satisfied at all t ∈
(T1, T ). If the harm of infection #U(t) were constant, then checking these constraints would 
be simple. Since I (t) is increasing during the active period and decreasing during the inactive 
period, one would only need to check the active-IC constraint at time T1, when infection is 
highest, and the inactive-IC constraint at time 0, when infection is lowest. However, agents’ 
welfare and hence the harm of infection varies throughout each oscillation and, specifically, may 
vary non-monotonically within the active period.

Because of these complications, an analytical characterization of the set of all OETs appears 
out of reach. However, we have been able to characterize and fruitfully analyze a special class 
of OETs—those with very short oscillations, in which the prevalence of infection remains essen-
tially constant over time.

Definition 8 (Barely-oscillating equilibrium trajectories). Consider any sequence of oscillating 
trajectories {EO

k : k = 1, 2, ...} with limk→∞ I k = limk→∞ I k = I . If every trajectory in the 
sequence is an equilibrium trajectory, then we refer to the limit of the sequence as a “barely-
oscillating equilibrium trajectory” (or “barely-OET”) and I as a “barely-OET infection level.” 
Let IBO be the set of all barely-OET infection levels.

In Fig. 2, the colored region is the set of all OETs and the set of barely-OETs is the colored 
portion of the 45◦ line.

Consider any oscillating trajectory EO(I) in which the prevalence of infection is approx-
imately equal to I ∈ (0, 1 − r

β ) at all times. In such a trajectory, the active and inactive pe-
riods are extremely short and agents’ welfare remains approximately constant over time, i.e., 
Uh(t; EO(I)) ≈ UBO

h (I) for all t and each h ∈ {S, I }. Let #UBO(I) ≡ UBO
S (I ) − UBO

I (I ) de-
note the harm of infection in this “barely-oscillating limit.”

The active-IC and inactive-IC conditions (21),(22) hold throughout each oscillation if b1 +
b2I < βI#UBO(I) < b1 + b2, but not if either βI#UBO(I) > b1 + b2 (active-IC fails) or 
βI#UBO(I) < b1 +b2I (inactive-IC fails). Lemma 4 shows that these conditions are equivalent 
to even simpler conditions, expressed only in terms of S-agent welfare UBO

S (I ).

Lemma 4. Consider any I ∈ (0, 1 − r
β ). I ∈ IBO if 0 < UBO

S (I) < b2
β but not if UBO

S (I ) < 0 or 

UBO
S (I ) > b2

β , where

UBO
S (I ) = 1

β
(b1 + b2) + I

b1 + (I + r
β )b2 − d

r
.
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Proof. Consider any fixed time interval T > 0 and any oscillating trajectory such that I > I − ε

and I < I + ε for some ε > 0. Define aS(t; T ) ≡
∫ t+T
t aS(t)dt

T ; this is S-agents’ average activity 
in the T -period after time t . So long as ε ≈ 0, we have I ≈ I ≈ I and there is an approximately 
constant flow Ir of agents out of the infected state due to death. On the other hand, the average 
newly-infected flow is approximately βaS(t; T )I (1 − I ). Thus, aS(t; T ) ≈ aBO

S (I ) ≡ r
β(1−I ) for 

all t . Similarly, average overall activity A(t; T ) ≈ ABO(I) ≡ I + aBO
S (I )(1 − I ) = I + r

β for all 
t .

Infected agents are always active and get approximately constant average flow payoff b1 +
ABO(I)b2 − d and hence have individual welfare UI(t) ≈ UBO

I (I ) for all t , where

UBO
I (I ) ≡

b1 + (I + r
β )b2 − d

r
. (23)

Susceptible agents are active in fraction aBO
S (I ) of the time and, at those times, all agents 

in the population are active. Thus, S-agents get approximately constant average flow payoff 
aBO
S (I )(b1 + b2) while susceptible, plus approximate continuation payoff UBO

I (I ) in the event 
that they become infected. Since S-agents die at rate r and become infected at rate βaBO

S (I )I , 
they remain susceptible for expected length of time 1

r+βaBO
S (I )I

= 1
βaBO

S (I )
and their ex ante 

likelihood of becoming infected is βaBO
S (I )I

r+βaBO
S (I )I

= I . We conclude that S-agents have individual 

welfare US(t) ≈ UBO
S (I ) for all t , where

UBO
S (I ) ≡ 1

βaS
aS(b1 + b2) + IUBO

I (I ), (24)

confirming the equation in the statement of the lemma. The harm of infection is also approxi-
mately constant, with #UBO(t) ≈ #UBO(I) = 1

β (b1 + b2) − (1 − I )UBO
I (I ) for all t .

The oscillating trajectory in question is an equilibrium trajectory if and only if the active-
IC condition (21) holds throughout each active period and the inactive-IC condition (22) holds 
throughout each inactive period. Because I (t)#U(t) ≈ I#UBO(I) for all t , this is true (for ε
sufficiently small) whenever these inequalities are strictly satisfied in the barely-oscillating limit, 
i.e., whenever

b1 + b2 > βI#UBO(I) (25)

b1 + b2I < βI#UBO(I) (26)

and not true whenever either is strictly violated in the limit. Next, observe that

b1 + b2 − βI#UBO(I) = b1 + b2 − βI

(
1
β

(b1 + b2) − (1 − I )UBO
I (I )

)

= (1 − I )
(
b1 + b2 + βIUBO

I (I )
)

= β(1 − I )UBO
S (I )

Since I > 0, the strict active-IC condition (25) is equivalent to UBO
S (I ) > 0, while the strict 

inactive-IC condition (26) is equivalent to UBO
S (I ) < b2

β . We conclude as desired that every 
oscillating trajectory with range of infection [I , I ] ⊂ [I − ε, I + ε] is an equilibrium trajectory 
(and hence I ∈ IBO ) if S-agent welfare 0 < UBO

S (I) < b2
β , but not if either UBO

S (I ) < 0 or 

UBO
S (I ) > b2

β . !
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Next, we leverage Lemma 4 to establish several facts about the range of outcomes that can 
arise in barely-OETs. First, the set of barely-OET infection levels is either empty (as in panels 
(a,h) of Fig. 2), a single interval (as in panels (b,e,f,g)), or the union of two intervals (as in panels 
(c,d)). Second, whenever a partial-activity SSE exists with infection level I , that SSE is “sur-
rounded” by a set of OETs, including some with more infection and some with less. Moreover, 
in this case, OETs always exist that Pareto dominate the SSE.

Proposition 6. (i) IBO ⊂ (0, 1 − r
β ] is either empty, a single closed interval, or the union of two 

closed intervals. (ii) If a partial-activity SSE exists with infection-level I , then (I − ε, I + ε) ⊂
IBO for some ε > 0. (iii) Every partial-activity SSE is Pareto dominated by a non-empty open 
set of OETs. (iv) maxI∈IBO UBO

S (I ) = UBO
S (Imin), where Imin ≡ minIBO .

Proof. (i) By the proof of Lemma 4, I ∈ IBO if UBO
S (I ) ∈ (0, b2

β ) but not if UBO
S (I ) < 0 or 

UBO
S (I ) > b2

β . By inspection of (24), UBO
S (I ) is a strictly convex continuous quadratic with 

UBO
S (0) > b2

β , as shown in Fig. 3. Thus, the set of infection levels satisfying the inactive-IC 
condition is a (potentially empty9) interval, while the set of infection levels violating the active-
IC condition is a (potentially empty) interval within that interval. This implies immediately that 
either IBO = ∅ or IBO is an interval, with interior (Imin, Imax) for some 0 < Imin < Imax ≤
1 − r

β , or IBO is the union of two intervals, with interior (Imin, I ′) ∪ (I ′′, Imax) for some 0 <
Imin < I ′ < I ′′ < Imax ≤ 1 − r

β . In addition, whenever IBO is non-empty, a continuity argument 
(provided in Appendix A.1) establishes that the threshold infection levels {Imin, I ′, I ′′, Imax}
also belong to IBO , making it a closed set.

(ii) Suppose that a partial-activity SSE exists with infection level I . Let aSS
S (I ) = r

β(1−I ) < 1

be the probability that S-agents are active, and let ASS(I ) = I + aSS
S (I )(1 − I ) = I + r

β be 
the overall activity. For the same infection level to be maintained over time, average activity 
must be the same in barely-oscillating limit as in the steady state: aBO

S (I ) = aSS
S (I ) ≡ aS(I ) and 

ABO(I) = ASS(I ) ≡ A(I). Since I -agents are always active themselves, they enjoy the same 
average amount of social activity and hence have the same lifetime wealth and hence welfare 
in the barely-oscillating limit: UBO

I (I ) = USS
I (I ). Similarly, S-agents are infected at the same 

average rate and hence have the same lifetime health: HBO
S (I) = HSS

S (I ). However, S-agents 
earn average flow economic payoff aS(I )(b1 + b2) in the barely-oscillating limit while they 
remain alive and susceptible, compared to aS(I )(b1 +A(I)b2) in the steady state. The difference 
between these flows, aS(I )(1 − A(I))b2, arises from all S-agents being active at the same time 
and hence maximizing the social benefit of their activity.

Because S-agents remain alive and susceptible on average for length of time 1
r+βaS(I )I =

1
βaS(I ) and A(I) = I + r

β , we have UBO
S (I ) = USS

S (I ) +(1 −I − r
β ) b2

β . In the SSE with infection-

level I , agents must be indifferent whether to be active, i.e., USS
S (I ) = 0 (proof of Proposition 1). 

We conclude that UBO
S (I ) = (1 −I − r

β ) b2
β ∈ (0, b2

β ) and hence that I ∈ IBO . Moreover, because 
UBO

S (I ) is continuous in I , we have immediately that (I − ε, I + ε) ⊂ IBO for small enough 
ε > 0, as desired.

9 In any barely-OET, S-agents must find it optimal to be inactive when everyone else is inactive, a condition which 
cannot hold when disease severity d is sufficiently small and/or the non-social benefit of activity b1 is sufficiently high. 
See Appendix A.2 for a complete characterization of the model parameters given which IBO is empty.
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Fig. 3. An example in which IBO consists of two disjoint intervals, given parameters β = 1, b1 = 3, b2 = 11, d = 13, 
r = 0.1.

(iii) Suppose that a partial-activity SSE exists with infection level I . Consider an oscillating 
trajectory EO(ε) with I ∈ (I, I + ε) and I ∈ (I , I + ε). By part (ii), EO(ε) is an equilibrium 
trajectory for all sufficiently small ε. EO(ε) Pareto dominates the partial-activity SSE because 
S-agents get positive individual welfare in EO(ε) compared to zero individual welfare in the SSE, 
while I -agents are strictly better off because there is more overall activity than in the SSE.10

(iv) For all I ∈ IBO , newborns have individual welfare UBO
S (I ) in the barely-OET with 

infection-level I . By Lemma 4, UBO
S (I ) is bounded above by b2

β , and this upper bound is real-

ized whenever the inactive-IC constraint is binding. Because UBO
S (I ) is a continuous and strictly 

convex quadratic with UBO
S (0) > b2

β , this occurs at Imin, as desired. (If Imax < 1 − r
β , as in all of 

our numerical examples, then the inactive-IC constraint also binds at Imax . In that case, newborn 
welfare is also maximized at the highest barely-OET infection level.) !

Fig. 4 illustrates some of the key findings in Proposition 6. Panels (a-b) show two situations 
with two partial-activity SSEs, each contained within an interval of barely-OETs. (In panel (a), 
the set IBO of barely-OETs consists of two intervals; in panel (b), it is a single interval.) Each 
of these partial-activity SSEs generates less welfare for newborns than the barely-OET with the 
same infection level, which themselves generate less newborn welfare than the barely-OETs with 
the least or the most amount of infection. Finally, consider panel (c). Proposition 6 establishes 

10 More precisely, let A(t; ε, T ) denote the average overall activity in the T -period after time t , for any T > 0. For 
sufficiently small ε, A(t; T ) strictly exceeds the overall activity in the SSE at all times t ≥ 0. Thus, I -agents accumulate 
strictly more economic payoffs over any given T -period when ε is sufficiently small.
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Fig. 4. Illustration of all oscillating equilibrium trajectories (OETs) and steady-state equilibria (SSEs) as in Fig. 2, but 
now with varying b1 and β = 1, b2 = 11, d = 12, and r = 0.1.

that an interval of barely-OETs exists whenever a partial-activity SSE exists. Panel (c) shows 
that the converse is not true, as there is an interval of barely-OETs which does not contain any 
partial-activity SSE.

Rise-and-plateau barely-OETs. Because Proposition 5 applies to all OETs, an immediate im-
plication is that for all infection levels I ∈ IBO , equilibrium epidemic trajectories exist in which 
all agents are active until the infection level reaches I , after which continuation play follows an 
OET that barely oscillates. These equilibrium trajectories are similar to the rise-and-plateau equi-
librium trajectories of Proposition 4, in that infection prevalence is essentially constant during the 
endemic phase of the epidemic, but the long-run prevalence of infection (and agent welfare) can 
be very different. For instance, in the numerical example illustrated in Fig. 4(c), the prevalence 
of infection during the endemic phase is only about 20% of the population infected if agents are 
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able to coordinate on a barely-OET, compared to 90% infected if they settle into the unique SSE 
which has full activity.

4. Susceptible-infected-removed analysis

This section extends our analysis to the Susceptible-Infected-Removed (SIR) model,11 in 
which infected agents are “removed” due to death at rate γ > 0. In summarizing our findings 
in the SIR model, it is helpful to discuss separately what we have been able to show about the 
endemic versus early phases of the epidemic.

Endemic phase: Our characterization of steady-state equilibria (SSEs) and barely-oscillating 
equilibrium trajectories (barely-OETs) in Sections 3.1-3.2 extends naturally from the SI model 
to the SIR model; see Propositions 9 and 10, which directly generalize Propositions 3 and 6. In 
particular, whenever disease symptoms are sufficiently severe, we show that (i) there is a unique 
SSE and that (ii) barely-OETs exist that welfare dominate that SSE.

Early-epidemic phase(s): The early phases of an equilibrium epidemic are more difficult to an-
alyze in the SIR model, for two main reasons. First, for some parameter values, equilibrium 
trajectories with a simple rise-and-plateau or rise-and-oscillate structure cannot exist. For in-
stance, consider an “apocalyptic epidemic” in which a novel infectious disease emerges that is 
very transmissible and very deadly. Uninfected agents may have a strong incentive to socially 
distance early during the epidemic while infection is raging but later on, when the population 
is dramatically reduced, survivors may be unlikely to encounter anyone at all and hence have 
an incentive to be fully active.12 In apocalyptic epidemics absent any vaccine or treatment, the 
prevalence of infection must rise initially but then eventually fall to a very low level in any 
equilibrium trajectory, a pattern that does not arise in the rise-and-plateau and rise-and-oscillate 
equilibrium trajectories that have been our focus in this paper. Characterizing the more com-
plex dynamics that can arise during an apocalyptic epidemic is beyond the scope of the present 
analysis but certainly worthy of future study.

Second, during the outbreak phase of an SIR epidemic as the mass of infection I increases, 
the rise in the mass of removed agents R lags the rise in infections. When an infection level I
is first reached, R will therefore be relatively low and the mass of uninfecteds S will be rela-
tively high compared to the steady state with the same amount of infection. So long as there are 
economic complementarities of social activity, the social-economic flow payoffs that agents earn 
(and their lifetime welfare) during the outbreak phase can therefore be substantially different 
than in the steady state with the same amount of infection. This in turn impacts agents’ incen-
tives, complicating whether or not the incentive-compatibility conditions for a rise-and-plateau 
or rise-and-oscillate equilibrium trajectory can be satisfied at the moment of transition between 
the outbreak phase and the endemic phase.

11 The first version of this paper (McAdams (2020)) considers the Susceptible-Carriage-Infected-Recovered (SCIR) 
model, also allowing for asymptomatic infection, and provides an algorithm that implicitly characterizes all equilibrium 
epidemic trajectories in that context. We focus on the SI and SIR models here because the novel aspects of our analysis 
can be illustrated more clearly in these simpler disease models.
12 The zombie apocalypse depicted in the hit TV show The Walking Dead illustrates this point. During the first several 
seasons of the show, zombies are everywhere and the main characters hole up in an abandoned prison to avoid exposure. 
But later after the first wave of zombies has mostly died off and the epidemic has entered its endemic phase, the main 
characters travel and forage with little fear of being infected.
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In the SI model for any sufficiently severe disease, we showed how this transition can al-
ways be accomplished for any given barely-OET, allowing us to construct a rise-and-plateau 
equilibrium trajectory in which the outbreak phase is followed immediately by that barely-OET. 
However, this is not always true in the SIR model. As we show in a numerical example below, 
there are model parameters given which a barely-OET exists but no corresponding rise-and-
plateau equilibrium exists.13

Equilibrium existence. Proposition 7 establishes that an equilibrium trajectory always exists in 
the SIR model. In those cases when rise-and-plateau equilibria do not exist, any equilibrium epi-
demic must therefore have a non-trivial intermediate phase after S-agents have begun distancing 
but before the epidemic has “settled down” into a long-run steady state or long-run oscillation. 
Characterizing what such intermediate phases could look like is of interest, but beyond the scope 
of this paper.

Proposition 7. An equilibrium epidemic trajectory exists from any initial condition.

Proof. The proof is in Appendix B.1. !

Sufficient conditions for uniqueness. Proposition 8 establishes that there is a unique equilibrium 
trajectory—and that this equilibrium follows a rise-and-plateau trajectory—so long as (i) there 
are no social benefits of activity, i.e., b2 = 0, and (ii) disease symptoms are sufficiently severe, 
i.e., d is sufficiently large. Two infection-level thresholds play an important role in this analysis. 
First, let Ĩ and R̃ be the long-run prevalence of infected and removed agents in the trajectory 
in which all agents are always active, implicitly defined by the steady-state conditions I ′(t)

I (t) =
β(1 − Ĩ − R̃) − (r + γ ) = 0 and R

′(t)
R(t) = γ Ĩ

R̃
− r = 0. In particular:

Ĩ ≡ r

r + γ
− r

β
(27)

and R̃ = γ
r Ĩ . Next, define I ∗ implicitly by the condition

b1 − βI ∗
(

b0

r
− b0 + b1 − d

r + γ

)
= 0. (28)

Note that I ∗ is strictly decreasing in d and thus I ∗ ≤ Ĩ if and only if d ≥ d(γ ), where d(γ ) is 
the threshold given which I ∗ = Ĩ .14

Proposition 8. In the SIR model, suppose that b2 = 0 and that I ∗ ≤ Ĩ . Then there is a unique 
equilibrium trajectory, in which (i) aS(t) = 1 until the first time t∗ at which I (t∗) = I ∗ and (ii) 
I (t) = I ∗ for all t ≥ t∗.15

13 On the other hand, this numerical example also shows that there is a wide range of parameters given which such 
rise-and-plateau equilibria do exist.
14 As it turns out, this threshold is also the threshold for a partial-activity SSE to exist; see Proposition 9.
15 To avoid confusion, please note that this equilibrium trajectory differs from the steady-state trajectory with infection 
level I∗. In particular, the mass of removed agents increases throughout the “plateau phase,” eventually converging to 
its steady-state level, i.e., limt→∞ R(t) = γ

r I∗. In the same way, S-agent activity aS(t) increases over time toward its 
steady-state level.
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Proof. Preliminaries. I -agent welfare: infected agents get flow payoff b0 + b1 − d for expected 
duration 1

r+γ ; so, UI (t) = b0+b1−d
r+γ for all t . Lower bound on S-agent welfare: A susceptible 

agent who remains inactive earns flow payoff b0 for expected duration 1
r ; so, US(t) ≥ b0

r for all 
t and US(t) = b0

r if and only if S-agents weakly prefer to be inactive at all times t ′ ≥ t . S-agent 
incentives and welfare dynamics: Define

X(t) ≡ b1 − βI (t)

(
US(t) − b0 + b1 − d

r + γ

)
. (29)

At each time t , S-agents strictly prefer activity if X(t) > 0, strictly prefer inactivity if X(t) < 0, 
and are indifferent whether to be active if X(t) = 0. Moreover,

U ′
S(t) = rUS(t) − b0 − aS(t) (b1 − βI (t) (US(t) − UI (t)))

= rUS(t) − b0 − aS(t)X(t) (30)

Step 1: I (t) ≤ I ∗ for all t . Suppose that I (t) > I ∗ for some t . Because US(t) ≥ b0
r for all t and 

b1 + βI ∗
(

b0
r − b0+b1−d

r+γ

)
= 0 by definition of I ∗, X(t) < 0 and S-agents strictly prefer to be 

inactive. We conclude that I ′(t) < 0 whenever I (t) > I ∗ and hence that I (t) can never exceed 
I ∗, as desired.

Step 2: If I (t) = I ∗, then I (t ′) = I ∗ for all t ′ ≥ t and US(t) = b0
r . Suppose that I (t ′) = I ∗

and, without loss, suppose that this is the first time that the threshold I ∗ has been reached, i.e., 
I (t) < I ∗ for all t < t ′. By Step 1, X(t ′) ≤ 0 since infections cannot rise above I ∗. On the 
other hand, because infections were increasing just before t ′, S-agents must have at least weakly 
preferred to be active; so, X(t ′) ≥ 0 and hence X(t ′) = 0. By the definition of I ∗ and equation 
(29), we have US(t ′) = b0

r , then same as if I (t) were to remain equal to I ∗ forever after t ′. 
Now, suppose for sake of contradiction that I (t) did not remain equal to I ∗ forever. I (t) cannot 
increase by Step 1, so the only remaining possibility is that the trajectory sometimes falls below 
I ∗. But an optimizing S-agent is always strictly better off when facing a trajectory where I (t) is 
everywhere lower; so, it must be that US(t ′) > b0

r , a contradiction.

Step 3: If I (t) < I ∗, then X(t) > 0 and US(t) > b0
r . Suppose that I (t ′) < I ∗. A susceptible 

agent who is fully active after t ′ so long as I (t) < I ∗ and fully inactive when I (t) = I ∗ earns 
lifetime welfare strictly greater than b0

r ; so, it must be that US(t ′) > b0
r .16 This in turn implies 

that S-agents must strictly prefer to be active at some times after t ′. Let t ′′ be the first time after 
t ′ at which S-agents begin to strictly prefer activity, i.e., (i) X(t) ≤ 0 for all t ∈ (t ′, t ′′) and (ii) 
X(t) > 0 for all t ∈ (t ′′, t ′′ + ε) for all small enough ε. We need to show that t ′′ = t ′, since then 
S-agents must strictly prefer to be active at time t ′.

Suppose for the sake of contradiction that t ′′ > t ′. S-agents find it weakly optimal to be in-
active during [t ′, t ′′], but it is still possible that infection prevalence may rise during this period. 
However, it must be that I (t ′′) < I ∗. To see why, note that U ′

S(t) = rUS(t) − b0 so long as 
S-agents find it optimal to be inactive. Since US(t ′) > b0

r , this implies U ′
S(t) > 0 and hence 

US(t ′′) > US(t ′) > b0
r ; and we showed in Step 2 that US(t) > b0

r is only possible when I (t) < I ∗.

16 This point can also be made via proof by contradiction. Suppose that US(t ′) = b0
r . Then I (t ′) < I∗ implies X(t ′) > 0

by (29), which implies aS(t ′) = 1 because S-agents strictly prefer activity, which implies U ′
S(t ′) < 0 by (30), a contra-

diction since US(t) can never fall below b0
r .

27



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

By continuity of X(t), S-agents must be indifferent whether to be active at time t ′′. Thus, 
limt↘t ′′ X(t) = 0 and hence limt↘t ′′ U

′
S(t) = rUS(t ′′) − b0 > 0. Moreover, because all S-agents 

are active immediately after t ′′, we have limt↘t ′′ I
′(t) > 0. But then limt↘t ′′ X

′(t) < 0 by equa-
tion (29), contradicting the presumption that X(t) > 0 immediately after t ′′. We conclude that 
t ′ = t ′′ as desired. !

Steady-state equilibria (SSE). As in the SI model, steady states with S-agent activity aS ≤ r+γ
β

cannot arise in equilibrium, since such low activity would drive infection prevalence to zero and 
S-agents strictly prefer to be active whenever infection is sufficiently rare; so, we may restrict 
attention to activity levels aS ∈

(
r+γ
β ,1

]
. What about infection levels? With full activity, the 

steady-state conditions βaSS = r + γ (see equation (2)) and R = γ
r I (see equation (4)) imply 

that I = r
r+γ − r

β ; we may therefore restrict attention to infection levels I ∈
(

0, r
r+γ − r

β

]
.

Proposition 9 extends our key finding about the set of SSE to the SIR context.

Proposition 9. There is a symptom-severity threshold d(γ ) such that (i) the full-activity steady 
state is an SSE if and only if d ≤ d(γ ) and (ii) there is a unique SSE whenever d > d(γ ) and, in 
this SSE, S-agents are partially active and newborn agents have the same lifetime welfare as if 
compelled to remain inactive for their entire lives. In particular:

d(γ ) =
(

1 + r + γ

r

r + γ

β − r − γ

)(
b1 + b2

(
r

r + γ
+ γ

β

))
− γ

r
b0. (31)

Proof. Part (i). Consider first the steady state with full activity (aS = 1), infection level I =
r

r+γ − r
β , and population-wide activity A = S + I = 1 − R. Infected agents get flow payoff 

b0 + b1 + (1 − R)b2 − d until death, which occurs at rate r + γ ; so, I -agents’ steady-state 
welfare USS

I (I ) = b0+b1+(1−R)b2−d
r+γ . Susceptible agents get flow payoff b0 + b1 + (1 − R)b2

until death (rate r) or infection (rate βI ). This susceptible period lasts on average for length 
of time 1

r+βI , with infection occurring before death with ex ante likelihood βI
r+βI ; so, S-agents’ 

steady-state welfare USS
S (I ) = b0+b1+(1−R)b2

r+βI + βI
r+βI USS

I (I ). The harm of infection #USS(I ) =
USS

S (I ) −USS
I (I ) = b0+b1+(1−R)b2

r+βI − r
r+βI × b0+b1+(1−R)b2−d

r+γ . Collecting terms and leveraging 

the fact that I = r
r+γ − r

β and hence that r + βI = βr
r+γ , this equation reduces to

#USS(I ) = b0 + b1 + (1 − R)b2

r + βI

(
1 − r

r + γ

)
+ r

r + βI
× d

r + γ

= (b0 + b1 + (1 − R)b2)γ

βr
+ d

β
(32)

By inequality (6), S-agents find it individually optimal to be active if b1 + (1 − R)b2 ≥
βI#USS(I ). By (32), this inequality holds if and only if d is sufficiently small that

d ≤ b1 + (1 − R)b2

I
− (b0 + b1 + (1 − R)b2)γ

r
(33)

Since I = r
r+γ − r

β and R = γ
r+γ − γ

β , this inequality can be rewritten as

d ≤ d(γ ) ≡
(

1
r

r+γ − r
β

− γ

r

)(
b1 +

(
r

r + γ
+ γ

β

)
b2

)
− γ

r
b0 (34)
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which in turn can be written more simply as in (31). We conclude that the full-activity steady 
state is an ESS if and only if d ≤ d(γ ), as desired.

Part (ii). Suppose that d > d(γ ). By part (i), the steady state with aS = 1 and I = r
r+γ − r

β is 
not an SSE. We need to show that exactly one partial-activity steady state is an SSE. Recall from 
the proof of Lemma 1 that a partial-activity steady state is an SSE if and only if S-agents are 
indifferent whether to be active.

An S-agent who is inactive earns flow payoff b0, dies at rate r , and does not become infected. 
An S-agent who is active earns flow payoff b0 + b1 + b2A, dies at rate r , and becomes infected 
at rate βI . Accounting for the harm of becoming infected while active, S-agents are indifferent 
whether to active if b0 = b0 + b1 + b2A − βI (USS

S (I ) − USS
I (I )), where A = I + aSS. The 

indifference condition characterizing the set of ESSs is therefore

b1 + b2(I + aSS) − βI (USS
S (I ) − USS

I (I )) = 0 (35)

If the partial-activity steady state in question is an ESS, USS
S (I ) = b0

r by Lemma 1. Infected 
agents get flow payoff b0 + b1 + Ab2 − d and die at rate r + γ ; so, USS

I (I ) = b0+b1+Ab2−d
r+γ . 

Finally, by equation (3) and the steady-state condition I ′(t)/I (t) = 0, we have βaSS = r + γ

and hence A = I + r+γ
β . Indifference condition (35) can therefore be re-written as

X(I, d) ≡
(

1 + βI

r + γ

)(
b1 + b2

(
I + r + γ

β

))
− βId

r + γ
− βIγ b0

r(r + γ )
= 0. (36)

Existence and uniqueness of a partial-activity steady state follows from three simple observa-
tions about the expression X(I, d): (a) limI→0 X(I, d) > 0 for any d > 0; (b) X

(
I , d

)
< 0 for 

all d > d(γ ), where I ≡ r
r+γ − r

β is the infection level in the full-activity steady state and hence 
a strict upper bound on I in any partial-activity steady state; and (c) X(I, d) is quadratic and 
convex in I for any given d . Together, observations (a-c) imply that, for all d > d(γ ) there is 
exactly one infection level I (d) ∈ (0, I) such that X(I (d), d) = 0.

Observations (a) and (c) are immediate from (36). To verify (b), note that X
(
I , d(γ )

)
= 0

by our construction of d(γ ) in the proof of part (i). The fact that X
(
I , d

)
< 0 for all d > d(γ )

follows immediately from the fact that X(I, d) is decreasing in d . !

Oscillating equilibrium trajectories (OETs). Epidemiological dynamics are more complex in 
the SIR model, since the mass of living agents S(t) + I (t) = 1 − R(t) also changes over time. 
However, we can define “oscillating trajectories” much as in the SI model with alternating active 
and inactive periods; details in Appendix B.2. An oscillating trajectory is an equilibrium trajec-
tory if and only if (i) b1 + b2(1 − R(t)) ≥ βI (t)#U(t) during each active period (“active-IC 
condition,” generalizing (21)) and (ii) b1 + b2I (t) ≤ βI (t)#U(t) during each inactive period 
(“inactive-IC condition,” generalizing (22)), where #U(t) = US(t) − UI (t) is the harm of infec-
tion at time t .

As in the SI model, the full set of OETs can only be characterized numerically, but clean 
analytical results are available if we focus on the limiting case of “barely-oscillating equilib-
rium trajectories (barely-OETs)” in which each oscillation period is infinitesimal and the level of 
infection remains constant over time.

In any barely-OET with infection level I , the mass of removed agents must converge in 
the long run to R∞ = γ

r I . Following the notation in Section 3.2, let IBO denote the range of 
infection-levels that can arise in a barely-OET in which the mass of removed agents has already 
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reached its steady-state level at time t = 0.17 Lemma 5 (proven in Appendix B.3) is a direct 
extension of Lemma 4.

Lemma 5. Consider any I ∈
(

0, r
r+γ − r

β

)
. I ∈ IBO if b0

r < UBO
S (I ) < b0

r + r+γ
βr b2 but not if 

UBO
S (I ) < b0

r or UBO
S (I ) > b0

r + r+γ
βr b2, where

UBO
S (I ) = 1 − γ

r I

r
b0 + r + γ

βr

(
b1 + b2

(
1 − γ

r
I
))

+ I
b1 +

(
I + r+γ

β

)
b2 − d

r
.

The proof of Lemma 5 is essentially identical to that of Lemma 4, but with updated algebra 
accounting for the fact that (i) infected agents die at rate r +γ rather than rate r and (ii) all living 
agents earn baseline flow payoff b0 ≥ 0.18 All of our other key findings about barely-OETs in the 
SI model also extend to the SIR model. In particular, Proposition 10 (proven in Appendix B.4) 
directly extends Proposition 6.

Proposition 10. (i) IBO ⊂ (0, r
r+γ − r

β ] is either empty, a single closed interval, or the union of 
two closed intervals. (ii) If a partial-activity SSE exists with infection-level I , then (I − ε, I +
ε) ⊂ IBO for some ε > 0. (iii) Every partial-activity SSE is welfare dominated by a non-empty 
open set of OETs. (iv) maxI∈IBO UBO

S (I ) = UBO
S (Imin), where Imin ≡ minIBO .

Early-epidemic dynamics. In this paper, we focus on the range of endemic epidemic outcomes 
that can arise in equilibrium, after the disease is well-established and the population as a whole 
has settled into a steady state or an oscillating trajectory. Of course, the beginning phases of 
the epidemic are also of interest. In the SI model, we showed by construction that for any 
sufficiently severe disease, equilibrium epidemic trajectories exist with an especially simple 
“rise-and-plateau” structure, in which the infection level rises during an outbreak phase until 
a threshold level I is reached, after which continuation play follows a partial-activity SSE or 
barely-OET with constant infection level I and constant S-agent activity level. Such rise-and-
plateau equilibrium trajectories do not always exist in the SIR model.

Numerical examples. Fig. 5 illustrates the qualitative features of rise-and-plateau equilibrium 
trajectories in the SIR model in a numerical example with parameters γ = 0.08, r = 0.1, β = 1, 
d = 5, b0 = 1, b1 = 1, and b2 = 5. During the initial outbreak phase, all agents are active until 
a time is reached (vertical dashed line) at which infection prevalence hits a target level I∞, here 
0.20. The epidemic then transitions directly to an endemic phase in which the mass of infected 
agents remains equal to I∞. Few people have died from the disease when the epidemic enters its 
“plateau phase,” but the mass of removed agents (blue line) gradually increases over time toward 
its long-run level R∞ = γ

r I∞ = 0.16. As R(t) increases and I (t) remains constant, the mass of 
susceptible agents falls and S-agent activity must increase in order to keep infections constant. 

17 If R(0) < R∞ at the start of a barely-oscillating trajectory, then there will be more S-agents and these S-agents will 
need to be active less often initially, compared to the long run. We explore the implications of this complication later in 
a numerical example.
18 In the SI model, introducing b0 > 0 shifts up all agents’ welfare by b0

r but has no effect on agents’ incentives and 
hence no effect on the equilibrium set. Once people can die from the disease, however, b0 impacts susceptible agents’ 
incentive to avoid infection. It is therefore without loss to focus on the case with b0 = 0 in the SI model, but not in the 
SIR model.
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Fig. 5. A rise-and-plateau equilibrium trajectory in the SIR model with parameters (γ , r, β, d, b0, b1, b2) =
(0.08, 0.1, 1, 5, 1, 1, 5) and plateau infection prevalence I∞ = 0.20.

This can be seen in the dashed yellow line, as average S-agent activity aS(t) increases from 0.23
to its long-run level of about 0.28.19 Absent any distancing, the mass of infections would follow 
the gray curve and the long-run mass of infection would be r

r+γ − r
β = 41

90 ≈ 46%.
Fig. 6 illustrates how, unlike in the SI model, it is possible for a barely-OET to exist with 

infection level I but for no rise-and-plateau equilibrium trajectory to exist in which the plateau 
phase is a barely-OET with that level of infection.20 In this example, we fix the parameters 
r = 0.1, β = 1, b0 = 1, b1 = 1, and b2 = 5 but vary the parameters for disease severity d and 
disease-death rate γ . For each (d, γ ) pair, we first check the conditions of Proposition 10 to 
determine whether a barely-OET exists with constant infection prevalence I∞ ∈ {0.05, 0.2} and 
constant mass of removed agents R∞ = γ

r I∞, i.e., is 0.05 ∈ IBO and/or is 0.2 ∈ IBO? We then 
numerically determine whether the rise-and-plateau trajectory with barely-oscillating infection 
level I∞ ∈ {0.05, 0.2} is an equilibrium trajectory. In Fig. 6(a-b): the orange regions are the pa-
rameter ranges in which a rise-and-plateau trajectory exists with barely-oscillating infection level 
I∞ = 0.05 and I∞ = 0.2, respectively, similar to that shown in Fig. 5; the blue regions are the 
parameter ranges in which a barely-OET exists with that level of infection but the corresponding 
rise-and-plateau trajectory is not an equilibrium; and the uncolored regions are those in which a 
barely-OET does not exist with that level of infection.

19 In the equilibrium trajectory illustrated here, the endemic phase consists of a barely-oscillating trajectory in which the 
proportion of time in which S-agents are active (“average S-agent activity”) itself changes over time. See Appendix B.2
for more details on oscillating trajectories in the SIR model.
20 We focus on rise-and-plateau equilibria with a barely-OET during the endemic phase for analytical simplicity. More 
generally in a rise-and-oscillate trajectory with range [I , I ], each active and inactive period will last for a different length 
of time as the endemic phase progresses. The active-IC and inactive-IC conditions therefore need to be checked separately 
throughout each oscillation, compared to just checking them throughout one oscillation in the SI model.
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Fig. 6. Disease-severity parameters (γ , d) given which a rise-and-plateau equilibrium trajectory exists with plateau in-
fection prevalence I∞ in the SIR model (orange region) or a barely-OET exists with constant infection prevalence I∞
(orange and blue regions), for I∞ ∈ {0.05, 0.2} and with other parameters fixed at (r, β, b0, b1, b2) = (0.05, 1, 1, 1, 5).

In the SI model, we showed that anytime an OET exists (no matter how big the oscillation), 
a rise-and-oscillate equilibrium trajectory also exists in which that OET is the endemic phase; 
see Lemma 2 and Proposition 5. But here we see that this is sometimes not true in the SIR 
model, even when we restrict attention to the simplest oscillations in which infection preva-
lence is approximately constant over time. Sometimes, a barely-OET exists but the corresponding 
rise-and-plateau trajectory is not an equilibrium. To gain intuition, let t∗ be the time during the 
outbreak phase at which I (t∗) = I∞. As previously discussed, relatively few agents have been 
removed by time t∗ compared to the long run, because the rise in deaths lags the rise in infec-
tions during an SIR outbreak. Consequently, the mass of susceptible agents is relatively high, 
which causes infections to increase relatively quickly during each active period at the beginning 
of the endemic phase. Active periods must therefore be relatively short (else infection prevalence 
would increase), which in turn reduces the welfare of susceptible agents. The harm of infection at 
time t∗ is therefore lower than in the long run, which reduces agents’ willingness to temporarily 
cease activity at time t∗ as the rise-and-plateau trajectory requires them to do. In cases where 
agents’ incentive to remain active is too strong for them to be willing to cease activity at time 
t∗, any equilibrium trajectory that eventually converges to the desired barely-OET must initially 
overshoot infection level I ∗.

Remark: Susceptible-Infected-Recovered analysis. The SI-Recovered model differs from the 
SI-Removed model in that agents who enter the “R” compartment are still alive and immune 
to infection, and hence able to engage in social-economic activity at no risk. Our methodology 
in this section can be readily adapted to the SI-Recovered model with only minor changes in 
algebra. Appendix C presents the corresponding results. Interestingly, we show that the set of 
SSEs and barely-OETs in the SIRecovered model corresponds exactly to the set of SSEs and 
barely-OETs in the SI model with suitably modified parameters, with the ex ante likelihood of 
infection, the harm of infection, and newborn welfare all being the same. All qualitative and 
quantitative findings in Sections 3.1-3.2 about endemic-equilibrium outcomes in the SI model 
therefore carry over directly to the SIRecovered model.
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5. Endemic-disease equilibrium comparative statics

This section considers how changing model parameters impacts equilibrium welfare in the 
endemic phase of the epidemic. In particular, we focus on (i) maximal newborn welfare in any 
steady-state equilibrium, called “SSE newborn welfare” and denoted here by USSE, and (ii) 
maximal newborn welfare in any barely-oscillating equilibrium trajectory,21 called “barely-OET 
newborn welfare” and denoted here by UBOET .

The most general version of our model has several parameters which could naturally be 
impacted by public policies, technological discoveries, shifts in cultural practices, pathogen mu-
tation, and other sorts of “interventions”: β > 0, the transmission rate; d > 0, the flow disease 
cost incurred by infected agents; γ ≥ 0, the rate at which infected agents die due to disease; b1, 
the benefit of transmissive activity, not including any social benefits; and b2, the social benefit of 
activity. (For present purposes, we view the natural death rate r and the baseline benefit of be-
ing alive b0 as fixed parameters.) Before considering equilibrium comparative statics associated 
with changing these parameters, it is helpful to review our main findings vis-a-vis SSE newborn 
welfare and barely-OET newborn welfare.

SSE newborn welfare. Our analysis showed that there is a threshold disease severity d such that 
(i) USSE = b0

r if d ≥ d and (ii) USSE > b0
r if d < d . The threshold d is provided in equation (8)

for the SI model and in equation (31) for the SIR model, repeated here for convenience:

d =
(

1 + r + γ

r

r + γ

β − r − γ

)(
b1 + b2

(
r

r + γ
+ γ

β

))
− γ

r
b0 (37)

We focus here on the case of severe sickness, meaning that d > d and given which there is a 
unique partial-activity SSE (Proposition 9).

Consider an intervention that changes the parameters (d, γ , β, b1, b2) to (dA,γ A,βA,bA
1 ,

bA
2 ), and let dA be the disease-severity threshold given these new parameters. (The superscript 

“A” is mnemonic for After the intervention.) There are three basic possibilities for how SSE 
newborn welfare may be affected.

Possibility #1: Disease elimination and maximal welfare. If βA ≤ γ A + r , then the prevalence of 
infection will fall toward zero no matter what people do. In the long run, newborn agents will be 
able to enjoy their lives as if the disease did not exist. In particular, newborn agents get lifetime 

welfare of approximately b0+bA
1 +bA

2
r > 0 with the intervention rather than b0

r without it.

Possibility #2: Full-activity SSE and improved welfare. Suppose next that βA > r + γ A but 
dA < dA. In this case, the disease is never eliminated in equilibrium but SSE newborn welfare is 
now strictly higher than b0

r .

Possibility #3: Unique partial-activity SSE and unchanged welfare. Lastly, suppose that dA >

dA, including any intervention that only slightly changes model parameters. In this case, any 
society-wide benefits associated with the intervention are short-lived, undermined by agents’ 
behavioral responses. In particular, SSE newborn welfare remains equal to b0

r .
For the rest of this section, we will focus on this last case, so that the intervention in question 

has no impact on SSE newborn welfare. However, such interventions can impact barely-OET 
newborn welfare.

21 The full set of OETs is of interest, but barely-OETs are especially convenient to analyze since all agents have the 
same welfare at birth. In an OET, those born at an oscillation peak have lower welfare than those born at a trough.
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Barely-OET newborn welfare. When d > d so that a partial-activity SSE exists, we showed 
that barely-OETs also exist that welfare dominate that partial-activity SSE (Proposition 10). 
Moreover, we characterized the maximal newborn welfare UBOET that can be achieved in any 
barely-OET, repeated here for convenience:

UBOET = b0

r
+ b2

β

r + γ

r
. (38)

Long-term impact of improved ventilation and other interventions. Poor ventilation has 
been implicated as an important factor in tuberculosis transmission; see e.g. Miller-Leiden et 
al. (1996) for experimental evidence and Du et al. (2020) for a case study of an epidemic on 
a Taiwanese college campus. Improved ventilation may in some cases be sufficiently effective 
to stop an epidemic in its tracks, but what if the impacts are more modest? Better ventilation 
reduces susceptible agents’ likelihood of becoming infected for any given infection level I and 
susceptible-activity level aS . However, S-agents naturally respond to such improved protection 
by becoming more active, which increases their likelihood of being exposed. Indeed, because 
S-agents must be indifferent whether to be active in the unique SSE, modestly improving venti-
lation ironically causes the prevalence of infection in the unique SSE to increase; also, newborn 
SSE welfare remains b0

r , the same as before the intervention. On the other hand, if agents are 
able to coordinate their activity and the epidemic progresses according to a barely-OET, new-
born welfare can be as high as b0

r + b2
βA

r+γ
r , strictly higher than before the intervention.

Other sorts of interventions can be analyzed in a similar way. So long as the disease causes suf-
ficiently severe sickness that a partial-activity SSE exists, any intervention that modestly changes 
some or all of the models’ parameters will have no impact on newborn SSE welfare. On the other 
hand, by equation (38), barely-OET newborn welfare is decreasing in the transmission rate β , 
increasing in the mortality rate γ , increasing in the benefits of social activity b2, and indepen-
dent of symptom severity d and the benefits of non-social activity b1. Thus, interventions that 
impact some combination of (β, d, γ , b1, b2) can impact barely-OET newborn welfare UBOET . 
For instance:

– universal immunotherapy and/or vaccination (decreasing β , d , and/or γ , depending on 
whether the immunotherapy / vaccine prevents infection, prevents illness, and/or prevents 
death) may or may not increase UBOET , depending on whether the ratio r+γ

β increases or 
decreases;

– universal masking (decreasing β as infections are prevented and potentially also decreasing 
b2 if social interactions become less fulfilling) may or may not increase UBOET , depending 
on whether the ratio b2

β increases or decreases;

– closing social public spaces (decreasing b2) decreases UBOET , but closing non-social public 
spaces (decreasing b1) has no effect on UBOET ;

– pathogen evolution that increases disease mortality (increasing γ ) increases UBOET ; and
– pathogen evolution that only affects symptom severity (d may increase or decrease) has no 

effect on UBOET .

Most of these comparative statics are intuitive, but some readers may be surprised that barely-
OET newborn welfare increases as the pathogen becomes more deadly. To gain intuition, note 
that increased disease mortality accelerates the decline in infection prevalence during the inactive 
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phases of an oscillating trajectory.22 This effect shortens the inactive phase of each oscillation 
and allows the uninfected to enjoy more of their lives with one another—an effect that becomes 
relatively more important when the social benefits of activity are larger.

6. Concluding remarks

This paper explores the impact of social benefits (i.e. economic complementarities) of trans-
missive activity on the equilibrium course of an infectious-disease epidemic. We show that the 
qualitative nature of equilibrium epidemics and the quantitative predictions derived from equi-
librium analysis can hinge critically on whether or not there are social benefits. For analysts and 
policy-makers, it is therefore essential to use models that accurately account for the extent of 
economic complementarities.

To illustrate the equilibrium impact of social benefits in the clearest way possible, we consider 
a hypothetical infectious disease (loosely motivated by the emerging threat of totally-resistant 
tuberculosis) from which infected people never recover and in which transmission dynamics 
follow a standard Susceptible-Infected-Removed (“SIRemoved”) epidemiological model with 
an equal flow of births and non-disease deaths. Within this context, the equilibrium impact of 
social benefits is easiest to see in the special case in which the disease causes severe symptoms 
but infected people do not die of the disease.

Without social benefits: We show that there is a unique equilibrium epidemic trajectory, which 
follows an especially simple rise-and-plateau pattern. During the first part of the epidemic (“out-
break phase”), all agents are active and the prevalence of infection increases until a critical level 
is reached. The epidemic then enters a steady state (“endemic phase”) in which susceptible agents 
are indifferent whether to be active and have subsequent welfare the same as if barred from all 
activity for the rest of their lives.

With social benefits: There is still a unique equilibrium trajectory that follows a rise-and-plateau 
pattern and, if the epidemic were to follow that trajectory, there would be relatively little loss 
in abstracting from social benefits. However, we show that many other equilibrium epidemic 
trajectories also exist that never settle into a steady state, including some that welfare dominate 
the equilibrium trajectory that settles into the unique equilibrium steady state. Moreover, as we 
show in numerical examples, the long-run prevalence of infection and population-wide welfare 
can be very different in these other equilibrium trajectories.

A strength of our approach is that our model is highly tractable and can potentially be enriched 
and extended in several interesting directions, a few of which we mention here.

Lockdowns and other activity restrictions. We consider an equilibrium model in which agents 
do not face any endogenous23 constraints related to their activity. Policies that restrict (or tax) 
agents’ activity can induce better epidemic outcomes, especially if they can target infected 
agents. In particular, if the planner can identify who is infected, newborn welfare in the long 
run would be maximized by perfectly quarantining all infected agents and allowing uninfected 
agents to be fully active, since then the disease can be eliminated even as economic activity is 

22 For instance, in the zombie epidemic of the TV show Walking Dead, higher mortality weeds out the zombie horde 
more quickly, allowing survivors to spend less time in hiding.
23 Exogenous constraints that remain the same throughout the epidemic, such as debilitating illness that reduces infected 
agents’ ability to leave the home, can be easily incorporated by appropriately adjusting the transmission rate.
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fully enjoyed by those who remain uninfected. Several authors have recently examined how to 
intervene optimally during an epidemic (e.g., Alvarez et al. (2021), Bethune and Korinek (2020), 
and Rowthorn and Maciejowski (2020)) but, following the hitherto-standard modeling approach, 
these authors abstracted from the possibility of social benefits from activity. In future work, it 
would be interesting to revisit this “optimal lockdown” literature within an extended framework 
allowing for social benefits.

Time-limited epidemics with immunity after infection. In this paper, we assume that there is a 
steady flow of new susceptible agents (as infected agents die and new ones are born), support-
ing indefinite transmission of the disease.24 However, some epidemics spread so rapidly that the 
host population is essentially fixed and no steady state with a positive amount of infection is 
ever reached. For instance, the measles virus spread rapidly across the island of Tahiti on three 
separate occasions in 1929, 1951, and 1960 (Rosen (1962)), each time quickly disappearing af-
ter causing a sharp outbreak. Motivated by the Covid-19 outbreak, several authors have recently 
analyzed such time-limited epidemics from a game-theory perspective, characterizing the equi-
librium course of the epidemic; see e.g., Farboodi et al. (2021), McAdams (2020), and Toxvaerd 
(2020). A common feature of these equilibrium-epidemic models is that there is a period of time 
in the middle of the epidemic in which the prevalence of infection is roughly constant, what 
McAdams (2021) refers to as “epidemic limbo.” During this limbo period, the level of infection 
is sufficiently high that susceptible agents prefer to reduce their transmissive activity—but not 
enough to drive down the level of infection. If there are social benefits associated with activity, 
our analysis can be easily adapted to show that, once epidemic limbo has been reached, there 
are in fact many potential equilibrium trajectories for the rest of the epidemic. Understanding the 
set of equilibrium-epidemic outcomes that can arise in a time-limited epidemic when there are 
social benefits is an important direction for future work.

Asymptomatic infection and diagnostic testing. Many disease-causing pathogens, including HIV 
and SARS-CoV-2, can spread without causing noticeable symptoms. However, due to recent ad-
vances in diagnostic technology, it may be possible for agents to test themselves to determine 
their own health status, and show these test results to others to prove their status. In this context, 
an agent’s incentive to invest in getting tested depends on the prevalence of infection (while in-
fection is rare, no one will bother getting tested) and whether others have the ability and incentive 
to exclude them from social activity unless they can show a recent negative test. In future work, 
it would be interesting to extend our model to allow for asymptomatic infection and account for 
agents’ equilibrium incentive to learn about and share their own infection status with others.

Limited synchronization of activity. Our findings highlight how the endemic burden of an infec-
tious disease critically depends on whether or not agents in the population are able to synchronize 
their aggregate activity, alternating between periods with more and then less activity. Such syn-
chronization seems unrealistic at a global level, but is routinely achieved to a limited extent at 
smaller scales, such as schools, workplaces, and social pods. Bearing this in mind, it would be 
valuable to extend our analysis to a richer setting in which individuals interact not just with the 
“general population” but also in social groups within which coordinated activity is possible. Even 

24 A less important simplifying assumption is that there is no recovery from infection. Our analysis can be easily ex-
tended to a more general Susceptible-Infected-Recovered-Susceptible (SIRS) model with recovery, adaptive immunity 
after recovery, and potential loss of immunity. However, little additional economic insight emerges from this more com-
plex epidemiological model.
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if the general population settles into a low-welfare equilibrium steady state, those within such a 
social group can improve their own welfare by coordinating on an oscillating pattern for their 
own activity with one another.

The politics of activity restrictions. Our analysis focuses on the welfare of newly-born agents, but 
agents’ preferences change once they become infected. This could have significant implications 
for the politics of public health during an emerging epidemic, as infected agents prefer for others’ 
activity to be as high as possible when there are social benefits of activity. In future work, it would 
be interesting to model the political dynamics of an infectious-disease outbreak more explicitly, 
accounting for the evolving preferences of the host population.

Appendix A. SI model

This Appendix provides further details and omitted proofs for our SI analysis in Section 3.

A.1. Omitted steps in proof of Proposition 6

To complete the proof of Proposition 6(i), we need to show that IBO is closed whenever non-
empty, i.e., we need to show that {Imin, I ′, I ′′, Imax} are all barely-OET infection levels. Define 
shorthand U ≡ minI∈(0,1−r] UBO

S (I ). There are three relevant cases. First, if U ≥ b2
β , then IBO

is either empty or a (closed) singleton with IBO = arg minUBO
S (I ).

Second, suppose that U ∈ (0, b2). IBO is a single interval with Imin ≡ infIBO and Imax ≡
supIBO . We need to show that Imin and Imax are in IBO , making it a closed set. To show that 
Imin ∈ IBO , we need to show that there is a sequence of oscillating equilibrium trajectories with 
limit-infection level Imin. We do so with a standard diagonal argument. Consider a sequence 
εl → 0. For each l, there exists Il ∈ (Imin, Imin + εl) such that Il ∈ IBO . We may therefore 
define a sequence {EO

l,k : k = 1, 2, ...} consisting only of equilibrium oscillating trajectories and 
with limit-infection level Imin. Now consider the diagonal sequence {EO

k,k : k = 1, 2, ...}. Each 
element of this sequence is an equilibrium trajectory, and the sequence has limit-infection level 
Imin; thus, Imin ∈ IBO . The fact that Imax ∈ IBO can be shown in the same way, but now using 
an infection-level sequence (Il ∈ (Imax − εl , Imax) : l = 1, 2, ...) that converges to Imax from 
below.

Finally, suppose that U ≤ 0 and define I ′ ≤ I ′′ by UBO
S (I ′) = UBO

S (I ′′). (If U = 0, then 
I ′ = I ′′; otherwise, I ′ < I ′′.) Our diagonal-limit argument now shows that {I ′, I ′′} ⊂ IBO , using 
infection-level sequences that converge to I ′ from below and to I ′′ from above.

A.2. Exact conditions for non-existence of barely-OET

This subsection explicitly characterizes the parameter range given which IBO is empty.
As is illustrated in Fig. 3, the incentive compatible constraints for barely-OET are quadratic 

in I with positive vertical intercept. Furthermore, the range of infection levels that satisfy the 
inactive-IC condition supporting barely-oscillating trajectories is an interval, while the range 
that violates the active-IC condition is a proper subset of that interval. Thus, IBO is empty if and 
only if inactive-IC is violated for all I ∈ (0, 1 − r

β ]. For convenience, we re-write inactive-IC as 
a function of I ∈ (0, 1 − r

β ]:
b1 + b2

β
+ I

r

(
b1 +

(
I + r

β

)
b2 − d

)
<

b2

β
.
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Rewriting the inequality yields the quadratic form

β

r
b2I

2 +
[
β

r
(b1 − d) + b2

]
I + b1 < 0

Defining the left-hand-side of the above inequality as f (I), which is a convex parabola passing 
through point (0, b1) (at the left limit). For the inactive-IC to be violated for all I ∈ (0, 1 − r

β ], we 
equivalently seek for parametric conditions to make f (I) ≥ 0 ∀I ∈ (0, 1 − r

β ]. There are three 
cases to discuss.

Case 1: d ≤ r
β b2 + b1 (the axis of symmetry of f (I) is less than or equal to 0). In this case, 

f (I) is monotonically increasing for all I ∈ (0, 1 − r
β ). Then f (I) ≥ f (0) = b1 > 0. Therefore, 

the inactive-IC is always violated in this case.
Case 2: d ≥ (2 − r

β )b2 + b1 (the axis of symmetry is weakly larger than 1 − r
β ). In this case, 

f (I) is monotonically decreasing for all I ∈ (0, 1 − r
β ]. Thus f (I) ≥ 0 ∀I ∈ (0, 1 − r) if and 

only if

f (1 − r

β
) = β

r
b2

(
1 − r

β

)2
+

[
β

r
(b1 − d) + b2

](
1 − r

β

)
+ b1 ≥ 0,

which gives d ≤ b1
1− r

β
+ b2. For the set of feasible d’s to be non-empty, we require

b1

1 − r
β

+ b2 ≥ (2 − r

β
)b2 + b1,

yielding

b1

b2
≥

(1 − r
β )2

r
β

.

Case 3: d ∈ ( r
β b2 + b1, (2 − r

β )b2 + b1) (the axis of symmetry is within the interval of (0, 1 −
r
β ]). In this case, the minimum of f (I) is obtained at the axis of symmetry. The range of d
establishing non-existence of OET is then characterized the inequality that requires the minimum 
to be positive, i.e.,

min
I

f (I ) = 4β
r b1b2 − (β

r (b1 − d) + b2)
2

4β
r b2

≥ 0.

Combining with the restriction of Case 3, we conclude that

d ≤ r

β
b2 + b1 + 2

√
r

β
b1b2.

To sum up, the conditions for non-existence of barely-OET are characterized as follows:

1. d ≤ r
β b2 + b1; or

2. d > r
β b2 + b1, and

(a) d < b1
1− r

β
+ b2, if d ≥ (2 − r

β )b2 + b1 and b1
b2

>
(1− r

β )2

r
β

;

(b) d < r
β b2 + b1 + 2

√
r
β b1b2, if d < (2 − r

β )b2 + b1.
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Fig. 4 panel (c) and (d) can be viewed as a numerical illustration for 2(b). Under parameters 

of β = 1, d = 12, b2 = 11, r = 0.1 ( r
β b2 + b̂1 + 2

√
r
β b̂1b2 = d gives b̂1 = 6.0007), panel (c) 

(b1 = 5.8) is the case that OETs are on the brink of existence (which still has a notable range 
of OETs), while partial-activity SSE does not exist. Panel (d) (b2 = 7.5) shows non-existence of 
OET.

Appendix B. SIR(emoved) model

This Appendix provides further details and omitted proofs for our SIR analysis in Section 4.

B.1. Proof of Proposition 7

We establish equilibrium existence by an application of Glicksberg’s fixed-point theorem 
(Glicksberg (1952)). SIR epidemiological dynamics (S(·), I (·)) and population-wide activity 
A(·) = aS(·)S(·) + I (·) are determined by the initial condition (S(0), I (0)) and the S-agent 
activity process aS(·); as shorthand, say that (S(·), I (·)) is “generated” by aS(·). Define a cor-
respondence F that maps aS(·) to the set of activity processes AS(·; aS(·)) that are individually 
optimal for an S-agent in a trajectory with dynamics generated by aS(·). An equilibrium trajec-
tory exists if and only if F has a fixed point. To establish existence by Glicksberg’s theorem, it 
suffices to show that F is convex-valued and has a closed graph.

Consider an S-agent i who believes that the epidemic is generated by aS(·). AS(·; aS(·))
is the set of activity processes that are individually optimal for agent i while uninfected. Let 
US(t; aS(·)) be agent i’s welfare at time t , assuming individually-optimal activity at all fu-
ture times. Similarly, let UI (t; aS(·)) be the time-t welfare of an optimizing infected agent 
and #U(t; aS(·)) = US(t; aS(·)) − UI (t; aS(·)) agent i’s time-t harm of infection. As short-
hand, define Y(t) ≡ b1 + b2A(t) − βI (t)#U(t; aS(·)) By inequality (6) for each t : âS(t) = 1
for all âS(·) ∈ AS(·; aS(·)) if Y(t) > 0; âS(t) = 0 for all âS(·) ∈ AS(·; aS(·)) if Y(t) < 0; and 
âS(t) ∈ [0, 1] for all ̂aS(·) ∈ AS(·; aS(·)) if Y(t) = 0. Convexity of the set AS(·; aS(·)) is imme-
diate.

We establish that F has a closed graph with respect to the functional-space norm ‖aS(·)‖ ≡∫ ∞
0 e−rt aS(t). Consider any convergent sequence ak

S(·) → aS(·). Let (Sk(·), I k(·)) be the epi-
demiological dynamics generated by ak

S(·) and let #Uk(t) be the corresponding harm of 
infection for an optimizing agent given those epidemiological dynamics. Observe first that 
limk→∞ Sk(t) = S(t) and limk→∞ I k(t) = I (t) for all t , where (S(·), I (·)) are generated by 
aS(·). The welfare of optimizing agents is therefore also continuous in aS(·), implying that 
limk→∞ #Uk(t) = #U(t; aS(·)) for all t and hence also limk→∞ Y k(t) = Y(t) for all t .

Now, let ̂ak
S(·) be a selection from AS(·; ak

S(·)) and suppose that ̂ak
S(·) → âS(·). We need to 

show that ̂aS(·) ∈ AS(·; aS(·)). Because limk→∞
∫ ∞

0 e−rt (̂ak
S(t) − âS(t))dt = 0, the set of times 

at which limk→∞ âk
S(t) 4= âS(t) has zero measure. For each t in the remaining full-measure set, 

there are three possibilities: (i) ̂aS(t) = 0, in which case ̂ak
S(t) ∈ [0, ε) for all sufficiently large 

k, implying that Y k(t) ≤ 0 and hence Y(t) ≤ 0, making non-activity optimal in the trajectory 
generated by aS(t); (ii) âS(t) = 1, in which case âk

S(t) ∈ (1 − ε, 1] for all sufficiently large k, 
implying Y k(t) ≥ 0 and Y(t) ≥ 0, making activity optimal; and (iii) âS(t) ∈ (0, 1), in which 
case âk

S(t) ∈ (0, 1) for all sufficiently large k, implying Y k(t) = 0 and Y(t) = 0, making an 
optimizing S-agent indifferent whether to be active. We conclude that ̂aS(·) ∈ AS(·; aS(·)) is an 
optimal activity rule when the trajectory is generated by aS(·), as desired. !
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B.2. Omitted details on oscillating trajectories in the SIR model

Definition and construction of oscillating trajectories. In the SIR model, an “oscillating tra-
jectory” is more complex to define than in the SI model. We do so as follows. First, fix a range 
of oscillation [I , I ] and an initial condition (I (0), R(0)) with I (0) = I and I < r

r+γ − r
β .25 The 

first “active period” begins at time T0,1 = 0. Second, differential equations I ′(t) = β(1 − S(t) −
I (t))I (t) − (r + γ )I (t) and (4) determine the path of (I (t), R(t)) during the first active period 
while aS(t) = 1. Let T1,1 be the first time at which I (t) = I , the end of the first active period. 
Third, differential equations I ′(t) = −(r +γ )I (t) and (4) determine the path of (I (t), R(t)) dur-
ing the first inactive period while aS(t) = 0. Let T0,2 be the next time at which I (t) = I , the end 
of the first inactive period. Finally, continue in the same way to construct the length of the second 
active period [T0,2, T1,2] and the second inactive period [T1,2, T0,3], and so on for all subsequent 
oscillations.

Note that the mass of removed agents R(t) need not oscillate at the start of an oscillating 
trajectory. Indeed, as we discuss in the main text and illustrate in Fig. 5, R(t) may be much lower 
than its long-run oscillation range at the beginning of an oscillating trajectory, in which case R(t)

could increase steadily throughout the first several oscillations.

Equilibrium verification and agent welfare. A given oscillating trajectory is an equilibrium if 
and only if the active-IC inequality (39) holds throughout each active period and the inactive-IC 
inequality (40) holds throughout each inactive period:

b1 + b2(1 − R(t)) ≥ βI (t)#U(t) for all k = 0,1, ..., and all t ∈ [T0,k, T1,k] (39)

b1 + b2I (t) ≤ βI (t)#U(t) for all k = 0,1, ..., and all t ∈ [T1,k, T0,k+1] (40)

where #U(t) = US(t) − UI (t) is the harm of infection at time t .
In order to check these inequalities, it is necessary first to compute the welfare of suscepti-

ble and infected agents at each point along the trajectory. In the SI model, this computation is 
simplified by the fact that each oscillation is identical and hence agents’ welfare is the same at 
the start of each oscillation. By contrast, in the SIR model, computing welfare at any given point 
in time requires integrating over the entire continuation trajectory. From a conceptual point of 
view, however, it is trivial to extend the welfare computation provided in Section 3.2 to the SIR 
context. We omit the tedious details here to save space.

B.3. Proof of Lemma 5

For an arbitrary infection level I ∈ IBO , consider any fixed time interval T > 0 and any 
oscillating trajectory such that I > I − ε, I < I + ε, and R(t) uniquely pinned down by the 
epidemiological dynamics (4). Define, for any fixed time interval [t, t +T ] with some t ≥ 0, T >

0, the S-agents’ average activity as aS(t; T ) ≡
∫ t+T
t aS(t)dt

T . As long as ε ≈ 0, I ≈ I ≈ I and 
R(t) ≈ R(I) ≡ γ

r I , for all t . Therefore, aS(t; T ) ≈ aBO
S (I ) is given by βaBO

S (I )SI = I (r + γ ), 
i.e. aBO

S (I ) = r+γ
βS where S(t) ≈ S(I) = 1 − I − R(I) ≡ r+γ

r I . Average overall activity is then 

A(t; T ) ≈ ABO(I) ≡ I + aBO
S (I )S = I + r+γ

β . Then we have the corresponding term to (23): 
the individual welfare of infected agents, UI(t), is approximately

25 Recall that r
r+γ − r

β is the long-run level of infection absent any distancing. I < r
r+γ − r

β therefore ensures that 
infection prevalence will eventually reach I when all agents are active.
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UBO
I (I ) =

b0 + b1 + b2(I + r+γ
β ) − d

r + γ
.

In a barely-OET, the susceptible agents get an approximately constant average flow payoff 
b0 + aBO

S (I )(b1 + b2(1 − γ
r I )), plus continuation value UBO

I (I ) when infected. They remain 

susceptible for expected length of time 1
r+βaBO

S (I )I
= 1− r+γ

r I

r , and their ex ante likelihood of 

becoming infected is βaBO
S (I )I

r+βaBO
S (I )I

= r+γ
r I . Therefore we obtain the corresponding term to (24): 

S-agents have individual welfare US(t), approximately,

UBO
S (I ) =b0(1 − r+γ

r I )

r
+ r + γ

βr

(
b1 + b2

(
1 − γ

r
I
))

+ r + γ

r
IUBO

I (I )

=1 − γ
r I

r
b0 + r + γ

βr

(
b1 + b2

(
1 − γ

r
I
))

+ I
b1 +

(
I + r+γ

β

)
b2 − d

r
,

confirming the equation in the statement of the lemma. The harm of infection is then

#UBO(t) ≈ #UBO(I) =b0(1 − r+γ
r I )

r

+ r + γ

βr

(
b1 + b2

(
1 − γ

r
I
))

−
(

1 − r + γ

r
I

)
UBO

I (I ),

for all t . The (strict) IC conditions which correspond to (25) and (26) are

b1 + b2(I + S) = b1 + b2

(
1 − γ

r
I
)

>βI#UBO(I)

b1 + b2I <βI#UBO(I).

Note that

b1+b2

(
1 − γ

r
I
)

− βI#UBO(I)

=
(

1 − r + γ

r
I

)(
b1 + b2

(
1 − γ

r
I
)

+ βIUBO
I (I )

)
− βI

b0(1 − r+γ
r I )

r

=
(

1 − r + γ

r
I

)
βr

r + γ

(
UBO

S (I ) − b0

r

)
.

Therefore we can rewrite the final IC conditions, after applying the usual continuity argument, as 
UBO

S (I ) > b0
r and UBO

S (I ) < b0
r + r+γ

βr b2. Therefore, I ∈ IBO if b0
r < UBO

S (I ) < b0
r + r+γ

βr b2, 

but not if UBO
S (I ) < b0

r or UBO
S (I ) > b0

r + r+γ
βr b2. !

B.4. Proof of Proposition 10

By Lemma 5, whenever UBO
S (I ) < b0

r or UBO
S (I ) > b0

r + r+γ
βr b2, IBO is empty. Now we 

focus on the cases where IBO is non-empty. Note that UBO
S (I ) is continuous, quadratic and 

strictly convex with UBO
S (0) > b0

r + r+γ
βr b2. Applying the same argument of Appendix A.1 with 

the bound of the quadratic function UBO
S (I ) replaced by b0

r + r+γ
βr b2, we establish that IBO

has to be closed whenever non-empty. Combined with the condition that IBO ⊂ (0, r
r+γ − r

β ], it 
follows that (i) and (iv) hold.
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To prove (ii) and (iii), consider a partial-activity SSE with infection level I , characterized by 
USS

S (I ) = b0
r . Note that in a barely-OET, S-agents remain alive and susceptible on average for 

length of time 1
r+βaBO

S (I )I
= r+γ

r
1

βaBO
S (I )

, during which they earn a flow of additional benefit

aBO
S (I )

((
1 − γ

r
I
)

− ABO(I)
)

b2 = aBO
S (I )

(
1 − (r + γ )

(
1
β

+ I

r

))
b2

as compared to an SSE with the same infection prevalence. Therefore

UBO
S (I ) = USS

S (I ) + r + γ

βr

(
1 − (r + γ )

(
1
β

+ I

r

))
b2,

which exactly corresponds to the proof of Proposition 6. When USS
S (I ) = b0

r , UBO
S (I ) satisfies 

the strict IC constraints, i.e., UBO
S (I ) ∈ ( b0

r , b0
r + r+γ

βr b2), since

(r + γ )

(
1
β

+ I

r

)
= r + γ

β
+ I + γ

r
I = aSS + I + R ∈ (0,1).

Hence (ii) is proven. As S-agents earn a strictly positive flow of additional benefit in the barely-
OET than in the SSE, (iii) is also proven. This completes the proof. !

B.5. Omitted details on rise-and-plateau trajectories with endemic barely-OET

Here we provide additional analysis and results regarding rise-and-plateau trajectories in 
the SIR model, where susceptible agents barely oscillate in the endemic phase. Denoted as 
EBO(I, I (0)), a trajectory starting with initial infection prevalence I (0) > 0 and R(0) = 0, such 
that susceptible agents remain fully active until I (t̂) = I ∈ (I (0), Ĩ ), and barely oscillate there-
after so that I (t) = I . The following analysis underlies our numerical work in the examples 
provided in the text.

We first investigate whether EBO(I, I (0)) is incentive compatible after t̂ , proceeding in the 
following steps.

Step 1. Let f (x) ≡ r+γ
β(1−I−x) , which is increasing in x. We know the following:

(1) The expected length of time that an S-agent remains susceptible has range [ 1
r+f (0)I ,

1
r+f (

γ
r I )I

].
(2) When susceptible, the agent’s activity flow has range [f (0), f ( γ

r )].
(3) The ex ante likelihood of the agent being infected has range [ f (0)I

r+f (0)I , f (
γ
r I )I

r+f (
γ
r I )I

].
(4) The average overall activity is equal to I + r+γ

β .

Step 2. For t > t̂ , we will use UBO
I (I ; t) and UBO

S (I ; t) to denote the continuation payoff of an 
infected agent and a susceptible one respectively. t is needed as a parameter since the measure 
of R over time converges to γr I but is not constant. Observe that

• (a) By (4), UBO
I (I ; t) is given by

UBO
I (I ; t) =

b0 + b1 + (I + r+γ
β )b2

r + γ
− d

r + γ
.
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• (b) A range of UBO
S (I ; t) can be obtained from (1)-(3) and (a) since we can write

UBO
S (I ; t) =L̂BO

S (I ; t) × (b0 + (I + r + γ

β
)b2)

+ b1

∞∫

t

βI âBO
S (I ; t ′)e−βI

∫ t ′
t âBO

S (I ;x)dxdt ′

+ K̂BO
S (I ; t) × UBO

I (I ; t),

L̂BO
S (I ; t) and K̂BO

S (I ; t) denote the (future) expected length of remaining susceptible and 
the ex ante likelihood of being infected, evaluated at time t ; âBO

S (I ; t) denotes the average 
activity flow at time t . Their ranges correspond to (1)-(3) while UBO

I (I ; t) is given by (a).

Step 3. The IC constraints for susceptible agents are

b1 + b2(I + r + γ

βâBO
S (I ; t) ) >I#UBO(I ; t) ≡ UBO

S (I ; t) − UBO
I (I ; t)

b1 + b2I <I#UBO(I ; t).
From Step 2 we can already obtain a range of #UBO(I ; t). Let #U(I) denote its upper bound 
and #U(I) its lower bound. We also know that I + r+γ

βâBO
S (I ;t) > 1 − γ

r I since R(t) only converges 

to from below, but never reaches, γ
r I . A sufficient condition for the IC constraints regardless of 

t is then

b1 + b2(1 − γ

r
I ) > I#U(I)

b1 + b2I < I#U(I).

Suppose that the above condition is satisfied for some I = I ∗ ∈ (0, 1) (which is also the 
measure of infected agents in some barely-OET). This means that EBO(I ∗, I (0)) is incentive 
compatible starting from t = t̂ . We now show that EBO(I ∗, I (0)) is also incentive compatible 
before t = t̂ .

Consider one susceptible agent i and suppose that for some t ′ ≥ 0 and ε > 0 such that t ′ + ε <

t̂ , being inactive is i’s best response for all t ∈ [t ′, t ′ + ε). Note that the (other) susceptible agents 
choose full activity and that I (t) < I ∗, whenever t < t̂ : this means that as long as i chooses to 
be active for a positive measure of time on [t ′ + ε, ̂t), her continuation value at t ′ + ε is strictly 
positive. Indeed, being active at any t ∈ [t ′ + ε, ̂t) means, as compared to any t ≥ t̂ , (weakly) 
more benefit from higher social activity level and (strictly) less risk from lower infection level. 
Therefore in i’s best response she will never remain inactive until t̂ . It also implies that US(t ′ +ε)

(i’s continuation value at t ′ + ε) is strictly positive.
Suppose WLOG that i will be active at t = t ′ + ε. It implies that

b1 + b2A(t ′ + ε) = b1 + b2(1 − R(t ′ + ε)) ≥ βI (t ′ + ε)(US(t ′ + ε) − UI (t
′ + ε)).

However, we know that (1) US(t ′) < US(t ′ + ε) since i supposedly chooses to remain inactive 
from t ′ to t ′ + ε, (2) UI (t

′) > UI (t
′ + ε) since all agents remain active before I (t) reaches I ∗, 

and (3) I (t ′) < I (t ′ + ε). Therefore

b1 + b2(1 − R(t ′)) > b1 + b2(1 − R(t ′ + ε)) > βI (t ′)(US(t ′) − UI (t
′)),
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which means that i should become active at t ′, a contradiction. Therefore the whole trajectory 
EBO(I ∗, I (0)) is an equilibrium one.

Now we show that our argument for a rise-and-barely-oscillate equilibrium trajectory in the 
SI model extends to the SIR model, provided that γ does not exceed a positive threshold.

Proposition 11. Fix (β, b0, b1, b2, r, d), and suppose that I ∗ lies in the interior of IBO in the SI 
model. Then there exists γ > 0 such that ∀γ < γ , EBO(I ∗, I (0)) is an equilibrium trajectory for 
all I (0) ∈ (0, I ∗).

Proof. Since I ∗ lies in the interior of IBO , we know that I ∗ can be reached in the SI model, 
which means that EBO(I ∗, I (0)) is feasible ∀I (0) < I ∗ when γ is sufficiently small. To see this, 
take some ε > 0 and let γ be such that γ I ∗ − rε < 0. This implies the following: suppose that 
in the SIR dynamics with some I (0) ∈ (0, I ∗), R(0) = 0 and full activity, I (t) never reaches I ∗

when it increases from I (0); then R(t) can never go beyond ε during this time. However, when 
ε is sufficiently small (note that the bound of ε here does not depend on I (0)), if R(t) never 
exceeds ε, I (t) must reach I ∗ at some t since I ∗ is in the interior of IBO . We thus conclude that 
EBO(I ∗, I (0)) must be feasible for all I (0) ∈ (0, I ∗). Furthermore as γ becomes sufficiently 
small, both #U(I ∗) and #U(I ∗) get arbitrarily close to #UBO(I ∗) in the SI model, which, 
again given I ∗ is in the interior of IBO , implies that EBO(I ∗, I (0)) is incentive compatible for 
all I (0) ∈ (0, I ∗). This completes the proof. !

Appendix C. SIR(ecovered) model

This appendix discusses how our endemic-equilibrium analysis in the SI model can be adapted 
directly to a Susceptible-Infected-Recovered model in which no one dies from the disease and 
agents who recover from infection have subsequent immunity to infection.

C.1. Susceptible-infected-recovered analysis

This section extends the endemic-disease analysis of Sections 3.1-3.2 to the SIR(ecovered) 
model. The key difference of this variation from the SIR(emoved) model is that R-agents remain 
alive and active and hence continue to enjoy benefit flow b0 + b1 and are free from health cost 
flow −d . We focus here on how high and how low the long-run prevalence of infection can be 
in an equilibrium epidemic; the analysis for the outbreak phase is analogous to the SIR(emoved) 
model in the main text.

Steady-state equilibria. Consider a steady state with masses S, I , and R of susceptible, infected, 
and recovered agents, respectively. By equation (4), the steady-state condition R′(t) = 0 requires 
that γ I = rR. Since S + I + R = 1, this in turn implies that S = 1 − r+γ

r I and R = γ
r I . By 

equation (3), the steady-state condition I ′(t) = 0 requires that βaSS = r + γ and hence that S-
agent activity aS = r+γ

β(1− r+γ
r I )

. Overall, then, there is at most one steady state with mass I of 

infected agents.
Let ISSE(β, γ , d, r, b0, b1, b2) be the set of infection levels I that can be supported in 

an steady-state equilibrium in the SIR model with transmission rate β , recovery rate γ , dis-
ease severity d , death rate r , and payoff parameters (b1, b2). Proposition 12 establishes that 
ISSE(β, γ , d, r, b0, b1, b2) is identical to the set of infection levels that can arise in an SSE in 
an SI model up to a re-scaling, with a suitably-reduced transmission rate (β̂ < β) and disease 

44



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

severity (d̂ < d), and other parameters unchanged. Moreover, as we show in the proof of this re-
sult, population-wide economic activity and population-wide suffering from the disease are also 
identical in corresponding SSEs across the two models.

Proposition 12. ISSE(β, γ , d, r, b0, b1, b2) = r
γ+r × ISSE(β̂, 0, ̂d, r, b0, b1, b2), where β̂ =

β r
γ+r and d̂ = d r

γ+r .

Proof. Consider the SIR model with parameters (β, γ , d, r, b0, b1, b2) and suppose that an SSE 
exists with infection level I . The steady-state epidemiological conditions require that S = 1 −
r+γ

r I , R = γ
r I , and aS = r+γ

β(1− r+γ
r I )

(discussed earlier). If aS < 1 so that the SSE has partial 

activity, then incentive-compatibility (IC) holds when S-agents have individual welfare US = 0
in the steady state, since then agents are indifferent whether or not to be active. Alternatively, if 
aS = 1 so that the SSE has full activity, then IC holds when US ≥ 0.

From an economic perspective, an SSE is characterized by

b1 + b2(aSS + I + R) + βI (USS
I (I ) − b0

r
)

=b1 + b2(r + γ )(
I

r
+ 1

β
) + βI (USS

I (I ) − b0

r
) = 0,

where

USS
I (I ) = 1

r
(b0 + b1 + b2(r + γ )(

I

r
+ 1

β
)) − d

r + γ
.

Therefore an overall condition for I ∈ ISSE(β, γ , d, r, b1, b2) is

βI + r

βIr
(b1 + b2(r + γ )(

I

r
+ 1

β
)) = d

r + γ
.

For every Î ∈ ISSE(β̂, 0, ̂d, r, b1, b2), letting I = r
γ+r Î , a condition characterizing I is

β̂ γ+r
r I + r

β̂ γ+r
r I r

(b1 + b2r(

γ+r
r I

r
+ 1

β̂
)) = d̂

r
.

It is straightforward to verify that these two conditions are identical when β̂ = β r
γ+r and d̂ =

d r
γ+r . !

Barely-oscillating equilibrium trajectories. As in Section 3.2, define an oscillating trajectory 
as one in which (i) S-agents alternate regularly between periods of full activity and zero activity 
and (ii) the prevalence of infection rises from I to I during each active period and then falls from 
I to I during each inactive period. Here we focus on “barely-oscillating trajectories” in which 
I ≈ I , so that the level of infection remains approximately constant over time.

IBO(β, γ , d, r, b1, b2) be the set of infection levels that can be supported in a barely-
oscillating equilibrium trajectory in the SIR model with parameters (β, γ , d, r, b1, b2). Propo-
sition 13 establishes that this, too, is exactly the same in the SIR model and the “corresponding 
SI model” discussed earlier, with suitably-reduced transmission rate and disease severity.

Proposition 13. IBO(β, γ , d, r, b0, b1, b2) = r
γ+r ×IBO(β̂, 0, ̂d, r, b0, b1, b2), where β̂ = β r

γ+r

and d̂ = d r
γ+r .
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Proof. Define S-agents’ “average” activity as aBO
S (I ). In any barely-OET, aBO

S must satisfy

βaBO
S SI = I (r + γ )

which means the average inflow and outflow of the infected measure is the same. With S + I +
R = 1, the above condition gives aBO

S = r+γ

β(1− r+γ
r I )

. The average overall activity is then

ABO = I + R + aBO
S (I )(1 − I − R) = r + γ

r
(I + r

β
).

Then the individual welfare of infected agents is

UBO
I (I ) = b0 + b1 + ABO(I)b2

r
− d

r + γ
=

b0 + b1 + r+γ
r (I + r

β )b2

r
− d

r + γ
.

Since S-agents die at rate r and become infected at rate βaBO
S (I )I , they remain susceptible 

for expected length of time 1
r+βaBO

S (I )I
= r+γ

r
1

βaBO
S (I )

and their ex ante likelihood of becoming 

infected is βaBO
S (I )I

r+βaBO
S (I )I

= r+γ
r I . We conclude that S-agents have individual welfare

UBO
S (I ) =b0(1 − r+γ

r I )

r
+ r + γ

r

1

βaBO
S (I )

(aBO
S (I )(b1 + b2)) + r + γ

r
IUBO

I (I )

=b0(1 − r+γ
r I )

r
+ r + γ

βr
(b1 + b2 + βIUBO

I (I ))

The harm of infection is then given by

#UBO(I) = b0(1 − r+γ
r I )

r
+ r + γ

βr
(b1 + b2) − (1 − r + γ

r
I )UBO

I (I ).

The IC constraints for susceptible agents are

b1 + b2 >βI#UBO(I)

b1 + b2
r + γ

r
I <βI#UBO(I).

Note that

b1 + b2 − βI#UBO(I) =(1 − r + γ

r
I )(b1 + b2 + βIUBO

I (I )) − βI
b0(1 − r+γ

r I )

r

=(1 − r + γ

r
I )

βr

r + γ
(UBO

S (I ) − b0

r
).

Therefore we can rewrite the IC constraints as

UBO
S (I ) >

b0

r

UBO
S (I ) <

b0

r
+ r + γ

βr
b2.

Therefore, ∀I ∈ IBO(β, γ , d, r, b0, b1, b2),

0 <
r + γ

βr
(b1 + b2 + βIUBO

I (I )) − b0(r + γ )I

r2 <
r + γ

βr
b2,
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which is equivalent to

0 < b1 + b2 + βI (
b1 + r+γ

r (I + r
β )b2

r
− d

r + γ
) < b2.

On the other hand, for every Î ∈ IBO(β̂, 0, ̂d, r, b1, b2)

0 < b1 + b2 + β̂I (
b1 + (I + r

β̂
)b2 − d̂

r
) < b2.

Let β̂ = β r
γ+r and ̂d = d r

γ+r , then there is a one-to-one mapping from IBO(β̂, 0, ̂d, r, b0, b1, b2)

to IBO(β, γ , d, r, b0, b1, b2) established by I = r
r+γ Î . !
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