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Abstract

During an infectious-disease epidemic, people make choices that impact transmission, trading off the
risk of infection with the social-economic benefits of activity. We investigate how the qualitative features
of an epidemic’s Nash-equilibrium trajectory depend on the nature of the economic benefits that people
get from activity. If economic benefits do not depend on how many others are active, as usually modeled,
then there is a unique equilibrium trajectory, the epidemic eventually reaches a steady state, and agents
born into the steady state have zero expected lifetime welfare. On the other hand, if the benefit of activity
increases as others are more active (“social benefits”’) and the disease is sufficiently severe, then there are
always multiple equilibrium trajectories, including some that never settle into a steady state and that welfare
dominate any given steady-state equilibrium. Within this framework, we analyze the equilibrium impact of
a policy that modestly reduces the transmission rate. Such a policy has no long-run effect on society-wide
welfare absent social benefits, but can raise long-run welfare if there are social benefits and the epidemic
never settles into a steady state.
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1. Introduction

In 2005, a team of researchers led by Yale School of Medicine Professor Neel Gandhi de-
scended on a rural hospital in KwaZulu Natal, South Africa to document the prevalence of
drug-resistant tuberculosis (Gandhi et al., 2006). Of 542 patients diagnosed with active tubercu-
losis (TB), 53 had “extensively drug-resistant” (XDR) infections that were resistant to all of the
first-line antibiotics typically used to treat TB as well as multiple second-line treatments. Worse
yet, this XDR-TB strain was especially virulent: half of those with XDR-TB infection were dead
within 16 days of identification, and only one survived for a full year.! “Totally-resistant” TB
strains that are untreatable with any known antibiotic have been identified in Italy, Iran, India,
and elsewhere (Velayati et al., 2013; Khawbung et al., 2021). Fortunately, none of these night-
mare pathogens has yet succeeded in launching a global pandemic. But once that does happen,
and an untreatable pandemic-potential TB strain arrives in places like Europe and the United
States, what will happen next? What course will the epidemic take? And what long-term impact
will this novel pathogen have on society-wide welfare, including not just the direct harms due
to the disease but also the indirect economic and psycho-social harms associated with efforts to
avoid infection?

How a novel infectious disease such as untreatable TB spreads through a human population
and how much harm it inflicts on people’s health and prosperity depends on people’s behavior,
which itself changes during the course of the epidemic. This feedback between human behavior
and pathogen transmission determines the equilibrium trajectory of the epidemic. The field of
economic epidemiology seeks to further our understanding of equilibrium epidemics through
models of behavior during an epidemic. Such models can be used to analyze the path of a
novel infectious disease (Farboodi et al. (2021), Garibaldi et al. (2020), Keppo et al. (2020),
McAdams (2020), Toxvaerd (2020), and references therein), to evaluate policy options for man-
aging an unfolding epidemic (on optimal lockdown policies, see Acemoglu et al. (2021), Alvarez
et al. (2021), Bethune and Korinek (2020), Jones et al. (2021), and Rowthorn and Maciejowski
(2020)), and to quantify the social value of new vaccines and treatments (Makris and Toxvaerd
(2020)), among many other things—but only if these models adequately capture the underlying
economic-epidemiological environment.

Many assumptions about the economic-epidemiological environment are implicit in any
economic-epidemic model, including (i) ecological and epidemiological assumptions about the
disease process itself and (ii) economic assumptions about agents’ information, interactions, and
payoffs. McAdams (2021) surveys the recent Covid-inspired literature, categorizing economic-
epidemic models based on their assumptions about immune response, manner of transmission,
and economic impacts. Avery et al. (2021) provides an insightful discussion of several of these
modeling dimensions, focusing especially on how agent heterogeneity can impact the qualitative
features of equilibrium outcomes.

1 Most of those who died were also infected with HIV, but two health-care workers contracted XDR-TB within the
hospital and they also died. Multiple XDR-TB strains were present, but 39 of 46 genotyped XDR-TB isolates were
genetically related. Gandhi did not know about this strain before he arrived; it was sheer coincidence that he found it.
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In this paper, we focus on the impact of an economic assumption that has not yet received
much attention. Specifically, consider the social-economic activities that increase the risk of
pathogen transmission (“transmissive activities” or simply “activity”’). When an agent engages
in these activities, does the benefit that they enjoy depend on whether others are also active? In
other words, are the activities that drive transmission social in nature (such as working in-person
at an office rather than virtually from home) or non-social (such as exercising in a gym). We show
that incorporating social motivations into the economic model of an infectious-disease epidemic
can have profound equilibrium implications for how the disease will progress and persist over
time.

To illustrate the novel aspects of our analysis as clearly as possible, we employ an especially
simple epidemiological model, a Susceptible-Infected-Removed (SIR) model with vital dynam-
ics in which infected agents never recover from infection but may be “removed” due to death
from the disease, agents also die at a constant rate from other causes, and there is a constant
flow of newborn agents susceptible to infection. The special case in which no one dies from the
disease is a Susceptible-Infected (SI) model. We develop our main findings first in the ST model,
and then extend the analysis to allow for disease-induced death.

In the SI model, we first consider the benchmark case in which the economic benefits of
activity do not depend on others’ activity choices. For an epidemic that starts from an initial
condition with low infection prevalence and sufficiently severe disease, we show:

(i) there is a unique equilibrium epidemic trajectory;
(ii) there is a unique steady-state equilibrium (SSE) and the unique equilibrium trajectory
reaches this steady state in finite time; and
(iii) agents born into the SSE have the same expected lifetime welfare as if forbidden from ever
engaging in transmissive activity (“zero welfare”).

We then show that none of these key qualitative features of the equilibrium set are robust to
the possibility that agents’ individual benefit from activity may depend on others’ activity. In
particular, suppose that there are positive economic complementarities, so that agents gain more
from being active when others are more active, what we refer to as “social benefits.”? In that
context, we show the following for any sufficiently severe disease:

(i) there are many equilibrium epidemic trajectories;
(i) there is a unique SSE, which can be reached in finite time along an equilibrium trajectory,
but many equilibrium trajectories never converge to a steady state; and
(iii) agents born into the SSE have zero welfare, but there are non-converging equilibrium tra-
jectories in which agents’ behavior oscillates over time and all agents have positive welfare
at birth.

Interesting differences also arise in terms of equilibrium comparative statics, with policy-
relevant implications. For example, consider the long-run impact of a policy that somewhat
reduces the transmission rate, such as improving ventilation, providing free masks, or developing
an imperfect immunotherapy or vaccine. In the benchmark case without economic complemen-

2 The case with negative economic complementarities (e.g., congestion) is also of interest, but appears qualitatively
similar to the benchmark case. We focus on the case with social benefits to streamline the exposition and highlight the
novel aspects of our analysis as clearly as possible.
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tarities, such a policy changes how many people are infected in the unique SSE (ironically, more
people are infected in the new steady state when the disease is sufficiently severe) but newborn
agents continue to have zero expected lifetime welfare. The societal benefits of the new policy
are therefore transitory in nature, undone by agents’ equilibrium behavioral response. By con-
trast, if there are social benefits to activity and the epidemic never settles into a steady state, then
the policy can increase long-run society-wide welfare.

The most novel aspect of our analysis is that non-converging epidemic trajectories can emerge
in equilibrium once there are social benefits associated with transmissive activity. In addition to
the qualitative differences emphasized above, the possibility of non-converging equilibrium be-
havior can also have substantial quantitative implications. For instance, in the numerical example
illustrated in Fig. 4(c), about 90% of the population is infected in the unique steady-state equilib-
rium of the epidemic but non-converging equilibrium trajectories also exist in which only about
20% of the population is infected in the long run. Predictions and policy recommendations de-
rived from models that abstract from economic complementarities and/or that restrict attention to
equilibrium trajectories that converge to a steady state could therefore be substantially off-base.

Relation to the literature. Like the vast majority of the recent Covid-inspired literature, this
paper follows and builds on what we refer to as the “standard model,” introduced in Geoffard
and Philipson (1996) (“GP”) and developed further by Reluga (2010) and others. In the literature
following GP, agents know their own health status, transmission occurs whenever an infected
person is randomly matched with a susceptible one, and the likelihood that any two agents are
matched depends on how active they each choose to be. Most closely related is Toxvaerd (2019),
who analyzes a Susceptible-Infected-Susceptible model with recovery and re-infection where
strategic and forward-looking agents choose their individual level of exposure dynamically, under
both centralized and decentralized decision making. By contrast, we focus on the decentralized
case and work within a Susceptible-Infected-Removed model without recovery.

What distinguishes our paper from the rest of this literature is that we allow for economic
complementarities of activity in a dynamic setting with forward-looking agents.> We find that
complementarities can have novel and profound qualitative and quantitative implications for the
set of equilibrium epidemic trajectories. Most notably, we show that any equilibrium trajectory
that enters a steady state is welfare dominated by other equilibrium trajectories that never con-
verge but instead eventually oscillate over time. Moreover, the difference in infection prevalence
and welfare between oscillating and steady-state equilibria can be quite large in some cases. In
environments where the benefits from activity depend on others’ activity, such as when employ-
ees decide whether to work from home, analyses that abstract from complementarities and from
non-convergent behavior may therefore generate inaccurate predictions and policy conclusions.

We appear to be the first in the economic literature* to analyze non-converging equilibrium
epidemic trajectories, but a variety of mechanisms have been identified that can lead to equi-
librium multiplicity. Kremer (1996) and Chen (2012) provide two interesting examples, where
multiplicity arises as a result of a more complex transmission technology. In a pioneering early
paper, Kremer (1996) considers a model in which agents control how many encounters they have,
but who they meet depends on who else is looking to meet. In that context, multiple equilibria

3 Other notable works such as Philipson and Posner (1993), Toxvaerd (2017) and Toxvaerd (2021) have analyzed
complementarities in static or agent-myopic frameworks.

4 Hethcote and Levin (1989) shows that, in some (non-economic) epidemiological models with constant activity, the
epidemic need not ever converge to a steady state.
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naturally arise due to a selection effect: If few uninfected people are looking to meet, then most
encounters will be with infected people and it is an equilibrium for the uninfected to avoid oth-
ers. On the other hand, if many uninfected people are looking to meet, then each encounter poses
less exposure risk and hence becomes more attractive for the uninfected. Within the standard
model, Chen (2012) shows that multiple equilibria can exist if there is crowding in transmission,
more precisely, if the “contact rate” (encounter rate per unit of others’ overall activity, typically
assumed constant) is decreasing in overall activity.

Also related is Philipson and Posner (1993 “PP”) and the insightful albeit relatively small lit-
erature that has followed, including Toxvaerd (2017) and Toxvaerd (2021). In their classic study
of the AIDS epidemic, PP introduced a rich alternative modeling approach in which agents do
not observe their own health status and transmission only occurs if, upon meeting, both agents
consent to consummate their interaction. The need for mutual consent creates economic comple-
mentarities much as in our model, since the expected benefit and the exposure risk associated
with activity both depend on others’ willingness to consent. However, the implications of such
complementarities on the equilibrium set have not hitherto received much attention in this liter-
ature. An earlier version of this paper, McAdams (2020), provides an algorithm to compute the
set of equilibrium trajectories in a PP-esque model with asymptomatic infection and economic
complementarities. However, the set of equilibria in that richer context is quite complex, making
it difficult to draw clear insights from the analysis. For this reason, we focus here on a simpler
model without asymptomatic infection.

The rest of the paper is organized as follows. Section 2 presents the model and some pre-
liminary analysis. Section 3 considers the Susceptible-Infected model, corresponding to an un-
treatable disease from which people cannot recover but which does not kill them. Section 4 then
extends the analysis to the Susceptible-Infected-Removed model, allowing infected agents to die
from the disease. Section 5 considers a variety of equilibrium comparative statics, focused espe-
cially on equilibrium welfare during the endemic phase of the epidemic. Section 6 concludes.

2. Model and preliminary analysis

A disease-causing pathogen circulates among a population of hosts (or “agents”) according to
a standard Susceptible-Infected-Removed (SIR) model with vital dynamics. The pathogen first
emerges at time 0, grows more prevalent during an initial “outbreak phase” and then potentially
persists over the long run in an “endemic phase.” Epidemiological dynamics depend on agents’
economic choices whether or not to be socially active.

Vital dynamics. There is a unit-mass population of agents who die from other causes at rate
r > 0, and each infected agent dies from the disease at rate y > 0. There is constant flow r of
newborn susceptible agents entering the population. Let / (¢) be the mass of infected agents and
let N (¢) be the mass of living agents at time 7. Vital dynamics are governed by the differential
equation

N'(@®=r(1-=N@®)—yI@® ey

Epidemiological dynamics. At each point in time ¢ > 0, each agent in the population is either
susceptible (health status i; = ), infected (h; = I), or dead before their time due to the disease
(h; = R for “removed”). All agents are susceptible at birth, creating a flow of new hosts available
to be infected. Let h(z) be the mass of hosts in health state 2 € {S, I, R}. Note that R(t) =
1 — N(¢) is the mass of agents who are dead at time ¢ due to the disease but who would otherwise
still be alive.
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Susceptible and infected agents know their own health status and choose at each point in time
whether or not to be “active.” Susceptible hosts become infected if, while active, they encounter
an infected host who is also active. For simplicity, we assume that activity is a zero-one decision
and that inactive agents have zero exposure risk. Let aj (¢) be the fraction of h-agents who choose
to be active at time # > 0. Each active S-agent encounters an active /-agent and becomes infected
themselves at rate Sa;(¢)I(¢); the parameter 8 captures the transmissibility of the disease. An
S-agent who chooses not to be active at time ¢ is certain to remain in the susceptible state.

Infected agents have a dominant strategy to be fully active (details below). To simplify equa-
tions, we may therefore set aj () = 1 for all ¢

Epidemiological dynamics are determined by the system of differential equations

S§'(t) = —Bas()SWI (1) +r( (t) + R(®)) 2
I'(t) = Bas()SWHI (1) — (r + )1 (1) 3
R'(t)=yI({t) —rR({) “

as well as the adding-up condition S(¢) + I(¢) + R(¢) = 1 for all + > 0 and initial condition
(S(0), 1(0), R(0)). Motivated by the emergence of a novel infectious disease, we focus on initial
conditions of the form 7 (0) ~ 0 and R(0) =0.

An epidemic trajectory (or simply “epidemic”) £ consists of an initial condition, an epidemic
process (S(¢), I(¢), R(¢) : t > 0), and a susceptible-activity process (as(¢) : t > 0), where the
epidemic process is determined from the initial condition and the susceptible-activity process
according to the system of differential equations (2)-(4). To parse equation (3), note that there
is mass ag(t)S(t) of active S-agents, each of whom encounters an active /-agent at rate S1(t),
creating overall flow Bag(t)S(¢)I(¢) of new infections. On the other hand, each infected agent
dies at rate r + y, creating a flow (r + y)I(¢) out of the infected state. Equation (4) is a re-
expression of the vital dynamics equation (1), while (2) follows directly from (3)-(4) and the
adding-up condition.

The case when r + y > B is trivial and uninteresting since I'(t) < 0 and lim;_,», I(£) =0
regardless of agent behavior. We therefore focus on the case when r + y < .

Special case: SI model. In the special case of a non-deadly disease (y =0 and R(¢) = 0 for all
1), the SIR model reduces to a Susceptible-Infected (SI) model. The SI model generates much
simpler epidemiological dynamics than the SIR model. In the SI model in the “full-activity tra-
jectory” in which susceptible agents are always active (ag(¢#) = 1 for all ¢), the prevalence of
infection 7 (¢) is monotonically increasing over time with lim; oo I (1) = 1 — % By contrast, in
the SIR model, there are non-trivial transient dynamics early during the epidemic.

Economic dynamics. Each agent i seeks to maximize their expected lifetime continuation payoff

U, (t), henceforth referred to as agent i’s “welfare” at time 7. Agent i gets flow payoff u; (t) equal
to the sum of their “health flow payoff” and “social-economic flow payoff” (discussed below)

while alive and has zero continuation payoff upon death.

5 In reality, infected agents’ transmissive activity may be constrained, e.g., if their sickness is incapacitating, if others
can perceive that they are infected and shun transmissive contact (as with leprosy), and so on. Such effects can be
incorporated into the transmission rate. In particular, if sickness is incapacitating for fraction s of 7-agents, then only
fraction (1 — s) of them will be active and infection will spread as if the transmission rate were E: (1—s)B.
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Health: Health flow payoff is 0 if susceptible and —d if infected; the parameter d > O captures
the severity of the symptoms associated with the disease. Let H;(¢) denote agent i’s expected
lifetime continuation health payoff (or simply “lifetime health) at time 7.

Social-economic well-being (“wealth”): Social-economic flow payoff is by for inactive agents
and bg + b1 + br A(¢) for active agents, where we use shorthand

A() =as(n)S() +1(1) (&)

for the mass of active hosts at time 7. Let W;(¢) denote agent i’s expected lifetime continuation
social-economic payoff (or simply “lifetime wealth”) at time 7.

The parameter by > 0 captures the baseline benefit of being alive, including the benefits of
all safe activity that does not put one at risk of exposure. b; > 0 captures the benefit of public
non-social activity that puts an agent at risk of exposure to the virus but whose value to the agent
does not depend on whether others are also active, e.g., going to the gym. by > O captures the
additional benefit of public social activity that arises when people are active at the same time.
Such “social benefits” can arise for several sorts of reasons, such as (i) if people enjoy being
around others, (ii) if the purpose of activity is to match with someone else and a better match can
be found when more people are active, or (iii) if more aggregate activity leads to more individual
opportunities to benefit from activity, e.g., if more stores open when more people are out looking
to shop.

Equilibrium epidemics. An equilibrium trajectory (or “equilibrium epidemic”) is one in which
each living agent’s activity choice at each time ¢ > 0 maximizes their welfare given their time-¢
health status &, € {S, I}, the current state of the epidemic process, and the rest of the trajectory
after time ¢. Because all agents must be optimizing along any equilibrium trajectory £, all agents
with the same health status must have the same welfare Uy (¢t; £). Let Hy,(¢; £) and Wy(¢; E)
denote the lifetime health and lifetime wealth of s-agents at time 7. Unless needed for clarity, we
will usually suppress notation for the underlying epidemic trajectory; so, Uy, (t) = Hp (1) + Wy(1)
forallh e {S,I}and allt > 0. Let AU (t) = Us(t) — U;(¢) be the “harm of infection” at time ¢,
the amount by which an agent’s lifetime welfare falls instantaneously at time 7 upon becoming
infected.
Lemma 1 gathers together some basic facts that will be useful later in the analysis.

Lemma 1. In any equilibrium epidemic: (i) if as(t) € (0, 1), then by + b2 A(t) = BI(t)AU(t);
and (ii) if as(t') < 1 for all t’ > 1, then Us(1) = 2.

Proof. (i) If as € (0, 1), then S-agents must be indifferent whether to be active. Being inactive
guarantees that an S-agent will get baseline flow payoff by plus continuation payoff Us(¢). By
contrast, being active increases the agent’s flow payoff to bg + b1 + b> A(¢) while causing them
to transition to the infected state at rate 81 (¢). Thus, each S-agent finds it strictly optimal to be
active at time ¢ when

br+byA(r) > BI()AU (1), (6)

and is indifferent whether to be active when by + by A(t) = BI (1) AU (¢). (ii) If ag(t) < 1 for all
t' > t, then S-agents are indifferent at each point in time whether to be active and hence must get
the same payoff as if they were to choose to be inactive for their entire lives. Because inactive
S-agents get flow by payoff and have expected lifetime %, we conclude that Ug(t) = br—o. O

7



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

Epidemics in the long run. We are especially interested in the prevalence of infection and
agents’ welfare in the long run of an equilibrium epidemic. However, as we will show, not every
equilibrium epidemic settles into a long-run steady state.

Definition 1 (Long-run infection range). An epidemic trajectory & has “long-run infection range”
[1°°, T, where T°° = limsup, I(r) and I® = liminf, I("). If I® =1 = I*°, then & has
“long-run infection prevalence” 1°°.

Suppose that an epidemic has long-run infection prevalence 1°°. Equation (4) implies that the
mass of recovered agents must converge in the long run to R = %I ., and so the mass of
susceptible agents must converge to S =1 — rJ’TyI e,

Welfare comparisons. In the course of our analysis, we will use two main notions to compare
agents’ welfare in different epidemic trajectories. The strongest sense in which we compare
epidemic trajectories is that of “welfare dominance.”

Definition 2 (Welfare dominance). Trajectory £ “welfare dominates” £ if (i) Us(t; £')S(t; E') +
Ur(t; ENIEENY > Us(t: E)SEE) + Up(t; E)I(¢; E) for all ¢ and (ii) Uy (¢; E') > Uy (t; ) for
all h e {S, 1} and all ¢.

Condition (i) means that the aggregate welfare of all living agents is always higher along tra-
jectory &’. Condition (ii) means that each living agent always prefers trajectory & given their
current health status.

We also compare epidemic trajectories based on the welfare of susceptible agents only. Be-
cause newborn agents are susceptible, S-agent welfare Us(t; £) is the welfare of someone born
at time ¢, i.e., “‘newborn welfare.”

Definition 3 (Better for newborns). Trajectory £’ has “higher newborn welfare” than £ if, for all
t>0,Us(t; E) > Us(t; £), i.e., £ is better than £’ for all agents at birth.

Note that, along an epidemic trajectory that is better from a welfare point of view, there may be
more sickness and/or more death. For instance, it could be trajectory £’ is better for newborns
than trajectory £ but S(7; &) < S(t; €) and/or R(t;E’) > R(t; ) at some or all times ¢ > 0.
However, for that to be the case, any anticipated welfare losses due to increased sickness and/or
accelerated death must be more than compensated by welfare gains due to increased social-
economic activity for each newborn agent to view themselves as better off.

3. Susceptible-Infected (SI) analysis

This section develops our main findings within the context of the Susceptible-Infected (SI)
model in which no one dies from the disease. Focusing on the SI model allows us to simplify the
analysis in two main ways. First, since y = 0, the system of differential equations (2)-(4) reduces
to the single differential equation

I'(t) = Bas()SWI (1) —r1(1) (N

plus the adding-up condition S(¢) 4 I () = 1. Second, because agents live for expected length of

time % no matter what, the fact that being alive generates baseline flow benefit by lifts all agents’
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welfare by br—" but otherwise has no effect on incentives or the equilibrium set. Without loss of
generality, we may therefore set by = 0 to simplify equations.

When an epidemic first emerges, infection is sufficiently rare that all agents have an incentive
to be fully active and the prevalence of infection grows exponentially over time. There are two
basic possibilities for how the epidemic then progresses: (i) sustained full activity, if all agents
remain fully active forever; or (ii) eventual social distancing if, at some time, at least some
susceptible agents choose not to be active.

The full-activity trajectory. Let £ be the epidemic trajectory that arises when S-agents are
always active, and let /(¢) be the time-f prevalence of infection along £. That is, (/(¢) : t > 0)
is determined by differential equation 7/(1‘) =BS@)I(t) —ri(t), where S(t) =1 — I(¢). As can
be easily checked, T'(r) > 0 for all # and limy_, oo 7(1) = 1 — &~ Proposition | provides a simple

condition that characterizes when £ is an equilibrium trajectory.

Proposition 1. In the SI model, the full-activity trajectory € is an equilibrium epidemic trajectory
if and only if disease severity d < d, where

B (b1 +by)

d
a B—r

®

Proof. Along the full-activity trajectory, all agents get flow economic payoff by + b, but the
health flow payoff for S-agents is d higher than for /-agents. Consequently, AU (t) = dL(t)
where L(t) is the expected length of time that an S-agent remains alive and uninfected. L(z) is
the mean of an exponential distribution with arrival rate 81 (¢) + r. Because infection prevalence
1 () increases over time from approximately zero to lim; oo [ (#) =1 — %, L(t) decreases over

time from approximately % to lim;_, oo L(?) = ﬁii == %
Suppose that d < d. By equation (6), S-agents find it optimal to be active at time ¢ if and only

if BI(t)AU (t) < by + by. Because AU (t) =dL(t), L(t) < % forallt,and I(¢) <1 — % for all
t, we have BI(t)AU(t) < @ for all ¢t. By equation (8) and the fact that d < d, we conclude
that BI(t)AU(#) < by + by and hence that S-agents find it strictly optimal to be active at all
times; so, £ is an equilibrium trajectory.

Suppose next that d > d. Because lim;_, o [ (f) = 1 — % and lim; , o L(t) = %, we have

limy o0 BI()AU (t) =limy— 00 BdI(t)L(2) = @ > b1 + by; so, S-agents strictly prefer not

to be active sufficiently far into the epidemic and £ is not an equilibrium trajectory. O

Equilibrium uniqueness without social benefits of activity. If b = 0, then there is a unique
equilibrium trajectory and this equilibrium follows either the full-activity trajectory or an es-
pecially simple “rise-and-plateau trajectory” whereby all S-agents are active until the level of
infection hits a critical threshold I* at some time 7%, after which S-agents randomize whether
to be active with just the right probability so that /(1) = I* for all t > T*.

Definition 4. A “rise-and-plateau trajectory” is an epidemic trajectory that consists of (i) an
outbreak phase during which all agents are active, followed by (ii) an endemic phase after time
T in which the prevalence of infection is constant.

9
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Proposition 2. Consider the SI model. When by =0 and d > d,° there is a unique equilibrium

epidemic trajectory E*. Moreover, £* is a rise-and-plateau trajectory with plateau infection level
x _ _ bir
= Bd—b1)"

Proof. Proposition 2 follows directly from Proposition 8, which provides sufficient conditions
for equilibrium uniqueness in the SIR model which include these as a special case. O

Equilibrium epidemics more broadly. A rise-and-plateau trajectory is the simplest path that
an epidemic can take, but there are many other possibilities. Suppose that £ is an equilibrium
epidemic and that, in this trajectory, at least some S-agents are active at time f>0.” Lemma 2
shows how to construct a new equilibrium epidemic trajectory £ by pasting together an initial
portion of the full-activity trajectory € with the remainder of the original trajectory & after time 7.

Lemma 2. In the SI model, suppose that £ is an equilibrium epidemic trajectory with as(f) >0
for some T > 0, and define t© implicitly by 1(t®) = I (7). Then & is also an equilibrium epidemic
trajectory, determined by the S-agent activity process (as(t) : t > 0) as follows:

—as(t)=1forallt < 19 (“pasted” initial outbreak)
- as@? +x)=as(F+ x) for all x > 0 (remainder of original trajectory)

Proof. Because & is an equilibrium epidemic trajectory and ag(7) > 0, S-agents find it optimal
to be active at time r” and agents’ behavior after time ¥ constitutes an equilibrium of the
continuation game. We need to show (only) that S-agents find it optimal along £ to be active at
times ¢ < 19 . _

Let Ug(t; £) denote the welfare of a S-agent i at time ¢ along the trajectory £, assuming that
others behave as prescribed along the trajectory (whether individually-optimal or not) and agent
i plays an individually-optimal best response. Similarly, let U; (z; 5 ) be the welfare of optimizing
I-agents, and let AU (t; £) = Us(t; 5) U (t; 3 ) be the time-¢ harm of infection. Since all others
are active at times ¢ < 1, agent i finds it optimal to be active if and only if

BI(1)AU (t; £) < by + by )

by inequality (6). (For ease of exposition, we henceforth drop “& notation.”)

Because S-agents find it optimal to be active at time +9, we have BI tHAUEO) < b +
A@t9)by < by + by; thus, condition (9) holds at time 9.

Suppose for the sake of contradiction that condition (9) fails for some #' < t©. By a simple
continuity argument, there must be an interval [¢/, ¢”) over which agent i strictly prefers not to
be active but becomes indifferent whether to be active at time ¢”, for some " < 9. In particular,
(9) holds with equality at time ¢”.

Because S-agent i finds it optimal not to be active from time 7’ to ¢”, agent i gets zero eco-
nomic payoff and is certain to avoid infection during this time. Since agent i survives from time
¢’ to t” with probability e "~ we have Ug(t') = e=" "~V Ug(¢"). Moreover, Us(t") > 0
since S-agents can guarantee zero payoff by remaining inactive; so, Us(t') < Ug(t”).

® When by =0 and d < d, the full-activity trajectory is the unique equilibrium (details omitted for space).

7 In any equilibrium continuation trajectory starting from initial condition 7 (¢) at time ¢, there must be a future time
¢/ > t with some S-agent activity. If not, the prevalence of infection would fall to zero and all agents would eventually
have a dominant strategy to be active, a contradiction.

10



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

What about infected agents? Because they are always active, I-agents’ welfare takes the form
Uit = ftc,’o e_r(’_’/)(bl + A(t)by)dt — %, where % is agents’ expected lifetime. Since all agents
are active until time ¢, we have A(t) = 1 for all ¢ < 7€ and, of course, A(z) <1 forall > 1©.
U (1) is therefore weakly decreasing over the interval [¢', t©] and, in particular, U; (t"") < U;(t').

All together, we have Ug(t”) > Ug(¢') and U;(t") < U;(t'); so, AU(t") > AU(t'). Since
infection prevalence is rising, I (") > I(t') and hence BI(t)AU(t") < BI(t")AU (") = by +
b>, where the second equality holds because S-agents are indifferent whether to be active at time
t”. We conclude that S-agents strictly prefer to be active at time 7, a contradiction. O

Discussion of Lemma 2: In Sections 3.1-3.2, we will construct equilibrium continuation trajecto-
ries starting from initial conditions in which infection is already widespread. Lemma 2 shows that
these continuation trajectories can in fact be “reached” along equilibrium trajectories that start
from an initial condition with rare infection and take an especially simple form, consisting of
(i) an “outbreak phase” in which all agents are fully active followed immediately by (ii) an “en-
demic phase” in which further play follows the equilibrium continuation trajectory in question.
See Propositions 4 and 5.

Bearing this in mind, the rest of this section focuses on situations in which infection is already
widespread. We begin in Section 3.1 by characterizing what steady states can arise in equilib-
rium. Then in Section 3.2, we consider the simplest sort of non-converging trajectory, so-called
“oscillating trajectories” in which S-agents alternate regularly between activity and inactivity,
causing infection prevalence to rise and fall regularly over time.®

3.1. Steady-state equilibria

A “steady-state trajectory” is one with constant infection prevalence I > 0 and constant
susceptible-agent activity ag. This section provides a starting point for our analysis of the en-
demic phase of an infectious disease, by characterizing all steady-state trajectories that can arise
in equilibrium. Our main finding is that, whenever the disease is sufficiently severe that d > d
(defined in Proposition 1), there is a unique steady-state equilibrium and, in this steady state,
susceptible agents’ lifetime welfare is the same as if they were required to be inactive for their
entire lives.

Definition 5. A “steady-state equilibrium (SSE)” with infection prevalence I is a steady-state
trajectory that is also an equilibrium trajectory starting from initial condition 7 (0) = 1.

If ag < % and all S-agents are active with probability ag, then I'(r) < I(£)(S(t) — 1) <0
for all ¢ by equation (7), causing the level of infection to decline toward zero. This can never
occur in equilibrium, as S-agents have an incentive to be active once / () ~ 0. We may therefore
restrict attention to ag € (% , 1]. For each such activity level, there is a corresponding steady-state

infection level I55(ag) =1 — ﬁrTs Let £55(as) denote the steady-state trajectory with S-agent

activity ag € (%, 1] and infection prevalence I5%(ay), and let Uy, (SSS(aS)) be agents’ steady-
state welfare in each health status h € {S, 1}.

8 Itis easy to show that, whenever an oscillating equilibrium trajectory exists, other non-converging equilibrium tra-
jectories also exist without a regular oscillation. However, such equilibria are difficult to characterize and analyze, and
do not appear to generate additional qualitative insights.

11
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(as)

S8
g

U$

Fig. 1. Illustration of our characterization of all steady-state equilibria (SSEs), as disease severity d varies with other
fixed parameters § =1, by =0, by = 0.2, bp = 0.1, and r = 0.05. Each zero of the function Ugs(as) overag € (%, 1)
corresponds to a partial-activity SSE. When d is sufficiently small (blue curve), the unique SSE has full activity. When
d is sufficiently large (green curve), exactly one partial-activity SSE exists. In between (red, yellow, and purple curves),
a full-activity SSE exists as well as one or two partial-activity SSEs. (For interpretation of the colors in the figure(s), the
reader is referred to the web version of this article.)

Full-activity steady state. Here we show that the full-activity steady state £55(1) is an SSE if
and only if d < d. In this steady state, the infection level 755(1) =1 — ﬂ, I-agents earn con-

stant flow payoff b1 4+ by — d and hence have welfare U IS Sy = b‘+bz
payoff b1 + b, while uninfected, remain uninfected for average length of time C ﬁ—r) -

. S- agents earn flow
/.‘5 , be-

come infected at rate B755(1) = B — r, and have ex ante likelihood W = % of becoming
infected before death. Overall, then, S-agents have welfare U SS (1) blH’z + B ﬁr U SS(l) =
M - d(’z ") and the steady-state harm of infection is AUSS(1) = € By the incentive condi-
tion (6), £55(1) is an equilibrium trajectory if and only if b + by > ,BISS(I)AUSS(I) d(ﬂ )

which holds if and only if d < d as defined in (8).

Partial-activity steady states. Consider any ag € (%, 1) and the partial-activity steady-state tra-

jectory £55(ag). This is an SSE if and only if S-agents are indifferent whether to be active.
Because inactivity guarantees zero flow payoff, such indifference arises if and only if each S-
agent has zero welfare along ESS(ay), e, U 55 (as) = 0. This observation provides a simple
way to characterize the full set of SSEs, by identifying the set of activity levels ag € (%, 1) such

that S-agents have zero welfare in the steady-state trajectory £55 (as).

Numerical example. Fig. 1 provides an illustration of our method of determining the set of
SSEs, highlighting how the SSE set varies with disease severity d, in a numerical example. In
particular, suppose that 8 =1, by =0, by = 0.2, b, = 0.1, and r = 0.05, given which d’ ~ 0.274
and d ~ 0.316. There are three main possibilities for the SSE set, depending on disease severity.

12



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

~ low-severity disease: If d < d' (e.g., d = 0.25), then U§5(as) > 0 for all ag > %~ In this
case, there is a unique SSE, which has full activity.

— intermediate-severity disease: If d < d < d' (e.g.,d =0.3), then U gs(a s) = 0 at two activity
levels less than one and U SSS (1) > 0. In this case, there are three SSEs, one with full activity
and two with partial activity.

— high-severity disease: If d > d (e.g., d = 0.33), then Ugs(as) =0 at a unique activity level
less than one and U Sss (1) < 0. In this case, there is a unique SSE, which has partial activity.

Proposition 3 summarizes our main findings about the SSE set, focusing especially on the
(surprisingly narrow) conditions under which there are multiple SSEs.

Proposition 3. Consider the SI model. (i) An SSE exists. (ii) There is a unique SSE if and only

if any of the following conditions hold: (a) there are no social benefits of economic activity,

i.e., by =0, (b) agents are sufficiently short-lived that r > blﬂ—szbg ; and/or (c) disease severity is

greater than d or less than d', where

, by rby rby
d=b+2r—+2|—(b1 + —). 10
d 1 r,B N ,3(] /3) (10)

Proof. Part (i). If d < d, then a full-activity SSE exists. If d > d, then by + by <
BISS(1)AUSS(1). However, because limgg,/p155(as) = 0, we have by + by >
BI55(as) AUSS (ay) for all ag ~ % By continuity, there must exist some as € (%, 1) such that

by + by = BI5S(as) AUSS (as), and £55(ag) is an ESS. This completes the proof of (i).

Part (ii). Define the following shorthand: I (ag) = I55(ag) =1— ﬂrTs for infection prevalence in
the steady-state trajectory £55(as); A(as) = I (as) +as(1 — I (as)) = I (as) + % for population-
wide activity; and Ug(as; d) and Uj(ags; d) for the welfare of susceptible and infected agents,
viewed here also as functions of disease severity d.

As discussed earlier: £55(1) is an SSE if and only if Ug(1;d) > 0, which holds whenever
d < d; and for each as € (3, 1), £%%(as) is an SSE if and only if Us(as; d) = 0. It remains for
us to characterize when Ug(as; d) = 0 and show that SSE is unique under the stated conditions.
We begin by deriving Uj(as; d) and Ug(as; d).

Infected-agent welfare: I-agents get flow payoff by + A(as)b> — d until they die. Since death
arrives at rate r, each agent’s expected length of life is %; so Uy(as; d) = %.

Susceptible-agent welfare: S-agents get flow payoff ag(b; + A(as)b>) until they either die or
become infected. Since infection arrives at rate Sasl (as) = Bas — r and death at rate r, each

. . . 1 1 .
S-agent remains susceptible for expected length of time Bas—nTr = Bas and becomes infected

prior to death with likelihood % = I (ag), in which case they have continuation welfare
Uj(as; d). All together, then,

1
Us(as; d) = %as <b1 + A(as)b2> + I(as)Uj(as; d) (11
r 1 I(as) I(as)
= (b1 + (I(as) + E>b2> (E +— ) —d= (12)

13
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Because Ug(as; d) is linearly decreasing in d, there is a unique disease severity d(ag) given
which Ug(as; d(as)) = 0 for any given ag € (%, 1]:

d(as) = (bl + (I(as) + %)bz) (1 n ﬂI:a5)> for all as € (% 1} . (13)

Each partial-activity steady state £ S8(ag) is an SSE if and only if disease severity d = d(ag) and
the full-activity steady state £55(1) is an SSE if and only if d < d(1) =d
Lemma 3 establishes several useful facts about d(ay).

Lemma 3. Consider the SI model. (i) If r > b/igzhz then d(ag) is strictly decreasing over

as € (3’ 1]. (i) If r < bl’i‘—sz’ then —d(as) is single-peaked with argmin,, d(as) € (%, 1), and
mingg d(as) =d’ < d, where d' is defined in Proposition 3.

by

+
Proof. We can re-write (13) as d(as) = b1 + 22 7+ I(as)by + u Since I (as) is an
increasing function of ag, we can thlnk of d also as a function of steady state infection prevalence

25y
I,ie,d(I)=b1+ 2r +1by + £ Taking a derivative yields

r(by + r%z)
Iz -
d'(I) 20 when I 2 I= //32 +3 b‘ r . We conclude that d([7) is strictly decreasing in [ for all

1 €(0, I ) and, if I<1- strlctly increasing in I forall I € (I 1— ﬂ)' Or equivalently, d(as)
is strictly decreasing in aS whenever ag € (3’

ase(ﬁ(1 7 , 11,
Bb

Note that [ is strictly increasing inr, with/ >1— L ifand only if r > 7 = h+—22b Suppose

d'(I)=b —

ﬁ(l—i)) and strictly increasing in ag whenever

first that » > 7 so that { > 1 — Z Smce I(ag) <1— L for all ag € (ﬁ, 1), we conclude that d(as)
is strictly decreasing over the Whole interval ag € ( B 1], as desired. Suppose next that r < 7, so
that / <1 — % Since I (as) is strictly increasing with limgg\ - 1 (as) = 0 and lim, ~1 I (as) =
1- % there exists ag € (%, 1) such that I (ag) = I and hence I (as) > I if and only if ag >

as. We conclude that d’(ag) < 0 for all as € (r, as) and d’(as) > O for all ag € (as, 1). This
establishes that —d (ag) is single-peaked over ags € (%, 1), as desired.

Lastly, in the case when r < 7 so that d(I) is non-monotone, define d’ = min; d(I) =d ).
The fact that d’ = by + Zr%2 + 2,/ %(bl + %) can be verified directly through tedious alge-

28y
rby+r 7
BI

is ‘/%(b 1+ %). The AM-GM Inequality therefore implies that d(ag) — by — 2r bz =1by +

biar2l2 ~
";# > 2,/ (b + "), with the equality being realized only when I = /. Thus, the global

minimum of d(7) is by + Zr% +2 /%(bl + %), as desired. O

We are now ready to verify the specific conditions for SSE uniqueness in Proposition 3.

bra, but a more elegant approach is to recognize that the geometric mean of /b, and

14
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(a-b) Suppose first that r > %, including as a special case any situation with b, = 0.
By Lemma 3, d(ag) is continuously decreasing over ag € (%, 1], from lim,\  d(as) = oo to
d(1) = d. We establish SSE uniqueness in two cases. First, for any d > d, there is exactly one
activity level ag such that d(as) = d, which is between r and 1; thus, there is a unique SSE
and this SSE has partial activity. Second, for any d < d, no partial-activity SSE exists because
d(as) > d > d for all ag < 1. However, a full-activity SSE exists by Proposition 1.

(c) Suppose next that r < %. By Lemma 3, d(ags) is continuously decreasing over ag €
(%, as), reaching its minimum at d(as) = d’, then is continuously increasing over (as, 1] with
d(1) = d. There are three main cases, in two of which there is a unique SSE. First, for any
d > d, there is exactly one SSE activity level as(d) supported by disease severity d, and as(d) €
(%, as). Second, for any d < d’, we have d € D(1) but d(as) > d’ > d for all ag < 1; thus, the
unique SSE has full activity. The main difference with part (i) of the proof is that multiple SSE
exist whenever d € [d’, d]. In particular: a full-activity SSE exists over this entire range; and
when d € (d', d), two partial-activity SSE exist, one with activity less than dg and the other with
activity more than ag. This completes the proof of (ii). O

Rise-and-plateau epidemic trajectories. For any given partial-activity steady state with in-
fection level I, each S-agent is active with probability ag = a-n > 0. Lemma 2 therefore
implies that, starting from an initial condition in which infection is rare, an equilibrium epidemic
trajectory exists in which all agents are active until the infection level reaches I, after which
continuation play follows the partial-activity SSE in question. Proposition 4 summarizes this
observation that rise-and-plateau equilibrium trajectories exist whenever a partial-activity SSE
exists.

Proposition 4. In the SI model, suppose that a partial-activity SSE exists with infection level I.
Then a rise-and-plateau equilibrium trajectory exists in which that partial-activity SSE is played
during the endemic phase.

3.2. Oscillating equilibrium trajectories

“Eat, drink, and be merry, for tomorrow we all stay home.”
— variation on a famous proverb, for those in an oscillating epidemic trajectory

This section expands our analysis to consider non-steady state “oscillating trajectories,’
whereby the endemic phase of the epidemic consists of alternating periods in which susceptible
agents are all active and then all inactive. We have three main results. First, we characterize the
full set of oscillating equilibrium trajectories (OETSs), which can vary quite substantially in terms
of endemic disease prevalence and agent welfare. Second, whenever a partial-activity steady-
state equilibrium (SSE) exists, we show that “barely-oscillating trajectories” that approximate
that SSE are also equilibrium trajectories, and that some of these nearby non-steady-state equi-
librium trajectories Pareto dominate the SSE. Finally, we characterize the set of barely-oscillating
equilibrium trajectories (“barely-OETs”) and show that susceptible-agent welfare is maximized
in the barely-OET with the least infection. This contrasts with our earlier finding that the SSE
with the most infection Pareto dominates all other SSEs whenever there are multiple SSEs (corol-
lary to Proposition 3).
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Characterization of all oscillating equilibrium trajectories. Outline of approach: First, we
define and describe all epidemiologically-feasible oscillating trajectories. In any such trajectory,
we derive the prevalence and harm of infection at each point in time. This then allows us to
derive necessary and sufficient incentive-compatibility conditions for that trajectory to arise in
equilibrium.

Definition 6. An “oscillating epidemic trajectory” is one such that:

— infection prevalence oscillates with period length T = T + T», namely, I (t + T) = 1(¢) for
allt>0,I'(r) >0forallr € (0,T1),and I'(t) <O forall t € (T1,T);

— S-agents alternate between all being active and all being inactive, i.e., ag(t) = 1 for all
t €(0,T1) and ag(t) =0 for all ¢t € (T, T), while I-agents are always active.

Note that, because infection prevalence follows the same oscillating pattern over each period
of time [KT, (K + 1)T], S-agent activity in an oscillating epidemic trajectory must also repeat
over time, alternating between “active periods” of length 77 from KT to KT + T; and “inactive
periods” of length T, from KT + T; to (K + 1)T.

Feasible oscillating trajectories. Let I = 1(0) denote the minimal infection prevalence, reached
ateach time t = KT for K =0, 1,2, .... Infection dynamics during each active period are de-
termined by / and the differential equation I'(t) = (8(1 — I (t)) — r)I(t). Let I = I (T}) denote
the maximal infection prevalence, reached for the first time at t = 7. Infection dynamics during
each inactive period are determined by I and the differential equation I'(t) = —r1(t).

By definition, 7(0) = I(T) in any oscillating trajectory. This constrains the period lengths
T1, T» and oscillation range (/, 7) that can feasibly arise. 77 and 7, are each determined by
the amount of time it takes, respectively, to rise or fall between / and T.In particular, because

% = % equals B(1 — I(t)) —r for all t € (0, T1) and equals —r for all r € (T}, T), we

have
T
log(1) — log(I) = f(ﬁ(l —1(t)) —r)dt =Tor (14)
0

Since I(t) <1 — % at all times and r > 0, equation (14) uniquely determines 77 and 75.

Let £9 be shorthand for a feasible oscillating trajectory. For ease of notation, we will mostly
suppress £ -notation in what follows, except where needed for clarity.

Infected-agent welfare. Infected agents have lifetime health (or simply “health”) H;(t) = _Td in
any trajectory, but their lifetime wealth (or simply “wealth”) W, (¢) varies over time and depends
on the trajectory. /-agents’ wealth W;(0) at the start of each oscillation is determined by the
fact that they get flow economic payoff »; 4 b during each active period, flow economic payoff
b1 + I (t)b> during each inactive period, and continuation welfare W;(0) if still alive at the start
of the next oscillation. That is,

T T
Wi (0) =/(b1 +by)e dx + /(bl + I(x)ba)e™ ™ dx +e T W, (0)
0 Ty
_fOTl (by +bo)e ™" dx + [ (b1 + I (x)by)e " dx s)
- 1—etT
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In the same way, /-agents’ wealth at times ¢ € (0, T') is determined by their remaining flow
economic payoffs until time 7 plus continuation payoff W;(0) if still alive at that time:

T)—t
Wi(t) = f (b1 +by)e dx

+ / (b1 + I (xX)b2)e " Ddx + e " T=D W, (0) forall ¢ € [0, Ty ]
T
T
= / (b1 + I(x)b)e " Ddx + e " T=DW,(0) for all t € [T}, T] (16)
t

I-agents’ overall individual welfare U;(¢t) = Hy(t) + W (¢) ateach time ¢ € [0, T'], with Uy (¢) =
Uit —T)forallt > T.

Susceptible-agent welfare. Consider an agent who is susceptible at time # = 0. Such an agent has
health and wealth

T
Hs(0) =//‘31(X)H1(X)P(x)€7”dx + Hs(0)P(T)e "

BTG H (1) P(x)e " dx

1= P(T)e—'T a7
T
Ws(0) = /(bl + by + W (x)BI(x)P(x)e™  dx + Ws(0)P(T)e™" T
N1+ by + Wi ()BT () P(x)e " dx "

1—P(T)e T
where P(t) is the probability that such an agent remains susceptible at time ¢, conditional on
being alive at that time. Since S-agents are infected at rate 81 (¢) during each active period and

never infected during each inactive period, we have P () = e*f(; BIG)dx for all ¢ € [0, T1] and
P@t)=P(Ty) forallt € [Ty, T].

The health and wealth of S-agents at times ¢ € (0, T') is determined by their remaining flow
payoffs and potential transition to infection until time 7', plus a continuation payoff if still alive
and susceptible at that time:

T)—t

Hys(1) = / BI(t+x)H;(t +x)—— P@+x) e Xdx

P(1)

+ Hg(0) I; (( )) —(T=0 forall ¢ € [0, T1]

= Hg(0) Z((T)) —r(T=0 forall t € [Ty, T] (19)
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T)—t
P
Ws(1) = /(b1+b2+W1(t+x),BI(t+x)) (t+X)€7rxdx
0

P(t)

P(T
+ WS(O)%(”H) for all € [0, T1]

P(T
= WS(O)(—)e—’<T—'> forallt € [Ty, T] (20)
P(1)
S-agents’ overall individual welfare Ug(t) = Hg(t) + Ws(¢) ateachtime ¢ € [0, T], with Ug(¢) =
Us(t—T)forallt >T.

Incentive-compatibility (IC) conditions. At all times ¢ € (0, T1), S-agents must at least weakly
prefer to be active given that all other agents are active. By inequality (6), this “active-IC condi-
tion” holds if and only if

b1 +by>BI(t)AU(t) forall ¢ € [0, T1], 21

where AU (t) = Ug(t) — Uj(¢) is the harm of infection at time ¢. Similarly, at all times ¢ €
(Th, T), S-agents must at least weakly prefer not to be active given that other S-agents are not
active. By inequality (6), this “inactive-IC condition” holds if and only if

by +byI(t) <BI(t)AU(t) forallt € [Ty, T]. 22)
Inequalities (21),(22) allow us to compute all OETs given any model parameters.

Rise-and-oscillate epidemic trajectories. For any given OET, note that all S-agents are active
at the start of the first active period at time t = 0. Lemma 2 therefore implies that, starting from
the true initial condition in which infection is rare, an equilibrium epidemic trajectory exists in
which all agents are active until the infection level reaches the oscillation’s trough I, after which
continuation play follows the OET in question. Proposition 5 summarizes this observation that
“rise-and-oscillate” equilibrium trajectories exist whenever the set of OETs is non-empty.

Definition 7. A “rise-and-oscillate trajectory” is an epidemic trajectory that consists of (i) an
outbreak phase during which all agents are active, followed by (ii) an endemic phase in which
the prevalence of infection oscillates over a fixed range.

Proposition 5. In the SI model, suppose that an OET exists with infection range [1,I]. Then a
rise-and-oscillate equilibrium trajectory exists in which that OET is played during the endemic
phase.

Numerical example. Fig. 2 illustrates how the set of OETs and the set of SSEs vary with the
importance of social interactions to agent welfare, as captured by the parameter b,, in a numerical
example with other parameters 8 = 1, bo =0, b1 =3, d = 12, and r = 0.1. In each panel,
the horizontal and vertical axes denote, respectively, the minimal infection-level / and maximal
infection-level I during each oscillation. SSEs are shown in each panel as red dots on the 45°-
line, while the set of OETs is the entire colored area above the 45°-line, with colors illustrating
how average newborn welfare varies over the set of OETs. (In an oscillating trajectory with
T
period length T, “average newborn welfare” equals M.)
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Fig. 2. Tllustration of the set of all oscillating equilibrium trajectories (OETs, colored according to average newborn
welfare) and steady-state equilibria (SSEs, red dots), as by varies given other parameters 8 =1, by =0, by =3,d =12,
and r = 0.1. In each panel, the horizontal and vertical axes represent / and I, respectively, where [1, I] is the range of
oscillation.
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Steady-state equilibria: In panels (a-b), there is a unique SSE with partial activity. In panels (c-e),
there are two SSE with partial activity and one with full activity. In panel (f), there is one SSE
with partial activity and one with full activity. In panels (g-h), there is a unique SSE with full
activity.

Oscillating equilibrium trajectories: In panel (a), there are no social benefits of activity and
hence no OET exists (Proposition 2). In panel (b), there is a single connected region of OETs,
fully surrounding (i.e., “containing”) the unique SSE. In panels (c-d), the set of OETs is the union
of two connected regions, each containing one of the two partial-activity SSEs. In panels (e-f),
the set of OETs is a single connected region containing both partial-activity SSEs. In panel (g), a
set of OETs exists while partial-activity SSE does not. In panel (h), there are again no OETs. O

In every OET, the active-IC constraint by 4+ by > BI(t) AU (¢t) must be satisfied at all times
t € (0, T1) and the inactive-IC constraint by + byl < BI(t) AU (t) must be satisfied at all ¢ €
(T1, T). If the harm of infection AU (¢) were constant, then checking these constraints would
be simple. Since I (¢) is increasing during the active period and decreasing during the inactive
period, one would only need to check the active-IC constraint at time 77, when infection is
highest, and the inactive-IC constraint at time O, when infection is lowest. However, agents’
welfare and hence the harm of infection varies throughout each oscillation and, specifically, may
vary non-monotonically within the active period.

Because of these complications, an analytical characterization of the set of all OETs appears
out of reach. However, we have been able to characterize and fruitfully analyze a special class
of OETs—those with very short oscillations, in which the prevalence of infection remains essen-
tially constant over time.

Definition 8 (Barely-oscillating equilibrium trajectories). Consider any sequence of oscillating
trajectories {Eko ck=1,2,..} with limg_00 I} = limgooo Iy = 1. If every trajectory in the
sequence is an equilibrium trajectory, then we refer to the limit of the sequence as a “barely-
oscillating equilibrium trajectory” (or “barely-OET”) and I as a “barely-OET infection level.”
Let 789 be the set of all barely-OET infection levels.

In Fig. 2, the colored region is the set of all OETs and the set of barely-OETS is the colored
portion of the 45° line.

Consider any oscillating trajectory £ (I) in which the prevalence of infection is approx-
imately equal to 7 € (0,1 — %) at all times. In such a trajectory, the active and inactive pe-
riods are extremely short and agents’ welfare remains approximately constant over time, i.e.,
Un(t; E9(1) ~ ULO(I) for all t and each h € {S, I}. Let AUBO (1) = UEO (1) —UP (1) de-
note the harm of infection in this “barely-oscillating limit.”

The active-IC and inactive-IC conditions (21),(22) hold throughout each oscillation if by +
byl < BIAUBO(I) < by + by, but not if either BIAUBO(I) > by + by (active-IC fails) or
BIAUBO(I) < by + by I (inactive-IC fails). Lemma 4 shows that these conditions are equivalent
to even simpler conditions, expressed only in terms of S-agent welfare U SB o).

Lemma 4. Consider any I € (0,1~ 7). I € B8O if0<UB% (1) < %2 but not if UBO (1) <0 or
U?O(I) > %2, where

bi+ I+ 5)by—d

050(1)=é(b1+b2>+1
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Proof. Consider any fixed time interval 7 > 0 and any oscillating trajectory such that / > I — €

_ +T
and I < I + € for some € > 0. Define ag(t; T) = w; this is S-agents’ average activity

in the T-period after time . So long as € &~ 0, we have I ~ I ~ I and there is an approximately
constant flow /r of agents out of the infected state due to death. On the other hand, the average
newly-infected flow is approximately Bas(t; T)I (1 —I). Thus, as(t; T) ~ a?o )= m for
all ¢. Similarly, average overall activity A(t; T) ~ ABO(I) =1 + afo(l)(l D=1+ % for all
t.

Infected agents are always active and get approximately constant average flow payoff by +
AB9 (b, — d and hence have individual welfare U; (r) ~ UIBO (1) for all ¢, where

bi+ U+ %)by—d
UBo ) = B . (23)
Susceptible agents are active in fraction ag 0(1 ) of the time and, at those times, all agents

in the population are active. Thus, S-agents get approximately constant average flow payoff
a g O(I)(by + b>) while susceptible, plus approximate continuation payoff U IB 9(I) in the event

that they become infected. Since S-agents die at rate » and become infected at rate Ba g oI,

they remain susceptible for expected length of time ! =

1
r+paf%(H1 — BafO(I)

and their ex ante
paBO (1

r+paf0 (1

welfare Ug(t) ~ UE9(I) for all ¢, where

likelihood of becoming infected is = I. We conclude that S-agents have individual

OE %as(l)] +by) +TUEO (D), (24)

confirming the equation in the statement of the lemma. The harm of infection is also approxi-
mately constant, with AUBO (1) ~ AUBO(I) = %(bl +by) — (1= DHUEP(I) forall 1.

The oscillating trajectory in question is an equilibrium trajectory if and only if the active-
IC condition (21) holds throughout each active period and the inactive-IC condition (22) holds
throughout each inactive period. Because [ (1) AU(¢) = AU BO (1) for all ¢, this is true (for €
sufficiently small) whenever these inequalities are strictly satisfied in the barely-oscillating limit,
i.e., whenever

by +by> BIAUBO (1) (25)
b1+ byl < BIAUBO(I) (26)

and not true whenever either is strictly violated in the limit. Next, observe that
. BO /7y _ _ l 1 BO
by +by— BIAU®Y (1) =by +by— BI ﬁ(b1+b2) 1-nDuy~)

= (1= 1) (b1 +b2+ BIUPO (D) = p(1 = DUFO )

Since I > 0, the strict active-IC condition (25) is equivalent to U f O(I) > 0, while the strict
inactive-IC condition (26) is equivalent to U f o < %2. We conclude as desired that every

oscillating trajectory with range of infection [1, 1] C [I — €, I + €] is an equilibrium trajectory
(and hence I € ZB9) if S-agent welfare 0 < Ufo(l) < %2, but not if either Ufo(l) <0 or

v =% o

21



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

Next, we leverage Lemma 4 to establish several facts about the range of outcomes that can
arise in barely-OETs. First, the set of barely-OET infection levels is either empty (as in panels
(a,h) of Fig. 2), a single interval (as in panels (b,e,f,g)), or the union of two intervals (as in panels
(c,d)). Second, whenever a partial-activity SSE exists with infection level /, that SSE is “sur-
rounded” by a set of OETs, including some with more infection and some with less. Moreover,
in this case, OETs always exist that Pareto dominate the SSE.

Proposition 6. (i) 759 c (0,1 — %] is either empty, a single closed interval, or the union of two
closed intervals. (ii) If a partial-activity SSE exists with infection-level I, then (I —e, I +€) C
I89 for some € > 0. (iii) Every partial-activity SSE is Pareto dominated by a non-empty open
set of OETs. (iv) max;.7Bo Ufo )= Ugo (I'™iny, where ™" = min Z89.

Proof. (i) By the proof of Lemma 4, I € 789 if UBO(I) € (0, Q) but not if UBO(I) <0or
O(I ) > b—2 By inspection of (24), Uy O(I ) is a strictly convex continuous quadratic with
Ug B 9(0) > %, as shown in Fig. 3. Thus, the set of infection levels satisfying the inactive-IC

condition is a (potentlally empty”) interval, while the set of infection levels violating the active-
IC condition is a (potentially empty) interval within that interval. This implies immediately that
either T80 = @ or 789 is an interval, with interior (I"’i", 1"y for some 0 < Jmin - pmax <
1-— E’ or I89 is the union of two intervals, with interior (1", I') U (1", I""“*) for some 0 <
min < < 1" < M <] — %- In addition, whenever 789 is non-empty, a continuity argument
(provided in Appendix A.1) establishes that the threshold infection levels {1, I', I, ")
also belong to 780, making it a closed set.

(ii) Suppose that a partial-activity SSE exists with infection level /. Let a S(n = B0=D 1= 7y < 1
be the probability that S-agents are active, and let ASS(h =1+ a:gs(l)(l - D=1+ ; be
the overall activity. For the same infection level to be maintained over time, average activity
must be the same in barely-oscillating limit as in the steady state: a g 0 (I)=a SS (I)=ag(l) and
ABO(I) = ASS(I) = A(I). Since [ -agents are always active themselves, they enjoy the same
average amount of social activity and hence have the same lifetime wealth and hence welfare
in the barely-oscillating limit: U IBO(I )=U IS $(I). Similarly, S-agents are infected at the same
average rate and hence have the same lifetime health: H SB %=H 55(1 ). However, S-agents
earn average flow economic payoff as(/)(b; + by) in the barely-oscillating limit while they
remain alive and susceptible, compared to as (1) (b1 + A(I)b>) in the steady state. The difference
between these flows, as(I)(1 — A(I))by, arises from all S-agents being active at the same time
and hence maximizing the social benefit of their activity.

Because S-agents remain alive and susceptible on average for length of time m =

a5 (,) and A(I) = I + 5, we have vEonH=uSn+a-1- DE % 1n the SSE with infection-
level I, agents must be indifferent whether to be active, i.e., Uy SS(H=0 (proof of Proposition 1).
We conclude that Ufo H=0-1- —) € (0, ﬁ) and hence that I € 789 Moreover, because

UBO(1) is continuous in 7, we have 1mmediately that (I — €, I 4+ ¢) € ZB9 for small enough
€ > 0, as desired.

9 In any barely-OET, S-agents must find it optimal to be inactive when everyone else is inactive, a condition which
cannot hold when disease severity d is sufficiently small and/or the non-social benefit of activity by is sufficiently high.
See Appendix A.2 for a complete characterization of the model parameters given which Z BO 5 empty.
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Fig. 3. An example in which Z8B0 consists of two disjoint intervals, given parameters 8 =1,b; =3, by =11,d =13,
r=0.1.

(iii) Suppose that a partial-activity SSE exists with infection level /. Consider an oscillating
trajectory £ (¢) with I € (I, +¢) and T € (I, I + €). By part (ii), £ (¢) is an equilibrium
trajectory for all sufficiently small €. £9 (¢) Pareto dominates the partial-activity SSE because
S-agents get positive individual welfare in £ (¢) compared to zero individual welfare in the SSE,
while -agents are strictly better off because there is more overall activity than in the SSE.'?

(iv) For all I € ZB9 newborns have individual welfare U 50(1 ) in the barely-OET with

infection-level /. By Lemma 4, U g 9(I) is bounded above by %, and this upper bound is real-
ized whenever the inactive-IC constraint is binding. Because U f O(I) is a continuous and strictly

convex quadratic with U f 0 0) > %2, this occurs at ", as desired. (If I™%* < 1 — %, as in all of
our numerical examples, then the inactive-IC constraint also binds at /"%*. In that case, newborn

welfare is also maximized at the highest barely-OET infection level.) O

Fig. 4 illustrates some of the key findings in Proposition 6. Panels (a-b) show two situations
with two partial-activity SSEs, each contained within an interval of barely-OETs. (In panel (a),
the set Z29 of barely-OETs consists of two intervals; in panel (b), it is a single interval.) Each
of these partial-activity SSEs generates less welfare for newborns than the barely-OET with the
same infection level, which themselves generate less newborn welfare than the barely-OETs with
the least or the most amount of infection. Finally, consider panel (c). Proposition 6 establishes

10" More precisely, let A(t; €, T') denote the average overall activity in the 7-period after time ¢, for any 7 > 0. For
sufficiently small €, A(t; T') strictly exceeds the overall activity in the SSE at all times ¢ > 0. Thus, /-agents accumulate
strictly more economic payoffs over any given T -period when e is sufficiently small.
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Fig. 4. Illustration of all oscillating equilibrium trajectories (OETs) and steady-state equilibria (SSEs) as in Fig. 2, but
now with varying by and 8 =1,bp =11,d =12, and r =0.1.

that an interval of barely-OETs exists whenever a partial-activity SSE exists. Panel (c) shows
that the converse is not true, as there is an interval of barely-OETs which does not contain any
partial-activity SSE.

Rise-and-plateau barely-OETSs. Because Proposition 5 applies to all OETs, an immediate im-
plication is that for all infection levels 7 € ZB9 equilibrium epidemic trajectories exist in which
all agents are active until the infection level reaches 7, after which continuation play follows an
OET that barely oscillates. These equilibrium trajectories are similar to the rise-and-plateau equi-
librium trajectories of Proposition 4, in that infection prevalence is essentially constant during the
endemic phase of the epidemic, but the long-run prevalence of infection (and agent welfare) can
be very different. For instance, in the numerical example illustrated in Fig. 4(c), the prevalence
of infection during the endemic phase is only about 20% of the population infected if agents are
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able to coordinate on a barely-OET, compared to 90% infected if they settle into the unique SSE
which has full activity.

4. Susceptible-infected-removed analysis

This section extends our analysis to the Susceptible-Infected-Removed (SIR) model,'! in
which infected agents are “removed” due to death at rate y > 0. In summarizing our findings
in the SIR model, it is helpful to discuss separately what we have been able to show about the
endemic versus early phases of the epidemic.

Endemic phase: Our characterization of steady-state equilibria (SSEs) and barely-oscillating
equilibrium trajectories (barely-OETs) in Sections 3.1-3.2 extends naturally from the SI model
to the SIR model; see Propositions 9 and 10, which directly generalize Propositions 3 and 6. In
particular, whenever disease symptoms are sufficiently severe, we show that (i) there is a unique
SSE and that (ii) barely-OETs exist that welfare dominate that SSE.

Early-epidemic phase(s): The early phases of an equilibrium epidemic are more difficult to an-
alyze in the SIR model, for two main reasons. First, for some parameter values, equilibrium
trajectories with a simple rise-and-plateau or rise-and-oscillate structure cannot exist. For in-
stance, consider an “apocalyptic epidemic” in which a novel infectious disease emerges that is
very transmissible and very deadly. Uninfected agents may have a strong incentive to socially
distance early during the epidemic while infection is raging but later on, when the population
is dramatically reduced, survivors may be unlikely to encounter anyone at all and hence have
an incentive to be fully active.'” In apocalyptic epidemics absent any vaccine or treatment, the
prevalence of infection must rise initially but then eventually fall to a very low level in any
equilibrium trajectory, a pattern that does not arise in the rise-and-plateau and rise-and-oscillate
equilibrium trajectories that have been our focus in this paper. Characterizing the more com-
plex dynamics that can arise during an apocalyptic epidemic is beyond the scope of the present
analysis but certainly worthy of future study.

Second, during the outbreak phase of an SIR epidemic as the mass of infection [ increases,
the rise in the mass of removed agents R lags the rise in infections. When an infection level
is first reached, R will therefore be relatively low and the mass of uninfecteds S will be rela-
tively high compared to the steady state with the same amount of infection. So long as there are
economic complementarities of social activity, the social-economic flow payoffs that agents earn
(and their lifetime welfare) during the outbreak phase can therefore be substantially different
than in the steady state with the same amount of infection. This in turn impacts agents’ incen-
tives, complicating whether or not the incentive-compatibility conditions for a rise-and-plateau
or rise-and-oscillate equilibrium trajectory can be satisfied at the moment of transition between
the outbreak phase and the endemic phase.

11 The first version of this paper (McAdams (2020)) considers the Susceptible-Carriage-Infected-Recovered (SCIR)
model, also allowing for asymptomatic infection, and provides an algorithm that implicitly characterizes all equilibrium
epidemic trajectories in that context. We focus on the SI and SIR models here because the novel aspects of our analysis
can be illustrated more clearly in these simpler disease models.

12' The zombie apocalypse depicted in the hit TV show The Walking Dead illustrates this point. During the first several
seasons of the show, zombies are everywhere and the main characters hole up in an abandoned prison to avoid exposure.
But later after the first wave of zombies has mostly died off and the epidemic has entered its endemic phase, the main
characters travel and forage with little fear of being infected.
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In the SI model for any sufficiently severe disease, we showed how this transition can al-
ways be accomplished for any given barely-OET, allowing us to construct a rise-and-plateau
equilibrium trajectory in which the outbreak phase is followed immediately by that barely-OET.
However, this is not always true in the SIR model. As we show in a numerical example below,
there are model parameters given which a barely-OET exists but no corresponding rise-and-
plateau equilibrium exists.'?

Equilibrium existence. Proposition 7 establishes that an equilibrium trajectory always exists in
the SIR model. In those cases when rise-and-plateau equilibria do not exist, any equilibrium epi-
demic must therefore have a non-trivial intermediate phase after S-agents have begun distancing
but before the epidemic has “settled down” into a long-run steady state or long-run oscillation.
Characterizing what such intermediate phases could look like is of interest, but beyond the scope
of this paper.

Proposition 7. An equilibrium epidemic trajectory exists from any initial condition.
Proof. The proof is in Appendix B.1. O

Sufficient conditions for uniqueness. Proposition 8 establishes that there is a unique equilibrium
trajectory—and that this equilibrium follows a rise-and-plateau trajectory—so long as (i) there
are no social benefits of activity, i.e., b» = 0, and (ii) disease symptoms are sufficiently severe,
i.e., d is sufficiently large. Two infection-level thresholds play an important role in this analysis.
First, let  and R be the long-run prevalence of infected and removed agents in the trajectory

in which all agents are always active, implicitly defined by the steady-state conditions % =

/3(1—i—Ié)—(r—l—y):Oandm—y—j—r=O.Inparticular:

R@® — R
f=—— 1 7
S r+y B
and R = L. Next, define I* implicitly by the condition
b bo+by —d
by — BI* <_0_0+7])=()' (28)
r r+vy

Note that /* is strictly decreasing in d and thus /* < I if and only if d > d(y), where d(y) is
the threshold given which * =71.'4

Proposition 8. In the SIR model, suppose that by = 0 and that I* < I. Then there is a unique
equilibrium trajectory, in which (i) as(t) = 1 until the first time t* at which I (t*) = I'* and (ii)
I(t)=1T*forallt >*."

13 On the other hand, this numerical example also shows that there is a wide range of parameters given which such
rise-and-plateau equilibria do exist.

14" As it turns out, this threshold is also the threshold for a partial-activity SSE to exist; see Proposition 9.

15" To avoid confusion, please note that this equilibrium trajectory differs from the steady-state trajectory with infection
level I*. In particular, the mass of removed agents increases throughout the “plateau phase,” eventually converging to
its steady-state level, i.e., lim; oo R(?) = %I *_ In the same way, S-agent activity ag(¢) increases over time toward its
steady-state level.
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Proof. Preliminaries. I-agent welfare: infected agents get flow payoff by + b; — d for expected

duration #; so, Uj(t) = b°+b‘ =4 for all ¢. Lower bound on S- -agent welfare: A susceptlble

agent who remains inactive earns ﬂow payoff by for expected duration %; so, Us(t) > 7 for all
t and Ug(t) = l% if and only if S-agents weakly prefer to be inactive at all times ¢ > ¢. S-agent
incentives and welfare dynamics: Define

bo+b1—d>

X()=b1 —BI() (Us(t)— (29)

r+vy
At each time ¢, S-agents strictly prefer activity if X (¢) > 0, strictly prefer inactivity if X (¢) <O,
and are indifferent whether to be active if X (r) = 0. Moreover,

Us(t) =rUs(t) — bo — as(t) (b1 — B1(1) (Us(t) — U; (1))
=rUs(t) —bo —as(t)X (1) (30)

Step 1: 1(t) < I* for all t. Suppose that I (t) > I* for some ¢. Because Us(t) > = for all # and

by + BI* (b‘) — %) = 0 by definition of I*, X (¢) < 0 and S-agents strlctly prefer to be

inactive. We conclude that I’(¢) < 0 whenever I(¢) > I'* and hence that I (¢) can never exceed
I*, as desired.

Step 2: If 1(¢t) = I*, then I1(t') = I* for all t' >t and Ug(t) = br—" Suppose that I(t') = I'*
and, without loss, suppose that this is the first time that the threshold /* has been reached, i.e.,
I(t) < I'* for all t <1t'. By Step 1, X(¢') <0 since infections cannot rise above I*. On the
other hand, because infections were increasing just before ¢, S-agents must have at least weakly
preferred to be active; so, X (t') > 0 and hence X (") = 0. By the definition of I* and equation
(29), we have Ug(t') = br—o, then same as if 1(¢) were to remain equal to I* forever after 7.
Now, suppose for sake of contradiction that I (¢) did not remain equal to I* forever. I () cannot
increase by Step 1, so the only remaining possibility is that the trajectory sometimes falls below
I*. But an optimizing S-agent is always strlctly better off when facing a trajectory where 1 (¢) is
everywhere lower; so, it must be that Ug(¢') > b , a contradiction.

Step 3: If 1(t) < I*, then X(t) > 0 and Us(t) > br—o. Suppose that I(t') < I*. A susceptible
agent who is fully active after ' so long as I (¢) < I* and fully inactive when [ (¢) = I'** earns
lifetime welfare strictly greater than br—o; s0, it must be that Ug(¢') > @.16 This in turn implies
that S-agents must strictly prefer to be active at some times after ¢’. Let t” be the first time after
t" at which S-agents begin to strictly prefer activity, i.e., (i) X (z) <0 for all 7 € (¢, ") and (ii)
X () >0forallt € (t”,1" + ¢) for all small enough €. We need to show that t” = ¢/, since then
S-agents must strictly prefer to be active at time 7’

Suppose for the sake of contradiction that t” > ¢’. S-agents find it weakly optimal to be in-
active during [, t”], but it is still possible that infection prevalence may rise during this period.
However, it must be that /(") < I*. To see why, note that Ug(t) = rUs(t) — bg so long as

S-agents find it optimal to be inactive. Since Ug(t') > 7, this implies Ug(¢) > 0 and hence
Us(t") > Ug(t') > 22; and we showed in Step 2 that Ug(z) > —0 is only possible when I (1) < I*.

16 This point can also be made via proof by contradiction. Suppose that Ug (') = br_o Then I(t') < I* implies X (') > 0
by (29), which implies ag(t') = 1 because S-agents strictly prefer activity, which implies U é (t") < 0 by (30), a contra-

diction since Ug(t) can never fall below ho
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By continuity of X (), S-agents must be indifferent whether to be active at time ¢”. Thus,
lim,\;» X (t) = 0 and hence lim/\ ;7 Ug(t) = rUs(¢") — by > 0. Moreover, because all S-agents
are active immediately after #”, we have lim;\, I’(t) > 0. But then lim,\ ,» X'(¢) < 0 by equa-
tion (29), contradicting the presumption that X () > 0 immediately after ”. We conclude that
t'=1" as desired. O
Steady-state equilibria (SSE). As in the SI model, steady states with S-agent activity ag < %X
cannot arise in equilibrium, since such low activity would drive infection prevalence to zero and

S-agents strictly prefer to be active whenever infection is sufficiently rare; so, we may restrict

attention to activity levels ag € (HT’/, 1]. What about infection levels? With full activity, the

steady-state conditions BagS =r + y (see equation (2)) and R = Z1 (see equation (4)) imply
we may therefore restrict attention to infection levels I € (0 — L].

thatl_r+y ,B’ ’H—V B
Proposition 9 extends our key finding about the set of SSE to the SIR context.

Proposition 9. There is a symptom-severity threshold d(y) such that (i) the full-activity steady
state is an SSE if and only if d < d(y) and (ii) there is a unique SSE whenever d > d(y) and, in
this SSE, S-agents are partially active and newborn agents have the same lifetime welfare as if
compelled to remain inactive for their entire lives. In particular:

(14 Yty BSR4
g(y)_<1+ ; ﬁ—r—y><b1+b2<r+y+ﬁ>> ~bo. 31)

Proof. Part (i). Consider first the steady state with full activity (as = 1), infection level I =

fr , and population-wide activity A = S 4+ I = 1 — R. Infected agents get flow payoff
by + b] + (1 — R)b> — d until death, which occurs at rate r + y; so, [-agents’ steady-state
welfare U; SS(I) = w. Susceptible agents get flow payoff by 4+ b1 + (1 — R)ba
until death (rate r) or infection (rate 7). This susceptible period lasts on average for length

of time - ﬁ 7, with infection occurring before death with ex ante likelihood + ﬂ 75 80, S-agents’
steady-state welfare USSS(I) = b°+b]ri(l;1 Rby 4 rfll USS (I). The harm of infection AUSS(I) =
US(n —usiy = b0+b1:r(ﬂll_R)b2 — 11 X b°+b‘+r(fryR)b2 4 Collecting terms and leveraging
the fact that [ = +y — % and hence that r + 81 = ri’y , this equation reduces to
bo+b 1—R)b d
AUSS(1) = 0+ b1 +( )2(1_ r >+ r_
r+ BI r+vy r+B8I r+vy

bo+b+1—-R)b d
_ (o+bi+( by 4 32)

Br B

By inequality (6), S-agents find it individually optimal to be active if by + (1 — R)by >
BIAUSS(I). By (32), this inequality holds if and only if d is sufficiently small that

bi+0—=R)by (bo+b1+(1—R)b)y

d< - 33
< 7 p (33)
Since I = fry /’3 and R = ; +V %, this inequality can be rewritten as
1 r
d<d(y)= (— - Z) (bl + ( + Z) b2> ~ L (34)
57 T B r r+y B r
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which in turn can be written more simply as in (31). We conclude that the full-activity steady
state is an ESS if and only if d < d(y), as desired.

r

Part (ii). Suppose that d > d(y). By part (i), the steady state with ag =1 and [ = = — 7 is
not an SSE. We need to show that exactly one partial-activity steady state is an SSE. Recall from
the proof of Lemma 1 that a partial-activity steady state is an SSE if and only if S-agents are
indifferent whether to be active.

An S-agent who is inactive earns flow payoff by, dies at rate r, and does not become infected.
An S-agent who is active earns flow payoff by 4 b1 + by A, dies at rate r, and becomes infected
at rate B1. Accounting for the harm of becoming infected while active, S-agents are indifferent
whether to active if by = by + by + by A — BI(USS(I) — U;S(I)), where A = I + agS. The
indifference condition characterizing the set of ESSs is therefore

by +ba(I +asS) — BLUSS (1) — U5 (1)) =0 (35)

If the partial-activity steady state in question is an ESS, U 55 ) = br—" by Lemma 1. Infected

agents get flow payoff by + b1 + Aby — d and die at rate r + y; so, UISS(I) = W.
Finally, by equation (3) and the steady-state condition I’(¢)/I(t) = 0, we have BasS =r + y

and hence A =1 + r;y . Indifference condition (35) can therefore be re-written as

B BI r+v\\_ Bld  Blyby
X(I,d)=<1+—r+y>(b1+b2<l+ 5 )) "oty = (36)

Existence and uniqueness of a partial-activity steady state follows from three simple observa-
tions about the expression X (1, d): (a) lim;_. X (1,d) > 0 for any d > 0; (b) X (I,d) <O for
alld > d(y), where I = . fry — Z is the infection level in the full-activity steady state and hence
a strict upper bound on / in any partial-activity steady state; and (c) X (/,d) is quadratic and
convex in / for any given d. Together, observations (a-c) imply that, for all d > d(y) there is
exactly one infection level 1 (d) € (0, 1) such that X (I (d), d) =0.

Observations (a) and (c) are immediate from (36). To verify (b), note that X (1,d(y)) =0
by our construction of d(y) in the proof of part (i). The fact that X (I, d) <0 for all d > d(y)
follows immediately from the fact that X (/, d) is decreasingind. O

Oscillating equilibrium trajectories (OETSs). Epidemiological dynamics are more complex in
the SIR model, since the mass of living agents S(t) + I (f) = 1 — R(¢) also changes over time.
However, we can define “oscillating trajectories” much as in the SI model with alternating active
and inactive periods; details in Appendix B.2. An oscillating trajectory is an equilibrium trajec-
tory if and only if (i) by + bo(1 — R(¢)) > BI(t)AU(¢) during each active period (“active-IC
condition,” generalizing (21)) and (ii) b1 + ba1(t) < BI(t)AU (¢) during each inactive period
(“inactive-IC condition,” generalizing (22)), where AU (¢t) = Ug(t) — U;(¢) is the harm of infec-
tion at time 7.

As in the SI model, the full set of OETs can only be characterized numerically, but clean
analytical results are available if we focus on the limiting case of “barely-oscillating equilib-
rium trajectories (barely-OETs)” in which each oscillation period is infinitesimal and the level of
infection remains constant over time.

In any barely-OET with infection level I, the mass of removed agents must converge in
the long run to R® = %I . Following the notation in Section 3.2, let Z8 denote the range of
infection-levels that can arise in a barely-OET in which the mass of removed agents has already
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reached its steady-state level at time # = 0.'” Lemma 5 (proven in Appendix B.3) is a direct
extension of Lemma 4.

Lemma 5. Consider any I € (O 1). [ € 7BO ifbr—o < Ugo(l) bO + r+yb2 but not if

.
Yty T B
UBO(I) < bO or UBO(I) > bO + r+yb2, where

b1+(1+’+”)b2—d

r

U50(1)=1_r%1b0+ ;V(b +by (1—%1))“

The proof of Lemma 5 is essentially identical to that of Lemma 4, but with updated algebra
accounting for the fact that (i) infected agents die at rate r + y rather than rate r and (ii) all living
agents earn baseline flow payoff by > 0.'® All of our other key findings about barely-OETs in the
SI model also extend to the SIR model. In particular, Proposition 10 (proven in Appendix B.4)
directly extends Proposition 6.

Proposition 10. (i) 729 c (0, r+y — L] is either empty, a single closed interval, or the union of
two closed intervals. (ii) If a partial-activity SSE exists with infection-level I, then (I — e, I +
€) C Z89 for some € > 0. (iii) Every partial-activity SSE is welfare dominated by a non-empty
open set of OETs. (iv) max; 750 UBO (1) = UEC (1™"), where 1" = minZ5B9

Early-epidemic dynamics. In this paper, we focus on the range of endemic epidemic outcomes
that can arise in equilibrium, after the disease is well-established and the population as a whole
has settled into a steady state or an oscillating trajectory. Of course, the beginning phases of
the epidemic are also of interest. In the SI model, we showed by construction that for any
sufficiently severe disease, equilibrium epidemic trajectories exist with an especially simple
“rise-and-plateau” structure, in which the infection level rises during an outbreak phase until
a threshold level [/ is reached, after which continuation play follows a partial-activity SSE or
barely-OET with constant infection level I and constant S-agent activity level. Such rise-and-
plateau equilibrium trajectories do not always exist in the SIR model.

Numerical examples. Fig. 5 illustrates the qualitative features of rise-and-plateau equilibrium
trajectories in the SIR model in a numerical example with parameters y = 0.08, r =0.1, 8 =1,
d=15,by=1, by =1, and b, = 5. During the initial outbreak phase, all agents are active until
a time is reached (vertical dashed line) at which infection prevalence hits a target level 1°°, here
0.20. The epidemic then transitions directly to an endemic phase in which the mass of infected
agents remains equal to 1°°. Few people have died from the disease when the epidemic enters its
“plateau phase,” but the mass of removed agents (blue line) gradually increases over time toward
its long-run level R® =L ~1°° =0.16. As R(t) increases and / () remains constant, the mass of
susceptible agents falls and S-agent activity must increase in order to keep infections constant.

17 1f R(0) < R at the start of a barely-oscillating trajectory, then there will be more S-agents and these S-agents will
need to be active less often initially, compared to the long run. We explore the implications of this complication later in
a numerical example.

18 1n the SI model, introducing by > 0 shifts up all agents’ welfare by bTO but has no effect on agents’ incentives and
hence no effect on the equilibrium set. Once people can die from the disease, however, bg impacts susceptible agents’
incentive to avoid infection. It is therefore without loss to focus on the case with by = 0 in the SI model, but not in the
SIR model.
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Fig. 5. A rise-and-plateau equilibrium trajectory in the SIR model with parameters (y,r, B8,d, bo,b1,br) =
(0.08,0.1, 1, 5,1, 1,5) and plateau infection prevalence 1°° = 0.20.

This can be seen in the dashed yellow line, as average S-agent activity ag(¢) increases from 0.23
to its long-run level of about 0.28.'” Absent any distancing, the mass of infections would follow
the gray curve and the long-run mass of infection would be - fry - L= % ~ 46%.

Fig. 6 illustrates how, unlike in the SI model, it is possible for a barely-OET to exist with
infection level / but for no rise-and-plateau equilibrium trajectory to exist in which the plateau
phase is a barely-OET with that level of infection.”’ In this example, we fix the parameters
r=0.1,8=1,byp=1, by =1, and by =5 but vary the parameters for disease severity d and
disease-death rate y. For each (d, y) pair, we first check the conditions of Proposition 10 to
determine whether a barely-OET exists with constant infection prevalence > € {0.05, 0.2} and
constant mass of removed agents R* = %I°°, i.e., 18 0.05 € ZB9 and/or is 0.2 € 7899 We then
numerically determine whether the rise-and-plateau trajectory with barely-oscillating infection
level 1°° € {0.05, 0.2} is an equilibrium trajectory. In Fig. 6(a-b): the orange regions are the pa-
rameter ranges in which a rise-and-plateau trajectory exists with barely-oscillating infection level
I1°° =0.05 and I°° = 0.2, respectively, similar to that shown in Fig. 5; the blue regions are the
parameter ranges in which a barely-OET exists with that level of infection but the corresponding
rise-and-plateau trajectory is not an equilibrium; and the uncolored regions are those in which a
barely-OET does not exist with that level of infection.

19 In the equilibrium trajectory illustrated here, the endemic phase consists of a barely-oscillating trajectory in which the
proportion of time in which S-agents are active (“average S-agent activity”) itself changes over time. See Appendix B.2
for more details on oscillating trajectories in the SIR model.

20" We focus on rise-and-plateau equilibria with a barely-OET during the endemic phase for analytical simplicity. More
generally in a rise-and-oscillate trajectory with range [/, T], each active and inactive period will last for a different length
of time as the endemic phase progresses. The active-IC and inactive-IC conditions therefore need to be checked separately
throughout each oscillation, compared to just checking them throughout one oscillation in the SI model.
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Fig. 6. Disease-severity parameters (y, d) given which a rise-and-plateau equilibrium trajectory exists with plateau in-
fection prevalence 1°° in the SIR model (orange region) or a barely-OET exists with constant infection prevalence 1*°
(orange and blue regions), for 1°° € {0.05, 0.2} and with other parameters fixed at (r, 8, by, by, bp) = (0.05,1, 1, 1, 5).

In the SI model, we showed that anytime an OET exists (no matter how big the oscillation),
a rise-and-oscillate equilibrium trajectory also exists in which that OET is the endemic phase;
see Lemma 2 and Proposition 5. But here we see that this is sometimes not true in the SIR
model, even when we restrict attention to the simplest oscillations in which infection preva-
lence is approximately constant over time. Sometimes, a barely-OET exists but the corresponding
rise-and-plateau trajectory is not an equilibrium. To gain intuition, let t* be the time during the
outbreak phase at which 7 (¢*) = I°°. As previously discussed, relatively few agents have been
removed by time #* compared to the long run, because the rise in deaths lags the rise in infec-
tions during an SIR outbreak. Consequently, the mass of susceptible agents is relatively high,
which causes infections to increase relatively quickly during each active period at the beginning
of the endemic phase. Active periods must therefore be relatively short (else infection prevalence
would increase), which in turn reduces the welfare of susceptible agents. The harm of infection at
time ¢* is therefore lower than in the long run, which reduces agents’ willingness to temporarily
cease activity at time t* as the rise-and-plateau trajectory requires them to do. In cases where
agents’ incentive to remain active is too strong for them to be willing to cease activity at time
t*, any equilibrium trajectory that eventually converges to the desired barely-OET must initially
overshoot infection level 7*.

Remark: Susceptible-Infected-Recovered analysis. The SI-Recovered model differs from the
SI-Removed model in that agents who enter the “R” compartment are still alive and immune
to infection, and hence able to engage in social-economic activity at no risk. Our methodology
in this section can be readily adapted to the SI-Recovered model with only minor changes in
algebra. Appendix C presents the corresponding results. Interestingly, we show that the set of
SSEs and barely-OETs in the SIRecovered model corresponds exactly to the set of SSEs and
barely-OETs in the SI model with suitably modified parameters, with the ex ante likelihood of
infection, the harm of infection, and newborn welfare all being the same. All qualitative and
quantitative findings in Sections 3.1-3.2 about endemic-equilibrium outcomes in the SI model
therefore carry over directly to the SIRecovered model.
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5. Endemic-disease equilibrium comparative statics

This section considers how changing model parameters impacts equilibrium welfare in the
endemic phase of the epidemic. In particular, we focus on (i) maximal newborn welfare in any
steady-state equilibrium, called “SSE newborn welfare” and denoted here by USSE, and (ii)
maximal newborn welfare in any barely-oscillating equilibrium trajectory,”’ called “barely-OET
newborn welfare” and denoted here by UBCET

The most general version of our model has several parameters which could naturally be
impacted by public policies, technological discoveries, shifts in cultural practices, pathogen mu-
tation, and other sorts of “interventions”: 8 > 0, the transmission rate; d > 0, the flow disease
cost incurred by infected agents; y > 0, the rate at which infected agents die due to disease; by,
the benefit of transmissive activity, not including any social benefits; and b;, the social benefit of
activity. (For present purposes, we view the natural death rate r and the baseline benefit of be-
ing alive by as fixed parameters.) Before considering equilibrium comparative statics associated
with changing these parameters, it is helpful to review our main findings vis-a-vis SSE newborn
welfare and barely-OET newborn welfare.

SSE newborn welfare. Our analysis showed that there is a threshold disease severity d such that
(i) USSE =20 if d > d and (ii) USSE > 20 if d < d. The threshold d is provided in equation (8)
for the SI model and in equation (31) for the SIR model, repeated here for convenience:

rty r+vy r 14 14
=11 - - 4+ L A
1= (g ) (e (5 ) -

We focus here on the case of severe sickness, meaning that d > d and given which there is a
unique partial-activity SSE (Proposition 9).

Consider an intervention that changes the parameters (d, v, 8, b1, b2) to (dA, yA, ﬂA, bf,
bg‘), and let d* be the disease-severity threshold given these new parameters. (The superscript
“A” is mnemonic for After the intervention.) There are three basic possibilities for how SSE
newborn welfare may be affected.

Possibility #1: Disease elimination and maximal welfare. If 4 < y“ +r, then the prevalence of
infection will fall toward zero no matter what people do. In the long run, newborn agents will be
able to enjoy their lives as if the disease did not exist. In particular, newborn agents get lifetime

A A
bo+bi +b5
r

welfare of approximately > (0 with the intervention rather than br—" without it.

Possibility #2: Full-activity SSE and improved welfare. Suppose next that 84 > r 4+ y4 but
dA < d A In this case, the disease is never eliminated in equilibrium but SSE newborn welfare is
now strictly higher than br—"

Possibility #3: Unique partial-activity SSE and unchanged welfare. Lastly, suppose that d4 >
d*, including any intervention that only slightly changes model parameters. In this case, any
society-wide benefits associated with the intervention are short-lived, undermined by agents’
behavioral responses. In particular, SSE newborn welfare remains equal to ?

For the rest of this section, we will focus on this last case, so that the intervention in question
has no impact on SSE newborn welfare. However, such interventions can impact barely-OET
newborn welfare.

21 The full set of OETs is of interest, but barely-OETs are especially convenient to analyze since all agents have the
same welfare at birth. In an OET, those born at an oscillation peak have lower welfare than those born at a trough.
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Barely-OET newborn welfare. When d > d so that a partial-activity SSE exists, we showed
that barely-OETs also exist that welfare dominate that partial-activity SSE (Proposition 10).
Moreover, we characterized the maximal newborn welfare UZPET that can be achieved in any
barely-OET, repeated here for convenience:

b b
UBOET:_0+_2r+V.
B r

Long-term impact of improved ventilation and other interventions. Poor ventilation has
been implicated as an important factor in tuberculosis transmission; see e.g. Miller-Leiden et
al. (1996) for experimental evidence and Du et al. (2020) for a case study of an epidemic on
a Taiwanese college campus. Improved ventilation may in some cases be sufficiently effective
to stop an epidemic in its tracks, but what if the impacts are more modest? Better ventilation
reduces susceptible agents’ likelihood of becoming infected for any given infection level I and
susceptible-activity level ag. However, S-agents naturally respond to such improved protection
by becoming more active, which increases their likelihood of being exposed. Indeed, because
S-agents must be indifferent whether to be active in the unique SSE, modestly improving venti-
lation ironically causes the prevalence of infection in the unique SSE to increase; also, newborn
SSE welfare remains br—o, the same as before the intervention. On the other hand, if agents are
able to coordinate their activity and the epidemic progresses according to a barely-OET, new-
born welfare can be as high as @ + g—ﬁ rty , strictly higher than before the intervention.

Other sorts of interventions can be analyzed in a similar way. So long as the disease causes suf-
ficiently severe sickness that a partial-activity SSE exists, any intervention that modestly changes
some or all of the models’ parameters will have no impact on newborn SSE welfare. On the other
hand, by equation (38), barely-OET newborn welfare is decreasing in the transmission rate f3,
increasing in the mortality rate y, increasing in the benefits of social activity b, and indepen-
dent of symptom severity d and the benefits of non-social activity b;. Thus, interventions that
impact some combination of (8, d, y, b1, b>) can impact barely-OET newborn welfare U BOET
For instance:

(38)

— universal immunotherapy and/or vaccination (decreasing B, d, and/or y, depending on
whether the immunotherapy / vaccine prevents infection, prevents illness, and/or prevents
death) may or may not increase UZ?FT | depending on whether the ratio HLTV increases or
decreases;

— universal masking (decreasing § as infections are prevented and potentially also decreasing
by if social interactions become less fulfilling) may or may not increase UZ?ET | depending

on whether the ratio %2 increases or decreases;

— closing social public spaces (decreasing b,) decreases U Z?ET | but closing non-social public
spaces (decreasing by) has no effect on UBOET;

— pathogen evolution that increases disease mortality (increasing y) increases UZ9ET ; and

— pathogen evolution that only affects symptom severity (d may increase or decrease) has no
effect on UBOET

Most of these comparative statics are intuitive, but some readers may be surprised that barely-
OET newborn welfare increases as the pathogen becomes more deadly. To gain intuition, note
that increased disease mortality accelerates the decline in infection prevalence during the inactive
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phases of an oscillating trajectory.”” This effect shortens the inactive phase of each oscillation
and allows the uninfected to enjoy more of their lives with one another—an effect that becomes
relatively more important when the social benefits of activity are larger.

6. Concluding remarks

This paper explores the impact of social benefits (i.e. economic complementarities) of trans-
missive activity on the equilibrium course of an infectious-disease epidemic. We show that the
qualitative nature of equilibrium epidemics and the quantitative predictions derived from equi-
librium analysis can hinge critically on whether or not there are social benefits. For analysts and
policy-makers, it is therefore essential to use models that accurately account for the extent of
economic complementarities.

To illustrate the equilibrium impact of social benefits in the clearest way possible, we consider
a hypothetical infectious disease (loosely motivated by the emerging threat of totally-resistant
tuberculosis) from which infected people never recover and in which transmission dynamics
follow a standard Susceptible-Infected-Removed (“SIRemoved”) epidemiological model with
an equal flow of births and non-disease deaths. Within this context, the equilibrium impact of
social benefits is easiest to see in the special case in which the disease causes severe symptoms
but infected people do not die of the disease.

Without social benefits: We show that there is a unique equilibrium epidemic trajectory, which
follows an especially simple rise-and-plateau pattern. During the first part of the epidemic (‘“out-
break phase”), all agents are active and the prevalence of infection increases until a critical level
is reached. The epidemic then enters a steady state (“endemic phase”) in which susceptible agents
are indifferent whether to be active and have subsequent welfare the same as if barred from all
activity for the rest of their lives.

With social benefits: There is still a unique equilibrium trajectory that follows a rise-and-plateau
pattern and, if the epidemic were to follow that trajectory, there would be relatively little loss
in abstracting from social benefits. However, we show that many other equilibrium epidemic
trajectories also exist that never settle into a steady state, including some that welfare dominate
the equilibrium trajectory that settles into the unique equilibrium steady state. Moreover, as we
show in numerical examples, the long-run prevalence of infection and population-wide welfare
can be very different in these other equilibrium trajectories.

A strength of our approach is that our model is highly tractable and can potentially be enriched
and extended in several interesting directions, a few of which we mention here.

Lockdowns and other activity restrictions. We consider an equilibrium model in which agents
do not face any endogenous” constraints related to their activity. Policies that restrict (or tax)
agents’ activity can induce better epidemic outcomes, especially if they can target infected
agents. In particular, if the planner can identify who is infected, newborn welfare in the long
run would be maximized by perfectly quarantining all infected agents and allowing uninfected
agents to be fully active, since then the disease can be eliminated even as economic activity is

22 For instance, in the zombie epidemic of the TV show Walking Dead, higher mortality weeds out the zombie horde
more quickly, allowing survivors to spend less time in hiding.

23 Exogenous constraints that remain the same throughout the epidemic, such as debilitating illness that reduces infected
agents’ ability to leave the home, can be easily incorporated by appropriately adjusting the transmission rate.
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fully enjoyed by those who remain uninfected. Several authors have recently examined how to
intervene optimally during an epidemic (e.g., Alvarez et al. (2021), Bethune and Korinek (2020),
and Rowthorn and Maciejowski (2020)) but, following the hitherto-standard modeling approach,
these authors abstracted from the possibility of social benefits from activity. In future work, it
would be interesting to revisit this “optimal lockdown” literature within an extended framework
allowing for social benefits.

Time-limited epidemics with immunity after infection. In this paper, we assume that there is a
steady flow of new susceptible agents (as infected agents die and new ones are born), support-
ing indefinite transmission of the disease.”* However, some epidemics spread so rapidly that the
host population is essentially fixed and no steady state with a positive amount of infection is
ever reached. For instance, the measles virus spread rapidly across the island of Tahiti on three
separate occasions in 1929, 1951, and 1960 (Rosen (1962)), each time quickly disappearing af-
ter causing a sharp outbreak. Motivated by the Covid-19 outbreak, several authors have recently
analyzed such time-limited epidemics from a game-theory perspective, characterizing the equi-
librium course of the epidemic; see e.g., Farboodi et al. (2021), McAdams (2020), and Toxvaerd
(2020). A common feature of these equilibrium-epidemic models is that there is a period of time
in the middle of the epidemic in which the prevalence of infection is roughly constant, what
McAdams (2021) refers to as “epidemic limbo.” During this limbo period, the level of infection
is sufficiently high that susceptible agents prefer to reduce their transmissive activity—but not
enough to drive down the level of infection. If there are social benefits associated with activity,
our analysis can be easily adapted to show that, once epidemic limbo has been reached, there
are in fact many potential equilibrium trajectories for the rest of the epidemic. Understanding the
set of equilibrium-epidemic outcomes that can arise in a time-limited epidemic when there are
social benefits is an important direction for future work.

Asymptomatic infection and diagnostic testing. Many disease-causing pathogens, including HIV
and SARS-CoV-2, can spread without causing noticeable symptoms. However, due to recent ad-
vances in diagnostic technology, it may be possible for agents to test themselves to determine
their own health status, and show these test results to others to prove their status. In this context,
an agent’s incentive to invest in getting tested depends on the prevalence of infection (while in-
fection is rare, no one will bother getting tested) and whether others have the ability and incentive
to exclude them from social activity unless they can show a recent negative test. In future work,
it would be interesting to extend our model to allow for asymptomatic infection and account for
agents’ equilibrium incentive to learn about and share their own infection status with others.

Limited synchronization of activity. Our findings highlight how the endemic burden of an infec-
tious disease critically depends on whether or not agents in the population are able to synchronize
their aggregate activity, alternating between periods with more and then less activity. Such syn-
chronization seems unrealistic at a global level, but is routinely achieved to a limited extent at
smaller scales, such as schools, workplaces, and social pods. Bearing this in mind, it would be
valuable to extend our analysis to a richer setting in which individuals interact not just with the
“general population” but also in social groups within which coordinated activity is possible. Even

24 Aless important simplifying assumption is that there is no recovery from infection. Our analysis can be easily ex-
tended to a more general Susceptible-Infected-Recovered-Susceptible (SIRS) model with recovery, adaptive immunity
after recovery, and potential loss of immunity. However, little additional economic insight emerges from this more com-
plex epidemiological model.
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if the general population settles into a low-welfare equilibrium steady state, those within such a
social group can improve their own welfare by coordinating on an oscillating pattern for their
own activity with one another.

The politics of activity restrictions. Our analysis focuses on the welfare of newly-born agents, but
agents’ preferences change once they become infected. This could have significant implications
for the politics of public health during an emerging epidemic, as infected agents prefer for others’
activity to be as high as possible when there are social benefits of activity. In future work, it would
be interesting to model the political dynamics of an infectious-disease outbreak more explicitly,
accounting for the evolving preferences of the host population.

Appendix A. SI model
This Appendix provides further details and omitted proofs for our SI analysis in Section 3.

A.l. Omitted steps in proof of Proposition 6

To complete the proof of Proposition 6(i), we need to show that Z9 is closed whenever non-
empty, i.e., we need to show that {7 [’ I” I} are all barely-OET infection levels. Define
shorthand U = minz¢(o,1—r] U fo(l ). There are three relevant cases. First, if U > %2, then 759
is either empty or a (closed) singleton with Z80 = argmin U2 (7).

Second, suppose that U & (0, by). Z89 is a single interval with ™" = infZ29 and 1" =
supZB?. We need to show that " and "%~ are in Z8?, making it a closed set. To show that
1™ ¢ TBO we need to show that there is a sequence of oscillating equilibrium trajectories with
limit-infection level I™". We do so with a standard diagonal argument. Consider a sequence
€ — 0. For each [, there exists I; € (I"", I"™" + ¢) such that I; € Z8°. We may therefore
define a sequence {51(,)k 1k =1,2, ...} consisting only of equilibrium oscillating trajectories and
with limit-infection level I™". Now consider the diagonal sequence {Ek‘?k :k=1,2,...}. Each
element of this sequence is an equilibrium trajectory, and the sequence has limit-infection level
1M thus, ™" € 78O The fact that 1%* € T80 can be shown in the same way, but now using
an infection-level sequence (I; € (/"% — ¢, ™) : 1 =1, 2, ...) that converges to ™% from
below.

Finally, suppose that U < 0 and define I’ < I” by Ugo(l/) = U;:?O(I”). (If U =0, then
I' = I"; otherwise, I’ < I”.) Our diagonal-limit argument now shows that {I’, I} c 8¢
infection-level sequences that converge to I’ from below and to I” from above.

, using

A.2. Exact conditions for non-existence of barely-OET

This subsection explicitly characterizes the parameter range given which Z2 is empty.

As is illustrated in Fig. 3, the incentive compatible constraints for barely-OET are quadratic
in I with positive vertical intercept. Furthermore, the range of infection levels that satisfy the
inactive-IC condition supporting barely-oscillating trajectories is an interval, while the range
that violates the active-IC condition is a proper subset of that interval. Thus, Z2© is empty if and
only if inactive-IC is violated for all 7 € (0, 1 — %]. For convenience, we re-write inactive-IC as

a function of 7 € (0, 1 — %]:

bi+by I r by
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Rewriting the inequality yields the quadratic form

ébzlz + [ﬁ(b1 —d) +b2}1 +b <0
r r

Defining the left-hand-side of the above inequality as f(I), which is a convex parabola passing
through point (0, b1) (at the left limit). For the inactive-IC to be violated forall 7 € (0, 1 — %], we
equivalently seek for parametric conditions to make f(/) >0 VI € (0,1 — %]. There are three
cases to discuss.

Case 1: d < %bz + b1 (the axis of symmetry of f(7) is less than or equal to 0). In this case,
f(I) is monotonically increasing for all 7 € (0, 1 — %). Then f(I) > f(0) =b; > 0. Therefore,
the inactive-IC is always violated in this case.

Case2:d > (2 — %)bz + b (the axis of symmetry is weakly larger than 1 — %). In this case,
f(I) is monotonically decreasing for all 7 € (0,1 — %]. Thus f(I) >0VI e (0,1 —r)ifand
only if

(- %) - §b2(1 - %)2+ [é(bl —d)+b2}<l - %) b, >0,

which gives d < 1111L + by. For the set of feasible d’s to be non-empty, we require
B
by r
- +by>=2— )by + by,
1-— 7 B
yielding
1—12)?
by -2 .
by ~ -

B
Case3:d e (%bz +b1,(2— %)bz + b1) (the axis of symmetry is within the interval of (0, 1 —
£1). In this case, the minimum of f (/) is obtained at the axis of symmetry. The range of d
establishing non-existence of OET is then characterized the inequality that requires the minimum
to be positive, i.e.,
48b1by — (B (b1 —d) +b2)* _ 0
4gb2 -

min f(/) =

Combining with the restriction of Case 3, we conclude that

r r
d<—=by+by+2 |=b1b;.
B VB

To sum up, the conditions for non-existence of barely-OET are characterized as follows:

1. d§%b2+b1;or
2. d>%b2+b1,and
1—12)2
@) d < 2r +by,ifd = (2= )by + by and 2 > 58"
B 2 B
(b) d<%b2+b1+2 %blbz,ifd<(2—%)b2+b1.
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Fig. 4 panel (c) and (d) can be viewed as a numerical illustration for 2(b). Under parameters
of f=1,d=12,b=11,r = 0.1 (§b2 + by +2 /gélbz =d gives b = 6.0007), panel (c)
(b1 = 5.8) is the case that OETs are on the brink of existence (which still has a notable range

of OETs), while partial-activity SSE does not exist. Panel (d) (b, = 7.5) shows non-existence of
OET.

Appendix B. SIR(emoved) model
This Appendix provides further details and omitted proofs for our SIR analysis in Section 4.
B.1. Proof of Proposition 7

We establish equilibrium existence by an application of Glicksberg’s fixed-point theorem
(Glicksberg (1952)). SIR epidemiological dynamics (S(-), I(-)) and population-wide activity
A(:) = as(-)S(:) + I(-) are determined by the initial condition (S(0), 7(0)) and the S-agent
activity process ags(-); as shorthand, say that (S(-), 7(-)) is “generated” by ag(-). Define a cor-
respondence F that maps ag(-) to the set of activity processes Ag(-; as(-)) that are individually
optimal for an S-agent in a trajectory with dynamics generated by as(-). An equilibrium trajec-
tory exists if and only if F has a fixed point. To establish existence by Glicksberg’s theorem, it
suffices to show that F is convex-valued and has a closed graph.

Consider an S-agent i who believes that the epidemic is generated by as(-). Ag(-; as(-))
is the set of activity processes that are individually optimal for agent i while uninfected. Let
Us(t;as(-)) be agent i’s welfare at time ¢, assuming individually-optimal activity at all fu-
ture times. Similarly, let U;(¢; as(-)) be the time-t welfare of an optimizing infected agent
and AU (t;as(-)) = Us(t;as(-)) — Uj(t; as(-)) agent i’s time-f harm of infection. As short-
hand, define Y (¢) = by + by A(t) — BI(1) AU (t; as(-)) By inequality (6) for each 7: ag(r) = 1
for all as(-) € As(;as(+)) if Y () > 0; as(r) = 0 for all as(-) € As(-;as()) if Y(¢) < 0; and
as(t) €[0,1] for all ag(-) € As(-; as(+)) if Y (t) = 0. Convexity of the set Ag(-; as(-)) is imme-
diate.

We establish that F has a closed graph with respect to the functional-space norm ||as(-)|| =
fooo e "ag(t). Consider any convergent sequence af‘?(-) — ag(-). Let (Sk(~), Ik(-)) be the epi-
demiological dynamics generated by a'§(~) and let AU*(r) be the corresponding harm of
infection for an optimizing agent given those epidemiological dynamics. Observe first that
limy 00 S¥(t) = S(t) and limy_, oo I%(t) = 1(¢) for all ¢, where (S(-), I(-)) are generated by
as(-). The welfare of optimizing agents is therefore also continuous in ag(-), implying that
limg—, 0o AUK(1) = AU (t; ag(-)) for all ¢ and hence also limy_, o, Y¥(¢) = Y (¢) for all ¢.

Now, let Zz\g() be a selection from Ag(; aéﬂ(-)) and suppose that ?igi(-) — as(+). We need to
show that ag () € Ag(+; as(-)). Because limy_, o fooo e‘”(ﬁé(t) —as(1))dt =0, the set of times
at which limkﬁooﬁg(t) # as(t) has zero measure. For each 7 in the remaining full-measure set,
there are three possibilities: (i) @s(¢) = 0, in which case Zz\];(t) € [0, €) for all sufficiently large
k, implying that Y¥(z) < 0 and hence Y () < 0, making non-activity optimal in the trajectory
generated by as(t); (ii) as(¢) = 1, in which case 5’;0) € (1 — ¢, 1] for all sufficiently large &,
implying Y K@ty > 0 and Y (1) > 0, making activity optimal; and (iii) @s(¢) € (0, 1), in which
case Zif‘g(t) € (0, 1) for all sufficiently large k, implying Y k (t) =0 and Y (¢) = 0, making an
optimizing S-agent indifferent whether to be active. We conclude that a@s(-) € As(-; as(-)) is an
optimal activity rule when the trajectory is generated by as(-), as desired. O

39



D. McAdams, Y. Song and D. Zou Journal of Economic Theory 207 (2023) 105591

B.2. Omitted details on oscillating trajectories in the SIR model

Definition and construction of oscillating trajectories. In the SIR model, an “oscillating tra-
Jectory” is more complex to define than in the SI model. We do so as follows. First fix a range
of oscillation [/, 7] and an initial condition (7 (0), R(0)) with 7(0) = I and 1< " +y — %.25 The
first “active period” begins at time Ty,; = 0. Second, differential equations I'(r) = B(1 — S(¢r) —
I(t))I(t) — (r + y)I(¢t) and (4) determine the path of (/(¢), R(¢)) during the first active period
while ag(t) = 1. Let 71,1 be the first time at which 1 (z) = 1, the end of the first active period.
Third, differential equations I’ (r) = —(r + )1 (¢) and (4) determine the path of (7 (¢), R(¢)) dur-
ing the first inactive period while as(t) = 0. Let Tp > be the next time at which 7 (1) = 1, the end
of the first inactive period. Finally, continue in the same way to construct the length of the second
active period [Ty 2, 71 ,2] and the second inactive period [77 2, 7p.3], and so on for all subsequent
oscillations.

Note that the mass of removed agents R(¢) need not oscillate at the start of an oscillating
trajectory. Indeed, as we discuss in the main text and illustrate in Fig. 5, R(#) may be much lower
than its long-run oscillation range at the beginning of an oscillating trajectory, in which case R(f)
could increase steadily throughout the first several oscillations.

Equilibrium verification and agent welfare. A given oscillating trajectory is an equilibrium if
and only if the active-IC inequality (39) holds throughout each active period and the inactive-IC
inequality (40) holds throughout each inactive period:

b1 +by(1— R(t)) > BI()AU(¢) forall k=0, 1, ..., and all t € [To 4, T} ] (39)
b+ byl (1) < BI()AU(r) forall k=0, 1, ..., and all € [Ty , To.k41] (40)

where AU (t) = Ug(t) — U;(t) is the harm of infection at time ¢.

In order to check these inequalities, it is necessary first to compute the welfare of suscepti-
ble and infected agents at each point along the trajectory. In the SI model, this computation is
simplified by the fact that each oscillation is identical and hence agents’ welfare is the same at
the start of each oscillation. By contrast, in the SIR model, computing welfare at any given point
in time requires integrating over the entire continuation trajectory. From a conceptual point of
view, however, it is trivial to extend the welfare computation provided in Section 3.2 to the SIR
context. We omit the tedious details here to save space.

B.3. Proof of Lemma 5

For an arbitrary infection level I € 78 0_, consider any fixed time interval 7 > 0 and any
oscillating trajectory such that / > I — €, I < I + €, and R(t) uniquely pinned down by the
epidemiological dynamics (4). Define, for any fixed time interval [¢, 7+ T] withsome ¢t >0, T >
0, the S—agents’ average activity as as(t; T) = S aswdr asmdt .Aslong as e ~0, I ~ 1~ I and
Rt)~R() = I for all 7. Therefore, as(t; T) ~ ag O(I) is given by Bag O(I)SI =Ir+y),
ie. ag O(I) r+” where S(t) ~ S(I)=1—1—R() = rty 1. Average overall activity is then
A, T) ~ ABO(I) =1+af%(DS=1+ r?’. Then we have the corresponding term to (23):
the individual welfare of infected agents, U (t), is approximately

25 Recall that # - % is the long-run level of infection absent any distancing. T < # - E therefore ensures that

infection prevalence will eventually reach 7 when all agents are active.
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bo + b1 +ba(I + ) —d
r+vy

In a barely-OET, the susceptible agents get an approximately constant average flow payoff
bo + ago(l)(bl + br(1 — %I)), plus continuation value UIBO(I) when infected. They remain

UBoun =

_rty
susceptible for expected length of time T ha ;0 DI = ! - 1, and their ex ante likelihood of
N
.. . BaBo(DI rty . .
becoming infected is BT = 1. Therefore we obtain the corresponding term to (24):
s

S-agents have individual welfare Ug(¢), approximately,

DL (i (1-21) « Z a0

uBou =

+ i
1 —r%lbﬁ r;ry (b1 n (1 ) %1)) +Ib1 + (1+ ’ﬁy)bz d,

r

confirming the equation in the statement of the lemma. The harm of infection is then

bo(1 — =EL1)

#2120 - (15 e

for all ¢. The (strict) IC conditions which correspond to (25) and (26) are

bi+by(I+S)=b1 +b> (1 - %1) S BIAUBO (D)

AUBO (1)~ AUBO (1) =

by + byl <BIAUBO(I).
Note that

bi+b> (1 - Z1) — BIAUBO(D)
r

=(1—rty1) <b1+b2<1—%1)4-,3]Uf0(1)>_ﬂ1w

,
b
=<1— r+y1> b (U?O(l)——o).
r r+y r
Therefore we can rewrite the final IC conditions, after applying the usual continuity argument, as

udou > bO and UBO(I) < bo + r+yb2 Therefore, I € 789 if bO <UEBO(1) < bO + ’+Vb
but not if UgO(I) < ”ro or UgO([) bo + r+yb -

B.4. Proof of Proposition 10

By Lemma 5, whenever UZC (1) < 2 or UBO (1) > 0 4 r+yb 789 is empty. Now we

"
focus on the cases where Z89 is non-empty. Note that Ug B 0(1 ) is continuous, quadratic and

strictly convex with U g °20) > b 2+ r+y b>. Applying the same argument of Appendix A.l with
the bound of the quadratic functlon U B O(I) replaced by r+” b>, we establish that 789

has to be closed whenever non-empty. Combined with the cond1t10n that 729 c (0
follows that (i) and (iv) hold.

7y gl it
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To prove (ii) and (iii), consider a partial-activity SSE with infection level I, characterized by

U 55 S = br—o. Note that in a barely-OET, S-agents remain alive and susceptible on average for
1 _ Ity 1
r+paf0(H1 T 1 paBOn)’

0 (- 21) o) (1 (1))

as compared to an SSE with the same infection prevalence. Therefore

+vy | §
v =usSin+ X (1- —+=)) b
s D) o)+ Br r+y) ,3+r 2
which exactly corresponds to the proof of Proposition 6. When U SSS )= br—o, U 5 O (1) satisfies
the strict IC constraints, i.e., U_?O(I) € (b—0 b + H’—rybz), since

length of time

during which they earn a flow of additional benefit

ror B
1 1 r+vy Y
r+y)l=+-)= +I1+=I=asS+I1+Re(0,1).
B B r

Hence (ii) is proven. As S-agents earn a strictly positive flow of additional benefit in the barely-
OET than in the SSE, (iii) is also proven. This completes the proof. O

B.5. Omitted details on rise-and-plateau trajectories with endemic barely-OET

Here we provide additional analysis and results regarding rise-and-plateau trajectories in
the SIR model, where susceptible agents barely oscillate in the endemic phase. Denoted as
EBO(1,1(0)), a trajectory starting with initial infection prevalence 7 (0) > 0 and R(0) = 0, such
that susceptible agents remain fully active until / @ =1¢€ (0, I ), and barely oscillate there-
after so that /(t) = I. The following analysis underlies our numerical work in the examples
provided in the text.

We first investigate whether £89 (1, 1(0)) is incentive compatible after 7, proceeding in the
following steps.

Step 1. Let f(x) = ﬁ, which is increasing in x. We know the following:

(1) The expected length of time that an S-agent remains susceptible has range [
1
P AEDT
. , . Y
(2) When susceptible, the agent’s activity flow has range [ f(0), f ()]
fO1 - _fGDI
r+fO r+f(EDI

1
r+f0)1°

(3) The ex ante likelihood of the agent being infected has range [

(4) The average overall activity is equal to I + r—gy'

Step 2. For t > £, we will use U IB 0 (I;t) and U g O(I ; 1) to denote the continuation payoff of an
infected agent and a susceptible one respectively. ¢ is needed as a parameter since the measure
of R over time converges to %I but is not constant. Observe that

e (@) By (4), UBO(I;1) is given by

bo+bi+U+50b 4

vroain= rty r+y’
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e (b) Arange of U f 0 (I; t) can be obtained from (1)-(3) and (a) since we can write

UBO(111) =LBO (13 1) x (bo + (I + ’%)bz)

)
+b1/ﬂ1&go(l;t/)e_ﬂ1ft[ &go(l;x)dxdt/
t

+KEOU ) x UPO L),

L g O(I;1) and K 50(1 ; t) denote the (future) expected length of remaining susceptible and
the ex ante likelihood of being infected, evaluated at time ¢; a ?0 (I; t) denotes the average
activity flow at time ¢. Their ranges correspond to (1)-(3) while U IB O(I ; 1) is given by (a).

Step 3. The IC constraints for susceptible agents are
r+vy
pago

by + byl <IAUBO(I;1).

b+ by(I + ) SIAUBC (1,0 =UBO (1;1) — UBO (15 1)

From Step 2 we can already obtain a range of AUBO(I;1). Let AU(I) denote its upper bound

and AU (1) its lower bound. We also know that 7 4 % > 1— L[ since R(t) only converges
S 9

to from below, but never reaches, %I . A sufficient condition for the IC constraints regardless of
t is then

bi+b(1 =21 > IAT (D)
r
by +bal < IAU(I).

Suppose that the above condition is satisfied for some I = I'* € (0, 1) (which is also the
measure of infected agents in some barely-OET). This means that £89(I*, 1(0)) is incentive
compatible starting from ¢ = 7. We now show that £ BO (1= 1(0)) is also incentive compatible
before t =1.

Consider one susceptible agent i and suppose that for some ' > 0 and € > 0 such that /' + ¢ <
7, being inactive is i’s best response for all 7 € [¢/, t' + €). Note that the (other) susceptible agents
choose full activity and that I(¢) < I*, whenever ¢ < 7: this means that as long as i chooses to
be active for a positive measure of time on [t' + €, 1), her continuation value at ¢’ + € is strictly
positive. Indeed, being active at any ¢ € [ + €, f) means, as compared to any ¢ > 7, (weakly)
more benefit from higher social activity level and (strictly) less risk from lower infection level.
Therefore in i ’s best response she will never remain inactive until 7. It also implies that Us(t' 4 ¢€)
(i’s continuation value at t’ + €) is strictly positive.

Suppose WLOG that i will be active at t = ¢’ + €. It implies that

by +bAt'+€)=bi +by(1 —R(t'+€)) = BI({t' + &) (Us(t' +€) — U (t' +¢€)).

However, we know that (1) Ug(1') < Us(t’ + €) since i supposedly chooses to remain inactive
from ¢’ tot' +¢€, (2) U;(t') > Uy (t' + €) since all agents remain active before I (¢) reaches I*,
and (3) (') < I(t' 4 €). Therefore

b1 +by(1 = R(t) > b1 +ba(1 = R(t' + €)) > BI (") (Us(t) — U (")),
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which means that i should become active at ¢, a contradiction. Therefore the whole trajectory
EBO(I*,1(0)) is an equilibrium one.

Now we show that our argument for a rise-and-barely-oscillate equilibrium trajectory in the
SI model extends to the SIR model, provided that y does not exceed a positive threshold.

Proposition 11. Fix (8, bg, by, by, r, d), and suppose that I* lies in the interior ofIBO in the SI
model. Then there exists 7 > 0 such thatVy <7y, E8O(I*, 1(0)) is an equilibrium trajectory for
all 1(0) € (0, I*).

Proof. Since I* lies in the interior of Z8C, we know that I* can be reached in the SI model,
which means that £89 (I*, 1(0)) is feasible VI (0) < I* when y is sufficiently small. To see this,
take some € > 0 and let y be such that y I* — re < 0. This implies the following: suppose that
in the SIR dynamics with some 7 (0) € (0, I*), R(0) = 0 and full activity, 7 (z) never reaches I*
when it increases from 7 (0); then R(#) can never go beyond € during this time. However, when
€ is sufficiently small (note that the bound of € here does not depend on 7(0)), if R(¢) never
exceeds €, I () must reach I* at some ¢ since I* is in the interior of Z8?9. We thus conclude that
EBO(I*, 1(0)) must be feasible for all (0) € (0, I*). Furthermore as y becomes sufficiently
small, both AU(I*) and AU (I*) get arbitrarily close to AUB(I*) in the SI model, which,
again given I* is in the interior of Z8?, implies that £89 (I*, I (0)) is incentive compatible for
all 1(0) € (0, I'*). This completes the proof. O

Appendix C. SIR(ecovered) model

This appendix discusses how our endemic-equilibrium analysis in the ST model can be adapted
directly to a Susceptible-Infected-Recovered model in which no one dies from the disease and
agents who recover from infection have subsequent immunity to infection.

C.1. Susceptible-infected-recovered analysis

This section extends the endemic-disease analysis of Sections 3.1-3.2 to the SIR(ecovered)
model. The key difference of this variation from the SIR(emoved) model is that R-agents remain
alive and active and hence continue to enjoy benefit flow by + b1 and are free from health cost
flow —d. We focus here on how high and how low the long-run prevalence of infection can be
in an equilibrium epidemic; the analysis for the outbreak phase is analogous to the SIR(emoved)
model in the main text.

Steady-state equilibria. Consider a steady state with masses S, I, and R of susceptible, infected,
and recovered agents, respectively. By equation (4), the steady-state condition R’(t) = 0 requires
that yI =rR. Since S + I + R =1, this in turn implies that S =1 — HTVI and R = %1. By
equation (3), the steady-state condition I’(z) = 0 requires that BasS = r + y and hence that S-

agent activity ag = ﬁ Overall, then, there is at most one steady state with mass I of

infected agents.

Let ZSSE (B,v,d,r, by, b1,br) be the set of infection levels I that can be supported in
an steady-state equilibrium in the SIR model with transmission rate §, recovery rate y, dis-
ease severity d, death rate r, and payoff parameters (by, b2). Proposition 12 establishes that
ISSE(,B, y,d,r, by, by, by) is identical to the set of infection levels that can arise in an SSE in
an SI model up to a re-scaling, with a suitably-reduced transmission rate (ﬁ < B) and disease
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severity (21\ < d), and other parameters unchanged. Moreover, as we show in the proof of this re-
sult, population-wide economic activity and population-wide suffering from the disease are also
identical in corresponding SSEs across the two models.

Proposition 12. Z55E (B8, y.d, r, by, by, by) = x ISSE(B,0,d, r, by, by, by), where B =

,BHr and d = dyﬂ

Proof. Consider the SIR model with parameters (8, y, d, r, by, by, b>) and suppose that an SSE
exists with infection level /. The steady-state epidemiological conditions require that S =1 —

HV I,R=%1I, and a5 = ﬁ (discussed earlier). If ag < 1 so that the SSE has partial

act1v1ty, then incentive-compatibility (IC) holds when S-agents have individual welfare Ug = 0
in the steady state, since then agents are indifferent whether or not to be active. Alternatively, if
as =1 so that the SSE has full activity, then IC holds when Ug > 0.

From an economic perspective, an SSE is characterized by

b1 +by(asS+ 1+ R)+ BIUS(I) — br_o)
I 1
b1+ balr )+ )+ BIUFS (D) = 2) =0,

where

SS 1 - __d
up ()= (b0+b1+b2(r+)/)( + ))

B r+y
Therefore an overall condition for I € Z5SE B,v.d,r,b1,by) is
Bl +r I 1 d
b1+b -4+ =-)=—
BIr (b1 + 2(r+)/)(r+ﬂ)) —

For every [ e TSSE (3, 0, ZZ\, r, by, by), letting I = #IA, a condition characterizing I is

ﬁ 2avtr I+r y+r ] 1 ZZ\
W(b] + bor (- F)) =
It is straightforward to verify that these two conditions are identical when E =8 y_rH and d =
d-*—. O
y+r

Barely-oscillating equilibrium trajectories. As in Section 3.2, define an oscillating trajectory
as one in which (i) S-agents alternate regularly between periods of full activity and zero activity
and (ii) the prevalence of infection rises from [ to I during each active period and then falls from
1 to I during each inactive period. Here we focus on “barely-oscillating trajectories” in which
1~ 1, so that the level of infection remains approximately constant over time.

IBO(,B, y,d,r,b1,by) be the set of infection levels that can be supported in a barely-
oscillating equilibrium trajectory in the SIR model with parameters (8, y,d, r, by, by). Propo-
sition 13 establishes that this, too, is exactly the same in the SIR model and the “corresponding
SI model” discussed earlier, with suitably-reduced transmission rate and disease severity.

Proposition 13.2°9(B,y,d,r,bo, b1, b2) = 5
andd =d

xTIBO(B,0.,d,r, by, by, b>), where B= B~

+r y+r

yr
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Proof. Define S-agents’ “average” activity as ag BO([). In any barely-OET, a O must satisfy

BaflSI=1(+y)

which means the average inflow and outflow of the infected measure is the same. With S+ 1 +

R =1, the above condition gives a g 0= ﬁ The average overall activity is then

ABO =1+ R+df (1)(1—1—R)——(1+E)

Then the individual welfare of infected agents is

bo+bi+ABO(b,  d botbi+SEU+ b g

UEC () = = :
@ r r+y r r+y
Since S-agents die at rate r and become infected at rate Bag BO ()1, they remain susceptible
1 _rty 1
for expected length of time B0~ r BafO(D) and their ex ante likelihood of becoming
BO
infected is % = ¥ | We conclude that S-agents have individual welfare
r+paf9 1)1
bo(1—= 21y r4
UBo (1) = o Y (at 0(1)(b1+b2))+—1U o(1)
r - Bag 0( I

+
bo(l—rryl) —l—y

(b1 + by + BIUEC (D))

r

The harm of infection is then given by

bo(l =20 r+y
— +

Y by +by)— (1 — 1>U,BO(1>

AUBO(1) =
The IC constraints for susceptible agents are
b+ by >BIAUBO ()

Y1 <BIAUBO(I).

r—+
b1+ by

Note that
+ bo(1 — X2 1)
by + by — BIAUEO (1) =(1 — u1)(191 4 by + BIUBO (1)) —pr 22—

—a —#1)’3—%0(1)— gy

Therefore we can rewrite the IC constraints as
b
BO
U~ () >—

Yy,
-

b
U§0(1)<7°+

Therefore, VI € ZBO (B, y, d, r, by, by, b2),

bor+y)I r+vy
) <

i
0<"Y by +by+ 1UEO1
ﬁ(l 2+ B ) — Br
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which is equivalent to

r

1+ A+ by g
0 <bi+by+BI( -

< bs.
r+)/) 2
On the other hand, for every Te1B0 (3, 0, Zz'\, r,bi,by)
N b1+(1+7})bz—2
0<bi+by+BI( ) < bs.

Let E: B y_’H andd =d y_’H , then there is a one-to-one mapping from 780 (B\, 0, c?, r, bo, b1, by)

to ZBO(B, y.,d, r, by, b1, b>) established by I = #T. O
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